WO2009157506A1 - 位相シフトマスクブランクおよび位相シフトマスク - Google Patents

位相シフトマスクブランクおよび位相シフトマスク Download PDF

Info

Publication number
WO2009157506A1
WO2009157506A1 PCT/JP2009/061574 JP2009061574W WO2009157506A1 WO 2009157506 A1 WO2009157506 A1 WO 2009157506A1 JP 2009061574 W JP2009061574 W JP 2009061574W WO 2009157506 A1 WO2009157506 A1 WO 2009157506A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase shift
film
layer
shielding film
shift mask
Prior art date
Application number
PCT/JP2009/061574
Other languages
English (en)
French (fr)
Inventor
浩之 岩下
博明 宍戸
淳志 小湊
雅広 橋本
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to JP2010518050A priority Critical patent/JP5175932B2/ja
Priority to KR1020167032199A priority patent/KR102198731B1/ko
Priority to US13/001,365 priority patent/US8329364B2/en
Publication of WO2009157506A1 publication Critical patent/WO2009157506A1/ja
Priority to US13/670,728 priority patent/US9005851B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • G03F1/58Absorbers, e.g. of opaque materials having two or more different absorber layers, e.g. stacked multilayer absorbers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/62Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment

Definitions

  • the present invention relates to a phase shift mask blank and a phase shift mask.
  • microfabrication is performed using photolithography technology using a photomask. Has been done.
  • a photomask blank in which a light shielding film generally made of a metal thin film such as a chromium film is formed on a light transmitting substrate such as quartz glass or aluminosilicate glass by sputtering or vacuum evaporation.
  • a photomask in which a film is formed in a predetermined pattern is used.
  • the photomask produced from this photomask blank is an exposure process in which a desired pattern exposure is performed on the resist film formed on the photomask blank, and a desired pattern exposure is performed on the resist film formed on the photomask blank.
  • a developing solution is supplied to dissolve a resist film portion soluble in the developing solution to form a resist pattern.
  • cerium ammonium nitrate and perchloric acid A portion of the light-shielding film on which the resist pattern is not formed is removed by etching such as wet etching using an etching solution made of a mixed aqueous solution or dry etching using chlorine gas, and a predetermined mask pattern is applied to the translucent substrate.
  • the etching process formed on top and the remaining resist pattern are removed. It is manufactured through a peeling step of removing.
  • the resist pattern formed on the light shielding film must remain with a sufficient film thickness, but when the resist film thickness is increased, a particularly fine pattern is formed.
  • the aspect ratio becomes large, causing problems such as pattern collapse. Therefore, in order to miniaturize the mask pattern formed on the photomask, it is necessary to thin the resist film formed on the photomask blank.
  • Patent Document 1 has a structure in which the thickness of the light-shielding film is 100 nm or less and the thickness of the chromium-based compound having a high etching rate occupies 70% or more.
  • Patent Document 1 discloses a photomask blank in which a translucent film, a CrON film, a Cr film, and a CrON film are laminated on a translucent substrate, and the film thickness of the CrON film occupies 70% or more. It is disclosed.
  • the CrON film only sets the optical density per unit film thickness at a wavelength of 450 nm, and is not optimized for exposure light below ArF excimer laser light.
  • the miniaturized mask pattern itself shades the transfer image (shadowing).
  • the light shielding film is thick, the influence of the light amount reduction (contrast deterioration) due to shadowing is large.
  • the cross-sectional shape is likely to vary, which causes a deterioration of CD (Critical Dimension) transfer accuracy in combination with shadowing.
  • the translucent substrate has a transmissivity of, for example, several percent to several tens percent, and the phase of transmitted light is 180.
  • Shifted phase shift films for example, metal silicide oxide films, metal silicide oxynitride films described in Japanese Patent No. 2877803 (Patent Document 2), Japanese Patent No. 2966369 (Patent Document 3)
  • a light-shielding film such as a chromium film having etching selectivity with respect to the phase shift film, and a phase shift mask blank formed by sputtering or vacuum deposition.
  • phase shift mask in which the light shielding film and the phase shift film are formed in a predetermined pattern is used.
  • the transmittance of the phase shift film is 10% or more (for example, 10% or more and 40% or less)
  • Example 1 of Japanese Patent No. 3445329 Patent Document 4
  • the transmittance of the phase shift film is less than 10% (for example, less than 2 to 10%), it is described in Example 1 of Japanese Patent No.
  • phase shift mask having a structure in which a light shielding film pattern is not formed on a phase shift film pattern formed in a pattern transfer region and a light shielding film having a predetermined width or more is formed in a pattern non-transfer region is generally used.
  • a phase shift mask blank as described in claims 25 to 29 of WO 2004/090635 pamphlet (Patent Document 6), on a light shielding film containing chromium formed on a phase shift film, A structure in which an etching mask film made of an inorganic material having resistance to dry etching of the light shielding film is laminated may be used.
  • a photomask blank (phase shift blank or the like) capable of forming a fine mask pattern is required. Further, there is a demand for a photomask blank that can form a thin resist film on the light-shielding film and consequently does not cause pattern collapse and has high transfer accuracy. Specifically, in order to prevent resist pattern collapse, a photomask having a resolution required for generations of hp 45 nm and hp 32 nm and later is obtained by reducing the resist film aspect ratio and reducing the resist pattern aspect ratio. It has been.
  • etching time (ET) of the light shielding film is determined by the etching rate (ER), the thickness (d) of the light shielding film, and the cross-sectional angle adjustment time (overetching time) (OET) of the light shielding film pattern.
  • “CET” is a clear etching (just etching) time, and is a time for the etching of the monitor pattern (generally a large extraction pattern of several mm square) to reach a lower layer film such as a substrate or a phase shift film. .
  • a photomask having a light-shielding film having a short etching time by increasing the etching rate (ER), reducing the thickness of the light-shielding film (d), shortening the overetching time (OET), and the like.
  • a blank is required.
  • etching rate In order to increase the etching rate (ER), it is usually necessary to reduce the metal content. However, if the metal content is kept low, the optical density per unit film thickness decreases, and as a result, the film thickness necessary for the light-shielding film to obtain a predetermined optical density increases. Therefore, a photomask blank having a light-shielding film having a high etching rate (ER) and a relatively thin film thickness and sufficient optical density is demanded.
  • ER etching rate
  • the angle of the cross-section of the light-shielding film after etching is formed perpendicular to the substrate regardless of the pattern density.
  • the characteristics required for the light-shielding film in the above-described photomask blank are also required for the light-shielding film on the phase shift film formed in the halftone phase shift mask blank.
  • a phase shift mask that can reduce the thickness of the phase shift film, satisfy the requirements of pattern accuracy without collapsing the OPC (Optical Proximity Correction) pattern, can control optical characteristics, and can inspect pattern defects.
  • OPC Optical Proximity Correction
  • phase shift mask blank capable of forming a fine mask pattern when the light shielding film is composed of three or more layers and the etching rate of these layers satisfies a predetermined condition.
  • the present invention provides the following phase shift mask blank and phase shift mask.
  • a phase shift mask blank which is an original phase shift mask exposed with an ArF excimer laser beam, A translucent substrate, a phase shift film, and a light shielding film;
  • the phase shift film is provided between the translucent substrate and the light shielding film,
  • the phase shift amount of the phase shift film with respect to the ArF excimer laser light is 160 ° to 200 °, and the transmittance of the phase shift film is 2% or more and 40% or less
  • the light-shielding film has a laminated structure in which a lower layer, an intermediate layer, and an upper layer are laminated in this order from the side close to the translucent substrate,
  • the total thickness of the light shielding film is 60 nm or less
  • the lower layer is made of a film containing a metal and has a first etching rate
  • the upper layer is made of a film containing metal and has a third etching rate
  • the intermediate layer is made of a metal nitride film containing nitrogen and the same metal as the metal contained in the lower layer
  • phase shift mask blank [2] The phase shift amount of the phase shift film is less than 180 °, the transmittance of the phase shift film is 10% or more, The phase shift mask blank according to [1], wherein the entire thickness of the light shielding film is 50 nm or more and 60 nm or less. [3] The phase shift mask blank according to [1] or [2], wherein the phase shift film is made of one or more materials selected from the group consisting of oxygen and nitrogen, and a material mainly composed of metal and silicon. . [4] The phase shift mask blank according to any one of [1] to [3], wherein the film thickness of the intermediate layer is 30% or less of the film thickness of the entire light shielding film.
  • phase shift mask blank according to any one of [1] to [4], wherein the thickness of the intermediate layer is 40% or less of the thickness of the lower layer.
  • the optical density per unit film thickness of the upper layer or the lower layer is 0.04 nm ⁇ 1 or less, and the optical density per unit film thickness of the intermediate layer is 0.05 nm ⁇ 1 or more.
  • the optical density of the lower layer is 1.1 to 1.8;
  • the intermediate layer has an optical density of 0.1 to 0.35;
  • the total content of N and O in the lower layer is 40 to 55 atom%,
  • the total content of N and O in the intermediate layer is 30 atom% or less,
  • the phase shift mask blank according to any one of [1] to [8], wherein the total content of N and O in the upper layer is 45 to 65 atom%.
  • the optical density per unit film thickness of the lower layer is 0.03 to 0.04 nm ⁇ 1
  • the lower layer has a metal content of 25 to 50 atm%, a total content of N and O of 35 to 65 atm%, and an optical density of 1.1 to 1.8.
  • the intermediate layer contains a metal and N, the metal content is 50 to 90 atm%, the film thickness is 2 to 7 nm, and the optical density is 0.1 to 0.35,
  • the upper layer is characterized in that the metal content is 25 to 50 atm%, the total content of N and O is 45 to 65 atm%, and the optical density is 0.4 to 0.6 [
  • the lower layer has a Cr content of 30 to 40 atm%, a total content of N and O of 40 to 55 atm%, and an optical density of 1.1 to 1.8.
  • the intermediate layer has a Cr content of 50 to 90 atm%, an N content of 3 to 25 atm%, and an optical density of 0.1 to 0.35.
  • the upper layer has a Cr content of 30 to 40 atm%, a total content of N and O of 50 to 60 atm%, and an optical density of 0.4 to 0.6.
  • the phase shift mask blank according to any one of [1] to [11].
  • the etching rates of the lower layer, the intermediate layer and the upper layer are as follows: The photomask blank according to any one of [1] to [12], wherein a relationship of second etching rate ⁇ first etching rate ⁇ third etching rate is satisfied.
  • the photomask blank according to a preferred embodiment of the present invention is a light shielding film having a light shielding film (absorbing layer) having a high content of metal such as Cr in a light shielding film having a multi-layer structure (particularly three layers).
  • the clear etching time (CET) and the over etching time (OET) can be shortened.
  • the phase shift mask blank includes a high etching rate (ER) metal (for example, Cr) -containing film (antireflection layer) and a low etching rate (ER) metal-containing film (absorption layer).
  • ER etching rate
  • the film thickness of the high etching rate (ER) layer and the low etching rate (ER) layer is balanced to a predetermined balance, and the low etching rate (ER) layer is disposed at a predetermined position.
  • the over-etching time (OET) can be shortened.
  • the phase shift mask blank according to a preferred embodiment of the present invention can reduce the clear etching time (CET), the overetching time (OET), or both, thereby reducing the thickness of the resist formed on the light shielding film.
  • the phase shift mask blank according to a preferred embodiment of the present invention is less likely to cause problems such as pattern collapse, and a fine mask pattern can be formed.
  • the phase shift mask blank according to a preferred embodiment of the present invention has a structure in which a plurality of layers having different metal contents are stacked with a predetermined film thickness, so that the etching rate (ER) of the light shielding film as a whole is high.
  • prescribed film thickness can be provided.
  • FIG. 1 It is a schematic diagram of the phase shift mask blank manufactured in Example 1 thru
  • FIG. 1 It is a schematic diagram of the phase shift mask blank manufactured in Example 1 thru
  • the “photomask blank” includes a so-called “binary type photomask blank”, a “phase shift mask blank” having a phase shift film and a light shielding film, and the like.
  • the binary photomask blank for example, the light shielding film and the phase shift film are the same so as not to exhibit the phase shift effect.
  • the phase shift film may be used as a light shielding film).
  • the photomask blank of the present invention includes a photomask blank on which a resist film is formed and a photomask blank on which no resist film is formed. Therefore, the phase shift mask blank of the present invention includes a phase shift mask blank in which a resist film is formed and a phase shift mask blank in which a resist film is not formed.
  • the clear etching time is shortened, but the overetching time may be increased due to loading, so it is difficult to shorten the etching time in the two-layer structure, (2)
  • the phase shift mask blank of the first aspect is as follows.
  • a phase shift mask blank which is an original phase shift mask exposed with the ArF excimer laser beam of the present invention, A translucent substrate, a phase shift film, and a light shielding film;
  • the phase shift film is provided between the translucent substrate and the light shielding film,
  • the phase shift amount of the phase shift film with respect to the ArF excimer laser light is 160 ° to 200 °, and the transmittance of the phase shift film is 2% or more and 40% or less
  • the light-shielding film has a laminated structure in which a lower layer, an intermediate layer, and an upper layer are laminated in this order from the side close to the translucent substrate,
  • the total thickness of the light shielding film is 60 nm or less
  • the lower layer is made of a film containing a metal and has a first etching rate
  • the upper layer is made of a film containing metal and has a third etching rate
  • the intermediate layer is made of a metal n
  • the translucent substrate is not particularly limited as long as it is a translucent substrate.
  • a quartz glass substrate, an aluminosilicate glass substrate, a calcium fluoride substrate, a magnesium fluoride substrate, or the like can be used.
  • a quartz glass substrate is preferable because it has high flatness and smoothness, and when pattern transfer onto a semiconductor substrate using a photomask is performed, transfer pattern distortion hardly occurs and high-precision pattern transfer can be performed.
  • the light shielding film of the phase shift mask blank according to the first aspect of the phase shift mask blank of the present invention has a laminated structure in which a lower layer, an intermediate layer, and an upper layer are laminated in this order from the side close to the translucent substrate. .
  • the light shielding film should just have at least 3 layers, a lower layer, an intermediate
  • the lower layer is a layer provided on the lower side of the intermediate layer (side closer to the light-transmitting substrate) among the layers forming the light shielding film.
  • the lower layer is preferably configured to control the light shielding property and etching characteristics of the light shielding film, and to control the adhesion with the antireflection function, the phase shift film, and the like.
  • the lower layer has an antireflection function, the exposure light incident from the translucent substrate on the side opposite to the side on which the light shielding film is formed is reflected by the lower layer to the exposure light source side and does not affect the transfer characteristics.
  • middle layer is a layer provided between a lower layer and an upper layer in the layer which forms a light shielding film.
  • the intermediate layer controls the light shielding properties and etching characteristics of the light shielding film.
  • it is a layer which has the highest light-shielding property in a multilayer film.
  • the upper layer is a layer provided on the upper side of the intermediate layer (the side far from the translucent substrate) among the layers forming the light shielding film.
  • the upper layer preferably controls the light shielding property and etching characteristics of the light shielding film, and controls chemical resistance against cleaning in the phase shift mask blank or phase shift mask. Further, when the upper layer is used as a phase shift mask, it preferably has an effect of preventing the reflected light from the transferred object such as a semiconductor substrate from returning to the transferred object and deteriorating the pattern accuracy.
  • the reflectance is 30% or less, preferably 25% or less, more preferably 20% or less, with respect to the wavelength of ArF excimer laser light.
  • the metal content in the lower layer, is less than 25 atm%, or the total content of N and O exceeds 65 atm%. If the content is less than 50 atm%, or if the metal content in the upper layer is less than 25 atm%, or the total content of N and O exceeds 65 atm%, the optical density sufficient for the entire light-shielding film May not be obtained, or the film thickness may increase.
  • the metal content exceeds 50 atm%, or the total content of N and O is less than 35 atm
  • the metal content exceeds 90 atm%, or in the upper layer
  • the etching time of the light shielding film may be long.
  • the metal content exceeds 50 atm% or the total content of N and O is less than 45 atm%
  • the surface reflectance becomes too high, and the ArF excimer laser beam The required surface reflectance of about 20% or less may not be obtained.
  • the metal content is less than 25 atm% or the total content of N and O exceeds 65 atm%, the defect quality may deteriorate.
  • the Cr content is less than 30 atm%, or the total content of N and O exceeds 55 atm%.
  • the content is less than 50 atm%, the N content exceeds 25 atm%, or the upper layer has a Cr content of less than 30 atm%, or the total content of N and O is 60 atm% If it exceeds 1, the optical shielding film as a whole may not have a sufficient optical density, or the film thickness may increase.
  • the Cr content exceeds 40 atm%, or the total content of N and O is less than 40 atm%.
  • the Cr content exceeds 90 atm%, or N
  • the etching time of the light-shielding film becomes long. May end up.
  • the N content in the intermediate layer is 3 to 25 atm% because a relatively large optical density can be obtained at a constant film thickness.
  • the metal content in the lower layer is 25 to 50 atm%, and the total content of N and O is 35 to 65 atm%, and the Cr content More preferably, the amount is 30 to 40 atm% and the total content of N and O is 40 to 55 atm%.
  • the intermediate layer contains a metal, N and O, and the metal content is preferably 50 to 90 atm%, and the total content of N and O is 30 atm% or less, and the Cr content More preferably, the amount is 50 to 90 atm%.
  • the upper layer preferably has a metal content of 25 to 50 atm%, and the total content of N and O is 45 to 65 atm%, a Cr content of 30 to 40 atm%, and N and More preferably, the total content of O is 50 to 60 atm%.
  • the film thickness of the intermediate layer having a low etching rate is 30% or less of the entire film thickness. Can be shortened. If the thickness of the intermediate layer exceeds 30% of the total thickness of the light shielding film, the thickness of the light shielding film can be reduced, but the etching time cannot be shortened because the ratio of the lower layer or upper layer with a high etching rate decreases. It is not preferable.
  • the film thickness of the intermediate layer is 30% or less of the film thickness of the entire light shielding film, it occurs in the upper layer of the upper layer while the intermediate layer is etched.
  • the variation in cross-sectional shape due to the loading is reduced.
  • the lower layer is etched at a high speed at the first etching rate, it is possible to suppress further etching of the upper layer or the like that is not intended to be etched while the lower layer is being etched, and the cross-sectional shape of the pattern is good. It can be.
  • the etching time is further shortened, and the cross-sectional shape is further improved. Since it becomes favorable, it is preferable.
  • the intermediate layer having a slow etching rate is thick, the bottom of the intermediate layer is large, and the etching area of the lower layer is narrowed due to the influence, and the total etching time becomes long.
  • the phase shift mask blank of the first aspect In the light shielding film, when the intermediate layer is thin, tailing in the intermediate layer is small, and the progress of the etching of the lower layer is not hindered.
  • the film thickness of the intermediate layer is preferably 40% or less, more preferably 15% or less of the film thickness of the lower layer.
  • the film thickness ratio between the intermediate layer and the upper layer is 1.0: 0.7 to 1.0: 7.0, more preferably 1.0: 2. 0.0 to 1.0: 7.0 is preferable.
  • the film thickness of the intermediate layer is 0.5% or more, more preferably 3% or more of the whole film thickness of the light shielding film.
  • optical density satisfies the following relationship.
  • OD (entire light shielding film) OD (upper layer) + OD (intermediate layer) + OD (antireflection layer)
  • optical density per unit film thickness satisfies the following relationship.
  • OD per unit film thickness (nm ⁇ 1 ) OD of film (layer) / film (layer) thickness
  • the optical density of the lower layer when the optical density of the lower layer is less than 1.1, the optical density is insufficient, so that it is necessary to increase the film thickness of each layer.
  • the concentration exceeds 1.8 the etching rate becomes slow, and it is difficult to reduce the thickness of each.
  • the optical density of the intermediate layer is less than 0.1, the optical density of the entire light-shielding film is insufficient, so that it is necessary to increase the thickness of any one of the layers, and the reflection at the intermediate layer is reduced. The interference effect cannot be obtained sufficiently. As a result, the surface reflectance becomes high and a desired reflectance cannot be obtained.
  • the light shielding film of the first mode phase shift mask blank has an optical density of the lower layer of 1.1 to 1.8, an optical density of the intermediate layer of 0.1 to 0.35, and an optical density of the upper layer.
  • three photomask blanks having a light shielding film with an optical density of 1.9 (1) a light shielding film with a low optical density; (2) a light shielding film with a high optical density; (3) a high optical density
  • a light-shielding film having a three-layer structure combining a layer and a layer having a low optical density will be compared.
  • the clear etching time is the shortest, but the overetching time is long, and a vertical shape may not be obtained.
  • the intermediate layer in which the high optical density layer and the low optical density layer are combined can shorten the etching time. As a result, it is possible to realize resist thinning, cross-sectional shape improvement, and CD variation reduction by loading.
  • the light shielding film has a limit of a certain film thickness (for example, 60 nm) or less in this laminated structure, when the film thickness of the intermediate layer is increased, the film thickness of the back surface or the upper layer must be decreased. However, optical properties such as overall light shielding properties and reflectivity cannot be ensured simply by reducing the thickness.
  • the light-shielding film of the phase shift mask blank of the first aspect has a second etching rate (intermediate layer) slower than the first etching rate (lower layer etching rate) and the third etching rate (upper layer etching rate). Etching rate).
  • the etching rate can be increased, for example, by including nitrogen or oxygen in the metal film.
  • the light shielding film can be made thin while maintaining the optical density high by making the intermediate layer a metal nitride film having a low etching rate. This makes it possible to easily design a light-shielding film having a desired optical characteristic with an overall film thickness of a certain thickness or less in a laminated structure, and to realize a thin resist film.
  • the second etching rate of the metal nitride film is slower than the etching rate of the lower layer and the upper layer, the etching in the vertical direction can be changed. That is, the variation in cross-sectional shape due to loading generated in the upper layer having a high etching rate is alleviated while the metal nitride film having a low etching rate is being etched.
  • the lower layer is etched at a high speed at the first etching rate. Therefore, while the lower layer is being etched, the portion that is not intended to be etched in the upper layer is further prevented from being etched.
  • the cross-sectional shape can be made favorable.
  • the metal in the light shielding film is nitrided, the crystal structure is changed or the film density is lowered. Therefore, when the intermediate layer is a metal nitride film, it is pulled more than the pure metal film. The stress can be relaxed, and the film stress can be easily adjusted.
  • the phase shift mask blank of a 2nd aspect is as follows.
  • a phase shift mask blank which is an original phase shift mask exposed with the ArF excimer laser beam of the present invention, A translucent substrate, a phase shift film, and a light shielding film;
  • the phase shift film is provided between the translucent substrate and the light shielding film,
  • the light shielding film consists of multiple layers,
  • the optical density of the entire light-shielding film is 1.8 to 2.6,
  • the ratio of the optical density of layer A constituting the plurality of layers to the sum of the optical densities of all layers other than layer A is 1: 5 to 1:19;
  • Each layer constituting the light shielding film contains a metal,
  • the layers other than the layer A are made of a film containing the same metal, N and O as the metal contained in the layer A, and the total content of N and O is 40 to 65 atom%.
  • the light shielding film of the phase shift mask blank of the second aspect is the sum of the optical density of layer A and the optical density of all layers other than layer A in the range of the optical density of the entire light shielding film from 1.8 to 2.6.
  • the ratio is 1: 5 to 1:19, and all the layers other than the layer A bear the majority of the optical density of the entire light shielding film.
  • the optical density depends on the composition and the film thickness, but the total content of N and O in the layers other than the layer A is 40 to 65 atom%.
  • the etching rate is fast. Thereby, since the ratio of the film thickness of the layer having a high etching rate is increased, the etching time can be shortened, and as a result, the resist film can be thinned.
  • the etching rate of the layers other than the layer A is slow.
  • the value of the ratio is less than 1/19, the thickness of the layers other than the layer A is too thick.
  • the film thickness increases when the sum of the N content and the O content of the layers other than the layer A exceeds 65 atom%, while the etching rate increases when the sum is less than 40 atom%. Become slow.
  • the optical density per unit film thickness of layers other than the layer A is 0.04 nm ⁇ 1 or less, and the optical density per unit film thickness of the layer A The concentration is preferably 0.05 nm ⁇ 1 or more.
  • the light-shielding film has a laminated structure in which a lower layer, an intermediate layer, and an upper layer are laminated in this order from the side close to the translucent substrate, The optical density of the lower layer is 1.1 to 1.8, The optical density of the intermediate layer is 0.1 to 0.35, An embodiment in which the optical density of the upper layer is 0.4 to 0.6 is included. In the phase shift mask blank of this aspect, by setting the optical density of each layer within these ranges, a light-shielding film having a desired film thickness, etching rate, and optical characteristics can be easily obtained.
  • the optical density of the lower layer is less than 1.1
  • the optical density is insufficient, so that it is necessary to increase the film thickness of each layer.
  • the concentration exceeds 1.8, the etching rate becomes slow, and it is difficult to reduce the thickness of each.
  • the optical density of the intermediate layer when the optical density of the intermediate layer is less than 0.1, the optical density of the entire light shielding film is insufficient, so the thickness of any one of the layers is increased. In addition to the necessity, the reflection at the intermediate layer is lowered, so that a sufficient interference effect cannot be obtained. As a result, the surface reflectance becomes high and a desired reflectance cannot be obtained. On the other hand, when the optical density of the intermediate layer exceeds 0.35, the etching time becomes long and it becomes difficult to make a resist thin film.
  • the reflectance of the upper layer when the optical density of the upper layer is less than 0.4, the reflectance becomes too low (particularly when the antireflection function is provided in the upper layer) and the whole.
  • the film thickness increases and the optical density exceeds 0.6, the reflectance becomes too high (particularly when the upper layer has an antireflection function).
  • the light shielding film of the phase shift mask blank of the second aspect is The total content of N and O in the lower layer is 40 to 55 atom%, The total content of N and O in the intermediate layer is 30 atom% or less, The total content of N and O in the upper layer is preferably 45 to 65 atom%.
  • a light-shielding film having a desired film thickness, etching rate, and optical characteristics can be easily obtained by setting the N and O contents in each layer within a predetermined range.
  • the etching rate is slow, and the total content of N and O is 55 atom%. If it exceeds, the optical density becomes small (the film thickness becomes thick), making it difficult to reduce the film thickness.
  • the etching rate becomes slow and it is difficult to reduce the thickness.
  • the etching rate is slow, and the total content of N and O is 65 atoms. If it exceeds 50%, the optical density becomes small (the film thickness becomes thick), and it becomes difficult to reduce the film thickness.
  • the optical density per unit film thickness of the lower layer is 0.03 to 0.04 nm ⁇ 1
  • the optical density per unit film thickness of the intermediate layer is 0 .05 to 0.06 nm ⁇ 1 is preferable.
  • the translucent substrate in the phase shift mask blank of the second aspect is the same as that of the first aspect.
  • the phase shift mask blank of a 3rd aspect is as follows.
  • a phase shift mask blank which is an original phase shift mask exposed with the ArF excimer laser beam of the present invention, A translucent substrate, a phase shift film, and a light shielding film;
  • the phase shift film is provided between the translucent substrate and the light shielding film,
  • the light-shielding film has a laminated structure in which a lower layer, an intermediate layer, and an upper layer are laminated in this order from the side close to the translucent substrate,
  • the lower layer is made of a CrOCN film formed in a mixed gas atmosphere using a Cr target, an inert gas of 45 to 65 vol%, a CO 2 gas of 30 to 50 vol%, and an N 2 gas of 1 to 15 vol%
  • the intermediate layer is made of a CrN film formed in a mixed gas atmosphere using a Cr target, an inert gas of 70 to 90 vol%, and an N 2 gas of 5 to 25 vol%.
  • the upper layer is made of a CrOCN film formed in a mixed gas atmosphere using a Cr target, an inert gas of 40-60 vol%, a CO 2 gas of 25-45 vol%, and an N 2 gas of 5-20 vol%.
  • a phase shift mask blank characterized by
  • the light shielding film of the phase shift mask blank of the third aspect has a laminated structure having a desired film thickness of 60 nm or less.
  • the light shielding film of the phase shift mask blank of the third aspect preferably uses CO 2 gas as the atmospheric gas used for forming the phase constituting the light shielding film.
  • the inert gas for forming the lower layer is composed of 10-30 vol% Ar gas and 20-40 vol% He gas.
  • the inert gas to be formed includes an embodiment composed of 10-30 vol% Ar gas and 20-40 vol% He gas.
  • the compressive stress of the obtained layer increases in the case of a Cr-based light shielding film, so that the film stress can be controlled, and , He gas is preferable because it mainly works only for controlling the film stress, so that the film stress can be easily designed.
  • the translucent substrate in the phase shift mask blank of the third aspect is the same as that of the first aspect.
  • the phase shift mask blank of the fourth aspect is as follows.
  • a phase shift mask blank which is an original phase shift mask exposed with the ArF excimer laser beam of the present invention, A translucent substrate, a phase shift film, and a light shielding film;
  • the phase shift film is provided between the translucent substrate and the light shielding film,
  • the light-shielding film has a laminated structure in which a lower layer, an intermediate layer, and an upper layer are laminated in this order from the side close to the translucent substrate,
  • the lower layer has a metal content of 25 to 50 atm%, a total content of N and O of 35 to 65 atm%, and an optical density of 1.1 to 1.8.
  • the intermediate layer contains metal and N, the metal content is 50 to 90 atm%, the film thickness is 2 to 6 nm, and the optical density is 0.1 to 0.35.
  • the upper layer has a phase shift characterized in that the metal content is 25 to 50 atm%, the total content of N and O is 45 to 65 atm%, and the optical density is 0.4 to 0.6.
  • the metal content in the lower layer is less than 25 atm%, or the total content of N and O exceeds 65 atm%, If the content is less than 50 atm%, or if the metal content in the upper layer is less than 25 atm%, or the total content of N and O exceeds 65 atm%, the optical density sufficient for the entire light-shielding film May not be able to get.
  • the metal content exceeds 50 atm%, or the total content of N and O is less than 35 atm
  • the metal content exceeds 90 atm%, or in the upper layer, If the metal content exceeds 50 atm% or the total content of N and O is less than 45 atm%, the etching time of the light shielding film may be long.
  • the N content of the intermediate layer is 3 to 25 atm% because a relatively large optical density can be obtained at a constant film thickness.
  • the N content is preferably 3 to 25 atm%.
  • the optical density per unit film thickness is preferably 0.05 to 0.06 nm ⁇ 1 .
  • the lower layer has a Cr content of 30 to 40 atm%, a total content of N and O of 40 to 55 atm%, and an optical density Is 1.1 to 1.8
  • the intermediate layer has a Cr content of 50 to 90 atm%, an N content of 3 to 25 atm%, and an optical density of 0.1 to 0.35.
  • the upper layer preferably has a Cr content of 30 to 40 atm%, a total content of N and O of 50 to 60 atm%, and an optical density of 0.4 to 0.6.
  • the Cr content in the lower layer is less than 30 atm%, or the total content of N and O exceeds 55 atm%, and the Cr content in the intermediate layer Is less than 50 atm%, or the N content exceeds 25 atm%, or the upper layer has a Cr content of less than 30 atm%, or the total content of N and O exceeds 60 atm% In some cases, sufficient optical density cannot be obtained for the entire light-shielding film.
  • the Cr content in the lower layer the Cr content exceeds 40 atm%, or the total content of N and O is less than 40 atm%.
  • the Cr content exceeds 90 atm%, or N If the total content is less than 3 atm%, or if the Cr content exceeds 40 atm% in the upper layer, or the total content of N and O is less than 50 atm%, the etching time of the light shielding film is It may become long.
  • the translucent substrate in the phase shift mask blank of the fourth aspect is the same as that of the first aspect.
  • the “second etch rate (intermediate layer The relationship of “etching rate) ⁇ first etching rate (lower layer etching rate) ⁇ third etching rate (upper layer etching rate)” is preferable because the angle of the cross section of the pattern approaches vertical. Further, if the first etching rate is smaller than the third etching rate, the angle of the cross section of the pattern is preferably closer to vertical.
  • the ratio between the second etching rate and the third etching rate is preferably 1.0: 1.1 to 1.0: 2.0.
  • the third etching rate is preferably 0.67 nm / sec or more, and the second etching rate is preferably 0.44 nm / sec or less.
  • transition metals such as Cr, Mo, W, and Ta are preferable.
  • Cr is dry-etched in a chlorine system and an oxygen system, a selectivity with a glass substrate or a halftone phase shift film can be obtained. Therefore, it is particularly preferable.
  • Cr is more preferable than other metals because it allows not only dry etching but also wet etching.
  • the lower layer or the upper layer has a Cr content of 50 atm% or less.
  • the intermediate layer is preferably a film having a Cr content of 50% atm or more. This is because by having such a configuration, it is possible to easily form a film having a relationship of second etching rate ⁇ first etching rate or third etching rate.
  • the lower layer or the upper layer is preferably made of CrN, CrON, CrO, CrC, CrCO or CrOCN, and among these, it is particularly preferred to be made of CrOCN.
  • the intermediate layer is made of CrN, CrON, CrO, CrC, CrCO, or CrOCN, and CrN or CrON is more preferable.
  • the lower layer or the upper layer is made of CrOCN
  • a mode in which a Cr—Cr bond component and a CrO x N y component are mixed is preferable.
  • the intermediate layer is made of CrN
  • the lower layer or the upper layer of the present embodiment preferably has a dense amorphous structure.
  • the carbon is mainly composed of chromium carbide (Cr—C), and other components C—C, C—O, and C—N are mixed.
  • the lower layer and the upper layer have the same composition, and the composition ratio and the film thickness are different from each other. This is because by having such a configuration, the atmosphere gas for forming the lower layer and the upper layer can be made the same, so that the process of forming the light shielding film is facilitated. At this time, it is easy to adjust the degree of oxidation so that the defect quality of the upper layer is good, and to adjust the lower layer so that the reflectance is lowered while increasing the optical density.
  • the optical density per unit film thickness of the intermediate layer with respect to ArF excimer laser light is 0.05 nm ⁇ 1 or more. It is preferable that
  • the flatness change amount before and after film formation is preferably 0.05 ⁇ m or less.
  • a resist film having a thickness of 200 nm or less, more preferably 150 nm or less may be provided on the light shielding film.
  • an etching mask film may be provided on the light shielding film.
  • dry etching is generally performed by using chlorine and oxygen as etching gases to sublimate in the form of chromyl chloride.
  • oxygen Resist is very weak against plasma. Therefore, by providing the etching mask film, the load on the resist film can be reduced, so that the resist film can be made thinner to 100 nm or less.
  • the etching mask film is provided with SiON, SiN, SiO 2 , MoSiON, MoSiN or the like having a high selectivity at a film thickness of 5 to 20 nm.
  • An organic film containing 20% or more of Si can be provided as an etching mask film by setting the film thickness to 20 to 40 nm.
  • the resist can be made thinner by providing an etching mask film on the light shielding film.
  • the pattern shape is significantly deteriorated, and the LER (Line (Edge Roughness) when the mask pattern is transferred to the etching mask film is deteriorated.
  • the present inventors have found that it is necessary to shorten the etching time. Since the light shielding film of the above embodiment has a short etching time, the thickness of the etching mask film can be reduced and the etching time of the etching mask film can be shortened.
  • the surface roughness is small, so the surface roughness of the upper etching mask film is reduced. Is preferable.
  • the cross-sectional shape and LER when the etching mask film is etched are improved, the cross-sectional shape and LER of the light shielding film are deteriorated when the lower light shielding film is etched using the etching mask film pattern as a mask. Can be prevented.
  • phase shift mask blank of the present invention has a halftone phase shift film between the light transmitting substrate and the light shielding film.
  • the phase shift amount is set to 180 °.
  • the phase shift amount does not necessarily need to be 180 °. Rather, the phase shift amount is set to less than 180 ° and the phase shift amount is set. It is preferable to make the shift film thinner because the cross-sectional shape of the OPC pattern or circuit pattern is improved.
  • the phase shift amount is preferably 160 ° or more and less than 180 °, which can sufficiently improve the resolution due to the phase shift effect without dug the substrate.
  • the transmittance of the phase shift film is preferably 2 to 40%.
  • a predetermined optical density OD for example, 2.8 or more, preferably 3.0 or more
  • the film thickness of the light shielding film necessary for the light shielding film is set, and the film thickness of the entire light shielding film can be less than 50 nm.
  • the transmittance of the phase shift film is 10% to 40% (particularly preferably 10% to 30%, more preferably 10% to 20%).
  • the light-shielding film necessary for having a predetermined optical density OD (for example, 2.8 or more, preferably 3.0 or more) in the laminated film of the phase shift film and the light-shielding film.
  • the film thickness of the entire light shielding film can be set to 50 nm or more and 60 nm or less. Since the thickness of the light-shielding film is 60 nm or less, the cross-sectional shape of the light-shielding film pattern is close to a vertical shape, and it is easy to obtain fine pattern accuracy. Therefore, the phase shift film is patterned using this light-shielding film pattern as a mask. It is easy to obtain a fine pattern accuracy for the pattern.
  • the optical density of the laminated film of the phase shift film and the light shielding film is 3.1, it is necessary for the entire light shielding film when the transmittance of the phase shift film is 10%, 12%, 15%, and 20%.
  • the optical densities are about 2.10, 2.18, 2.28 and 2.40, respectively.
  • the preferred optical density range and preferred film thickness range of each layer of the light-shielding film are as follows.
  • the transmittance of the phase shift film is 10% or more and 20% or less
  • the optical density of the lower layer is 1.3 to 1.8
  • the film thickness is 33 nm to 46 nm
  • the optical density of the intermediate layer is 0.1 to 0.35.
  • the film thickness is 2 nm to 7 nm
  • the optical density of the upper layer is 0.4 to 0.6
  • the film thickness is 11 nm to 17 nm.
  • the transmittance of the phase shift film is 10% or more
  • the light shielding film is formed on the phase shift film pattern formed in the pattern transfer region described in Example 1 and FIG. 1 of Japanese Patent No. 3445329.
  • a phase shift mask having a structure in which a pattern and a light shielding film having a predetermined width or more are formed in a pattern non-transfer area is generally used.
  • the transmittance of the phase shift film is less than 10% (for example, less than 2 to 10%)
  • a phase shift mask having a structure in which no light shielding film pattern is formed on the formed phase shift film pattern and a light shielding film having a predetermined width or more is formed in a pattern non-transfer area is generally used.
  • the phase shift film is preferably made of MoSiN or MoSiON.
  • the conventional Cr-based light-shielding film has a porous columnar structure, which increases the LER of the Cr-based light-shielding film pattern.
  • the LER of the phase shift film pattern was deteriorated by the LER of the Cr-based light shielding film.
  • the upper layer or the lower layer in the light shielding film has an amorphous structure, the LER of the light shielding film pattern when the light shielding film is dry-etched can be reduced.
  • the phase shift film is dry etched using the light shielding film pattern as a mask, the LER of the phase shift film can be improved without deteriorating the LER of the phase shift film pattern.
  • phase Shift Mask and Manufacturing Method Thereof A phase shift mask obtained from the phase shift mask blank of the present invention and a manufacturing method therefor will be described.
  • a resist is applied to the phase shift mask blank on which the light shielding film is formed, and dried to obtain a resist film. It is necessary to select an appropriate resist depending on the drawing apparatus to be used. For EB drawing that is usually used, a positive type or negative type resist having an aromatic skeleton in a polymer, For the production of a phase shift mask for a fine pattern in which the invention is particularly effectively used, it is preferable to use a chemically amplified resist.
  • the resist film thickness needs to be in a range where a good pattern shape can be obtained and can function as an etching mask. Especially when a fine pattern is to be formed as an ArF exposure mask, The thickness is preferably 200 nm or less, and more preferably 150 nm or less.
  • a two-layer resist method using a combination of a resist using a silicon resin and a lower layer film using an aromatic resin, or a surface imaging method using a combination of an aromatic chemically amplified resist and a silicon surface treatment agent was used. In some cases, the film thickness can be further reduced.
  • the coating conditions and the drying method a method suitable for each resist to be used is appropriately selected.
  • a resin layer may be formed on the surface of the phase shift mask blank before applying the resist in order to reduce the problem of peeling of the fine resist pattern and the problem of falling down.
  • surface treatment for lowering the surface energy of the substrate (phase shift mask blank) surface may be performed before applying the resist.
  • the surface treatment method include a method in which the surface is alkylsilylated with HMDS or other organosilicon surface treatment agents commonly used in semiconductor manufacturing processes.
  • drawing on a resist in a phase shift mask blank on which a resist film is formed includes a method using EB irradiation and a method using light irradiation.
  • the method using EB irradiation forms a fine pattern. Is a preferred method.
  • drawing is usually performed with energy in the range of 3 to 40 ⁇ C / cm 2 , and after the drawing, heat treatment is performed, and then the resist film is developed to obtain a resist pattern.
  • Etching of the light-shielding film or the light-shielding film and other films is performed using the resist pattern obtained above as an etching mask. Etching can be performed using known chlorine-based or fluorine-based dry etching depending on the composition of the light-shielding film (surface layer, intermediate layer, antireflection layer, etc.) and other films.
  • the resist After obtaining the light-shielding pattern by etching, the resist is peeled off with a predetermined stripping solution to obtain a photomask on which the light-shielding film pattern is formed.
  • the phase shift mask of the present invention is a pattern for forming a fine pattern having a DRAM half pitch (hp) of 45 nm or more in a semiconductor design rule using an exposure method having a numerical aperture NA> 1 and an exposure light wavelength of 200 nm or less. It is particularly useful as a mask used in the transfer method.
  • the phase shift mask blank of the present invention is particularly effective when it is used for forming a resist pattern having a line width of less than 100 nm on the phase shift mask blank.
  • An example of such a phase shift mask blank is a mask having an OPC structure.
  • OPC mask since the width of the auxiliary pattern provided around the main pattern is the smallest for the purpose of improving the resolution of the main pattern, it is particularly useful for pattern transfer using a phase shift mask having these patterns. is there.
  • Example 1 (Production of photomask blank)
  • a halftone phase shift mask blank in which a phase shift film 5 and a three-layer light shielding film were provided on a translucent substrate 10 was manufactured (see FIG. 1).
  • a translucent substrate 10 made of quartz glass having a size of 6 inches square and 0.25 inches in thickness it is composed of a single layer using Mo, Si and N as main components using a single wafer sputtering apparatus.
  • a halftone phase shift film 5 for ArF excimer laser (wavelength 193 nm) was formed (film thickness 69 nm).
  • the sputtering (DC sputtering) conditions were as follows.
  • Sputtering gas Mixed gas atmosphere of Ar, N 2 and He (Ar: 9 sccm, N2: 81 sccm, He: 76 sccm) Gas pressure during discharge: 0.3 Pa Applied power: 2.8 kW
  • the transmittance of the obtained phase shift film 5 was 5.5% and the phase shift amount was about 180 °.
  • the lower layer 3 made of CrOCN was formed using a sputtering apparatus similar to the apparatus for forming the phase shift film 5 (film thickness 30 nm).
  • the conditions for sputtering (DC sputtering) were as shown in Table 1.
  • an intermediate layer 2 made of CrN was formed (film thickness: 4 nm) using a sputtering apparatus similar to the apparatus for forming the lower layer 3.
  • the conditions for sputtering were as shown in Table 1.
  • the upper layer 1 made of CrOCN was formed (film thickness: 14 nm) using the same sputtering apparatus as the apparatus for forming the intermediate layer 2.
  • the conditions for sputtering (DC sputtering) were as shown in Table 1.
  • a photomask blank was obtained in which the phase shift film 5, the lower layer 3, the intermediate layer 2, and the upper layer 1 were laminated in this order on a light-transmitting substrate made of quartz glass.
  • the optical density (OD) for light having a wavelength of 193.4 nm in the light-shielding film composed of the lower layer 3, the intermediate layer 2, and the upper layer 1 was 1.9.
  • the optical density in each layer was as shown in Table 1.
  • the composition and atomic number density of the upper layer 1, the intermediate layer 2, and the lower layer 3 of the obtained photomask blank were analyzed by RBS (Rutherford Backscattering Spectrometry).
  • RBS is a technique for analyzing the surface composition with respect to the surface density (atms / cm 2 ) in the depth direction. If the film thickness for each layer is known, the atomic number density (atms / cm 3 ) can be calculated from the following equation: Can be calculated.
  • Atomic number density surface density / film thickness
  • the atomic number density of the upper layer 1 was calculated by the above method.
  • the film composition of the upper layer 1 (film thickness: 14 nm) was 34 atom% for Cr, 11 atom% for C, 39 atom% for O, and 16 atom% for N.
  • the chromium ratio of the upper layer 1 was 0.3 for C / Cr, 1.2 for O / Cr, and 0.5 for N / Cr.
  • the atomic number density of the upper layer 1 was 10.5 ⁇ 10 22 atms / cm 3 .
  • the film composition of the intermediate layer 2 was such that Cr was at least 64 atom% or more and N was at least 8 atom% or more.
  • the film composition of the lower layer 3 (thickness 30 nm) was 36 atom% for Cr, 15 atom% for C, 39 atom% for O, and 9 atom% for N.
  • the lower layer 3 had a chromium ratio of 0.4 for C / Cr, 1.1 for O / Cr, and 0.3 for N / Cr.
  • the upper layer 1 had an amorphous structure with a grain size of 1 to 2 nm.
  • the photomask blank obtained in this example was supplied with ozone water having a concentration of 50 ppm to the substrate surface while being swung by a swing arm at a flow rate of 1.4 L / min for 60 minutes.
  • the amount of change in optical density was measured to evaluate chemical resistance.
  • the film thickness of the light shielding film was not changed by the spraying of ozone water. Further, the surface reflectance changed by + 0.82% for light having a wavelength of 193 nm. The optical density of the light shielding film changed by -0.04.
  • the same layer as the upper layer 1 of this example was directly formed on the glass substrate by sputtering, and the amount of change in reflectivity by spraying ozone water with a concentration of 50 ppm on the upper layer 1 for 60 minutes was measured.
  • the reflection spectrum was measured before and after spraying with ozone water with a spectrophotometer (manufactured by Hitachi High-Technology: U-4100), and the amount of change was calculated.
  • the light shielding film composed of the lower layer 3, the intermediate layer 2, and the upper layer 1 was dry-etched to form a light shielding film pattern.
  • the etching rate of each layer was as shown in Table 1.
  • the clear etching time for the entire light-shielding film was 84.5 seconds, which was confirmed to be about 8% shorter than that of Comparative Example 1 described later.
  • the phase shift film was etched using the resist pattern and the light shielding film pattern as a mask to form a phase shift film pattern.
  • the cross-sectional shape of the light-shielding film pattern has an influence, but since the cross-sectional shape of the light-shielding film pattern is good, the cross-sectional shape of the phase shift film pattern is also good.
  • the remaining resist pattern is peeled off, a resist film is applied again, pattern exposure is performed to remove an unnecessary light shielding film pattern in the transfer region, and then the resist film is developed to form a resist pattern. did.
  • the film thickness ratio of the intermediate layer is 1, the film thickness ratio of the upper layer is 3.5, and the film thickness ratio of the intermediate layer to the total film thickness of the light shielding film is 8%.
  • the film thickness ratio of the intermediate layer to the film thickness of the lower layer was 13% (see Table 2).
  • a photomask blank as shown in FIG. 2 in which the lower layer 3, the intermediate layer 2, and the upper layer 1 were sequentially laminated on the translucent substrate 10 made of quartz glass was obtained.
  • the optical density (OD) of light with a wavelength of 193.4 nm in the light-shielding film composed of the lower layer 3, the intermediate layer 2, and the upper layer 1 was 3.
  • the optical density in each layer was as shown in Table 1.
  • the film composition of the upper layer 1 (film thickness: 14 nm) was 32 atom% for Cr, 16 atom% for C, 37 atom% for O, and 16 atom% for N.
  • the chromium ratio of the upper layer 1 was 0.5 for C / Cr, 1.2 for O / Cr, and 0.5 for N / Cr.
  • the atomic number density of the upper layer 1 was 11.0 ⁇ 10 22 atms / cm 3 .
  • the film composition of the intermediate layer 2 (thickness 25 nm) was 87 atom% for Cr, 9 atom% for O, and 4 atom% for N. Further, the chromium ratio of the intermediate layer 2 was 0.1 for O / Cr and 0.05 for N / Cr.
  • the film composition of the lower layer 3 (thickness 25 nm) was 49 atom% for Cr, 11 atom% for C, 26 atom% for O, and 14 atom% for N.
  • the lower layer 3 had a chromium ratio of 0.2 for C / Cr, 0.5 for O / Cr, and 0.3 for N / Cr.
  • the upper layer 1 had an amorphous structure with a grain size of 1 to 2 nm.
  • the photomask blank obtained in this reference example was supplied with ozone water having a concentration of 50 ppm to the substrate surface while being swung by a swing arm at a flow rate of 1.4 L / min for 60 minutes.
  • the amount of change in optical density was measured to evaluate chemical resistance.
  • the film thickness of the light shielding film was not changed by the spraying of ozone water.
  • the surface reflectance changed by ⁇ 0.02% for light having a wavelength of 193 nm.
  • the optical density of the light shielding film changed by -0.06.
  • a chemically amplified positive resist for electron beam drawing (exposure) (PRL009: manufactured by Fuji Film Electronics Materials Co., Ltd.) was applied by spin coating so as to have a film thickness of 200 nm.
  • a desired pattern was drawn on the formed resist film using an electron beam drawing apparatus, and then developed with a predetermined developer to form a resist pattern.
  • the light shielding film composed of the lower layer 3, the intermediate layer 2, and the upper layer 1 was dry-etched to form a light shielding film pattern.
  • the etching rate of each layer was as shown in Table 1. Further, when the light shielding film pattern was observed in the same manner as in Example 1, there was a slight taper, but the cross section angle of the light shielding film was formed perpendicular to the substrate and was good.
  • Reference Example 2 As in Reference Example 1, in order to verify the light-shielding film provided in the phase shift mask of the present invention, in this Reference Example, the film formation conditions and film thickness of the intermediate layer 2 and the film thickness of the lower layer in Reference Example 1 A binary mask blank similar to that of Reference Example 1 was produced except that the above was changed. That is, reactive sputtering was performed under the same conditions as in Example 2 except that the sputtering conditions were set as shown in Table 1.
  • the upper layer 1 had an amorphous structure with a grain size of 1 to 2 nm.
  • the chemical resistance of the photomask blank was evaluated, and the amount of change in the film thickness, surface reflectance, and optical density of the light shielding film was measured.
  • the film thickness of the light shielding film was not changed by the spraying of ozone water.
  • the surface reflectance changed by ⁇ 0.02% for light having a wavelength of 193 nm.
  • the optical density of the light shielding film changed by -0.06.
  • the light shielding film of this reference example has high chemical resistance against ozone treatment.
  • the etching rate of each layer was as shown in Table 1. Further, when the light shielding film pattern was observed in the same manner as in Example 1, it was found that the angle of the cross section of the light shielding film was formed perpendicular to the substrate. Furthermore, it was confirmed that even when the over-etching time was shortened, a vertical cross-sectional shape was obtained, and the total etching time could be reduced by about 25% compared to the conventional case.
  • the resolution was evaluated for the obtained photomask.
  • the resolution of the resist film was good, and the resolution of the light shielding film pattern was less than 70 nm (corresponding to DRAM hp45 nm).
  • Example 2 is the same as Example 1, except that the transmittance of the phase shift film 5 is increased and the film thickness of the intermediate layer 2, the film thickness of the lower layer 3 and the film thickness of the entire light shielding film in the light shielding film are changed to be thicker.
  • a phase shift mask blank was produced in the same manner as in Example 1. The phase shift film 5 was formed under the following conditions.
  • Sputtering gas Mixed gas atmosphere of Ar, O 2 , N 2 and He (Ar: 6 sccm, O 2 : 15 sccm, N 2 : 57 sccm, He: 51 sccm) Gas pressure during discharge: 0.25 Pa Applied power: 2.8 kW
  • the half-tone phase shift film 5 (thickness: 93 nm) for ArF excimer laser (wavelength: 193 nm) composed of a single layer mainly composed of Mo, Si, O, and N is directly formed on the translucent substrate. Formed.
  • the obtained phase shift film 5 had a transmittance of 15% and a phase shift amount of 178 °.
  • a light shielding film having a total thickness of 58 nm is formed on the phase shift film under the same conditions as in Example 1 except that the thickness of the intermediate layer 2 in the light shielding film is 5 nm and the thickness of the lower layer 3 is 39 nm.
  • Table 2 shows the configuration of the phase shift mask blank manufactured in Example 2 and the resolution and cross-sectional shape of the obtained phase shift mask.
  • the numerical value in the column of the film thickness ratio is “the film thickness ratio of the upper layer when the film thickness of the intermediate layer of the light shielding film is 1” from the top (for example, 2.8 in Example 2), “The film thickness ratio (%) of the intermediate layer to the total film thickness of the light shielding film” (for example, 9% in Example 2) and “the film thickness ratio (%) of the intermediate layer to the film thickness of the lower layer” (for example, Example 2 indicates 13%).
  • a halftone phase shift mask blank having a light shielding film composed of a light shielding layer and a surface antireflection layer was produced.
  • a light shielding layer was formed on the same phase shift film as in Example 1 using an inline-type sputtering apparatus.
  • the conditions for sputtering were as follows.
  • a surface antireflection layer was formed on the light shielding layer.
  • the conditions for sputtering were as follows.
  • Sputter target Chrome (Cr)
  • Sputtering gas mixed gas of argon (Ar) and methane (CH 4 ) (CH4: 3.5% by volume), gas in which NO and He are mixed (Ar + CH 4 : 65 sccm, NO: 3 sccm, He: 40 sccm)
  • a photomask blank having a light-shielding film thickness of 48 nm was obtained, in which a phase shift film, a light-shielding layer, and a surface antireflection layer were sequentially laminated on a light-transmitting substrate made of quartz glass.
  • the optical density (OD) of light having a wavelength of 193.4 nm in the light shielding film comprising the light shielding layer and the surface antireflection layer was 1.9.
  • the composition of the obtained surface antireflection layer and the light shielding layer and the atom number density of the surface antireflection layer were analyzed by RBS.
  • the film composition of the surface antireflection layer (film thickness: 24 nm) was 34 atom% for Cr, 32 atom% for O, and 23 atom% for N.
  • the chromium ratio of the surface antireflection layer was 0.9 for O / Cr and 0.7 for N / Cr.
  • the atomic number density of the surface antireflection layer was 7.4 ⁇ 10 22 atms / cm 3 .
  • the film composition of the light shielding layer (film thickness: 24 nm) was 59 atom% for Cr and 39 atom% for N.
  • the chromium ratio of the light shielding layer was N / Cr 0.7. Since the in-line type sputtering apparatus was used, each of the light shielding layer and the surface antireflection layer was an inclined film whose composition was inclined in the film thickness direction. Therefore, the film composition is an average value.
  • the surface antireflection layer had a low density porous columnar structure.
  • Example 1 the chemical resistance of the photomask blank obtained in this comparative example was evaluated.
  • the film thickness of the light shielding film was reduced by 5.8 nm by the spraying of ozone water.
  • the surface reflectance changed by + 2.72% with light having a wavelength of 193 nm.
  • the optical density of the light shielding film changed by ⁇ 0.38.
  • the same layer as the surface antireflection layer of this comparative example was directly formed on the glass substrate by sputtering, and the amount of change in reflectance was measured by the same measurement method as in Example 1.
  • + 2.5% (19.8% ⁇ 22.3%) for light with a wavelength of 193 nm + 9.1% (16.4% ⁇ 25.5%) for light with 257 nm, and + 13.9% for 365 nm. (19.9% ⁇ 33.8%)
  • the light-shielding film of this comparative example has low chemical resistance with respect to the ozone treatment as compared with Examples 1 and 2.
  • Example 1 a chemically amplified positive resist for electron beam drawing (exposure) was applied to the obtained photomask blank so as to have a film thickness of 150 nm, and a photomask was formed in the same manner as in Example 1. Obtained. In the dry etching of the light shielding film, the etching rate was slower than that of Example 1. The clear etching time for the entire light shielding film was 92.0 sec. Further, when the light shielding film pattern was observed in the same manner as in Example 1, the angle of the cross section of the light shielding film was not formed perpendicular to the substrate. For this reason, the cross-sectional shape of the phase shift film pattern was not good. The resolution was evaluated for the obtained photomask. The resolution of the resist film was poor, and the resolution of the light shielding film pattern was 80 nm or more due to poor etching.
  • Example 3 In Example 3, a light-shielding film having the same composition as that of Reference Example 2 on a phase shift film having a transmittance of 20%, and the film thicknesses of the upper layer, the intermediate layer, and the lower layer are changed as shown in Table 3, and the phase shift mask blank Manufactured.
  • the phase shift film 5 was formed under the following conditions.
  • Sputtering gas Mixed gas atmosphere of Ar, O 2 , N 2 and He (Ar: 11.5 sccm, O 2 : 8.1 sccm, N 2 : 50 sccm, He: 100 sccm)
  • the phase shift film 5 (film thickness 74 nm) comprised by the single layer which has Mo, Si, O, and N as a main component was formed on the translucent substrate.
  • the phase shift film 5 (film thickness 74 nm) comprised by the single layer which has Mo, Si, O, and N as a main component was formed on the translucent substrate.
  • the transmittance of the obtained phase shift film 5 was 20.0%, and the phase shift amount was 177.4 °.
  • phase shift film As a result of analyzing the obtained phase shift film by RBS, Mo was 1.8 atom%, Si was 37.2%, N was 48.1%, and O was 12.7 atom%.
  • a light shielding film was formed as a lower layer 36 nm, an intermediate layer 5 nm, and an upper layer 14 nm on the phase shift film.
  • the configuration of the phase shift mask blank produced in Example 3 and the resolution and cross-sectional shape of the obtained phase shift mask were as shown in Table 3. Further, the etching rate of each layer of the light shielding film was the same as in Reference Example 2.
  • Example 4 In Example 4, a light-shielding film having the same composition as that of Reference Example 2 on a phase shift film having a transmittance of 14.8% was changed, and the film thicknesses of the upper layer, the intermediate layer, and the lower layer were changed as shown in Table 3. A mask blank was manufactured. The phase shift film 5 was formed under the following conditions.
  • Sputtering gas Mixed gas atmosphere of Ar, O 2 , N 2 and He (Ar: 11 sccm, O 2 : 4.2 sccm, N 2 : 50 sccm, He: 100 sccm)
  • the phase shift film 5 (film thickness 68 nm) comprised by the single layer which has Mo, Si, O, and N as a main component was formed on the translucent substrate.
  • the phase shift film 5 (film thickness 68 nm) comprised by the single layer which has Mo, Si, O, and N as a main component was formed on the translucent substrate.
  • the transmittance of the obtained phase shift film 5 was 14.8%, and the phase shift amount was 176.8 °.
  • a light-shielding film was formed as a lower layer 33 nm, an intermediate layer 5 nm, and an upper layer 14 nm on the phase shift film under the same sputtering conditions as in Reference Example 2.
  • the configuration of the phase shift mask blank produced in Example 4 and the resolution and cross-sectional shape of the obtained phase shift mask were as shown in Table 3. Further, the etching rate of each layer of the light shielding film was the same as in Reference Example 2.
  • Example 5 In Example 5, a light-shielding film having the same composition as that of Reference Example 2 on a phase shift film having a transmittance of 13.4% was changed, and the film thicknesses of the upper layer, the intermediate layer, and the lower layer were changed as shown in Table 3. A mask blank was manufactured. The phase shift film 5 was formed under the following conditions.
  • Sputtering gas Mixed gas atmosphere of Ar, O 2 , N 2 and He (Ar: 10.5 sccm, N 2 : 55 sccm, He: 100 sccm)
  • the phase shift film 5 (film thickness 58 nm) comprised by the single layer which has Mo, Si, and N as a main component was formed on the translucent board
  • the transmittance of the obtained phase shift film 5 was 13.4%, and the phase shift amount was 160.0 °.
  • phase shift film Mo was 1.8 atom%, Si was 39.7%, and N was 58.3%.
  • a light shielding film was formed as a lower layer 32 nm, an intermediate layer 4 nm, and an upper layer 14 nm on the phase shift film.
  • the configuration of the phase shift mask blank produced in Example 5 and the resolution and cross-sectional shape of the obtained phase shift mask were as shown in Table 3.
  • the etching rate was the same as in Reference Example 2.
  • the resolution of the resist film was good, and the resolution of the light shielding film pattern was less than 60 nm. Also, the cross-sectional shape was vertical and good.
  • the photomask blank according to a preferred embodiment of the present invention can be used for high NA lithography since it can suppress shadowing, and can also be used for lithography of short wavelength exposure light. Therefore, a very fine mask pattern can be formed by using the photomask blank according to a preferred embodiment of the present invention.
  • the photomask blank according to a preferred embodiment of the present invention can be applied to, for example, photomask blanks of the hp45 nm and hp32 nm generations in ultra high NA-ArF lithography.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

 ArFエキシマレーザ光が適用されるフォトマスクを作製するために用いられるフォトマスクブランクであって、透光性基板(10)上に遮光膜(1,2,3)を有し、前記遮光膜は、透光性基板に近い側から下層(3)、中間層(2)および上層(1)が順に積層された積層構造を有し、遮光膜全体の膜厚が60nm以下であり、下層は、金属を含有する膜からなり、第1のエッチング速度を有し、上層は、金属を含有する膜からなり、第3のエッチング速度を有し、中間層は、下層または上層に含まれる金属と同じ金属を含有する膜からなり、第1のエッチング速度および第3のエッチング速度よりも遅い第2のエッチング速度を有し、中間層の膜厚は、遮光膜全体の膜厚の30%以下であることを特徴とするフォトマスクブランク。

Description

位相シフトマスクブランクおよび位相シフトマスク
 本発明は、位相シフトマスクブランクおよび位相シフトマスクに関する。
 一般に、LSI等の高密度半導体集積回路、CCD(電荷結合素子)やLCD(液晶表示素子)用のカラーフィルター、磁気ヘッド等の製造工程では、フォトマスクを使ったフォトリソグラフィー技術を用いて微細加工が行われている。
 この微細加工には、石英ガラス、アルミノシリケートガラス等の透光性基板の上に、一般的にはクロム膜等の金属薄膜からなる遮光膜をスパッタまたは真空蒸着等で形成したフォトマスクブランクの遮光膜を所定のパターンに形成したフォトマスクが用いられている。
 このフォトマスクブランクより作製されたフォトマスクは、フォトマスクブランク上に形成されたレジスト膜に対し、所望のパターン露光を施す露光工程、フォトマスクブランク上に形成されたレジスト膜に対し所望のパターン露光を施した後に現像液を供給して、現像液に可溶なレジスト膜の部位を溶解し、レジストパターンを形成する現像工程、得られたレジストパターンをマスクとして、硝酸セリウムアンモニウムと過塩素酸の混合水溶液からなるエッチング液を用いたウェットエッチング、塩素ガスを用いたドライエッチング等のエッチングによって、レジストパターンの形成されていない遮光膜が露出した部位を除去し、所定のマスクパターンを透光性基板上に形成するエッチング工程、および、残存したレジストパターンを剥離除去する剥離除去工程を経て製造される。
 遮光膜をエッチング工程においてパターニングする間、その遮光膜上に形成されているレジストパターンは十分な膜厚で残っていなければならないが、レジスト膜厚を厚くすると、特に微細なパターンを形成する場合、アスペクト比が大きくなり、パターン倒れなどの問題が生じる。そこで、フォトマスクに形成されるマスクパターンを微細化するためには、フォトマスクブランクに形成されたレジスト膜を薄膜化する必要がある。
 この点について、日本国特許公開公報2007-33470号(特許文献1)には、遮光膜の膜厚を100nm以下とし、高いエッチング速度を有するクロム系化合物の膜厚が70%以上を占める構成とすることで、エッチング時間を短縮し、レジストの薄膜化を実現するフォトマスクブランクが開示されている。具体的には、特許文献1には、透光性基板上に、半透明膜、CrON膜、Cr膜およびCrON膜が積層され、上記CrON膜の膜厚が70%以上を占めるフォトマスクブランクが開示されている。
 しかしながら、上記CrON膜は波長450nmでの単位膜厚当りの光学濃度を設定しているに過ぎず、ArFエキシマレーザ光以下の露光光について最適化されていない。特に超高NAリソグラフィでは、フォトマスクへの光入射角度が浅くなるため、微細化されたマスクパターン自身が転写像に陰をつくる(シャドウイング)問題が発生する。遮光膜が厚い場合、シャドウイングによる光量低下(コントラスト悪化)の影響が大きい。また断面形状もバラツキ易く、シャドウイングと合わせてCD(Critical Dimension)転写精度を悪化する要因となる。
 また、フォトマスクのさらに微細な加工によって解像性能を向上させるために、上述の透光性基板の上に、たとえば、数パーセントから数十パーセントの透過性を有し、透過光の位相を180°シフトさせた位相シフト膜(たとえば、日本国特許第2837803号公報(特許文献2)に記載してある金属シリサイド酸化膜、金属シリサイド酸化窒化膜や、日本国特許第2966369号公報(特許文献3)に記載された金属シリサイド窒化膜等からなる位相シフト膜)と、該位相シフト膜に対してエッチング選択性を有するクロム膜等の遮光膜とをスパッタまたは真空蒸着等で形成した位相シフトマスクブランク、ならびに、これらの遮光膜と位相シフト膜を所定のパターンに形成した位相シフトマスクが用いられている。
 この位相シフトマスクの構造としては、位相シフト膜の透過率が10%以上(たとえば、10%以上40%以下)の場合は、日本国特許第3445329号公報(特許文献4)の実施例1及び図1に記載されている、パターン転写領域内に形成された位相シフト膜パターン上に遮光膜パターンと、パターン非転写領域に所定以上の幅を有する遮光膜が形成された構造の位相シフトマスクが一般的である。また、位相シフト膜の透過率が10%未満(たとえば、2~10%未満)の場合は、日本国特許第3411613号公報(特許文献5)の実施例1及び図1に記載している、パターン転写領域内に形成された位相シフト膜パターン上に遮光膜パターンは形成されず、パターン非転写領域に所定以上の幅を有する遮光膜が形成された構造の位相シフトマスクが一般的である。
 なお、位相シフトマスクブランクとして、国際公開WO2004/090635号パンフレット(特許文献6)の請求の範囲25から29に記載されているとおり、位相シフト膜上に形成されたクロムを含む遮光膜上に、遮光膜のドライエッチングに対して耐性を有する無機系材料からなるエッチングマスク用膜が積層された構造であってもよい。
日本国特許公開公報2007-33470号 日本国特許第2837803号公報 日本国特許第2966369号公報 日本国特許第3445329号公報 日本国特許第3411613号公報 国際公開WO2004/090635号パンフレット
 上記状況の下、微細なマスクパターンが形成できるフォトマスクブランク(位相シフトブランク等)が求められている。また、遮光膜上に形成されるレジスト膜を薄く形成でき、結果的にパターン倒れが生じにくく転写精度の良いフォトマスクブランクが求められている。具体的には、レジストパターン倒れを防止するために、レジスト膜が薄膜化されレジストパターンのアスペクト比が低減されることによって、hp45nm、hp32nm以降の世代に求められる解像性を有するフォトマスクが求められている。
 フォトマスクブランクにおいてレジスト膜を薄膜化するためには、遮光膜のエッチング時間(ET)を短くする、すなわち遮光膜の構成を変更する必要がある。
 エッチング時間(ET)は、エッチング速度(ER)、遮光膜の膜厚(d)および遮光膜パターンの断面角度調整時間(オーバーエッチング時間)(OET)によって決定される。これらの関係は以下のとおりである。
 ET=d/ER+OET
   =CET+OET・・・(1)
 式(1)中、「CET」は、クリアエッチング(ジャストエッチング)時間であり、モニターパターン(一般に数mm角の大きな抜きパターン)のエッチングが基板または位相シフト膜等の下層膜に達する時間である。
 したがって、エッチング速度(ER)の高速化、遮光膜膜厚(d)の薄膜化、オーバーエッチング時間(OET)の短縮化等を図ることによって、エッチング時間(ET)の短い遮光膜を有するフォトマスクブランクが求められている。
 オーバーエッチング時間(OET)を短縮するためには、ローディングによる断面形状バラツキを低減する必要があるが、エッチング速度(ER)が速すぎるとオーバーエッチング中にUnder-cutが発生し、他方、エッチング速度(ER)が遅すぎるとエッチング時間(ET)長くなってしまう。そこで、縦方向のエッチング速度(各層のエッチング速度)が制御され、結果的に、オーバーエッチング時間(OET)を短縮できる、フォトマスクブランクが求められている。
 エッチング速度(ER)の高速化するためには、通常、金属の含有率を低くする必要がある。しかしながら、金属の含有率を低く抑えると、単位膜厚当たりの光学濃度が低下してしまい、結果的に、遮光膜が所定の光学濃度を得るために必要な膜厚が大きくなってしまう。そこで、エッチング速度(ER)は高速であり、かつ、比較的薄い膜厚で充分な光学濃度を有する遮光膜を有するフォトマスクブランクが求められている。
 また、たとえば意図していないエッチング(たとえばUnder-cut)等を防止することによって、エッチングした後の遮光膜の断面の角度がパターン密度によらず基板に対して垂直に形成され、さらには、エッチングした後の遮光膜の断面が滑らかな形状に形成されるフォトマスクブランクが求められている。
 上述のフォトマスクブランクにおいて遮光膜で求められている特性は、ハーフトーン型位相シフトマスクブランクに形成されている位相シフト膜上の遮光膜についても同様の特性が求められている。
 さらに、位相シフト膜の膜厚を薄膜化させ、OPC(Optical Proximity Correction)パターンが倒壊することなく、パターン精度の要求を満足でき、光学特性の制御性、パターン欠陥検査が可能な位相シフトマスクおよびそのブランクのために最適化された遮光膜が求められている。
 本発明者は、遮光膜が3以上の層からなり、これらの層のエッチング速度が所定の条件を満たすことによって、微細なマスクパターンが形成できる位相シフトマスクブランクを見出した。本発明は、以下のような位相シフトマスクブランクおよび位相シフトマスクを提供する。
[1]
 ArFエキシマレーザ光で露光される位相シフトマスクの原版である位相シフトマスクブランクであって、
 透光性基板と位相シフト膜と遮光膜とを有し、
 位相シフト膜は、透光性基板と遮光膜との間に設けられ、
 ArFエキシマレーザ光に対する位相シフト膜の位相シフト量が160°~200°であり、さらに、前記位相シフト膜の透過率が2%以上40%以下であり、
 前記遮光膜は、透光性基板に近い側から下層、中間層および上層が順に積層された積層構造を有し、
 遮光膜全体の膜厚が60nm以下であり、
 下層は、金属を含有する膜からなり、第1のエッチング速度を有し、
 上層は、金属を含有する膜からなり、第3のエッチング速度を有し、
 中間層は、下層または上層に含まれる金属と同じ金属および窒素を含有する金属窒化膜からなり、第1のエッチング速度および第3のエッチング速度よりも遅い第2のエッチング速度を有することを特徴とする位相シフトマスクブランク。
[2]
 前記位相シフト膜の位相シフト量が180°未満であり、位相シフト膜の透過率が10%以上であり、
 前記遮光膜全体の膜厚が50nm以上60nm以下であることを特徴とする[1]に記載の位相シフトマスクブランク。
[3]
 前記位相シフト膜は、酸素と窒素からなる群から選ばれる1以上、金属、および、珪素を主たる構成要素とする材料からなることを特徴とする[1]または[2]記載の位相シフトマスクブランク。
[4]
 前記中間層の膜厚は、遮光膜全体の膜厚の30%以下であることを特徴とする[1]ないし[3]のいずれかに記載の位相シフトマスクブランク。
[5]
 前記中間層の膜厚は、下層の膜厚の40%以下であることを特徴とする[1]ないし[4]のいずれかに記載の位相シフトマスクブランク。
[6]
 前記中間層と上層の膜厚比は、1.0:0.7~1.0:7.0であることを特徴とする[1]ないし[5]の何れかに記載の位相シフトマスクブランク。
[7]
 前記上層または下層の単位膜厚当りの光学濃度は、0.04nm-1以下であり、前記中間層の単位膜厚当りの光学濃度は、0.05nm-1以上あることを特徴とする[1]ないし[6]のいずれかに記載の位相シフトマスクブランク。
[8]
 前記下層の光学濃度が1.1~1.8であり、
 前記中間層の光学濃度が0.1~0.35であり、
 前記上層の光学濃度が0.4~0.6であることを特徴とする[1]ないし[7]のいずれかに記載の位相シフトマスクブランク。
[9]
 前記下層のNとOの含有量の合計が40~55atom%であり、
 前記中間層のNとOの含有量の合計が30atom%以下であり、
 前記上層のNとOの含有量の合計が45~65atom%であることを特徴とする[1]ないし[8]のいずれかに記載の位相シフトマスクブランク。
[10]
 前記下層の単位膜厚当りの光学濃度は、0.03~0.04nm-1であり、
 前記中間層の単位膜厚当りの光学濃度は、0.05~0.06nm-1であることを特徴とする[1]ないし[9]のいずれかに記載の位相シフトマスクブランク。
[11]
 前記下層は、金属の含有量が25~50atm%、NとOの含有量の合計が35~65atm%であり、および、光学濃度が1.1~1.8であり、
 前記中間層は、金属とNを含み、金属の含有量が50~90atm%、膜厚が2~7nm、および、光学濃度が0.1~0.35であり、
 前記上層は、金属の含有量が25~50atm%、NとOの含有量の合計が45~65atm%であり、および、光学濃度が0.4~0.6であることを特徴とする[1]ないし[10]のいずれかに記載の位相シフトマスクブランク。
[12]
 前記下層は、Crの含有量が30~40atm%、NとOの含有量の合計が40~55atm%であり、かつ、光学濃度が1.1~1.8であり、
 前記中間層は、Crの含有量が50~90atm%、Nの含有量が3~25atm%含み、かつ、光学濃度が0.1~0.35であり、
 前記上層は、Crの含有量が30~40atm%、NとOの含有量の合計が50~60atm%であり、かつ、光学濃度が0.4~0.6であることを特徴とする[1]ないし[11]のいずれかに記載の位相シフトマスクブランク。
[13]
 前記下層、中間層および上層の各エッチング速度は、
 第2のエッチング速度<第1のエッチング速度≦第3のエッチング速度
の関係を有することを特徴とする[1]ないし[12]のいずれかに記載のフォトマスクブランク。
[14]
 [1]ないし[13]のいずれかに記載の位相シフトマスクブランクを用いて作製される位相シフトマスク。
 本発明の好ましい態様にかかる位相シフトマスクブランクの遮光膜の薄膜化が可能であり、それによってクリアエッチング時間(CET)が短縮されると共に、オーバーエッチング時間(OET)も短縮される。特に、本発明の好ましい態様に係るフォトマスクブランクは、複数層(特に3層)構造の遮光膜において、Cr等の金属の含有率の高い遮光層(吸収層)を設けることによって遮光膜の薄膜化が可能となり、クリアエッチング時間(CET)とオーバーエッチング時間(OET)を短縮できる。
 また、本発明の好ましい態様にかかる位相シフトマスクブランクは、高いエッチング速度(ER)の金属(たとえばCr)含有膜(反射防止層)と低いエッチング速度(ER)の金属含有膜(吸収層)とを組み合わせること、さらには、高いエッチング速度(ER)の層と低いエッチング速度(ER)の層との膜厚を所定のバランスにすると共に、低いエッチング速度(ER)の層を所定位置に配置することによって、オーバーエッチング時間(OET)を短縮できる。
 本発明の好ましい態様にかかる位相シフトマスクブランクは、クリアエッチング時間(CET)、オーバーエッチング時間(OET)または両者を短縮できることによって、遮光膜上に形成されるレジストを薄くすることができる。これによって、本発明の好ましい態様にかかる位相シフトマスクブランクは、パターン倒れ等の問題が生じにくくなり、微細なマスクパターンが形成できる。
 また、本発明の好ましい態様にかかる位相シフトマスクブランクは、金属含有量の異なる複数の層を所定の膜厚で積層する構造を有することによって、遮光膜全体としてエッチング速度(ER)は高速であり、かつ、所定の膜厚で充分な光学濃度を有する遮光膜を有する位相シフトマスクブランクを提供できる。
実施例1ないし4で製造した位相シフトマスクブランクの模式図である。 参考例1で製造したバイナリーマスクブランクの模式図である。
1 上層
2 中間層
3 下層
5 位相シフト膜
10 透光性基板
 本明細書中、「フォトマスクブランク」は、いわゆる「バイナリー型のフォトマスクブランク」、および、位相シフト膜と遮光膜とを有する「位相シフトマスクブランク」等を含む。なお、位相シフトマスクブランクは、位相シフト効果を発揮されるように位相シフトマスクとして用いても、位相シフト効果を発揮しないようにバイナリー型のフォトマスクブランク(たとえば、遮光膜と位相シフト膜を同一のパターンとなるようにエッチングし、位相シフト膜を遮光膜として機能させる場合)として用いてもよい。
 また、本発明のフォトマスクブランクには、レジスト膜が形成されたフォトマスクブランクもレジスト膜が形成されていないフォトマスクブランクも含まれる。したがって、本発明の位相シフトマスクブランクには、レジスト膜が形成された位相シフトマスクブランクもレジスト膜が形成されていない位相シフトマスクブランクも含まれる。
1 第1の態様
 本発明の発明者は、位相シフト膜上に形成された遮光膜の加工を行う際に、
(1)遮光層および表面反射防止層の2層構造では、下層の遮光層をエッチング速度が遅い材料で形成するとオーバーエッチング時間が長く必要になり、トータルエッチング時間が長くなってしまう一方、下層をエッチング速度が速い材料で形成するとクリアエッチング時間は短縮されるがローディングによってオーバーエッチング時間が長くなってしまう場合があるため、2層構造ではエッチング時間を短縮することが困難であること、
(2)オーバーエッチング時間を短くするために、下層、中間層および上層の3層構造とし、上層および下層に中間層よりもエッチング速度の速い材料を用いることが好ましいこと、
を見出し、第1の態様の位相シフトマスクブランクの発明を完成した。
 第1の態様の位相シフトマスクブランクは以下のとおりである。
 本発明のArFエキシマレーザ光で露光される位相シフトマスクの原版である位相シフトマスクブランクであって、
 透光性基板と位相シフト膜と遮光膜とを有し、
 位相シフト膜は、透光性基板と遮光膜との間に設けられ、
 ArFエキシマレーザ光に対する位相シフト膜の位相シフト量が160°~200°であり、さらに、前記位相シフト膜の透過率が2%以上40%以下であり、
 前記遮光膜は、透光性基板に近い側から下層、中間層および上層が順に積層された積層構造を有し、
 遮光膜全体の膜厚が60nm以下であり、
 下層は、金属を含有する膜からなり、第1のエッチング速度を有し、
 上層は、金属を含有する膜からなり、第3のエッチング速度を有し、
 中間層は、下層または上層に含まれる金属と同じ金属および窒素を含有する金属窒化膜からなり、第1のエッチング速度および第3のエッチング速度よりも遅い第2のエッチング速度を有することを特徴とする位相シフトマスクブランク。
1.1 透光性基板
 透光性基板は透光性を有する基板であれば特に限定されないが、石英ガラス基板、アルミノシリケートガラス基板、フッ化カルシウム基板、フッ化マグネシウム基板等を用いることができる。これらの中でも、石英ガラス基板は平坦度および平滑度が高く、フォトマスクを使用して半導体基板上へのパターン転写を行う場合、転写パターンの歪みが生じにくく高精度のパターン転写が行えるため好ましい。
1.2 遮光膜
 本発明の位相シフトマスクブランクにおける第1の態様の位相シフトマスクブランクの遮光膜は、透光性基板に近い側から下層、中間層および上層が順に積層された積層構造を有する。遮光膜は、下層、中間層および上層という少なくとも3層を有すればよく、さらに1層以上の層を有してもよい。
1.2.1 各層の構成
 下層は、遮光膜を形成する層の中で、中間層の下側(透光性基板に近い側)に設けられる層である。下層は、遮光膜の遮光性およびエッチング特性を制御する他、反射防止機能や位相シフト膜等との密着性を制御する構成とすること好ましい。
 下層が反射防止機能を備える場合には、遮光膜が形成された側とは反対側の透光性基板から入射される露光光が、下層により露光光源側に反射して転写特性に影響のない程度に裏面反射率を抑える程度であればよく、ArFエキシマレーザ光の波長に対して40%以下、好ましくは30%以下、さらに好ましくは20%以下が望ましい。
 中間層は、遮光膜を形成する層の中で、下層と上層との間に設けられる層である。中間層は、遮光膜の遮光性およびエッチング特性を制御する。また、多層膜中で最も高い遮光性を有する層であることが好ましい。
 上層は、遮光膜を形成する層の中で、中間層の上側(透光性基板に遠い側)に設けられる層である。上層は、遮光膜の遮光性およびエッチング特性を制御する他、位相シフトマスクブランクや位相シフトマスクにおける洗浄に対する耐薬性を制御する構成とすることが好ましい。また、上層は、位相シフトマスクとして用いた場合に、半導体基板等の被転写物からの反射光が再び被転写物に戻ってパターン精度を悪化させることを防止する効果を奏することが好ましく、表面反射率は、ArFエキシマレーザ光の波長に対して30%以下、好ましくは25%以下、さらに好ましくは20%以下が望ましい。
 第1の態様の位相シフトマスクブランクの遮光膜では、下層において、金属の含有量が25atm%未満である、もしくは、NとOの含有量の合計が65atm%を越える、中間層において、金属の含有量が50atm%未満である、または、上層において、金属の含有量が25atm%未満である、もしくは、NとOの含有量の合計が65atm%を越えると、遮光膜全体として充分な光学濃度を得ることができないまたは膜厚が厚くなってしまう場合がある。他方、下層において、金属の含有量が50atm%を越える、もしくは、NとOの含有量の合計が35atm未満である、中間層において、金属の含有量が90atm%を越える、または、上層において、金属の含有量が50atm%を越える、もしくは、NとOの含有量の合計が45atm%未満であると、遮光膜のエッチング時間が長くなってしまう場合がある。
 また、上層において、金属の含有量が50atm%を超える、もしくは、NとOの含有量の合計が45atm%未満であると、表面反射率が高くなりすぎてしまい、ArFエキシマレーザ光に対して要求される20%以下程度の表面反射率が得られなくなってしまうことがある。一方、上層において、金属の含有量が25atm%未満である、もしくは、NとOの含有量の合計が65atm%を越えると、欠陥品質が悪化する場合がある。
 第1の態様の位相シフトマスクブランクの遮光膜では、下層において、Crの含有量が30atm%未満である、もしくは、NとOの含有量の合計が55atm%を越える、中間層において、Crの含有量が50atm%未満である、もしくは、Nの含有量が25atm%を越える、または、上層において、Crの含有量が30atm%未満である、もしくは、NとOの含有量の合計が60atm%を越えると、遮光膜全体として充分な光学濃度を得ることができないまたは膜厚が厚くなってしまう場合がある。
 他方、下層において、Crの含有量が40atm%を越える、もしくは、NとOの含有量の合計が40atm%未満である、中間層において、Crの含有量が90atm%を越える、もしくは、Nの含有量が3%未満である、または、上層において、Crの含有量が40atm%を越える、もしくは、NとOの含有量の合計が50atm%未満であると、遮光膜のエッチング時間が長くなってしまう場合がある。
 また、第1の態様の位相シフトマスクブランクの遮光膜において、中間層のNの含有量が3~25atm%であると、一定の膜厚において比較的大きな光学濃度が得られるので好ましい。
 第1の態様の位相シフトマスクブランクの遮光膜では、下層において、金属の含有量が25~50atm%、かつNとOの含有量の合計が35~65atm%であることが好ましく、Crの含有量が30~40atm%、かつNとOの含有量の合計が40~55atm%であることがさらに好ましい。
 また、中間層は、金属とNとOを含み、かつ、金属の含有量が50~90atm%であることが好ましく、NとOの含有量の合計30atm%以下であり、かつ、Crの含有量が50~90atm%であることがさらに好ましい。
 また、上層は、金属の含有量が25~50atm%、かつ、NとOの含有量の合計が45~65atm%であることが好ましく、Crの含有量が30~40atm%、かつ、NとOの含有量の合計が50~60atm%であることがさらに好ましい。
1.2.2 各層の膜厚
 第1の態様の位相シフトマスクブランクの遮光膜では、エッチング速度の遅い中間層の膜厚が全体膜厚の30%以下であるから、遮光膜全体のエッチング時間を短縮することができる。中間層の膜厚が遮光膜全体の膜厚の30%を超えると、遮光膜の膜厚は薄膜化できるが、エッチング速度の速い下層または上層の割合が少なくなるため、エッチング時間を短縮できず好ましくない。
 また、第1の態様の位相シフトマスクブランクの遮光膜では、中間層の膜厚が遮光膜全体の膜厚の30%以下であるから、中間層がエッチングされている間に上層の上層で発生したローディングによる断面形状のバラツキが緩和される。その後、第1のエッチング速度で下層を高速にエッチングするので、下層をエッチングしている間に上層等におけるエッチングが意図されていない部分がさらにエッチングされるのを抑制し、パターンの断面形状を良好とすることができる。さらに、中間層の導入位置の最適化を図ることにより、断面形状をさらに良好にすることが可能となる。
 第1の態様の位相シフトマスクブランクの遮光膜において、中間層の膜厚を遮光膜全体の膜厚の20%以下、さらには10%以下とすると、さらにエッチング時間が短縮し、断面形状もより良好になるため好ましい。エッチング速度の遅い中間層が厚い場合には中間層での裾引きが大きく、その影響により下層のエッチング面積も狭くなり、トータルエッチング時間が長くなってしまうが、第1の態様の位相シフトマスクブランクの遮光膜においては、中間層が薄い場合には中間層での裾引きが小さく、下層のエッチングの進行が妨げられず好ましい。
 また、中間層を薄くする一方で、下層の膜厚を厚くすると、パターン断面の角度をより垂直に近い角度で形成することが可能となる。言い換えれば、遮光膜中において、エッチング速度の遅い中間層の位置を制御することによって、断面形状が良好になり、パターンの再現性を良好にすることができる。
 そこで、第1の態様の位相シフトマスクブランクの遮光膜では、中間層の膜厚は、下層の膜厚の40%以下が好ましく、15%以下がさらに好ましい。
 中間層と上層の膜厚比の値が1.0/0.7を越える場合、上層が薄くなりすぎて、所望の反射防止機能を有することができなくなる場合があり、また、膜厚比の値が1.0/7.0未満の場合、オーバーエッチング時間の短縮ができなくなる場合がある。
 そこで、第1の態様の位相シフトマスクブランクの遮光膜では、中間層と上層の膜厚比は、1.0:0.7~1.0:7.0、より好ましくは1.0:2.0~1.0:7.0であることが好ましい。このような膜厚比を有することによって、エッチングが意図されていない部分がさらにエッチングされるのを抑制できるため断面形状が良好になり、パターンの再現性を良好にすることができる。
 第1の態様の位相シフトマスクブランクの遮光膜では、中間層の膜厚は、前記遮光膜全体の膜厚の0.5%以上、より好ましくは3%以上である。これによって、微細パターンと比較的大きなパターンとではエッチング速度に差が生じるため(マイクロローディング)、中間層が薄すぎるとマイクロローディングによるCDリニアリティが悪化するが、それを防止することができる。
1.3 光学濃度
 本明細書において、光学濃度(OD)は、下記の関係を満たす。
 OD(遮光膜全体)=OD(上層)+OD(中間層)+OD(反射防止層)
 また、本明細書において、「単位膜厚当りの光学濃度」は、下記の関係を満たす。
 単位膜厚当りのOD(nm-1)=膜(層)のOD/膜(層)厚
 第1の態様の位相シフトマスクブランクの遮光膜において、下層の光学濃度が1.1未満の場合には光学濃度が不足するため、各層何れかの膜厚を厚くする必要が生じる一方、該光学濃度が1.8を超える場合にはエッチング速度が遅くなるため、各々薄膜化が困難となる。
 また、中間層の光学濃度が0.1未満の場合には遮光膜全体の光学濃度が不足するため、各層何れかの膜厚を厚くする必要が生じると共に、中間層での反射が低下するため十分に干渉効果が得られなくなる。その結果、表面反射率が高くなり所望の反射率が得られない。また、中間層の該光学濃度が0.35を超える場合にはエッチング時間が長くなり、レジスト薄膜化が困難となる。
 さらに、上層の光学濃度が0.4未満の場合には反射率が低くなりすぎると共に全体膜厚が厚くなり、該光学濃度が0.6を超える場合には反射率が高くなり過ぎる。
 そこで、第1の態様位相シフトマスクブランクの遮光膜は、下層の光学濃度が1.1~1.8であり、中間層の光学濃度が0.1~0.35であり、上層の光学濃度が0.4~0.6にすることにより、所望の膜厚、エッチング速度および光学特性を有する遮光膜を容易に得ることができる。
 具体的に、光学濃度が1.9の遮光膜を有する3つの態様のフォトマスクブランク((1)低い光学濃度の遮光膜;(2)高い光学濃度の遮光膜;(3) 高い光学濃度の層と低い光学濃度の層とを組み合わせた3層構造の遮光膜)を比較してみる。
(1) 低い光学濃度の単層の遮光膜
 高ERで単位膜厚当りOD=0.036nm-1である単層の遮光膜を形成する場合、遮光膜の膜厚は53nmとなる。このとき、クリアエッチング時間は最短となるが、オーバーエッチング時間は長くなり、垂直な形状が得られない場合がある。
(2) 高い光学濃度の単層の遮光膜
 低ERで単位膜厚当りOD=0.05nm-1である単層の遮光膜を形成する場合、膜厚は38nmとなる。このとき、クリアエッチング時間は最長となり、オーバーエッチング時間も長くなり、垂直な形状が得られない場合がある。
(3) 高い光学濃度の層と低い光学濃度の層とを組み合わせた3層構造の遮光膜
 低い光学濃度の層(単位膜厚当りOD=0.039nm-1)、高い光学濃度の層(単位膜厚当りOD=0.05nm-1)および低い光学濃度の層(単位膜厚当りOD=0.036nm-1)の3層で遮光膜を形成する場合、たとえば、各層の膜厚をそれぞれ30nm、4nmおよび14nmとすることによって、実現できる。このとき、クリアエッチング時間は上記(1)の遮光膜と(2)の遮光膜との中間程度の時間となり、オーバーエッチング時間は最適となる。
 このような点からも、高い光学濃度の層と低い光学濃度の層とを組み合わせた中間層は、エッチング時間の短縮化を図れることがわかる。これによって、レジスト薄膜化、断面形状良化およびローディングによるCDバラツキ低減の実現が可能となる。
1.4 エッチング速度
 遮光膜を構成する金属を含有する層に酸素を含有させるとエッチング速度が上昇するが、単位膜厚当りの光学濃度が小さくなるため、中間層の膜厚が厚くなってしまう。また、縦方向にエッチング速度差の無い単一速度の膜はローディングによる断面形状バラツキが発生しやすい。
 また、ArFエキシマレーザ光で露光されるフォトマスクの場合、半導体基板等の被転写物からの反射光が再び被転写物に戻ってパターン精度を悪化させるのを防止するために、下層および上層を有する構成が好ましい。しかし、この積層構造で遮光膜が一定膜厚(たとえば60nm)以下の制限があるなかで膜設計を行う場合、中間層の膜厚が厚くなると、裏面または上層の膜厚を薄くしなければならないが、単に薄くしただけでは全体の遮光性や反射率等の光学特性が確保されなくなる。
 そこで、第1の態様の位相シフトマスクブランクの遮光膜は、第1のエッチング速度(下層のエッチング速度)および第3のエッチング速度(上層のエッチング速度)よりも遅い第2のエッチング速度(中間層のエッチング速度)を有する。エッチング速度は、たとえば、金属膜に窒素や酸素を含有させることによって上昇させることができる。
 前記遮光膜では、中間層をエッチング速度の遅い金属窒化膜とすることによって、光学濃度を高く維持しながら遮光膜の薄膜化が可能となる。これにより、積層構造で全体膜厚が一定膜厚以下の所望の光学特性を有する遮光膜を容易に設計することが可能となり、レジスト膜の薄膜化が実現できる。
 また、金属窒化膜の第2のエッチング速度は、下層および上層のエッチング速度に比べ遅いため、縦方向のエッチングに変化を与えることができる。すなわち、エッチング速度の遅い金属窒化膜がエッチングされている間に、エッチング速度の速い上層で発生したローディングによる断面形状のバラツキが緩和される。中間層のエッチング終了後、第1のエッチング速度で下層を高速にエッチングするので、下層をエッチングしている間に上層等においてエッチングが意図されていない部分がさらにエッチングされるのを抑制し、パターンの断面形状を良好とすることができる。
 一般的に遮光膜中の金属は窒化されることにより、結晶構造の変化または膜密度の低下が生じるため、中間層が金属窒化膜の場合には、純金属膜の場合と比較して、引っ張り応力が緩和でき、膜応力の調整が容易になりやすい。
2 第2の態様
(1) 第2の態様の位相シフトマスクブランクは以下のとおりである。
 本発明のArFエキシマレーザ光で露光される位相シフトマスクの原版である位相シフトマスクブランクであって、
 透光性基板と位相シフト膜と遮光膜とを有し、
 位相シフト膜は、透光性基板と遮光膜との間に設けられ、
 遮光膜は複数層からなり、
 遮光膜全体の光学濃度が1.8~2.6であり、
 複数層を構成する層Aの光学濃度と層A以外の全ての層の光学濃度の総和との比が1:5~1:19であり、
 遮光膜を構成する各層は、金属を含有し、
 層A以外の層は、層Aに含まれる金属と同じ金属、NおよびOを含有する膜からなり、NとOの含有量の合計が40~65atom%であることを特徴とする。
 第2の態様の位相シフトマスクブランクの遮光膜は、遮光膜全体の光学濃度が1.8~2.6の範囲において、層Aの光学濃度と層A以外の全ての層の光学濃度の総和との比を1:5~1:19として、層A以外の全ての層によって遮光膜全体の光学濃度の大部分を担う構成としている。光学濃度は、組成および膜厚に依存しているが、層A以外の層のNとOの含有量の合計を40~65atom%としているので、所望の光学濃度を得るためには膜厚は比較的厚くなるが、エッチング速度は速い。これにより、エッチング速度の速い層の膜厚の割合が大きくなるので、エッチング時間の短縮が可能となり、結果的にレジスト膜の薄膜化が可能となる。
 第2の態様の位相シフトマスクブランクの遮光膜において、前記層Aの光学濃度に対する層A以外の層の光学濃度の比の値が1/5を越えると層A以外の層のエッチング速度が遅くなる一方、上記比の値が1/19未満では層A以外の層の膜厚が厚くなり過ぎる。また、第2の態様の遮光膜において、層A以外の層のN含有量とO含有量との合計が65atom%を超えると膜厚が厚くなる一方、上記合計が40atom%未満ではエッチング速度が遅くなる。
(2) 第2の態様の位相シフトマスクブランクの遮光膜において、層A以外の層の単位膜厚当りの光学濃度は、0.04nm-1以下であり、層Aの単位膜厚当りの光学濃度は、0.05nm-1以上あることが好ましい。
 前記遮光膜は、透光性基板に近い側から下層、中間層および上層が順に積層された積層構造を有し、
 下層の光学濃度が1.1~1.8であり、
 中間層の光学濃度が0.1~0.35であり、
 上層の光学濃度が0.4~0.6である態様が含まれる。
 当該態様の位相シフトマスクブランクは、各層の光学濃度をこれらの範囲内にすることにより、所望の膜厚、エッチング速度および光学特性を有する遮光膜を容易に得ることができる。
 第2の態様の位相シフトマスクブランクの遮光膜において、下層の光学濃度が1.1未満の場合には光学濃度が不足するため、各層何れかの膜厚を厚くする必要が生じる一方、該光学濃度が1.8を超える場合にはエッチング速度が遅くなるため、各々薄膜化が困難となる。
 また、第2の態様の位相シフトマスクブランクの遮光膜において、中間層の光学濃度が0.1未満の場合には遮光膜全体の光学濃度が不足するため、各層何れかの膜厚を厚くする必要が生じると共に、中間層での反射が低下するため十分に干渉効果が得られなくなる。その結果、表面反射率が高くなり所望の反射率が得られない。また、中間層の該光学濃度が0.35を超える場合にはエッチング時間が長くなり、レジスト薄膜化が困難となる。
 さらに、第2の態様の位相シフトマスクブランクの遮光膜において、上層の光学濃度が0.4未満の場合には反射率が低くなりすぎる(特に上層に反射防止機能を持たせた場合)と共に全体膜厚が厚くなり、該光学濃度が0.6を超える場合には反射率が高くなり過ぎる(特に上層に反射防止機能を持たせた場合)。
(3) 第2の態様の位相シフトマスクブランクの遮光膜は、
 下層の、NとOの含有量の合計が40~55atom%であり、
 中間層のNとOの含有量の合計が30atom%以下であり、
 上層のNとOの含有量の合計が45~65atom%であることが好ましい。
 当該態様の位相シフトマスクブランクは、各層のNとOの含有量を所定の範囲内にすることにより、所望の膜厚、エッチング速度および光学特性を有する遮光膜を容易に得ることができる。
 第2の態様の位相シフトマスクブランクの遮光膜において、下層のNとOの含有量の合計が40atom%未満の場合にはエッチング速度が遅くなり、NとOの含有量の合計が55atom%を超える場合には光学濃度が小さくなり(膜厚が厚くなり)、各々薄膜化が困難となる。
 また、第2の態様の位相シフトマスクブランクの遮光膜において、中間層のNとOの含有量の合計が30atom%を超える場合にはエッチング速度が遅くなり、薄膜化が困難となる。
 さらに、第2の態様の位相シフトマスクブランクの遮光膜において、上層のNとOの含有量の合計が45atom%未満の場合にはエッチング速度が遅くなり、NとOの含有量の合計が65atom%を超える場合には光学濃度が小さくなり(膜厚が厚くなり)、各々薄膜化が困難となる。
 第2の態様の位相シフトマスクブランクの遮光膜において、下層の単位膜厚当りの光学濃度は、0.03~0.04nm-1であり、中間層の単位膜厚当りの光学濃度は、0.05~0.06nm-1であることが好ましい。
 なお、第2の態様の位相シフトマスクブランクにおける透光性基板は、第1の態様と同様である。
3 第3の態様
(1) 第3の態様の位相シフトマスクブランクは以下のとおりである。
 本発明のArFエキシマレーザ光で露光される位相シフトマスクの原版である位相シフトマスクブランクであって、
 透光性基板と位相シフト膜と遮光膜とを有し、
 位相シフト膜は、透光性基板と遮光膜との間に設けられ、
 前記遮光膜は、透光性基板に近い側から下層、中間層および上層が順に積層された積層構造を有し、
 下層は、Crのターゲットを用い、不活性ガスが45~65vol%、CO2ガスが30~50vol%、N2ガスが1~15vol%である混合ガス雰囲気中で形成されたCrOCN膜からなり、
 中間層は、Crのターゲットを用い、不活性ガスが70~90vol%、N2ガスが5~25vol%である混合ガス雰囲気中で形成されたCrN膜からなり、
 上層は、Crのターゲットを用い、不活性ガスが40~60vol%、CO2ガスが25~45vol%、N2ガスが5~20vol%である混合ガス雰囲気中で形成されたCrOCN膜からなることを特徴とする位相シフトマスクブランク。
 第3の態様の位相シフトマスクブランクの遮光膜は、膜厚が60nm以下で所望の光学特性を有する積層構造である。
 また、第3の態様の位相シフトマスクブランクの遮光膜において、上下層を形成する場合、O2ガスやNOガスを用いることができるが、酸化度の高い膜を形成しようとすると、プラズマを安定化させるため比較的ガス圧の高い状態でスパッタする必要がある。そうすると得られる膜がもろくなり、チャンバー内に付着した膜が剥がれて成膜中の基板に付着するため、欠陥品質が悪化しやすい。
 これに対して、CO2ガスを用いた場合には、比較的ガス圧の低い状態で酸化度の制御が可能であり、膜質がもろくならない程度のガス流量下で成膜することができる。
 そこで、欠陥品質を良好にするという点から、第3の態様の位相シフトマスクブランクの遮光膜は、遮光膜を構成する相を形成するために用いる雰囲気ガスとしてCO2ガスを用いることが好ましい。
(2) 第3の態様の位相シフトマスクブランクの遮光膜において、下層を形成するための不活性ガスは、10~30vol%のArガスと、20~40vol%のHeガスとからなり、上層を形成するための不活性ガスは、10~30vol%のArガスと、20~40vol%のHeガスとからなる態様が含まれる。
 第3の態様の位相シフトマスクブランクによれば、雰囲気ガスにHeガスを入れると、Cr系遮光膜の場合には得られる層の圧縮応力が増すので、膜応力を制御することができ、また、Heガスは、主に膜応力の制御にのみ作用するため、膜応力設計が容易になるので好ましい。
 なお、第3の態様の位相シフトマスクブランクにおける透光性基板は、第1の態様と同様である。
4 第4の態様
(1) 第4の態様の位相シフトマスクブランクは以下のとおりである。
 本発明のArFエキシマレーザ光で露光される位相シフトマスクの原版である位相シフトマスクブランクであって、
 透光性基板と位相シフト膜と遮光膜とを有し、
 位相シフト膜は、透光性基板と遮光膜との間に設けられ、
 前記遮光膜は、透光性基板に近い側から下層、中間層および上層が順に積層された積層構造を有し、
 下層は、金属の含有量が25~50atm%、NとOの含有量の合計が35~65atm%であり、および、光学濃度が1.1~1.8であり、
 中間層は、金属とNを含み、金属の含有量が50~90atm%、膜厚が2~6nm、および、光学濃度が0.1~0.35であり、
 上層は、金属の含有量が25~50atm%、NとOの含有量の合計が45~65atm%であり、および、光学濃度が0.4~0.6であることを特徴とする位相シフトマスクブランク。
 第4の態様の位相シフトマスクブランクの遮光膜では、下層において、金属の含有量が25atm%未満である、もしくは、NとOの含有量の合計が65atm%を越える、中間層において、金属の含有量が50atm%未満である、または、上層において、金属の含有量が25atm%未満である、もしくは、NとOの含有量の合計が65atm%を越えると、遮光膜全体として充分な光学濃度を得ることができない場合がある。他方、下層において、金属の含有量が50atm%を越える、もしくは、NとOの含有量の合計が35atm未満である、中間層において、金属の含有量が90atm%を越える、または、上層において、金属の含有量が50atm%を越える、もしくは、NとOの含有量の合計が45atm%未満であると、遮光膜のエッチング時間が長くなってしまう場合がある。
 また、第4の態様の位相シフトマスクブランクの遮光膜において、中間層のNの含有量が3~25atm%であると、一定の膜厚において比較的大きな光学濃度が得られるので好ましい。
 第4の態様の位相シフトマスクブランクの遮光膜の中間層において、Nの含有量が3~25atm%であることが好ましい。さらに、中間層において、単位膜厚当たりの光学濃度が0.05~0.06nm-1であることが好ましい。
(2) 第4の態様の位相シフトマスクブランクの遮光膜において、下層は、Crの含有量が30~40atm%、NとOの含有量の合計が40~55atm%であり、かつ、光学濃度が1.1~1.8であり、
 中間層は、Crの含有量が50~90atm%、Nの含有量が3~25atm%含み、かつ、光学濃度が0.1~0.35であり、
 上層は、Crの含有量が30~40atm%、NとOの含有量の合計が50~60atm%であり、かつ、光学濃度が0.4~0.6であることが好ましい。
 当該態様の位相シフトマスクブランクの遮光膜では、下層において、Crの含有量が30atm%未満である、もしくは、NとOの含有量の合計が55atm%を越える、中間層において、Crの含有量が50atm%未満である、もしくは、Nの含有量が25atm%を越える、または、上層において、Crの含有量が30atm%未満である、もしくは、NとOの含有量の合計が60atm%を越えると、遮光膜全体として充分な光学濃度を得ることができない場合がある。他方、下層において、Crの含有量が40atm%を越える、もしくは、NとOの含有量の合計が40atm%未満である、中間層において、Crの含有量が90atm%を越える、もしくは、Nの含有量の合計が3atm%未満である、または、上層において、Crの含有量が40atm%を越える、もしくは、NとOの含有量の合計が50atm%未満であると、遮光膜のエッチング時間が長くなってしまう場合がある。
 なお、第4の態様の位相シフトマスクブランクにおける透光性基板は、第1の態様と同様である。
5 第1~第4の態様の遮光膜における好ましい態様
5.1 エッチング速度
 第1、第3および第4の態様の位相シフトマスクブランクおよび遮光膜が3層構造を有する第2の態様の位相シフトマスクブランクにおいて、「第2のエッチング速度(中間層のエッチング速度)<第1のエッチング速度(下層のエッチング速度)≦第3のエッチング速度(上層のエッチング速度)」の関係であると、パターンの断面の角度が垂直に近づくため好ましい。また、第1のエッチング速度<第3のエッチング速度とすれば、さらにパターンの断面の角度が垂直に近づくため好ましい。
 また、第2のエッチング速度と第3のエッチング速度との比は、1.0:1.1~1.0:2.0が好ましい。第3のエッチング速度が第2のエッチング速度の2.0倍を超える場合には、上下層と中間層の断面に段差が生じる一方、1.1倍未満の場合には全体のエッチング時間の短縮ができなくなる。また、前記第3のエッチング速度は0.67nm/sec以上であり、前記第2のエッチング速度は0.44nm/sec以下であることが好ましい。
5.2 遮光膜の組成
 第1、第3および第4の態様の位相シフトマスクブランクおよび遮光膜が3層構造を有する第2の態様の位相シフトマスクブランクにおいて、下層、上層または中間層に含有される金属としては、Cr、Mo、W、Ta等の遷移金属が好ましいが、Crは塩素系および酸素系でドライエッチングを行うので、ガラス基板またはハーフトーン型位相シフト膜との選択比がとれるので特に好ましい。また、Crはドライエッチングだけでなく、ウェットエッチングも可能となるため、他の金属と比較してより好ましい。
 第1、第3および第4の態様の位相シフトマスクブランクおよび遮光膜が3層構造を有する第2の態様の位相シフトマスクブランクにおいて、下層または上層は、Crの含有量が50atm%以下であり、少なくともO、C、Nの何れかを含む層であり、中間層は、Crの含有量が50%atm以上の膜であることが好ましい。このような構成を有することによって、第2のエッチング速度<第1のエッチング速度または第3のエッチング速度の関係を有する膜を容易に形成することができるからである。
 下層または上層はCrN、CrON、CrO、CrC、CrCOまたはCrOCNからなることが好ましく、これらの中でも、CrOCNからなることが特に好ましい。
 また、中間層は、CrN、CrON、CrO、CrC、CrCOまたはCrOCNからなり、CrNまたはCrONがより好ましい。
 下層または上層がCrOCNからなる場合、Cr-Cr結合成分とCrO成分とが混在する態様が好ましい。また、中間層がCrNからなる場合、Cr-Cr結合成分が主体であり、CrO成分はわずかである態様が好ましい。CrO成分を多くすることにより、エッチング速度を速くすることが可能となる。
 さらに、本実施の形態の下層または上層は、緻密なアモルファス構造であることが好ましい。
 また、炭素はクロム炭化物(Cr-C)が主体であり、その他の成分C-C、C-O、C-Nが混在した状態であることが好ましい。
 また、下層と上層とは、互いに組成が同一であり、組成比と膜厚が互いに異なることが好ましい。このような構成を有することによって、下層と上層を形成する際の雰囲気ガスを同じとすることができるので、遮光膜の成膜工程が容易になるからである。このとき、上層は欠陥品質が良好となるように酸化度を調整し、下層は光学濃度を高くしつつ反射率を下げるように調整することが容易である。
5.3 遮光膜の光学濃度
 第1~第4の位相シフトマスクブランクにおいて遮光膜が中間層を有する場合、ArFエキシマレーザ光に対する中間層の単位膜厚当たりの光学濃度が0.05nm-1以上であることが好ましい。
5.4 フラットネス変化量
 第1~第4の態様の位相シフトマスクブランクにおいて、成膜前後のフラットネス変化量が0.05μm以下であることが好ましい。
5.5 レジスト膜・エッチングマスク膜
 第1~第4の態様の位相シフトマスクブランクにおいて、遮光膜上に膜厚が200nm以下、より好ましくは150nm以下のレジスト膜を設けてもよい。
 また、第1~第4の態様の位相シフトマスクブランクにおいて、遮光膜上にエッチングマスク膜を設けてもよい。遮光膜がCrを含む場合、ドライエッチング加工は、エッチングガスに塩素および酸素を用いることによって、塩化クロミルの形で昇華させるのが一般的であるが、レジストの主成分は炭素であるから、酸素プラズマに対してレジストは非常に弱い。したがって、エッチングマスク膜を設けることにより、レジスト膜に対する負荷を低減することができるので、レジスト膜を100nm以下とより薄膜化することが可能となる。遮光膜がCrを主成分とする場合には、エッチングマスク膜は選択比が高いSiON、SiN、SiO2、MoSiON、MoSiNなどを5~20nmの膜厚で設けることが好ましい。また、Siを20%以上含有する有機膜でも膜厚を20~40nmとすることによって、エッチングマスク膜として設けることができる。
 第1~第4の態様の位相シフトマスクブランクにおいて、遮光膜上にエッチングマスク膜を設けることによって、よりレジストの薄膜化が可能となる。具体的には、レジスト膜厚を100nm以下とすると、パターン形状の悪化が顕著であり、エッチングマスク膜にマスクパターンを転写したときのLER(Line Edge Roughness)が悪化してしまうため、エッチングマスク膜のエッチング時間を短縮する必要があることを本発明者は見出した。上記実施の形態の遮光膜は、エッチング時間が短いため、エッチングマスク膜の膜厚を薄くすることができ、エッチングマスク膜のエッチング時間を短縮することができる。
 また、第1~第4の態様の位相シフトマスクブランクにおいて、遮光膜における上層または下層がアモルファス構造を有すると、その表面粗さが小さいため、上層のエッチングマスク膜の表面粗さを小さくすることができるので好ましい。その結果、エッチングマスク膜をエッチングしたときの断面形状およびLERが良好となるため、エッチングマスク膜パターンをマスクに下層の遮光膜をエッチングしたときに、遮光膜の断面形状およびLERが悪化するのを防止することができる。
5.6 位相シフト膜
 本発明の位相シフトマスクブランクは、透光性基板と遮光膜との間にハーフトーン型位相シフト膜を有する。
 通常、位相シフト量は180°に設定されるが、液浸リソグラフィの露光条件においては、必ずしも位相シフト量が180°である必要はなく、むしろ、位相シフト量を180°未満に設定して位相シフト膜を薄膜化した方が、OPCパターンや回路パターンの断面形状が良化して好ましい。
 具体的には、位相シフト量は、基板を掘り込まなくても十分に位相シフト効果による解像性を高めて良好なパターンが得られる160°以上180°未満が好ましい。
 また、この位相シフト膜の透過率は、2~40%であることが好ましい。
 位相シフト膜の透過率が2%以上10%未満の場合、位相シフト膜と遮光膜との積層膜において、所定の光学濃度OD(たとえば、2.8以上、好ましくは、3.0以上)を有するために必要な遮光膜の膜厚に設定され、遮光膜全体の膜厚は、50nm未満とすることが可能となる。
 また、転写されるパターンの解像性を高めるために、位相シフト膜の透過率を10%以上40%以下(特に、好ましくは10%以上30%以下、さらに好ましくは10%以上20%以下)とした場合、上記と同様に、位相シフト膜と遮光膜との積層膜において、所定の光学濃度OD(たとえば、2.8以上、好ましくは、3.0以上)を有するために必要な遮光膜の膜厚に設定され、遮光膜全体の膜厚は、50nm以上60nm以下とすることが可能となる。 
 遮光膜の膜厚を60nm以下としているので、遮光膜パターンの断面形状が垂直形状に近く、また微細なパターン精度を得ることが容易となり、したがって、この遮光膜パターンをマスクとしてパターニングする位相シフト膜パターンも微細なパターン精度が得やすくなる。
 また、位相シフト膜と遮光膜との積層膜の光学濃度を3.1とした場合、位相シフト膜の透過率が10%、12%、15%および20%のときには、遮光膜全体として必要な光学濃度は各々約2.10、2.18、2.28および2.40となる。
 この場合、遮光膜各層の好ましい光学濃度の範囲および好ましい膜厚の範囲は、以下のとおりである。
 位相シフト膜の透過率が10%以上20%以下の場合、下層の光学濃度が1.3~1.8、膜厚が33nm~46nm、中間層の光学濃度が0.1~0.35、膜厚が2nm~7nm、上層の光学濃度が0.4~0.6、膜厚が11nm~17nmである。
 位相シフト膜の透過率が10%以上の場合は、日本国特許第3445329号公報の実施例1および図1に記載されている、パターン転写領域内に形成された位相シフト膜パターン上に遮光膜パターンと、パターン非転写領域に所定以上の幅を有する遮光膜が形成された構造の位相シフトマスクが一般的である。
 また、位相シフト膜の透過率が10%未満(たとえば、2~10%未満)の場合は、日本国特許第3411613号公報の実施例1および図1に記載している、パターン転写領域内に形成された位相シフト膜パターン上に遮光膜パターンは形成されず、パターン非転写領域に所定以上の幅を有する遮光膜が形成された構造の位相シフトマスクが一般的である。
 位相シフト膜は、MoSiNまたはMoSiONからなる材料が好ましい。これらの材料からなる位相シフト膜上に、上述の遮光膜を設けることによって、従来のCr系遮光膜を設ける場合と比較して、位相シフト膜パターンのLERを良好にすることが可能となる。
 具体的には、従来のCr系遮光膜はポーラス状柱状構造であり、このためCr系遮光膜パターンのLERが大きくなってしまうので、位相シフト膜がアモルファス構造であるにもかかわらず、位相シフト膜をドライエッチングしたときにCr系遮光膜のLERによって、位相シフト膜パターンのLERが悪化していた。しかしながら、本発明の好ましい態様では、遮光膜における上層または下層はアモルファス構造であるため、遮光膜をドライエッチングしたときの遮光膜パターンのLERを小さくすることが可能となる。その結果、遮光膜パターンをマスクに位相シフト膜をドライエッチングしたときに、位相シフト膜パターンのLERを悪化させることなく、位相シフト膜のLERを良好にすることができる。
7 位相シフトマスクおよびその製造方法
 本発明の位相シフトマスクブランクから得られる位相シフトマスクとその製造方法について説明する。
 まず、遮光膜が形成された位相シフトマスクブランクにレジストを塗布し、乾燥してレジスト膜を得る。レジストは、使用する描画装置に応じて適切なものを選択する必要があるが、通常使用されるEB描画用としては、芳香族骨格をポリマー中に有するポジ型またはネガ型のレジスト、また、本発明が特に有効に用いられる微細パターン用の位相シフトマスク製造用としては、化学増幅型レジストを用いることが好ましい。
 レジスト膜厚は良好なパターン形状が得られる範囲で、かつエッチングマスクとしての機能を果たし得る範囲である必要があるが、特にArF露光用マスクとして微細なパターンを形成しようとした場合には、膜厚は200nm以下であることが好ましく、更に150nm以下であることが好ましい。なお、シリコン系樹脂を使用したレジストと芳香族系樹脂を使用した下層膜の組み合わせによる2層レジスト法や、芳香族系化学増幅型レジストとシリコン系表面処理剤を組み合わせた表面イメージング法を利用した場合には、更に膜厚を減じることも可能である。塗布条件、乾燥方法については使用するそれぞれのレジストに適する方法を適宜選定する。
 なお、微細なレジストパターンの剥がれや、倒れという問題の発生を低減するために、レジストを塗布する前に位相シフトマスクブランクの表面上に、樹脂層を形成してもよい。また、樹脂層の形成に替えて、レジストを塗布する前に基板(位相シフトマスクブランク)表面の表面エネルギーを下げるための表面処理を行ってもよい。表面処理の方法としては、たとえば、半導体製造工程で常用されるHMDSやその他の有機珪素系表面処理剤で表面をアルキルシリル化する方法が挙げられる。
 次に、レジスト膜が形成された位相シフトマスクブランクにおけるレジストへの描画は、EB照射による方法や、光照射による方法があるが、一般的にはEB照射による方法が微細パターンを形成するためには好ましい方法である。化学増幅型レジストを使用した場合には、通常3~40μC/cmの範囲のエネルギーにより描画を行い、描画後、加熱処理を行い、その後にレジスト膜を現像処理してレジストパターンを得る。
 上記で得たレジストパターンをエッチングマスクとして遮光膜または遮光膜と他の膜(位相シフト膜等)のエッチング加工を行う。エッチング加工は遮光膜(表面層、中間層、反射防止層等)や他の膜の組成によって公知の塩素系やフッ素系のドライエッチングを用いることができる。
 エッチングにより遮光パターンを得た後、レジストを所定の剥離液で剥離すると、遮光膜パターンが形成されたフォトマスクが得られる。
8 パターン転写
 本発明の位相シフトマスクは、開口数がNA>1の露光方法および200nm以下の露光光波長を利用して半導体デザインルールにおけるDRAMハーフピッチ(hp)45nm以降の微細パターンの形成するパターン転写方法において使用されるマスクとして特に有用である。
 本発明の位相シフトマスクブランクは、位相シフトマスクブランク上に100nm未満の線幅のレジストパターンを形成するために用いられるものである場合に特に有効である。このような位相シフトマスクブランクとしては、OPC構造を有するマスクが挙げられる。このOPCマスクでは、本パターンの解像性を向上させる目的で本パターンの周囲に設けられる補助パターンの幅が最も狭いため、これらのパターンを有する位相シフトマスクを用いたパターン転写に、特に有用である。
 以下、実施例を用いて、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
 [実施例1]
(フォトマスクブランクの作製)
 本実施例では、透光性基板10上に位相シフト膜5と3つの層からなる遮光膜とが設けられたハーフトーン型位相シフトマスクブランクを製造した(図1参照)。
 まず、サイズ6インチ角、厚さ0.25インチの石英ガラスからなる透光性基板10上に、枚葉式スパッタ装置を用い、Mo、SiおよびNを主たる構成要素とする単層で構成されたArFエキシマレーザー(波長193nm)用ハーフトーン型位相シフト膜5を形成した(膜厚69nm)。
 表1にも示すように、スパッタリング(DCスパッタリング)の条件は以下のとおりであった。
 スパッタターゲット:MoとSiとの混合ターゲット(Mo:Si=8:92mol%)
 スパッタガス:ArとNとHeとの混合ガス雰囲気(Ar:9sccm、N2:81sccm、He:76sccm)
 放電中のガス圧:0.3Pa
 印加電力:2.8kW
 ArFエキシマレーザー(波長193nm)において、得られた位相シフト膜5の透過率はそれぞれ5.5%、位相シフト量が約180°であった。
 次に、位相シフト膜5を形成した装置と同様のスパッタ装置を用い、CrOCNからなる下層3を形成した(膜厚30nm)。スパッタリング(DCスパッタリング)の条件は表1に示すとおりであった。
 その後、下層3を形成した装置と同様のスパッタ装置を用い、CrNからなる中間層2を形成した(膜厚4nm)。スパッタリング(DCスパッタリング)の条件は表1に示すとおりであった。
 さらに、中間層2を形成した装置と同様のスパッタ装置を用い、CrOCNからなる上層1を形成した(膜厚14nm)。スパッタリング(DCスパッタリング)の条件は表1に示すとおりであった。
 なお、表1におけるスパッタガスの流量は、体積百分率に換算すると、以下のとおりになる。
 上層1:Ar=21.0vol%、CO=36.8vol%、N=10.5vol%、He=31.6vol%
 中間層2:Ar=83.3vol%、N=16.7vol%
 下層3:Ar=22.0vol%、CO=38.9vol%、N=5.6vol%、He=33.3vol%
 このようにして、石英ガラスからなる透光性基板上に位相シフト膜5、下層3、中間層2、上層1が順に積層されたフォトマスクブランクが得られた。下層3、中間層2および上層1からなる遮光膜における波長193.4nmの光に対する光学濃度(OD)は1.9であった。また、各層における光学濃度は表1に示すとおりであった。
 また、得られたフォトマスクブランクの上層1と中間層2と下層3の組成と原子数密度をRBS(Rutherford Backscattering Spectrometry)により分析した。RBSは、面密度(atms/cm)に対する表面組成を深さ方向に分析する手法であり、層毎の膜厚が既知であれば、原子数密度(atms/cm)を以下の式から算出することができる。
      原子数密度=面密度/膜厚
上記手法により、上層1の原子数密度を算出した。
 その結果、上層1(膜厚14nm)の膜組成は、Crが34atom%、Cが11atom%、Oが39atom%およびNが16atom%であった。また、上層1のクロム比は、C/Crが0.3、O/Crが1.2、N/Crが0.5であった。さらに、上層1の原子数密度は、10.5×1022atms/cmであった。
 中間層2(膜厚4nm)の膜組成は、Crが少なくとも64atom%以上、Nが少なくとも8atom%以上であった。
 また、下層3(膜厚30nm)の膜組成は、Crが36atom%、Cが15atom%、Oが39atom%およびNが9atom%であった。また、下層3のクロム比は、C/Crが0.4、O/Crが1.1、N/Crが0.3であった。
 また、得られたフォトマスクブランクの断面をTEM(透過型電子顕微鏡)およびX線回折装置(XRD)で観察したところ、上層1はグレインサイズが1~2nmのアモルファス構造であった。原子間力顕微鏡(AFM)を用いて表面粗さを測定したところ、Ra=0.45nmであった。
 本実施例で得られたフォトマスクブランクに濃度50ppmのオゾン水を流量1.4L/分で60分間スイングアームにて揺動させながら基板表面に供給し、遮光膜の膜厚、表面反射率および光学濃度の変化量を各々測定して耐薬性の評価を行った。
 その結果、遮光膜の膜厚はオゾン水の噴霧によって変化しなかった。また、表面反射率は、波長193nmの光では+0.82%変化した。遮光膜の光学濃度は、-0.04変化した。
 また、本実施例の上層1と全く同じ層を、スパッタリングによってガラス基板に直接形成し、上層1に濃度50ppmのオゾン水を60分間噴霧することによる反射率の変化量を測定した。なお、本実施例における測定では、分光光度計(日立ハイテクノロジー製:U-4100)にてオゾン水噴霧前後にて反射スペクトルを測定し、その変化量を計算した。
 その結果、波長193nmの光では+0.7%、257nmの光では+1.5%、365nmでは+2.0%、488nmでは+1.2%変化した。本明細書中、「+」は反射率の増加、「-」は反射率の減少を表す。
 このように、本実施例の遮光膜は、オゾン処理に対して高い耐薬性を有していることが確認された。
(フォトマスクの作製)
 得られたフォトマスクブランク上に、電子線描画(露光)用化学増幅型ポジレジスト(PRL009:富士フィルムエレクトロニクスマテリアルズ社製)をスピンコート法により膜厚が150nmとなるように塗布した。形成されたレジスト膜に対し、電子線描画装置を用いて所望のパターン描画を行った後、所定の現像液で現像してレジストパターンを形成した。
 次に、上記レジストパターンに沿って、下層3、中間層2および上層1からなる遮光膜のドライエッチングを行って、遮光膜パターンを形成した。ドライエッチングガスとしてはClとO(Cl:O=4:1)との混合ガスを用いた。
 上記遮光膜のドライエッチングにおいて、各層のエッチング速度は表1のとおりであった。遮光膜全体のクリアエッチング時間は84.5secであり、後述の比較例1と比べて8%程度の短縮が確認された。また、SEM(Scanning Electron Microscopy)を用いて遮光膜パターンを断面観察したところ、遮光膜の断面の角度が基板に対して垂直に形成され良好であった。さらに、オーバーエッチング時間を短くしても垂直な断面形状が得られ、トータルエッチング時間は比較例1と比べて20%程度短縮可能であることが確認された。
 次に、上記レジストパターンおよび遮光膜パターンをマスクに、位相シフト膜のエッチングを行って、位相シフト膜パターンを形成した。この位相シフト膜のエッチングにおいては、上記遮光膜パターンの断面形状が影響するが、遮光膜パターンの断面形状が良好であるために、位相シフト膜パターンの断面形状も良好となった。
 その後、残存するレジストパターンを剥離して、再度レジスト膜を塗布し、転写領域内の不要な遮光膜パターンを除去するためのパターン露光を行った後、該レジスト膜を現像してレジストパターンを形成した。次いで、ウェットエッチングを行って、不要な遮光膜パターンを除去し、残存するレジストパターンを剥離して、フォトマスクを得た。
 得られたフォトマスクに対して、解像性評価を行った。レジスト膜の解像性は良好であり、遮光膜パターンの解像性は60nm(DRAM hp32nmに相当)未満であった。
 実施例1で製造した位相シフトマスクブランクにおいて、中間層の膜厚を1としたときの上層の膜厚比は3.5、遮光膜の全体膜厚に対する中間層の膜厚割合は8%、下層の膜厚に対する中間層の膜厚割合は13%であった(表2参照)。
 [参考例1]
 本発明の位相シフトマスクに設けられた遮光膜を検証するために、本参考例では、透光性基板10上に3つの層からなる遮光膜が設けられたバイナリーマスクブランクを製造した(図2参照)。
 すなわち、スパッタリングの条件を表1に示すとおりに設定した以外は実施例1と同じ条件で反応性スパッタリングを行った。
 なお、表1におけるスパッタガスの流量は、体積百分率に換算すると、以下のとおりになる。
 上層1:Ar=21.0vol%、CO=36.8vol%、N=10.5vol%、He=31.6vol%
 中間層2:Ar=30.8vol%、NO=23.1vol%、He=46.2vol%
 下層3:Ar=23.5vol%、CO=29.4vol%、N=11.8vol%、He=35.3vol%
 このようにして、図2に示すような、石英ガラスからなる透光性基板10上に下層3、中間層2、上層1が順に積層されたフォトマスクブランクが得られた。なお、下層3、中間層2および上層1からなる遮光膜における波長193.4nmの光に対する光学濃度(OD)は3であった。また、各層における光学濃度は表1に示すとおりであった。
 次に、実施例1と同様に、得られた上層1、中間層2および下層3の組成と上層1の原子数密度をRBSにより分析した。
 その結果、上層1(膜厚14nm)の膜組成は、Crが32atom%、Cが16atom%、Oが37atom%およびNが16atom%であった。また、上層1のクロム比は、C/Crが0.5、O/Crが1.2、N/Crが0.5であった。さらに、上層1の原子数密度は、11.0×1022atms/cmであった。
 中間層2(膜厚25nm)の膜組成は、Crが87atom%、Oが9atom%およびNが4atom%であった。また、中間層2のクロム比は、O/Crが0.1、N/Crが0.05であった。
 また、下層3(膜厚25nm)の膜組成は、Crが49atom%、Cが11atom%、Oが26atom%およびNが14atom%であった。また、下層3のクロム比は、C/Crが0.2、O/Crが0.5、N/Crが0.3であった。
 また、得られたフォトマスクブランクの断面をTEM(透過型電子顕微鏡)およびX線回折装置(XRD)で観察したところ、上層1はグレインサイズが1~2nmのアモルファス構造であった。原子間力顕微鏡(AFM)を用いて表面粗さを測定したところ、Ra=0.28nmであった。
 本参考例で得られたフォトマスクブランクに濃度50ppmのオゾン水を流量1.4L/分で60分間スイングアームにて揺動させながら基板表面に供給し、遮光膜の膜厚、表面反射率および光学濃度の変化量を各々測定して耐薬性の評価を行った。
 その結果、遮光膜の膜厚はオゾン水の噴霧によって変化しなかった。また、表面反射率は、波長193nmの光では-0.02%変化した。遮光膜の光学濃度は、-0.06変化した。
 また、本参考例の上層1と全く同じ層を、スパッタリングによってガラス基板に直接形成し、実施例1と同様の測定方法で、上層1に濃度50ppmのオゾン水を60分間噴霧することによる反射率の変化量を測定した。
 その結果、波長193nmの光では+0.5%、257nmの光では+2.1%、365nmでは+5.3%、488nmでは+4.6%変化した。
 このように、本参考例の遮光膜は、オゾン処理に対して高い耐薬性を有していることが確認された。
 得られたフォトマスクブランク上に、電子線描画(露光)用化学増幅型ポジレジスト(PRL009:富士フィルムエレクトロニクスマテリアルズ社製)をスピンコート法により膜厚が200nmとなるように塗布した。形成されたレジスト膜に対し、電子線描画装置を用いて所望のパターン描画を行った後、所定の現像液で現像してレジストパターンを形成した。
 次に、上記レジストパターンに沿って、下層3、中間層2および上層1からなる遮光膜のドライエッチングを行って、遮光膜パターンを形成した。ドライエッチングガスとしてはClとO(Cl:O=4:1)との混合ガスを用いた。その後、残存するレジストパターンを剥離して、フォトマスクを得た。
 上記遮光膜のドライエッチングにおいて、各層のエッチング速度は表1のとおりであった。また、実施例1と同様に遮光膜パターンを観察したところ、ややテーパーがあるが、遮光膜の断面の角度が基板に対して垂直に形成され良好であった。さらに、オーバーエッチング時間を短くしても垂直な断面形状が得られ、トータルエッチング時間を比較例2と比べて25%程度短縮可能であることが確認された。
 得られたフォトマスクに対して、解像性評価を行った。レジスト膜の解像性は良好であり、遮光膜パターンの解像性は70nm(DRAM hp45nmに相当)未満であった。
 [参考例2]
 参考例1と同様に、本発明の位相シフトマスクに設けられた遮光膜を検証するために、本参考例では、参考例1において、中間層2の成膜条件および膜厚、下層の膜厚を変更する以外は、参考例1と同様のバイナリーマスクブランクを製造した。
 すなわち、スパッタリングの条件を表1に示すとおりに設定した以外は実施例2と同じ条件で反応性スパッタリングを行った。
 なお、表1におけるスパッタガスの流量は、体積百分率に換算すると、以下のとおりになる。
 上層1:Ar=21.0vol%、CO=36.8vol%、N=10.5vol%、He=31.6vol%
 中間層2:Ar=27.2vol%、NO=18.2vol%、He=54.5vol%
 下層3:Ar=23.5vol%、CO=29.4vol%、N=11.8vol%、He=35.3vol%
 このようにして、図2に示すような、石英ガラスからなる透光性基板10上に下層3、中間層2、上層1が順に積層されたフォトマスクブランクが得られた。なお、下層3、中間層2および上層1からなる遮光膜における波長193.4nmの光に対する光学濃度(OD)は3.1であった。また、各層における光学濃度は表1に示すとおりであった。
 また、得られたフォトマスクブランクの断面をTEM(透過型電子顕微鏡)およびX線回折装置(XRD)で観察したところ、上層1はグレインサイズが1~2nmのアモルファス構造であった。原子間力顕微鏡(AFM)を用いて表面粗さを測定したところ、Ra=0.28nmであった。
 また、参考例1と同様に、フォトマスクブランクの耐薬性の評価を行い、遮光膜の膜厚、表面反射率および光学濃度の変化量を各々測定した。
 その結果、遮光膜の膜厚はオゾン水の噴霧によって変化しなかった。また、表面反射率は、波長193nmの光では-0.02%変化した。遮光膜の光学濃度は、-0.06変化した。
 このように、本参考例の遮光膜は、オゾン処理に対して高い耐薬性を有していることが確認された。
 その後、参考例1と同様にして、フォトマスクを得た。
 上記遮光膜のドライエッチングにおいて、各層のエッチング速度は表1のとおりであった。また、実施例1と同様に遮光膜パターンを観察したところ、遮光膜の断面の角度が基板に対して垂直に形成され良好であった。さらに、オーバーエッチング時間を短くしても垂直な断面形状が得られ、トータルエッチング時間が従来と比べて25%程度短縮可能であることが確認された。
 得られたフォトマスクに対して、解像性評価を行った。レジスト膜の解像性は良好であり、遮光膜パターンの解像性は70nm(DRAM hp45nmに相当)未満であった。
Figure JPOXMLDOC01-appb-T000001
 [実施例2]
 実施例2は、実施例1において、位相シフト膜5の透過率を高くし、遮光膜における中間層2の膜厚、下層3の膜厚および遮光膜全体の膜厚を厚く変更した以外は、実施例1と同様にして位相シフトマスクブランクを製造した。
 位相シフト膜5は、以下の条件で形成した。
 スパッタターゲット:MoとSiとの混合ターゲット(Mo:Si=10mol%:90mol%)
 スパッタガス:ArとOとNとHeとの混合ガス雰囲気(Ar:6sccm、O:15sccm、N:57sccm、He:51sccm)
 放電中のガス圧:0.25Pa
 印加電力:2.8kW
 これにより、Mo、Si、O、Nを主たる構成要素とする単層で構成されたArFエキシマレーザ(波長193nm)用ハーフトーン型位相シフト膜5(膜厚93nm)を透光性基板上に直接形成した。
 ArFエキシマレーザ(波長193nm)において、得られた位相シフト膜5の透過率は15%、位相シフト量が178°であった。
 次に、遮光膜における中間層2の膜厚を5nm、下層3の膜厚を39nmとした以外は実施例1と同様の条件で、位相シフト膜上に全体膜厚が58nmの遮光膜を形成して位相シフトマスクブランクを製造した。
 実施例2で製造した位相シフトマスクブランクの構成および得られた位相シフトマスクの解像性および断面形状は表2に示すとおりであった。
 なお、表2において、膜厚割合の欄における数値は、上から「遮光膜の中間層の膜厚を1としたときの上層の膜厚比」(たとえば、実施例2では2.8)、「遮光膜の全体膜厚に対する中間層の膜厚割合(%)」(たとえば、実施例2では9%)および「下層の膜厚に対する中間層の膜厚割合(%)」(たとえば、実施例2では13%)を示す。
 [比較例1]
 本比較例では、遮光層と表面反射防止層とからなる遮光膜を有するハーフトーン型位相シフトマスクブランクを製造した。
 具体的には、インライン型スパッタ装置を用い、実施例1と同様の位相シフト膜上に、遮光層を形成した。スパッタリング(DCスパッタリング)の条件は以下のとおりであった。
 スパッタターゲット:Cr
 スパッタガス:ArとN2とHeとの混合ガス雰囲気(Ar:30sccm、N2:30sccm、He:40sccm)
 放電中のガス圧:0.2Pa
 印加電力:0.8kW
 その後、遮光層の上に表面反射防止層を形成した。スパッタリング(DCスパッタリング)の条件は以下のとおりであった。
 スパッタターゲット:クロム(Cr)
 スパッタガス:アルゴン(Ar)とメタン(CH4)との混合ガス(CH4:3.5体積%)、NOおよびHeが混合されたガス(Ar+CH4:65sccm、NO:3sccm、He:40sccm)
 放電中のガス圧:0.3Pa
 印加電力:0.3kW
 このようにして、石英ガラスからなる透光性基板上に、位相シフト膜、遮光層および表面反射防止層が順に積層された遮光膜厚48nmのフォトマスクブランクが得られた。なお、遮光層および表面反射防止層からなる遮光膜における波長193.4nmの光に対する光学濃度(O.D.)は1.9であった。
 次に、実施例1と同様に、得られた表面反射防止層および遮光層の組成と、表面反射防止層の原子数密度をRBSにより分析した。
 その結果、表面反射防止層(膜厚24nm)の膜組成は、Crが34atom%、Оが32atom%およびNが23atom%であった。また、表面反射防止層のクロム比は、О/Crが0.9およびN/Crが0.7であった。さらに、表面反射防止層の原子数密度は、7.4×1022atms/cm3であった。
 遮光層(膜厚24nm)の膜組成は、Crが59atom%およびNが39atom%であった。また、遮光層のクロム比は、N/Crが0.7であった。
 なお、インライン型スパッタ装置を用いたため、遮光層および表面反射防止層は各々膜厚方向に組成が傾斜した傾斜膜であった。したがって、上記膜組成は平均値である。
 また、得られたフォトマスクブランクの断面をTEM(透過型電子顕微鏡)およびX線回折装置(XRD)で観察したところ、表面反射防止層は密度の低いポーラス状柱状構造であった。原子間力顕微鏡(AFM)を用いて表面粗さを測定したところ、Ra=0.70nmであった。
 さらに、実施例1と同様に、本比較例で得られたフォトマスクブランクの耐薬性の評価を行った。
 その結果、遮光膜の膜厚はオゾン水の噴霧によって、膜厚が5.8nm減少した。また、表面反射率は、波長193nmの光では+2.72%変化した。遮光膜の光学濃度は、-0.38変化した。
 また、本比較例の表面反射防止層と全く同じ層を、スパッタリングによってガラス基板に直接形成し、実施例1と同様の測定方法で、反射率の変化量を測定した。
 その結果、波長193nmの光では+2.5%(19.8%→22.3%)、257nmの光では+9.1%(16.4%→25.5%)、365nmでは+13.9%(19.9%→33.8%)、488nmでは+11.0%(29.9%→40.9%)変化した。
 これにより、実施例1と2に比べて、本比較例の遮光膜は、オゾン処理に対して耐薬性が低いことが確認された。
 実施例1と同様に、得られたフォトマスクブランク上に、電子線描画(露光)用化学増幅型ポジレジストを膜厚が150nmとなるように塗布し、実施例1と同様にしてフォトマスクを得た。
 上記遮光膜のドライエッチングにおいて、エッチング速度は実施例1よりも遅かった。遮光膜全体のクリアエッチング時間は92.0secであった。また、実施例1と同様に遮光膜パターンを観察したところ、遮光膜の断面の角度が基板に対して垂直に形成されなかった。このため、位相シフト膜パターンの断面形状も良好ではなかった。
 得られたフォトマスクに対して、解像性評価を行った。レジスト膜の解像性は悪く、エッチング不良により、遮光膜パターンの解像性は80nm以上であった。
 
Figure JPOXMLDOC01-appb-T000002
 [実施例3]
 実施例3は、透過率20%の位相シフト膜上に、参考例2と同じ組成の遮光膜を、上層、中間層および下層の膜厚を表3に示すとおりと変更して位相シフトマスクブランクを製造した。
 位相シフト膜5は、以下の条件で形成した。
 スパッタターゲット:MoとSiとの混合ターゲット(Mo:Si=4mol%:96mol%)
 スパッタガス:ArとOとNとHeとの混合ガス雰囲気(Ar:11.5sccm、O:8.1sccm、N:50sccm、He:100sccm)
 これにより、Mo、Si、O、Nを主たる構成要素とする単層で構成された位相シフト膜5(膜厚74nm)を透光性基板上に形成した。
 ArFエキシマレーザ(波長193nm)において、得られた位相シフト膜5の透過率は20.0%、位相シフト量が177.4°であった。
 得られた位相シフト膜をRBSにより分析した結果、Moが1.8atom%、Siが37.2%、Nが48.1%およびОが12.7atom%であった。
 次に、参考例2と同様のスパッタ条件で、位相シフト膜上に、下層36nm、中間層5nm、上層14nmとして遮光膜を形成した。
 実施例3で製造した位相シフトマスクブランクの構成および得られた位相シフトマスクの解像性および断面形状は表3に示すとおりであった。また、遮光膜の各層のエッチング速度は参考例2と同じであった。
 [実施例4]
 実施例4は、透過率14.8%の位相シフト膜上に、参考例2と同じ組成の遮光膜を、上層、中間層および下層の膜厚を表3に示すとおりと変更して位相シフトマスクブランクを製造した。
 位相シフト膜5は、以下の条件で形成した。
 スパッタターゲット:MoとSiとの混合ターゲット(Mo:Si=4mol%:96mol%)
 スパッタガス:ArとOとNとHeとの混合ガス雰囲気(Ar:11sccm、O:4.2sccm、N:50sccm、He:100sccm)
 これにより、Mo、Si、O、Nを主たる構成要素とする単層で構成された位相シフト膜5(膜厚68nm)を透光性基板上に形成した。
 ArFエキシマレーザ(波長193nm)において、得られた位相シフト膜5の透過率は14.8%、位相シフト量が176.8°であった。
 得られた位相シフト膜をRBSにより分析した結果、Moが1.8atom%、Siが38.0%、Nが52.5%およびОが7.5atom%であった。
 次に、参考例2と同様のスパッタ条件で、位相シフト膜上に、下層33nm、中間層5nm、上層14nmとして遮光膜を形成した。
 実施例4で製造した位相シフトマスクブランクの構成および得られた位相シフトマスクの解像性および断面形状は表3に示すとおりであった。また、遮光膜の各層のエッチング速度は参考例2と同じであった。
 [実施例5]
 実施例5は、透過率13.4%の位相シフト膜上に、参考例2と同じ組成の遮光膜を、上層、中間層および下層の膜厚を表3に示すとおりと変更して位相シフトマスクブランクを製造した。
 位相シフト膜5は、以下の条件で形成した。
 スパッタターゲット:MoとSiとの混合ターゲット(Mo:Si=4mol%:96mol%)
 スパッタガス:ArとOとNとHeとの混合ガス雰囲気(Ar:10.5sccm、N:55sccm、He:100sccm)
 これにより、Mo、Si、Nを主たる構成要素とする単層で構成された位相シフト膜5(膜厚58nm)を透光性基板上に形成した。
 ArFエキシマレーザ(波長193nm)において、得られた位相シフト膜5の透過率は13.4%、位相シフト量が160.0°であった。
 得られた位相シフト膜をRBSにより分析した結果、Moが1.8atom%、Siが39.7%およびNが58.3%であった。
 次に、参考例2と同様のスパッタ条件で、位相シフト膜上に、下層32nm、中間層4nm、上層14nmとして遮光膜を形成した。
 実施例5で製造した位相シフトマスクブランクの構成および得られた位相シフトマスクの解像性および断面形状は表3に示すとおりであった。また、エッチング速度は参考例2と同じであった。
 
Figure JPOXMLDOC01-appb-T000003
 実施例2~実施例5では、レジスト膜の解像性は良好であり、遮光膜パターンの解像性は60nm未満であった。また、断面形状も垂直で良好であった。
 本発明の好ましい態様に係るフォトマスクブランクは、シャドウイングを抑制することができるから高NAリソグラフィに用いることができ、短波長の露光光のリソグラフィに用いることもできる。したがって、本発明の好ましい態様に係るフォトマスクブランクを用いることによって、極めて微細なマスクパターンが形成できる。
 また、本発明の好ましい態様に係るフォトマスクブランクは、たとえば、超高NA-ArFリソグラフィにてhp45nm、hp32nm世代以降のフォトマスクブランクに適用できる。

Claims (14)

  1.  ArFエキシマレーザ光で露光される位相シフトマスクの原版である位相シフトマスクブランクであって、
     透光性基板と位相シフト膜と遮光膜とを有し、
     位相シフト膜は、透光性基板と遮光膜との間に設けられ、
     ArFエキシマレーザ光に対する位相シフト膜の位相シフト量が160°~200°であり、さらに、前記位相シフト膜の透過率が2%以上40%以下であり、
     前記遮光膜は、透光性基板に近い側から下層、中間層および上層が順に積層された積層構造を有し、
     遮光膜全体の膜厚が60nm以下であり、
     下層は、金属を含有する膜からなり、第1のエッチング速度を有し、
     上層は、金属を含有する膜からなり、第3のエッチング速度を有し、
     中間層は、下層または上層に含まれる金属と同じ金属および窒素を含有する金属窒化膜からなり、第1のエッチング速度および第3のエッチング速度よりも遅い第2のエッチング速度を有することを特徴とする位相シフトマスクブランク。
  2.  前記位相シフト膜の位相シフト量が180°未満であり、位相シフト膜の透過率が10%以上であり、
     前記遮光膜全体の膜厚が50nm以上60nm以下であることを特徴とする請求項1に記載の位相シフトマスクブランク。
  3.  前記位相シフト膜は、酸素と窒素からなる群から選ばれる1以上、金属、および、珪素を主たる構成要素とする材料からなることを特徴とする請求項1または2記載の位相シフトマスクブランク。
  4.  前記中間層の膜厚は、遮光膜全体の膜厚の30%以下であることを特徴とする請求項1ないし3のいずれかに記載の位相シフトマスクブランク。
  5.  前記中間層の膜厚は、下層の膜厚の40%以下であることを特徴とする請求項1ないし4のいずれかに記載の位相シフトマスクブランク。
  6.  前記中間層と上層の膜厚比は、1.0:0.7~1.0:7.0であることを特徴とする請求項1ないし5の何れかに記載の位相シフトマスクブランク。
  7.  前記上層または下層の単位膜厚当りの光学濃度は、0.04nm-1以下であり、前記中間層の単位膜厚当りの光学濃度は、0.05nm-1以上あることを特徴とする請求項1ないし6のいずれかに記載の位相シフトマスクブランク。
  8.  前記下層の光学濃度が1.1~1.8であり、
     前記中間層の光学濃度が0.1~0.35であり、
     前記上層の光学濃度が0.4~0.6であることを特徴とする請求項1ないし7のいずれかに記載の位相シフトマスクブランク。
  9.  前記下層のNとOの含有量の合計が40~55atom%であり、
     前記中間層のNとOの含有量の合計が30atom%以下であり、
     前記上層のNとOの含有量の合計が45~65atom%であることを特徴とする請求項1ないし8のいずれかに記載の位相シフトマスクブランク。
  10.  前記下層の単位膜厚当りの光学濃度は、0.03~0.04nm-1であり、
     前記中間層の単位膜厚当りの光学濃度は、0.05~0.06nm-1であることを特徴とする請求項1ないし9のいずれかに記載の位相シフトマスクブランク。
  11.  前記下層は、金属の含有量が25~50atm%、NとOの含有量の合計が35~65atm%であり、および、光学濃度が1.1~1.8であり、
     前記中間層は、金属とNを含み、金属の含有量が50~90atm%、膜厚が2~7nm、および、光学濃度が0.1~0.35であり、
     前記上層は、金属の含有量が25~50atm%、NとOの含有量の合計が45~65atm%であり、および、光学濃度が0.4~0.6であることを特徴とする請求項1ないし10のいずれかに記載の位相シフトマスクブランク。
  12.  前記下層は、Crの含有量が30~40atm%、NとOの含有量の合計が40~55atm%であり、かつ、光学濃度が1.1~1.8であり、
     前記中間層は、Crの含有量が50~90atm%、Nの含有量が3~25atm%含み、かつ、光学濃度が0.1~0.35であり、
     前記上層は、Crの含有量が30~40atm%、NとOの含有量の合計が50~60atm%であり、かつ、光学濃度が0.4~0.6であることを特徴とする請求項1ないし11のいずれかに記載の位相シフトマスクブランク。
  13.  前記下層、中間層および上層の各エッチング速度は、
     第2のエッチング速度<第1のエッチング速度≦第3のエッチング速度
    の関係を有することを特徴とする請求項1ないし12のいずれかに記載のフォトマスクブランク。
  14.  請求項1ないし13のいずれかに記載の位相シフトマスクブランクを用いて作製される位相シフトマスク。
PCT/JP2009/061574 2008-06-25 2009-06-25 位相シフトマスクブランクおよび位相シフトマスク WO2009157506A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010518050A JP5175932B2 (ja) 2008-06-25 2009-06-25 位相シフトマスクブランクおよび位相シフトマスク
KR1020167032199A KR102198731B1 (ko) 2008-06-25 2009-06-25 위상 시프트 마스크 블랭크 및 위상 시프트 마스크
US13/001,365 US8329364B2 (en) 2008-06-25 2009-06-25 Phase shift mask blank and phase shift mask
US13/670,728 US9005851B2 (en) 2008-06-25 2012-11-07 Phase shift mask blank and phase shift mask

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US7555808P 2008-06-25 2008-06-25
US61/075,558 2008-06-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/001,365 A-371-Of-International US8329364B2 (en) 2008-06-25 2009-06-25 Phase shift mask blank and phase shift mask
US13/670,728 Division US9005851B2 (en) 2008-06-25 2012-11-07 Phase shift mask blank and phase shift mask

Publications (1)

Publication Number Publication Date
WO2009157506A1 true WO2009157506A1 (ja) 2009-12-30

Family

ID=41444569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061574 WO2009157506A1 (ja) 2008-06-25 2009-06-25 位相シフトマスクブランクおよび位相シフトマスク

Country Status (5)

Country Link
US (1) US8329364B2 (ja)
JP (1) JP5175932B2 (ja)
KR (2) KR102198731B1 (ja)
TW (1) TWI453531B (ja)
WO (1) WO2009157506A1 (ja)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010134206A (ja) * 2008-12-05 2010-06-17 Dainippon Printing Co Ltd ハーフトーン型位相シフトマスク
JP2014026281A (ja) * 2012-07-26 2014-02-06 Sandos Tech Co Ltd フラットパネルディスプレイ用の位相反転ブランクマスク及びフォトマスク
WO2015025922A1 (ja) * 2013-08-21 2015-02-26 大日本印刷株式会社 マスクブランクス、ネガ型レジスト膜付きマスクブランクス、位相シフトマスク、およびそれを用いるパターン形成体の製造方法
JP2015062048A (ja) * 2013-08-21 2015-04-02 大日本印刷株式会社 マスクブランクス、ネガ型レジスト膜付きマスクブランクス、位相シフトマスク、およびそれを用いるパターン形成体の製造方法
WO2015146421A1 (ja) * 2014-03-28 2015-10-01 Hoya株式会社 マスクブランク、位相シフトマスクの製造方法、位相シフトマスク、および半導体デバイスの製造方法
WO2015146422A1 (ja) * 2014-03-28 2015-10-01 Hoya株式会社 マスクブランク、位相シフトマスクの製造方法、位相シフトマスク、および半導体デバイスの製造方法
WO2015152123A1 (ja) * 2014-03-30 2015-10-08 Hoya株式会社 マスクブランク、転写用マスクの製造方法及び半導体装置の製造方法
JP2016004223A (ja) * 2014-06-19 2016-01-12 Hoya株式会社 マスクブランク、位相シフトマスク、位相シフトマスクの製造方法および半導体デバイスの製造方法
JP2016057578A (ja) * 2014-09-12 2016-04-21 信越化学工業株式会社 フォトマスクブランク
JP2016191784A (ja) * 2015-03-31 2016-11-10 Hoya株式会社 マスクブランク、位相シフトマスクの製造方法、及び、半導体デバイスの製造方法
JP2016212322A (ja) * 2015-05-12 2016-12-15 Hoya株式会社 位相シフトマスクブランク、位相シフトマスクの製造方法及び半導体装置の製造方法
JPWO2015037392A1 (ja) * 2013-09-10 2017-03-02 Hoya株式会社 マスクブランク、転写用マスクおよび転写用マスクの製造方法
JP2017049476A (ja) * 2015-09-03 2017-03-09 信越化学工業株式会社 フォトマスクブランク
JP2017049475A (ja) * 2015-09-03 2017-03-09 信越化学工業株式会社 フォトマスクブランク
KR20170123610A (ko) * 2015-03-24 2017-11-08 호야 가부시키가이샤 마스크 블랭크, 위상 시프트 마스크, 위상 시프트 마스크의 제조방법 및 반도체 디바이스의 제조방법
JP2018054836A (ja) * 2016-09-28 2018-04-05 信越化学工業株式会社 ハーフトーン位相シフトマスクブランク及びハーフトーン位相シフトマスク
CN110456608A (zh) * 2018-05-08 2019-11-15 思而施技术株式会社 相移空白掩膜和光掩膜
JP2019211500A (ja) * 2018-05-31 2019-12-12 信越化学工業株式会社 フォトマスクブランク、フォトマスクの製造方法及びフォトマスク
JP2020021087A (ja) * 2016-09-28 2020-02-06 信越化学工業株式会社 ハーフトーン位相シフト型フォトマスクブランク及びハーフトーン位相シフト型フォトマスク
US10859904B2 (en) 2016-09-28 2020-12-08 Shin-Etsu Chemical Co., Ltd. Halftone phase shift photomask blank, making method, and halftone phase shift photomask
TWI720752B (zh) * 2015-09-30 2021-03-01 日商Hoya股份有限公司 空白遮罩、相位移轉遮罩及半導體元件之製造方法
JP2021170128A (ja) * 2019-10-01 2021-10-28 信越化学工業株式会社 ハーフトーン位相シフト型フォトマスクブランク及びハーフトーン位相シフト型フォトマスク
TWI784131B (zh) * 2018-02-27 2022-11-21 日商Hoya股份有限公司 相偏移光罩基底、相偏移光罩之製造方法、及顯示裝置之製造方法
TWI819449B (zh) * 2020-12-31 2023-10-21 南韓商Sk恩普士股份有限公司 空白罩幕以及利用其的光罩幕

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9005851B2 (en) * 2008-06-25 2015-04-14 Hoya Corporation Phase shift mask blank and phase shift mask
KR102008857B1 (ko) * 2010-04-09 2019-08-09 호야 가부시키가이샤 위상 시프트 마스크 블랭크 및 그 제조 방법, 및 위상 시프트 마스크
US8917534B2 (en) * 2011-09-09 2014-12-23 Intel Corporation Path isolation in a memory device
JP5713953B2 (ja) * 2012-04-26 2015-05-07 信越化学工業株式会社 フォトマスクブランクおよびその製造方法
US8895211B2 (en) * 2012-12-11 2014-11-25 GlobalFoundries, Inc. Semiconductor device resolution enhancement by etching multiple sides of a mask
KR101579848B1 (ko) * 2014-08-29 2015-12-23 주식회사 에스앤에스텍 위상 반전 블랭크 마스크 및 포토마스크
JP6601245B2 (ja) * 2015-03-04 2019-11-06 信越化学工業株式会社 フォトマスクブランク、フォトマスクの製造方法及びマスクパターン形成方法
KR101801101B1 (ko) 2016-03-16 2017-11-27 주식회사 에스앤에스텍 위상반전 블랭크 마스크 및 포토 마스크
US9837246B1 (en) * 2016-07-22 2017-12-05 Fei Company Reinforced sample for transmission electron microscope
SG10202007863UA (en) * 2016-08-26 2020-10-29 Hoya Corp Mask blank, transfer mask, and method of manufacturing semiconductor device
KR20180041042A (ko) * 2016-10-13 2018-04-23 주식회사 에스앤에스텍 위상반전 블랭크 마스크 및 포토마스크
JP6983641B2 (ja) * 2017-01-16 2021-12-17 Hoya株式会社 表示装置製造用の位相シフトマスクブランク、表示装置製造用の位相シフトマスクの製造方法、並びに表示装置の製造方法
JP6642493B2 (ja) * 2017-03-10 2020-02-05 信越化学工業株式会社 ハーフトーン位相シフト型フォトマスクブランク
TWI782237B (zh) * 2018-11-30 2022-11-01 日商Hoya股份有限公司 光罩基底、光罩之製造方法及顯示裝置之製造方法
KR102377406B1 (ko) * 2021-05-21 2022-03-21 에스케이씨솔믹스 주식회사 블랭크 마스크 및 이를 이용한 포토마스크

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3411613B2 (ja) * 1993-03-26 2003-06-03 Hoya株式会社 ハーフトーン型位相シフトマスク
JP3445329B2 (ja) * 1993-11-02 2003-09-08 Hoya株式会社 ハーフトーン型位相シフトマスク及びハーフトーン型位相シフトマスクブランク
JP2005208660A (ja) * 2004-01-22 2005-08-04 Schott Ag 超高透過率の位相シフト型のマスクブランク
JP2007033470A (ja) * 2005-07-21 2007-02-08 Shin Etsu Chem Co Ltd フォトマスクブランクおよびフォトマスクならびにこれらの製造方法
JP2008065138A (ja) * 2006-09-08 2008-03-21 Dainippon Printing Co Ltd 階調マスク
JP2008116691A (ja) * 2006-11-06 2008-05-22 Mitsubishi Electric Corp ハーフトーンマスク及びこれを用いたパターン基板の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2837803B2 (ja) 1993-03-26 1998-12-16 ホーヤ株式会社 位相シフトマスク及び位相シフトマスクブランク
US5942356A (en) 1996-03-30 1999-08-24 Hoya Corporation Phase shift mask and phase shift mask blank
JP2966369B2 (ja) 1996-03-30 1999-10-25 ホーヤ株式会社 位相シフトマスク、及び位相シフトマスクブランク
JP2005092241A (ja) 2002-03-01 2005-04-07 Hoya Corp ハーフトーン型位相シフトマスクブランクの製造方法
KR101161450B1 (ko) 2003-04-09 2012-07-20 호야 가부시키가이샤 포토 마스크의 제조방법 및 포토 마스크 블랭크
KR20050076827A (ko) 2004-01-22 2005-07-28 쇼오트 아게 초 고투과율 위상편이 마스크 블랭크
EP1584979A1 (en) 2004-04-08 2005-11-15 Schott AG Mask blank having a protection layer
EP1746460B1 (en) 2005-07-21 2011-04-06 Shin-Etsu Chemical Co., Ltd. Photomask blank, photomask and fabrication method thereof
US8114556B2 (en) * 2005-09-09 2012-02-14 Hoya Corporation Photomask blank and production method thereof, and photomask production method, and semiconductor device production method
WO2007074806A1 (ja) * 2005-12-26 2007-07-05 Hoya Corporation フォトマスクブランク及びフォトマスクの製造方法、並びに半導体装置の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3411613B2 (ja) * 1993-03-26 2003-06-03 Hoya株式会社 ハーフトーン型位相シフトマスク
JP3445329B2 (ja) * 1993-11-02 2003-09-08 Hoya株式会社 ハーフトーン型位相シフトマスク及びハーフトーン型位相シフトマスクブランク
JP2005208660A (ja) * 2004-01-22 2005-08-04 Schott Ag 超高透過率の位相シフト型のマスクブランク
JP2007033470A (ja) * 2005-07-21 2007-02-08 Shin Etsu Chem Co Ltd フォトマスクブランクおよびフォトマスクならびにこれらの製造方法
JP2008065138A (ja) * 2006-09-08 2008-03-21 Dainippon Printing Co Ltd 階調マスク
JP2008116691A (ja) * 2006-11-06 2008-05-22 Mitsubishi Electric Corp ハーフトーンマスク及びこれを用いたパターン基板の製造方法

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010134206A (ja) * 2008-12-05 2010-06-17 Dainippon Printing Co Ltd ハーフトーン型位相シフトマスク
JP2014026281A (ja) * 2012-07-26 2014-02-06 Sandos Tech Co Ltd フラットパネルディスプレイ用の位相反転ブランクマスク及びフォトマスク
JP2015194758A (ja) * 2013-08-21 2015-11-05 大日本印刷株式会社 位相シフトマスク
WO2015025922A1 (ja) * 2013-08-21 2015-02-26 大日本印刷株式会社 マスクブランクス、ネガ型レジスト膜付きマスクブランクス、位相シフトマスク、およびそれを用いるパターン形成体の製造方法
JP2015062048A (ja) * 2013-08-21 2015-04-02 大日本印刷株式会社 マスクブランクス、ネガ型レジスト膜付きマスクブランクス、位相シフトマスク、およびそれを用いるパターン形成体の製造方法
US9874808B2 (en) 2013-08-21 2018-01-23 Dai Nippon Printing Co., Ltd. Mask blank, mask blank with negative resist film, phase shift mask, and method for producing pattern formed body using same
JP2015212826A (ja) * 2013-08-21 2015-11-26 大日本印刷株式会社 マスクブランクス、ネガ型レジスト膜付きマスクブランクス、位相シフトマスク、およびそれを用いるパターン形成体の製造方法
JP2015194673A (ja) * 2013-08-21 2015-11-05 大日本印刷株式会社 マスクブランクス、ネガ型レジスト膜付きマスクブランクス、位相シフトマスク、およびそれを用いるパターン形成体の製造方法
JPWO2015037392A1 (ja) * 2013-09-10 2017-03-02 Hoya株式会社 マスクブランク、転写用マスクおよび転写用マスクの製造方法
WO2015146422A1 (ja) * 2014-03-28 2015-10-01 Hoya株式会社 マスクブランク、位相シフトマスクの製造方法、位相シフトマスク、および半導体デバイスの製造方法
US9939723B2 (en) 2014-03-28 2018-04-10 Hoya Corporation Mask blank, method of manufacturing phase shift mask, phase shift mask, and method of manufacturing semiconductor device
JP2015194725A (ja) * 2014-03-28 2015-11-05 Hoya株式会社 マスクブランク、位相シフトマスクの製造方法、位相シフトマスク、および半導体デバイスの製造方法
KR102291478B1 (ko) * 2014-03-28 2021-08-19 호야 가부시키가이샤 마스크 블랭크, 위상 시프트 마스크의 제조 방법, 위상 시프트 마스크 및 반도체 디바이스의 제조 방법
WO2015146421A1 (ja) * 2014-03-28 2015-10-01 Hoya株式会社 マスクブランク、位相シフトマスクの製造方法、位相シフトマスク、および半導体デバイスの製造方法
TWI644165B (zh) * 2014-03-28 2018-12-11 日商Hoya股份有限公司 空白遮罩、相位移轉遮罩之製造方法、相位移轉遮罩、以及半導體元件之製造方法(二)
US10088744B2 (en) 2014-03-28 2018-10-02 Hoya Corporation Mask blank, method of manufacturing phase shift mask, phase shift mask, and method of manufacturing semiconductor device
KR20160137980A (ko) * 2014-03-28 2016-12-02 호야 가부시키가이샤 마스크 블랭크, 위상 시프트 마스크의 제조 방법, 위상 시프트 마스크 및 반도체 디바이스의 제조 방법
JP2015194770A (ja) * 2014-03-28 2015-11-05 Hoya株式会社 マスクブランク、位相シフトマスクの製造方法、位相シフトマスク、および半導体デバイスの製造方法
WO2015152123A1 (ja) * 2014-03-30 2015-10-08 Hoya株式会社 マスクブランク、転写用マスクの製造方法及び半導体装置の製造方法
TWI621906B (zh) * 2014-03-30 2018-04-21 日商Hoya股份有限公司 光罩基底、轉印用光罩之製造方法及半導體裝置之製造方法
JP2015191218A (ja) * 2014-03-30 2015-11-02 Hoya株式会社 マスクブランク、転写用マスクの製造方法及び半導体装置の製造方法
US9864268B2 (en) 2014-03-30 2018-01-09 Hoya Corporation Mask blank, method for manufacturing transfer mask, and method for manufacturing semiconductor device
JP2016004223A (ja) * 2014-06-19 2016-01-12 Hoya株式会社 マスクブランク、位相シフトマスク、位相シフトマスクの製造方法および半導体デバイスの製造方法
JP2016057578A (ja) * 2014-09-12 2016-04-21 信越化学工業株式会社 フォトマスクブランク
KR20170123610A (ko) * 2015-03-24 2017-11-08 호야 가부시키가이샤 마스크 블랭크, 위상 시프트 마스크, 위상 시프트 마스크의 제조방법 및 반도체 디바이스의 제조방법
KR102564650B1 (ko) 2015-03-24 2023-08-08 호야 가부시키가이샤 마스크 블랭크, 위상 시프트 마스크, 위상 시프트 마스크의 제조방법 및 반도체 디바이스의 제조방법
JP2016191784A (ja) * 2015-03-31 2016-11-10 Hoya株式会社 マスクブランク、位相シフトマスクの製造方法、及び、半導体デバイスの製造方法
JP2016212322A (ja) * 2015-05-12 2016-12-15 Hoya株式会社 位相シフトマスクブランク、位相シフトマスクの製造方法及び半導体装置の製造方法
JP2017049475A (ja) * 2015-09-03 2017-03-09 信越化学工業株式会社 フォトマスクブランク
JP2017049476A (ja) * 2015-09-03 2017-03-09 信越化学工業株式会社 フォトマスクブランク
TWI720752B (zh) * 2015-09-30 2021-03-01 日商Hoya股份有限公司 空白遮罩、相位移轉遮罩及半導體元件之製造方法
JP2020021087A (ja) * 2016-09-28 2020-02-06 信越化学工業株式会社 ハーフトーン位相シフト型フォトマスクブランク及びハーフトーン位相シフト型フォトマスク
US10859904B2 (en) 2016-09-28 2020-12-08 Shin-Etsu Chemical Co., Ltd. Halftone phase shift photomask blank, making method, and halftone phase shift photomask
JP2018054836A (ja) * 2016-09-28 2018-04-05 信越化学工業株式会社 ハーフトーン位相シフトマスクブランク及びハーフトーン位相シフトマスク
TWI784131B (zh) * 2018-02-27 2022-11-21 日商Hoya股份有限公司 相偏移光罩基底、相偏移光罩之製造方法、及顯示裝置之製造方法
CN110456608A (zh) * 2018-05-08 2019-11-15 思而施技术株式会社 相移空白掩膜和光掩膜
CN110456608B (zh) * 2018-05-08 2023-09-08 思而施技术株式会社 相移空白掩膜和光掩膜
JP2019211500A (ja) * 2018-05-31 2019-12-12 信越化学工業株式会社 フォトマスクブランク、フォトマスクの製造方法及びフォトマスク
JP2021170128A (ja) * 2019-10-01 2021-10-28 信越化学工業株式会社 ハーフトーン位相シフト型フォトマスクブランク及びハーフトーン位相シフト型フォトマスク
TWI819449B (zh) * 2020-12-31 2023-10-21 南韓商Sk恩普士股份有限公司 空白罩幕以及利用其的光罩幕

Also Published As

Publication number Publication date
KR102198731B1 (ko) 2021-01-05
KR20160135374A (ko) 2016-11-25
US20110111332A1 (en) 2011-05-12
JPWO2009157506A1 (ja) 2011-12-15
TW201007347A (en) 2010-02-16
JP5175932B2 (ja) 2013-04-03
KR20110036054A (ko) 2011-04-06
US8329364B2 (en) 2012-12-11
TWI453531B (zh) 2014-09-21

Similar Documents

Publication Publication Date Title
JP5175932B2 (ja) 位相シフトマスクブランクおよび位相シフトマスク
JP5562834B2 (ja) フォトマスクブランク、フォトマスクおよびフォトマスクブランクの製造方法
JP5562835B2 (ja) フォトマスクブランク、フォトマスクおよびフォトマスクブランクの製造方法
WO2009123166A1 (ja) フォトマスクブランクおよびその製造方法
US9005851B2 (en) Phase shift mask blank and phase shift mask
JP5738931B6 (ja) フォトマスクブランク、フォトマスクおよびフォトマスクブランクの製造方法
JP5579056B6 (ja) フォトマスクブランク、フォトマスクおよびフォトマスクブランクの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09770216

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010518050

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13001365

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117001566

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09770216

Country of ref document: EP

Kind code of ref document: A1