WO2010000190A1 - Procédé de calcul, système et dispositif de réseau optique, pour une programmation synchrone d’un réseau optique passif - Google Patents

Procédé de calcul, système et dispositif de réseau optique, pour une programmation synchrone d’un réseau optique passif Download PDF

Info

Publication number
WO2010000190A1
WO2010000190A1 PCT/CN2009/072492 CN2009072492W WO2010000190A1 WO 2010000190 A1 WO2010000190 A1 WO 2010000190A1 CN 2009072492 W CN2009072492 W CN 2009072492W WO 2010000190 A1 WO2010000190 A1 WO 2010000190A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical network
data
optical
line terminal
network unit
Prior art date
Application number
PCT/CN2009/072492
Other languages
English (en)
Chinese (zh)
Inventor
李昆
邹世敏
周建林
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2010000190A1 publication Critical patent/WO2010000190A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1694Allocation of channels in TDM/TDMA networks, e.g. distributed multiplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0682Clock or time synchronisation in a network by delay compensation, e.g. by compensation of propagation delay or variations thereof, by ranging

Definitions

  • the embodiments of the present invention relate to the field of optical communications, and in particular, to a method for inter-day synchronization of a passive optical network, an optical network device, and a system for time synchronization of a passive optical network.
  • the PON has the advantages of sharing bandwidth resources, saving investment in the equipment room, high equipment security, fast network construction, low comprehensive network construction cost, and low operation and maintenance costs.
  • PON technologies are available, such as EPO N, GPON, and the like.
  • the IEEE1588 protocol is suitable for working in a packet transmission network.
  • the PON network implements transmission synchronization by carrying IEEE1588 frames. The specific implementation is as follows:
  • the synchronization process is divided into two phases: the offset measurement phase and the delay measurement phase.
  • the first phase is the offset measurement phase:
  • the primary clock broadcasts two messages to all nodes on the network:
  • Synchronous messages are automatically sent at a given inter-turn interval.
  • Follow-up message is used to calculate the send message ⁇ local association
  • the main clock periodically sends out a certain synchronization message (for example, every two seconds), which contains a time stamp (time)
  • the master clock then sends a follow-up message, which adds a time stamp to accurately record the true timeout of the sync message. In this way, from the real time of the cuckoo clock using the follow-up message and the real reception time of the receiver, the offset between the cuckoo clock and the main cuckoo clock can be calculated:
  • the offset measurement phase can obtain an Adjust Time, which will be corrected from the ⁇ clock to:
  • the transmission delay is 0 ⁇ , and the inter-turn correction value from the ⁇ clock is called Stave adjusts.
  • the second phase is the delayed measurement phase, as shown in Figure 1B.
  • the measurement phase is used to measure the delay caused by network transmissions. It is achieved by the main message and the following message from the ⁇ clock:
  • the main clock after receiving the Delay_REQUEST, the main clock sends a delay response message (Delay_Response), marking the accurate reception time Tm3---131.25s, and sending it to the slave clock. Therefore, the network delay can be calculated very accurately from the cesium clock:
  • IEEE1588 requires the transmission delay of IEEE1588 frame to be fixed because of the characteristics of the protocol itself, otherwise it will reduce its performance index. However, because the implementation of PON transmission Ethernet frame determines the transmission of IEEE1588 frame between ONU and OLT. ⁇ can not be delayed, making the IEEE1588 protocol not suitable for PO
  • the embodiment of the invention provides a method for calculating the synchronization time of the passive optical network, so as to achieve synchronization between the OLT input time and the ONU output time in the system.
  • An embodiment of the present invention provides a method for calculating a synchronization time of a passive optical network, which includes the following steps.
  • an embodiment of the present invention further provides an optical network device, including a receiving module, a day synchronization processing module, and a sending module:
  • receiving module configured to receive synchronous inter-turn source data, optical line terminal OLT processing fixed delay data, optical network unit ONU processing fixed delay data, and optical line terminal OLT to optical network unit ONU distance delay information; And sending the above information to the inter-time synchronization processing module;
  • the inter-time synchronization processing module is configured to obtain the optical fiber transmission delay data according to the distance delay information of the received optical line terminal OLT to the optical network unit ONU; according to the synchronous inter-turn source data, the optical line
  • the terminal OLT processes the fixed delay data
  • the optical network unit ONU processes the fixed delay data
  • the optical fiber transmission delay data and obtains synchronization time data, and sends the data to the sending module;
  • the sending module is configured to send the received synchronization data.
  • an embodiment of the present invention further provides a network system, including an optical line terminal OLT, at least one optical network device, and at least one optical network unit ONU:
  • the optical line terminal OLT is configured to receive the synchronous inter-turn source data, and obtain the fixed delay data of the optical line terminal OLT, and obtain the distance delay information of the optical line terminal OLT to each optical network unit ONU;
  • the synchronous inter-turn source data, the optical line terminal OLT processes the fixed delay data, and the distance delay information is sent to the optical network device;
  • the optical line terminal OLT processes the fixed delay data as: In the terminal OLT, the signal is processed from the synchronous inter-turn input port to the PON port output of the passive optical network;
  • the optical network unit ONU is configured to send the optical network unit ONU to process the fixed delay data to the optical network device; and the optical network unit ONU processes the fixed delay data, specifically: in the optical network unit In the NU, the signal is extended from the PON input port of the passive optical network to the processing interval between the synchronous inter-turn output ports;
  • the optical network device configured to obtain, according to the distance delay information, fiber transmission delay data; according to the received synchronization inter-source data, the optical line terminal OLT processes fixed delay data, and light
  • the network unit ONU processes the fixed delay data and the obtained fiber transmission delay data to obtain synchronous daytime data
  • the optical network unit ONU is further configured to send the synchronization time data calculated by the optical network device.
  • an embodiment of the present invention further provides an optical line terminal OLT, including
  • a receiving module configured to receive synchronous inter-turn source data
  • the ranging delay module is configured to obtain the fiber transmission delay data according to the distance delay information of the optical line terminal OLT to the optical network unit ONU;
  • a fixed delay module for obtaining an optical line terminal OLT for processing fixed delay data, the optical line terminal
  • the OLT processes the fixed delay data specifically in the optical line terminal OLT, where the signal is processed between the synchronous inter-turn input port and the output of the PON port of the passive optical network;
  • an embodiment of the present invention further provides an optical network unit ONU, including
  • a receiving module configured to receive synchronous inter-turn source data externally sent to the optical network unit 0NU, optical fiber transmission delay data, and an optical line terminal OLT to process fixed delay data;
  • a fixed delay module for obtaining an optical network unit, the ONU processing fixed delay data, the optical network unit
  • the ONU processes the fixed delay data specifically in the ONU of the optical network unit, and the processing delay between the signal from the passive optical network PON input port to the synchronous inter-turn output port;
  • a synchronization inter-turn calculation module configured to receive data according to the receiving module and the optical network unit
  • the NU processes the fixed delay data to obtain synchronized data.
  • a sending module configured to send the synchronous data.
  • an embodiment of the present invention further provides a network device, including an optical line terminal OLT and at least one optical network unit ONU:
  • the optical line terminal OLT is configured to receive the synchronous inter-turn source data; obtain the optical fiber transmission delay data according to the distance delay information of the optical line terminal OLT to the optical network unit ONU; and obtain the optical line terminal OLT processing fixed delay ⁇ data, the optical line terminal OLT processing the fixed delay data is specifically in the optical line terminal 0 LT, the signal is processed from the synchronous inter-turn input port to the passive optical network PON port output between the processing delays; Synchronizing the inter-turn source data, the optical fiber transmission delay data, and the optical line terminal OLT processing the fixed delay data;
  • the optical network unit ONU is configured to obtain the fixed delay data of the optical network unit ONU, and the optical network unit ONU processes the fixed delay data, specifically in the optical network unit ONU, and the signal is input from the passive optical network PO N Processing delay between the port and the synchronous output port; processing the fixed delay data according to the received synchronous inter-turn source data, the optical fiber transmission delay data, the optical line terminal OLT, and the The optical network unit ONU processes the fixed delay data to obtain synchronous daytime data.
  • FIG. 1A is a schematic diagram of a first stage principle of the IEEE 1588 protocol in the prior art
  • FIG. 1B is a schematic diagram of a second stage principle of the IEEE 1588 protocol in the prior art
  • FIG. 2 is a schematic flowchart of a method for calculating a synchronization time between passive optical networks according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a method for calculating a synchronization time between passive optical networks according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic structural diagram of a day-to-day synchronization of a passive optical network according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic structural diagram of an optical network device according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic structural diagram of a system for time synchronization of a passive optical network according to a third embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an OLT according to Embodiment 4 of the present invention.
  • FIG. 8 is a schematic diagram of a 0NU structure according to Embodiment 5 of the present invention.
  • Step S201 receiving synchronous inter-turn source data T0, OLT processing fixed delay data Tl, ONU processing fixed delay data ⁇ 3, and 0LT to 0NU distance delay information;
  • Step S202 Obtaining the fiber transmission delay data according to the distance delay information from 0LT to 0NU.
  • Step S203 processing the fixed delay data T1 according to the synchronous inter-turn source data ⁇ 0, the OLT,
  • 0NU processes the fixed delay data ⁇ 3 and the optical fiber transmits the delay data ⁇ 2, and obtains the synchronization time data ⁇ 4;
  • Step S204 Send the synchronization time data ⁇ 4.
  • the distance delay information from the OLT to the ONU may be received first, and then the information is extended according to the distance between the OLT and the ONU to obtain the fiber transmission delay.
  • Data ⁇ 2 and then receive other data (such as TO or T1 or ⁇ 3).
  • FIG. 3 is a schematic flowchart of a method for calculating a synchronization time of a passive optical network according to Embodiment 1 of the present invention, which includes the following steps:
  • Step S301 The OLT obtains the synchronous inter-turn source data T0, and the OLT processes the fixed delay data Tl,
  • the distance from the OLT to the ONU is delayed and sent to the inter-day synchronization device.
  • the OLT selects one of the two synchronous inter-turn sources (here as an example and not a limitation, in the actual processing, one of the multi-channel synchronous inter-sources can be selected), and the synchronization time is extracted. Information and corresponding The format conversion is obtained, and the synchronous inter-time source data T0 is obtained.
  • Synchronous daytime source data TO can be from GPS (Global Positioning System, Global Positioning System) or GLONASS (Global Navigation Satellite System) or Beidou Satellite or NTP (Network Time)
  • the OLT determines the synchronization delay information from the synchronous inter-turn input port to the PON port output according to its own design scheme to process the fixed delay data Tl for the OLT.
  • the T1 value is a determined value.
  • the OLT obtains the distance delay information of the OLT to the ONU according to the ranging unit of the OLT.
  • the distance delay information may be the delay time of the test signal from the OLT to the ONU, or may be the distance information of the OLT to the ONU.
  • 0 LT processes the fixed inter-turn source data T0 and the OLT to process the fixed delay data T1 and
  • the distance delay information from the OLT to the ONU is sent to the inter-day synchronization device.
  • Step S302 The ONU receives the ONU processing fixed delay data T3 and sends it to the inter-time synchronization device.
  • the ONU determines the processing delay between the synchronous inter-turn information from the ⁇ input port to the synchronous inter-turn output port for the ONU to process the fixed delay data ⁇ 3.
  • the T3 value is the determined value. And send T3 to the day synchronization device.
  • Step S303 The inter-time synchronization device obtains the fiber transmission delay data T2 according to the received delay information of the OLT to the ONU.
  • the transmission delay of lkm fiber is about 5 nanoseconds.
  • Step S304 The inter-time synchronization device obtains the synchronization time data ⁇ 4 according to the received T0, Tl, ⁇ 3, and the calculated ⁇ 2, and sends the data to the ONU.
  • T4 T0 + T1 + T2 + T3.
  • Step S305 The ONU will synchronize the daytime data ⁇ 4 output.
  • the ONU will synchronize the daytime data T4 output to synchronize the output of the ONU with the input of the OLT.
  • the inter-time synchronization device may be an actual device or a virtual device, and the device may be included in an OLT or an ONU, or part of the functions of the device are performed by the OLT, and another part of the function is performed by The ONU is executed, as long as the sum of the two functions can implement the technical solution of the first embodiment.
  • step S303 is completed by the OLT
  • step S304 is completed by the ONU.
  • All or part of the steps of implementing the foregoing method embodiments may be completed by using hardware related to the program instructions.
  • the foregoing program may be stored in a computer readable storage medium, and after the program is executed, the method includes the above method embodiment.
  • the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
  • the second embodiment of the present invention provides an optical network device, which has the structure shown in FIG. 5, and includes a receiving module, a synchronization processing module, and a sending module:
  • the receiving module is configured to receive the synchronous inter-turn source data T0, the optical line terminal OLT processes the fixed delay data T1, the optical network unit ONU processes the fixed delay data T3, and the optical line terminal OLT to the optical network unit ONU ⁇ information; and send the above information to the inter-time synchronization processing module;
  • the inter-time synchronization processing module is configured to obtain the fiber transmission delay data T2 according to the distance delay information of the received optical line terminal OLT to the optical network unit ONU; according to the synchronous inter-turn source data T0,
  • the optical line terminal OLT processes the fixed delay data T1
  • the optical network unit ONU processes the fixed delay data ⁇ 3, and the optical fiber transmission delay data T2, and obtains the synchronization time data ⁇ 4, and sends the data to the sending module;
  • Send module used to send the received synchronization data.
  • the optical line terminal OLT processes the fixed delay data T1, specifically:
  • the signal is processed between the synchronous inter-turn input port and the passive optical network port output.
  • the optical network unit ONU processes the fixed delay data ⁇ 3 specifically:
  • the signal is delayed from the passive optical network ⁇ input port to the synchronous inter-turn output port.
  • a third embodiment of the present invention provides a system for synchronizing a passive optical network, which has a structure as shown in FIG. 6, and includes an optical line terminal OLT, at least one optical network device, and at least one optical network unit ONU:
  • the optical line terminal OLT is configured to receive the synchronous inter-turn source data T0, obtain the fixed delay data T1 of the optical line terminal OLT, and obtain the distance delay information of the optical line terminal OLT to each optical network unit ONU. Transmitting the synchronous inter-turn source data T0, the optical line terminal OLT processing fixed delay data T1, and the distance delay information to the optical network device; the optical line terminal OLT processing the fixed delay data T1 For: in the optical line terminal OLT, the signal is processed between the synchronous inter-turn input port and the passive optical network port output; [99] The optical network unit ONU is configured to send the optical network unit ONU to process the fixed delay data T3 to the optical network device; and the optical network unit ONU processes the fixed delay data ⁇ 3 specifically: in the optical network unit ONU The delay between the processing of the signal from the passive optical network input port to the synchronous inter-turn output port
  • an optical network device configured to obtain, according to the distance delay information, fiber transmission delay data ⁇ 2; according to the received synchronization inter-source data ⁇ 0, the optical line terminal OLT processes the fixed delay data Tl, The optical network unit ONU processes the fixed delay data ⁇ 3 and the obtained optical fiber transmission delay data ⁇ 2 to obtain synchronous inter-day data ⁇ 4;
  • the optical network unit ONU is further configured to send the synchronization inter-day data ⁇ 4 calculated by the optical network device.
  • the optical network unit ONU is configured to send the optical network unit ONU to process the fixed delay data T3 to the optical network unit; and receive the synchronous inter-day data T4.
  • the optical network terminal OLT of the fourth embodiment of the present invention has a structure as shown in FIG. 7 and includes:
  • receiving module configured to receive synchronous inter-turn source data TO
  • a ranging delay module configured to obtain a fiber transmission delay data T2 according to the distance delay information of the optical line terminal OLT to the optical network unit ONU;
  • a fixed delay module configured to obtain an optical line terminal OLT processing fixed delay data T1, and the optical line terminal OLT processing fixed delay data T1, specifically in the optical line terminal OLT, the signal from the synchronous inter-turn input port Processing delay between the output of the passive optical network;
  • the sending module is configured to send the synchronous inter-turn source data ⁇ 0, the optical fiber transmission delay data T2, and the optical line terminal OLT process the fixed delay data T1.
  • Embodiment 5 of the present invention provides an optical network unit ONU, which has the structure shown in FIG. 8, and includes:
  • a receiving module configured to receive synchronous inter-turn source data externally sent to the optical network unit ONU, optical fiber transmission delay data, and an optical line terminal OLT to process fixed delay data;
  • the fixed delay module is used to obtain the optical network unit.
  • the ONU processes the fixed delay data T3, and the optical network unit ONU processes the fixed delay data.
  • ⁇ 3 is specifically in the optical network unit ONU, and the signal is from the passive optical network.
  • NU processes the fixed delay data T3, and obtains the synchronization time data ⁇ 4;
  • a sending module configured to send the synchronous data ⁇ 4.
  • Embodiment 6 of the present invention provides a network system, including an optical line terminal OLT and at least one optical network unit ONU:
  • the optical line terminal OLT is configured to receive the synchronous inter-turn source data TO; obtain the optical fiber transmission delay data T2 according to the distance delay information of the optical line terminal OLT to the optical network unit ONU; and obtain the optical line terminal OL T Processing the fixed delay data T1, the optical line terminal OLT processing the fixed delay data T1, specifically in the optical line terminal OLT, the signal is processed from the synchronous inter-turn input port to the passive optical network PON port output between the processing delays Transmitting the synchronous inter-turn source data T0, the optical fiber transmission delay data ⁇ 2, and the optical line terminal OLT processing the fixed delay data T1;
  • the optical network unit ONU is configured to obtain an optical network unit ONU to process the fixed delay data ⁇ 3, and the optical network unit ONU processes the fixed delay data ⁇ 3, specifically in the optical network unit ONU, the signal is from the passive optical network. Processing delay between the input port and the synchronous inter-turn output port; processing the fixed delay data according to the received synchronous inter-turn source data ⁇ 0, the optical fiber transmission delay data ⁇ 2, and the optical line terminal OLT T1 and the optical network unit ONU process the fixed delay data T3 to obtain the synchronization data ⁇ 4.
  • the technical solution of the embodiment of the present invention has the following advantages, because the transmission delay between the OLT and each ONU is compensated, and the internal processing delay of the OLT and the ONU is compensated to achieve the OL ⁇ in the system.
  • the input is synchronized with the ONU output, and a low cost and high reliability solution is obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Optical Communication System (AREA)

Abstract

La présente invention concerne un procédé de calcul pour une programmation synchrone d’un réseau optique passif. Le procédé comprend les étapes suivantes : la réception de données source relatives à un temps de synchronisation, de données de retard invariable de traitement de terminal de ligne optique (OLT, Optical Line Terminal), de données de retard invariable de traitement d’unité de réseau optique (ONU, Optical Network Unit) et d’un message de retard dû à la distance entre le terminal de ligne optique (OLT) et l’unité de réseau optique (ONU) (S201) ; l’obtention des données de retard de transmission par fibre optique sur la base du message de retard relatif à la distance entre le terminal de ligne optique (OLT) et l’unité de réseau optique (ONU) (S202) ; l’obtention des données de temps de synchronisation sur la base des données source relatives à un temps de synchronisation, des données de retard invariable de traitement de terminal de ligne optique (OLT), des données de retard invariable de traitement d’unité de réseau optique (ONU) et des données de retard de transmission par fibre optique (S203) ; l’envoi des données de temps de synchronisation (S204). Les modes de réalisations de la présente invention concernent également un dispositif de réseau optique et un système de synchronisation temporelle pour un réseau optique passif. La mise en œuvre de la présente invention permet de synchroniser le temps d’entrée d’un OLT et le temps de sortie d’une ONU à l’intérieur du système, de réduire les coûts et d’améliorer la fiabilité.
PCT/CN2009/072492 2008-06-30 2009-06-26 Procédé de calcul, système et dispositif de réseau optique, pour une programmation synchrone d’un réseau optique passif WO2010000190A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810068191XA CN101621713B (zh) 2008-06-30 2008-06-30 无源光网络同步时间的计算方法、***及光网络设备
CN200810068191.X 2008-06-30

Publications (1)

Publication Number Publication Date
WO2010000190A1 true WO2010000190A1 (fr) 2010-01-07

Family

ID=41465498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/072492 WO2010000190A1 (fr) 2008-06-30 2009-06-26 Procédé de calcul, système et dispositif de réseau optique, pour une programmation synchrone d’un réseau optique passif

Country Status (2)

Country Link
CN (1) CN101621713B (fr)
WO (1) WO2010000190A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102638324A (zh) * 2012-03-27 2012-08-15 杭州华三通信技术有限公司 一种实现精确时间同步的方法和装置
CN103997383A (zh) * 2014-05-17 2014-08-20 北京中和卓远科技有限公司 一种提高irig-b时间码解码精度的方法及装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG194129A1 (en) * 2011-05-17 2013-11-29 Ericsson Telefon Ab L M Protection for fibre optic access networks
CN102742190A (zh) * 2012-02-01 2012-10-17 华为技术有限公司 时间同步方法和设备及***
CN103580768B (zh) * 2012-08-09 2016-04-06 华为终端有限公司 一种时间同步方法及装置
CN102917284A (zh) * 2012-10-22 2013-02-06 杭州开鼎科技有限公司 一种基于pon***的精确时钟同步方法
CN103840877B (zh) * 2012-11-23 2017-11-24 中兴通讯股份有限公司 自动检测光纤非对称性的时间同步装置及方法
CN104219037A (zh) * 2013-05-30 2014-12-17 鼎点视讯科技有限公司 光纤线路终端设备的时间同步方法及装置、***
CN105323028B (zh) * 2014-06-20 2019-04-12 中兴通讯股份有限公司 一种时间同步方法、设备及***
CN108242953B (zh) * 2016-12-26 2022-07-05 中兴通讯股份有限公司 一种onu测距方法、onu内部时延调整参数确定方法及装置
CN110708135B (zh) * 2019-11-15 2021-10-01 四川中电启明星信息技术有限公司 一种无源光网络的通信控制***与方法
CN112702116B (zh) * 2020-12-11 2022-05-10 盛立安元科技(杭州)股份有限公司 一种***耗时测试方法、装置、设备及可读存储介质
CN113993012A (zh) * 2021-11-01 2022-01-28 中国电信股份有限公司 数据传输控制方法及***、装置、电子设备、存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005253033A (ja) * 2004-02-06 2005-09-15 Nippon Telegr & Teleph Corp <Ntt> 網同期装置、クロック伝達方法およびクロック伝達パケット網
US20080031283A1 (en) * 2006-08-07 2008-02-07 Martin Curran-Gray Time synchronization for network aware devices
CN201039198Y (zh) * 2006-09-18 2008-03-19 中兴通讯股份有限公司 以太网方式无源光网络的网络定时分配***
CN101431385A (zh) * 2008-08-26 2009-05-13 中兴通讯股份有限公司 一种无源光网络中频率及时间的同步方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005253033A (ja) * 2004-02-06 2005-09-15 Nippon Telegr & Teleph Corp <Ntt> 網同期装置、クロック伝達方法およびクロック伝達パケット網
US20080031283A1 (en) * 2006-08-07 2008-02-07 Martin Curran-Gray Time synchronization for network aware devices
CN201039198Y (zh) * 2006-09-18 2008-03-19 中兴通讯股份有限公司 以太网方式无源光网络的网络定时分配***
CN101431385A (zh) * 2008-08-26 2009-05-13 中兴通讯股份有限公司 一种无源光网络中频率及时间的同步方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"EE Instrumentation and Measurement Society", IEEE STD 1588-2002, 31 December 2002 (2002-12-31), pages 84 - 88 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102638324A (zh) * 2012-03-27 2012-08-15 杭州华三通信技术有限公司 一种实现精确时间同步的方法和装置
CN103997383A (zh) * 2014-05-17 2014-08-20 北京中和卓远科技有限公司 一种提高irig-b时间码解码精度的方法及装置

Also Published As

Publication number Publication date
CN101621713A (zh) 2010-01-06
CN101621713B (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
WO2010000190A1 (fr) Procédé de calcul, système et dispositif de réseau optique, pour une programmation synchrone d’un réseau optique passif
EP3491753B1 (fr) Système et procédés de synchronisation de réseau
CN102136900B (zh) 无源光网络的时间同步方法、装置及***
US8126333B2 (en) Optical transmission system and synchronization method using time reference pulse
US9391768B2 (en) Transparent clock for precision timing distribution
US8571068B2 (en) Network timing distribution and synchronization using virtual network delays
EP2410672B1 (fr) Procédé et système de transmission du temps dans un réseau optique passif
WO2011120262A1 (fr) Procédé et dispositif pour la réalisation d&#39;une opération de synchronisation temporelle
KR101290643B1 (ko) 광 전송 네트워크에서 시간 동기화 프로토콜을 베어링하는 방법 및 시스템
US20140169792A1 (en) Apparatus and method for enabling a passive optical network on supporting time synchronization
WO2009135424A1 (fr) Procédé de synchronisation temporelle d&#39;un système de réseau optique passif, système et dispositif de réseau optique
WO2010017762A1 (fr) Procédé et dispositif de synchronisation temporelle de réseau optique passif, et réseau optique passif
WO2012065334A1 (fr) Procédé, dispositif et système permettant de réaliser une synchronisation temporelle dans un réseau à multiplexage par répartition dans le temps
WO2012003746A1 (fr) Procédé et dispositif de réalisation d&#39;horloge frontière
US11683150B2 (en) Methods, apparatus and computer-readable media for synchronization over an optical network
CN102843620A (zh) 一种实现时间同步传送的otn设备及方法
WO2012095043A2 (fr) Procédé et dispositif pour compenser un profil temporel
JP2011040870A (ja) 光伝送システム及び時刻基準パルスを用いた同期方法
CN102340396A (zh) Epon网络中时间同步的方法
JP7485648B2 (ja) 通信装置及び通信システム
JP2011249864A (ja) Ponシステム、加入者側光終端装置、局側光終端装置および時刻同期方法
CN112584260B (zh) 传输时间同步消息的方法、设备、装置和介质
CN115278856A (zh) 时间同步方法、时间同步装置、介质及电子设备
Fang et al. A novel scheme for frequency and time information transfer over OTN

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09771960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09771960

Country of ref document: EP

Kind code of ref document: A1