WO2009157184A1 - Mimo送信装置、mimo受信装置、mimo伝送信号形成方法、及びmimo伝送信号分離方法 - Google Patents

Mimo送信装置、mimo受信装置、mimo伝送信号形成方法、及びmimo伝送信号分離方法 Download PDF

Info

Publication number
WO2009157184A1
WO2009157184A1 PCT/JP2009/002865 JP2009002865W WO2009157184A1 WO 2009157184 A1 WO2009157184 A1 WO 2009157184A1 JP 2009002865 W JP2009002865 W JP 2009002865W WO 2009157184 A1 WO2009157184 A1 WO 2009157184A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
mimo
code blocks
code
transport block
Prior art date
Application number
PCT/JP2009/002865
Other languages
English (en)
French (fr)
Inventor
隆 戸田
将 福岡
貞樹 二木
正幸 星野
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US12/999,603 priority Critical patent/US9236918B2/en
Priority to JP2010517758A priority patent/JPWO2009157184A1/ja
Publication of WO2009157184A1 publication Critical patent/WO2009157184A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements

Definitions

  • the present invention relates to a MIMO transmission apparatus, a MIMO reception apparatus, a MIMO transmission signal forming method, and a MIMO transmission signal separation method.
  • error correction coding has been used as a technique for improving the reliability of communication.
  • a retransmission technique for example, HARQ (Hybrid-Automatic Repeat reQuest) that retransmits data that could not be decoded on the receiving side is used.
  • HARQ Hybrid-Automatic Repeat reQuest
  • HARQ retransmission control is performed in units of transport blocks (Transport block (TB)).
  • This transport block is configured by a code block (Code (block (CB)) group which is an error correction coding unit.
  • CB code block
  • FIG. 1 is a diagram for explaining a method of forming a transport block.
  • CRC Cyclic Redundancy Check
  • the plurality of code blocks are combined after being subjected to error correction coding processing and rate matching processing (decimation, repetition, etc.).
  • error correction coding processing and rate matching processing decimation, repetition, etc.
  • the transport block after the encoding process is transmitted as a code word, and on the receiving side of the code word, a receiving process corresponding to the process described with reference to FIG. 1 is performed. That is, first, a decoding process is performed on the received codeword. Then, using the CRC added to the transport block (including the CRC added to each code block), it is determined whether or not there is an error in the received codeword (CRC determination).
  • the transmitting side retransmits the transport block corresponding to this NACK.
  • the reception side performs reception processing such as decoding processing for the remaining code blocks when the CRC determination result for any code block is NG. Can be stopped. Therefore, the receiving side can omit useless processing, so that power consumption can be reduced.
  • the amount of signaling related to retransmission control can be reduced as compared with the case where a code block is used as a unit for retransmission.
  • the signaling related to retransmission control is, for example, an ACK / NACK signal, a process number added to a retransmission unit, or the like.
  • Non-Patent Document 1 discloses a transport block transmission technique in 4 ⁇ 4 MIMO.
  • FIG. 3 is a block diagram illustrating a configuration of a MIMO transmission apparatus to which the transmission technique disclosed in Non-Patent Document 1 is applied.
  • the transport block (code word) formed by the encoding unit is input to the S / P unit (serial / parallel conversion unit). Then, the S / P unit divides a plurality of code blocks included in the transport block, and maps a plurality of partial code blocks obtained from one code block to different streams. In FIG. 4, partial code blocks # 1A and # 1B of code block # 1 are mapped to stream # 1 and stream # 2, respectively.
  • This MIMO transmission apparatus can determine success or failure of transmission only in units of transport blocks because the above-described retransmission control is applied. Therefore, when receiving the NACK, this MIMO transmission apparatus retransmits all the code blocks constituting the transport block.
  • Non-Patent Document 1 proposes a MIMO transmission method in which a mapped signal is exchanged between streams for each retransmission. That is, as shown in FIG. 5, at the first transmission, code blocks # 1A, # 2A, # 3A, and # 4A, which are partial code blocks, are mapped to stream # 1, and code blocks # 1B, # 2B, # 3B and # 4B are mapped to stream # 2. On the other hand, in the first retransmission, code blocks # 1A, # 2A, # 3A, and # 4A mapped to stream # 1 at the time of initial transmission are mapped to stream # 2.
  • the reliability of symbols in an arbitrary code block is made uniform by replacing the mapped signal between streams for each retransmission. Thereby, it is possible to reduce the probability that an error due to a deviation in communication quality between streams repeatedly occurs in a specific portion.
  • An object of the present invention is to provide a MIMO transmitting apparatus, a MIMO receiving apparatus, a MIMO transmission signal forming method, and a MIMO transmission signal separating method that improve transmission efficiency by achieving uniform reliability between code blocks. .
  • the MIMO transmission apparatus of the present invention is a MIMO transmission apparatus that transmits a transport block (Transport block) including a plurality of code blocks (Code blocks) composed of a data sequence using a plurality of transmission streams.
  • a mapping unit that changes a combination of code blocks to which the transport block belongs between the previous transmission and the current transmission of the transport block.
  • the MIMO receiving apparatus of the present invention separates, for each stream, a plurality of received streams to which a transport block (Transport block) including a plurality of code blocks (Code block) composed of a data string is mapped, and A MIMO receiving apparatus that decodes each code block, based on the decoded data of the code block that has been successfully decoded, a forming unit that forms an interference replica signal corresponding to the code block that has been successfully decoded, And a separation unit that separates the plurality of reception streams received this time for each stream after removing the interference replica signal formed by the forming unit at the time of previous reception from the received stream.
  • Transport block Transport block
  • Code block code blocks
  • the MIMO transmission signal forming method of the present invention includes a step of forming a code word by encoding a transport block (Transport block) including a plurality of code blocks (Code block) composed of a data sequence in units of code blocks; Mapping the codeword to a plurality of transmission streams to form a MIMO signal, and a combination of code blocks to which a plurality of symbol data mapped to the same symbol period in the MIMO signal belong It differs between the time of transmission and this time of transmission.
  • Transport block Transport block
  • Code block code blocks
  • the MIMO transmission signal separation method of the present invention separates, for each stream, a plurality of received streams to which a transport block (Transport block) including a plurality of code blocks (Code blocks) composed of data sequences is mapped.
  • a MIMO transmission signal separation method for decoding a stream for each code block the step of forming an interference replica signal corresponding to the code block that has been successfully decoded based on the decoded data of the code block that has been successfully decoded;
  • a MIMO transmission apparatus it is possible to provide a MIMO transmission apparatus, a MIMO reception apparatus, a MIMO transmission signal forming method, and a MIMO transmission signal separation method that improve transmission efficiency by achieving uniform reliability between code blocks. .
  • FIG. 2 is a block diagram showing a configuration of a MIMO communication apparatus on the transmission side according to Embodiment 1 of the present invention.
  • a coding unit, a mapping unit, and a MIMO modulation unit are shown, and an input signal and an output signal of these functional units are schematically shown.
  • FIG. 3 is a block diagram showing a configuration of a MIMO communication apparatus on the receiving side according to Embodiment 1 Diagram for explaining the operation of the MIMO communication apparatus on the receiving side
  • FIG. 3 shows an example of the mapping pattern at the time of the 2nd resending Diagram showing another example of mapping pattern
  • FIG. 9 is a block diagram showing a configuration of a MIMO communication apparatus on the transmission side according to Embodiment 2
  • FIG. 9 is a block diagram showing a configuration of a MIMO communication apparatus on the transmission side according to Embodiment 3
  • the figure which shows the example of a mapping pattern change in case the shift number which mapping pattern information shows is 3.
  • FIG. 9 is a block diagram showing a configuration of a receiving side MIMO communication apparatus according to Embodiment 3;
  • FIG. 19 is a diagram for explaining a mapping pattern determination method in the mapping pattern information generation unit of FIG. Diagram showing variations of cyclic shift method
  • FIG. 6 is a block diagram showing a configuration of the MIMO communication apparatus on the transmission side according to Embodiment 1.
  • the MIMO communication apparatus 100 shown in FIG. 6 transmits a transport block (Transport block) including a plurality of code blocks composed of data strings using a plurality of transmission streams.
  • Transport block Transport block
  • the number of transmission streams is not limited to this, and three or more transmission streams are used. But you can.
  • the MIMO communication apparatus 100 includes an encoding unit 110, a mapping unit 120, a MIMO transmission unit 130, a reception RF unit 140, a channel estimation unit 150, an equalization unit 160, and a decoding unit 170.
  • the MIMO transmission unit 130 includes a MIMO modulation unit 132, a precoding unit 134, and a transmission RF unit 136.
  • FIG. 7 is a diagram schematically showing an encoding unit 110, a mapping unit 120, and a MIMO modulation unit 132 among functional units included in the MIMO communication apparatus 100, and schematically showing input signals and output signals of these functional units. is there.
  • the encoding unit 110 receives a transport block including a plurality of code blocks as transmission data, and encodes the transport block in units of code blocks.
  • the encoded transport block thus formed is held in a memory (not shown) and is output to the mapping unit 120 as a code word.
  • the encoding unit 110 receives an ACK or NACK received from the decoding unit 170, and outputs a transport block corresponding to the ACK or NACK.
  • the encoding unit 110 when NACK is input, the encoding unit 110 outputs the codeword held in the memory to the mapping unit 120 again. In this way, retransmission processing is executed. Also, the encoding unit 110 has a counter (not shown) that counts the number of times NACK is received for one transport block, and assigns a counter value (that is, transmission count information) every time NACK is received. Output to.
  • the encoding unit 110 encodes the transport block next to the codeword held in the memory in units of code blocks.
  • the mapping unit 120 receives a codeword and maps the codeword to a plurality of transmission streams.
  • mapping section 120 maps a codeword to a transmission stream in units of code blocks as shown in FIG. That is, in FIG. 7, for code blocks # 1 to # 4 included in the same transport block, the mapping unit 120 maps code blocks # 1 and # 2 to stream # 1 and stream code blocks # 3 and # 4. Map to # 2.
  • mapping unit 120 changes the combination of code blocks mapped to the same transmission section between the first transmission and the retransmission of the transport block.
  • the mapping unit 120 outputs mapping pattern information in the current transmission before the transport block. By decoding this mapping pattern information, the receiving side can specify the mapping pattern of the transport block transmitted following the mapping pattern information.
  • FIG. 8 is a diagram illustrating an example of a code block mapping pattern in the initial transmission and retransmission of a transport block.
  • the MIMO transmission unit 130 receives the transport block output from the mapping unit 120, and forms a MIMO transmission signal from the transport block.
  • MIMO modulation section 132 receives a code block mapped to a stream, performs modulation processing for each stream, and forms a MIMO modulated signal.
  • a modulation method such as QPSK or QAM is used.
  • the precoding unit 134 multiplies the MIMO modulation signal output from the MIMO modulation unit 132 by a beam forming weight.
  • the transmission RF unit 136 performs transmission radio processing such as D / A conversion, up-conversion, and amplification on each stream.
  • transmission RF sections 136-1 and 2 are provided.
  • the MIMO transmission signal thus formed is transmitted from a plurality of antennas.
  • the reception RF unit 140 performs reception radio processing such as amplification, down-conversion, and A / D conversion on the signal received by the reception antenna.
  • the channel estimation unit 150 estimates the amount of fluctuation in the propagation path based on the known symbols included in the received signal.
  • the equalization unit 160 performs equalization processing on the received signal using the channel estimation value obtained by the channel estimation unit 150.
  • the decoding unit 170 performs error correction decoding or the like from the equalized signal, and outputs ACK / NACK information fed back from a MIMO receiving apparatus described later.
  • FIG. 9 is a block diagram illustrating a configuration of the MIMO communication apparatus on the reception side according to the first embodiment.
  • the MIMO communication apparatus 200 illustrated in FIG. 9 transmits a plurality of streams to which transport blocks (Transport blocks) including a plurality of code blocks (Code blocks) configured from data sequences are mapped, transmitted from the MIMO communication apparatus 100. Receive. Then, MIMO communication apparatus 200 separates the plurality of received streams for each stream and decodes the separated streams for each code block.
  • Transport blocks Transport blocks
  • Code blocks code blocks
  • MIMO communication apparatus 200 includes reception RF section 210, mapping control section 215, signal separation section 220, encoding section 250, channel estimation section 255, interference replica generation section 260, ACK / NACK.
  • a generation unit 265, a modulation unit 270, and a transmission RF unit 275 are included.
  • the reception RF unit 210 performs reception radio processing such as amplification, down-conversion, and A / D conversion on the signal received by each reception antenna.
  • the mapping control unit 215 decodes the received signal and outputs the mapping pattern information included in the received signal to the interference replica generation unit 260 and the signal separation unit 220.
  • the signal separation unit 220 Based on the mapping information received from 215, the stream ranking is sequentially separated from the higher-order streams from the plurality of received streams received this time.
  • the signal separation unit 220 removes the interference replica generated by the interference replica generation unit 260 from the plurality of reception streams received this time Later, the plurality of received streams received this time are separated for each stream.
  • the signal separation unit 220 includes a subtraction processing unit 222 having a plurality of subtracters provided for each reception stream, a channel estimation unit 224, an equalization unit 226, a decoding unit 228, and an encoding unit. 232, an interference replica generation unit 234, a delay unit 236, a subtraction processing unit 238, a channel estimation unit 242, an equalization unit 244, and a decoding unit 246.
  • the subtraction processing unit 222 subtracts the interference replica from the plurality of reception streams received from the reception RF unit 210, and outputs the obtained plurality of streams to the channel estimation unit 224, the equalization unit 226, and the delay unit 236.
  • the channel estimation unit 224 estimates the fluctuation amount in the propagation path from the known symbols in the received signal.
  • the equalization unit 226 performs equalization processing on the received signal using the channel estimation value obtained by the channel estimation unit 224.
  • the decoding unit 228 performs decoding such as turbo code.
  • the encoding unit 232 performs an encoding process (such as a turbo code) on the code data obtained by the decoding unit 228, similar to the encoding unit 110 on the transmission side.
  • an encoding process such as a turbo code
  • the interference replica generation unit 234 is based on the decoded data of the successful decoding code block obtained by the encoding unit 232, the mapping pattern information from the mapping control unit 215, and the channel estimation value obtained by the channel estimation unit 224.
  • the interference replica signal corresponding to the code block whose stream ranking is mapped to the first stream is formed.
  • the delay unit 236 gives a certain delay to a plurality of streams.
  • the subtraction processing unit 238 subtracts the interference replica obtained by the interference replica generation unit 234 from the plurality of streams delayed by the delay unit 236, and the obtained plurality of streams are channel estimation unit 242 and equalization unit 244. Output to.
  • the channel estimation unit 242 estimates the fluctuation amount in the propagation path from the known symbols in the received signal.
  • the equalization unit 244 decodes turbo codes and the like.
  • the decoding unit 246 performs an encoding process (such as a turbo code) similar to the encoding unit 110 on the transmission side.
  • the encoding unit 250 receives as input a code block that has been successfully decoded (that is, there is no error in the decoding result), and performs the same encoding process as the transmission-side encoding unit 110 on the code block.
  • the channel estimation unit 255 estimates the amount of fluctuation in the propagation path based on the known signal included in the received signal.
  • the interference replica generation unit 260 based on the decoded data of the decoding success code block obtained by the encoding unit 250 and the channel estimation value obtained by the channel estimation unit 255, the interference replica corresponding to the decoding success code block Form a signal.
  • the interference replica generation unit 260 temporarily holds the input identification information of the successful decoding code block and the corresponding interference replica signal.
  • the interference replica generation unit 260 Based on the mapping information received from the mapping control unit 215, the interference replica generation unit 260 outputs the interference replica to the subtraction processing unit 222 at the timing when the decoding success code block is mapped in the transport block retransmitted this time.
  • the ACK / NACK generation unit 265 generates ACK or NACK based on the transport block decoding success / failure information received from the CRC determination unit (not shown) provided in the output stage of the decoding unit 228 and the decoding unit 246.
  • the generated ACK (or NACK) is subjected to modulation processing by the modulation unit 270, transmitted radio processing by the transmission RF unit 275, and then transmitted via the antenna.
  • one transport block includes four code blocks.
  • a transport block is transmitted in two streams.
  • the communication quality of stream # 2 is lower than the communication quality (for example, SINR) of stream # 1 at both initial transmission and retransmission.
  • SINR communication quality
  • mapping section 120 maps code blocks # 1 and # 2 to stream # 1 and also maps code blocks # 3 and # 4 to stream # 2 at the time of initial transmission.
  • a set of code blocks transmitted in different streams at the same time or frequency is a set of code blocks # 1 and # 3 and a set of code blocks # 2 and # 4. That is, in the spatial domain, the code blocks # 1 and # 3 constitute one set, and the code blocks # 2 and 4 constitute another set.
  • the transport block thus mapped is transmitted to the MIMO communication apparatus 200. Then, the two transmission streams overlap each other in the propagation path and are received by the MIMO communication apparatus 200.
  • MIMO communication apparatus 200 a plurality of reception streams received by a plurality of antennas are separated into streams corresponding to the transmission streams.
  • the first signal separation processing unit including the equalization unit 226 and the decoding unit 228 first extracts the stream with the first stream ranking from the plurality of received streams.
  • the stream ranking is usually ranked in order from a stream with good communication quality. Accordingly, the reception data (decoded data) related to stream # 1 is output from the decoding unit 228 here.
  • the decoded data of the stream # 1 extracted by the equalization unit 226 is encoded by the encoding unit 232. Then, the interference replica generation unit 234 generates an interference replica based on the encoded data obtained by the encoding unit 232.
  • the interference replica obtained by the interference replica generation unit 234 is subtracted by the subtraction processing unit 238 (see FIG. 10).
  • the reception stream after subtraction of the interference replica obtained in this way is extracted by the second signal separation processing unit including the equalization unit 244 and the decoding unit 246.
  • received data (decoded data) related to stream # 2 is output from decoding section 246.
  • the CRC determination unit outputs the decoding failure information to the ACK / NACK generation unit 265, while all have errors. Only when there is not, decoding success information is output to the ACK / NACK generation unit 265.
  • the ACK / NACK generation unit 265 receives the decoding failure information, and generates a NACK and transmits it to the MIMO communication apparatus 100.
  • the MIMO communication apparatus 100 When receiving the NACK, the MIMO communication apparatus 100 changes the mapping pattern of the code block and retransmits the transport block.
  • the mapping unit 120 changes the combination of code blocks mapped in the same transmission section between the first transmission and the retransmission of the transport block.
  • the set of code blocks in the spatial domain is changed to a set of code blocks # 4 and # 1 and a set of code blocks # 3 and # 2. That is, as described above, the mapping unit 120 replaces the code blocks to be mapped between the streams, and also changes the order of the code blocks mapped to the same stream (or the order of the frequencies), thereby replacing the space.
  • the set of code blocks in the area is changed.
  • code block # 3 has obtained the interference cancellation gain of code block # 1 because decoding of code block # 1 has succeeded. Therefore, even if the code block is mapped to the stream # 2 with low communication quality, the code block # 3 has higher reliability than the code block # 4. Further, when comparing code block # 2 and code block # 4, the reliability of code block # 2 is higher because the communication quality of stream # 1 is higher than that of stream # 2. As a result, the code block # 4 has the lowest reliability.
  • code block # 1 that has already been successfully decoded and code block # 4 with the lowest reliability form a set, and code block # 3 and code block # 2 It constitutes a set. Also, in this mapping pattern, a decoding success code block or a code block with high reliability is preferentially mapped to a stream with low communication quality.
  • the transport block thus mapped is transmitted to the MIMO communication apparatus 200.
  • MIMO communication apparatus 200 a plurality of reception streams received by a plurality of antennas are separated into streams corresponding to the transmission streams.
  • the signal separation unit 220 is generated by the interference replica generation unit 260 from the plurality of received streams received this time After removing the interference replica, the plurality of received streams received this time are separated for each stream.
  • the subtraction processing unit 222 removes (interference cancellation) the interference replica from a plurality of received streams (see FIG. 10).
  • received data related to stream # 1 is extracted from the plurality of received streams after the interference replica removal.
  • an interference replica is generated from the decoded data of the stream with the higher stream ranking, and the interference replica is removed from the plurality of received streams before the lower stream is extracted. Then, the lower stream is extracted.
  • the MIMO communication apparatus 200 first, from a plurality of received streams related to retransmission, regardless of the ranking of the stream to which the code block corresponding to the interference replica generated by the interference replica generation unit 260 is mapped, After the interference replica generated by the interference replica generation unit 260 at the first transmission is removed, a plurality of received streams received at the time of retransmission are separated for each stream.
  • mapping section 120 uses codewords. Are mapped to the transmission stream in units of code blocks, and the combination of code blocks mapped in the same transmission section is changed between when the transport block is first transmitted and when it is retransmitted. That is, when focusing on symbol intervals, mapping section 120 maps codewords to a plurality of transmission streams, and transmits a combination of code blocks to which a plurality of symbol data mapped to the same symbol interval belongs for the first transmission of transport blocks. Change between time and resend.
  • mapping unit 120 replaces the mapping destination transmission streams of a plurality of code blocks between the initial transmission and the retransmission.
  • interference replica generation section 260 forms an interference replica signal corresponding to the successfully decoded code block based on the decoded data of the successfully decoded code block, and signal separation section 220 has received this time. After the interference replica signal formed by the interference replica generation unit 260 at the time of reception before the previous time is removed from the plurality of reception streams, the plurality of reception streams received this time are separated for each stream.
  • Non-Patent Document 1 since symbol data belonging to the same code block is mapped to a plurality of streams in each symbol section, the interference canceller itself can be applied to the receiving side. Can not.
  • mapping destination transmission streams of a plurality of code blocks and the order of the code blocks mapped to the transmission streams are exchanged.
  • the combination of code blocks mapped to the same transmission section can be changed between the first transmission and the retransmission of the transport block simply by changing the order of the code blocks in some transmission streams. . This also makes it possible to make the reliability sufficiently uniform between code blocks when there is no difference in the communication quality of the transmission stream.
  • code block combinations may be used for all retransmissions. That is, in this case, in the second retransmission following the first retransmission in FIG. 8, for example, the transport block is transmitted with the mapping pattern shown in FIG.
  • the reliability becomes more uniform between code blocks as retransmissions are repeated.
  • an interference canceller is applied to the reception side, the probability that a code block having poor reception quality at the previous transmission will obtain an interference cancellation gain is further increased. Thereby, since the number of retransmissions can be reduced, transmission efficiency can be improved.
  • the mapping unit 120 may preferentially combine a plurality of code blocks having different error characteristics at the time of initial transmission. That is, the mapping unit 120 may create an error characteristic bias between transmission streams in advance at the time of initial transmission.
  • Combinations of a plurality of code blocks having different error characteristics include, for example, a combination of a code block that is easy to error due to a small number of constituent bits and a code block that is difficult to error due to a large number of constituent bits, or included in a constituent bit.
  • a combination of a code block that is easy to error because the number of filler bits is small and a code block that is difficult to error because the number of filler bits is large can be mentioned.
  • mapping pattern information In the above description, the case where the transmission pattern information of the MIMO communication apparatus 100 includes mapping pattern information has been described. However, the present invention is not limited to this, and the MIMO communication apparatus 100, the MIMO communication apparatus 200, and the like.
  • the change pattern of the mapping pattern may be shared in advance.
  • MIMO communication apparatus 200 has a counter (not shown) that counts the number of NACK transmissions, and outputs a count value to mapping control section 215 each time NACK is transmitted. Then, based on this count value, the mapping control unit 215 specifies a mapping pattern.
  • the code block group may be divided into several groups, and the combination of the code blocks at the time of retransmission may be changed within the group.
  • the decoding process can be started in units of groups before receiving all of the transport blocks at the time of retransmission on the receiving side, so that the decoding process can be started early and pipeline processing can also be performed. become.
  • the signal separation unit 220 is configured to cancel interference (that is, a configuration to which SIC: Successive Interference Cancellation is applied), but the present invention is not limited to this, and MLD (Maximum Likelihood). Detection) may be performed.
  • a transport block including a plurality of code blocks composed of a data string is transmitted using a plurality of transmission streams.
  • transport blocks are mapped to a transmission stream in units of code blocks, whereas in Embodiment 2, transport blocks (codewords) are transmitted in units of symbols. Mapped to stream.
  • FIG. 13 is a block diagram showing the configuration of the MIMO communication apparatus on the transmission side according to the second embodiment.
  • the MIMO communication apparatus 300 includes a mapping unit 310.
  • the mapping unit 310 receives the code word and maps the code word to a plurality of transmission streams.
  • mapping section 310 maps the codeword to the transmission stream in symbol units as shown in FIG. In FIG. 14, # 1, 2, 3, and 4 represent symbols constituting code blocks # 1, 2, 3, and 4, respectively. That is, in FIG. 14, symbols constituting the same code block are mapped to both stream # 1 and stream # 2. Further, symbols belonging to different code blocks are mapped to the same symbol section. For example, in the first symbol interval in FIG. 14, symbols belonging to code block # 1 are mapped to stream # 1, and symbols belonging to code block # 2 are mapped to stream # 2. That is, the mapping unit 310 maps symbols of different code blocks in the spatial domain in the same symbol resource.
  • mapping unit 310 changes the combination of code blocks mapped to the same symbol period between the initial transmission and the retransmission of the transport block.
  • FIG. 15 is a diagram illustrating an example of a code block mapping pattern in the first retransmission and second retransmission of a transport block.
  • the order of the symbols mapped to the stream 2 is changed with respect to the mapping pattern at the time of initial transmission in FIG. That is, in FIG. 15, symbols # 2, 1, 4, 3 mapped continuously at the head of stream # 2 are mapped in the order of symbols # 3, 4, 1, 2, at the first retransmission. Yes. At the second retransmission, the order of symbols mapped to stream 2 is further changed.
  • mapping section 310 converts a code word into a code word.
  • mapping to a plurality of transmission streams a combination of code blocks to which a plurality of symbol data mapped in the same symbol period belongs is changed between the initial transmission and the retransmission of the transport block.
  • code block group When the number of code blocks included in the transport block is large, the code block group may be divided into several groups, and the combination of the code blocks at the time of retransmission may be changed within the group.
  • code blocks # 1, 2, 3, and 4 constitute group # 1
  • code blocks # 5, 6, 7, and 8 constitute group # 2.
  • the decoding process can be started in units of groups before receiving all the transport blocks at the time of retransmission on the receiving side, so that the decoding process can be started early and pipeline processing can also be performed. become.
  • Embodiment 3 In Embodiments 1 and 2, the MIMO communication apparatus on the transmission side is autonomously or in a pattern change order determined in advance with the MIMO communication apparatus on the reception side, at the time of initial transmission and at the time of retransmission. The combination of code blocks has been changed.
  • the changed code block arrangement pattern is determined, and the determined code block pattern information is fed back to the MIMO communication apparatus on the transmission side.
  • FIG. 17 is a block diagram showing a configuration of the MIMO communication apparatus on the transmission side according to the third embodiment.
  • the MIMO communication apparatus 400 includes a mapping unit 410.
  • the mapping unit 410 receives the mapping pattern information decoded by the decoding unit 170, and changes the mapping pattern of the code block between the initial transmission and the retransmission based on the mapping pattern information.
  • This mapping pattern information is, for example, the number of shifts.
  • FIG. 18 shows an example of changing the mapping pattern when the number of shifts indicated by the mapping pattern information is 3.
  • FIG. 18 shows a case of shifting in the counterclockwise direction in particular.
  • FIG. 19 is a block diagram showing a configuration of a receiving side MIMO communication apparatus according to Embodiment 3.
  • the MIMO communication apparatus 500 includes a mapping pattern information generation unit 510.
  • the mapping pattern information generation unit 510 generates mapping pattern information based on decoding success / failure information for each code block received from a CRC determination unit (not shown).
  • FIG. 20 is a diagram for explaining a mapping pattern determination method in the mapping pattern information generation unit 510.
  • one transport block is composed of eight code blocks.
  • code blocks # 1, 2, 3, 4 are mapped to stream # 1 in this order, and code blocks # 5, 6, 7, and 8 are mapped to stream # 2 in this order. Is done. That is, in the initial transmission, the code blocks # 1, 5 constitute one set, the code blocks # 2, 6 constitute one set, the code blocks # 3, 7 constitute one set, Blocks # 4 and 8 constitute one set.
  • the transport block transmitted with this mapping pattern is received by MIMO communication apparatus 500, and in CRC determination section (not shown), code blocks # 1, 2, 3, and 6 are determined to have no error, and the remaining code Blocks # 4, 5, 7, and 8 are determined to have errors.
  • the mapping pattern information generation unit 510 sequentially “cyclically shifts” code blocks with respect to the mapping pattern at the time of initial transmission, and searches for the “best mapping pattern”. The number of shifts to the best mapping pattern is transmitted as mapping pattern information.
  • cyclic shift means that the two streams # 1 and # 2 are regarded as a chain connecting both ends, and the arrangement positions of the code blocks are shifted.
  • the direction of the cyclic shift is counterclockwise.
  • the “best mapping pattern” is a mapping pattern in which the number of sets composed of code blocks that have been successfully decoded and code blocks that have failed to be decoded is the largest. Furthermore, it is preferable that a code block that has been successfully decoded is preferentially mapped to a stream with low communication quality. That is, the number of code blocks successfully decoded in the first transmission stream (stream # 1 in FIG. 20) is the second transmission stream (stream # 2 in FIG. 20) having a communication quality lower than that of the first transmission stream. It is preferable that the number be larger than the number arranged in ().
  • mapping section 410 acquires mapping pattern information fed back from MIMO communication apparatus 500, and based on this mapping pattern information, a combination of code blocks is obtained. change.
  • This mapping pattern information is the number of shifts to a mapping pattern in which the number of combinations composed of code blocks that have been successfully decoded and code blocks that have failed to be decoded is the largest.
  • the number of decoding failure code blocks that can obtain an interference cancellation gain can be increased, so that the probability of successful decoding of the decoding failure code block at the time of retransmission can be increased. As a result, the number of retransmissions can be reduced, so that transmission efficiency can be improved.
  • the entire transport block is cyclically shifted, but the present invention is not limited to this.
  • the code block group may be divided into several groups and cyclically shifted in each group.
  • mapping pattern information generation unit 510 sequentially shifts all the groups while adjusting the number of shifts, and the sum of all groups related to the number of sets composed of code blocks that have been successfully decoded and code blocks that have failed to be decoded.
  • the number of shifts with the largest number may be fed back as mapping pattern information.
  • the shift amount is limited, so that the number of bits necessary for the mapping pattern information can be reduced.
  • an optimal mapping pattern may be determined for each group, and the number of shifts for each group may be fed back.
  • mapping unit 410 may transmit the mapping pattern information used for the mapping to the MIMO communication apparatus 500.
  • each functional block used in the description of the above embodiment is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • the name used here is LSI, but it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the MIMO transmission apparatus, MIMO reception apparatus, MIMO transmission signal forming method, and MIMO transmission signal separation method of the present invention are useful for improving transmission efficiency by achieving uniform reliability between code blocks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

 伝送効率を向上するMIMO送信装置、MIMO受信装置、MIMO伝送信号形成方法、及びMIMO伝送信号分離方法。MIMO通信装置(100)において、マッピング部(120)が、コードワードをコードブロック単位で送信ストリームにマッピングするとともに、同じ送信区間にマッピングされたコードブロックの組み合わせを、トランスポートブロックの初回送信時と再送時とで変更する。MIMO通信装置(200)において、干渉レプリカ生成部(260)が、復号に成功したコードブロックの復号データに基づいて、その復号成功コードブロックに対応する干渉レプリカ信号を形成し、信号分離部(220)が、今回受信した複数の受信ストリームから、前回以前の受信時に干渉レプリカ生成部(260)によって形成された干渉レプリカ信号を除去した後に、今回受信した複数の受信ストリームをストリームごとに分離する。

Description

MIMO送信装置、MIMO受信装置、MIMO伝送信号形成方法、及びMIMO伝送信号分離方法
 本発明は、MIMO送信装置、MIMO受信装置、MIMO伝送信号形成方法、及びMIMO伝送信号分離方法に関する。
 従来から通信の確実性を向上させる技術として、誤り訂正符号化が利用されている。また、そのような他の技術として、受信側で復号できなかったデータを再送する再送技術(例えば、HARQ(Hybrid-Automatic Repeat reQuest))が利用されている。
 3GPPでは、トランスポートブロック(Transport block(TB))単位でHARQ再送制御が行われる。このトランスポートブロックは、誤り訂正符号化単位であるコードブロック(Code block(CB))群によって構成される。
 図1は、トランスポートブロックの形成方法の説明に供する図である。
 図1に示すように、まず、トランスポートブロックのデータ列にCRC(Cyclic Redundancy Check)が付加される。そして、CRCが付加されたデータ列をコードブロックに対応する複数の部分データ列に分割し、得られた複数のコードブロックにCRCをそれぞれ付加する。
 そして、複数のコードブロックは、誤り訂正符号化処理、レートマッチング処理(間引き、繰り返しなど)を施された後に結合される。こうして図2に示すトランスポートブロックが形成される。
 この符号化処理後のトランスポートブロックはコードワードとして送信され、このコードワードの受信側では、図1を用いて説明した処理に対応する受信処理が行われる。すなわち、まず、受信コードワードに対して復号処理が施される。そして、トランスポートブロックに付加されたCRC(各コードブロックに付加されたCRCを含む)を用いて、受信コードワードに誤りがあるか否かの判定(CRC判定)が行われる。
 このCRC判定の結果、OKの場合(つまり、誤りがない場合)には、受信側から送信側に対してACKが報告される一方、NGの場合(つまり、誤りがある場合)には、NACKが報告される。なお、このNACKは、トランスポートブロック単位で誤りの有無を示すものであり、コードブロック単位で誤りの有無を示すものではない。
 そして、送信側は、NACKを受信した場合、このNACKに対応するトランスポートブロックを再送する。
 以上のようにトランスポートブロックを再送制御の単位とすることにより、受信側は、いずれかのコードブロックに関するCRC判定の結果がNGとなった場合、残りのコードブロックに対する復号処理等の受信処理を停止することができる。従って、受信側は、無駄な処理を省くことができるので、消費電力を削減することができる。
 さらに、トランスポートブロックを再送制御の単位とすることにより、コードブロックを再送単位にする場合に比べて、再送制御に係るシグナリング量を削減することができる。再送制御に係るシグナリングとは、例えば、ACK/NACK信号、再送単位に付加されるプロセス番号などである。
 また、3GPP LTEで扱われる技術として、MIMO(Multiple Input Multiple Output)がある。非特許文献1には、4×4MIMOにおけるトランスポートブロックの送信技術が開示されている。図3は、非特許文献1に開示された送信技術が適用されたMIMO送信装置の構成を示すブロック図である。
 図3において、符号化部で形成されたトランスポートブロック(コードワード)は、S/P部(シリアルパラレル変換部)に入力される。そして、S/P部は、トランスポートブロックに含まれる複数のコードブロックをそれぞれ分割し、1つのコードブロックから得られた複数の部分コードブロックをそれぞれ異なるストリームにマッピングする。図4においては、コードブロック♯1の部分コードブロック#1A、#1Bは、それぞれストリーム#1及びストリーム#2にマッピングされている。
 このMIMO送信装置は、上記した再送制御が適用されるので、トランスポートブロック単位でしか伝送の成功失敗を判断できない。従って、このMIMO送信装置は、NACKを受信した場合、トランスポートブロックを構成する全てのコードブロックを再送する。
 ところで、MIMO通信では、伝搬環境によってはストリーム間で通信品質が異なるケースがある。従って、複数のストリームに対するトランスポートブロックのマッピングパタンを固定すると、トランスポートブロックの特定部分で誤りが繰り返し発生してしまうことがある。
 この問題を解決するために、非特許文献1では、マッピングされる信号をストリーム間で再送毎に入れ替えるMIMO送信方法が提案されている。すなわち、図5に示すように、初回送信時には、部分コードブロックであるコードブロック#1A、#2A、#3A、#4Aがストリーム#1にマッピングされ、且つ、コードブロック#1B、#2B、#3B、#4Bがストリーム#2にマッピングされる。これに対して、再送1回目では、初回送信時でストリーム#1にマッピングされていたコードブロック#1A、#2A、#3A、#4Aがストリーム#2にマッピングされる。
 こうしてマッピングされる信号をストリーム間で再送毎に入れ替えることにより、任意のコードブロックにおけるシンボルの信頼度が均一化される。これにより、ストリーム間での通信品質の偏りに起因した誤りが特定部分で繰り返して起こる確率を低減することができる。 
R1-072384, "HARQ performance enhancement", Nortel, Kobe, Japan, 7- 11 May, 2007
 しかしながら、上記従来のMIMO送信方法では、コードブロックにおけるシンボルの信頼度は均一化されるものの、コードブロック間の信頼度の均一化が図られていないため、特定のコードブロックで誤りが繰り返えされる可能性が高い。これに伴い、伝送効率が低下してしまう問題がある。
 本発明の目的は、コードブロック間で信頼度の均一化を図ることにより伝送効率を向上するMIMO送信装置、MIMO受信装置、MIMO伝送信号形成方法、及びMIMO伝送信号分離方法を提供することである。
 本発明のMIMO送信装置は、データ列から構成されるコードブロック(Code block)を複数含むトランスポートブロック(Transport block)を、複数の送信ストリームを用いて送信するMIMO送信装置であって、前記トランスポートブロックをコードブロック単位で符号化することによりコードワードを形成する符号化手段と、前記コードワードを前記複数の送信ストリームにマッピングする手段であって、同じシンボル区間にマッピングされた複数のシンボルデータが属するコードブロックの組み合わせを、前記トランスポートブロックの前回送信時と今回送信時とで変更するマッピング手段と、を具備する構成を採る。
 本発明のMIMO受信装置は、データ列から構成されるコードブロック(Code block)を複数含むトランスポートブロック(Transport block)がマッピングされた複数の受信ストリームをストリームごとに分離するとともに、当該分離ストリームをコードブロックごとに復号するMIMO受信装置であって、復号に成功したコードブロックの復号データに基づいて、前記復号に成功したコードブロックに対応する干渉レプリカ信号を形成する形成手段と、今回受信した複数の受信ストリームから、前回以前の受信時に前記形成手段によって形成された干渉レプリカ信号を除去した後に、前記今回受信した複数の受信ストリームをストリームごとに分離する分離手段と、を具備する構成を採る。
 本発明のMIMO伝送信号形成方法は、データ列から構成されるコードブロック(Code block)を複数含むトランスポートブロック(Transport block)をコードブロック単位で符号化することによりコードワードを形成するステップと、前記コードワードを複数の送信ストリームにマッピングすることにより、MIMO信号を形成するステップと、を具備し、前記MIMO信号において同じシンボル区間にマッピングされた複数のシンボルデータが属するコードブロックの組み合わせは、前回送信時と今回送信時とで異なる。
 本発明のMIMO伝送信号分離方法は、データ列から構成されるコードブロック(Code block)を複数含むトランスポートブロック(Transport block)がマッピングされた複数の受信ストリームをストリームごとに分離するとともに、当該分離ストリームをコードブロックごとに復号するMIMO伝送信号分離方法であって、復号に成功したコードブロックの復号データに基づいて、前記復号に成功したコードブロックに対応する干渉レプリカ信号を形成するステップと、今回受信した複数の受信ストリームから、前回以前の受信時に前記形成ステップで形成された干渉レプリカ信号を除去するステップと、前記干渉レプリカ信号除去後の前記今回受信した複数の受信ストリームをストリームごとに分離するステップと、を具備する。
 本発明によれば、コードブロック間で信頼度の均一化を図ることにより伝送効率を向上するMIMO送信装置、MIMO受信装置、MIMO伝送信号形成方法、及びMIMO伝送信号分離方法を提供することができる。
トランスポートブロックの形成方法の説明に供する図 トランスポートブロックの構成を示す図 従来のMIMO送信装置の構成を示すブロック図 図3のMIMO送信装置におけるマッピング方法の説明に供する図 従来のマッピングパタンの一例を示す図 本発明の実施の形態1に係る送信側のMIMO通信装置の構成を示すブロック図 図6のMIMO通信装置が備える機能部のうち、符号化部、マッピング部、及びMIMO変調部を示すとともに、これらの機能部の入力信号及び出力信号を模式的に示す図 トランスポートブロックの初回送信及び再送における、コードブロックのマッピングパタンの一例を示す図 実施の形態1に係る受信側のMIMO通信装置の構成を示すブロック図 受信側のMIMO通信装置の動作説明に供する図 2回目再送時のマッピングパタンの一例を示す図 マッピングパタンの他の例を示す図 実施の形態2に係る送信側のMIMO通信装置の構成を示すブロック図 トランスポートブロックの初回送信におけるコードブロックのマッピングパタンの一例を示す図 トランスポートブロックの再送1回目及び再送2回目における、コードブロックのマッピングパタンの一例を示す図 トランスポートブロックの初回送信及び再送における、コードブロックのマッピングパタンの他の例を示す図 実施の形態3に係る送信側のMIMO通信装置の構成を示すブロック図 マッピングパタン情報の示すシフト数が3の場合のマッピングパタン変更例を示す図 実施の形態3に係る受信側のMIMO通信装置の構成を示すブロック図 図19のマッピングパタン情報生成部におけるマッピングパタン決定方法の説明に供する図 巡回シフト方法のバリエーションを示す図
 以下、本発明の実施の形態について図面を参照して詳細に説明する。なお、実施の形態において、同一の構成要素には同一の符号を付し、その説明は重複するので省略する。
 (実施の形態1)
 図6は、実施の形態1に係る送信側のMIMO通信装置の構成を示すブロック図である。図6に示されるMIMO通信装置100は、データ列から構成されるコードブロック(Code block)を複数含むトランスポートブロック(Transport block)を、複数の送信ストリームを用いて送信する。なお、以下では、説明を簡単にするために、トランスポートブロックの送信に用いられる送信ストリームが2個の場合について説明するが、送信ストリームの数はこれに限定されるものではなく、3個以上でもよい。
 図6において、MIMO通信装置100は、符号化部110と、マッピング部120と、MIMO送信部130と、受信RF部140と、チャネル推定部150と、等化部160と、復号部170とを有する。MIMO送信部130は、MIMO変調部132と、プリコーディング部134と、送信RF部136とを有する。
 図7は、MIMO通信装置100が備える機能部のうち、符号化部110、マッピング部120、及びMIMO変調部132を示すとともに、これらの機能部の入力信号及び出力信号を模式的に示す図である。
 符号化部110は、送信データであるコードブロックを複数含むトランスポートブロックを入力とし、当該トランスポートブロックをコードブロック単位で符号化する。こうして形成された符号化処理後のトランスポートブロックは、メモリ(図示せず)に保持されるとともに、コードワードとしてマッピング部120に出力される。
 また、符号化部110は、復号部170から受け取るACK又はNACKを入力とし、ACK又はNACKに応じたトランスポートブロックを出力する。
 すなわち、NACKが入力される場合には、符号化部110は、メモリに保持されているコードワードをマッピング部120に再度出力する。こうして再送処理が実行される。また、符号化部110は、1つのトランスポートブロックに関してNACKを受け取った回数をカウントするカウンタ(図示せず)を有し、NACKを受け取る毎にカウンタ値(つまり、送信回数情報)をマッピング部120に出力する。
 一方、ACKが入力される場合には、符号化部110は、メモリに保持されているコードワードの次のトランスポートブロックをコードブロック単位で符号化する。
 マッピング部120は、コードワードを入力とし、当該コードワードを複数の送信ストリームにマッピングする。ここでは、マッピング部120は、図7に示すようにコードワードをコードブロック単位で送信ストリームにマッピングする。すなわち、図7において、同一のトランスポートブロックに含まれるコードブロック#1~4に関し、マッピング部120は、コードブロック#1、2をストリーム#1にマッピングするとともに、コードブロック#3、4をストリーム#2にマッピングする。
 また、マッピング部120は、同じ送信区間にマッピングされるコードブロックの組み合わせを、トランスポートブロックの初回送信時と再送時とで変更する。マッピング部120は、今回の送信におけるマッピングパタン情報をトランスポートブロックの前に出力する。このマッピングパタン情報を復号することにより、受信側は、そのマッピングパタン情報に続けて送信されるトランスポートブロックのマッピングパタンを特定することができる。
 図8は、トランスポートブロックの初回送信及び再送における、コードブロックのマッピングパタンの一例を示す図である。
 図8においては、初回送信時のマッピングパタンに対して、第1に、マッピングされるコードブロックがストリーム間で入れ替えられ、第2に、ストリーム1にマッピングされるコードブロックの時間に関する順序(又は、周波数に関する順序)が入れ替えられている。
 MIMO送信部130は、マッピング部120から出力されたトランスポートブロックを入力とし、当該トランスポートブロックからMIMO送信信号を形成する。具体的には、MIMO送信部130において、MIMO変調部132が、ストリームにマッピングされたコードブロックを入力とし、ストリームごとに変調処理を施してMIMO変調信号を形成する。この変調処理では、QPSK、QAM等の変調方式が用いられる。そして、プリコーディング部134が、MIMO変調部132から出力されるMIMO変調信号に対し、ビーム形成用のウェイトを乗算する。そして、送信RF部136は、各ストリームに対し、D/A変換、アップコンバート、増幅等の送信無線処理を行う。ここでは、2個のストリームが用いられるので、送信RF部136-1、2が設けられている。
 こうして形成されたMIMO送信信号は、複数のアンテナから送信される。
 受信RF部140は、受信アンテナで受信した信号に対し、増幅、ダウンコンバート、A/D変換等の受信無線処理を行う。
 チャネル推定部150は、受信信号に含まれる既知シンボルに基づいて、伝搬路での変動量を推定する。
 等化部160は、チャネル推定部150で得られたチャネル推定値を用いて、受信信号の等化処理を行う。
 復号部170は、等化後信号から誤り訂正復号などを行い、後述するMIMO受信装置からフィードバックされたACK/NACK情報を出力する。
 図9は、実施の形態1に係る受信側のMIMO通信装置の構成を示すブロック図である。
 図9に示されるMIMO通信装置200は、MIMO通信装置100から送信された、データ列から構成されるコードブロック(Code block)を複数含むトランスポートブロック(Transport block)がマッピングされた複数のストリームを受信する。そして、MIMO通信装置200は、複数の受信ストリームをストリームごとに分離するとともに、当該分離ストリームをコードブロックごとに復号する。ここでは、MIMO通信装置100に合わせて、受信ストリームが2個の場合について説明する。
 図9において、MIMO通信装置200は、受信RF部210と、マッピング制御部215と、信号分離部220と、符号化部250と、チャネル推定部255と、干渉レプリカ生成部260と、ACK/NACK生成部265と、変調部270と、送信RF部275とを有する。
 受信RF部210は、各受信アンテナで受信した信号に対し、増幅、ダウンコンバート、A/D変換の受信無線処理を行う。
 マッピング制御部215は、受信信号を復号し、受信信号に含まれるマッピングパタン情報を干渉レプリカ生成部260及び信号分離部220に出力する。
 信号分離部220は、今回の送信が初回送信である場合、又は、今回の再送時より前に復号に成功した(つまり、復号結果に誤りのない)コードブロックがない場合には、マッピング制御部215から受け取るマッピング情報に基づいて、今回受信した複数の受信ストリームから、ストリームランキングが上位のストリームから順番に分離する。
 一方、信号分離部220は、今回の再送時より前に復号に成功したコードブロックがある場合には、今回受信した複数の受信ストリームから、干渉レプリカ生成部260で生成された干渉レプリカを除去した後に、今回受信した複数の受信ストリームをストリームごとに分離する。
 図9においては、信号分離部220は、受信ストリームごとに設けられた複数の減算器を有する減算処理部222と、チャネル推定部224と、等化部226と、復号部228と、符号化部232と、干渉レプリカ生成部234と、遅延部236と、減算処理部238と、チャネル推定部242と、等化部244と、復号部246とを有する。
 減算処理部222は、受信RF部210から受け取る複数の受信ストリームから、干渉レプリカを減算し、得られた複数のストリームをチャネル推定部224、等化部226、及び遅延部236に出力する。
 チャネル推定部224は、受信信号内の既知シンボルから伝搬路での変動量を推定する。
 等化部226は、チャネル推定部224で得られたチャネル推定値を用いて、受信信号の等化処理を行う。
 復号部228は、ターボ符号などの復号を行う。
 符号化部232は、復号部228で得られた符号データに対して、送信側の符号化部110と同様の符号化処理(ターボ符号など)を行う。
 干渉レプリカ生成部234は、符号化部232で得られた、復号成功コードブロックの復号データ、マッピング制御部215からのマッピングパタン情報、及び、チャネル推定部224で得られたチャネル推定値に基づいて、ストリームランキングが1番目のストリームにマッピングされたコードブロックに対応する干渉レプリカ信号を形成する。
 遅延部236は、複数のストリームに対して一定の遅延を与える。
 減算処理部238は、遅延部236にて遅延された複数のストリームから、干渉レプリカ生成部234で得られた干渉レプリカを減算し、得られた複数のストリームをチャネル推定部242及び等化部244に出力する。
 チャネル推定部242は、受信信号内の既知シンボルから伝搬路での変動量を推定する。
 等化部244は、ターボ符号などの復号を行う。
 復号部246は、送信側の符号化部110と同様の符号化処理(ターボ符号など)を行う。
 符号化部250は、復号に成功した(つまり、復号結果に誤りのない)コードブロックを入力とし、当該コードブロックに対して送信側の符号化部110と同様の符号化処理を施す。
 チャネル推定部255は、受信信号に含まれる既知信号に基づいて、伝搬路での変動量を推定する。
 干渉レプリカ生成部260は、符号化部250で得られた、復号成功コードブロックの復号データ、及び、チャネル推定部255で得られたチャネル推定値に基づいて、復号成功コードブロックに対応する干渉レプリカ信号を形成する。干渉レプリカ生成部260は、入力される復号成功コードブロックの識別情報と、これに対応する干渉レプリカ信号を一時保持する。
 干渉レプリカ生成部260は、マッピング制御部215から受け取るマッピング情報に基づいて、今回再送されるトランスポートブロックにおいて復号成功コードブロックがマッピングされているタイミングで、干渉レプリカを減算処理部222に出力する。
 ACK/NACK生成部265は、復号部228及び復号部246の出力段に設けられるCRC判定部(図示せず)から受け取る、トランスポートブロックの復号成否情報に基づいて、ACK又はNACKを生成する。生成されたACK(又は、NACK)は、変調部270で変調処理が施され、送信RF部275で送信無線処理が施された後に、アンテナを介して送信される。
 以上の構成を有するMIMO通信装置100及びMIMO通信装置200から構成される通信システムの動作について図6乃至図10を参照して説明する。
 以下の説明では、次の事項を前提とする。(1)図8に示すように、1トランスポートブロックには、4つのコードブロックが含まれる。(2)トランスポートブロックが2つのストリームで送信される。(3)初回送信及び再送時ともに、ストリーム#1の通信品質(例えば、SINR)に比べて、ストリーム#2の通信品質が低い。(4)初回送信において、コードブロック#1の伝送のみが成功し、他のコードブロックの伝送が失敗している。
 まず、MIMO通信装置100において、マッピング部120は、初回送信に際して、コードブロック#1、2をストリーム#1にマッピングするとともに、コードブロック#3、4をストリーム#2にマッピングする。同一の時間又は周波数で且つ異なるストリームで送信されるコードブロックの組みは、コードブロック#1、3の組みと、コードブロック#2、4の組みである。すなわち、空間領域で、コードブロック#1、3が1つの組を構成し、コードブロック#2、4がもう1つの組みを構成する。
 こうしてマッピングされたトランスポートブロックは、MIMO通信装置200へ送信される。そして、2つの送信ストリームは、伝搬路において重なり合って、MIMO通信装置200において受信される。
 MIMO通信装置200において、複数のアンテナで受信された複数の受信ストリームは、送信ストリームに対応するストリームに分離される。
 すなわち、等化部226及び復号部228を含む第1の信号分離処理部は、複数の受信ストリームから、先ずストリームランキングが1番のストリームを抽出する。ストリームランキングは、通常、通信品質の良いストリームから順番にランキングされる。従って、ここではストリーム#1に関する受信データ(復号データ)が復号部228から出力される。
 そして、ここでは、復号部228の後段に設けられるCRC判定部(図示せず)では、コードブロック#1には誤りがなく(CRC=OK)、コードブロック#2には誤りがある(CRC=NG)判定が得られる。
 また、等化部226で抽出されたストリーム#1の復号データは、符号化部232によって符号化される。そして、干渉レプリカ生成部234は、符号化部232で得られた符号化データに基づいて、干渉レプリカを生成する。
 また、複数の受信ストリームは、遅延部236によって遅延を与えられた後、減算処理部238によって干渉レプリカ生成部234で得られた干渉レプリカが減算される(図10参照)。こうして得られた干渉レプリカ減算後の受信ストリームは、等化部244及び復号部246を含む第2の信号分離処理部によって抽出される。ここでは、ストリーム#2に関する受信データ(復号データ)が復号部246から出力される。
 そして、ここでは、CRC判定部(図示せず)では、コードブロック#3、4ともに誤りがある判定が得られる。
 そして、そのCRC判定部は、トランスポートブロックに含まれる複数のコードブロックのうち1つでも誤っている場合には、ACK/NACK生成部265に復号不成功情報を出力する一方、すべてに誤りがない場合にのみ、ACK/NACK生成部265に復号成功情報を出力する。
 ここで想定しているケースでは、ACK/NACK生成部265は、復号不成功情報を受け取るので、NACKを生成してMIMO通信装置100に送信する。
 MIMO通信装置100は、NACKを受け取ると、コードブロックのマッピングパタンを変更してトランスポートブロックを再送する。
 すなわち、MIMO通信装置100において、マッピング部120は、同じ送信区間にマッピングされるコードブロックの組み合わせを、トランスポートブロックの初回送信時と再送時とで変更する。図8では、空間領域におけるコードブロックの組が、コードブロック#4、1の組みと、コードブロック#3、2の組みとに変更されている。すなわち、上記したように、マッピング部120は、マッピングされるコードブロックをストリーム間で入れ替えるとともに、同一のストリームにマッピングされるコードブロックの時間に関する順序(又は、周波数に関する順序)を入れ替えることにより、空間領域におけるコードブロックの組を変更している。
 ここで、初回送信時において、コードブロック#3は、コードブロック#1の復号が成功しているので、コードブロック#1の干渉キャンセルゲインを得ている。従って、通信品質の低いストリーム#2にマッピングされたコードブロックであっても、コードブロック#3は、コードブロック#4と比較すると、信頼度が高い。また、コードブロック#2とコードブロック#4とを比較すると、ストリーム#1の通信品質がストリーム#2のものより高いことから、コードブロック#2の信頼度の方が高い。結果的に、コードブロック#4の信頼度が最も低いことになる。
 従って、図8に示す再送時のマッピングパタンでは、既に復号に成功したコードブロック#1と最も信頼度の低いコードブロック#4とが組を構成し、コードブロック#3とコードブロック#2とが組を構成している。また、このマッピングパタンでは、復号成功コードブロック又は信頼度の高いコードブロックが、優先的に通信品質の低いストリームにマッピングされている。
 こうしてマッピングされたトランスポートブロックは、MIMO通信装置200へ送信される。
 MIMO通信装置200において、複数のアンテナで受信された複数の受信ストリームは、送信ストリームに対応するストリームに分離される。
 ただし、再送時においては、今回の再送時より前に復号に成功したコードブロックがある場合には、信号分離部220が、今回受信した複数の受信ストリームから、干渉レプリカ生成部260で生成された干渉レプリカを除去した後に、今回受信した複数の受信ストリームをストリームごとに分離する。
 ここでは、コードブロック#1に対応する干渉レプリカが生成されているので、減算処理部222において、複数の受信ストリームからその干渉レプリカが除去(干渉キャンセル)される(図10参照)。
 そして、第1の信号分離処理部において、干渉レプリカ除去後の複数の受信ストリームから、ストリーム#1に関する受信データが抽出される。
 ここで、従来は、上記した初回送信の場合と同様に、ストリームランキングが上位のストリームの復号データから干渉レプリカを生成し、下位のストリームを抽出する前にその干渉レプリカを複数の受信ストリームから除去して、下位ストリームを抽出する。
 これに対して、MIMO通信装置200は、干渉レプリカ生成部260で生成された干渉レプリカに対応するコードブロックがマッピングされているストリームのランキングに関わらず、まず、再送に係る複数の受信ストリームから、初回送信時に干渉レプリカ生成部260で生成された干渉レプリカを除去した後に、再送時に受信した複数の受信ストリームをストリームごとに分離する。
 こうすることで、コードブロック#4の信号分離において、コードブロック#1の干渉キャンセルゲインを得ることができる。
 以上のように本実施の形態によれば、データ列から構成されるコードブロックを複数含むトランスポートブロックを、複数の送信ストリームを用いて送信するMIMO通信装置100において、マッピング部120が、コードワードをコードブロック単位で送信ストリームにマッピングするとともに、同じ送信区間にマッピングされたコードブロックの組み合わせを、トランスポートブロックの初回送信時と再送時とで変更する。すなわち、シンボル区間に着目すると、マッピング部120は、コードワードを複数の送信ストリームにマッピングするとともに、同じシンボル区間にマッピングされた複数のシンボルデータが属するコードブロックの組み合わせを、トランスポートブロックの初回送信時と再送時とで変更する。
 こうすることで、再送することによってコードブロック間で信頼度が均一化される。特に、受信側に干渉キャンセラが適用される場合には、前回送信時に受信品質の悪かったコードブロックが干渉キャンセルゲインを得る確率を高くすることができる。これにより、再送回数を低減することができるので、伝送効率を向上することができる。
 また、マッピング部120は、複数のコードブロックのマッピング先送信ストリームを、初回送信時と再送時とで入れ替える。
 こうすることで、送信ストリームの通信品質に差がある場合でも、コードブロック間で信頼度を均一化することができる。
 また、本実施の形態によれば、データ列から構成されるコードブロックを複数含むトランスポートブロックがマッピングされた複数の受信ストリームをストリームごとに分離するとともに、当該分離ストリームをコードブロックごとに復号するMIMO通信装置200において、干渉レプリカ生成部260が、復号に成功したコードブロックの復号データに基づいて、その復号成功コードブロックに対応する干渉レプリカ信号を形成し、信号分離部220が、今回受信した複数の受信ストリームから、前回以前の受信時に干渉レプリカ生成部260によって形成された干渉レプリカ信号を除去した後に、今回受信した複数の受信ストリームをストリームごとに分離する。
 こうすることで、干渉レプリカ信号を除去した後に複数の受信ストリームを分離する際に、干渉キャンセルゲインを確実に得ることができる。従って、信号分離精度が向上するので、結果的に再送回数を低減することができる。これにより、伝送効率を向上することができる。
 因みに、上記した非特許文献1に開示された技術では、各シンボル区間において、同一のコードブロックに属するシンボルデータが複数のストリームにマッピングされているため、受信側に干渉キャンセラ自体を適用することができない。
 なお、以上の説明では、複数のコードブロックのマッピング先送信ストリーム、及び、送信ストリームにマッピングされるコードブロックの順序が入れ替えられる場合について説明した。これに対して、一部の送信ストリームにおいてコードブロックの順序を入れ替えるだけでも、同じ送信区間にマッピングされたコードブロックの組み合わせを、トランスポートブロックの初回送信時と再送時とで変更することができる。こうすることでも、送信ストリームの通信品質に差がない場合には、コードブロック間で信頼度を十分均一化することができる。
 また、以上の説明では、初回送信時と再送時とで、同じ送信区間にマッピングされたコードブロックの組み合わせを変更する場合を中心に説明したが、本発明はこれに限定されるものではなく、前回送信時(初回送信時を含む)と今回送信時とで同じ送信区間にマッピングされたコードブロックの組み合わせを変更してもよい。
 さらに、すべての再送時で異なるコードブロックの組み合わせが用いられてもよい。すなわち、この場合、図8の再送1回目に続く再送2回目では、例えば、図11に示すマッピングパタンでトランスポートブロックが送信される。
 こうすることで、再送を重ねるに連れてコードブロック間で信頼度がより均一化される。特に、受信側に干渉キャンセラが適用される場合には、前回送信時に受信品質の悪かったコードブロックが干渉キャンセルゲインを得る確率が一層高くなる。これにより、再送回数を低減することができるので、伝送効率を向上することができる。
 また、以上の説明では、1つのコードブロックに対して1つのコードブロックが組となる場合について説明したが、図12に示すように、1つのコードブロックに対して複数のコードブロックの部分コードブロックを組みにしてもよい。これは、図12において、コードブロック#3A及びコードブロック#4Aを1つの新たなコードブロックとして、また、コードブロック#3B及びコードブロック#4Bを1つの新たなコードブロックとして捉えれば、1つのコードブロックに対して1つのコードブロックが組となる場合と同様に扱うことができる。このように捉えれば、図12に示す場合でも、前回送信時(初回送信時を含む)と今回送信時とで同じ送信区間にマッピングされたコードブロックの組み合わせが変更されている。
 また、マッピング部120は、初回送信時において、誤り特性に差がある複数のコードブロックを優先的に組み合わせてもよい。すなわち、マッピング部120は、初回送信時において、予め送信ストリーム間で誤り特性の偏りをつくってもよい。誤り特性に差がある複数のコードブロックの組み合わせとしては、例えば、構成ビット数が少ないため誤り易いコードブロックと構成ビット数が多いことにより誤り難いコードブロックとの組み合わせ、又は、構成ビットに含まれるフィラービットが(filler bit)数が少ないため誤り易いコードブロックとフィラービット数が多いため誤り難いコードブロックとの組み合わせなどを挙げることができる。
 こうすることで、誤り難い(つまり、復号が成功する可能性の高い)コードブロックから得られる干渉レプリカを用いた干渉キャンセルのゲインを誤り易いコードブロックが得る可能性を高めることができる。
 また、以上の説明においては、MIMO通信装置100の送信信号にマッピングパタン情報が含まれる場合について説明したが、本発明はこれに限定されるものではなく、MIMO通信装置100とMIMO通信装置200との間で予めマッピングパタンの変更パタンを共有しておいてもよい。この場合には、MIMO通信装置200は、NACKの送信回数をカウントするカウンタ(図示せず)を有し、NACKの送信毎にカウント値をマッピング制御部215に出力する。そして、このカウント値に基づいて、マッピング制御部215がマッピングパタンを特定する。
 また、以上の説明においては、1つのトランスポートブロックに4つのコードブロックが含まれる場合について説明したが、1つのトランスポートブロックに含まれるコードブロックの数はこれに限られない。
 トランスポートブロックに含まれるコードブロックの数が多い場合には、コードブロック群をいくつかのグループに分け、再送時のコートブロックの組み合わせをそのグループ内で変更してもよい。
 こうすることで、受信側において、再送時にトランスポートブロックのすべてを受信する前に、グループ単位で復号処理を開始することができるので、復号処理を早く開始できるとともに、パイプライン処理することも可能になる。
 また、以上の説明では、信号分離部220を干渉キャンセルする構成(つまり、SIC:Successive Interference Cancellationが適用される構成)としたが、本発明はこれに限定されるものではなく、MLD(Maximum Likelihood Detection)を行う構成としてもよい。
 (実施の形態2)
 実施の形態2では、実施の形態1と同様に、データ列から構成されるコードブロックを複数含むトランスポートブロックが、複数の送信ストリームを用いて送信される。
 ただし、実施の形態1では、トランスポートブロック(コードワード)がコードブロック単位で送信ストリームにマッピングされているのに対して、実施の形態2では、トランスポートブロック(コードワード)がシンボル単位で送信ストリームにマッピングされる。
 図13は、実施の形態2に係る送信側のMIMO通信装置の構成を示すブロック図である。図13において、MIMO通信装置300は、マッピング部310を有する。
 マッピング部310は、コードワードを入力とし、当該コードワードを複数の送信ストリームにマッピングする。ここでは、マッピング部310は、図14に示すようにコードワードをシンボル単位で送信ストリームにマッピングする。なお、図14において、#1、2、3、4は、それぞれコードブロック#1、2、3、4を構成するシンボルを表している。すなわち、図14において、同一のコードブロックを構成するシンボルは、ストリーム#1及びストリーム#2のいずれにもマッピングされる。また、同一シンボル区間には、異なるコードブロックに属するシンボルがマッピングされる。例えば、図14における最初のシンボル区間には、コードブロック#1に属するシンボルがストリーム#1にマッピングされ、コードブロック#2に属するシンボルがストリーム#2にマッピングされる。つまり、マッピング部310は、同一シンボルリソースにおいて、空間領域で異なるコードブロックのシンボルをマッピングする。
 また、マッピング部310は、同じシンボル区間にマッピングされるコードブロックの組み合わせを、トランスポートブロックの初回送信時と再送時とで変更する。
 図15は、トランスポートブロックの再送1回目及び再送2回目における、コードブロックのマッピングパタンの一例を示す図である。
 図15においては、図14の初回送信時のマッピングパタンに対して、ストリーム2にマッピングされたシンボルの順序が入れ替えられている。すなわち、図15において、ストリーム#2の先頭に連続してマッピングされているシンボル#2、1、4、3は、再送1回目時には、シンボル#3、4、1、2の順序でマッピングされている。再送2回目時には、更にストリーム2にマッピングされたシンボルの順序が入れ替えられている。
 このように本実施の形態によれば、データ列から構成されるコードブロックを複数含むトランスポートブロックを、複数の送信ストリームを用いて送信するMIMO通信装置300において、マッピング部310が、コードワードを複数の送信ストリームにマッピングするとともに、同じシンボル区間にマッピングされた複数のシンボルデータが属するコードブロックの組み合わせを、トランスポートブロックの初回送信時と再送時とで変更する。
 こうすることで、空間ダイバーシティ効果が得られるとともに、再送することによってコードブロック間で信頼度が均一化される。これにより、再送回数を低減することができるので、伝送効率を向上することができる。
 なお、以上の説明においては、1つのトランスポートブロックに4つのコードブロックが含まれる場合について説明したが、1つのトランスポートブロックに含まれるコードブロックの数はこれに限られない。
 トランスポートブロックに含まれるコードブロックの数が多い場合には、コードブロック群をいくつかのグループに分け、再送時のコートブロックの組み合わせをそのグループ内で変更してもよい。図16において、コードブロック#1、2、3、4はグループ#1を構成し、コードブロック#5、6、7、8はグループ#2を構成する。
 こうすることで、受信側において、再送時にトランスポートブロックのすべてを受信する前に、グループ単位で復号処理を開始することができるので、復号処理を早く開始できるとともに、パイプライン処理することも可能になる。
 (実施の形態3)
 実施の形態1及び2においては、送信側のMIMO通信装置が、自律的に、又は、受信側のMIMO通信装置との間で予め決められたパタン変更順序で、初回送信時と再送時とでコードブロックの組み合わせを変更している。
 これに対して、実施の形態3では、受信側のMIMO通信装置において、変更後のコードブロック配置パタンを決定し、決定されたコードブロックパタン情報を送信側のMIMO通信装置にフィードバックする。
 なお、以下では、実施の形態1と同様に、トランスポートブロックがコードブロック単位で複数の送信ストリームにマッピングされる場合について説明する。
 図17は、実施の形態3に係る送信側のMIMO通信装置の構成を示すブロック図である。図17において、MIMO通信装置400は、マッピング部410を有する。
 マッピング部410は、復号部170で復号されたマッピングパタン情報を入力とし、このマッピングパタン情報に基づいて、コードブロックのマッピングパタンを初回送信時と再送時とで変更する。このマッピングパタン情報は、例えば、シフト数である。図18には、マッピングパタン情報の示すシフト数が3の場合のマッピングパタン変更例が示されている。図18では、特に反時計回りにシフトさせる場合が示されている。
 図19は、実施の形態3に係る受信側のMIMO通信装置の構成を示すブロック図である。図19において、MIMO通信装置500は、マッピングパタン情報生成部510を有する。
 マッピングパタン情報生成部510は、CRC判定部(図示せず)から受け取るコードブロックごとの復号成否情報に基づいて、マッピングパタン情報を生成する。
 図20は、マッピングパタン情報生成部510におけるマッピングパタン決定方法の説明に供する図である。図20において、1つのトランスポートブロックは、8つのコードブロックから構成されている。
 そして、初回送信において、ストリーム#1には、コードブロック#1、2、3、4がこの順番でマッピングされ、ストリーム#2には、コードブロック#5、6、7、8がこの順番でマッピングされる。すなわち、初回送信においては、コードブロック#1、5が1つの組を構成し、コードブロック#2、6が1つの組を構成し、コードブロック#3、7が1つの組を構成し、コードブロック#4、8が1つの組を構成する。
 このマッピングパタンで送信されたトランスポートブロックは、MIMO通信装置500で受信され、CRC判定部(図示せず)において、コードブロック#1、2、3、6は誤りがないと判定され、残るコードブロック#4、5、7、8は誤りがあると判定されている。
 マッピングパタン情報生成部510は、初回送信時のマッピングパタンに対してコードブロックを順次「巡回シフト」させ、「最良のマッピングパタン」を探索する。そして、この最良のマッピングパタンへのシフト数が、マッピングパタン情報として送信される。
 ここで「巡回シフト」とは、2つのストリーム#1、2を両端で繋がっているチェーンとして捉え、コードブロックの配置位置をずらすことを意味する。ここでは、巡回シフトの方向を反時計回りとしている。
 また、「最良のマッピングパタン」は、復号に成功したコードブロックと復号に失敗したコードブロックとから構成される組みの数が最多となるマッピングパタンである。さらに、復号に成功したコードブロックが優先的に通信品質の低いストリームにマッピングされることが好ましい。すなわち、復号が成功したコードブロックが第1送信ストリーム(図20では、ストリーム#1)に配置される数が、第1送信ストリームより通信品質の悪い第2送信ストリーム(図20では、ストリーム#2)に配置される数よりも多くなることが好ましい。
 このように本実施の形態によれば、MIMO通信装置400において、マッピング部410が、MIMO通信装置500からフィードバックされるマッピングパタン情報を取得し、このマッピングパタン情報に基づいて、コードブロックの組み合わせを変更する。このマッピングパタン情報は、復号に成功したコードブロックと復号に失敗したコードブロックとから構成される組みの数が最多となるマッピングパタンへのシフト数である。
 こうすることで、干渉キャンセルゲインを得ることができる復号失敗コードブロックの数を多くすることができるので、その復号失敗コードブロックの復号が再送時に成功する確率を高くすることができる。この結果、再送回数を低減することができるので、伝送効率を向上することができる。
 なお、以上の説明においては、トランスポートブロックの全体で巡回シフトしているが、本発明はこれに限定されるものではない。例えば、図21に示すように、コードブロック群をいくつかのグループに分け、各グループにおいて巡回シフトしてもよい。
 そして、マッピングパタン情報生成部510が、すべてのグループでシフト数を合わせながら順次巡回シフトし、復号に成功したコードブロックと復号に失敗したコードブロックとから構成される組みの数に関する全グループの総和が最多となるシフト数をマッピングパタン情報としてフィードバックしてもよい。
 こうすることで、シフト量が限定されるので、マッピングパタン情報に必要なビット数を削減することができる。
 また、各グループで最適なマッピングパタンを決定し、各グループのシフト数をフィードバックしてもよい。
 こうすることで、より適切な組み合わせを選択できるので、受信側の受信性能が向上する。この結果、再送回数を低減することができるので、伝送効率を向上することができる。
 また、マッピング部410は、マッピングに用いたマッピングパタン情報をMIMO通信装置500に対して送信してもよい。
 また、上記実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はソフトウェアで実現することも可能である。
 また、上記実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサーを利用してもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 2008年6月24日出願の特願2008-164756の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本発明のMIMO送信装置、MIMO受信装置、MIMO伝送信号形成方法、及びMIMO伝送信号分離方法は、コードブロック間で信頼度の均一化を図ることにより伝送効率を向上するものとして有用である。

Claims (12)

  1.  データ列から構成されるコードブロック(Code block)を複数含むトランスポートブロック(Transport block)を、複数の送信ストリームを用いて送信するMIMO送信装置であって、
     前記トランスポートブロックをコードブロック単位で符号化することによりコードワードを形成する符号化手段と、
     前記コードワードを前記複数の送信ストリームにマッピングする手段であって、同じシンボル区間にマッピングされた複数のシンボルデータが属するコードブロックの組み合わせを、前記トランスポートブロックの前回送信時と今回送信時とで変更するマッピング手段と、
     を具備するMIMO送信装置。
  2.  前記マッピング手段は、前記コードワードをコードブロック単位で送信ストリームにマッピングするとともに、同じ送信区間にマッピングされたコードブロックの組み合わせを、前記トランスポートブロックの前回送信時と今回送信時とで変更する、
     請求項1に記載のMIMO送信装置。
  3.  前記マッピング手段は、前記複数のコードブロックのマッピング先送信ストリームを、前記トランスポートブロックの前回送信時と今回送信時とで入れ替える、
     請求項2に記載のMIMO送信装置。
  4.  前記マッピング手段は、初回送信時において、誤り特性に差がある複数のコードブロックを優先的に組み合わせる、
     請求項1に記載のMIMO送信装置。
  5.  前記マッピング手段は、前記コードワードをシンボル単位で送信ストリームにマッピングする、
     請求項1に記載のMIMO送信装置。
  6.  前記マッピング手段は、前記コードブロックの組み合わせを再送ごとに変更する、
     請求項1に記載のMIMO送信装置。
  7.  前記トランスポートブロックの受信側からフィードバックされるマッピングパタン情報を取得する取得手段を具備し、
     前記マッピング手段は、前記マッピングパタン情報に基づいて、前記コードブロックの組み合わせを変更する、
     請求項1に記載のMIMO送信装置。
  8.  前記MIMO送信装置は、4個以上のコードブロックを含むトランスポートブロックを2個の送信ストリームを用いて送信し、
     前記マッピングパタン情報は、前記トランスポートブロックを前記2個の送信ストリームにおいてコードブロック単位で巡回シフトさせるシフト数である、
     請求項7に記載のMIMO送信装置。
  9.  前記マッピングパタン情報が示すマッピングパタンは、前記受信側で復号が成功したコードブロックが第1送信ストリームに配置される数が、前記第1送信ストリームより通信品質の悪い第2送信ストリームに配置される数よりも多い、
     請求項7に記載のMIMO送信装置。
     
  10.  データ列から構成されるコードブロック(Code block)を複数含むトランスポートブロック(Transport block)がマッピングされた複数の受信ストリームをストリームごとに分離するとともに、当該分離ストリームをコードブロックごとに復号するMIMO受信装置であって、
     復号に成功したコードブロックの復号データに基づいて、前記復号に成功したコードブロックに対応する干渉レプリカ信号を形成する形成手段と、
     今回受信した複数の受信ストリームから、前回以前の受信時に前記形成手段によって形成された干渉レプリカ信号を除去した後に、前記今回受信した複数の受信ストリームをストリームごとに分離する分離手段と、
     を具備するMIMO受信装置。
  11.  データ列から構成されるコードブロック(Code block)を複数含むトランスポートブロック(Transport block)をコードブロック単位で符号化することによりコードワードを形成する形成ステップと、
     前記コードワードを複数の送信ストリームにマッピングすることにより、MIMO信号を形成するステップと、
     を具備し、
     前記MIMO信号において同じシンボル区間にマッピングされた複数のシンボルデータが属するコードブロックの組み合わせは、前回送信時と今回送信時とで異なる、
     MIMO伝送信号形成方法。
  12.  データ列から構成されるコードブロック(Code block)を複数含むトランスポートブロック(Transport block)がマッピングされた複数の受信ストリームをストリームごとに分離するとともに、当該分離ストリームをコードブロックごとに復号するMIMO伝送信号分離方法であって、
     復号に成功したコードブロックの復号データに基づいて、前記復号に成功したコードブロックに対応する干渉レプリカ信号を形成するステップと、
     今回受信した複数の受信ストリームから、前回以前の受信時に前記形成ステップで形成された干渉レプリカ信号を除去するステップと、
     前記干渉レプリカ信号除去後の前記今回受信した複数の受信ストリームをストリームごとに分離するステップと、
     を具備するMIMO伝送信号分離方法。
PCT/JP2009/002865 2008-06-24 2009-06-23 Mimo送信装置、mimo受信装置、mimo伝送信号形成方法、及びmimo伝送信号分離方法 WO2009157184A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/999,603 US9236918B2 (en) 2008-06-24 2009-06-23 MIMO transmitting apparatus, MIMO receiving apparatus, MIMO transmission signal formation method, and MIMO transmission signal separation method
JP2010517758A JPWO2009157184A1 (ja) 2008-06-24 2009-06-23 Mimo送信装置、mimo受信装置、mimo伝送信号形成方法、及びmimo伝送信号分離方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008164756 2008-06-24
JP2008-164756 2008-06-24

Publications (1)

Publication Number Publication Date
WO2009157184A1 true WO2009157184A1 (ja) 2009-12-30

Family

ID=41444257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002865 WO2009157184A1 (ja) 2008-06-24 2009-06-23 Mimo送信装置、mimo受信装置、mimo伝送信号形成方法、及びmimo伝送信号分離方法

Country Status (3)

Country Link
US (1) US9236918B2 (ja)
JP (1) JPWO2009157184A1 (ja)
WO (1) WO2009157184A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011519524A (ja) * 2008-06-24 2011-07-07 エルジー エレクトロニクス インコーポレイティド 転送ブロック−コードワードマッピング関係の規定方法及びこれを用いるダウンリンク信号転送方法
WO2011085509A1 (en) * 2010-01-12 2011-07-21 Telefonaktiebolaget L M Ericsson (Publ) Layer-to dm rs port mapping for lte-advanced
WO2011106444A1 (en) * 2010-02-23 2011-09-01 Qualcomm Incorporated Code block interference cancellation
EP2396906A2 (en) * 2009-02-13 2011-12-21 Samsung Electronics Co., Ltd. Apparatus and method for codeword to layer mapping in mimo transmission wireless systems
US9307542B2 (en) 2010-01-20 2016-04-05 Telefonaktiebolaget L M Ericsson (Publ) Antenna port mapping for demodulation reference signals
JP2016535961A (ja) * 2013-08-30 2016-11-17 クゥアルコム・インコーポレイテッドQualcomm Incorporated バースト的干渉を扱うためのリソースマッピング
WO2018008739A1 (ja) * 2016-07-08 2018-01-11 シャープ株式会社 基地局装置、端末装置、通信方法、および、集積回路
WO2018193593A1 (ja) * 2017-04-20 2018-10-25 株式会社Nttドコモ 受信装置及び無線通信方法
WO2020006687A1 (en) * 2018-07-03 2020-01-09 Nokia Shanghai Bell Co., Ltd. Unified uplink control information for uplink transmission with configured grant

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080311939A1 (en) * 2007-06-18 2008-12-18 Nokia Corporation Acknowledgment aided space domain user scheduling for multi-user mimo
KR101737831B1 (ko) * 2009-02-02 2017-05-19 엘지전자 주식회사 무선 통신 시스템에서 전송할 시퀀스를 콤포넌트 캐리어에 매핑하는 방법
US8761323B2 (en) * 2011-09-28 2014-06-24 Telefonaktiebolaget Lm Ericsson (Publ) Impairment covariance and combining weight updates during iterative turbo interference cancellation reception
US8903341B2 (en) 2012-12-05 2014-12-02 Qualcomm Incorporated Successive interference cancellation (SIC) ordering algorithms for improved multiple-input multiple-output (MIMO) performance
CN105024781B (zh) 2014-04-30 2019-06-21 中兴通讯股份有限公司 一种反馈信息的处理方法、装置及***
US10666397B2 (en) * 2016-04-01 2020-05-26 Mediatek Inc. Method and apparatus for control signaling
US10320553B2 (en) 2016-09-21 2019-06-11 Qualcomm Incoporated Communicating information plus an indication of transmission time
US10742234B2 (en) * 2017-03-15 2020-08-11 Qualcomm Incorporated Code block group definition configuration for wireless communication
CN110495114B (zh) * 2017-03-24 2022-08-30 瑞典爱立信有限公司 用于码块分组的方法和设备
CN107070625A (zh) * 2017-03-24 2017-08-18 宇龙计算机通信科技(深圳)有限公司 一种传输块内的码块组的分配方法及装置
US20180287752A1 (en) * 2017-03-29 2018-10-04 Kt Corporation Method and apparatus for configuring transport block to transmit data
CN115277339A (zh) * 2017-05-05 2022-11-01 中兴通讯股份有限公司 信息传输方法及装置、电子设备
EP3619858B1 (en) 2017-05-05 2021-12-15 Motorola Mobility LLC Scheduliing transmission of data
US10454620B2 (en) 2017-06-16 2019-10-22 At&T Intellectual Property I, L.P. Facilitating notifications to indicate failed code block groups in 5G or other next generation networks
US10554345B2 (en) 2017-08-10 2020-02-04 At&T Intellectual Property I, L.P. Indicating retransmitted codeblock groups in 5G wireless communication systems
US10420089B2 (en) 2017-08-10 2019-09-17 At&T Intellectual Property I, L.P. Adaptive two-stage downlink control channel structure for code block group based fifth generation (5G) or other next generation systems
EP3711217A4 (en) 2017-11-16 2021-06-30 Lenovo (Beijing) Limited METHOD AND DEVICE FOR DETERMINING A HARQ-ACK CODEBOOK
US11540275B2 (en) * 2020-05-05 2022-12-27 Telefonaktiebolaget Lm Ericsson (Publ) Signaling structure for data signaling
US11581984B2 (en) * 2021-05-07 2023-02-14 Qualcomm Incorporated Retransmission technique with compressed feedback in a wireless communication system
US20230139174A1 (en) * 2021-11-01 2023-05-04 Qualcomm Incorporated Frequency first per layer code block mapping

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006504340A (ja) * 2002-10-25 2006-02-02 クゥアルコム・インコーポレイテッド 無線mimoシステムにおけるマルチモード端末

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6788733B1 (en) * 2000-11-09 2004-09-07 Qualcomm, Incorporated Method and apparatus for interference cancellation in a communication system
US7400687B2 (en) * 2002-04-12 2008-07-15 Matsushita Electric Industrial Co., Ltd Multicarrier communication apparatus and multicarrier communication method
KR101000388B1 (ko) * 2003-05-15 2010-12-13 엘지전자 주식회사 이동 통신 시스템 및 이 이동 통신 시스템에서 신호를처리하는 방법
US7706347B2 (en) * 2003-05-15 2010-04-27 Lg Electronics Inc. Signal processing apparatus and method using multi-output mobile communication system
CN1832392A (zh) * 2005-03-11 2006-09-13 松下电器产业株式会社 多入多出***中数据重传的方法和设备
CN1838583A (zh) * 2005-03-25 2006-09-27 松下电器产业株式会社 多入多出通信***中执行数据重传的方法和设备
JP4884722B2 (ja) * 2005-03-31 2012-02-29 株式会社エヌ・ティ・ティ・ドコモ 無線通信装置及び無線通信方法
US7764743B2 (en) * 2005-08-05 2010-07-27 Alcatel-Lucent Usa Inc. Methods of channel coding for communication systems
JP2007116637A (ja) * 2005-10-24 2007-05-10 Fujitsu Ltd 無線通信方法及び無線通信システム並びに受信装置及び送信装置
EP4236145A3 (en) * 2006-10-31 2023-10-11 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for error control in telecommunications systems
JP4671982B2 (ja) * 2007-01-09 2011-04-20 株式会社エヌ・ティ・ティ・ドコモ 基地局、送信方法及び移動通信システム
US9065714B2 (en) * 2007-01-10 2015-06-23 Qualcomm Incorporated Transmission of information using cyclically shifted sequences
US8379738B2 (en) * 2007-03-16 2013-02-19 Samsung Electronics Co., Ltd. Methods and apparatus to improve performance and enable fast decoding of transmissions with multiple code blocks
US8451915B2 (en) * 2007-03-21 2013-05-28 Samsung Electronics Co., Ltd. Efficient uplink feedback in a wireless communication system
US8320486B2 (en) * 2007-09-28 2012-11-27 Apple Inc. Retransmission method for HARQ in MIMO systems

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006504340A (ja) * 2002-10-25 2006-02-02 クゥアルコム・インコーポレイテッド 無線mimoシステムにおけるマルチモード端末

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3GPP TSG RAN WG1 Meeting #50, 3GPP, 2007.08.20, R1-073579", article SAMSUNG: "Code block reordering in HARQ retransmissions" *
NORTEL: "HARQ performance enhancement", 3GPP TSG-RAN WG1 #49, 3GPP, 2007.05.07, R1-072384 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8856606B2 (en) 2008-06-24 2014-10-07 Lg Electronics Inc. Method for specifying transport block to codeword mapping and downlink signal transmission method using the same
JP2011519524A (ja) * 2008-06-24 2011-07-07 エルジー エレクトロニクス インコーポレイティド 転送ブロック−コードワードマッピング関係の規定方法及びこれを用いるダウンリンク信号転送方法
EP2396906A2 (en) * 2009-02-13 2011-12-21 Samsung Electronics Co., Ltd. Apparatus and method for codeword to layer mapping in mimo transmission wireless systems
JP2012516621A (ja) * 2009-02-13 2012-07-19 サムスン エレクトロニクス カンパニー リミテッド Mimo送信無線システムにおけるコードワード−階層マッピングのための装置及び方法
EP2396906A4 (en) * 2009-02-13 2015-01-07 Samsung Electronics Co Ltd DEVICE AND METHOD FOR A CODEWORD FOR LAYER ASSIGNMENT IN WIRELESS MIMO TRANSMISSION SYSTEMS
WO2011085509A1 (en) * 2010-01-12 2011-07-21 Telefonaktiebolaget L M Ericsson (Publ) Layer-to dm rs port mapping for lte-advanced
US9307542B2 (en) 2010-01-20 2016-04-05 Telefonaktiebolaget L M Ericsson (Publ) Antenna port mapping for demodulation reference signals
US10694419B2 (en) 2010-01-20 2020-06-23 Telefonaktiebolaget Lm Ericsson (Publ) Antenna port mapping for demodulation reference signals
US11019526B2 (en) 2010-01-20 2021-05-25 Telefonaktiebolaget Lm Ericcson (Publ) Antenna port mapping for demodulation reference signals
US10244424B2 (en) 2010-01-20 2019-03-26 Telefonaktiebolaget Lm Ericsson (Publ) Antenna port mapping for demodulation reference signals
US8451964B2 (en) 2010-02-23 2013-05-28 Qualcomm Incorporated Code block interference cancellation
WO2011106444A1 (en) * 2010-02-23 2011-09-01 Qualcomm Incorporated Code block interference cancellation
JP2016535961A (ja) * 2013-08-30 2016-11-17 クゥアルコム・インコーポレイテッドQualcomm Incorporated バースト的干渉を扱うためのリソースマッピング
JP2018113693A (ja) * 2013-08-30 2018-07-19 クゥアルコム・インコーポレイテッドQualcomm Incorporated バースト的干渉を扱うためのリソースマッピング
US10511405B2 (en) 2013-08-30 2019-12-17 Qualcomm Incorporated Resource mapping to handle bursty interference
JP2020184778A (ja) * 2013-08-30 2020-11-12 クゥアルコム・インコーポレイテッドQualcomm Incorporated バースト的干渉を扱うためのリソースマッピング
WO2018008739A1 (ja) * 2016-07-08 2018-01-11 シャープ株式会社 基地局装置、端末装置、通信方法、および、集積回路
WO2018193593A1 (ja) * 2017-04-20 2018-10-25 株式会社Nttドコモ 受信装置及び無線通信方法
US11239976B2 (en) 2017-04-20 2022-02-01 Ntt Docomo, Inc. Receiving device and radio communication method
WO2020006687A1 (en) * 2018-07-03 2020-01-09 Nokia Shanghai Bell Co., Ltd. Unified uplink control information for uplink transmission with configured grant

Also Published As

Publication number Publication date
JPWO2009157184A1 (ja) 2011-12-08
US20110080975A1 (en) 2011-04-07
US9236918B2 (en) 2016-01-12

Similar Documents

Publication Publication Date Title
WO2009157184A1 (ja) Mimo送信装置、mimo受信装置、mimo伝送信号形成方法、及びmimo伝送信号分離方法
JP5703401B2 (ja) 無線通信装置、無線通信方法及び集積回路
KR101227491B1 (ko) 이동통신 시스템에서 패킷 재전송 방법 및 복원 방법
JP4930512B2 (ja) 無線通信システム、送信装置および受信装置
WO2010026739A1 (ja) 無線通信装置および無線通信方法
US10098117B2 (en) Transmission and receiving method in a wireless communication system
JPWO2009041067A1 (ja) 無線通信装置およびマッピング方法
CN103069728B (zh) 用于在通信网络中进行中继的方法和装置
JP5158979B2 (ja) 無線通信装置、無線通信システム及び無線通信方法
JP2006135990A (ja) 送信器及び送信方法
WO2010005927A1 (en) Method and apparatus for use in cooperative relays using incremental redundancy and spatial diversity (distributed spatial multiplexing or distributed space time coding)
WO2008124966A1 (en) Radio communication apparatus and redundancy version transmission control method
CN101689975A (zh) 用于在mimo***中进行改进的无线电资源分配的方法和设备
EP1698189B1 (en) Relay station and method for enabling reliable digital communications between two nodes in a wireless relay based network
KR20080024297A (ko) 다중 입력 다중 출력 시스템에서 자동 반복 요청 장치 및방법
JPWO2009016837A1 (ja) 無線通信装置および再送判定方法
US20100050044A1 (en) Radio communication apparatus and temporary bit insertion method
JP2010147755A (ja) 送信装置、受信装置および通信システム
WO2010029764A1 (ja) 無線通信装置及び誤り検出結果フィードバック方法
JPWO2009054145A1 (ja) 無線受信装置、無線送信装置及び無線受信方法
JP2008028750A (ja) 通信システム及び通信方法並びに送信機及び受信機
WO2010146937A1 (ja) 無線通信システム、送信装置および受信装置
JP5143233B2 (ja) Mimoネットワークにおいてシンボルのブロックを送信するための方法
EP2109271A1 (en) MIMO decoding method and apparatus thereof
WO2024119354A1 (en) Methods, system, and apparatus for joint error correction coding of a self-decodable payload and a combined payload

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09769894

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010517758

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12999603

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09769894

Country of ref document: EP

Kind code of ref document: A1