WO2010004880A1 - 減速装置およびこれを適用した可変バルブタイミング装置 - Google Patents

減速装置およびこれを適用した可変バルブタイミング装置 Download PDF

Info

Publication number
WO2010004880A1
WO2010004880A1 PCT/JP2009/061616 JP2009061616W WO2010004880A1 WO 2010004880 A1 WO2010004880 A1 WO 2010004880A1 JP 2009061616 W JP2009061616 W JP 2009061616W WO 2010004880 A1 WO2010004880 A1 WO 2010004880A1
Authority
WO
WIPO (PCT)
Prior art keywords
output shaft
shaft
ball
housing
input
Prior art date
Application number
PCT/JP2009/061616
Other languages
English (en)
French (fr)
Inventor
光司 佐藤
隆英 齋藤
大介 今田
雅文 中小路
哲 山形
恵介 数野
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008215547A external-priority patent/JP5376288B2/ja
Priority claimed from JP2009091204A external-priority patent/JP5180135B2/ja
Priority claimed from JP2009093892A external-priority patent/JP5354186B2/ja
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to DE112009001645T priority Critical patent/DE112009001645T5/de
Publication of WO2010004880A1 publication Critical patent/WO2010004880A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H13/00Gearing for conveying rotary motion with constant gear ratio by friction between rotary members
    • F16H13/06Gearing for conveying rotary motion with constant gear ratio by friction between rotary members with members having orbital motion
    • F16H13/08Gearing for conveying rotary motion with constant gear ratio by friction between rotary members with members having orbital motion with balls or with rollers acting in a similar manner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/022Chain drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/34409Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear by torque-responsive means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/356Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear making the angular relationship oscillate, e.g. non-homokinetic drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/06Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface
    • F16D41/08Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface with provision for altering the freewheeling action
    • F16D41/10Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface with provision for altering the freewheeling action with self-actuated reversing
    • F16D41/105Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface with provision for altering the freewheeling action with self-actuated reversing the intermediate members being of circular cross-section, of only one size and wedging by rolling movement not having an axial component between inner and outer races, one of which is cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/20Freewheels or freewheel clutches with expandable or contractable clamping ring or band
    • F16D41/206Freewheels or freewheel clutches with expandable or contractable clamping ring or band having axially adjacent coils, e.g. helical wrap-springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2301/00Using particular materials
    • F01L2301/02Using ceramic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/03Auxiliary actuators
    • F01L2820/032Electric motors

Definitions

  • the present invention relates to a speed reducer that decelerates rotation of an input shaft and transmits it to an output shaft, and a variable valve timing device to which this is applied.
  • a speed reducer is known as a device that drives a counterpart machine connected to an output shaft by decelerating and transmitting the rotation of an input shaft that receives a driving force from a drive source such as an electric motor.
  • an input shaft 72 and an output shaft 73 rotatably supported by a housing 71 as shown in FIG. 23 and an internal gear 74 fixed in the housing 71 are arranged coaxially.
  • a plurality of rollers 76 are arranged between a ball bearing 78 and an internal gear 74 mounted on the outer periphery of an eccentric shaft portion 75 provided on the input shaft 72 (see Patent Document 1). ).
  • the number of rollers 76 between the eccentric shaft portion 75 and the internal gear 74 is smaller than the number of teeth of the internal gear 74, and is provided on the outer periphery of the eccentric shaft portion 75 by the roller retainer portion 77.
  • the output shaft 73 and the roller retainer portion 77 are integrated with each other so as to be in contact with the ball bearing 78 at intervals in the circumferential direction.
  • each roller 76 is one tooth in the other direction with respect to the teeth of the internal gear 74. Only revolve. Due to the revolution of the roller 76, the rotation of the reduction ratio corresponding to the number of teeth of the internal gear 74 is transmitted to the output shaft 73 via the roller holder 77.
  • the cage for holding the balls of the ball bearing 78 includes two annular holding plates in which concave portions having spherical inner surfaces are formed at regular intervals in the circumferential direction. And the opening side of the concave portion of the other annular holding plate is opposed to each other, and a pocket for accommodating the balls is formed between the concave portions.
  • the inner surface of the recess is spherical and is in surface contact with the surface of the ball.
  • speed reducers that decelerate the rotation of the input shaft that receives driving force from a drive source such as an electric motor and transmit it to the output shaft are used in many fields.
  • a reduction gear is applied to obtain a large force that changes the relative phase between a crankshaft and a camshaft that drives an intake valve and an exhaust valve.
  • a camshaft that drives a valve of an engine and a sprocket that receives rotation from the engine and drives the camshaft to rotate are arranged coaxially so that they can rotate relative to each other.
  • the rotation of the output shaft of the electric motor placed on the same axis as the shaft is transmitted to the camshaft through the speed reduction mechanism, and the camshaft is rotated relative to the sprocket to change the rotational phase difference between the two, thereby opening and closing the valve.
  • variable valve timing device to which the speed reduction device described in Patent Document 1 is applied as a speed reduction mechanism
  • the reverse input torque is output to the output shaft of the electric motor. And its output shaft is rotated.
  • the electric motor is continuously energized so that the output shaft of the electric motor does not rotate and the input torque is applied or the output shaft of the electric motor is not rotated continuously. It is necessary to energize.
  • an object of the present invention is to prevent the reverse input torque that has acted on the output shaft of the speed reducer from being transmitted to the input shaft.
  • the speed reducer includes an input shaft and an output shaft that are rotatably supported by a housing, and an internal gear that is fixed to the housing, and is arranged coaxially.
  • a plurality of rollers are arranged between the eccentric shaft portion having a circular cross section provided on the shaft and the internal gear, and each of these rollers is rotatably held by a roller holder portion that rotates integrally with the output shaft,
  • the decelerating device that transmits the rotation of the input shaft to the output shaft via a roller cage section, the output shaft against the reverse input torque acting on the output shaft between the input shaft and the output shaft.
  • a configuration is provided in which locking means for locking the housing to the housing and unlocking means for releasing the locked state by the locking means with respect to the input torque acting on the input shaft are employed.
  • the locking means and unlocking means are provided between the input shaft and the output shaft, when the load is applied to the output shaft and reverse input torque is applied to the output shaft, the output shaft is It is possible to lock and prevent transmission to the input shaft. On the other hand, the input torque from the input shaft is released by the lock release means, and the input torque is transmitted to the output shaft.
  • the locking means forms a plurality of wedge-shaped spaces narrowing in both circumferential directions between the housing and the output shaft, and a pair of engagement elements in the respective wedge-shaped spaces by the engagement cage retainer.
  • the lock release means is connected to the housing and the output shaft so as to be detachable, and the engagement holder portion is connected to rotate integrally with the roller holder portion, and an input torque is applied to the input shaft.
  • the engagement holder portion presses one of the pair of engagement elements toward the wide side of the wedge-shaped space to release the engagement with the housing and the output shaft. It is possible to adopt a configuration that is the same.
  • the rotation of the output shaft to which reverse input torque has been applied causes the engagement member at the rear in the rotation direction of the pair of engagement elements in the wedge-shaped space to engage with the output shaft and the housing by the wedge effect.
  • the output shaft is locked with respect to the housing, and it is possible to reliably prevent the reverse input torque acting on the output shaft from being transmitted to the input shaft.
  • the engagement holder portion since the engagement holder portion is connected so as to rotate integrally with the roller holder portion, the engagement piece holder portion rotates as the roller holder portion rotates.
  • the rotating retainer retainer portion presses the engagement element rearward in the rotation direction of the pair of engagement elements toward the wide side of the wedge-shaped space, and the engagement state by the engagement element is released.
  • the output shaft and the roller holder unit can be integrated as in the conventional reduction gear. You may form integrally with a holder
  • the output shaft that transmits the rotation of the input shaft through the integral holder is the roller holder like the output shaft of the conventional speed reducer. No complicated processing is required to make the structure integral with the part. For this reason, a processing cost is suppressed and the manufacturing cost of the reduction gear is suppressed.
  • an elastic member is disposed between the pair of engaging elements, and the elastic members are used to press the engaging elements on both sides toward the narrow side of the wedge-shaped space so as to be engaged with the housing and the output shaft. You may employ
  • the elastic member disposed between the pair of engaging elements presses the engaging elements on both sides in the direction in which the engaging elements on both sides are engaged with the housing and the output shaft, that is, the direction in which the wedge-shaped space is narrowed. For this reason, when the output shaft rotates, the output shaft is immediately locked with respect to the housing, and the function of locking the output shaft to the housing is stabilized.
  • the locking means of the speed reducer includes an engaging portion in which a coil spring is fitted into a position of the inner periphery of the housing facing the outer periphery of the output shaft, and the output shaft can be engaged with both ends of the coil spring.
  • the engaging portion of the output shaft engages with either one of the ends of the coil spring to expand the diameter of the coil spring.
  • the lock releasing means is provided with a protrusion protruding in the axial direction on the roller retainer portion, and when the input torque is applied to the input shaft, the protrusions are arranged at both ends of the coil spring. The structure which presses any one edge part of these and shrinks the diameter of the coil spring is employable.
  • this locking means when the reverse input torque acts and the output shaft tries to rotate, the engaging portion engages with one end of the coil spring and presses the coil spring in the direction of expanding the diameter. .
  • a frictional resistance is generated between the coil spring whose diameter has been expanded by the pressing and the inner peripheral surface of the housing, and the output shaft is locked to the housing, so that the rotation of the output shaft on which reverse input torque acts can be prevented. .
  • this unlocking means when the roller cage part rotates by the rotation of the input shaft, the protrusion engages with one of the two end parts of the coil spring.
  • the protrusion engaged with the end of the coil spring presses the coil spring in a direction to reduce the diameter of the coil spring, and releases the locked state between the housing and the output shaft due to the diameter expansion of the coil spring.
  • the said structure WHEREIN The edge part of the said coil spring pressed by the protrusion of the said roller holder
  • retainer part is provided so that engagement with the engaging part of the said output shaft is possible, and the said protrusion is via the edge part of the said coil spring. You may make it press the engaging part of the said output shaft.
  • the input torque is transmitted to the output shaft through the end of the coil spring by the protrusion of the roller holder portion that unlocks the output shaft, so that the transmission of the input torque to the output shaft is performed.
  • the locking means in the speed reducer includes a cam plate that rotates integrally with the output shaft so as to be axially displaceable, and rotates integrally with the roller retainer portion facing the cam plate.
  • An annular rotating body connected coaxially, a circumferential cam groove formed on both surfaces of the cam plate and the annular rotating body, and rolling between the cam grooves to rotate the cam plate and the annular rotation.
  • the lock release means engages the ball with the cam plate and the annular rotating body when an input torque is applied to the input shaft, and the cam plate Is displaced in the other axial direction is spaced apart from the contact surface of the internal gear, the said cam plate and said annular rotary body it is possible to adopt a configuration is intended to be integrally rotated.
  • the cam plate when reverse input torque is applied to the output shaft, the cam plate is pressed in the axial direction by the elastic member and pressed against the contact surface formed on the internal gear, thereby generating frictional resistance on the cam plate.
  • the cam plate is fixed to the internal gear, and the rotation of the output shaft on which the reverse input torque acts can be prevented.
  • the unlocking means when input torque is applied to the input shaft, the ball is engaged with the annular rotating body and the cam plate, so that the cam plate is displaced in the other axial direction so that the contact surface of the internal gear Separate. As a result, the annular rotating body and the cam plate rotate integrally, and the rotation of the input shaft is transmitted to the output shaft.
  • the internal gear has the contact surface at the other axial end, the contact surface is tapered, and the cam plate has a tapered shape along the contact surface at a position opposed to the contact surface.
  • the tapered pressing surface of the cam plate is pressed against the tapered contacting surface of the internal gear, so that the contact area between the contact surface and the pressing surface can be further increased.
  • the annular rotating body is formed integrally with the roller holder part, the number of parts can be reduced, the manufacturing cost of the speed reducer can be suppressed, and the structure can be simplified.
  • the internal gear having a plurality of cam ridges formed at equal pitches in the circumferential direction is provided on the inner diameter surface of the cylindrical portion of the housing so as to face the eccentric shaft portion, and the opposed eccentric shafts.
  • the output shaft having the roller holder portion that holds the plurality of rollers that are in rolling contact with the outer diameter surface of the portion and the internal gear is disposed, and the roller holder portion is divided at an equal pitch in the circumferential direction.
  • Pockets for holding the rollers are provided at positions where all or some of the dividing points differ from the number of the cam crests by one, and a portion corresponding to one pitch of the cam crests is provided.
  • rollers are matched with the outer diameter side envelope of the trajectory in which the roller held in the pocket revolves along the outer diameter surface of the eccentric shaft portion when the input shaft is rotated.
  • a reverse input inhibition means inhibits the reverse input to the input shaft.
  • the reverse input suppression means As the reverse input suppression means, a negative clearance is set in the rolling bearing that supports the input shaft, and rotational resistance is applied to the rolling bearing, and the reverse input suppression means is a rolling that supports the input shaft. Provided with a contact seal on the bearing to provide rotational resistance to the rolling bearing, or to provide rotational resistance to the roller by making the width of the pocket of the roller cage part equal to or less than the diameter of the roller Can be adopted.
  • the inventor of the present invention analyzes the reduction gear, and as a result, in order to effectively improve the torque transmission efficiency of the reduction gear, the rotation of a ball bearing provided on the outer periphery of the eccentric shaft portion It has been found that reducing the torque is very important.
  • the following configuration may be adopted for the ball bearing.
  • a ball bearing is provided on the outer periphery of the eccentric shaft portion, and as a cage for holding the ball of the ball bearing, two concave portions having inner surfaces formed by a plurality of planes are formed at regular intervals in the circumferential direction. Adopting an annular holding plate, forming an opening side of the concave portion of one annular holding plate and an opening side of the concave portion of the other annular holding plate to form a pocket having a polygonal cross section between the concave portions, The ball is stored in the pocket.
  • a cage comprising two annular holding plates in which concave portions having a spherical inner surface are formed at regular intervals in the circumferential direction, and the opening side of the concave portion of one of the annular holding plates is adopted.
  • a pocket for accommodating the ball may be formed between the concave portions of the other annular holding plate facing each other, and a protrusion that makes point contact with the ball may be formed on the inner surface of the concave portion.
  • the above-mentioned cage one comprising two annular holding plates formed with concave portions at a constant interval in the circumferential direction is adopted, and the opening side of the concave portion of one of the annular holding plates and the other annular holding plate are adopted.
  • the part which the ball contacts in the part where the opening side of the concave part of the plate is made to face and the pocket for accommodating the ball is formed between the concave parts, and the ball on the inner surface of the concave part does not contact when the ball bearing rotates.
  • a through-hole may be formed at a site that is in a direction opposite to the traveling direction of the balls.
  • lubricant tends to accumulate due to the centrifugal force caused by the rotation of the ball from the part that contacts the ball on the inner surface of the recess to the direction opposite to the traveling direction of the ball, and the ball bearing rotates due to the viscous resistance of the lubricant.
  • the torque tends to increase. Therefore, when the through-hole is formed, the lubricant accumulated between the inner surface of the recess and the ball is pushed out of the through-hole by the centrifugal force due to the rotation of the ball, and the viscous resistance of the lubricant is suppressed.
  • the rotational torque of the ball bearing is less likely to increase even when subjected to centrifugal force due to the center deviation.
  • each of the recesses so as to be symmetrical on the front side and the rear side in the traveling direction of the balls.
  • a through-hole is formed at a portion close to the ball traveling direction from the portion where the ball on the inner surface of the recess contacts. Yes, the lubricant accumulated between the inner surface of the recess and the ball is effectively discharged from the through hole by the centrifugal force caused by the rotation of the ball.
  • a variable valve timing device includes a camshaft that drives at least one of an intake valve and an exhaust valve of an engine, rotation transmitted from the engine, and rotation of the camshaft.
  • a sprocket to be driven is arranged coaxially so as to be relatively rotatable, and the rotation of the output shaft of the electric motor arranged coaxially with the camshaft is transmitted to the camshaft via a reduction mechanism,
  • the speed reduction mechanism is the speed reduction device described above, and the output shaft of the electric motor and the camshaft are A configuration using the input shaft and the output shaft of the reduction gear can be employed.
  • the eccentric shaft portion revolves around the shaft center of the output shaft of the electric motor in the same direction, and each roller has one tooth relative to the teeth of the internal gear.
  • the roller holder part that revolves by the amount and holds these rollers rotates.
  • variable valve timing device In general, in a variable valve timing device, if the drive source for operating the speed reduction mechanism is an electric motor, the camshaft is loaded for some reason and reverse input torque is applied to the output shaft of the electric motor. Torque is transmitted and its output shaft is rotated. For this reason, it is necessary to keep the electric motor energized and to apply the input torque so that the output shaft does not rotate.
  • variable valve timing device of the present invention can perform the deceleration of the rotation of the output shaft of the electric motor and the transmission of the decelerated rotation to the camshaft by the above-described reduction device that is a reduction mechanism.
  • the structure can be simplified.
  • locking means and unlocking means for releasing the locked state by the locking means, and suppressing reverse input to the output shaft of the electric motor. Since the speed reduction device provided with the reverse input suppression means is applied, transmission of the reverse input torque to the output shaft of the electric motor can be prevented.
  • Sectional drawing which shows 1st Embodiment of the reduction gear device which concerns on this invention Sectional view along the line AA in FIG. Sectional view along the line BB in FIG.
  • Sectional drawing which shows 2nd Embodiment same as the above Sectional view along line CC in FIG. The perspective view which shows the principal part of 2nd Embodiment of a reduction gear.
  • Expanded sectional view showing the locked state of the output shaft The expanded sectional view which shows the lock release state of an output shaft same as the above Sectional drawing which shows 3rd Embodiment of a reduction gear device
  • FIG. 15A A Main part expanded sectional view which shows the locked state along the DD line of FIG. 10, (b) Main part expanded sectional view which shows the lock release state same as the above. Partially omitted vertical sectional view showing a modification of the ball bearing supporting the input shaft of the first embodiment of the reduction gear
  • the cross-sectional enlarged view which shows the roller holding state of a roller holder part same as the above 1 is an enlarged cross-sectional view of the vicinity of a deep groove ball bearing mounted on the outer periphery of the eccentric shaft portion of FIG. 15A is a cross-sectional view along a cylindrical surface passing through the center of each ball of the deep groove ball bearing of FIG. 15, and FIG.
  • 15B is an enlarged cross section in the vicinity of the inner surface of the recess showing the state of the deep groove ball bearing shown in FIG. Figure (A) Sectional drawing which shows the modification of the deep groove ball bearing of FIG. 16, (b) The expanded sectional view of the protrusion vicinity of the inner surface of the recessed part which shows the state at the time of rotation of the deep groove ball bearing shown to (a) (A) Sectional drawing which shows the modification of the deep groove ball bearing of FIG. 16, (b) The expanded sectional view of the through-hole vicinity of the inner surface of the recessed part which shows the state at the time of rotation of the deep groove ball bearing shown to (a) (A) Sectional drawing which shows the modification of the deep groove ball bearing of FIG.
  • the reduction gear 10 of the first embodiment includes an input shaft 12 and an output shaft 13 that are rotatably supported by a cylindrical housing 11, and an internal gear 14 that is fixed to the housing 11. It is arranged coaxially.
  • the housing 11 is formed by fitting cylindrical bodies divided in the axial direction by known means such as bolts (not shown), and the input shaft 12 and the output shaft 13 are rotatably supported at both ends thereof on the same axis. Has been.
  • the input shaft 12 is rotatably supported by a pair of bearings 15 and 16 at one end portion of the housing 11 and the large-diameter portion 13b of the output shaft 13. Between the bearings 15 and 16 of the input shaft 12, a pair of eccentric shaft portions 17 and 17 are provided integrally with the input shaft 12 at two locations in the axial direction.
  • the bearing 15 that supports the input shaft 12 is provided with contact seals 15c at both ends of the outer ring 15a.
  • contact seals 15c By bringing these contact seals 15c into contact with the inner ring 15b, rotational resistance is imparted to the bearing 15, and reverse input from the output shaft 13 to the input shaft 12 is suppressed.
  • the contact-type seal 15c can be attached only to one axial direction.
  • Each eccentric shaft portion 17 has a circular cross section, the center of the circle of each eccentric shaft portion 17 is at a position shifted from the axis of the input shaft 12, and the center of the circle of one eccentric shaft portion 17 and the other eccentricity.
  • the shaft portion 17 is eccentric so as to sandwich the axis of the input shaft 12 between the center of the circle of the shaft portion 17.
  • a deep groove ball bearing 18 is mounted on the outer periphery of each eccentric shaft portion 17 by press fitting.
  • the internal gear 14 is fixed in the housing 11, and is coaxially disposed with respect to the input shaft 12 at a position opposed to the outer periphery of the deep groove ball bearing 18 of the pair of eccentric shaft portions 17.
  • Fifty teeth 19 are formed at a constant pitch in the circumferential direction on the inner peripheral portion of the internal gear 14, and the tooth gap between the teeth 19 has a curved cross-sectional shape.
  • a plurality of rollers 21 are held at a constant circumferential pitch by a cylindrical roller cage portion 22 between the inner circumferential portion of the internal gear 14 and the deep groove ball bearing 18 of both eccentric shaft portions 17. .
  • the pockets 23 for holding these rollers 21 are provided at 13 positions which are thinned out every third with respect to the dividing points when the roller cage portion 22 is divided into 51 equal parts in the circumferential direction. The number of points is one more than the teeth 19.
  • the shape of the tooth gap between the teeth 19 (the tooth gap corresponding to one pitch of the teeth 19) is such that when the input shaft 12 is rotated, the roller 21 held in the pocket 23 is This coincides with the outer diameter side envelope of the trajectory revolving along the outer peripheral portion of the outer ring of the deep groove ball bearing 18 fitted to the outside. Further, all the rollers 21 are in contact with the outer periphery of the deep groove ball bearing 18, and a part thereof is in contact with the teeth 19 of the internal gear 14.
  • the relationship between the number of teeth of the internal gear 14 and the number of rollers 21 is not limited to the case shown in FIG. 2, but is set based on the reduction ratio determined by experiment and actual operation.
  • the roller retainer portion 22 has pockets 23 for accommodating the rollers 21 in a rollable manner in the circumferential direction, and the formed pockets 23 are arranged in two rows in the axial direction with a half-pitch deviation from the fixed pitch. (See FIG. 4).
  • the circumferential width of the pocket 23 of the roller holder 22 is formed such that the roller 21 to be held can roll, as shown in FIG.
  • the size may be set to be equal to or less than the diameter of the roller 21, and a rotational resistance may be applied to the roller 21 to indirectly suppress reverse input from the output shaft 13 to the input shaft 12.
  • the output shaft 13 is integrally formed with a small-diameter portion 13a at one end thereof (an end facing the input shaft 12) and a large-diameter portion 13b positioned on the tip side of the small-diameter portion 13a.
  • the small diameter portion 13a is rotatably supported by bearings 24 at two axial positions on the other end of the housing 11.
  • the large-diameter portion 13b of the output shaft 13 has a cylindrical shape, and the other end portion of the input shaft 12 is rotatably supported by a bearing 16 provided on the inner peripheral portion thereof.
  • the large-diameter portion 13b is provided with a hole 13d penetrating in the axial direction, and the switch pin 20 is fitted into the hole 13d so as to partially protrude toward the small-diameter portion 13a.
  • cam surfaces 13 c are formed at equal intervals in four circumferential directions on the outer peripheral portion of the large diameter portion 13 b of the output shaft 13.
  • the cam surface 13c is flat and forms a wedge-shaped space 25 that gradually narrows in both circumferential directions between the housing 11 and the large-diameter portion 13b of the output shaft 13.
  • the wedge-shaped space 25 may be formed by providing a cam surface 13 c on the inner peripheral portion of the housing 11.
  • each wedge-shaped space 25 a pair of rollers 26 as engaging members are arranged with a leaf spring 27 as an elastic member interposed therebetween, and the pair of rollers 26 engages / disengages with the housing 11 and the large diameter portion 13b of the output shaft 13. It is possible.
  • the leaf spring 27 presses the rollers 26 on both sides thereof toward the narrowed side (narrow side) of the wedge-shaped space 25 and biases it in a direction to engage with the housing 11 and the large diameter portion 13b of the output shaft 13. ing.
  • a cylindrical engagement cage portion 28 is disposed between the large diameter portion 13b of the output shaft 13 and the housing 11.
  • This engagement holder portion 28 constitutes a lock release means, and a pocket 29 is formed at a position corresponding to the wedge-shaped space 25, and a pair of rollers 26 has a gap in the pocket 29 with respect to the inner wall in the circumferential direction of the pocket 29. Is housed.
  • a pair of sprags can be used in place of the pair of rollers 26 as engaging elements in order to securely lock the output shaft 13 against the reverse input torque. That is, when a plurality of pairs of sprags are tiltably held between the output shaft 13 and the housing 11 by the engaging cage holder 28 and the output shaft 13 rotates, either one of the pair of sprags is output shaft 13. And may engage with the housing 11.
  • the roller cage portion 22 and the engagement cage portion 28 are formed as an integrated cage 30 that is coaxially integrated by, for example, pressing.
  • the integrated retainer 30 By forming the integrated retainer 30 by press working, the engagement retainer portion 28 can be rotated integrally with the roller retainer portion 22, the number of parts can be reduced, and the manufacturing cost can be suppressed.
  • a radially inward flange 31 is formed at the other end of the integral retainer 30 on the side of the engagement cage portion 28, and the flange 31 has a radially outward cutout groove 32.
  • the switch pin 20 fitted to the output shaft 13 is engaged with the notch groove 32 (see FIG. 1).
  • the deep groove ball bearing 18 on the outer periphery of the eccentric shaft portion 17 holds an inner ring 50, an outer ring 51, a plurality of balls 52 incorporated between the inner ring 50 and the outer ring 51, and the balls 52.
  • a cage 53 is composed of two annular retaining plates 54 and 54 formed in a corrugated annular shape whose waveform is repeated in the circumferential direction by press forming of a steel plate.
  • each annular holding plate 54 is provided with a recess 56 having an inner surface 55 formed by three continuous planes at regular intervals in the circumferential direction.
  • the inner surface 55 of the recess 56 includes an inner bottom surface 55a and two inner side surfaces 55b and 55b that form an obtuse angle with the inner bottom surface 55a.
  • the inner bottom surfaces 55a and 55a facing each other between the recesses 56 and 56 are parallel, and the distance between the inner bottom surfaces 55a and 55a is larger than the diameter of the ball 52.
  • the inner side surface 55b of one of the concave portions 56 facing each other is parallel to the inner side surface 55b of the inner side surface 55b, 55b of the other concave portion 56 at a position sandwiching the center of the ball 52, and the inner side surface 55b, The distance between 55b is larger than the diameter of the ball 52.
  • the ball 52 contacts the central portion of the inner surface 55b of the recess 56 when the deep groove ball bearing 18 rotates.
  • a low friction film 58 is formed on the entire surface of the annular holding plate 54, and this low friction film 58 reduces the friction between the cage 53 and the ball 52.
  • the low friction film 58 include a ceramic film such as a boron nitride film, a DLC (diamond-like carbon) film, a carbon nitride film, and a PTFE (polytetrafluoroethylene) film.
  • the low friction film 58 may be formed only on the inner surface 55 of the recess 56.
  • the rotation of the roller cage section 22 is a rotation of a reduction ratio (50: 1 in the case of FIG. 2) corresponding to the number of teeth 19 of the internal gear 14 with respect to the rotation of the input shaft 12.
  • Rotation of the roller holder unit 22 causes the engagement holder unit 28 formed integrally with the roller holder unit 22 to rotate counterclockwise.
  • the clockwise roller 26 in the wedge-shaped space 25 resists the elastic force of the leaf spring 27 in the circumferential direction of the pocket 29 of the engagement holder portion 28. Pressed against the inner wall.
  • the roller 26 in the clockwise direction (rear in the rotational direction) is released from the engagement state on the narrow side of the wedge-shaped space 25 in that direction, and the output shaft 13 is locked. Is released. At this time, the roller 26 in the counterclockwise direction (forward in the rotational direction) is not engaged on the narrow side of the wedge-shaped space 25 in that direction, and the output shaft 13 can rotate in the counterclockwise direction.
  • the output shaft 13 that has become rotatable has the switch pin 20 fixed to the large-diameter portion 13 b engaged with the notch groove 32 of the engagement holder portion 28. For this reason, when the input shaft 12 further rotates in the clockwise direction, the output shaft 13 is counterclockwise based on the reduction ratio via the integrated holder 30 including the roller holder portion 22 and the engagement holder portion 28. Rotate. When an input torque in the counterclockwise direction is input to the input shaft 12, the output shaft 13 rotates in the clockwise direction by an operation reverse to the above.
  • the input torque in the forward and reverse rotation directions from the input shaft 12 is transmitted to the output shaft 13 via the integrated cage 30, and the output shaft 13 rotates in both the forward and reverse rotation directions.
  • the pair of rollers 26 returns to the position shown in FIG. 3 by the elastic restoring force of the leaf spring 27.
  • the eccentric shaft portion 17 when the eccentric shaft portion 17 is rotated by the input torque from the input shaft 12, the eccentric shaft portion 17 is located at a position where the rotation center is deviated from the center of the circle. The same occurs in the deep groove ball bearing 18 on the outer periphery of the portion 17. As a result, in the deep groove ball bearing 18, the friction between the cage 53 and the ball 52 is likely to be larger than the other bearings 15, 16, 24.
  • the inner surface 55 of the concave portion 56 of the cage 53 is formed by a plurality of planes, and the inner surface 55 of the concave portion 56 and the ball 52 are in point contact.
  • the friction generated between the balls 52 is small and the rotational torque is small. Therefore, this reduction gear has high transmission efficiency of torque transmitted from the input shaft 12 to the output shaft 13.
  • the shape of the pocket 57 of the cage 53 is not limited to this embodiment, and may be a polygonal cross section such as an octagonal cross section.
  • the cross section refers to a cross section along a cylindrical surface passing through the center of each ball 52.
  • this reduction gear has the low friction film 58 formed on the inner surface 55 of the recess 56, the friction generated between the cage 53 and the ball 52 is small. Therefore, this reduction gear has high transmission efficiency of torque transmitted from the input shaft 12 to the output shaft 13.
  • the speed reducer using the deep groove ball bearing 18 in which the inner surface 55 of the recess 56 is formed by a plane that makes point contact with the ball 52 in order to increase the transmission efficiency of torque transmitted from the input shaft 12 to the output shaft 13, the speed reducer using the deep groove ball bearing 18 in which the inner surface 55 of the recess 56 is formed by a plane that makes point contact with the ball 52.
  • a speed reducer in which the deep groove ball bearing shown in FIG. 17A is mounted on the outer periphery of the eccentric shaft portion 17 may be employed.
  • portions corresponding to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • each annular holding plate 54 recesses 60 having spherical inner surfaces 59 are formed at regular intervals in the circumferential direction.
  • the two annular holding plates 54 are coupled in a state where the opening side of the concave portion 60 of one annular holding plate 54 and the opening side of the concave portion 60 of the other annular holding plate 54 face each other. , 60 accommodates balls 52 in pockets 61 formed between them.
  • a protrusion 62 that contacts the ball 52 is formed on the inner surface 59 of the recess 60.
  • the protrusion 62 is formed in a hemispherical shape, and is in point contact with the surface of the ball 52.
  • the protrusions 62 are formed at two positions in each recess 60, and the two protrusions 62, 62 are arranged so as to be symmetrical with the deepest position of the recess 60 in the circumferential direction.
  • the protrusions 62 are provided on the front side in the traveling direction of the balls 52 so that the balls 52 are in contact with the protrusions 62. It has become.
  • a low friction film 58 similar to that of the first embodiment is formed on the inner surface 59 of the recess 60.
  • the inner surface 59 of the recess 60 gradually increases in distance from the center C of the pocket 61 to the inner surface 59 of the recess 60 as approaching the opening edge of the recess 60 from the deepest position. It is formed in a spherical shape.
  • the inner surface 59 may be formed in a spherical shape with a constant distance from the center C of the pocket 61 to the inner surface 59 of the recess 60.
  • this deep groove ball bearing has a protrusion 62 that makes point contact with the ball 52 on the inner surface 59 of the concave portion 60 of the cage 53, the friction generated between the cage 53 and the ball 52 is small and eccentric as in the first embodiment. Even if the centrifugal force due to the shift of the rotation center of the shaft portion 17 is received, the rotational torque is not easily increased.
  • a deep groove ball bearing shown in FIG. 18 (a) may be adopted.
  • This deep groove ball bearing is a spherical surface in which the distance from the center C of the pocket 61 gradually increases as the inner surface 59 of the recess 60 approaches the opening edge of the recess 60 from the deepest position of the recess 60, as in the deep groove ball bearing shown in FIG. 18B, when the deep groove ball bearing rotates, the ball 52 comes into contact with a position shifted in the circumferential direction from the deepest position of the inner surface 59 of the recess 60. As shown in FIG. Yes.
  • the inner surface 59 of the recess 60 has a portion that is not in contact with the ball 52 during rotation of the deep groove ball bearing, a portion that is offset from the portion in contact with the ball 52 in the direction opposite to the traveling direction of the ball 52, that is, the inner surface of the recess 60.
  • a through-hole 63 is formed at a portion closer to the deepest side of 59. As shown in FIG. 18A, two through holes 63 are formed in each recess 60, and the two through holes 63, 63 sandwich the deepest position of the inner surface 59 of the recess 60.
  • the balls 52 are arranged so as to be symmetrical on the front side in the traveling direction and the rear side in the traveling direction.
  • a low friction film 58 similar to that of the first embodiment is formed on the inner surface 59 of the recess 60.
  • the lubricant may accumulate between the inner surface 59 of the recess 60 and the ball 52.
  • the lubricant tends to accumulate in the portion of the inner surface 59 of the recess 60 that is in the direction opposite to the traveling direction of the ball 52 from the portion where the ball 52 contacts, due to the centrifugal force caused by the rotation of the ball 52.
  • the rotational resistance of the deep groove ball bearing may increase due to viscous resistance.
  • this deep groove ball bearing is arranged so that the two through holes 63, 63 of each recess 60 are symmetrical on the front side in the traveling direction and the rear side in the traveling direction of the ball 52.
  • the lubricant accumulated in the middle is effectively discharged from the through hole 63.
  • the through hole 64 can be formed in the inner surface 55 of the concave portion 56 forming the pocket 57.
  • this deep groove ball bearing has an inner surface 55 of the concave portion 56 composed of an inner bottom surface 55a and two inner side surfaces 55b and 55b.
  • bowl 52 contacts the center part of the inner surface 55b.
  • the through hole 64 is a portion of the inner surface 55b of the concave portion 56 that is not in contact with the ball 52, a portion that is offset from the portion in contact with the ball 52 in the direction opposite to the traveling direction of the ball 52, that is, the inner bottom surface 55a of the concave portion 56. It is formed in the part which approached to the side. Further, as shown in FIG. 19 (a), the through hole 64 is formed at one place on each inner side surface 55b, and the through hole 63 sandwiches the inner bottom surface 55a between the front side in the traveling direction of the ball 52. Are arranged symmetrically with respect to the rear side in the traveling direction. A low friction film 58 similar to that of the first embodiment is formed on the inner surface 55 of the recess 56.
  • the roller 21 may revolve clockwise when input torque is input clockwise to the input shaft 12.
  • the input torque in the forward and reverse rotational directions from the input shaft 12 is transmitted to the output shaft 13 via the integrated retainer 30, and the output shaft 13 is rotated in the forward and reverse rotational directions. Rotate to.
  • the speed reduction device 10 includes a lock unit that is provided between the output shaft 13 and the input shaft 12 and that locks the output shaft 13 to the housing 11 against reverse input torque that acts on the output shaft 13.
  • the lock release means for releasing the locked state by the lock means with respect to the input torque acting on the shaft 12 is different from that of the first embodiment.
  • Other configurations are the same as those of the first embodiment, and the same reference numerals are used for the same configurations, and the description thereof is omitted.
  • a coil spring 33 is disposed between the housing 11 and the large diameter portion 13 b of the output shaft 13.
  • the coil spring 33 is fitted so as to come into contact with the inner peripheral portion of the housing 11 in a natural state, and both end portions 33a and 33b protrude radially inward.
  • the coil spring 33 is fitted in the housing 11 so that the diameter of the coil spring 33 is reduced when both end portions 33a and 33b are pressed inward in the circumferential direction, and the diameter of the coil spring 33 is expanded when pressed outward in the circumferential direction.
  • an axial groove 35 is formed on the outer peripheral portion of the large-diameter portion 13 b of the output shaft 13, and both groove walls of the groove 35 are at both end portions 33 a and 33 b of the coil spring 33. It is located on the outer side in the circumferential direction.
  • one groove wall 35 a is an engaging portion that can be engaged with the end portion 33 a of the coil spring 33 and the other groove wall 35 b is engageable with the end portion 33 b of the coil spring 33.
  • a protrusion 34 formed by press working integrally with the roller retainer portion 22 is disposed, and the protrusion 34 becomes a coil spring by the rotation of the roller retainer portion 22. It is possible to engage with either one of both end portions 33a and 33b of 33.
  • the locking means described above is composed of a coil spring 33 and groove walls 35 a and 35 b as engaging portions of the output shaft 13, and the groove wall 35 a (35 b) is rotated by the rotation of the output shaft 13. Engage with the end 33a (33b) of the coil spring 33 and press the coil spring 33 in the direction of expanding the diameter (see FIG. 8).
  • the roller cage portion 22 rotates counterclockwise as in the first embodiment described above.
  • the protrusion 34 as the unlocking means engages with the end portion 33a of the coil spring 33 and presses the coil spring 33 in a direction to reduce the diameter (see FIG. 9).
  • the input torque in the forward and reverse rotational directions from the input shaft 12 is transmitted to the output shaft 13 via the roller retainer unit 22, and the output shaft 13 is in both the forward and reverse directions. Rotate in the direction of rotation.
  • the speed reduction device 10 according to the third embodiment includes a locking unit that is provided between the output shaft 13 and the input shaft 12 and locks the output shaft 13 to the housing 11 against reverse input torque that acts on the output shaft 13.
  • the lock release means for releasing the locked state by the lock means with respect to the input torque acting on the input shaft 12 is different from that in the first embodiment.
  • Other configurations are the same as those of the first embodiment, and the same reference numerals are used for the same configurations, and the description thereof is omitted.
  • the output shaft 13 has a small-diameter portion 13a and a large-diameter portion 13b that are formed separately, and is provided on one end side outer peripheral portion of the small-diameter portion 13a and the inner peripheral portion of the large-diameter portion 13b.
  • the splines are formed so as to be integrally rotatable by engagement of the formed splines.
  • a cam plate 36 that is a large-diameter portion 13b that rotates integrally with the output shaft 13 and is displaceable in the axial direction, and an annular rotator 37 that is connected to rotate integrally with the roller retainer portion 22. It is provided coaxially so as to face each other.
  • the annular rotator 37 can be formed integrally with the roller holder 22.
  • the cam plate 36 is biased in one axial direction by an elastic member 39 provided between the inner surface of the other end of the housing 11 and includes a pressing surface 36 c facing the one axial direction on the outer peripheral portion of the cam plate 36. .
  • the pressing surface 36c is formed in a taper shape extending toward the other axial direction, and is opposed to the tapered contact surface 14b formed on the other axial end of the internal gear 14 and facing the other axial direction.
  • the cam plate 36 biased by the elastic member 39 has a pressing surface 36 c pressing the contact surface 14 b of the internal gear 14.
  • the annular rotating body 37 is supported so as to be relatively rotatable with respect to the internal gear 14 by a bearing 38 provided between the inner peripheral portion of the cylindrical portion 14 a formed on the other axial end side of the internal gear 14.
  • a plurality of cam grooves 40 in the circumferential direction are formed at opposite positions in the circumferential direction on both opposing surfaces of the cam plate 36 and the annular rotator 37. It is formed in a mortar shape having a small depth (shallow), and a ball 41 is interposed between the cam grooves 40 so as to allow rolling.
  • the locking means includes a cam plate 36, an annular rotator 37 facing the cam plate 36, cam grooves 40 on both opposing surfaces of the cam plate 36 and the annular rotator 37, and these cam grooves 40.
  • a ball 41 that rolls between the cam plate 36 and the annular rotator 37 and is detachably interposed is provided.
  • the ball 41 is axially disposed between the other circumferential end of the cam groove 40 of the annular rotating body 37 and one circumferential end of the cam groove 40 of the cam plate 36. It is in an engaged state.
  • the locked state of the cam plate 36 with respect to the internal gear 14 due to the reverse input torque is such that when the input torque is applied to the input shaft 12, the ball 41 is engaged with the cam plate 36 and the annular rotating body 37, and the axial direction
  • the cam plate 36 displaced to the other side is separated from the contact surface 14b of the internal gear 14, and can be released by integrally rotating the cam plate 36 and the annular rotating body.
  • FIG. 20 shows a fourth embodiment of a reduction gear 10 according to the present invention.
  • differences from the first embodiment will be mainly described, and the same reference numerals will be used for the same conceivable configurations.
  • the other end side cylindrical portion of the housing 11 is formed on the sprocket 42 that rotates integrally with the one end side cylindrical portion, and one end surface of the sprocket 42 (the end surface on the housing 11 side). ), A cylindrical portion 42a coaxial with the output shaft 13 is integrally formed.
  • the cylindrical part of the one end side of the housing 11 is press-fitted and fixed to the outer periphery of the cylindrical part 42a, and the small diameter part 13a of the output shaft 13 is rotatably supported by the inner peripheral part of the sprocket 42.
  • the input shaft 12 has a large-diameter portion 12a rotatably supported by a bearing 15 at one end in the housing 11, and an eccentric shaft portion 17 formed integrally with the large-diameter portion 12a in one axial direction. Yes.
  • the output shaft 13 has a small-diameter portion 13a and a large-diameter portion 13b formed separately, and can rotate integrally by engaging splines formed on one end side outer peripheral portion of the small-diameter portion 13a and the inner peripheral portion of the large-diameter portion 13b. Is provided.
  • the large-diameter portion 13b is fitted in a radial hole 13d formed in the outer peripheral portion thereof so that the switch pin 20 protrudes from the outer peripheral portion, and can rotate integrally with the engaging cage portion 28 of the integrated cage 30. Is engaged. For this reason, the rotation of the input torque acting on the input shaft 12 is transmitted from the integrated cage 30 to the small diameter portion 13a via the large diameter portion 13b (intermediate shaft). Further, cam surfaces 13 c are formed at equal intervals in the circumferential direction on the outer peripheral portion of the large diameter portion 13 b of the output shaft 13 that faces the cylindrical portion 42 a of the sprocket 42.
  • the internal gear 14 is provided with a bearing 43 between a cylindrical portion 14a formed on the other end side in the axial direction and the engaging cage portion 28. Further, the projection 14 c formed at one end portion in the axial direction of the internal gear 14 engages with the axial engagement recess portion 11 a formed in the housing 11, whereby the internal gear 14 is fixed to the housing 11.
  • the eccentric shaft portion 17 is provided only in one place, and the output shaft 13 is supported by the sprocket 42. Therefore, the axial dimension is compared with that in the first embodiment. Can be small.
  • a fifth embodiment of the reduction gear according to the present invention will be described with reference to FIG.
  • the speed reducer 10 according to the fifth embodiment is different from the second embodiment in the configuration of the housing 11, the input shaft 12, the output shaft 13, and the internal gear 14, and the other configurations are the same as those in the second embodiment. Therefore, the same reference numerals are used for the same configuration, and the description thereof is omitted. It has the following configuration.
  • the other end side cylindrical portion of the housing 11 is formed on the sprocket 42, the sprocket 42 rotates integrally with the one end side cylindrical portion of the housing 11, and the small diameter portion 13 a of the output shaft 13 can be rotated by the inner peripheral portion of the sprocket 42. It is supported by.
  • the input shaft 12 has a large-diameter portion 12a rotatably supported by a bearing 15 at one end in the housing 11, and an eccentric shaft portion 17 formed integrally with the large-diameter portion 12a in one axial direction. Yes.
  • the output shaft 13 has a small-diameter portion 13a and a large-diameter portion 13b formed separately, and can rotate integrally by engaging splines formed on one end side outer peripheral portion of the small-diameter portion 13a and the inner peripheral portion of the large-diameter portion 13b. Is provided.
  • a groove 35 is formed in the outer peripheral portion of the large diameter portion 13b, and rotation of the input torque acting on the input shaft 12 is reduced from the protrusion 34 of the roller retainer portion 22 through the large diameter portion 13b (intermediate shaft). Is transmitted to the unit 13a.
  • the internal gear 14 is provided with a bearing 43 between a cylindrical portion 14a formed on the other end side in the axial direction and the engaging cage portion 28. Further, the projection 14 c formed at one end portion in the axial direction of the internal gear 14 engages with the axial engagement recess portion 11 a formed in the housing 11, whereby the internal gear 14 is fixed to the housing 11.
  • the eccentric shaft portion 17 is provided only in one place, and the output shaft 13 is supported by the sprocket 42, so that the axial dimension is the same as in the fourth embodiment. It can be made smaller than in the case of the second embodiment.
  • a sixth embodiment of the reduction gear according to the present invention will be described with reference to FIG.
  • the speed reducer 10 according to the sixth embodiment is different from the third embodiment in the configuration of the housing 11, the input shaft 12, the output shaft 13, and the internal gear 14, and the other configurations are the same as those in the third embodiment. Therefore, the same reference numerals are used for the same configuration, and the description thereof is omitted.
  • the other end side cylindrical portion of the housing 11 is formed on the sprocket 42, the sprocket 42 rotates integrally with the one end side cylindrical portion of the housing 11, and the small diameter portion 13 a of the output shaft 13 can be rotated by the inner peripheral portion of the sprocket 42. It is supported by.
  • the input shaft 12 has a large-diameter portion 12a rotatably supported by a bearing 15 at one end in the housing 11, and an eccentric shaft portion 17 formed integrally with the large-diameter portion 12a in one axial direction. Yes.
  • the output shaft 13 has a small-diameter portion 13a and a large-diameter portion 13b formed separately, and can rotate integrally by engaging splines formed on one end side outer peripheral portion of the small-diameter portion 13a and the inner peripheral portion of the large-diameter portion 13b. Is provided.
  • the large-diameter portion 13b is a cam plate 36, and has a pressing surface 36c facing radially one side outward in the radial direction.
  • the large-diameter portion 13b is pivoted between the large-diameter portion 13b and the sprocket 42.
  • An elastic member 39 that biases in one direction is provided. For this reason, the rotation of the input torque acting on the input shaft 12 is transferred to the small diameter portion 13a via the large diameter portion 13b (intermediate shaft) which is the cam plate 36 which is cam-engaged from the roller holder portion 22 to the annular rotating body 37. Communicated.
  • the internal gear 14 is provided with a bearing 43 between a cylindrical portion formed on the other end side in the axial direction and the engaging cage portion 28. Further, the projection 14 c formed at one end portion in the axial direction of the internal gear 14 engages with the axial engagement recess portion 11 a formed in the housing 11, whereby the internal gear 14 is fixed to the housing 11.
  • the eccentric shaft portion 17 is provided only in one place, and the output shaft 13 is supported by the sprocket 42, so that the axial dimension is the same as in the fourth embodiment. Compared to the case of the third embodiment, it can be made smaller.
  • variable valve timing device in this embodiment includes a camshaft 44 that drives at least one of an intake valve and an exhaust valve (not shown), and a drive rotation that is transmitted from the drive shaft of the engine.
  • the sprocket 42 as a body is provided so as to be relatively rotatable coaxially, and the rotation of the output shaft 46 disposed coaxially with the camshaft 44 of the electric motor 45 is transmitted to the camshaft 44 via the speed reduction mechanism.
  • the opening / closing timing of the valve is changed by changing the rotational phase difference of the 44 with respect to the sprocket 42.
  • the speed reduction device 10 in the first embodiment described above can be applied. That is, a sprocket 42 as a drive rotor is provided on the outer periphery of the housing 11 of the speed reducer 10, the input shaft 12 of the speed reducer 10 is used as the output shaft 46 of the electric motor 45, and the output shaft 13 of the speed reducer 10 is a cam.
  • the shaft 44 is used. Thereby, between the output shaft 46 of the electric motor 45 and the camshaft 44, a lock unit and a lock release unit that prevent reverse input torque included in the speed reduction device 10 are provided.
  • the speed reduction of the output shaft 46 (input shaft 12) of the electric motor 45 and the transmission of the reduced speed rotation to the camshaft 44 (output shaft 13) can be performed by the speed reduction device 10.
  • the rotation of the camshaft 44 (output shaft 13) to which reverse input torque is applied by the locking means of the speed reducer 10 causes the rearwardly rotating roller 26 of the pair of rollers 26 in the wedge-shaped space 25 to be housed by the wedge effect. 11 and the camshaft 44 to engage with each other. By this engagement, the camshaft 44 is locked with respect to the housing 11, and it is possible to reliably prevent the reverse input torque acting on the camshaft 44 from being transmitted to the output shaft 46 of the electric motor 45.
  • the integrated holder 30 is formed by the engagement holder portion 28 and the roller holder portion 22, the input is input to the output shaft 46 (input shaft 12) of the electric motor 45.
  • the engagement cage holder 28 rotates integrally with the rotation of the roller cage 22.
  • the rotating retainer holder 28 presses the rear roller in the rotational direction of the pair of rollers 26 toward the wide side of the wedge-shaped space 25, and the engagement state by the roller 26 is released.
  • variable valve timing device A second embodiment of the variable valve timing device according to the present invention will be described with reference to FIG.
  • the variable valve timing device according to the second embodiment applies the second embodiment of the speed reduction device 10 described above as a speed reduction mechanism.
  • Other configurations are the same as those of the above-described first embodiment of the variable valve timing device, and the same reference numerals are used for the same possible configurations, and the description thereof is omitted.
  • the unlocking means when the input torque is applied to the output shaft 46 (input shaft 12) of the electric motor 45, the protrusion 34 of the roller holder portion 22 that rotates rotates the end portion 33a (33b) of the coil spring 33. Is pressed to reduce the diameter, and the camshaft 44 is released from the inner surface of the housing 11.
  • variable valve timing apparatus is an application of the third embodiment of the reduction gear 10 described above as a reduction mechanism.
  • Other configurations are the same as those of the above-described first embodiment of the variable valve timing device, and the same reference numerals are used for the same possible configurations, and the description thereof is omitted.
  • the cam plate 36 when reverse input torque is applied to the camshaft 44 by the locking means of the third embodiment of the reduction gear 10, the cam plate 36 is pressed in one axial direction by the elastic member 39, and By pressing the formed contact surface 14b, a frictional resistance is generated in the cam plate 36, and the cam plate 36 is fixed to the internal gear 14 to prevent the rotation of the cam shaft 44 to which the reverse input torque is applied. be able to.
  • variable valve timing device A fourth embodiment of the variable valve timing device according to the present invention will be described with reference to FIG.
  • the fourth embodiment of the speed reduction device 10 described above is applied as a speed reduction mechanism
  • the input shaft 12 of the speed reduction device 10 is used as the output shaft 46 of the electric motor 45
  • the speed reduction mechanism The output shaft 13 of the device 10 is a camshaft 44.
  • Other configurations are the same as those of the first embodiment of the variable valve timing device described above. In the following, differences from the first embodiment will be mainly described, and the same reference numerals will be used for configurations that can be considered the same.
  • variable valve timing device the rotation of the output shaft 46 of the electric motor 45 is decelerated by the speed reducer 10 and transmitted to the camshaft 44 (output shaft 13). Further, between the output shaft 46 of the electric motor 45 and the camshaft 44, there are provided locking means for preventing reverse input torque provided in the speed reducer 10 and unlocking means.
  • variable valve timing device the structure of the housing 11 and the like is changed in the fourth embodiment of the speed reducer 10 applied thereto, compared to the first embodiment of the speed reducer 10 described above. Accordingly, the locking means and unlocking means of the speed reduction device 10 in this variable valve timing device are the same as those in the case of the variable valve timing device in the first embodiment, to which the first embodiment of the speed reduction device 10 is applied. Works.
  • the integrated retainer 30 is formed by the engagement retainer portion 28 and the roller retainer portion 22, so that input torque acts on the output shaft 46 (input shaft 12) of the electric motor 45.
  • the engagement holder 28 rotates as a unit.
  • the rotating retainer holder 28 presses the rear roller in the rotational direction of the pair of rollers 26 toward the wide side of the wedge-shaped space 25, and the engagement state by the roller 26 is released.
  • variable valve timing device A fifth embodiment of the variable valve timing device according to the present invention will be described with reference to FIG.
  • the fifth embodiment of the speed reduction device 10 described above is applied as a speed reduction mechanism, and the input shaft 12 of the speed reduction device 10 is used as the output shaft 46 of the electric motor 45 to reduce the speed.
  • the output shaft 13 of the device 10 is a camshaft 44.
  • variable valve timing device the rotation of the output shaft 46 of the electric motor 45 is decelerated by the speed reducer 10 and transmitted to the camshaft 44 (output shaft 13). Further, between the output shaft 46 of the electric motor 45 and the camshaft 44, there are provided locking means for preventing reverse input torque provided in the speed reducer 10 and unlocking means.
  • the fifth embodiment of the speed reduction device 10 applied to the variable valve timing device is obtained by changing the structure of the housing 11 and the like with respect to the second embodiment of the speed reduction device 10 described above. Therefore, the locking means and the unlocking means of the speed reduction device 10 in this variable valve timing device are the same as those in the case of the variable valve timing device in the second embodiment, to which the second embodiment of the speed reduction device 10 is applied. Works.
  • the unlocking means when the input torque is applied to the output shaft 46 (input shaft 12) of the electric motor 45, the protrusion 34 of the roller holder portion 22 that rotates rotates the end portion 33a (33b) of the coil spring 33. ) To reduce the diameter, and the camshaft 44 is released from the inner surface of the housing 11.
  • variable valve timing device A sixth embodiment of the variable valve timing device according to the present invention will be described with reference to FIG.
  • the sixth embodiment of the speed reduction device 10 described above is applied as a speed reduction mechanism
  • the input shaft 12 of the speed reduction device 10 is used as the output shaft 46 of the electric motor 45
  • the speed reduction mechanism The output shaft 13 of the device 10 is a camshaft 44.
  • variable valve timing device the rotation of the output shaft 46 of the electric motor 45 is decelerated by the speed reducer 10 and transmitted to the camshaft 44 (output shaft 13). Further, between the output shaft 46 of the electric motor 45 and the camshaft 44, there are provided locking means for preventing reverse input torque provided in the reduction gear device 10 and unlocking means.
  • variable valve timing device the sixth embodiment of the speed reduction device 10 applied to the variable valve timing device is obtained by changing the structure of the housing 11 and the like with respect to the third embodiment of the speed reduction device 10 described above. Therefore, the locking means and unlocking means of the speed reduction device 10 in this variable valve timing device are the same as those of the variable valve timing device in the third embodiment described above, to which the third embodiment of the speed reduction device 10 is applied. Works.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)

Abstract

 減速装置の出力軸に入力された逆入力トルクが入力軸に伝達されることを阻止する。ハウジング(11)と、入力軸(12)および出力軸(13)と、ハウジング(11)に固定される内歯車(14)と、入力軸(12)に設けた偏心軸部(17)と内歯車(14)との間にローラ(21)がローラ保持器部(22)で転動可能に保持された減速装置において、ハウジング(11)と出力軸(13)との間に複数形成された楔形空間(25)内に一対の係合子(26)を係合子保持器部(28)でハウジング(11)および出力軸(13)に係脱可能に保持するロック手段と、入力軸(12)に入力トルクが作用したときに、係合子保持器部(28)が一対の係合子(26)のいずれか一方を、楔形空間(25)の広大側へ押圧しハウジング(11)および出力軸(13)との係合を解除するロック解除手段とが設けられる。

Description

減速装置およびこれを適用した可変バルブタイミング装置
 この発明は、入力軸の回転を減速して出力軸に伝達する減速装置、およびこれを適用した可変バルブタイミング装置に関するものである。
 一般に、電動モータ等の駆動源から駆動力を受けた入力軸の回転を減速して出力軸に伝達し、出力軸に接続した相手機械を駆動する装置として、減速装置が知られている。
 このような減速装置としては、例えば、図23に示すようなハウジング71に回転可能に支持される入力軸72および出力軸73と、ハウジング71内に固定される内歯車74とが同軸状に配置され、入力軸72に設けられた偏心軸部75の外周に装着した玉軸受78と内歯車74との間に、複数のローラ76が転動可能に配置されたものがある(特許文献1参照)。
 偏心軸部75と内歯車74との間のローラ76は、図24に示すように、その数が内歯車74の歯数よりも少なく、ローラ保持器部77により偏心軸部75の外周に設けた玉軸受78に接触するように周方向に間隔をおいて保持され、出力軸73とローラ保持器部77とが一体構造となっている。
 入力軸72を一方向に1回転させると、偏心軸部75が入力軸72の軸心周りを同方向に公転運動し、各ローラ76は内歯車74の歯に対して他方向に一歯分だけ公転する。ローラ76の公転により、ローラ保持器部77を介して出力軸73に、内歯車74の歯数に応じた減速比の回転が伝達される。
 また、上記の玉軸受78の玉を保持する保持器は、球面状の内面をもつ凹部を周方向に一定の間隔をおいて形成した2枚の環状保持板からなり、一方の前記環状保持板の凹部の開口側と他方の前記環状保持板の凹部の開口側を対向させてその凹部間に前記玉を収容するポケットを形成している。ここで、凹部の内面は球面状であり、玉の表面と面接触している。
 さらに、電動モータ等の駆動源から駆動力を受けた入力軸の回転を減速して出力軸に伝達する減速装置は、多くの分野で利用されている。例えば、エンジンの可変バルブタイミング装置では、クランクシャフトと吸気バルブや排気バルブを駆動するカムシャフトとの間の相対位相を変化させる大きな力を得るために、減速装置が適用されている。
 このような可変バルブタイミング装置としては、エンジンのバルブを駆動するカムシャフトと、エンジンから回転を伝達され、カムシャフトを回転駆動するスプロケットとを、相対回転可能に同軸上に配置して、カムシャフトと同軸上に配置した電動モータの出力軸の回転を減速機構を介してカムシャフトに伝達し、カムシャフトをスプロケットに対して相対回転させて、両者の回転位相差を変化させ、バルブの開閉タイミングを変更するようにしたものがある。
特開昭62-93565号公報
 しかし、特許文献1に記載の減速装置は、入力軸72に接続される駆動源が、例えば、電動モータである場合、何らかの要因で出力軸73に負荷が掛かり、出力軸73に逆入力トルクが作用したとき、従来の減速装置では、その逆入力トルクが入力軸72に伝達され、入力軸72を介して電動モータの出力軸が回転させられる。このため、電動モータの出力軸が回転しないように、電動モータは常時通電させて、入力トルクを作用させておく必要がある。
 また、逆入力トルクの入力軸への伝達を阻止する目的で、出力軸73の位置を保持させる場合、入力軸72側の電動モータの出力軸を回転させない状態で連続的に通電する必要がある。この場合、電動モータ内の温度が上昇し、焼き付きを起こすことがあった。
 さらに、減速機構として特許文献1に記載の減速装置を適用した可変バルブタイミング装置は、何らかの要因でカムシャフトに負荷が掛かり、逆入力トルクが作用したとき、その逆入力トルクが電動モータの出力軸に伝達され、その出力軸が回転させられる。このため、前述した減速装置の場合と同様、電動モータの出力軸が回転しないように、電動モータは常時通電させて、入力トルクを作用させたり、電動モータの出力軸を回転させない状態で連続的に通電したりする必要がある。
 そこで、この発明の課題は、減速装置の出力軸に作用した逆入力トルクが入力軸に伝達されることを阻止することにある。
 上記の課題を解決するために、この発明の減速装置としては、ハウジングに回転可能に支持される入力軸および出力軸と、前記ハウジングに固定される内歯車とを同軸状に配置し、前記入力軸に設けた円形断面の偏心軸部と前記内歯車との間に複数のローラを配し、これらの各ローラを前記出力軸と一体回転するローラ保持器部で転動可能に保持し、前記ローラ保持器部を介して前記入力軸の回転を前記出力軸に伝達する減速装置において、前記入力軸と前記出力軸との間に、前記出力軸に作用する逆入力トルクに対して前記出力軸を前記ハウジングにロックするロック手段と、前記入力軸に作用する入力トルクに対して前記ロック手段によるロック状態を解除するロック解除手段とを設けた構成を採用したのである。
 入力軸と出力軸との間に、ロック手段およびロック解除手段を設けたので、出力軸に負荷が掛かり、出力軸に逆入力トルクが作用した際に、出力軸がロック手段によりハウジングに対してロックし、入力軸への伝達を阻止することが可能となる。一方、入力軸からの入力トルクに対してはロック解除手段によりロック状態が解除され、入力トルクが出力軸に伝達される。
 この構成において、前記ロック手段は、前記ハウジングと前記出力軸との間に周方向の両方向に狭くなる楔形空間を複数形成し、その各楔形空間内に一対の係合子を係合子保持器で前記ハウジングおよび前記出力軸に係脱可能に保持するものであり、前記ロック解除手段は、前記係合子保持器部を前記ローラ保持器部と一体に回転するように接続し、前記入力軸に入力トルクが作用したときに、前記係合子保持器部が前記一対の係合子のいずれか一方を、前記楔形空間の広大側へ押圧して、前記ハウジングおよび前記出力軸との係合を解除するようにしたものである構成を採用することができる。
 このロック手段では、逆入力トルクが作用した出力軸の回転で、楔形空間内の一対の係合子のうち回転方向後方の係合子が楔効果により出力軸およびハウジングに食い込むように係合する。この係合により出力軸がハウジングに対してロックし、出力軸に作用した逆入力トルクが入力軸に伝達されるのを確実に阻止することができる。
 一方、ロック解除手段では、係合子保持器部がローラ保持器部と一体に回転するように接続されているので、ローラ保持器部の回転に伴って係合子保持器部が回転する。回転する係合子保持器部が、一対の係合子のうち回転方向後方の係合子を楔形空間の広大側へ押圧し、係合子による係合状態が解除される。
 また、入力軸の回転を出力軸に伝達する手段としては、従来の減速装置のように出力軸とローラ保持器部とを一体構造とすることもできるが、例えば、係合子保持器部をローラ保持器部と一体に形成してもよい。
 ローラ保持器部と係合子保持器部とを一体に形成すると、その一体の保持器を介して入力軸の回転を伝達する出力軸は、従来の減速装置の出力軸のように、ローラ保持器部と一体構造とするための複雑な加工が不要となる。このため、加工コストが抑えられ、減速装置の製造コストが抑えられる。
 さらに、前記一対の係合子の間に弾性部材を配置し、この弾性部材で両側の係合子をそれぞれ前記楔形空間の狭小側へ押圧して前記ハウジングおよび前記出力軸に係合させる方向に付勢する構成を採用してもよい。
 一対の係合子の間に配置した弾性部材は、その弾性力によって、両側の係合子をハウジングおよび出力軸に係合させる方向、すなわち、楔形空間の狭くなる方向に押し付ける。このため、出力軸が回転すると、ハウジングに対して直ちにロックし、ハウジングへの出力軸のロック機能が安定する。
 また、この発明に係る減速装置のロック手段は、前記ハウジング内周の前記出力軸外周と対向する位置にコイルばねを嵌め込み、前記出力軸に前記コイルばねの両端部に係合可能な係合部を設け、前記出力軸に逆入力トルクが作用したときに、前記出力軸の係合部が、前記コイルばねの両端部のいずれか一方の端部に係合してそのコイルばねを拡径させる向きに押圧するものであり、前記ロック解除手段は、前記ローラ保持器部に軸方向に突出する突起を設け、前記入力軸に入力トルクが作用したときに、前記突起で前記コイルばねの両端部のいずれか一方の端部を押圧してそのコイルばねを縮径させるものである構成を採用することができる。
 このロック手段によると、逆入力トルクが作用し出力軸が回転しようとすると、その係合部はコイルばねのいずれか一方の端部に係合して、コイルばねが拡径する方向に押圧する。押圧により拡径したコイルばねとハウジング内周面との間で摩擦抵抗が発生し、出力軸がハウジングに対してロックされるため、逆入力トルクの作用した出力軸の回転を阻止することができる。
 一方、このロック解除手段では、入力軸の回転によりローラ保持器部が回転すると、突起がコイルばねの両端部のうちいずれか一方の端部に係合する。コイルばねの端部に係合した突起が、コイルばねを縮径させる向きに押圧して、コイルばねの拡径によるハウジングと出力軸とのロック状態を解除する。
 前記構成において、前記ローラ保持器部の突起により押圧される前記コイルばねの端部が、前記出力軸の係合部に係合可能に設けられ、前記突起が前記コイルばねの端部を介して前記出力軸の係合部を押圧するようにしてもよい。
 このようにすると、出力軸のロック解除を行うローラ保持器部の突起により、コイルばねの端部を介して入力トルクの出力軸への伝達が行われるので、入力トルクの出力軸への伝達のための別部材が不要となり、部品点数が増加しない。その結果、減速装置の構造が簡単となり、製造コストを抑えることができる。
 さらに、この発明に係る減速装置における前記ロック手段は、前記出力軸に対して一体回転し軸方向変位可能に設けられたカムプレートと、このカムプレートに対向し前記ローラ保持器部と一体回転するよう同軸に接続される環状回転体と、前記カムプレートと前記環状回転体の両対向面に形成された周方向のカム溝と、これらのカム溝間を転動し前記カムプレートと前記環状回転体との間に係脱可能に介在したボールとからなり、前記出力軸に逆入力トルクが作用したときに、前記カムプレートを弾性部材により前記内歯車に形成された軸方向他方を向く接触面に押圧させるものであり、前記ロック解除手段は、前記入力軸に入力トルクが作用したときに、前記ボールを前記カムプレートと前記環状回転体に係合させ、そのカムプレートを軸方向他方に変位させて前記内歯車の接触面から離隔させ、前記カムプレートと前記環状回転体とを一体回転させるものである構成を採用することができる。
 このロック手段では、出力軸に逆入力トルクが作用したときに、カムプレートは弾性部材により軸方向に押圧され、内歯車に形成された接触面に押圧することにより、カムプレートに摩擦抵抗が発生し、内歯車に対してカムプレートが固定されて、逆入力トルクの作用した出力軸の回転を阻止することができる。
 一方、ロック解除手段では、入力軸に入力トルクが作用したときに、ボールを環状回転体とカムプレートとに係合させることで、カムプレートを軸方向他方に変位させて内歯車の接触面から離隔させる。これにより、環状回転体とカムプレートとが一体回転して、入力軸の回転が出力軸に伝達される。
 また、前記内歯車は、その軸方向他端部に前記接触面を有し、その接触面がテーパ状をなし、前記カムプレートは、前記接触面の対向位置にその接触面に沿うテーパ状の押圧面を有する構成を採用すると、内歯車のテーパ状の接触面にカムプレートのテーパ状の押圧面を押圧するので、接触面と押圧面との接触面積をより大きくすることが可能となる。その結果、出力軸に逆入力トルクが作用したときに、カムプレートの回転を確実に阻止することができ、ロック機能が安定する。
 前記環状回転体を前記ローラ保持器部と一体に形成すると、部品点数を減らすことができるとともに、減速装置の製造コストが抑えられ、その構造を簡単にすることができる。
 上記の構成において、前記ハウジングの円筒部の内径面に、複数のカム山を円周方向に等ピッチで形成した前記内歯車を、前記偏心軸部と対向させて設け、これらの対向する偏心軸部の外径面と前記内歯車とに転接する複数の前記ローラを保持する前記ローラ保持器部を有する前記出力軸を配置して、前記ローラ保持器部を円周方向に等ピッチで分割したときの分割点の数が、前記カム山の数と1つだけ異なる分割点の全ての位置または一部の間引いた位置に、前記ローラを保持するポケットを設けて、前記カム山の1ピッチ分の形状を、前記入力軸を回転させたときに、前記ポケットに保持されたローラが前記偏心軸部の外径面に沿って公転する軌跡の外径側包絡線と合致させて、これらのローラの公転を前記ローラ保持器部を介して前記出力軸に伝達し、前記入力軸への逆入力を抑制する逆入力抑制手段を設けた構成を採用することができる。
 この逆入力抑制手段を設けることにより、出力軸に作用した逆入力トルクが入力軸へ伝達されることを抑制することができ、上述のロック手段の作用効果に加えて、さらに、逆入力トルクが入力軸に伝達されることを阻止することができる。
 この逆入力抑制手段としては、前記入力軸を支持する転がり軸受に負の隙間を設定して、この転がり軸受に回転抵抗を付与するもの、前記逆入力抑制手段が、前記入力軸を支持する転がり軸受に接触式シールを設けて、この転がり軸受に回転抵抗を付与するもの、または、前記ローラ保持器部のポケットの幅寸法を前記ローラの径寸法以下として、前記ローラに回転抵抗を付与するものを採用することができる。
 また、この発明の発明者は、上記減速装置を解析し、その結果、上記減速装置のトルクの伝達効率を効果的に向上させるためには、偏心軸部の外周に設けられた玉軸受の回転トルクを低減することが非常に重要であることを見出した。
 偏心軸部の外周の玉軸受の低トルク化が重要である理由は、次のように考えられる。偏心軸部は、その回転中心が円の中心からずれたところにあるので、そのずれによって生じる遠心力が偏心軸部の外周の玉軸受にも同じように生じ、この結果、上記玉軸受の保持器と玉の間の摩擦が大きくなり、上記玉軸受の回転トルクが大きくなりやすいからである。
 この玉軸受の回転トルクを低減するには、例えば、以下の構成を玉軸受に採用すればよい。
 前記偏心軸部の外周に玉軸受を設け、その玉軸受の玉を保持する保持器として、複数の平面で形成された内面をもつ凹部を周方向に一定の間隔をおいて形成した2枚の環状保持板からなるものを採用し、一方の前記環状保持板の凹部の開口側と他方の前記環状保持板の凹部の開口側を対向させてその凹部間に断面多角形状のポケットを形成し、そのポケットに前記玉を収容する。このようにすると、凹部の内面と玉とが点接触するので、保持器と玉の間で生じる摩擦が小さくなり、偏心軸部の回転中心のずれによる遠心力を受けても、回転トルクが大きくなりにくい。
 また、上記保持器として、球面状の内面をもつ凹部を周方向に一定の間隔をおいて形成した2枚の環状保持板からなるものを採用し、一方の前記環状保持板の凹部の開口側と他方の前記環状保持板の凹部の開口側を対向させてその凹部間に前記玉を収容するポケットを形成し、前記凹部の内面に前記玉と点接触する突起を形成してもよい。このようにすると、突起と玉とが点接触するので、保持器と玉の間で生じる摩擦が小さくなり、偏心軸部の回転中心のずれによる遠心力を受けても、回転トルクが大きくなりにくい。
 また、上記保持器として、周方向に一定の間隔をおいて凹部を形成した2枚の環状保持板からなるものを採用し、一方の前記環状保持板の凹部の開口側と他方の前記環状保持板の凹部の開口側を対向させてその凹部間に前記玉を収容するポケットを形成し、前記玉軸受の回転時に前記凹部の内面の前記玉が接触しない部位のうち、前記玉が接触する部位から前記玉の進行方向とは反対方向に寄った部位に貫通孔を形成してもよい。
 ところで、凹部の内面の玉が接触する部位から玉の進行方向とは反対方向に寄った部位には、玉の自転による遠心力によって潤滑剤が溜まりやすく、潤滑剤の粘性抵抗による玉軸受の回転トルクが大きくなりやすい。そこで、上記貫通孔を形成すると、凹部の内面と玉の間に溜まった潤滑剤が玉の自転による遠心力によって貫通孔から押し出され、潤滑剤の粘性抵抗が抑えられるので、偏心軸部の回転中心のずれによる遠心力を受けても、玉軸受の回転トルクが大きくなりにくい。
 前記貫通孔は、前記玉の進行方向前側と進行方向後側とで対称となるように前記各凹部にそれぞれ2箇所ずつ形成すると好ましい。このようにすると、前記偏心軸部が時計回りと反時計回りのいずれに回転した場合でも、凹部の内面の玉が接触する部位から玉の進行方向とは反対方向に寄った部位に貫通孔があり、凹部の内面と玉の間に溜まった潤滑剤が玉の自転による遠心力によって貫通孔から効果的に排出される。
 上記の課題を解決するために、この発明の可変バルブタイミング装置としては、エンジンの吸気バルブおよび排気バルブの少なくとも一方のバルブを駆動するカムシャフトと、エンジンから回転を伝達され、前記カムシャフトを回転駆動するスプロケットとを、相対回転可能に同軸上に配置して、前記カムシャフトと同軸上に配置した電動モータの出力軸の回転を減速機構を介して前記カムシャフトに伝達し、前記カムシャフトの前記スプロケットに対する回転位相差を変化させて、前記バルブの開閉タイミングを変更するようにした可変バルブタイミング装置において、前記減速機構を前述の減速装置とし、前記電動モータの出力軸および前記カムシャフトを、前記減速装置の入力軸および出力軸とした構成を採用することができる。
 この構成によれば、電動モータの出力軸を1回転させると、偏心軸部が電動モータの出力軸の軸心周りを同方向に公転運動し、各ローラは内歯車の歯に対して一歯分だけ公転し、これらのローラを保持するローラ保持器部が回転する。
 このとき、ローラ保持器部がカムシャフトに連結しているため、内歯車の歯数に応じて減速された回転がカムシャフトに伝達される。これにより、電動モータの出力軸の回転の減速と、減速した回転のカムシャフトへの伝達を減速機構である前述の減速装置により行うことができる。このため、従来のように、電動モータの出力軸の回転を減速させる減速機構と、減速させた回転をカムシャフトに伝達するリンク機構とをそれぞれ組み合わせた構成とする必要がなく、減速機構の構造を簡単にすることが可能となる。
 一般に、可変バルブタイミング装置においては、その減速機構を作動させる駆動源が電動モータであると、何らかの要因でカムシャフトに負荷が掛かり、逆入力トルクが作用したとき、電動モータの出力軸に逆入力トルクが伝達され、その出力軸が回転させられる。このため、出力軸が回転しないように、電動モータは常時通電させて、入力トルクを作用させておく必要がある。
 また、逆入力トルクの電動モータの出力軸への伝達を阻止する目的で、駆動回転体に対するカムシャフトの回転位相を保持させる場合、電動モータの出力軸を回転させない状態で連続的に通電する必要がある。この場合、電動モータ内の温度が上昇し、焼き付きを起こすことがあった。
 このため、減速機構を前述の減速装置とすることで、減速装置のロック手段、ロック解除手段、あるいは、逆入力抑制手段により、可変バルブタイミング装置に対して、逆入力トルクに対する抵抗力を付与することができる。
 この発明の減速装置は、出力軸と入力軸との間にロック手段とロック解除手段を設けたので、逆入力トルクの入力軸への伝達が阻止され、入力軸に接続される駆動源が逆入力トルクによる負荷を受けず、この負荷に抗して駆動源を連続的に駆動する必要がなくなる。
 また、この発明の可変バルブタイミング装置は、電動モータの出力軸の回転の減速と、減速した回転のカムシャフトへの伝達を減速機構である前述の減速装置により行うことができるため、減速機構の構造を簡単にすることが可能となる。
 さらに、前記電動モータの出力軸と前記カムシャフトとの間に、ロック手段と、ロック手段によるロック状態を解除するロック解除手段とを設け、また、電動モータの出力軸への逆入力を抑制する逆入力抑制手段を設けた減速装置を適用したので、電動モータの出力軸への逆入力トルクの伝達を阻止することができる。
この発明に係る減速装置の第1実施形態を示す断面図 図1のA-A線に沿った断面図 図1のB-B線に沿った断面図 同上の第1実施形態の要部を示す斜視図 同上の第2実施形態を示す断面図 図5のC-C線に沿った断面図 減速装置の第2実施形態の要部を示す斜視図 同上の出力軸のロック状態を示す拡大断面図 同上の出力軸のロック解除状態を示す拡大断面図 減速装置の第3実施形態を示す断面図 同上のロック手段およびロック解除手段の要部を示す斜視図 (a)図10のD-D線に沿うロック状態を示す要部拡大断面図、(b)同上のロック解除状態を示す要部拡大断面図 減速装置の第1実施形態の入力軸を支持する玉軸受の変形例を示す一部省略縦断面図 同上のローラ保持器部のローラ保持状態を示す断面拡大図 図1の偏心軸部の外周に装着した深溝玉軸受近傍の拡大断面図 (a)図15の深溝玉軸受の各玉の中心を通る円筒面に沿った断面図、(b)(a)に示す深溝玉軸受の回転時の状態を示す凹部の内側面近傍の拡大断面図 (a)図16の深溝玉軸受の変形例を示す断面図、(b)(a)に示す深溝玉軸受の回転時の状態を示す凹部の内面の突起近傍の拡大断面図 (a)図16の深溝玉軸受の変形例を示す断面図、(b)(a)に示す深溝玉軸受の回転時の状態を示す凹部の内面の貫通孔近傍の拡大断面図 (a)図16の深溝玉軸受の変形例を示す断面図、(b)(a)に示す深溝玉軸受の回転時の状態を示す凹部の内側面近傍の拡大断面図 減速装置の第4実施形態を示す断面図 減速装置の第5実施形態を示す断面図 減速装置の第6実施形態を示す断面図 従来の減速装置を示す断面図 図23のE-E線に沿った断面図 この発明に係る可変バルブタイミング装置の第1実施形態を示す断面図 可変バルブタイミング装置の第2実施形態を示す断面図 可変バルブタイミング装置の第3実施形態を示す断面図 可変バルブタイミング装置の第4実施形態を示す断面図 可変バルブタイミング装置の第5実施形態を示す断面図 可変バルブタイミング装置の第6実施形態を示す断面図
 第1実施形態の減速装置10は、図1に示すように、円筒状をなすハウジング11に回転可能に支持される入力軸12および出力軸13と、ハウジング11に固定された内歯車14とが同軸状に配置されたものである。
 ハウジング11は、軸方向に分割された円筒体を、図示しないボルトなどの公知の手段により嵌め合わせたものであり、その両端部において入力軸12および出力軸13がそれぞれ同軸上に回転可能に支持されている。
 入力軸12は、ハウジング11の一端部および出力軸13の大径部13bにおいて一対の軸受15、16により回転可能に支持されている。入力軸12の両軸受15、16の間に、一対の偏心軸部17、17が軸方向2箇所に入力軸12と一体に設けられる。
 入力軸12を支持する軸受15は、図13に示すように、外輪15aの両端部に接触式シール15cが装着されている。これらの接触式シール15cを内輪15bと接触させることにより、軸受15に回転抵抗を付与し、出力軸13から入力軸12への逆入力を抑制するようになっている。逆入力の大きさに応じて、接触式シール15cは、軸方向一方にのみに装着することもできる。
 各偏心軸部17は、断面円形をなし、その各偏心軸部17の円の中心が入力軸12の軸心からずれた位置にあり、一方の偏心軸部17の円の中心と他方の偏心軸部17の円の中心との間に入力軸12の軸心を挟むように偏心している。各偏心軸部17の外周には、深溝玉軸受18が圧入固定により装着されている。
 内歯車14は、図2に示すように、ハウジング11内に固定され、一対の偏心軸部17の深溝玉軸受18の外周の対向位置に、入力軸12に対して同軸状に配置されている。内歯車14の内周部には歯19(カム山)が周方向に定ピッチで50個形成され、各歯19間の歯溝が断面曲線形状となっている。
 この内歯車14の内周部と、両偏心軸部17の深溝玉軸受18との間には、複数のローラ21が、円筒状のローラ保持器部22により周方向定ピッチに保持されている。これらのローラ21を保持するポケット23は、ローラ保持器部22を円周方向に等ピッチで51等分したときの分割点に対して3つおきに間引いた13箇所の位置に設けられ、分割点の数が歯19よりも1つだけ多くなっている。
 また、前記各歯19間の歯溝(歯19の1ピッチ分の歯溝)の形状は、入力軸12を回転させたときに、ポケット23に保持されるローラ21が、偏心軸部17の外側に嵌合した深溝玉軸受18の外輪の外周部に沿って公転する軌跡の外径側包絡線と一致している。さらに、各ローラ21は、全数が深溝玉軸受18の外周に接しており、一部が内歯車14の歯19に接している。なお、内歯車14の歯数、ローラ21の数の関係は、図2に示す場合に限られず、実験、実操業により決定された減速比に基づいて設定される。
 ローラ保持器部22は、各ローラ21を転動可能に収容するポケット23が周方向に形成され、形成されたポケット23群が前記定ピッチに対して半ピッチずれた状態で軸方向に2列に並んで形成されている(図4参照)。このローラ保持器部22のポケット23はその周方向幅寸法を、保持されるローラ21が転動可能な幅寸法に形成しているが、図14に示すように、そのポケット23の周方向幅寸法をローラ21の径寸法以下として、ローラ21に回転抵抗を付与し、出力軸13から入力軸12への逆入力を間接的に抑制するようにしてもよい。
 出力軸13は、図1に示すように、その一端部(入力軸12に臨む端部)に小径部13aと、その小径部13aよりも先端側に位置する大径部13bとが一体に形成され、小径部13aにおいてハウジング11の他端部の軸方向2箇所で軸受24により回転可能に支持されている。
 出力軸13の大径部13bは円筒状をなし、その内周部に設けられた軸受16で入力軸12の他端部を回転可能に支持している。大径部13bには軸方向に貫通する孔13dが設けられ、孔13dにスイッチピン20が小径部13a側に一部突き出すように嵌合している。
 出力軸13の大径部13bの外周部には、図3に示すように、カム面13cが周方向4箇所に等間隔に形成されている。このカム面13cは平面状をなし、ハウジング11と出力軸13の大径部13bとの間に周方向の両方向に向かって次第に狭くなる楔形空間25を形成する。なお、楔形空間25はハウジング11の内周部にカム面13cを設けることにより形成してもよい。
 各楔形空間25内に係合子としての一対のローラ26が弾性部材である板ばね27を挟んだ状態で配置され、一対のローラ26が、ハウジング11および出力軸13の大径部13bと係脱可能とされる。板ばね27がその両側のローラ26を楔形空間25の狭くなった側(狭小側)に押圧して、ハウジング11および出力軸13の大径部13bと係合させる方向に付勢するようになっている。
 出力軸13の大径部13bとハウジング11との間には、円筒状の係合子保持器部28が配置される。この係合子保持器部28はロック解除手段を構成し、楔形空間25に対応した位置にポケット29が形成され、ポケット29内にそのポケット29の周方向の内壁に対してすき間をもって一対のローラ26を収容している。
 なお、逆入力トルクに対して出力軸13を確実にロックするために係合子としての一対のローラ26の代わりに、一対のスプラグを用いることができる。すなわち、複数対のスプラグを係合子保持器部28で出力軸13とハウジング11の間に傾動可能に保持し、出力軸13が回転した際、一対のスプラグのうちのいずれか一方が出力軸13およびハウジング11に係合するようにしてもよい。
 ローラ保持器部22と係合子保持器部28とは、図4に示すように、例えば、プレス加工等により同軸状に一体化した一体保持器30として形成される。一体保持器30をプレス加工により形成することで、係合子保持器部28がローラ保持器部22と一体に回転可能となり、部品点数が減るとともに、製造コストを抑えることができる。
 一体保持器30の係合子保持器部28側の他端部には、径方向内向きのフランジ31が形成され、フランジ31は径方向外向きの切り欠き溝32を有する。切り欠き溝32に出力軸13に嵌合したスイッチピン20が係合している(図1参照)。
 出力軸13は、スイッチピン20を介して一体保持器30に係合するので、従来の減速装置の出力軸のように、ローラ保持器部と一体構造とするための複雑な加工が不要となり、その加工コストを抑えることができる。
 偏心軸部17の外周の深溝玉軸受18は、図15に示すように、内輪50と、外輪51と、内輪50と外輪51の間に組み込まれた複数の玉52と、その玉52を保持する保持器53とからなる。保持器53は、鋼板のプレス成形によって円周方向に波形が繰り返される波形環状に形成された2枚の環状保持板54,54からなる。各環状保持板54には、図16(a)に示すように、連続する3つの平面で形成された内面55をもつ凹部56が周方向に一定の間隔をおいて設けられている。
 凹部56の内面55は、内底面55aと、内底面55aに対して鈍角をなす2つの内側面55b,55bとからなる。この両環状保持板54は、一方の環状保持板54の凹部56の開口側と他方の環状保持板54の凹部56の開口側とが対向した状態で結合したときに、各凹部56の位置に半径方向に貫通する六角筒を形成し、対向する凹部56,56間に断面六角形状のポケット57を形成するようになっている。ポケット57には玉52が収容されている。
 ポケット57は、凹部56,56間で対向する内底面55a,55aが平行となっており、その内底面55a,55a間の距離が玉52の直径よりも大きくなっている。対向する一方の凹部56の内側面55bは、他方の凹部56の内側面55b,55bのうち玉52の中心を間に挟む位置にある内側面55bと平行となっており、その内側面55b,55b間の距離が玉52の直径よりも大きくなっている。玉52は、図16(b)に示すように、深溝玉軸受18が回転したときに凹部56の内側面55bの中央部分に接触する。
 また、環状保持板54の表面全体には低摩擦皮膜58が形成されており、この低摩擦皮膜58が、保持器53と玉52との間の摩擦を低減するようになっている。低摩擦皮膜58は、窒化ホウ素膜などのセラッミクス膜、DLC(ダイヤモンドライクカーボン)膜、窒化炭素膜、およびPTFE(ポリテトラフルオロエチレン)膜などを挙げることができる。低摩擦皮膜58は、凹部56の内面55にのみ形成してもよい。
 以上の構成からなる減速装置について、その動作について説明する。
 入力軸12および出力軸13に入力トルク(逆入力トルク)が負荷されていない状態では、図3に示すように、一対のローラ26が板ばね27によって互いに周方向反対向きにそれぞれ押圧され、楔形空間25の狭小側の出力軸13およびハウジング11(狭小部)に係合している。
 この係合状態では、例えば、出力軸13に時計回りの逆入力トルクが入力されると、反時計方向(回転方向後方)のローラ26がその方向の楔形空間25の狭小部に係合して、出力軸13がハウジング11に対して時計方向にロックされる。
 また、出力軸13に反時計方向の逆入力トルクが入力されると、時計方向(回転方向後方)のローラ26がその方向の楔形空間25の狭小部に係合して、出力軸13がハウジング11に対して反時計方向にロックされる。このように、逆入力トルクが作用した出力軸13は、楔形空間25内に一対のローラ26を係合子保持器部28で保持するロック手段によって正逆両回転方向にロックされる。
 一方、入力軸12に時計回りの入力トルクが入力されて、各偏心軸部17が入力軸12の軸心周りに1回転すると、ローラ21が内歯車14の歯19間の歯溝に噛み合うように自転しながらローラ保持器部22とともに歯19の一歯分だけ反時計回りに公転する。
 このローラ21の公転に伴い、ローラ保持器部22が反時計回りに回転する。ローラ保持器部22の回転は、入力軸12の回転に対して内歯車14の歯19の数に応じた減速比(図2の場合では、50:1)の回転となる。
 ローラ保持器部22の回転により、ローラ保持器部22に一体に形成された係合子保持器部28が反時計回りに回転する。この係合子保持器部28が回転すると、楔形空間25内の時計方向(回転方向後方)のローラ26は、板ばね27の弾性力に抗して係合子保持器部28のポケット29の周方向内壁に押圧される。
 ロック解除手段である係合子保持器部28の押圧により、時計方向(回転方向後方)のローラ26がその方向の楔形空間25の狭小側での係合状態から離脱し、出力軸13のロック状態が解除される。このとき、反時計方向(回転方向前方)のローラ26は、その方向の楔形空間25の狭小側では係合せず、出力軸13は反時計方向に回転可能となる。
 ここで、回転可能となった出力軸13は、図1に示すように、大径部13bに固定されたスイッチピン20が係合子保持器部28の切り欠き溝32と係合している。このため、入力軸12がさらに時計方向に回転すると、ローラ保持器部22と係合子保持器部28とからなる一体保持器30を介して、出力軸13が反時計方向に上記減速比に基づいて回転する。入力軸12に反時計方向の入力トルクが入力された場合は、上記とは逆の動作で出力軸13が時計方向に回転する。
 このように、入力軸12からの正逆両回転方向の入力トルクは、一体保持器30を介して、出力軸13に伝達され、出力軸13が正逆反対方向の両回転方向に回転する。なお、入力軸12からの入力トルクがなくなると、一対のローラ26は板ばね27の弾性復元力によって、図3に示す位置に復帰する。
 ここで、入力軸12からの入力トルクによって偏心軸部17が回転するとき、偏心軸部17は、その回転中心が円の中心からずれたところにあるので、そのずれによって生じる遠心力が偏心軸部17の外周の深溝玉軸受18にも同じように生じる。この結果、深溝玉軸受18は、他の軸受15、16、24と比べて、保持器53と玉52の間の摩擦が大きくなりやすい。
 しかし、この減速装置の深溝玉軸受18は、保持器53の凹部56の内面55が複数の平面で形成されており、凹部56の内面55と玉52とが点接触するので、保持器53と玉52の間で生じる摩擦が小さく、回転トルクが小さい。そのため、この減速装置は、入力軸12から出力軸13に伝達されるトルクの伝達効率が高い。保持器53のポケット57の形状は、この実施形態に限られず、断面八角形状などの断面多角形状としてもよい。ここで、断面とは、各玉52の中心を通る円筒面に沿った断面をいう。
 また、この減速装置の深溝玉軸受18は、凹部56の内面55に低摩擦皮膜58が形成されているので、保持器53と玉52の間で生じる摩擦が小さい。そのため、この減速装置は、入力軸12から出力軸13に伝達されるトルクの伝達効率が高い。
 上記実施形態では、入力軸12から出力軸13に伝達されるトルクの伝達効率を高めるために、凹部56の内面55を玉52と点接触する平面で形成した深溝玉軸受18を用いた減速装置を例に挙げて説明したが、図17(a)に示す深溝玉軸受を偏心軸部17の外周に装着した減速装置を採用してもよい。以下、第1実施形態に対応する部分は、同一の符号を付して説明を省略する。
 各環状保持板54には、球面状の内面59をもつ凹部60が周方向に一定の間隔をおいて形成されている。この両環状保持板54は、一方の環状保持板54の凹部60の開口側と他方の環状保持板54の凹部60の開口側を対向させた状態で結合されており、結合した状態で凹部60,60間に形成されるポケット61に玉52を収容している。
 凹部60の内面59には、玉52が接触する突起62が形成されている。この突起62は、図17(b)に示すように、半球状に形成されており、玉52の表面と点接触するようになっている。また、突起62は、各凹部60に2箇所ずつ形成されており、この2箇所の突起62,62は、凹部60の最も深い位置を周方向に挟んで対称となるように配置されている。これにより、深溝玉軸受が時計回りに回転する場合と反時計回りに回転する場合のいずれの場合にも、玉52の進行方向前側に突起62があり、玉52が突起62に接触するようになっている。凹部60の内面59には、第1実施形態と同様の低摩擦皮膜58が形成されている。
 凹部60の内面59は、図17(a)に示すように、その最も深い位置から凹部60の開口縁に近づくにつれてポケット61の中心Cから凹部60の内面59までの距離が次第に大きくなるような球面状に形成されている。内面59は、ポケット61の中心Cから凹部60の内面59までの距離が一定の球面状に形成してもよい。
 この深溝玉軸受は、保持器53の凹部60の内面59に玉52と点接触する突起62を有するので、第1実施形態と同様、保持器53と玉52の間で生じる摩擦が小さく、偏心軸部17の回転中心のずれによる遠心力を受けても、回転トルクが大きくなりにくい。
 また、図18(a)に示す深溝玉軸受を採用してもよい。この深溝玉軸受は、図17に示す深溝玉軸受と同様、凹部60の内面59が凹部60の最も深い位置から凹部60の開口縁に近づくにつれてポケット61の中心Cからの距離が次第に大きくなる球面状に形成されており、図18(b)に示すように、深溝玉軸受の回転時、凹部60の内面59の最も深い位置から周方向にずれた位置に玉52が接触するようになっている。
 凹部60の内面59には、深溝玉軸受の回転時に玉52が接触しない部位のうち、玉52が接触する部位から玉52の進行方向とは反対方向に寄った部位、すなわち、凹部60の内面59の最も深い側に寄った部位に貫通孔63が形成されている。貫通孔63は、図18(a)に示すように、各凹部60にそれぞれ2箇所ずつ形成されており、その2つの貫通孔63,63が凹部60の内面59の最も深い位置を間に挟んで、玉52の進行方向前側と進行方向後側とで対称となるように配置されている。凹部60の内面59には、第1実施形態と同様の低摩擦皮膜58が形成されている。
 ところで、深溝玉軸受が回転するとき、凹部60の内面59と玉52の間に潤滑剤が溜まることがある。特に、凹部60の内面59の玉52が接触する部位から玉52の進行方向とは反対方向に寄った部位には、玉52の自転による遠心力によって、潤滑剤が溜まりやすく、その潤滑剤の粘性抵抗により深溝玉軸受の回転トルクが大きくなるおそれがある。
 しかし、この深溝玉軸受は、凹部60の内面59の玉52が接触する部位から玉52の進行方向とは反対方向に寄った部位に貫通孔63が形成されているので、凹部60の内面59と玉52の間に溜まった潤滑剤が、玉52の自転による遠心力によって貫通孔63から押し出され、効果的に排出される。そのため、偏心軸部17の回転中心のずれによる遠心力を受けても、回転トルクが大きくなりにくい。
 また、この深溝玉軸受は、各凹部60の2つの貫通孔63,63が玉52の進行方向前側と進行方向後側とで対称となるように配置されているので、時計回りと反時計回りのいずれに回転した場合でも、凹部60の内面59の玉52が接触する部位から玉52の進行方向とは反対方向に寄った部位に貫通孔63があり、凹部60の内面59と玉52の間に溜まった潤滑剤が貫通孔63から効果的に排出される。
 また、図19(a)に示すように、断面多角形状のポケット57を採用する場合も、そのポケット57を形成する凹部56の内面55に貫通孔64を形成することができる。この深溝玉軸受は、図13に示す深溝玉軸受18と同様、凹部56の内面55が内底面55aと、2つの内側面55b,55bとからなり、深溝玉軸受が回転したときに、図19(b)に示すように、内側面55bの中央部分に玉52が接触するようになっている。
 貫通孔64は、凹部56の内側面55bの玉52が接触しない部位のうち、玉52が接触する部位から玉52の進行方向とは反対方向に寄った部位、すなわち、凹部56の内底面55a側に寄った部位に形成されている。また、図19(a)に示すように、貫通孔64は、各内側面55bに1箇所ずつ形成されており、その貫通孔63が内底面55aを間に挟んで、玉52の進行方向前側と進行方向後側とで対称となるように配置されている。凹部56の内面55には、第1実施形態と同様の低摩擦皮膜58が形成されている。
 この深溝玉軸受は、凹部56の内面55と玉52の間に溜まった潤滑剤が、玉52の自転による遠心力によって貫通孔64から押し出されるので、潤滑剤の粘性抵抗が抑えられる。そのため、偏心軸部17の回転中心のずれによる遠心力を受けても、回転トルクが大きくなりにくい。
 この実施形態において、内歯車14の歯数とローラ21の本数の関係によっては、入力軸12に時計回りに入力トルクが入力された際、ローラ21が時計回りに公転する場合がある。この場合では、上述と同様の動作によって、入力軸12からの正逆両回転方向の入力トルクは、一体保持器30を介して、出力軸13に伝達され、出力軸13が正逆両回転方向に回転する。
 第2実施形態の減速装置10は、出力軸13と入力軸12との間に設けた、出力軸13に作用する逆入力トルクに対して出力軸13をハウジング11にロックするロック手段と、入力軸12に作用する入力トルクに対してロック手段によるロック状態を解除するロック解除手段が前述の第1実施形態と相違する。その他の構成は第1実施形態と同様であり、同一に考えられる構成に同符号を用いて、その説明を省略する。
 この実施形態は、図5および図6に示すように、ハウジング11と出力軸13の大径部13bとの間にコイルばね33が配置される。このコイルばね33は、自然状態でハウジング11の内周部に接触するように嵌められ、その両端部33a、33bが径方向内向きに突出している。また、コイルばね33は両端部33a、33bが周方向内向きに押圧されると縮径し、周方向外向きに押圧されると拡径するようにハウジング11に嵌められている。
 出力軸13の大径部13bの外周部には、図6および図7に示すように、軸方向の溝35が形成され、この溝35の両溝壁がコイルばね33の両端部33a、33bよりも周方向外側に位置している。出力軸13の回転によって、一方の溝壁35aは、コイルばね33の端部33aに、他方の溝壁35bはコイルばね33の端部33bに係合可能である係合部とされる。
 コイルばね33の両端部33a、33bの周方向の間にはローラ保持器部22と一体にプレス加工により形成された突起34が配置され、ローラ保持器部22の回転によって、突起34がコイルばね33の両端部33a、33bのいずれか一方に係合可能となっている。
 この実施形態において、上述のロック手段は、コイルばね33と、出力軸13の係合部としての溝壁35a、35bとから構成され、出力軸13の回転により、その溝壁35a(35b)がコイルばね33の端部33a(33b)に係合してそのコイルばね33を拡径させる向きに押圧する(図8参照)。
 この押圧によって、拡径したコイルばね33とハウジング11の内周面との間で摩擦抵抗が発生し、ハウジング11に対して出力軸13がロックされる。このように、逆入力トルクが入力された出力軸13は、ロック手段によって正逆両回転方向にロックされるので、その逆入力トルクが入力軸12に伝達されない。
 一方、入力軸12に入力トルクが入力されて時計回りに回転すると、上述の第1実施形態と同様にして、ローラ保持器部22が反時計回りに回転する。ローラ保持器部22の回転で、ロック解除手段である突起34が、コイルばね33の端部33aに係合し、そのコイルばね33を縮径させる向きに押圧する(図9参照)。
 この押圧によって、コイルばね33が縮径し、前記ロック手段による出力軸13とハウジング11とのロック状態が解除される。入力軸12がさらに時計方向に回転され、その回転に伴いローラ保持器部22が反時計回りに回転すると、突起34に係合したコイルばね33の端部33aが出力軸13の溝壁35aに係合し、入力軸12の回転が出力軸13に伝達される。入力軸12に反時計方向の入力トルクが入力された場合は、上記とは逆の動作で出力軸13が時計方向に回転する。
 このようにして、この実施形態において、入力軸12からの正逆両回転方向の入力トルクは、ローラ保持器部22を介して出力軸13に伝達され、出力軸13が正逆反対方向の両回転方向に回転する。
 この発明に係る減速装置の第3実施形態を図10~図12に基づいて説明する。この第3実施形態での減速装置10は、出力軸13と入力軸12との間に設けた、出力軸13に作用する逆入力トルクに対して出力軸13をハウジング11にロックするロック手段と、入力軸12に作用する入力トルクに対してロック手段によるロック状態を解除するロック解除手段が前述の第1実施形態と相違する。その他の構成は第1実施形態と同様であり、同一に考えられる構成に同符号を用いて、その説明を省略する。
 この実施形態では、図10に示すように、出力軸13は、小径部13aおよび大径部13bが別体に形成され、小径部13aの一端側外周部および大径部13bの内周部に形成されたスプラインの係合により、一体回転可能に設けられている。
 出力軸13に対して一体回転し、軸方向に変位可能に設けられた大径部13bであるカムプレート36と、ローラ保持器部22と一体回転するように接続された環状回転体37とが対向するように同軸状に設けられている。この環状回転体37をローラ保持器部22と一体に形成することができる。
 カムプレート36は、ハウジング11の他端側内面との間に設けた弾性部材39で軸方向一方に付勢され、カムプレート36の外周部に軸方向一方を向いた押圧面36cを備えている。この押圧面36cは軸方向他方に向かって広がるテーパ状に形成され、内歯車14の軸方向他端部に形成された軸方向他方に向いたテーパ状の接触面14bに対向している。弾性部材39により付勢されるカムプレート36は、その押圧面36cが内歯車14の接触面14bを押圧している。
 環状回転体37は、内歯車14の軸方向他端側に形成された円筒部14aの内周部との間に設けた軸受38により内歯車14に対して相対回転可能に支持されている。
 カムプレート36と環状回転体37の両対向面に、図11に示すように、周方向のカム溝40が対向位置に周方向に複数形成され、両カム溝40は周方向両方向に向かってその深さが小さく(浅く)なるすり鉢状に形成され、この両カム溝40間にボール41が転動可能に介在している。
 この実施形態において、ロック手段は、カムプレート36と、このカムプレート36に対向する環状回転体37と、カムプレート36と環状回転体37の両対向面のカム溝40と、これらのカム溝40間を転動しカムプレート36と環状回転体37との間に係脱可能に介在したボール41とを備えている。
 出力軸13に逆入力トルクが作用したとき、このロック手段により、カムプレート36は、弾性部材39により軸方向一方に付勢されているので、その押圧面36cが、内歯車14の接触面14bを押圧する。
 この押圧によって、カムプレート36の押圧面36cと内歯車14の接触面14bとの間で摩擦抵抗が発生し、内歯車14に対してカムプレート36がロックされる。このロック状態では、図12(a)に示すように、ボール41が、カムプレート36および環状回転体37の両カム溝40の軸方向最深の周方向中心の間に位置している。この位置のボール41は、カムプレート36および環状回転体37に係合していない。
 この状態において、入力トルクが作用した入力軸12が周方向一方に回転すると、上述の第1実施形態と同様にして、ローラ保持器部22が回転する。
 ローラ保持器部22の回転により、環状回転体37が回転すると、両カム溝40間に位置したボール41が、図12(b)に示すように、周方向に転動し、環状回転体37のカム溝40の周方向他端と、カムプレート36のカム溝40の周方向一端との間に位置する。両カム溝40は周方向両方向に向かってそれぞれ深さが小さくなっているので、カムプレート36が弾性部材39の付勢力に抗して、軸方向他方(環状回転体37から離れる向き)に変位させられる。これにより、カムプレート36の押圧面36cが内歯車14の接触面14bから離隔する。
 このとき、ボール41は、図12(b)に示すように、環状回転体37のカム溝40の周方向他端と、カムプレート36のカム溝40の周方向一端との間で軸方向に係合した状態となっている。
 この係合状態において、環状回転体37がさらに周方向他方に回転すると、カムプレート36が同方向に回転させられ、出力軸13が同方向に回転する。
 このように、逆入力トルクによるカムプレート36の内歯車14に対するロック状態は、入力軸12に入力トルクが作用したときに、ボール41をカムプレート36と環状回転体37に係合させ、軸方向他方に変位させたカムプレート36を内歯車14の接触面14bから離隔させ、カムプレート36と前記環状回転体とを一体回転させることで解除することができる。
 上記ハウジング11、入力軸12、出力軸13および内歯車14の構造は、入力軸12から出力軸13への回転トルクの伝達が可能であれば、適宜変更することができる。その一例として、この発明に係る減速装置10の第4実施形態を図20に示す。なお、以下においては、上記第1実施形態との相違点を中心に述べ、同一に考えられる構成に同符号を用いる。
 すなわち、この実施形態では、図20に示すように、ハウジング11は、その他端側円筒部が、一端側円筒部と一体回転するスプロケット42に形成され、スプロケット42の一端面(ハウジング11側の端面)に出力軸13と同軸の円筒部42aが一体に形成されている。スプロケット42は、円筒部42aの外周にハウジング11の一端側円筒部が圧入固定されており、スプロケット42の内周部によって出力軸13の小径部13aが回転可能に支持されている。
 また、入力軸12は、その大径部12aがハウジング11内の一端側において軸受15により回転可能に支持され、その大径部12aと一体に偏心軸部17が軸方向1箇所に形成されている。
 出力軸13は、小径部13aおよび大径部13bが別体に形成され、小径部13aの一端側外周部および大径部13bの内周部に形成されたスプラインの係合により、一体回転可能に設けられている。
 大径部13bは、その外周部に形成された径方向の孔13dにスイッチピン20がその外周部から突き出すように嵌め合わされ、一体保持器30の係合子保持器部28に対して一体回転可能に係合している。このため、入力軸12に作用する入力トルクの回転が一体保持器30から大径部13b(中間軸)を介して小径部13aに伝達される。また、スプロケット42の円筒部42aに対向する出力軸13の大径部13bの外周部に、カム面13cが周方向の等間隔に形成されている。
 内歯車14は、軸方向他端側に形成された円筒部14aと係合子保持器部28との間に軸受43が設けられている。また、内歯車14の軸方向一端部に形成された突起14cが、ハウジング11内に形成された軸方向の係合凹部11aに係合することで、内歯車14がハウジング11に対して固定される。
 この実施形態での減速装置10は、偏心軸部17が一箇所にのみ設けられ、出力軸13をスプロケット42で支持しているため、軸方向の寸法を第1実施形態の場合と比較して小さくすることができる。
 この発明に係る減速装置の第5実施形態を図21に基づいて説明する。この第5実施形態での減速装置10は、ハウジング11、入力軸12、出力軸13および内歯車14の構成が、前述の第2実施形態と相違し、その他の構成は第2実施形態と同様であり、同一に考えられる構成に同符号を用いて、その説明を省略する。以下の構成を備えている。
 すなわち、ハウジング11は、その他端側円筒部がスプロケット42に形成され、スプロケット42がハウジング11の一端側円筒部と一体回転し、スプロケット42の内周部によって出力軸13の小径部13aが回転可能に支持されている。
 また、入力軸12は、その大径部12aがハウジング11内の一端側において軸受15により回転可能に支持され、その大径部12aと一体に偏心軸部17が軸方向1箇所に形成されている。
 出力軸13は、小径部13aおよび大径部13bが別体に形成され、小径部13aの一端側外周部および大径部13bの内周部に形成されたスプラインの係合により、一体回転可能に設けられている。
 大径部13bの外周部には、溝35が形成されており、入力軸12に作用する入力トルクの回転がローラ保持器部22の突起34から大径部13b(中間軸)を介して小径部13aに伝達される。
 内歯車14は、軸方向他端側に形成された円筒部14aと係合子保持器部28との間に軸受43が設けられている。また、内歯車14の軸方向一端部に形成された突起14cが、ハウジング11内に形成された軸方向の係合凹部11aに係合することで、内歯車14がハウジング11に対して固定される。
 この実施形態での減速装置10も、偏心軸部17が一箇所にのみ設けられ、出力軸13をスプロケット42で支持しているため、前述の第4実施形態と同様に、軸方向の寸法を第2実施形態の場合と比較して小さくすることができる。
 この発明に係る減速装置の第6実施形態を図22に基づいて説明する。この第6実施形態での減速装置10は、ハウジング11、入力軸12、出力軸13および内歯車14の構成が、前述の第3実施形態と相違し、その他の構成は第3実施形態と同様であり、同一に考えられる構成に同符号を用いて、その説明を省略する。
 すなわち、ハウジング11は、その他端側円筒部がスプロケット42に形成され、スプロケット42がハウジング11の一端側円筒部と一体回転し、スプロケット42の内周部によって出力軸13の小径部13aが回転可能に支持されている。
 また、入力軸12は、その大径部12aがハウジング11内の一端側において軸受15により回転可能に支持され、その大径部12aと一体に偏心軸部17が軸方向1箇所に形成されている。
 出力軸13は、小径部13aおよび大径部13bが別体に形成され、小径部13aの一端側外周部および大径部13bの内周部に形成されたスプラインの係合により、一体回転可能に設けられている。
 また、大径部13bがカムプレート36とされ、径方向外側に軸方向一方に向いた押圧面36cを備えており、大径部13bとスプロケット42との間に、その大径部13bを軸方向一方に付勢する弾性部材39が設けられている。このため、入力軸12に作用する入力トルクの回転がローラ保持器部22から環状回転体37にカム係合するカムプレート36とされる大径部13b(中間軸)を介して小径部13aに伝達される。
 内歯車14は、軸方向他端側に形成された円筒部と係合子保持器部28との間に軸受43が設けられている。また、内歯車14の軸方向一端部に形成された突起14cが、ハウジング11内に形成された軸方向の係合凹部11aに係合することで、内歯車14がハウジング11に対して固定される。
 この実施形態での減速装置10も、偏心軸部17が一箇所にのみ設けられ、出力軸13をスプロケット42で支持しているため、前述の第4実施形態と同様に、軸方向の寸法を第3実施形態の場合と比較して小さくすることができる。
 この発明に係る可変バルブタイミング装置の第1実施形態を図25に基づいて説明する。この実施形態での可変バルブタイミング装置は、図25に示すように、図示しないエンジンの吸気弁および排気弁の少なくとも一方を駆動するカムシャフト44と、エンジンの駆動軸から回転を伝達される駆動回転体としてのスプロケット42とが同軸状に相対回転可能に設けられ、電動モータ45のカムシャフト44と同軸に配置された出力軸46の回転を減速機構を介してカムシャフト44に伝達し、カムシャフト44のスプロケット42に対する回転位相差を変化させて、弁の開閉タイミングを変更するものである。
 この減速機構としては、前述の第1実施形態での減速装置10を適用することができる。すなわち、減速装置10のハウジング11の外周に駆動回転体としてのスプロケット42が設けられ、その減速装置10の入力軸12が電動モータ45の出力軸46とされ、減速装置10の出力軸13がカムシャフト44とされる。これにより、電動モータ45の出力軸46と、カムシャフト44との間に、減速装置10に備える逆入力トルクを阻止するロック手段と、ロック解除手段が設けられる。
 この実施形態では、電動モータ45の出力軸46(入力軸12)の回転の減速と、減速した回転のカムシャフト44(出力軸13)への伝達とを減速装置10により行うことができる。
 また、減速装置10のロック手段により、逆入力トルクが作用したカムシャフト44(出力軸13)の回転で、楔形空間25内の一対のローラ26のうち回転方向後方のローラ26が楔効果によりハウジング11およびカムシャフト44に食い込むように係合する。この係合によりカムシャフト44がハウジング11に対してロックし、カムシャフト44に作用した逆入力トルクが電動モータ45の出力軸46に伝達されるのを確実に阻止することができる。
 一方、減速装置10のロック解除手段では、係合子保持器部28とローラ保持器部22とにより一体保持器30が形成されているので、電動モータ45の出力軸46(入力軸12)に入力トルクが作用したときに、ローラ保持器部22の回転に伴って係合子保持器部28が一体回転する。回転する係合子保持器部28が、一対のローラ26のうち回転方向後方のローラを楔形空間25の広大側へ押圧し、ローラ26による係合状態が解除される。
 この発明に係る可変バルブタイミング装置の第2実施形態を図26に基づいて説明する。この第2実施形態での可変バルブタイミング装置は、減速機構として、前述した減速装置10の第2実施形態を適用したものである。その他の構成は、前述の可変バルブタイミング装置の第1実施形態と同様であり、同一に考えられる構成に同符号を用いて、その説明を省略する。
 この実施形態では、減速装置10の第2実施形態のロック手段により、カムシャフト44(出力軸13)にコイルばね33の両端部33a、33bが係合しているので、逆入力トルクが作用しカムシャフト44が回転しようとすると、カムシャフト44に押圧されてコイルばね33が拡径する。拡径したコイルばね33とハウジング11内周との間で摩擦抵抗が発生し、ハウジング11の内面にカムシャフト44がハウジング11に対して固定される。これにより、逆入力トルクの作用したカムシャフト44の回転を阻止することができる。
 一方、ロック解除手段によると、電動モータ45の出力軸46(入力軸12)に入力トルクが作用したときに、回転するローラ保持器部22の突起34がコイルばね33の端部33a(33b)を押圧して縮径させ、ハウジング11の内面に対するカムシャフト44の固定が解除される。
 この発明に係る可変バルブタイミング装置の第3実施形態を図27に基づいて説明する。この第3実施形態での可変バルブタイミング装置は、減速機構として、前述した減速装置10の第3実施形態を適用したものである。その他の構成は、前述の可変バルブタイミング装置の第1実施形態と同様であり、同一に考えられる構成に同符号を用いて、その説明を省略する。
 この実施形態では、減速装置10の第3実施形態のロック手段により、カムシャフト44に逆入力トルクが作用したときに、カムプレート36は弾性部材39により軸方向一方に押圧され、内歯車14に形成された接触面14bに押圧することにより、カムプレート36に摩擦抵抗が発生し、内歯車14に対してカムプレート36が固定されて、逆入力トルクの作用したカムシャフト44の回転を阻止することができる。
 一方、減速装置10の第3実施形態のロック解除手段では、電動モータ45の出力軸46(入力軸12)に入力トルクが作用したときに、ボール41を環状回転体37とカムプレート36とに係合させることで、カムプレート36を軸方向他方に変位させて内歯車14の接触面14bから離隔させる。これにより、環状回転体37とカムプレート36とが一体回転して、電動モータ45の出力軸46の回転がカムシャフト44に伝達される。
 この発明に係る可変バルブタイミング装置の第4実施形態を図28に基づいて説明する。この第4実施形態での可変バルブタイミング装置は、減速機構として、前述した減速装置10の第4実施形態が適用され、減速装置10の入力軸12が電動モータ45の出力軸46とされ、減速装置10の出力軸13がカムシャフト44とされたものである。その他の構成は、前述の可変バルブタイミング装置の第1実施形態と同様であり、以下においては、その第1実施形態との相違点を中心に述べ、同一に考えられる構成に同符号を用いる。
 この可変バルブタイミング装置では、電動モータ45の出力軸46の回転が、減速装置10により減速すると共に、カムシャフト44(出力軸13)へ伝達される。また、電動モータ45の出力軸46と、カムシャフト44との間に、減速装置10に備える逆入力トルクを阻止するロック手段と、ロック解除手段が設けられる。
 この可変バルブタイミング装置は、これに適用した減速装置10の第4実施形態が、前述の減速装置10の第1実施形態に対して、ハウジング11等の構造を変更したものである。したがって、この可変バルブタイミング装置での減速装置10のロック手段およびロック解除手段は、減速装置10の第1実施形態を適用した、前述の第1実施形態での可変バルブタイミング装置の場合と同様の作用をする。
 すなわち、前記ロック手段により、逆入力トルクが作用したカムシャフト44(出力軸13)の回転で、楔形空間25内の一対のローラ26のうち回転方向後方のローラ26が楔効果によりハウジング11およびカムシャフト44に食い込むように係合する。この係合によりカムシャフト44がハウジング11に対してロックし、カムシャフト44に作用した逆入力トルクが電動モータ45の出力軸46に伝達されるのを確実に阻止することができる。
 一方、前記ロック解除手段では、係合子保持器部28とローラ保持器部22とにより一体保持器30が形成されているので、電動モータ45の出力軸46(入力軸12)に入力トルクが作用したときに、ローラ保持器部22の回転に伴って係合子保持器部28が一体回転する。回転する係合子保持器部28が、一対のローラ26のうち回転方向後方のローラを楔形空間25の広大側へ押圧し、ローラ26による係合状態が解除される。
 この発明に係る可変バルブタイミング装置の第5実施形態を図29に基づいて説明する。この第5実施形態での可変バルブタイミング装置は、減速機構として、前述した減速装置10の第5実施形態が適用され、減速装置10の入力軸12が電動モータ45の出力軸46とされ、減速装置10の出力軸13がカムシャフト44とされたものである。
 この可変バルブタイミング装置では、電動モータ45の出力軸46の回転が、減速装置10により減速すると共に、カムシャフト44(出力軸13)へ伝達される。また、電動モータ45の出力軸46と、カムシャフト44との間に、減速装置10に備える逆入力トルクを阻止するロック手段と、ロック解除手段が設けられる。
 この可変バルブタイミング装置は、これに適用した減速装置10の第5実施形態が、前述の減速装置10の第2実施形態に対して、ハウジング11等の構造を変更したものである。したがって、この可変バルブタイミング装置での減速装置10のロック手段およびロック解除手段は、減速装置10の第2実施形態を適用した、前述の第2実施形態での可変バルブタイミング装置の場合と同様の作用をする。
 すなわち、前記ロック手段により、カムシャフト44(出力軸13)にコイルばね33の両端部33a、33bが係合しているので、逆入力トルクが作用しカムシャフト44が回転しようとすると、カムシャフト44に押圧されてコイルばね33が拡径する。拡径したコイルばね33とハウジング11内周との間で摩擦抵抗が発生し、ハウジング11の内面にカムシャフト44がハウジング11に対して固定される。これにより、逆入力トルクの作用したカムシャフト44の回転を阻止することができる。
 一方、前記ロック解除手段によると、電動モータ45の出力軸46(入力軸12)に入力トルクが作用したときに、回転するローラ保持器部22の突起34がコイルばね33の端部33a(33b)を押圧して縮径させ、ハウジング11の内面に対するカムシャフト44の固定が解除される。
 この発明に係る可変バルブタイミング装置の第6実施形態を図30に基づいて説明する。この第6実施形態での可変バルブタイミング装置は、減速機構として、前述した減速装置10の第6実施形態が適用され、減速装置10の入力軸12が電動モータ45の出力軸46とされ、減速装置10の出力軸13がカムシャフト44とされたものである。
 この可変バルブタイミング装置では、電動モータ45の出力軸46の回転が、減速装置10により減速すると共に、カムシャフト44(出力軸13)へ伝達される。また、電動モータ45の出力軸46と、カムシャフト44との間に、減速装置10の備える逆入力トルクを阻止するロック手段と、ロック解除手段が設けられる。
 この可変バルブタイミング装置は、これに適用した減速装置10の第6実施形態が、前述の減速装置10の第3実施形態に対して、ハウジング11等の構造を変更したものである。したがって、この可変バルブタイミング装置での減速装置10のロック手段およびロック解除手段は、減速装置10の第3実施形態を適用した、前述の第3実施形態での可変バルブタイミング装置の場合と同様の作用をする。
 すなわち、そのロック手段により、カムシャフト44に逆入力トルクが作用したときに、カムプレート36は弾性部材39により軸方向一方に押圧され、内歯車14に形成された接触面14bに押圧することにより、カムプレート36に摩擦抵抗が発生し、内歯車14に対してカムプレート36が固定されて、逆入力トルクの作用したカムシャフト44の回転を阻止することができる。
 一方、減速装置10の第3実施形態のロック解除手段では、電動モータ45の出力軸46(入力軸12)に入力トルクが作用したときに、ボール41を環状回転体37とカムプレート36とに係合させることで、カムプレート36を軸方向他方に変位させて内歯車14の接触面14bから離隔させる。これにより、環状回転体37とカムプレート36とが一体回転して、電動モータ45の出力軸46の回転がカムシャフト44に伝達される。
10   減速装置
11   ハウジング
11a 係合凹部
12   入力軸
12a   大径部
13   出力軸
13a  小径部
13b  大径部
13c  カム面
13d  孔
14   内歯車
14a  円筒部
14b  接触面
14c  突起
15、16、24、38、43   軸受
15a  外輪
15b  内輪
15c  接触式シール
17   偏心軸部
18   深溝玉軸受
19   歯
20   スイッチピン
21、26   ローラ
22   ローラ保持器部
23、29   ポケット
25   楔形空間
27   板ばね
28   係合子保持器部
30   一体保持器
31   フランジ
32   切り欠き溝
33   コイルばね
33a、33b  端部
34   突起
35   溝
35a、35b  溝壁
36   カムプレート
36c  押圧面
37   環状回転体
39   弾性部材
40   カム溝
41   ボール
42   スプロケット
42a  円筒部
44   カムシャフト
45   電動モータ
46   出力軸
50   内輪
51   外輪
52   玉
53   保持器
54   環状保持板
55、59   内面
55a  内底面
55b  内側面
56、60   凹部
57、61   ポケット
58   低摩擦皮膜
62   突起
63、64   貫通孔

Claims (18)

  1.  ハウジング(11)に回転可能に支持される入力軸(12)および出力軸(13)と、前記ハウジング(11)に固定される内歯車(14)とを同軸状に配置し、前記入力軸(12)に設けた偏心軸部(17)の外周に装着した玉軸受(18)と前記内歯車(14)との間にローラ(21)を配し、これらの各ローラ(21)を前記出力軸(13)と一体回転するローラ保持器部(22)で転動可能に保持し、前記ローラ保持器部(22)を介して前記入力軸(12)の回転を前記出力軸(13)に伝達する減速装置において、
     前記入力軸(12)と前記出力軸(13)との間に、前記出力軸(13)に作用する逆入力トルクに対して前記出力軸(13)を前記ハウジング(11)にロックするロック手段と、前記入力軸(12)に作用する入力トルクに対して前記ロック手段によるロック状態を解除するロック解除手段とを設けたことを特徴とする減速装置。
  2.  前記ロック手段は、前記ハウジング(11)と前記出力軸(13)との間に周方向の両方向に狭くなる楔形空間(25)を複数形成し、その各楔形空間(25)内に一対の係合子(26)を係合子保持器部(28)で前記ハウジング(11)および前記出力軸(13)に係脱可能に保持するものであり、
     前記ロック解除手段は、前記係合子保持器部(28)を前記ローラ保持器部(22)と一体に回転するように接続し、前記入力軸(12)に入力トルクが作用したときに、前記係合子保持器部(28)が前記一対の係合子(26)のいずれか一方を、前記楔形空間(25)の広大側へ押圧して、前記ハウジング(11)および前記出力軸(13)との係合を解除するようにしたものであることを特徴とする請求項1に記載の減速装置。
  3.  前記係合子保持器部(28)を前記ローラ保持器部(22)と一体に形成したことを特徴とする請求項2に記載の減速装置。
  4.  前記一対の係合子(26)の間に弾性部材(27)を配置し、この弾性部材(27)で両側の係合子(26)をそれぞれ前記楔形空間(25)の狭小側へ押圧して前記ハウジング(11)および前記出力軸(13)に係合させる方向に付勢することを特徴とする請求項2または3のいずれかに記載の減速装置。
  5.  前記ロック手段は、前記ハウジング(11)内周の前記出力軸(13)外周と対向する位置にコイルばね(33)を嵌め込み、前記出力軸(13)に前記コイルばね(33)の両端部に係合可能な係合部(35)を設け、前記出力軸(13)に逆入力トルクが作用したときに、前記出力軸(13)の係合部(35)が、前記コイルばね(33)の両端部のいずれか一方の端部に係合してそのコイルばね(33)を拡径させる向きに押圧するものであり、
     前記ロック解除手段は、前記ローラ保持器部(22)に軸方向に突出する突起(34)を設け、前記入力軸(12)に入力トルクが作用したときに、前記突起(34)で前記コイルばね(33)の両端部のいずれか一方の端部を押圧してそのコイルばね(33)を縮径させるものであることを特徴とする請求項1に記載の減速装置。
  6.  前記ローラ保持器部(22)の突起(34)により押圧される前記コイルばね(33)の端部が、前記出力軸(13)の係合部(35)に係合可能に設けられ、前記突起(34)が前記コイルばね(33)の端部を介して前記出力軸(13)の係合部(35)を押圧することを特徴とする請求項5に記載の減速装置。
  7.  前記ロック手段は、前記出力軸(13)に対して一体回転し軸方向変位可能に設けられたカムプレート(36)と、このカムプレート(36)に対向し前記ローラ保持器部(22)と一体回転するよう同軸に接続される環状回転体(37)と、前記カムプレート(36)と前記環状回転体(37)の両対向面に形成された周方向のカム溝(40)と、これらのカム溝(40)間を転動し前記カムプレート(36)と前記環状回転体(37)との間に係脱可能に介在したボール(41)とからなり、前記出力軸(13)に逆入力トルクが作用したときに、前記カムプレート(36)を弾性部材(39)により前記内歯車(14)に形成された軸方向他方を向く接触面に押圧させるものであり、前記ロック解除手段は、前記入力軸(12)に入力トルクが作用したときに、前記ボール(41)を前記カムプレート(36)と前記環状回転体(37)に係合させ、そのカムプレート(36)を軸方向他方に変位させて前記内歯車(14)の接触面から離隔させ、前記カムプレート(36)と前記環状回転体(37)とを一体回転させるものであることを特徴とする請求項1に記載の減速装置。
  8.  前記内歯車(14)は、その軸方向他端部に前記接触面を有し、その接触面がテーパ状をなし、前記カムプレート(36)は、前記接触面の対向位置にその接触面に沿うテーパ状の押圧面を有することを特徴とする請求項7に記載の減速装置。
  9.  前記環状回転体(37)を前記ローラ保持器部(22)と一体に形成したことを特徴とする請求項7または8に記載の減速装置。
  10.  前記ハウジング(11)の円筒部の内径面に、複数のカム山(19)を円周方向に等ピッチで形成した前記内歯車(14)を、前記偏心軸部(17)と対向させて設け、これらの対向する偏心軸部(17)の外径面と前記内歯車(14)とに転接する複数の前記ローラ(21)を保持する前記ローラ保持器部(22)を有する前記出力軸(13)を配置して、前記ローラ保持器部(22)を円周方向に等ピッチで分割したときの分割点の数が、前記カム山(19)の数と1つだけ異なる分割点の全ての位置または一部の間引いた位置に、前記ローラ(21)を保持するポケット(23)を設けて、前記カム山(19)の1ピッチ分の形状を、前記入力軸(12)を回転させたときに、前記ポケット(23)に保持されたローラ(21)が前記偏心軸部(17)の外径面に沿って公転する軌跡の外径側包絡線と合致させて、これらのローラ(21)の公転を前記中間軸を介して前記出力軸(13)に伝達し、前記入力軸(12)への逆入力を抑制する逆入力抑制手段を設けたことを特徴とする請求項1から9のいずれか1つに記載の減速装置。
  11.  前記逆入力抑制手段が、前記入力軸(12)を支持する転がり軸受(15)に負の隙間を設定して、この転がり軸受(15)に回転抵抗を付与するものである請求項10に記載の減速装置。
  12.  前記逆入力抑制手段が、前記入力軸(12)を支持する転がり軸受(15)に接触式シールを設けて、この転がり軸受(15)に回転抵抗を付与するものである請求項10に記載の減速装置。
  13.  前記逆入力抑制手段が、前記ローラ保持器部(22)のポケット(23)の幅寸法を前記ローラ(21)の径寸法以下として、前記ローラ(21)に回転抵抗を付与するものである請求項10に記載の減速装置。
  14.  前記偏心軸部(17)の外周に玉軸受(18)を設け、その玉軸受(18)の保持器(53)は、複数の平面で形成された内面(55)をもつ凹部(56)を周方向に一定の間隔をおいて形成した2枚の環状保持板(54,54)からなり、一方の前記環状保持板(54)の凹部(56)の開口側と他方の前記環状保持板(54)の凹部(56)の開口側を対向させてその凹部(56)間に断面多角形状のポケット(57)を形成し、そのポケット(57)に玉(52)を収容したことを特徴とする請求項1から13のいずれか1つに記載の減速装置。
  15.  前記偏心軸部(17)の外周に玉軸受(18)を設け、その玉軸受(18)の保持器(53)は、球面状の内面(59)をもつ凹部(60)を周方向に一定の間隔をおいて形成した2枚の環状保持板(54,54)からなり、一方の前記環状保持板(54)の凹部(60)の開口側と他方の前記環状保持板(54)の凹部(60)の開口側を対向させてその凹部(60)間に前記玉(52)を収容するポケット(61)を形成し、前記凹部(60)の内面(59)に前記玉(52)と点接触する突起(62)を形成したことを特徴とする請求項1から13のいずれか1つに記載の減速装置。
  16.  前記偏心軸部(17)の外周に玉軸受(18)を設け、その玉軸受(18)の保持器(53)は、周方向に一定の間隔をおいて凹部(60)を形成した2枚の環状保持板(54,54)からなり、一方の前記環状保持板(54)の凹部(60)の開口側と他方の前記環状保持板(54)の凹部(60)の開口側を対向させてその凹部(60,60)間に前記玉(52)を収容するポケット(61)を形成し、前記玉軸受の回転時に前記凹部(60)の内面(59)の前記玉(52)が接触しない部位のうち、前記玉(52)が接触する部位から前記玉(52)の進行方向とは反対方向に寄った部位に貫通孔(63)を形成した請求項1から13のいずれか1つに記載の減速装置。
  17.  前記貫通孔(63)が、前記玉(52)の進行方向前側と進行方向後側とで対称となるように前記各凹部(60)にそれぞれ2箇所ずつ形成されている請求項16に記載の減速装置。
  18.  エンジンの吸気弁および排気弁の少なくとも一方を駆動するカムシャフト(44)と、前記エンジンの駆動軸から回転を伝達される駆動回転体(42)とが同軸に相対回転可能に設けられ、電動モータ(45)の前記カムシャフト(44)と同軸に配置された出力軸(46)の回転を減速機構を介して前記カムシャフト(44)に伝達する可変バルブタイミング装置において、前記減速機構を、請求項1から17のいずれか1つに記載の減速装置(10)とし、前記電動モータ(45)の出力軸(46)および前記カムシャフト(44)を、前記減速装置(10)の入力軸(12)および出力軸(13)としたことを特徴とする可変バルブタイミング装置。
PCT/JP2009/061616 2008-07-09 2009-06-25 減速装置およびこれを適用した可変バルブタイミング装置 WO2010004880A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112009001645T DE112009001645T5 (de) 2008-07-09 2009-06-25 Drehzahlminderer und Vorrichtung zur variablen Ventilzeitsteuerung unter Verwendung des Drehzahlminderers

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2008179223 2008-07-09
JP2008-179223 2008-07-09
JP2008-207833 2008-08-12
JP2008207833 2008-08-12
JP2008215547A JP5376288B2 (ja) 2008-08-25 2008-08-25 可変バルブタイミング装置
JP2008-215547 2008-08-25
JP2009-091204 2009-04-03
JP2009091204A JP5180135B2 (ja) 2008-08-12 2009-04-03 可変バルブタイミング装置およびこの可変バルブタイミング装置に組み込まれるローラ減速機
JP2009093892A JP5354186B2 (ja) 2008-07-09 2009-04-08 減速装置
JP2009-093892 2009-04-08

Publications (1)

Publication Number Publication Date
WO2010004880A1 true WO2010004880A1 (ja) 2010-01-14

Family

ID=41506999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061616 WO2010004880A1 (ja) 2008-07-09 2009-06-25 減速装置およびこれを適用した可変バルブタイミング装置

Country Status (1)

Country Link
WO (1) WO2010004880A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102762891A (zh) * 2010-04-21 2012-10-31 Ntn株式会社 减速装置
CN103133627A (zh) * 2013-02-25 2013-06-05 田达 一种传动带旋摆轮减速器
EP2615328A1 (en) * 2010-09-09 2013-07-17 NTN Corporation Reduction device
US20130206530A1 (en) * 2010-06-22 2013-08-15 Rotork Controls Limited Anti back-drive couplings
CN103917805A (zh) * 2011-09-22 2014-07-09 Ntn株式会社 减速装置
US20150308499A1 (en) * 2014-04-29 2015-10-29 Hyundai Motor Company Noise reducing structure of speed reduction device for electric cvvt
WO2017038202A1 (ja) * 2015-08-28 2017-03-09 株式会社ミクニ 位相調整ユニット及びバルブタイミング変更装置
EP3106697A4 (en) * 2014-02-14 2017-03-15 NTN Corporation Reverse input prevention clutch
EP3101314A4 (en) * 2014-01-28 2017-04-12 NTN Corporation Reduction gear with brake
CN107971671A (zh) * 2017-11-24 2018-05-01 重庆冠亨汽车配件有限公司 用于制造曲线形汽车配件用的定位装置
CN114270074A (zh) * 2019-09-05 2022-04-01 池田昌幸 齿轮变速装置
CN114810848A (zh) * 2021-01-18 2022-07-29 杜泽儒 齿轮双向离合机构

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293565A (ja) * 1985-10-18 1987-04-30 Ntn Toyo Bearing Co Ltd 減速装置
JP2002357224A (ja) * 2001-03-27 2002-12-13 Nsk Ltd ころ軸受
JP2005299685A (ja) * 2002-03-01 2005-10-27 Nsk Ltd 車輪支持用転がり軸受ユニット
JP2005315343A (ja) * 2004-04-28 2005-11-10 Sumitomo Heavy Ind Ltd 内接噛合遊星歯車構造、および該内接噛合遊星歯車構造の減速部を有する減速機
JP2006057688A (ja) * 2004-08-18 2006-03-02 Ntn Corp 逆入力遮断装置
JP2007127107A (ja) * 2005-11-07 2007-05-24 Toyota Motor Corp バルブタイミング制御装置
JP2007139029A (ja) * 2005-11-16 2007-06-07 Ntn Corp 電動アクチュエータ
JP2007255605A (ja) * 2006-03-23 2007-10-04 Ntn Corp 逆入力遮断クラッチの取付構造
JP2007333011A (ja) * 2006-06-13 2007-12-27 Ntn Corp 深溝玉軸受
JP2007333022A (ja) * 2006-06-13 2007-12-27 Ntn Corp 深溝玉軸受

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293565A (ja) * 1985-10-18 1987-04-30 Ntn Toyo Bearing Co Ltd 減速装置
JP2002357224A (ja) * 2001-03-27 2002-12-13 Nsk Ltd ころ軸受
JP2005299685A (ja) * 2002-03-01 2005-10-27 Nsk Ltd 車輪支持用転がり軸受ユニット
JP2005315343A (ja) * 2004-04-28 2005-11-10 Sumitomo Heavy Ind Ltd 内接噛合遊星歯車構造、および該内接噛合遊星歯車構造の減速部を有する減速機
JP2006057688A (ja) * 2004-08-18 2006-03-02 Ntn Corp 逆入力遮断装置
JP2007127107A (ja) * 2005-11-07 2007-05-24 Toyota Motor Corp バルブタイミング制御装置
JP2007139029A (ja) * 2005-11-16 2007-06-07 Ntn Corp 電動アクチュエータ
JP2007255605A (ja) * 2006-03-23 2007-10-04 Ntn Corp 逆入力遮断クラッチの取付構造
JP2007333011A (ja) * 2006-06-13 2007-12-27 Ntn Corp 深溝玉軸受
JP2007333022A (ja) * 2006-06-13 2007-12-27 Ntn Corp 深溝玉軸受

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8684878B2 (en) 2010-04-21 2014-04-01 Ntn Corporation Speed reducer
CN102762891A (zh) * 2010-04-21 2012-10-31 Ntn株式会社 减速装置
US20130206530A1 (en) * 2010-06-22 2013-08-15 Rotork Controls Limited Anti back-drive couplings
US8950565B2 (en) * 2010-06-22 2015-02-10 Rotork Controls Limited Anti back-drive couplings
EP2824365A3 (en) * 2010-09-09 2016-05-11 NTN Corporation Speed reducer
EP2615328A1 (en) * 2010-09-09 2013-07-17 NTN Corporation Reduction device
EP2615328A4 (en) * 2010-09-09 2014-03-26 Ntn Toyo Bearing Co Ltd REDUCTION DEVICE
CN103917805A (zh) * 2011-09-22 2014-07-09 Ntn株式会社 减速装置
CN103133627A (zh) * 2013-02-25 2013-06-05 田达 一种传动带旋摆轮减速器
EP3101314A4 (en) * 2014-01-28 2017-04-12 NTN Corporation Reduction gear with brake
EP3106697A4 (en) * 2014-02-14 2017-03-15 NTN Corporation Reverse input prevention clutch
US10359083B2 (en) 2014-02-14 2019-07-23 Ntn Corporation Reverse input blocking clutch
US20150308499A1 (en) * 2014-04-29 2015-10-29 Hyundai Motor Company Noise reducing structure of speed reduction device for electric cvvt
WO2017038202A1 (ja) * 2015-08-28 2017-03-09 株式会社ミクニ 位相調整ユニット及びバルブタイミング変更装置
CN107971671A (zh) * 2017-11-24 2018-05-01 重庆冠亨汽车配件有限公司 用于制造曲线形汽车配件用的定位装置
CN114270074A (zh) * 2019-09-05 2022-04-01 池田昌幸 齿轮变速装置
CN114270074B (zh) * 2019-09-05 2024-02-20 池田昌幸 齿轮变速装置
CN114810848A (zh) * 2021-01-18 2022-07-29 杜泽儒 齿轮双向离合机构

Similar Documents

Publication Publication Date Title
WO2010004880A1 (ja) 減速装置およびこれを適用した可変バルブタイミング装置
JP5354186B2 (ja) 減速装置
JP2011241974A (ja) 減速装置
JP6232551B2 (ja) 回転力伝達装置
US20140162826A1 (en) Motor assembly with speed reducer
JP5180135B2 (ja) 可変バルブタイミング装置およびこの可変バルブタイミング装置に組み込まれるローラ減速機
JP2002266902A (ja) 逆入力防止クラッチ
JP2003343674A (ja) トロイダル型無段変速機
KR20160105879A (ko) 기어 전동 장치
JP2004068845A (ja) 止め輪の外れ止め装置
JP2008196658A (ja) 嵌合構造、ワンウェイクラッチの固定構造ならびに摩擦係合装置
JP2017214943A (ja) 逆入力防止クラッチ
JP7268058B2 (ja) 油圧で作動する切り替え可能なワンウェイクラッチ
JP3941512B2 (ja) クラッチ機構付リニアアクチュエータ
WO2016060589A1 (ru) Планетарная передача
JP2007232011A (ja) 逆入力遮断クラッチ
JP2016020733A (ja) 無段変速装置
WO2017061306A1 (ja) 逆入力遮断クラッチ
CN112178072B (zh) 一种超越离合器
JP2005030424A (ja) 2方向ローラクラッチ
WO2023101003A1 (ja) 内燃機関のバルブタイミング制御装置
JP4182593B2 (ja) トロイダル型無段変速機用入力側ディスクユニット
JP2013024291A (ja) 減速装置
JP2011256929A (ja) 一方向クラッチ
JP2012017820A (ja) 減速装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09794326

Country of ref document: EP

Kind code of ref document: A1

RET De translation (de og part 6b)

Ref document number: 112009001645

Country of ref document: DE

Date of ref document: 20110601

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 09794326

Country of ref document: EP

Kind code of ref document: A1