WO2009148045A1 - Heat shielding resin base and construction member using the same - Google Patents

Heat shielding resin base and construction member using the same Download PDF

Info

Publication number
WO2009148045A1
WO2009148045A1 PCT/JP2009/060047 JP2009060047W WO2009148045A1 WO 2009148045 A1 WO2009148045 A1 WO 2009148045A1 JP 2009060047 W JP2009060047 W JP 2009060047W WO 2009148045 A1 WO2009148045 A1 WO 2009148045A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
refractive index
heat
base material
gas
Prior art date
Application number
PCT/JP2009/060047
Other languages
French (fr)
Japanese (ja)
Inventor
達也 廣瀬
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Publication of WO2009148045A1 publication Critical patent/WO2009148045A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/041Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/045Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/71Resistive to light or to UV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars

Definitions

  • the present invention relates to a heat shield resin substrate having a heat ray reflective layer formed on a resin substrate and having antiglare properties, and a building member using the heat shield resin substrate.
  • a heat ray reflective layer With a structure in which a metal thin film layer made of gold, silver, copper, etc. is sandwiched between transparent dielectric layers with a high refractive index on a transparent substrate such as glass or resin film, visible light can be transmitted.
  • the characteristic which reflects the light ray (heat ray) from near infrared region to infrared region can be obtained.
  • a resin film provided with a heat ray reflective layer can be used as a heat ray shielding film to reduce heat radiation from the monitoring window in high-temperature work or to enter from the windows of buildings, automobiles, trains, etc. It is used for the purpose of cutting off energy to improve the cooling / heating effect, improving the heat shielding property of the transparent plant container, or improving the cooling effect in the refrigerated showcase (for example, see Patent Document 1). ).
  • the heat ray reflection film may be provided with a gray metal (mainly nickel chrome) that absorbs and scatters sunlight. It is disclosed (for example, see Patent Document 2).
  • the metal thin film and gray metal used for such a heat ray shielding substrate are generally produced by using a dry process such as sputtering, vapor deposition, or CVD, but when a metal thin film is provided on a resin substrate, The glass substrate is affected by moisture, gas, plasticizer, etc. inherent in the resin base material, and since the resin base material has almost no gas barrier performance. It has been found that the visible light transmittance and environmental resistance are reduced compared to those on the material. In particular, when gray metal is exposed to light, oxygen, and / or moisture, it corrodes and its anti-glare function is impaired. Further, it has been found that the heat ray blocking layer is corroded and the heat shielding performance is lowered.
  • a dry process such as sputtering, vapor deposition, or CVD
  • an object of the present invention is to provide a heat shielding resin base material having an antiglare property excellent in light resistance, moisture resistance, and weather resistance, and further, a building member using the heat shielding resin base material. Is to provide.
  • At least one of a heat ray shielding component layer including at least one metal layer made of gold, silver, copper, aluminum alone or an alloy thereof and at least one of titanium, chromium, stainless steel and nickel-chromium alone or an alloy containing them.
  • a gray metal layer and at least one low refractive index ceramic constituent layer mainly composed of an oxide containing Si or Al, a nitride oxide containing Si or Al, or a nitride containing Si or Al. Heat insulation resin base material.
  • the heat ray blocking component layer is provided on a first transparent substrate, the gray metal layer is provided on a second transparent substrate, and the first transparent substrate and the second transparent substrate are bonded to each other. 4.
  • the heat-shielding resin base material according to any one of 1 to 3, wherein the heat-shielding resin base material is bonded together.
  • the low refractive index ceramic constituent layer includes at least one silicon oxide film having a carbon content of less than 0.1 at% and one silicon oxide film having a carbon content of 1 to 40 at%. 5.
  • the heat shielding resin substrate according to any one of 1 to 4.
  • the low-refractive index ceramic constituent layer supplies a gas containing a thin film forming gas and a discharge gas to the discharge space under atmospheric pressure or a pressure in the vicinity thereof, thereby exciting the gas by forming a high-frequency electric field in the discharge space.
  • the discharge gas is nitrogen gas
  • the high-frequency electric field applied to the discharge space is a superposition of the first high-frequency electric field and the second high-frequency electric field.
  • the frequency ⁇ 2 of the high-frequency electric field is high, and the relationship among the first high-frequency electric field strength V1, the second high-frequency electric field strength V2, and the discharge starting electric field strength IV is V1 ⁇ IV> V2 or V1 7.
  • the thermal barrier resin substrate according to 6 above, which satisfies a relationship of> IV ⁇ V2 and the output density of the second high-frequency electric field is 1 W / cm 2 or more.
  • the water vapor permeability (JIS K7129-1992 B method) of the low refractive index ceramic constituent layer is 0.01 g / (m 2 ⁇ 24 h) or less (40 ° C., 90% RH condition) 9.
  • the heat shielding resin substrate according to any one of 1 to 8.
  • the heat ray blocking constituent layer is an oxide containing at least Zn, Ti, Sn, In, Nb, Si or Al, a nitride oxide containing Zn, Ti, Sn, In, Nb, Si or Al, Zn, Ti, Sn
  • a high refractive index ceramic constituent layer comprising at least one layer mainly composed of nitride containing In, Nb, Si or Al, the metal layer, an oxide containing at least Zn, Ti, Sn, In, Nb, Si or Al High refractive index consisting of at least one layer mainly composed of nitrides containing Zn, Ti, Sn, In, Nb, Si or Al, nitrides containing Zn, Ti, Sn, In, Nb, Si or Al 10.
  • the heat-insulating resin base material according to any one of 1 to 9, wherein the thermal barrier resin base material has a structure in which a ceramic layer is sequentially laminated.
  • one or more metal layers made of a simple substance of gold, silver, copper, aluminum or an alloy thereof and at least Zn, Ti, Sn, In, Nb, Si Or an oxide containing Al, a nitride oxide containing Zn, Ti, Sn, In, Nb, Si or Al, or a nitride containing Zn, Ti, Sn, In, Nb, Si or Al as a main component.
  • the heat ray blocking layer is a Fabry-Perot interference filter, and the Fabry-Perot interference filter includes a first oxide layer, a first metal layer, a second oxide layer, a second metal layer, and a third oxidation. 10.
  • thermoplastic resin substrate according to any one of 1 to 16, wherein the first transparent substrate and the second transparent substrate are polyethylene terephthalate, polybutylene terephthalate, or polyethylene naphthalate. .
  • 21 The heat shielding resin substrate as described in 19 or 20 above, wherein the polymer layer contains at least one of an ultraviolet absorber or an antioxidant.
  • a building member comprising the heat shielding resin substrate according to any one of 1 to 21 bonded to glass or a glass substitute resin substrate through an adhesive.
  • a heat shielding resin substrate having an antiglare property excellent in light resistance, moisture resistance and weather resistance was obtained, and a building member using the heat shielding resin substrate could be provided.
  • the present invention relates to a heat-shielding resin base material that exhibits a high heat ray reflection effect, and more specifically, has excellent heat ray reflectivity and also has an antireflection property of visible light to the outdoor side, excellent visibility, a window,
  • the present invention relates to a heat shielding resin base material (heat ray reflective film) that has a high heat ray reflection effect and prevents reflection of room lights or the like when pasted on a building window or a display window.
  • the heat-reflective film used in conventional windows has a structure in which a transparent base film, in particular a polyester thin film, is sandwiched between a metal thin film layer made of gold, silver, copper, etc. with a transparent dielectric layer having a high refractive index. Although it is a laminated film provided with a heat ray reflective layer, it transmits visible light, but has the property of reflecting light rays (heat rays) from the near infrared part to the infrared part.
  • heat ray reflective films are used for applications such as reducing heat radiation, blocking solar energy incident from windows to improve the cooling / heating effect, and improving the cooling effect in the refrigerated case. Moreover, when these heat ray reflective films are bonded together, even if the glass is broken, there is an advantage that the scattering of the glass can be prevented if the heat ray shielding film is stuck.
  • the present invention is such that the above heat-shielding resin substrate (heat ray reflective film) is less susceptible to white turbidity due to the influence of moisture, oxygen, etc., and the visible light transmittance is unlikely to decrease, and environmental resistance performance such as long-term use and long-term storage.
  • the present invention relates to a heat shielding resin base material excellent in handling performance.
  • the heat-shielding resin substrate of the present invention includes a heat ray shielding component layer including at least one metal layer made of a simple substance of gold, silver, copper, or aluminum, or an alloy thereof, and partially blocks light transmission and is visible.
  • a heat ray shielding component layer including at least one metal layer made of a simple substance of gold, silver, copper, or aluminum, or an alloy thereof, and partially blocks light transmission and is visible.
  • the heat-shielding resin substrate of the present invention is preferably used in a heat ray reflective film that is attached to glass.
  • the heat shielding resin substrate of the present invention is used by being attached to the outdoor side of glass through an adhesive layer, from the side on which the heat rays (sunlight) are incident, the low refractive index ceramic constituting layer, the heat ray shielding constituting layer, The gray metal layers are preferably arranged in this order.
  • the heat shielding resin substrate of the present invention is used by being attached to the indoor side of the glass via an adhesive layer, the heat ray blocking component layer, the gray metal layer, the low
  • the layers are preferably arranged in the order of the refractive index ceramic constituent layers.
  • the heat ray blocking constituent layer is preferably an oxide containing at least Zn, Ti, Sn, In, Nb, Si or Al, a nitride oxide containing Zn, Ti, Sn, In, Nb, Si or Al, Zn,
  • a high refractive index ceramic constituent layer comprising at least one layer mainly composed of a nitride containing Ti, Sn, In, Nb, Si or Al, the metal layer, and at least Zn, Ti, Sn, In, Nb, Si or At least one layer mainly composed of an oxide containing Al, a nitride oxide containing Zn, Ti, Sn, In, Nb, Si or Al, or a nitride containing Zn, Ti, Sn, In, Nb, Si or Al
  • the metal layer is a metal layer such as Au, Ag, Cu, Al, etc., and most of the visible light is absorbed. Na Ag metal is particularly preferred. Moreover, you may use a metal layer as an alloy which used 2 or more
  • the heat ray blocking component layer is a Fabry-Perot interference filter including a first oxide layer, a first metal layer, a second oxide layer, a second metal layer, and a third oxide layer. Also good.
  • the metal layer in the Fabry-Perot interference filter is mainly silver, and is a gold or copper alloy having a mass of less than 50% with respect to silver or a clad layer, and imparts chemical and light durability.
  • Indium oxide is preferable for the oxide layer, but in the case of a transparent dielectric layer having a refractive index of 1.8 or more and a visible light absorption level of less than 10%, zinc oxide, tin oxide, titanium oxide, oxide Other oxides such as niobium may be used. If it is suitably transparent and has a refractive index greater than 1.8, nitride or fluoride can also be used. More detailed design, behavior and techniques for manufacturing Fabry-Perot filters are described in US Pat. No. 4,799,745.
  • the thickness of the metal layer is such that the first transparent substrate of the heat-shielding resin substrate of the present invention has an integrated visible light transmittance (average value of visible light transmittance in this wavelength region) of 55% at a wavelength of 400 to 750 nm. It is preferable that the integral infrared reflectivity (average value of infrared reflectivity in this wavelength region) with a wavelength of 5 to 30 ⁇ m satisfies 75% or more.
  • the thickness of one metal layer is preferably in the range of 5 to 1000 nm. When the thickness is less than 5 nm, sufficient heat ray reflection effect is not exhibited and the infrared transmittance is increased. On the other hand, when the thickness exceeds 1000 nm, the visible light reflectance is increased and the antiglare property is deteriorated.
  • a more preferable range is 5 to 30 nm. Visible light transmittance can be sufficiently ensured by setting the metal layer to 30 nm or less, and a heat ray blocking layer having both antiglare property and visible transmittance can be formed by providing together with the gray metal layer.
  • the high-refractive index ceramic constituent layer includes an oxide containing at least Zn, Ti, Sn, In, Nb, Si, or Al, a nitrided oxide containing Zn, Ti, Sn, In, Nb, Si, or Al, Zn, It is composed of at least one layer mainly composed of nitride containing Ti, Sn, In, Nb, Si or Al, and has a refractive index of 1.8 or more and less than 2.5, and the aforementioned metal layer is sandwiched. It is more preferable to take a laminated structure between the two because the effect of improving transparency is increased.
  • the thickness of the high refractive index ceramic constituting layer is preferably set in combination with the above-described metal layer to be laminated so as to satisfy the optical characteristics of the heat ray shielding constituting layer.
  • the thickness of one layer of the high refractive index ceramic constituting layer is preferably in the range of 2 to 1000 nm.
  • the high refractive index ceramic constituting layer and the metal layer from one layer or more consisting of 0.1 nm or more and less than 30 nm consisting of a simple substance of gold, silver, copper, aluminum or an alloy thereof.
  • There are at least one set of high refractive index ceramic constituent layers composed of at least one layer mainly composed of a nitride containing Nb, Si or Al.
  • the heat-shielding resin base material (heat ray reflective film) of the present invention is a laminated film formed by laminating a heat ray shielding constituent layer on at least one side of the base film as described above, and preferably has a visible light reflectance of 5% or less. This is achieved with a transparent laminated film having an infrared reflectance of 75% or more.
  • a heat ray blocking constituent layer having a structure in which a metal thin film layer made of gold, silver, copper or the like having a high heat ray reflecting effect is sandwiched between transparent dielectric layers having a high refractive index is formed by an oxidation containing at least Si or Al.
  • a transparent base material on which a low refractive index ceramic constituent layer having a refractive index of 1.3 or more and less than 1.8 is mainly composed of an oxide, a nitride oxide containing Si or Al, or a nitride containing Si or Al It is characterized by having.
  • the gray metal is titanium, chromium, stainless steel, nickel-chromium, and alloys containing them.
  • a metal or an alloy such as nickel-chromium (nichrome or NiCr) is desirable, and is formed on the second transparent substrate with a thickness of 2 to 20 nm.
  • Other usable gray metals or alloys include Inconel and Monel.
  • those that are “gray” and deposited in a thin or non-continuous coating aid include copper, gold, aluminum and silver and can be used.
  • a thin film means a thickness of 2 to 50 nm.
  • a preferred thickness is 2 to 20 nm.
  • a VIS / R VIS of the nickel chromium layer is larger than 0.6, more preferably A VIS / R VIS is 1.07 to 1.44.
  • a VIS refers to the percentage of visible or emitted light that is absorbed by the window
  • R VIS refers to the percentage of visible or emitted light that is reflected at the window.
  • the low refractive index ceramic constituent layer is mainly composed of an oxide containing at least Si or Al, a nitride oxide containing Si or Al, a nitride containing Si or Al, and a refractive index of 1.3 or more and less than 2.0. It is a certain ceramic constituent layer, and is particularly preferably made of silicon oxide.
  • the method for forming the low refractive index ceramic constituent layer is preferably a vapor deposition method, and more preferably a vacuum deposition method, a sputtering method, an ion plating method, a catalytic chemical vapor deposition (Cat-CVD) method, or a plasma CVD method.
  • a gas containing a thin film forming gas and a discharge gas is supplied to the discharge space under atmospheric pressure or a pressure in the vicinity thereof, and the gas is excited by applying a high-frequency electric field to the discharge space, thereby exciting the transparent substrate.
  • a film formed by a so-called atmospheric pressure plasma CVD method which is formed by a thin film forming method in which a thin film is formed on the transparent substrate by being exposed to gas, has a low residual stress and is preferable.
  • the discharge space refers to a space that generates a discharge sandwiched between two opposing electrodes.
  • the low refractive index ceramic constituent layer formed in the atmospheric pressure plasma CVD method includes at least a silicon oxide film having a carbon content of less than 0.1 at% and a silicon oxide film having a carbon content of 1 to 40 at%, respectively. It is preferable to include one layer at a time.
  • a ceramic constituent layer formed by laminating films having different carbon contents is preferable because it is a low refractive index film having a relatively high moisture and low gas permeability (gas barrier property) and a relatively high flexibility. For example, a configuration in which these layers are alternately laminated by 2 to 5 layers is preferable.
  • low-refractive index ceramic layer mainly composed of oxide containing at least Si or Al, nitride oxide containing Si or Al, nitride containing Si or Al by atmospheric pressure plasma method and atmospheric pressure plasma method Will be described later.
  • the high refractive index ceramic component layer is made of an oxide containing at least Zn, Ti, Sn, In, Nb, Si or Al, Zn, Ti, Sn, In, Nb, Si or Al.
  • TiO derived from an organic compound comprising at least one layer mainly composed of a nitride containing nitride oxide, Zn, Ti, Sn, In, Nb, Si or Al, and obtained by hydrolysis of, for example, alkyl titanate 2 is preferable because of excellent workability.
  • zinc oxide, indium oxide, and tin oxide can be applied in a single layer or multiple layers.
  • Such a high refractive index ceramic constituent layer is preferable because it can increase the effect of improving transparency by adopting a laminated structure in which the aforementioned metal layer is sandwiched.
  • the thickness of the high refractive index ceramic constituent layer is preferably set in combination with the above metal layer so as to satisfy the optical characteristics of the heat ray blocking constituent layer.
  • the refractive index of the high refractive index ceramic constituting layer according to the present invention is preferably 1.8 to 2.5. More preferably, it is 2.0 to 2.5.
  • the refractive index of the high refractive index ceramic constituent layer is larger than the refractive index of the low refractive index ceramic constituent layer.
  • the presence of the low refractive index ceramic constituent layer can reduce the visible light reflectance.
  • a vapor phase growth method is preferable, and a vacuum deposition method, a sputtering method, an ion plating method, a Cat-CVD method, or a plasma CVD method is particularly preferable. Moreover, you may form using the atmospheric pressure plasma CVD method mentioned later.
  • the metal constituting the metal layer is preferably a metal such as gold, silver, copper, or aluminum.
  • a metal such as gold, silver, copper, or aluminum.
  • Ag metal that hardly absorbs visible light is particularly preferable.
  • the thickness of the metal layer in the first transparent substrate of the heat-shielding resin substrate of the present invention is the integrated visible light transmittance (average value of visible light transmittance in this wavelength region) of the laminated film at a wavelength of 400 to 750 nm. ) Is 55% or more, and the integrated infrared reflectance (average value of infrared reflectance in this wavelength region) of 5 to 30 ⁇ m is preferably 75% or more.
  • the thickness of one metal layer is preferably in the range of 5 to 1000 nm. If the thickness is less than 5 nm, sufficient heat ray reflection effect is not exhibited and the infrared transmittance is increased. On the other hand, if it exceeds 1000 nm, the visible light reflectance is increased and the antiglare property is deteriorated.
  • a more preferable range is 5 to 30 nm. Visible light transmittance can be sufficiently ensured by setting the metal layer to 30 nm or less, and a heat ray blocking layer having both antiglare property and visible transmittance can be formed by providing it together with the gray metal layer.
  • a vapor phase growth method is preferable, and a vacuum deposition method, a sputtering method, or a plasma CVD method is more preferable.
  • the heat ray blocking constituent layer in the present invention preferably has a low refractive index layer in addition to a high refractive index layer.
  • the refractive index of the low refractive index ceramic constituting layer By reducing the refractive index of the low refractive index ceramic constituting layer to less than 1.8, in order to improve durability and handling properties without substantially affecting the visible light transmittance and infrared reflectance, Layer design can be done relatively freely. Further, when the refractive index is 1.3 or more, the film becomes dense, and improvement in durability can be expected.
  • the reflectance is 15% or less in the wavelength region of 400 nm to 700 nm.
  • the reflectance at 550 nm is preferably 10% or less, and more preferably 5% or less, and this can be obtained by setting the thickness of each layer based on a predetermined relationship.
  • a polymer layer is provided on the base film for improving the scratch resistance of the visible light reflection preventing layer, and the heat ray blocking constitution is provided thereon.
  • a layer may be provided.
  • the polymer layer preferably contains a photocurable or thermosetting resin as a main component.
  • an acrylic resin coating film to which at least one of an ultraviolet absorber or a hindered amine light stabilizer is added as a polymer layer may be provided on one side or both sides of the transparent substrate.
  • a polymer layer containing the light stabilizer when used for external pasting, it is preferable to use a polymer layer containing the light stabilizer in order to improve weather resistance.
  • an ultraviolet absorber having a hydroxyl group when used and an isocyanate compound is added, the isocyanate compound improves the adhesion to the polyester film, and the ultraviolet absorber is connected to the hydroxyl group-introduced acrylic resin by a urethane bond, and the ultraviolet absorber is bleeded. Since it becomes difficult to go out, the weather resistance can be further improved.
  • the acrylic resin a plurality of monomers are often copolymerized from monomers such as methacrylic acid, methacrylic acid ester or acrylic acid, acrylic acid ester. Specifically, they are methyl methacrylate, butyl methacrylate, methyl acrylate, butyl acrylate and modified products thereof. Hydroxyethyl methacrylate, hydroxybutyl methacrylate, etc., in which hydroxyl groups are introduced at the monomer stage, are added together with the above monomers at the time of polymerization, so that a hydroxyl group-introduced acrylic resin in which hydroxyl groups are introduced into the side chains of the acrylic resin skeleton is obtained. Obtainable.
  • HBA 4-hydroxybutyl acrylate
  • HPA 2-hydroxyethyl acrylate
  • HPA 2-hydroxypropyl acrylate
  • 2-HEMA 2-hydroxyethyl methacrylate
  • a weather-resistant prescription agent such as an ultraviolet absorber (benzotriazole-based, triazine-based, benzophenone-based, etc.) is added in order to perform a weather-resistant formulation.
  • the added part may be added according to the desired weather resistance, but is 0.1 to 50% by mass, preferably 1 to 30% by mass, based on the resin solid content.
  • UV absorbers 2- (2-hydroxy-5-tert-butylphenyl) -2H-benzotriazole, 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [ 2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2H-benzotriazole, 2- (3,5-di-t-butyl-2-hydroxyphenyl) benzotriazole, 2- (3 -T-butyl-5-methyl-2-hydroxyphenyl) -5-chlorobenzotriazole, 2- (3,5-di-t-butyl-2-hydroxyphenyl) -5-chlorobenzotriazole, 2- (3 , 5-Di-t-amyl-2-hydroxyphenyl) benzotriazole, 2- (2'-hydroxy-5'-octylphenyl) benzoto Examples thereof include riazole and the like, mixtures thereof, modified products, polymers, and derivatives.
  • triazines examples include 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-[(hexyl) oxy] -phenol, 2- [4-[(2-hydroxy -3-dodecyloxypropyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine, 2- [4-[(2-hydroxy-3 -Tridecyloxypropyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine, 2,4-bis (2,4-dimethylphenyl) Examples include -6- (2-hydroxy-4-iso-octyloxyphenyl) -s-triazine, mixtures thereof, modified products, polymers, and derivatives.
  • examples of the benzophenone series include octabenzone, modified products, polymers, and derivatives. Since the ultraviolet absorber can be bonded to the resin component by crosslinking by addition of an isocyanate compound, one having a hydroxyl group is suitable.
  • silicon oxide films have substantially the same composition
  • the manufacturing conditions and the thin film forming gas used (raw material gas)
  • the physical properties such as the density differ due to the difference in the degree of filling of the silicon oxide particles and the small amount of impurity particles mixed therein.
  • the refractive index of the low refractive index ceramic constituent layer according to the present invention is preferably 1.3 or more and less than 1.8.
  • the refractive index of the silicon oxide film is a value obtained by the X-ray reflectance method. Use.
  • ⁇ X-ray reflectivity method > The outline of the X-ray reflectivity method is described in page 151 of the X-ray diffraction handbook (Science Electric Co., Ltd., 2000, International Literature Printing Co., Ltd.) 22 can be performed.
  • Curve fitting is performed using 1, and each parameter is obtained so that the residual sum of squares of the actual measurement value and the fitting curve is minimized.
  • the refractive index, thickness and density of the laminated film can be obtained from each parameter.
  • the film thickness evaluation of the laminated film in the present invention can also be obtained from the X-ray reflectivity measurement.
  • the density of the silicon oxide film is closely correlated with the carbon content as a trace component.
  • a film having a low carbon atom concentration (less than 0.1 at%) is a film having a high density and a high gas barrier property. Films with higher atomic concentrations (1-40 at%) are softer compositions with lower film density.
  • the carbon content (at%) of the ceramic layer represents an atomic concentration (%).
  • the atomic concentration% (at%) indicating the carbon content can be determined using a known analysis means, but in the present invention, it is calculated by the following XPS method and is defined below.
  • Atomic concentration% number of carbon atoms / number of all atoms ⁇ 100
  • ESCALAB-200R manufactured by VG Scientific, Inc. was used in the present invention. Specifically, Mg was used for the X-ray anode, and measurement was performed at an output of 600 W (acceleration voltage: 15 kV, emission current: 40 mA). The energy resolution was set to be 1.5 eV to 1.7 eV when defined by the half width of a clean Ag3d5 / 2 peak.
  • a range of binding energy of 0 eV to 1100 eV was measured at a data acquisition interval of 1.0 eV to determine what elements were detected.
  • the data acquisition interval was set to 0.2 eV, and the photoelectron peak giving the maximum intensity was subjected to narrow scan, and the spectrum of each element was measured.
  • the obtained spectrum is on COMMON DATA PROCESSING SYSTEM (Ver. 2.3 or later is preferable) manufactured by VAMAS-SCA-JAPAN in order not to cause a difference in the content calculation result due to a difference in measuring apparatus or computer. Then, the processing was performed with the same software, and the content values of the elements (carbon, oxygen, silicon, titanium, etc.) of each analysis target were determined as atomic concentration (atomic concentration: at%).
  • the method for manufacturing the low refractive index ceramic constituent layer according to the present invention for example, the first, second, or third silicon oxide film, among the vapor phase growth methods, in particular, the manufacturing method by the atmospheric pressure plasma CVD method.
  • the raw material compound used will be described.
  • the silicon oxide film according to the present invention is an oxide or nitride oxide containing Si or Al by selecting conditions such as an organometallic compound as a raw material, a decomposition gas, a decomposition temperature, and input power in an atmospheric pressure plasma CVD method.
  • the composition of the low refractive index ceramic constituent layer mainly composed of nitride can be made differently.
  • silicon oxide is generated.
  • silazane or the like is used as a raw material compound, silicon oxynitride is generated. This is because highly active charged particles and active radicals exist in the plasma space at a high density, so that multi-step chemical reactions are accelerated very rapidly in the plasma space. This is because it is converted into a mechanically stable compound in a very short time.
  • the raw material for forming such a silicon oxide film may be in the state of gas, liquid, or solid at normal temperature and pressure as long as it is a silicon compound.
  • gas it can be introduced into the discharge space as it is, but in the case of liquid or solid, it is used after being vaporized by means such as heating, bubbling, decompression or ultrasonic irradiation.
  • the solvent may be diluted with a solvent, and an organic solvent such as methanol, ethanol, n-hexane or a mixed solvent thereof may be used as the solvent.
  • these dilution solvents are decomposed
  • silicon compounds include silane, tetramethoxysilane, tetraethoxysilane, tetra n-propoxysilane, tetraisopropoxysilane, tetra n-butoxysilane, tetrat-butoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, Diethyldimethoxysilane, diphenyldimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, phenyltriethoxysilane, (3,3,3-trifluoropropyl) trimethoxysilane, hexamethyldisiloxane, bis (dimethylamino) dimethylsilane Bis (dimethylamino) methylvinylsilane, bis (ethylamino) dimethylsilane, N, O-bis (trimethylsilyl) acetamide
  • Examples of the aluminum compound include aluminum ethoxide, aluminum triisopropoxide, aluminum isopropoxide, aluminum n-butoxide, aluminum s-butoxide, aluminum t-butoxide, aluminum acetylacetonate, triethyldialuminum tri-s-butoxide, and the like. Can be mentioned.
  • a decomposition gas for decomposing the source gas containing silicon or aluminum to obtain silicon oxide or an aluminum oxide film hydrogen gas, methane gas, acetylene gas, carbon monoxide gas, carbon dioxide gas, nitrogen gas, Ammonia gas, nitrous oxide gas, nitrogen oxide gas, nitrogen dioxide gas, oxygen gas, water vapor, fluorine gas, hydrogen fluoride, trifluoroalcohol, trifluorotoluene, hydrogen sulfide, sulfur dioxide, carbon disulfide, chlorine gas, etc.
  • hydrogen gas, methane gas, acetylene gas, carbon monoxide gas, carbon dioxide gas, nitrogen gas, Ammonia gas, nitrous oxide gas, nitrogen oxide gas, nitrogen dioxide gas, oxygen gas, water vapor, fluorine gas, hydrogen fluoride, trifluoroalcohol, trifluorotoluene hydrogen sulfide, sulfur dioxide, carbon disulfide, chlorine gas, etc.
  • a silicon oxide film containing silicon oxide, nitride, carbide, or the like can be obtained by appropriately selecting a source gas containing silicon and a decomposition gas.
  • a discharge gas that tends to be in a plasma state is mainly mixed with these reactive gases, and the gas is sent to a plasma discharge generator.
  • a discharge gas nitrogen gas and / or 18th group atom of the periodic table, specifically, helium, neon, argon, krypton, xenon, radon, etc. are used. Among these, nitrogen, helium, and argon are particularly preferably used.
  • the film is formed by mixing the discharge gas and the reactive gas and supplying them to a plasma discharge generator (plasma generator) as a thin film forming (mixed) gas.
  • a plasma discharge generator plasma generator
  • the reactive gas is supplied with the ratio of the discharge gas to 50% or more of the entire mixed gas.
  • the organic silicon compound is further combined with oxygen gas or nitrogen gas at a predetermined ratio, and at least O atoms and N atoms are combined.
  • a silicon oxide film mainly containing silicon oxide according to the present invention containing any of them and Si atoms can be obtained.
  • the low refractive index ceramic constituting layer according to the present invention is preferably formed by forming one set of units made of the first, second, etc. silicon oxide films on one or more transparent resin base materials, and two sets, Further, more units may be formed.
  • the unit includes at least one silicon oxide film having a low carbon atom concentration (less than 0.1 at%) and a silicon oxide film having a higher carbon atom concentration (1 to 40 at%) than the silicon oxide film. It refers to a layer composed of one layer.
  • each silicon oxide layer in the low refractive index ceramic constituent layer may be in the range of 1 to 500 nm.
  • the entire low refractive index ceramic constituting layer is preferably in the range of 10 nm to 5 ⁇ m.
  • a releasable transparent substrate may be provided in order to prevent scratches and foreign matter adhesion on the layer already provided in each transparent substrate.
  • the releasable transparent substrate those described below can be used.
  • a low refractive index ceramic constituent layer is formed by plasma treatment on one surface side (A surface) of a transparent substrate, and then the back surface side (B Before providing the low refractive index ceramic constituent layer on the surface), a resin material having releasability is laminated on the already formed low refractive index ceramic constituent layer on the A side.
  • the resin material having releasability according to the present invention is not particularly limited, but includes at least a film and an adhesive layer containing an adhesive formed on one side of the film, and the adhesive is an acrylic adhesive, a silicon-based adhesive It is at least one selected from a pressure-sensitive adhesive and a rubber-based pressure-sensitive adhesive, and the pressure-sensitive adhesive strength of the pressure-sensitive adhesive is preferably 1 mN / cm or more and 2 N / cm or less, more preferably 1 mN / cm or more and 200 mN / cm or less. Preferably there is.
  • the adhesive strength of the pressure-sensitive adhesive is 1 mN / cm or more, sufficient adhesion between the resin material and the low refractive index ceramic constituent layer can be obtained, and peeling during continuous conveyance does not occur. The influence on the already formed low refractive index ceramic constituent layer due to contact with a roll or the like can be prevented. Further, if the adhesive force is 2 N / cm or less, the low refractive index ceramic constituent layer layer is destroyed or the low refractive index ceramic is not excessively applied to the low refractive index ceramic constituent layer when the resin material is peeled off. Does not cause the adhesive to remain on the constituent layers.
  • the adhesive strength of the pressure-sensitive adhesive according to the present invention can be determined by measuring 20 minutes after the resin material is pressure-bonded to the test plate using Corning 1737 as a test plate according to a measurement method based on JIS Z 0237.
  • the thickness of the pressure-sensitive adhesive is preferably 0.1 ⁇ m or more and 30 ⁇ m or less. If the thickness of the pressure-sensitive adhesive is 0.1 ⁇ m or more, sufficient adhesion between the resin material and the transparent substrate can be obtained, peeling during continuous conveyance does not occur, and rolls during conveyance, etc. The influence of the contact on the already formed low refractive index ceramic constituent layer can be prevented. Moreover, if the thickness of the pressure-sensitive adhesive is 30 ⁇ m or less, the low refractive index ceramic constituent layer is destroyed or adhered to the top without applying excessive force to the low refractive index ceramic constituent layer when the resin material is peeled off. There will be no residual agent.
  • the weight average molecular weight of the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer is preferably 400,000 or more and 1.4 million or less. If the weight average molecular weight is 400,000 or more, the adhesive strength is not excessive, and if it is 1.4 million or less, sufficient adhesive strength can be obtained. When the weight average molecular weight is within the range specified in the present invention, it is possible to prevent the adhesive from remaining on the low refractive index ceramic constituent layer, and particularly when the low refractive index ceramic constituent layer is formed by the plasma treatment method. Since heat and energy are applied, the adhesive material may be transferred or peeled off if the molecular weight is not within an appropriate range.
  • the resin material having releasability according to the present invention mainly includes a base material, an adhesive layer formed on one side of the base material, and a surface of the adhesive layer, that is, a surface opposite to the base material. It is comprised from the peeling layer which consists of a transparent base material etc. which were made.
  • Base material used for releasable resin material Although there is no restriction
  • a polyethylene terephthalate film is preferably used from the viewpoint of heat resistance and availability.
  • the thickness of the base material is not particularly limited, but 10 to 300 ⁇ m is used. It is preferably 25 to 150 ⁇ m. When the thickness is 10 ⁇ m or less, handling is difficult because the film is thin, and when the thickness is 300 ⁇ m or more, the film becomes hard and the transportability and the adhesion to the roll are deteriorated.
  • the type of pressure-sensitive adhesive used for the releasable resin material is not particularly limited.
  • a rubber-based pressure-sensitive adhesive an acrylic pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, a urethane-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive
  • the ultraviolet curable pressure-sensitive adhesive include at least one selected from an acrylic pressure-sensitive adhesive, a silicon pressure-sensitive adhesive, and a rubber-based pressure-sensitive adhesive.
  • acrylic pressure-sensitive adhesive for example, a homopolymer of (meth) acrylic acid ester or a copolymer with another copolymerizable monomer is used. Further, examples of monomers or copolymerizable monomers constituting these copolymers include alkyl esters of (meth) acrylic acid (for example, methyl esters, ethyl esters, butyl esters, 2-ethylhexyl esters, octyl esters, isoforms).
  • Nonyl esters, etc. hydroxyalkyl esters of (meth) acrylic acid (eg, hydroxyethyl ester, hydroxybutyl ester, hydroxyhexyl ester), (meth) acrylic acid glycidyl ester, (meth) acrylic acid, itaconic acid, maleic anhydride (Meth) acrylic acid amide, (meth) acrylic acid N-hydroxymethylamide, (meth) acrylic acid alkylaminoalkyl ester (for example, dimethylaminoethyl methacrylate, t-butylaminoethyl methacrylate) Over DOO), vinyl acetate, styrene, and acrylonitrile.
  • an alkyl acrylate having a homopolymer glass transition point of ⁇ 50 ° C. or lower is usually used.
  • the curing agent for the acrylic pressure-sensitive adhesive for example, an isocyanate-based, epoxy-based, or alidiline-based curing agent can be used.
  • an isocyanate curing agent an aromatic type such as toluylene diisocyanate (TDI) can be preferably used for the purpose of obtaining a stable adhesive force even after long-term storage and making it a harder adhesive layer.
  • the pressure-sensitive adhesive may contain, for example, a stabilizer, an ultraviolet absorber, a flame retardant, and an antistatic agent as additives.
  • organic resin such as wax, silicone, fluorine, etc.
  • a higher fatty acid ester or a low molecular weight phthalate ester may be used.
  • Rubber-based adhesives polyisobutylene rubber, butyl rubber and mixtures thereof, or tackifiers such as abietic rosin ester, terpene / phenol copolymer, terpene / indene copolymer, etc. were blended with these rubber-based adhesives. Things are used.
  • Examples of the base polymer of the rubber adhesive include natural rubber, isoprene rubber, styrene-butadiene rubber, recycled rubber, polyisobutylene rubber, styrene-isoprene-styrene rubber, and styrene-butadiene-styrene rubber. Etc.
  • the block rubber-based pressure-sensitive adhesive is a block copolymer represented by the general formula ABA or a block copolymer represented by the general formula AB (where A is a styrene polymer block, B Is a butadiene polymer block, an isoprene polymer block, or an olefin polymer block obtained by hydrogenating them, hereinafter referred to as a styrene-based thermoplastic elastomer), and a tackifier resin, a softener and the like are blended.
  • a composition is a styrene polymer block, B Is a butadiene polymer block, an isoprene polymer block, or an olefin polymer block obtained by hydrogenating them, hereinafter referred to as a styrene-based thermoplastic elastomer
  • a composition is a block copolymer represented by the general formula ABA or a block copolymer represented by the general formula AB (
  • the styrene polymer block A preferably has an average molecular weight of about 4,000 to 120,000, and more preferably about 10,000 to 60,000.
  • the glass transition temperature is preferably 15 ° C. or higher.
  • the butadiene polymer block, the isoprene polymer block, or the olefin polymer block B obtained by hydrogenation thereof preferably has an average molecular weight of about 30,000 to 400,000, and more preferably 60,000 to 200,000. About 000 is more preferable.
  • the glass transition temperature is preferably ⁇ 15 ° C. or lower.
  • a / B 5/95 to 50/50
  • a / B 10/90 to 30/70.
  • the releasability from the release paper or release film can be improved.
  • the polyolefin resin include low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, ethylene- ⁇ olefin copolymer, propylene- ⁇ olefin copolymer, and ethylene-ethyl acrylate copolymer. , Ethylene-vinyl acetate copolymer, ethylene-methyl methacrylate copolymer, ethylene-n-butyl acrylate copolymer, and mixtures thereof.
  • the polyolefin-based resin preferably has a low molecular weight, and specifically, the low molecular weight extracted by boiling boiling with n-pentane is preferably less than 1.0% by mass. This is because if the low molecular weight component exceeds 1.0% by mass, the low molecular weight component adversely affects the adhesive properties in accordance with temperature changes and changes with time, and decreases the adhesive force.
  • silicone oil is a polymer compound with a polyalkoxysiloxane chain in the main chain, which increases the hydrophobicity of the adhesive layer and further bleeds to the adhesive interface, that is, the surface of the adhesive layer. There is a function that makes it difficult for a phenomenon to occur.
  • a cross-linking agent is added to the above rubber-based pressure-sensitive adhesive and crosslinked to form an adhesive layer.
  • crosslinking agent for example, sulfur, a vulcanization aid, and a vulcanization accelerator (typically, dibutylthiocarbamate zinc, etc.) are used for crosslinking the natural rubber-based pressure-sensitive adhesive.
  • a vulcanization accelerator typically, dibutylthiocarbamate zinc, etc.
  • Polyisocyanates are used as a cross-linking agent capable of cross-linking an adhesive made from natural rubber and carboxylic acid copolymerized polyisoprene at room temperature.
  • Polyalkylphenol resins are used as cross-linking agents that have heat-resistant and non-fouling characteristics in cross-linking agents such as butyl rubber and natural rubber.
  • organic peroxides such as benzoyl peroxide and dicumyl peroxide in the crosslinking of pressure-sensitive adhesives made from butadiene rubber, styrene-butadiene rubber and natural rubber, and non-fouling pressure-sensitive adhesives can be obtained.
  • Polyfunctional methacrylic esters are used as a crosslinking aid.
  • a pressure-sensitive adhesive by crosslinking such as ultraviolet crosslinking or electron beam crosslinking.
  • the silicone-based pressure-sensitive adhesive includes an addition reaction curable type silicone pressure sensitive adhesive and a condensation polymerization curable type silicone pressure sensitive adhesive.
  • an addition reaction curable type is preferably used.
  • composition of the addition reaction curable silicone pressure-sensitive adhesive composition those listed below are preferably used.
  • R is a monovalent hydrocarbon group having 1 to 10 carbon atoms
  • X is an alkenyl group-containing organic group.
  • R is a monovalent hydrocarbon group having 1 to 10 carbon atoms, specifically, an alkyl group such as a methyl group, an ethyl group, a propyl group or a butyl group, a cycloalkyl group such as a cyclohexyl group, a phenyl group or a tolyl group.
  • An aryl group such as, for example, is mentioned, and a methyl group and a phenyl group are particularly preferable.
  • X is an organic group containing 2 to 10 carbon atoms containing an alkenyl group, and specifically, vinyl group, allyl group, hexenyl group, octenyl group, acryloylpropyl group, acryloylmethyl group, methacryloylpropyl group, cyclohexenyl. Examples thereof include an ethyl group and a vinyloxypropyl group, and a vinyl group and a hexenyl group are particularly preferable.
  • the properties of the polydiorganosiloxane may be oily or raw rubbery, and the viscosity of the component (A) is preferably 100 mPa ⁇ s or more, particularly 1,000 mPa ⁇ s or more at 25 ° C.
  • the viscosity of the component (A) is preferably 100 mPa ⁇ s or more, particularly 1,000 mPa ⁇ s or more at 25 ° C.
  • a polymerization degree may be 20,000 or less from the ease of mixing with another component.
  • (A) component may be used individually by 1 type, and may use 2 or more types together.
  • the polyorganosiloxane containing SiH groups as the component (B) is a crosslinking agent, and is an organohydropolysiloxane having at least 2, preferably 3 or more hydrogen atoms bonded to silicon atoms in one molecule. , Branched, annular, etc. can be used.
  • R 1 is a monovalent hydrocarbon group containing no aliphatic unsaturated bond having 1 to 6 carbon atoms.
  • b is an integer of 0 to 3
  • x and y are integers, respectively, and indicate the number at which the viscosity of this organohydropolysiloxane at 25 ° C. is 1 to 5,000 mPa ⁇ s.
  • the viscosity of this organohydropolysiloxane at 25 ° C. is preferably 1 to 5,000 mPa ⁇ s, particularly 5 to 1000 mPa ⁇ s, and may be a mixture of two or more.
  • Crosslinking by addition reaction occurs between the component (A) and the component (B) of the crosslinking agent, and the gel fraction of the adhesive layer after curing is determined by the ratio of the crosslinking component.
  • Component (B) is used so that the molar ratio of SiH groups in component (B) to alkenyl groups in component (A) is in the range of 0.5 to 20, particularly 0.8 to 15. It is preferable. If it is less than 0.5, the crosslinking density is lowered, and the holding force may be lowered accordingly. On the other hand, if it exceeds 20, the adhesive strength and tack may be reduced, or the usable time of the treatment liquid may be shortened.
  • the proportion of the cross-linking component in the composition may be increased. There may be effects such as reduced flexibility. From such a point, the blending mass ratio of the component (A) / (B) may be 20/80 to 80/20, and particularly preferably 45/55 to 70/30. When the blending ratio of the component (A) is less than 20/80, adhesive properties such as adhesive strength and tack may be deteriorated, and when it is more than 80/20, sufficient heat resistance cannot be obtained.
  • Component (C) is an addition reaction control agent, so that when a silicone pressure-sensitive adhesive composition is prepared and applied to a substrate, the treatment liquid does not thicken or gel before heat curing. It is to be added.
  • component (C) 3-methyl-1-butyn-3-ol, 3-methyl-1-pentyn-3-ol, 3,5-dimethyl-1-hexyn-3-ol, 1-ethynylcyclohexanol, 3-methyl-3-trimethylsiloxy-1-butyne, 3-methyl-3-trimethylsiloxy-1-pentyne, 3,5-dimethyl-3-trimethylsiloxy-1-hexyne, 1-ethynyl-1-trimethylsiloxycyclohexane, Bis (2,2-dimethyl-3-butynoxy) dimethylsilane, 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, Examples include 1,1,3,3-tetramethyl-1,3-divinyldisiloxane.
  • the amount of component (C) is preferably in the range of 0 to 5.0 parts by weight, particularly 0.05 to 2.0 parts by weight, based on a total of 100 parts by weight of components (A) and (B). Is preferred. If it exceeds 5.0 parts by mass, curability may be lowered.
  • Component (D) is a platinum catalyst, containing chloroplatinic acid, an alcohol solution of chloroplatinic acid, a reaction product of chloroplatinic acid and alcohol, a reaction product of chloroplatinic acid and an olefin compound, and containing chloroplatinic acid and a vinyl group
  • a reaction product with siloxane can be used.
  • the addition amount of the component (D) is preferably 1 to 5,000 ppm, particularly 5 to 2,000 ppm in terms of platinum with respect to the total amount of the components (A) and (B). If it is less than 1 ppm, the curability is lowered, the crosslinking density is lowered, and the holding power may be lowered. If it exceeds 5,000 ppm, the usable time of the treatment bath may be shortened.
  • the shape of the conductive fine particles of the component is not particularly limited, such as spherical, dendritic, and needle-like.
  • the particle size is not particularly limited, but it is preferable that the maximum particle size does not exceed 1.5 times the coating thickness of the pressure-sensitive adhesive. Therefore, the floating from the adherend tends to occur starting from this portion.
  • a crosslinking agent for example, a crosslinking agent, a catalyst, a plasticizer, an antioxidant, a colorant, an antistatic agent, a filler, a tackifier, a surfactant, and the like may be added.
  • a crosslinking agent for example, a crosslinking agent, a catalyst, a plasticizer, an antioxidant, a colorant, an antistatic agent, a filler, a tackifier, a surfactant, and the like may be added.
  • the adhesive layer onto the substrate it is performed by a roll coater, blade coater, bar coater, air knife coater, gravure coater, reverse coater, die coater, lip coater, spray coater, comma coater, etc.
  • An adhesive layer is formed through smoothing, drying, heating, electron beam exposure processes such as ultraviolet rays, and the like.
  • the material used as the release layer is preferably a plastic film that does not generate dust.
  • a plastic film used for the peeling layer which concerns on this invention.
  • Polyolefin films such as a polyethylene film and a polypropylene film
  • Polyester films such as a polyethylene terephthalate and a polybutylene terephthalate
  • Polyamide type such as a hexamethylene adipamide Film: Halogen-containing film such as polyvinyl chloride, polyvinylidene chloride, polyfluoroethylene, etc .
  • Vinyl acetate such as polyvinyl acetate, polyvinyl alcohol, ethylene vinyl acetate copolymer and its derivative films are used.
  • a polyester film is preferred, and for example, polyethylene terephthalate. It is because it has moderate elasticity.
  • the plastic film used for the release layer may be one to which a release agent is applied.
  • the coating solution for performing the mold release treatment include: solvent-free 636, 919, 920, 921, 924, emulsion type 929, 430, 440 in DEHESIVE series manufactured by Asahi Kasei Wacker Silicone Co., Ltd. 39005, 39006, solvent type 940, 942, 952, 953, 811, etc.
  • TPR6500 are release paper silicones manufactured by GE Toshiba Silicone Co., Ltd .: TPR6500, TPR6501, UV9300, UV9315, XS56-A2775, XS56-A2982, TPR6600, TPR6605, TPR6604, TPR6705, TPR6722, TPR6721, TPR6702, XS56-B3884, XS56-A8012, XS56-B2654, TPR6700, TPR6701, TPR6707, T R6710, TPR6712, XS56-A3969, XS56-A3075, YSR3022 and the like.
  • the transparent substrate used in the heat-shielding resin substrate according to the present invention is not particularly limited as long as it is a resin film that can hold the various layers described above.
  • a homopolymer such as ethylene, polypropylene, butene or a polyolefin (PO) resin such as a copolymer or a copolymer, an amorphous polyolefin resin (APO) such as a cyclic polyolefin, polyethylene terephthalate (PET), Polyester resins such as polybutylene naphthalate, polyethylene-2,6-naphthalate (PEN), polyamide (PA) resins such as nylon 6, nylon 12, copolymer nylon, polyvinyl alcohol (PVA) resin, ethylene-vinyl alcohol Polyvinyl alcohol resin such as copolymer (EVOH), polyimide (PI) resin, polyetherimide (PEI) resin, polysulfone (PS) resin, polyethersulfone (PES) resin, polyetheretherketone (PEEK) resin , Polycar Nate (PC) resin, polyvinyl butyrate (PVB) resin, polyarylate (PAR) resin,
  • PO
  • a resin composition comprising an acrylate compound having a radical-reactive unsaturated compound, a resin composition comprising an acrylate compound and a mercapto compound having a thiol group, epoxy acrylate, urethane acrylate
  • a photocurable resin such as a resin composition in which an oligomer such as polyester acrylate or polyether acrylate is dissolved in a polyfunctional acrylate monomer, and a mixture thereof.
  • oligomer such as polyester acrylate or polyether acrylate is dissolved in a polyfunctional acrylate monomer, and a mixture thereof.
  • ZEONEX and ZEONOR manufactured by ZEON Corporation
  • ARTON of amorphous cyclopolyolefin resin film manufactured by JSR Corporation
  • pure ace of polycarbonate film manufactured by Teijin Limited
  • Konica of cellulose triacetate film Commercial products such as Tack KC4UX and KC8UX (manufactured by Konica Minolta Opto Co., Ltd.) can be preferably used.
  • the resin film is preferably transparent, high light resistance, and high weather resistance.
  • the resin film listed above may be an unstretched film or a stretched film.
  • the resin film according to the present invention can be manufactured by a conventionally known general method.
  • an unstretched substrate that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching.
  • the unstretched base material is subjected to a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular-type simultaneous biaxial stretching, or the flow direction of the base material (vertical axis), or A stretched substrate can be produced by stretching in the direction perpendicular to the flow direction of the substrate (horizontal axis).
  • the draw ratio in this case can be appropriately selected according to the resin as the raw material of the base material, but is preferably 2 to 10 times in each of the vertical axis direction and the horizontal axis direction.
  • aromatic polyesters represented by polyethylene terephthalate and polyethylene-2,6-naphthalate
  • aliphatic polyamides represented by nylon 6 and nylon 66
  • aromatic polyamides polyethylene and polypropylene Representative polyolefins and polycarbonates are preferred.
  • aromatic polyesters, polyethylene terephthalate, polybutylene naphthalate, and polyethylene-2,6-naphthalate, particularly polyethylene terephthalate films are more preferred.
  • thermoplastic resin film is preferably a biaxially stretched film with increased mechanical strength, and further a biaxially stretched polyethylene terephthalate film or a biaxially stretched polyethylene-2,6-naphthalate film having excellent heat resistance and mechanical strength.
  • a biaxially stretched polyethylene terephthalate film is preferred.
  • the aromatic polyester can contain an appropriate filler if necessary.
  • the filler include those conventionally known as a slipperiness-imparting agent for polyester films.
  • the filler include calcium carbonate, calcium oxide, aluminum oxide, kaolin, silicon oxide, zinc oxide, and carbon black. , Silicon carbide, tin oxide, crosslinked acrylic resin particles, crosslinked polystyrene resin particles, melamine resin particles, crosslinked silicone resin particles, and the like.
  • the average particle diameter of the slipperiness-imparting agent is 0.01 to 10 ⁇ m, and the content is within an amount range in which the film maintains transparency, and is preferably 0.0001 to 5% by mass.
  • the aromatic polyester can contain a colorant, an antistatic agent, an antioxidant, an organic lubricant, catalyst residue fine particles and the like as appropriate.
  • a polyester film containing a light stabilizer is preferable when the heat-shielding resin substrate of the present invention is used for external application.
  • the light stabilizer has an effect of preventing polyester from being deteriorated by ultraviolet irradiation, and examples thereof include an ultraviolet absorber, a radical scavenger, and an antioxidant.
  • examples of such light stabilizers include hindered amines, salicylic acids, benzophenones, benzotriazoles, cyanoacrylates, triazines, benzoates, oxalic acid anilides, and other organic light stabilizers, or sol-gel inorganics.
  • the light stabilizer can be used. Specific examples of the light stabilizer suitably used are shown below, but of course not limited thereto.
  • Hindered amines bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, dimethyl succinate 1- (2-hydroxyethyl) -4-hydroxy-2,2,6,6-tetramethylpiperidine
  • Salicylic acid series pt-butylphenyl salicylate, p-octylphenyl salicylate
  • Benzophenone series 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone 2,2'-4,4'-tetrahydroxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, bis (2-methoxy-4- Hydroxy-5-benzoylphenyl) methane ben
  • Triazole series 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-5-methyl
  • At least one of hindered amine, benzophenone, and benzotriazole is preferably used, and more preferably used in combination.
  • the heat shielding resin substrate of the present invention before forming the low refractive index ceramic constituent layer, the metal layer, the high refractive index ceramic constituent layer, etc., corona treatment, flame treatment, plasma treatment, glow discharge treatment, Surface treatment such as roughening treatment or chemical treatment may be performed.
  • Resin film is conveniently a long product rolled up.
  • the thickness of the resin film is preferably in the range of 10 to 400 ⁇ m, and more preferably in the range of 30 to 200 ⁇ m, from the viewpoint of suitability as a heat shielding resin substrate.
  • the water vapor transmission rate of the low refractive index ceramic constituent layer As the water vapor transmission rate of the low refractive index ceramic constituent layer according to the present invention, the water vapor transmission rate measured according to JIS K7129: 1992 B method (manufactured by MOCON, using a water vapor transmission rate measuring device PERMATRAN-W3 / 33 MG module) 0.01 g / (m 2 ⁇ 24 h) or less (under 40 ° C. and 90% RH), more preferably 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less, more preferably 1 ⁇ 10 ⁇ 5 g / (m 2 ⁇ 24 h) or less.
  • the water vapor permeability of the low refractive index ceramic constituent layer may be measured by providing at least only the low refractive index ceramic constituent layer on the resin fat substrate.
  • the physical or chemical vapor deposition method is used to form the low refractive index ceramic laminated film according to the present invention, for example, a silicon oxide film, or a laminated body thereof.
  • the atmospheric pressure plasma CVD method which is the most preferable method among them will be described below.
  • the atmospheric pressure plasma CVD method is described in, for example, Japanese Patent Application Laid-Open No. 10-154598, Japanese Patent Application Laid-Open No. 2003-49272, pamphlet of International Publication No. 02/048428, etc., and particularly in Japanese Patent Application Laid-Open No. 2004-68143.
  • the described thin film forming method is preferable for forming a dense silicon oxide film having a high gas barrier property.
  • a web-like transparent base material is drawn out from a roll-shaped original winding, and silicon oxide films having different compositions can be continuously formed.
  • the atmospheric pressure plasma CVD method used for forming the low refractive index ceramic constituent layer according to the present invention is a plasma CVD method performed under atmospheric pressure or a pressure in the vicinity thereof. What is atmospheric pressure or a pressure in the vicinity thereof? The pressure is about 20 to 110 kPa, and 93 to 104 kPa is preferable for obtaining the good effects described in the present invention.
  • the discharge condition is that two or more electric fields having different frequencies are applied to the discharge space.
  • An electric field is applied by superimposing the electric field.
  • the frequency ⁇ 2 of the second high-frequency electric field is higher than the frequency ⁇ 1 of the first high-frequency electric field, the strength V1 of the first high-frequency electric field, the strength V2 of the second high-frequency electric field, and the discharge start electric field
  • the relationship with strength IV of V1 ⁇ IV> V2 Alternatively, V1> IV ⁇ V2 is satisfied, and the output density of the second high-frequency electric field is 1 W / cm 2 or more.
  • ⁇ High frequency means that having a frequency of at least 0.5 kHz.
  • the superimposed high-frequency electric field When the superimposed high-frequency electric field is a sine wave, it becomes a component obtained by superimposing the frequency ⁇ 1 of the first high-frequency electric field and the frequency ⁇ 2 of the second high-frequency electric field higher than the frequency ⁇ 1, and the waveform is a sine of the frequency ⁇ 1.
  • a sawtooth waveform in which a sine wave with a higher frequency ⁇ 2 is superimposed on the wave is obtained.
  • the strength of the electric field at which discharge starts is the lowest electric field intensity that can cause discharge in the discharge space (electrode configuration, etc.) and reaction conditions (gas conditions, etc.) used in the actual thin film formation method.
  • the discharge start electric field strength varies somewhat depending on the type of gas supplied to the discharge space, the dielectric type of the electrode, or the distance between the electrodes, but is controlled by the discharge start electric field strength of the discharge gas in the same discharge space.
  • the present invention is not limited to this, and both pulse waves may be used, one may be continuous waves and the other may be pulse waves. Further, a third electric field having a different frequency may be included.
  • the first high-frequency electric field having the frequency ⁇ 1 and the electric field strength V1 is applied to the first electrode constituting the counter electrode.
  • An atmospheric pressure plasma discharge processing apparatus is used in which a first power source is connected, and a second power source is connected to the second electrode to apply a second high-frequency electric field having a frequency ⁇ 2 and an electric field strength V2.
  • the above atmospheric pressure plasma discharge treatment apparatus includes gas supply means for supplying a discharge gas and a thin film forming gas between the counter electrodes. Furthermore, it is preferable to have an electrode temperature control means for controlling the temperature of the electrode.
  • the first filter facilitates passage of a first high-frequency electric field current from the first power source to the first electrode, and grounds the second high-frequency electric field current to provide a second from the second power source to the first power source. It makes it difficult to pass the current of the high frequency electric field.
  • the second filter makes it easy to pass the current of the second high-frequency electric field from the second power source to the second electrode, grounds the current of the first high-frequency electric field, and the second power from the first power source.
  • a power supply having a function of making it difficult to pass the current of the first high-frequency electric field to the power supply is used.
  • the phrase “difficult to pass” means that only 20% or less, more preferably 10% or less of the current is passed.
  • being easy to pass means that preferably 80% or more, more preferably 90% or more of the current is passed.
  • a capacitor of several tens of pF to tens of thousands of pF or a coil of about several ⁇ H can be used depending on the frequency of the second power source.
  • a coil of 10 ⁇ H or more is used according to the frequency of the first power supply, and it can be used as a filter by grounding through these coils or capacitors.
  • the first power source of the atmospheric pressure plasma discharge treatment apparatus according to the present invention has a capability of applying a higher electric field strength than the second power source.
  • the applied electric field strength and the discharge start electric field strength referred to in the present invention are those measured by the following method.
  • Measuring method of applied electric field strengths V1 and V2 (unit: kV / mm): A high-frequency voltage probe (P6015A) is installed in each electrode portion, and an output signal of the high-frequency voltage probe is connected to an oscilloscope (Tektronix, TDS3012B), and the electric field strength at a predetermined time is measured.
  • P6015A high-frequency voltage probe
  • TDS3012B oscilloscope
  • Measuring method of electric discharge starting electric field intensity IV (unit: kV / mm): A discharge gas is supplied between the electrodes, the electric field strength between the electrodes is increased, and the electric field strength at which discharge starts is defined as a discharge starting electric field strength IV.
  • the measuring instrument is the same as the applied electric field strength measurement.
  • discharge can be started even with a discharge gas with a high discharge starting electric field strength, such as nitrogen gas, and a high-density thin film can be formed while maintaining a high density and stable plasma state. be able to.
  • a discharge gas with a high discharge starting electric field strength such as nitrogen gas
  • the discharge start electric field strength IV (1/2 Vp-p) is about 3.7 kV / mm. Therefore, in the above relationship, the first applied electric field strength is By applying V1 ⁇ 3.7 kV / mm, the nitrogen gas can be excited and put into a plasma state.
  • the frequency of the first power source is preferably 200 kHz or less.
  • the electric field waveform may be a continuous wave or a pulse wave.
  • the lower limit is preferably about 1 kHz.
  • the frequency of the second power source is preferably 800 kHz or more.
  • the upper limit is preferably about 200 MHz.
  • the application of a high frequency electric field from such two power sources is necessary to start the discharge of a discharge gas having a high discharge start electric field strength by the first high frequency electric field, and the high frequency of the second high frequency electric field.
  • the atmospheric pressure plasma discharge treatment apparatus used in the present invention discharges between the counter electrodes as described above, changes the gas introduced between the counter electrodes into a plasma state, and allows the gas to stand between the counter electrodes or transfer between the electrodes. A thin film is formed on the base material by exposing the base material to the plasma state gas.
  • the atmospheric pressure plasma discharge treatment apparatus discharges between the counter electrodes similar to the above, excites the gas introduced between the counter electrodes or puts it in a plasma state, and excites or jets the gas outside the counter electrodes.
  • FIG. 1 is a schematic view showing an example of a jet-type atmospheric pressure plasma discharge treatment apparatus useful for the present invention.
  • the jet type atmospheric pressure plasma discharge processing apparatus is not shown in FIG. And an electrode temperature adjusting means.
  • the plasma discharge processing apparatus 10 has a counter electrode composed of a first electrode 11 and a second electrode 12, and the frequency ⁇ ⁇ b> 1 from the first power supply 21 is output from the first electrode 11 between the counter electrodes.
  • a first high-frequency electric field of electric field strength V1 and current I1 is applied, and a second high-frequency electric field of frequency ⁇ 2, electric field strength V2, and current I2 from the second power source 22 is applied from the second electrode 12. It has become.
  • the first power supply 21 applies a higher frequency electric field strength (V1> V2) than the second power supply 22, and the first frequency ⁇ 1 of the first power supply 21 is lower than the second frequency ⁇ 2 of the second power supply 22. Apply.
  • a first filter 23 is installed between the first electrode 11 and the first power source 21 to facilitate passage of a current from the first power source 21 to the first electrode 11, and a current from the second power source 22. Is designed so that the current from the second power source 22 to the first power source 21 is less likely to pass through.
  • a second filter 24 is installed between the second electrode 12 and the second power source 22 to facilitate passage of current from the second power source 22 to the second electrode, and from the first power source 21. It is designed to ground the current and make it difficult to pass the current from the first power source 21 to the second power source.
  • the above-described thin film forming gas G is introduced from the gas supply means as illustrated in FIG. 2 described later into the space (discharge space) 13 between the opposing electrodes of the first electrode 11 and the second electrode 12, and the first power source 21. And a second power source 22 to apply the above-described high-frequency electric field between the first electrode 11 and the second electrode 12 to generate a discharge, while the above-described thin film forming gas G is in a plasma state.
  • the processing space formed by the lower surface of the counter electrode and the base material F is filled with a gas G ° in a plasma state, and is unwound from a base winding (unwinder) (not shown).
  • a thin film is formed in the vicinity of the processing position 14 on the base material F that is transported or transported from the previous process. During the thin film formation, the medium heats or cools the electrode through the pipe from the electrode temperature adjusting means as shown in FIG.
  • the physical properties and composition of the resulting thin film may change, and it is desirable to appropriately control this.
  • the temperature control medium an insulating material such as distilled water or oil is preferably used.
  • it is desirable to uniformly adjust the temperature inside the electrode so that temperature unevenness in the width direction or the longitudinal direction of the substrate does not occur as much as possible.
  • FIG. 1 shows a measuring instrument and a measurement position used for measuring the applied electric field strength and the discharge starting electric field strength.
  • Reference numerals 25 and 26 are high-frequency voltage probes, and reference numerals 27 and 28 are oscilloscopes.
  • FIG. 2 is a schematic view showing an example of an atmospheric pressure plasma discharge treatment apparatus of a method for treating a substrate between counter electrodes useful for the present invention.
  • the atmospheric pressure plasma discharge processing apparatus is an apparatus having at least a plasma discharge processing apparatus 30, an electric field applying means 40 having two power sources, a gas supply means 50, and an electrode temperature adjusting means 60.
  • the base material F is plasma-discharged to form a thin film.
  • the roll rotating electrode 35 receives a first high-frequency electric field of frequency ⁇ 1, electric field strength V1, current I1 from the first power source 41, and A second high-frequency electric field having a frequency ⁇ 2, an electric field strength V2, and a current I2 is applied to the fixed electrode group 36 from the second power source 42.
  • a first filter 43 is installed between the roll rotation electrode 35 and the first power supply 41.
  • the first filter 43 facilitates the passage of current from the first power supply 41 to the first electrode, and the second power supply. It is designed to ground the current from 42 and make it difficult to pass the current from the second power source 42 to the first power source.
  • a second filter 44 is installed between the fixed electrode group 36 and the second power source 42, and the second filter 44 facilitates passage of current from the second power source 42 to the second electrode, It is designed to ground the current from the first power supply 41 and make it difficult to pass the current from the first power supply 41 to the second power supply.
  • the roll rotating electrode 35 may be the second electrode, and the square tube type fixed electrode group 36 may be the first electrode.
  • the first power source is connected to the first electrode, and the second power source is connected to the second electrode.
  • the first power source preferably applies a higher high-frequency electric field strength (V1> V2) than the second power source. Further, the frequency has the ability to satisfy ⁇ 1 ⁇ 2.
  • the current is preferably I1 ⁇ I2.
  • the current I1 of the first high-frequency electric field is preferably 0.3 mA / cm 2 to 20 mA / cm 2 , more preferably 1.0 mA / cm 2 to 20 mA / cm 2 .
  • the current I2 of the second high frequency electric field is preferably 10 mA / cm 2 to 100 mA / cm 2 , more preferably 20 mA / cm 2 to 100 mA / cm 2 .
  • the thin film forming gas G generated by the gas generator 51 of the gas supply means 50 is introduced into the plasma discharge processing vessel 31 from the air supply port 52 while the flow rate is controlled by a gas flow rate adjusting means (not shown).
  • the resin film substrate F is unwound from the original winding (not shown) and conveyed, or is conveyed in the direction of the arrow from the previous process, and accompanied by the nip roll 65 via the guide roll 64 and the substrate.
  • the incoming air or the like is cut off and transferred to the rectangular tube fixed electrode group 36 while being wound while being in contact with the roll rotating electrode 35.
  • the base material F forms a thin film with a gas in a plasma state while being wound while being in contact with the roll rotating electrode 35.
  • a plurality of rectangular tube-shaped fixed electrodes are provided along a circumference larger than the circumference of the roll electrode, and the discharge areas of the electrodes are all the corners facing the roll rotating electrode 35. It is represented by the sum of the areas of the surface of the cylindrical fixed electrode facing the roll rotation electrode 35.
  • Resin film base material F passes through nip roll 66 and guide roll 67 and is wound up by a winder (not shown) or transferred to the next step.
  • Discharged treated exhaust gas G ′ is discharged from the exhaust port 53.
  • the medium whose temperature is adjusted by the electrode temperature adjusting means 60 is sent to both electrodes via the pipe 61 by the liquid feed pump P, and from inside the electrodes. Adjust the temperature.
  • Reference numerals 68 and 69 denote partition plates that partition the plasma discharge processing vessel 31 from the outside.
  • FIG. 3 is a perspective view showing an example of the structure of the conductive metallic base material of the roll rotating electrode shown in FIG. 2 and the dielectric material coated thereon.
  • a roll electrode 35a has a conductive metallic base material 35A and a dielectric 35B coated thereon.
  • a temperature adjusting medium such as water or silicon oil
  • FIG. 4 is a perspective view showing an example of the structure of a conductive metallic base material of a rectangular tube type electrode and a dielectric material coated thereon.
  • a rectangular tube electrode 36a has a coating of a dielectric 36B similar to that of FIG. 3 on a conductive metallic base material 36A, and the structure of the electrode is a metallic pipe. , It becomes a jacket so that the temperature can be adjusted during discharge.
  • the rectangular tube electrode 36a shown in FIG. 4 may be a cylindrical electrode, but the rectangular tube electrode is preferably used in the present invention because it has an effect of expanding the discharge range (discharge area) as compared with the cylindrical electrode.
  • the roll electrode 35a and the rectangular tube electrode 36a are formed by spraying ceramics as dielectrics 35B and 36B on conductive metallic base materials 35A and 36A, respectively, and then sealing the inorganic compound. Is subjected to a sealing treatment.
  • the ceramic dielectric may be covered by about 1 mm with a single wall.
  • As the ceramic material used for thermal spraying alumina, silicon nitride, or the like is preferably used. Among these, alumina is particularly preferable because it is easily processed.
  • the dielectric layer may be a lining-processed dielectric provided with an inorganic material by lining.
  • Examples of the conductive metallic base materials 35A and 36A include titanium metal or titanium alloy, metal such as silver, platinum, stainless steel, aluminum and iron, a composite material of iron and ceramics, or a composite material of aluminum and ceramics. Although titanium metal or a titanium alloy is particularly preferable for the reasons described later.
  • the distance between the opposing first electrode and second electrode is the shortest distance between the surface of the dielectric and the surface of the conductive metal base material of the other electrode.
  • a dielectric is provided on both electrodes, it means the shortest distance between the dielectric surfaces.
  • the distance between the electrodes is determined in consideration of the thickness of the dielectric provided on the conductive metallic base material, the magnitude of the applied electric field strength, the purpose of using the plasma, etc. From the viewpoint of performing the above, 0.1 to 20 mm is preferable, and 0.5 to 2 mm is particularly preferable.
  • the plasma discharge treatment vessel 31 is preferably a treatment vessel made of Pyrex (registered trademark) glass or the like, but may be made of metal as long as it can be insulated from the electrodes.
  • polyimide resin or the like may be attached to the inner surface of an aluminum or stainless steel frame, and the metal frame may be thermally sprayed to obtain insulation. It is preferable to cover both side surfaces of the parallel electrodes (up to the vicinity of the base material surface) with the material as described above.
  • Applied power symbol Manufacturer Frequency Product name A1 Shinko Electric 3kHz SPG3-4500 A2 Shinko Electric 5kHz SPG5-4500 A3 Kasuga Electric 15kHz AGI-023 A4 Shinko Electric 50kHz SPG50-4500 A5 HEIDEN Laboratory 100kHz * PHF-6k A6 Pearl Industry 200kHz CF-2000-200k A7 Pearl Industry 400kHz CF-2000-400k And the like, and any of them can be used.
  • * indicates a HEIDEN Laboratory impulse high-frequency power source (100 kHz in continuous mode). Other than that, it is a high-frequency power source that can apply only a continuous sine wave.
  • an electrode capable of maintaining a uniform and stable discharge state by applying such an electric field in an atmospheric pressure plasma discharge treatment apparatus.
  • the power applied between the electrodes facing each other is such that power (power density) of 1 W / cm 2 or more is supplied to the second electrode (second high-frequency electric field) to excite the discharge gas to generate plasma.
  • the energy is applied to the thin film forming gas to form a thin film.
  • the upper limit value of the power supplied to the second electrode is preferably 50 W / cm 2 , more preferably 20 W / cm 2 .
  • the lower limit is preferably 1.0 W / cm 2 .
  • the discharge area (cm 2 ) refers to the area in which discharge occurs between the electrodes.
  • the output density can be improved while maintaining the uniformity of the second high frequency electric field. Can do. Thereby, a further uniform high-density plasma can be generated, and a further improvement in film forming speed and an improvement in film quality can be achieved.
  • it is 5 W / cm 2 or more.
  • the upper limit value of the power supplied to the first electrode is preferably 50 W / cm 2 .
  • the waveform of the high frequency electric field is not particularly limited.
  • a continuous sine wave continuous oscillation mode called a continuous mode
  • an intermittent oscillation mode called ON / OFF intermittently called a pulse mode
  • the second electrode side second
  • the high-frequency electric field is preferably a continuous sine wave because a denser and better quality film can be obtained.
  • the electrodes used in such a method for forming a thin film by atmospheric pressure plasma must be able to withstand severe conditions in terms of structure and performance.
  • Such an electrode is preferably a metal base material coated with a dielectric.
  • the characteristics match between various metallic base materials and dielectrics.
  • One of the characteristics is linear thermal expansion between the metallic base material and the dielectric.
  • the combination is such that the difference in coefficient is 10 ⁇ 10 ⁇ 6 / ° C. or less. It is preferably 8 ⁇ 10 ⁇ 6 / ° C. or less, more preferably 5 ⁇ 10 ⁇ 6 / ° C. or less, and particularly preferably 2 ⁇ 10 ⁇ 6 / ° C. or less.
  • the linear thermal expansion coefficient is a well-known physical property value of a material.
  • Metal base material is pure titanium or titanium alloy
  • dielectric is ceramic spray coating
  • Metal base material is pure titanium or titanium alloy
  • dielectric is glass lining 3: Metal base material is stainless steel, Dielectric is ceramic spray coating 4: Metal base material is stainless steel, Dielectric is glass lining 5: Metal base material is a composite material of ceramics and iron, Dielectric is ceramic spray coating 6: Metal base material Ceramic and iron composite material, dielectric is glass lining 7: Metal base material is ceramic and aluminum composite material, dielectric is ceramic sprayed coating 8: Metal base material is ceramic and aluminum composite material, dielectric The body has glass lining. From the viewpoint of the difference in linear thermal expansion coefficient, the above-mentioned item 1 or item 2 and item 5 to 8 are preferable, and item 1 is particularly preferable.
  • titanium or a titanium alloy is particularly useful as the metallic base material from the above characteristics.
  • the dielectric is used as described above, so that there is no deterioration of the electrode in use, especially cracking, peeling, dropping off, etc., and it can be used for a long time under harsh conditions. Can withstand.
  • the metallic base material of the electrode useful for the present invention is a titanium alloy or titanium metal containing 70% by mass or more of titanium.
  • the content of titanium in the titanium alloy or titanium metal can be used without any problem as long as it is 70% by mass or more, but preferably contains 80% by mass or more of titanium.
  • the titanium alloy or titanium metal useful in the present invention those generally used as industrial pure titanium, corrosion resistant titanium, high strength titanium and the like can be used. Examples of industrial pure titanium include TIA, TIB, TIC, TID, etc., all of which contain very little iron, carbon, nitrogen, oxygen, hydrogen, etc. As content, it has 99 mass% or more.
  • T15PB can be preferably used, and it contains lead in addition to the above-mentioned contained atoms, and the titanium content is 98% by mass or more.
  • titanium alloy T64, T325, T525, TA3, etc. containing aluminum and vanadium or tin other than the above atoms except lead can be preferably used. As a quantity, it contains 85 mass% or more.
  • These titanium alloys or titanium metals have a thermal expansion coefficient smaller than that of stainless steel, for example, AISI 316, by a dielectric material described later applied on the titanium alloy or titanium metal as a metallic base material. The combination is good and it can withstand use at high temperature for a long time.
  • the required characteristics of the dielectric are preferably inorganic compounds having a relative dielectric constant of 6 to 45, and such dielectrics include ceramics such as alumina and silicon nitride, or silica.
  • dielectrics include ceramics such as alumina and silicon nitride, or silica.
  • glass lining materials such as acid salt glass and borate glass. In this, what sprayed the ceramics mentioned later and the thing provided by glass lining are preferable.
  • a dielectric provided by spraying alumina is preferable.
  • the porosity of the dielectric is 10% by volume or less, preferably 8% by volume or less, preferably more than 0% by volume and 5% by volume or less. It is.
  • the porosity of the dielectric can be measured by a BET adsorption method or a mercury porosimeter. In the examples described later, the porosity is measured using a dielectric fragment covered with a metallic base material by a mercury porosimeter manufactured by Shimadzu Corporation. High durability is achieved because the dielectric has a low porosity.
  • Examples of the dielectric having such a void and a low void ratio include a high-density, high-adhesion ceramic spray coating by an atmospheric plasma spraying method described later. In order to further reduce the porosity, it is preferable to perform a sealing treatment.
  • the above-mentioned atmospheric plasma spraying method is a technique in which fine powders such as ceramics, wires, and the like are put into a plasma heat source and sprayed onto a metal base material to be coated as fine particles in a molten or semi-molten state to form a film.
  • a plasma heat source is a high-temperature plasma gas in which a molecular gas is heated to a high temperature, dissociated into atoms, and further given energy to release electrons. This plasma gas injection speed is high, and since the sprayed material collides with the metallic base material at a higher speed than conventional arc spraying or flame spraying, it is possible to obtain a coating film with high adhesion strength and high density.
  • a thermal spraying method for forming a heat shielding film on a high-temperature exposed member described in JP-A No. 2000-301655 can be referred to.
  • the porosity of the dielectric (ceramic sprayed film) to be coated can be obtained.
  • the dielectric thickness is 0.5 to 2 mm.
  • the film thickness variation is desirably 5% or less, preferably 3% or less, and more preferably 1% or less.
  • the thermal sprayed film of ceramics or the like is further sealed with an inorganic compound as described above.
  • an inorganic compound a metal oxide is preferable, and among these, a compound containing silicon oxide (SiO x ) as a main component is particularly preferable.
  • the inorganic compound for sealing is preferably formed by curing by a sol-gel reaction.
  • a metal alkoxide or the like is applied as a sealing liquid on the ceramic sprayed film and cured by a sol-gel reaction.
  • the inorganic compound is mainly composed of silica, it is preferable to use alkoxysilane as the sealing liquid.
  • the energy treatment includes thermosetting (preferably 200 ° C. or less) and ultraviolet irradiation.
  • thermosetting preferably 200 ° C. or less
  • ultraviolet irradiation preferably UV irradiation
  • the content of the metal oxide after curing is 60 It is preferably at least mol%.
  • the cured SiO x (x is 2 or less) content is preferably 60 mol% or more.
  • the SiO x content after curing is measured by analyzing the tomographic layer of the dielectric layer by XPS (X-ray photoelectron spectroscopy).
  • the maximum height (Rmax) of the surface roughness defined by JIS B 0601 on the side in contact with at least the base material of the electrode may be adjusted to 10 ⁇ m or less.
  • the maximum value of the surface roughness is more preferably 8 ⁇ m or less, and particularly preferably 7 ⁇ m or less.
  • the dielectric surface of the dielectric-coated electrode can be polished and the dielectric thickness and the gap between the electrodes can be kept constant, the discharge state can be stabilized, and the heat shrinkage difference and residual It is possible to eliminate distortion and cracking due to stress, and to greatly improve durability with high accuracy.
  • the polishing finish of the dielectric surface is preferably performed at least on the dielectric in contact with the substrate.
  • the center line average surface roughness (Ra) specified by JIS B 0601 is preferably 0.5 ⁇ m or less, more preferably 0.1 ⁇ m or less.
  • the heat-resistant temperature is 100 ° C. or higher. More preferably, it is 120 degreeC or more, Most preferably, it is 150 degreeC or more. The upper limit is 500 ° C.
  • the heat-resistant temperature refers to the highest temperature that can withstand normal discharge without causing dielectric breakdown at the voltage used in the atmospheric pressure plasma treatment. Such heat-resistant temperature can be applied within the range of the difference between the linear thermal expansion coefficient of the metallic base material and the dielectric material by applying the dielectric material provided by the above-mentioned ceramic spraying or layered glass lining with different bubble mixing amounts. This can be achieved by appropriately combining means for appropriately selecting the materials.
  • a ceramic layer mainly composed of a nitride containing In, Nb, Si, or Al can be produced in the same manner as the low-refractive index ceramic constituent layer by selecting a raw material compound by the atmospheric pressure plasma CVD method. it can.
  • Examples of the organic metal compound used as a raw material for the high refractive index ceramic constituent layer include, in addition to the silicon compound and aluminum compound, titanium compounds such as titanium methoxide, titanium ethoxide, titanium isopropoxide, and titanium tetraisopoloxide. Poxide, titanium n-butoxide, titanium diisopropoxide (bis-2,4-pentanedionate), titanium diisopropoxide (bis-2,4-ethylacetoacetate), titanium di-n-butoxide (bis- 2,4-pentanedionate), titanium acetylacetonate, butyl titanate dimer and the like.
  • titanium compounds such as titanium methoxide, titanium ethoxide, titanium isopropoxide, and titanium tetraisopoloxide.
  • Zirconium compounds include zirconium n-propoxide, zirconium n-butoxide, zirconium t-butoxide, zirconium tri-n-butoxide acetylacetonate, zirconium di-n-butoxide bisacetylacetonate, zirconium acetylacetonate, zirconium acetate, Zirconium hexafluoropentanedioate and the like can be mentioned.
  • tin compounds tetraethyltin, tetramethyltin, di-n-butyltin diacetate, tetrabutyltin, tetraoctyltin, tetraethoxytin, methyltriethoxytin, diethyldiethoxytin, triisopropylethoxytin, diethyltin , Dimethyltin, diisopropyltin, dibutyltin, diethoxytin, dimethoxytin, diisopropoxytin, dibutoxytin, tin dibutyrate, tin diacetoacetonate, ethyltin acetoacetonate, ethoxytin acetoacetonate, dimethyltin diacetoacetate
  • tin halides such as nates, tin hydride compounds, etc. include tin dichloride and tin tetrach
  • organometallic compounds include, for example, indium acetylacetonate, indium 2,6-dimethylaminoheptanedionate, niobium methoxide, niobium trifluoroethoxide, zinc acetylacetonate, diethylzinc, and the like.
  • the surface resistance of the heat ray shielding constituent layer (metal layer) of the heat shielding resin substrate thus obtained is preferably 8 ⁇ / ⁇ or less. When this surface resistance value exceeds 8 ⁇ / ⁇ , the electromagnetic wave shielding effect is not sufficiently exhibited. A more preferable surface resistance value is 6 ⁇ / ⁇ or less. Further, by providing an electrode having a surface resistance value lower than the surface resistance value of the metal layer at the end of the metal layer and taking out the ground, the electromagnetic wave shielding effect is further exhibited.
  • the heat shielding resin base material thus obtained is coated with an adhesive layer so as to be bonded to a substrate such as glass.
  • the adhesive layer may be provided on either the resin film substrate side or the side with the heat ray blocking component layer, but when bonded to a substrate such as glass, the heat ray blocking component layer is formed between the substrate and the resin film substrate. Since it can be sealed from ambient gas such as moisture, it is preferably provided on the outermost surface layer of the heat shielding resin substrate.
  • an adhesive mainly composed of a photocurable or thermosetting resin can be used.
  • the adhesive preferably has durability against ultraviolet rays, and is preferably an acrylic pressure-sensitive adhesive or a silicone pressure-sensitive adhesive. Furthermore, an acrylic adhesive is preferable from the viewpoint of adhesive properties and cost. In particular, since the peel strength can be easily controlled, a solvent system is preferable among the solvent system and the emulsion system in the acrylic adhesive. When a solution polymerization polymer is used as the acrylic solvent-based pressure-sensitive adhesive, known monomers can be used as the monomer.
  • preferred examples of the main monomer as a skeleton include acrylic acid esters such as ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and acryl acrylate.
  • Preferred examples of the comonomer for improving the cohesive force include vinyl acetate, acrylonitrile, styrene, and methyl methacrylate.
  • methacrylic acid, acrylic acid, itaconic acid, hydroxyethyl methacrylate, glycidyl can be used as functional group-containing monomers to promote cross-linking and to provide stable adhesive strength and to maintain a certain level of adhesive strength even in the presence of water.
  • Preferred examples include methacrylate.
  • the production of the pressure-sensitive adhesive can be performed by a known method. For example, in the presence of an organic solvent such as ethyl acetate or toluene, a predetermined starting material is introduced into the reaction kettle, and heated using a peroxide system such as benzoyl peroxide or an azobis system such as azobisisobutyronitrile as a catalyst. It can manufacture by polymerizing under.
  • a peroxide system such as benzoyl peroxide or an azobis system such as azobisisobutyronitrile
  • ethyl acetate is preferably used rather than toluene, which has a large chain transfer coefficient and suppresses polymer growth in a method in which monomers are added all at the beginning of the reaction or in an organic solvent species to be used.
  • the weight average molecular weight (Mw) of the polymer is preferably 400,000 or more, and more preferably 500,000 or more.
  • Mw weight average molecular weight
  • the curing agent for the adhesive general isocyanate curing agents and epoxy curing agents can be used, particularly in the acrylic solvent system, but in order to obtain a uniform film, the fluidity and crosslinking of the adhesive over time are required. Therefore, an isocyanate curing agent is preferable.
  • the adhesive layer may contain, for example, a stabilizer, an ultraviolet absorber, a flame retardant, an antistatic agent and the like as an additive.
  • the thickness of the adhesive layer is preferably 5 to 50 ⁇ m.
  • any known method can be used as a method for coating and forming the adhesive layer, and examples thereof include a die coater method, a gravure coater method, a blade coater method, a spray coater method, an air knife coating method, and a dip coating method.
  • the surface of the film is subjected to physical surface treatment such as flame treatment, corona discharge treatment, plasma discharge treatment, organic or inorganic, which is easily adhesive, for the purpose of improving adhesion and coating properties as necessary. It is preferable to perform a chemical surface treatment such as resin coating.
  • the above-mentioned pressure-sensitive adhesive material can also be used for an adhesive layer for bonding the first transparent substrate and the second transparent substrate according to the present invention.
  • the thickness of the adhesive layer for adhering the first transparent base material and the second transparent base material is set so that the reflected light from the heat ray blocking constituent layer does not generate color due to light interference due to re-reflection from the gray metal layer. It must be at least 2 ⁇ m thick.
  • Example 1 Formation of polymer layer on PET >> PET / CHC Using a Teijin DuPont PET (polyethylene terephthalate) film (thickness 38 ⁇ m) HS as a first transparent base material, an actinic radiation curable resin layer coating solution having the following composition was prepared thereon, and the cured film thickness was 2 ⁇ m. Then, it was applied using a microgravure coater, and after evaporating and drying the solvent, it was cured by irradiation with ultraviolet rays of 0.2 J / cm 2 using a high-pressure mercury lamp to form a polymer film composed of an acrylic cured layer.
  • ⁇ Coating liquid for active ray curable resin layer Dipentaerythritol hexaacrylate monomer 60 parts by weight Dipentaerythritol hexaacrylate dimer 20 parts by weight Dipentaerythritol hexaacrylate trimer or higher component 20 parts by weight Dimethoxybenzophenone photoinitiator 4 parts by weight Methyl ethyl ketone 75 parts by weight Propylene Glycol monomethyl ether 75 parts by mass ⁇ Formation of low refractive index ceramic constituent layer >>
  • low refractive index ceramic constituent layer 1 50 nm, C content 7.8 at%)
  • low refractive index ceramic constituent layer 2 50 nm, C content ⁇ 0.1 at%)
  • low refractive index ceramic constituting layer 3 500 nm, C content 7.8 at%) and low refractive index ceramic constituting layer were sequentially formed under the conditions described below ( The refractive index ceramic constituent layer 1 (50 nm, C content 7.8 at%), low refractive index
  • the gas in the vacuum chamber is switched to Ar gas so that the first pressure is 0.45 Pa, and direct current is applied to the cathode on which the silver target is set to perform sputtering.
  • the silver film was formed to 10 nm.
  • ⁇ Formation of gray metal layer >> Ni-Cr
  • a direct current was applied to the substrate to cause sputtering, and a Ni—Cr film was formed to 8.45 nm.
  • ⁇ Formation of adhesive layer> An acrylic pressure-sensitive adhesive in which an isocyanate crosslinking agent is added to a pressure-sensitive adhesive polymer having a weight average molecular weight of 650,000 obtained by copolymerizing butyl acrylate and methyl acrylate in a molar ratio of 3: 1 is prepared. A coating solution in which 15% by mass of the pressure-sensitive adhesive was dissolved on the surface of the heat ray blocking constitution layer was applied and dried at a rate of 10 g / m 2 to provide an adhesive layer having a thickness of 5 ⁇ m.
  • Each of the above layers is laminated on a PET (polyethylene terephthalate) film (thickness 38 ⁇ m) HS (PET) manufactured by Teijin DuPont as shown in FIG. A resin substrate was prepared.
  • Example 2 ⁇ Formation of gray metal layer >> Ni-Cr Teijin DuPont PET (polyethylene terephthalate) film (thickness 38 ⁇ m) HS as a first transparent substrate on one side, the gas in the vacuum chamber Ar gas, the first pressure is 0.45 Pa, A direct current was applied to the cathode on which the Ni—Cr target was set to cause sputtering to form a Ni—Cr film of 3.8 nm. Further, a 3.8 nm Ni—Cr film was similarly formed on the opposite surface of the transparent substrate on which the Ni—Cr film was formed.
  • low refractive index ceramic constituent layer On the first transparent substrate having Ni—Cr films on both sides, in the same manner as in Example 1, component layer 1 (50 nm, C content 7.8 at%), low refractive index ceramic component layer 2 (50 nm , C content ⁇ 0.1 at%), low refractive index ceramic constituting layer 3 (500 nm, C content 7.8 at%) and low refractive index ceramic constituting layer were sequentially formed under the conditions described below (refractive The rate was 1.46).
  • FIG. 6B shows the first transparent base material on which the first low refractive index ceramic constituent layer and the gray metal layer are formed, and the second transparent base material formed in the same manner as in Example 1. And a heat shielding resin substrate composed of a PET-low refractive index ceramic constituent layer was produced.
  • Example 3 Formation of Heat Ray Blocking Component Layer >> In 2 O 3 / Ag / In 2 O 3 / Ag / In 2 O 3 ⁇ Formation of first high refractive index ceramic constituent layer>
  • the gas in the vacuum chamber is switched to Ar gas, the first pressure is set to 0.45 Pa, and direct current is applied to the cathode on which the silver target is set to perform sputtering.
  • a silver film having a thickness of 10 nm was formed.
  • the gas in the vacuum chamber is switched to Ar gas, the first pressure is set to 0.45 Pa, and direct current is applied to the cathode on which the silver target is set to perform sputtering.
  • a silver film having a thickness of 9 nm was formed.
  • Example 1 Using each layer in Example 1 and the heat ray blocking constituent layer, lamination was performed as shown in FIG. 6C to prepare a heat shielding resin base material composed of PET to a low refractive index ceramic constituent layer.
  • Example 4 Formation of low refractive index ceramic constituent layer >> Using Teijin DuPont's PET (polyethylene terephthalate) film (thickness 38 ⁇ m) HS as a first transparent substrate on one side, in the same manner as in Example 1, component layer 1 (50 nm, C content 7.8 at%) ), Low refractive index ceramic constituent layer 2 (50 nm, C content ⁇ 0.1 at%), low refractive index ceramic constituent layer 3 (500 nm, C content 7.8 at%), and low refraction in order An index ceramic constituent layer was formed (refractive index was 1.46).
  • the low refractive index ceramic structure layer is disposed on the target side, the gas in the vacuum chamber is Ar gas, and the first pressure is 0.45 Pa. Then, direct current was applied to the cathode on which the Ni—Cr target was set to cause sputtering, and a Ni—Cr film of 8.45 nm was formed on the low refractive index ceramic constituent layer.
  • Example 3 Using each layer in Example 3 and the heat ray blocking constitution layer, the layers were laminated as shown in FIG. 6 (d) to produce a heat shielding resin substrate composed of PET to a low refractive index ceramic constituting layer.
  • Example 5 Using the first transparent base material in Example 2 and the heat ray blocking constitution layer in Example 3, lamination was performed as shown in FIG. 6E to prepare a heat shielding resin base material made of PET to PET.
  • Example 6 Formation of gray metal layer >> Ni-Cr Teijin DuPont PET (polyethylene terephthalate) film (thickness 38 ⁇ m) HS as a first transparent substrate on one side, the gas in the vacuum chamber Ar gas, the first pressure is 0.45 Pa, A direct current was applied to the cathode on which the Ni—Cr target was set to cause sputtering to form a 8.45 nm Ni—Cr film.
  • the first transparent substrate and the second transparent substrate were laminated as shown in FIG. 6 (f) to produce a heat shielding resin substrate made of PET to PET.
  • Polyester A1 was obtained by polymerization using magnesium acetate, antimony trioxide, and phosphoric acid.
  • the polyester A1 and 2,2 ′-(1,4-phenylene) bis (4H-3,1-benzoxazin-4-one) as an ultraviolet absorber were mixed with a vented twin screw extruder with an ultraviolet absorber of 15 It compounded so that it might become mass%, and obtained polyester A2 containing a ultraviolet absorber.
  • Polyester A1 and polyester A2 were charged so that the UV absorber was 0.5% by mass with respect to the total polyester, first vacuum dried at 150 ° C. for 2 hours, and then vacuum dried at 175 ° C. for 3 hours.
  • the film was melt-extruded with a casting drum and rapidly solidified on cast while electrostatically applied with a tape-like electrode to obtain an unstretched film. This was preheated at 75 ° C., and stretched 3.3 times in the longitudinal direction with an 80 ° C. roll while using a radiation heater together to obtain a uniaxially stretched film. Thereafter, a water-dispersible acrylic resin (concentration: 4.0% by mass) containing a lubricant (a colloidal silica solid content ratio of 0.35 parts by mass with a particle size of 0.1 ⁇ m) as a laminated film on both surfaces of the uniaxially stretched film. was applied to both sides with a # 4 metabar, stretched 3.6 times in the width direction at 110 ° C., and heat treated at 220 ° C. to obtain a biaxially stretched polyester film having a total film thickness of 125 ⁇ m.
  • an actinic radiation curable resin layer coating solution having the following composition is prepared thereon, and applied using a micro gravure coater so that the film thickness after curing is 2 ⁇ m.
  • the solvent was evaporated and dried, and then cured by irradiation with 0.2 J / cm 2 of ultraviolet light using a high-pressure mercury lamp to form a polymer film composed of an acrylic cured layer.
  • low refractive index ceramic constituent layer On the polymer layer of the first transparent substrate, in the same manner as in Example 1, component layer 1 (50 nm, C content 7.8 at%), low refractive index ceramic component layer 2 (50 nm, C content) ⁇ 0.1 at%), low refractive index ceramic constituent layer 3 (500 nm, C content 7.8 at%) and low refractive index ceramic constituent layers were sequentially formed (refractive index was 1). .46).
  • the first transparent base material and the second transparent base material were laminated as shown in FIG. 6G to produce a heat shielding resin base material made of PET to PET + light stabilizer.
  • Example 8 Formation of UV Absorber-Containing Polymer Layer >> CHC + UV Absorber Methyl methacrylate 65% by mass and 2-hydroxyethyl methacrylate 35% by mass were copolymerized to obtain a hydroxyl group-introduced methacrylate resin having an average molecular weight of 50000.
  • 2- (2H-benzotriazol-2-yl) -4,6-di-t-pentylphenol TINUVIN328; Ciba Japan Co., Ltd.
  • TINUVIN328 Ciba Japan Co., Ltd.
  • Decanedioic acid bis [2,2,6,6-tetramethyl-1 (octyloxy) -4-piperidinyl] ester (TINUVIN123; Ciba (Made by Japan Co., Ltd.) was blended in an amount of 5% by mass, diluted with methyl ethyl ketone to adjust the viscosity, and the main component (a) adjusted to a solid content of 20% by mass was obtained.
  • a polyisocyanate compound serving as a cross-linking agent (curing agent) a curing agent (b) obtained by adjusting adduct-type hexamethylene diisocyanate with methyl ethyl ketone so that the solid content was 75% by mass was obtained.
  • a coating liquid was prepared by adding 15% by mass of the curing agent (b) to the main agent (a).
  • This coating solution was continuously coated on the light stabilizer-containing PET prepared in Example 7 so that the coating amount was 5 g / m 2 in terms of solid content, and dried at a drying temperature of 60 ° C.
  • Example 1 Each layer in Example 1, the heat ray blocking constitution layer in Example 3, and the UV absorber-containing polymer layer on the light stabilizer-containing PET are laminated as shown in FIG. A thermal insulation resin substrate composed of layers was prepared.
  • the release resin material described below is laminated on the low refractive index ceramic constituent layer, and the low refractive index ceramic layer is scratched. And a heat ray blocking component layer was provided to prevent adhesion of foreign matter.
  • a silicone release agent is applied onto a 38 ⁇ m thick polyethylene terephthalate film, and 100 parts by mass of an acrylic pressure-sensitive adhesive (polymer containing butyl acrylate as a main monomer) is applied to the surface on which the silicone release agent is applied.
  • ⁇ Durability Test 1 >> Using a sunshine weather meter (Suga Test Instruments Co., Ltd., WEL-SUN-HCL type), irradiating the film for 3000 hours (equivalent to outdoor exposure for 3 years) according to JIS R 5759 went. Each measurement was performed on the sample after the test.
  • the tensile strength in the longitudinal direction and the transverse direction of the film was determined according to the following criteria using a tensile stress measuring device (manufactured by Ulm, Zwick 010) according to ISO 527-1-2.
  • A 80% or more with respect to the tensile strength before the weathering test ⁇ : 60% or more and less than 80% with respect to the tensile strength before the weathering test ⁇ : Less than 60% with respect to the tensile strength before the weathering test
  • shielding coefficient Slightly degraded
  • SC Majorly degraded SC
  • the shielding coefficient was measured and calculated based on JIS R5756.
  • thermal barrier resin substrate of the present invention is superior to comparison in all durability tests.
  • Plasma discharge processing apparatus 11 1st electrode 12 2nd electrode 21 1st power supply 22 2nd power supply 24 2nd filter 30 Plasma discharge processing apparatus 32 Discharge space 35 Roll rotation electrode 35a Roll electrode 35A Metal base material 35B Dielectric 36 Angle Cylindrical fixed electrode group 40 Electric field applying means 41 1st power supply 42 2nd power supply 43 1st filter 44 2nd filter 50 Gas supply means 51 Gas generator 52 Air supply port 53 Exhaust port 60 Electrode temperature adjusting means G Thin film forming gas G ° Gas in plasma G 'treated exhaust gas F Base material

Abstract

Disclosed is an anti-glare heat shielding resin base having excellent light resistance, moisture resistance and weather resistance.  A construction member using the heat shielding resin base is also disclosed.  The heat shielding resin base is characterized by having: a heat shielding constituent layer including at least one metal layer composed of a simple substance of gold, silver, copper or aluminum, or an alloy of those metals; a gray metal layer composed of at least member selected from simple substances of titanium, chromium, stainless steel and nickel-chromium or an alloy containing any of those metals; and at least one low-refractive-index ceramic constituent layer mainly composed of an oxide containing Si or Al, an oxynitride containing Si or Al, or a nitride containing Si or Al.

Description

遮熱樹脂基材またこれを用いた建築部材Thermal insulation resin substrate and building material using the same
 本発明は、樹脂基材上に形成された熱線反射層を有し、且つ防眩性を有する遮熱樹脂基材、及び遮熱樹脂基材を用いた建築部材に関する。 The present invention relates to a heat shield resin substrate having a heat ray reflective layer formed on a resin substrate and having antiglare properties, and a building member using the heat shield resin substrate.
 ガラスや樹脂フィルムなどの透明基材上に、金、銀、銅等からなる金属薄膜層を高屈折率の透明誘電体層で挟んだ構造の熱線反射層を設けることにより、可視光線を通すが、近赤外から赤外領域にかけての光線(熱線)を反射する特性を得ることができる。 By providing a heat ray reflective layer with a structure in which a metal thin film layer made of gold, silver, copper, etc. is sandwiched between transparent dielectric layers with a high refractive index on a transparent substrate such as glass or resin film, visible light can be transmitted. The characteristic which reflects the light ray (heat ray) from near infrared region to infrared region can be obtained.
 この特性を生かし、例えば、樹脂フィルム上に熱線反射層を設けたものは熱線遮蔽フィルムとして、高温作業における監視窓からの熱輻射を低減したり、建物、自動車、電車等の窓から入射する太陽エネルギーを遮断して冷暖房効果を向上させたり、透明植物容器の熱遮蔽性を向上させたり、あるいは冷凍冷蔵ショーケースにおける保冷効果を向上させたりする用途に利用されている(例えば、特許文献1参照)。 Taking advantage of this property, for example, a resin film provided with a heat ray reflective layer can be used as a heat ray shielding film to reduce heat radiation from the monitoring window in high-temperature work or to enter from the windows of buildings, automobiles, trains, etc. It is used for the purpose of cutting off energy to improve the cooling / heating effect, improving the heat shielding property of the transparent plant container, or improving the cooling effect in the refrigerated showcase (for example, see Patent Document 1). ).
 また、車窓用、ビルディング用では、太陽光の可視域の透過も抑制し、且つ反射も抑制したい場合がある。可視域の反射が大きいと周囲の環境に悪影響を及ぼし、周辺住民の苦情の対象となる場合もある。具体的な例としては、可視域の反射が大きいと反射した太陽光のために眩しくて自動車の運転に支障が出る等である。そのため、ビルの施工場所によっては、熱線反射Filmが使用できない状況が生じる恐れがある。また、透過率が高いと部屋の中が見えたりなど、好ましくない場合がある。そこで、透過率を下げるために反射性能を高めると、前述のように眩しさのため好ましくない。 Also, for vehicle windows and buildings, there is a case where it is desired to suppress transmission of sunlight in the visible region and to suppress reflection. Large reflections in the visible range adversely affect the surrounding environment and may be the subject of complaints from the surrounding residents. As a specific example, if the reflection in the visible region is large, the reflected sunlight is dazzling and hinders driving of the automobile. For this reason, depending on the construction site of the building, there is a possibility that a situation where the heat ray reflective film cannot be used may occur. Moreover, when the transmittance is high, the inside of the room can be seen, which is not preferable. Therefore, it is not preferable to increase the reflection performance in order to reduce the transmittance because of the glare as described above.
 そこで、熱線反射性能を損なわず、可視域の反射性能を低下させ、防眩機能を付与する方法として、熱線反射Filmに太陽光を吸収、散乱させる灰色金属(主にニッケルクロム)を設けることが開示されている(例えば、特許文献2参照)。 Therefore, as a method of reducing the reflection performance in the visible region without impairing the heat ray reflection performance and providing an antiglare function, the heat ray reflection film may be provided with a gray metal (mainly nickel chrome) that absorbs and scatters sunlight. It is disclosed (for example, see Patent Document 2).
 しかし、このような熱線遮蔽基材に用いられる金属薄膜、灰色金属は一般的にはスパッタリングや蒸着、CVD等のドライプロセスを使用し作製するが、樹脂基材上に金属薄膜を設ける場合には、樹脂基材に内在する水分やガス、可塑剤などの影響や、樹脂基材にはガスバリア性能が殆どないことから、樹脂基材を透過してくる水分や酸素などの影響を受け、ガラス基材上のものと比較して可視光透過率や耐環境性能が落ちることが分かってきた。特に、灰色金属が光、酸素及び/または湿気に晒されると腐食してしまい、その防眩機能を損なってしまう。また、熱線遮断層が腐食されてしまい、遮熱性能が低下してしまうことが分かってきた。 However, the metal thin film and gray metal used for such a heat ray shielding substrate are generally produced by using a dry process such as sputtering, vapor deposition, or CVD, but when a metal thin film is provided on a resin substrate, The glass substrate is affected by moisture, gas, plasticizer, etc. inherent in the resin base material, and since the resin base material has almost no gas barrier performance. It has been found that the visible light transmittance and environmental resistance are reduced compared to those on the material. In particular, when gray metal is exposed to light, oxygen, and / or moisture, it corrodes and its anti-glare function is impaired. Further, it has been found that the heat ray blocking layer is corroded and the heat shielding performance is lowered.
特開2001-310407号公報JP 2001-310407 A 特表2002-523798号公報Special Table 2002-523798
 従って、本発明の目的は、耐光性、耐湿性、耐候性に優れた防眩性を有する遮熱樹脂基材を提供することであり、更には該遮熱樹脂基材を用いた建築部材を提供することである。 Accordingly, an object of the present invention is to provide a heat shielding resin base material having an antiglare property excellent in light resistance, moisture resistance, and weather resistance, and further, a building member using the heat shielding resin base material. Is to provide.
 本発明の上記目的は以下の手段により達成される。 The above object of the present invention is achieved by the following means.
 1.金、銀、銅、アルミニウムの単体もしくはこれらの合金からなる金属層を少なくとも1層含む熱線遮断構成層と、チタン、クロム、ステンレスおよびニッケル-クロムの単体またはそれらを含む合金のうち、少なくとも1種類の灰色金属層と、SiまたはAlを含む酸化物、SiまたはAlを含む窒酸化物、SiまたはAlを含む窒化物を主成分とする少なくとも1層の低屈折率セラミック構成層とを有することを特徴とする遮熱樹脂基材。 1. At least one of a heat ray shielding component layer including at least one metal layer made of gold, silver, copper, aluminum alone or an alloy thereof and at least one of titanium, chromium, stainless steel and nickel-chromium alone or an alloy containing them. A gray metal layer and at least one low refractive index ceramic constituent layer mainly composed of an oxide containing Si or Al, a nitride oxide containing Si or Al, or a nitride containing Si or Al. Heat insulation resin base material.
 2.前記遮熱樹脂基材が、熱線遮断構成層、灰色金属層、低屈折率セラミック構成層の順で配置されていることを特徴とする前記1に記載の遮熱樹脂基材。 2. 2. The heat shielding resin base material according to 1 above, wherein the heat shielding resin base material is disposed in the order of a heat ray shielding constituent layer, a gray metal layer, and a low refractive index ceramic constituent layer.
 3.前記遮熱樹脂基材が、灰色金属層、熱線遮断構成層、低屈折率セラミック構成層の順で配置されていることを特徴とする前記1に記載の遮熱樹脂基材。 3. 2. The heat-insulating resin base material according to 1, wherein the heat-insulating resin base material is arranged in the order of a gray metal layer, a heat ray shielding constituent layer, and a low refractive index ceramic constituent layer.
 4.前記熱線遮断構成層が第1の透明基材に設けられ、前記灰色金属層が第2の透明基材に設けられ、該第1の透明基材と該第2の透明基材とを接着層により貼り合わせたことを特徴とする前記1~3のいずれか1項に記載の遮熱樹脂基材。 4. The heat ray blocking component layer is provided on a first transparent substrate, the gray metal layer is provided on a second transparent substrate, and the first transparent substrate and the second transparent substrate are bonded to each other. 4. The heat-shielding resin base material according to any one of 1 to 3, wherein the heat-shielding resin base material is bonded together.
 5.前記低屈折率セラミック構成層が、炭素含有量0.1at%未満である酸化ケイ素膜と炭素含有量が1~40at%である酸化ケイ素膜を少なくともそれぞれ1層ずつ含むことを特徴とする前記1~4のいずれか1項に記載の遮熱樹脂基材。 5. The low refractive index ceramic constituent layer includes at least one silicon oxide film having a carbon content of less than 0.1 at% and one silicon oxide film having a carbon content of 1 to 40 at%. 5. The heat shielding resin substrate according to any one of 1 to 4.
 6.前記低屈折率セラミック構成層が、大気圧もしくはその近傍の圧力下、放電空間に薄膜形成ガスおよび放電ガスを含有するガスを供給し、該放電空間に高周波電界を形成することにより該ガスを励起し、樹脂基材を励起したガスに晒すことにより、該樹脂基材上に薄膜を形成する薄膜形成方法により形成されたことを特徴とする前記1~5のいずれか1項に記載の遮熱樹脂基材。 6. The low-refractive index ceramic constituent layer supplies a gas containing a thin film forming gas and a discharge gas to the discharge space under atmospheric pressure or a pressure in the vicinity thereof, thereby exciting the gas by forming a high-frequency electric field in the discharge space. 6. The heat shield according to any one of 1 to 5 above, which is formed by a thin film forming method of forming a thin film on the resin substrate by exposing the resin substrate to an excited gas. Resin substrate.
 7.前記放電ガスが窒素ガスであり、放電空間に印加される高周波電界は、第1の高周波電界および第2の高周波電界を重畳したものであり、該第1の高周波電界の周波数ω1より該第2の高周波電界の周波数ω2が高く、該第1の高周波電界の強さV1、該第2の高周波電界の強さV2および放電開始電界の強さIVとの関係が、V1≧IV>V2またはV1>IV≧V2の関係を満たし、且つ該第2の高周波電界の出力密度が1W/cm以上であることを特徴とする前記6に記載の遮熱樹脂基材。 7). The discharge gas is nitrogen gas, and the high-frequency electric field applied to the discharge space is a superposition of the first high-frequency electric field and the second high-frequency electric field. The frequency ω2 of the high-frequency electric field is high, and the relationship among the first high-frequency electric field strength V1, the second high-frequency electric field strength V2, and the discharge starting electric field strength IV is V1 ≧ IV> V2 or V1 7. The thermal barrier resin substrate according to 6 above, which satisfies a relationship of> IV ≧ V2 and the output density of the second high-frequency electric field is 1 W / cm 2 or more.
 8.前記低屈折率セラミック構成層の屈折率が、1.3以上2.0未満であることを特徴とする前記1~7のいずれか1項に記載の遮熱樹脂基材。 8. 8. The heat shielding resin substrate according to any one of 1 to 7, wherein a refractive index of the low refractive index ceramic constituting layer is 1.3 or more and less than 2.0.
 9.前記低屈折率セラミック構成層の水蒸気透過率(JIS K7129-1992 B法)が、0.01g/(m・24h)以下(40℃90%RH条件下)であることを特徴とする前記1~8のいずれか1項に記載の遮熱樹脂基材。 9. The water vapor permeability (JIS K7129-1992 B method) of the low refractive index ceramic constituent layer is 0.01 g / (m 2 · 24 h) or less (40 ° C., 90% RH condition) 9. The heat shielding resin substrate according to any one of 1 to 8.
 10.前記熱線遮断構成層が、少なくともZn、Ti、Sn、In、Nb、SiまたはAlを含む酸化物、Zn、Ti、Sn、In、Nb、SiまたはAlを含む窒酸化物、Zn、Ti、Sn、In、Nb、SiまたはAlを含む窒化物を主成分とする少なくとも1層からなる高屈折率セラミック構成層、前記金属層、少なくともZn、Ti、Sn、In、Nb、SiまたはAlを含む酸化物、Zn、Ti、Sn、In、Nb、SiまたはAlを含む窒酸化物、Zn、Ti、Sn、In、Nb、SiまたはAlを含む窒化物を主成分とする少なくとも1層からなる高屈折率セラミック構成層、と順次積層された構成を有することを特徴とする前記1~9のいずれか1項に記載の遮熱樹脂基材。 10. The heat ray blocking constituent layer is an oxide containing at least Zn, Ti, Sn, In, Nb, Si or Al, a nitride oxide containing Zn, Ti, Sn, In, Nb, Si or Al, Zn, Ti, Sn A high refractive index ceramic constituent layer comprising at least one layer mainly composed of nitride containing In, Nb, Si or Al, the metal layer, an oxide containing at least Zn, Ti, Sn, In, Nb, Si or Al High refractive index consisting of at least one layer mainly composed of nitrides containing Zn, Ti, Sn, In, Nb, Si or Al, nitrides containing Zn, Ti, Sn, In, Nb, Si or Al 10. The heat-insulating resin base material according to any one of 1 to 9, wherein the thermal barrier resin base material has a structure in which a ceramic layer is sequentially laminated.
 11.前記高屈折率セラミック構成層と前記金属層の間に、更に金、銀、銅、アルミニウムの単体もしくはこれらの合金からなる1層以上の金属層および少なくともZn、Ti、Sn、In、Nb、SiまたはAlを含む酸化物、Zn、Ti、Sn、In、Nb、SiまたはAlを含む窒酸化物、Zn、Ti、Sn、In、Nb、SiまたはAlを含む窒化物を主成分とする少なくとも1層からなる高屈折率セラミック構成層が1組以上あることを特徴とする前記10に記載の遮熱樹脂基材。 11. Between the high-refractive-index ceramic constituent layer and the metal layer, one or more metal layers made of a simple substance of gold, silver, copper, aluminum or an alloy thereof and at least Zn, Ti, Sn, In, Nb, Si Or an oxide containing Al, a nitride oxide containing Zn, Ti, Sn, In, Nb, Si or Al, or a nitride containing Zn, Ti, Sn, In, Nb, Si or Al as a main component. 11. The heat shielding resin substrate as described in 10 above, wherein there are at least one set of high refractive index ceramic constituting layers.
 12.前記高屈折率セラミック構成層の屈折率が、1.8以上2.5未満であることを特徴とする前記10または11に記載の遮熱樹脂基材。 12. 12. The heat shielding resin substrate according to 10 or 11, wherein the refractive index of the high refractive index ceramic constituting layer is 1.8 or more and less than 2.5.
 13.前記熱線遮断構成層が、ファブリーペロ干渉フィルターであり、該ファブリーペロ干渉フィルターが第1の酸化物層、第1の金属層、第2の酸化物層、第2の金属層、第3の酸化物層からなることを特徴とする前記1~9のいずれか1項に記載の遮熱樹脂基材。 13. The heat ray blocking layer is a Fabry-Perot interference filter, and the Fabry-Perot interference filter includes a first oxide layer, a first metal layer, a second oxide layer, a second metal layer, and a third oxidation. 10. The heat-insulating resin substrate according to any one of 1 to 9 above, comprising a physical layer.
 14.前記灰色金属層がニッケルクロム層であることを特徴とする前記1~13のいずれか1項に記載の遮熱樹脂基材。 14. 14. The heat shielding resin base material according to any one of 1 to 13, wherein the gray metal layer is a nickel chromium layer.
 15.前記ニッケルクロム層のAVIS/RVISが0.6より大であることを特徴とする前記14に記載の遮熱樹脂基材。 15. 15. The heat shielding resin substrate as described in 14 above, wherein A VIS / R VIS of the nickel chromium layer is larger than 0.6.
 16.前記AVIS/RVISが1.07~1.44であることを特徴とする前記15に記載の遮熱樹脂基材。 16. 16. The heat shielding resin substrate as described in 15 above, wherein the A VIS / R VIS is 1.07 to 1.44.
 17.前記第1の透明基材と第2の透明基材が、ポリエチレンテレフタレート、ポリブチレンテレフタレートまたはポリエチレンナフタレートであることを特徴とする前記1~16のいずれか1項に記載の遮熱樹脂基材。 17. 17. The heat-shielding resin substrate according to any one of 1 to 16, wherein the first transparent substrate and the second transparent substrate are polyethylene terephthalate, polybutylene terephthalate, or polyethylene naphthalate. .
 18.前記第1の透明基材と第2の透明基材に紫外線吸収剤または酸化防止剤の少なくとも1種が含まれていることを特徴とする前記1~17のいずれか1項に記載の遮熱樹脂基材。 18. 18. The heat shield according to any one of 1 to 17, wherein the first transparent substrate and the second transparent substrate contain at least one of an ultraviolet absorber and an antioxidant. Resin substrate.
 19.ポリマー層が更に設けられていることを特徴とする前記1~18のいずれか1項に記載の遮熱樹脂基材。 19. 19. The heat-insulating resin base material according to any one of 1 to 18, wherein a polymer layer is further provided.
 20.前記ポリマー層が光硬化性もしくは熱硬化性の樹脂を主成分とすることを特徴とする前記19に記載の遮熱樹脂基材。 20. 20. The thermal barrier resin substrate as described in 19 above, wherein the polymer layer contains a photocurable or thermosetting resin as a main component.
 21.前記ポリマー層に紫外線吸収剤または酸化防止剤の少なくとも1種が含まれていることを特徴とする前記19または20に記載の遮熱樹脂基材。 21. 21. The heat shielding resin substrate as described in 19 or 20 above, wherein the polymer layer contains at least one of an ultraviolet absorber or an antioxidant.
 22.前記1~21のいずれか1項に記載の遮熱樹脂基材を、接着剤を介してガラスもしくはガラス代替樹脂基材に貼り合わせたことを特徴とする建築部材。 22. 22. A building member comprising the heat shielding resin substrate according to any one of 1 to 21 bonded to glass or a glass substitute resin substrate through an adhesive.
 本発明により、耐光性、耐湿性、耐候性に優れた防眩性を有する遮熱樹脂基材が得られ、更には該遮熱樹脂基材を用いた建築部材を提供することができた。 According to the present invention, a heat shielding resin substrate having an antiglare property excellent in light resistance, moisture resistance and weather resistance was obtained, and a building member using the heat shielding resin substrate could be provided.
ジェット方式の大気圧プラズマ放電処理装置の一例を示した概略図である。It is the schematic which showed an example of the jet-type atmospheric pressure plasma discharge processing apparatus. 対向電極間で基材を処理する方式の大気圧プラズマ放電処理装置の一例を示す概略図である。It is the schematic which shows an example of the atmospheric pressure plasma discharge processing apparatus of the system which processes a base material between counter electrodes. ロール回転電極の導電性の金属質母材とその上に被覆されている誘電体の構造の一例を示す斜視図である。It is a perspective view which shows an example of the structure of the electroconductive metal base material of a roll rotating electrode, and the dielectric material coat | covered on it. 角筒型電極の導電性の金属質母材とその上に被覆されている誘電体の構造の一例を示す斜視図である。It is a perspective view which shows an example of the structure of the electroconductive metal preform | base_material of a rectangular tube type electrode, and the dielectric material coat | covered on it. 耐久性試験に用いた装置を示す図である。It is a figure which shows the apparatus used for the durability test. 窓に接着した遮熱樹脂基材を示す図である。It is a figure which shows the thermal insulation resin base material adhere | attached on the window.
 以下、本発明を実施するための最良の形態について説明する。 Hereinafter, the best mode for carrying out the present invention will be described.
 本発明は高い熱線反射効果を奏する遮熱樹脂基材に関し、更に詳しくは、優れた熱線反射性を有するとともに、また室外側への可視光の反射防止性を有する、視認性に優れ、窓、例えば、建物窓や表示窓に貼ったとき、高い熱線反射効果を有するとともに室内灯等の映り込みを防止する遮熱樹脂基材(熱線反射フィルム)に関するものである。 The present invention relates to a heat-shielding resin base material that exhibits a high heat ray reflection effect, and more specifically, has excellent heat ray reflectivity and also has an antireflection property of visible light to the outdoor side, excellent visibility, a window, For example, the present invention relates to a heat shielding resin base material (heat ray reflective film) that has a high heat ray reflection effect and prevents reflection of room lights or the like when pasted on a building window or a display window.
 従来の窓に使用されている熱線反射フィルムは、透明な基材フィルム、特にポリエステルフィルムの片面に金、銀、銅等からなる金属薄膜層を高屈折率の透明誘電体層で挟んだ構造の熱線反射層を設けた積層フィルムであり、可視光線を通すが、近赤外部から赤外部にかけての光線(熱線)を反射する特性を有している。 The heat-reflective film used in conventional windows has a structure in which a transparent base film, in particular a polyester thin film, is sandwiched between a metal thin film layer made of gold, silver, copper, etc. with a transparent dielectric layer having a high refractive index. Although it is a laminated film provided with a heat ray reflective layer, it transmits visible light, but has the property of reflecting light rays (heat rays) from the near infrared part to the infrared part.
 これらの熱線反射フィルムは熱輻射を低減したり、窓から入射する太陽エネルギーを遮断して冷暖房効果を向上させたり、冷凍冷蔵ケースにおける保冷効果を向上させたりする用途に利用されている。また、これらの熱線反射フィルムが貼り合わせられている場合、万一ガラスが破損した場合でも、熱線遮蔽フィルムが貼られているとガラスの飛散を防止できるメリットもある。本発明は、上記の遮熱樹脂基材(熱線反射フィルム)において、水分や酸素などの影響による白濁等を生じ難く、可視光透過率が低下しにくい、長期使用また長期保管等の耐環境性能に優れ、また、ハンドリング性能に優れた遮熱樹脂基材に関するものである。 These heat ray reflective films are used for applications such as reducing heat radiation, blocking solar energy incident from windows to improve the cooling / heating effect, and improving the cooling effect in the refrigerated case. Moreover, when these heat ray reflective films are bonded together, even if the glass is broken, there is an advantage that the scattering of the glass can be prevented if the heat ray shielding film is stuck. The present invention is such that the above heat-shielding resin substrate (heat ray reflective film) is less susceptible to white turbidity due to the influence of moisture, oxygen, etc., and the visible light transmittance is unlikely to decrease, and environmental resistance performance such as long-term use and long-term storage. In addition, the present invention relates to a heat shielding resin base material excellent in handling performance.
 本発明の遮熱樹脂基材は、金、銀、銅、アルミニウムの単体もしくはこれらの合金からなる金属層を少なくとも1層含む熱線遮断構成層と、光の透過を部分的に遮断し、且つ可視光反射率が低い機能を設けた、チタン、クロム、ステンレスおよびニッケル-クロムの単体またはそれらを含む合金のうち、少なくとも1種類の灰色金属層と、SiまたはAlを含む酸化物、SiまたはAlを含む窒酸化物、SiまたはAlを含む窒化物を主成分とする少なくとも1層の低屈折率セラミック構成層と有することを特徴とする。 The heat-shielding resin substrate of the present invention includes a heat ray shielding component layer including at least one metal layer made of a simple substance of gold, silver, copper, or aluminum, or an alloy thereof, and partially blocks light transmission and is visible. Of titanium, chromium, stainless steel and nickel-chromium alone or an alloy containing them, provided with a function of low light reflectivity, at least one gray metal layer, an oxide containing Si or Al, Si or Al It is characterized by having at least one low refractive index ceramic constituent layer mainly composed of nitride oxide containing, nitride containing Si or Al.
 本発明の好ましい形態について言えば、本発明の遮熱樹脂基材は、ガラスに貼り付ける熱線反射フィルムで用いるのが好ましい。本発明の遮熱樹脂基材を接着剤層を介してガラスの屋外側に貼り付けて使用する場合、熱線(太陽光)が入射する側から、低屈折率セラミック構成層、熱線遮断構成層、灰色金属層の順で配置されていることが好ましい。また、本発明の遮熱樹脂基材を接着剤層を介してガラスの屋内側に貼り付けて使用する場合、熱線(太陽光)が入射する側から、熱線遮断構成層、灰色金属層、低屈折率セラミック構成層の順で配置されていることが好ましい。 Speaking of a preferred embodiment of the present invention, the heat-shielding resin substrate of the present invention is preferably used in a heat ray reflective film that is attached to glass. When the heat shielding resin substrate of the present invention is used by being attached to the outdoor side of glass through an adhesive layer, from the side on which the heat rays (sunlight) are incident, the low refractive index ceramic constituting layer, the heat ray shielding constituting layer, The gray metal layers are preferably arranged in this order. Further, when the heat shielding resin substrate of the present invention is used by being attached to the indoor side of the glass via an adhesive layer, the heat ray blocking component layer, the gray metal layer, the low The layers are preferably arranged in the order of the refractive index ceramic constituent layers.
 前記熱線遮断構成層は、好ましくは、少なくともZn、Ti、Sn、In、Nb、SiまたはAlを含む酸化物、Zn、Ti、Sn、In、Nb、SiまたはAlを含む窒酸化物、Zn、Ti、Sn、In、Nb、SiまたはAlを含む窒化物を主成分とする少なくとも1層からなる高屈折率セラミック構成層、前記金属層、および少なくともZn、Ti、Sn、In、Nb、SiまたはAlを含む酸化物、Zn、Ti、Sn、In、Nb、SiまたはAlを含む窒酸化物、Zn、Ti、Sn、In、Nb、SiまたはAlを含む窒化物を主成分とする少なくとも1層からなる高屈折率セラミック構成層、が順次積層された積層構成を有しており、該金属層がAu、Ag、Cu、Al等の金属の層であり、この中では可視光の吸収が殆どないAg金属が特に好ましい。また、金属層は必要に応じて2種以上を用いた合金として用いてもよい。 The heat ray blocking constituent layer is preferably an oxide containing at least Zn, Ti, Sn, In, Nb, Si or Al, a nitride oxide containing Zn, Ti, Sn, In, Nb, Si or Al, Zn, A high refractive index ceramic constituent layer comprising at least one layer mainly composed of a nitride containing Ti, Sn, In, Nb, Si or Al, the metal layer, and at least Zn, Ti, Sn, In, Nb, Si or At least one layer mainly composed of an oxide containing Al, a nitride oxide containing Zn, Ti, Sn, In, Nb, Si or Al, or a nitride containing Zn, Ti, Sn, In, Nb, Si or Al The metal layer is a metal layer such as Au, Ag, Cu, Al, etc., and most of the visible light is absorbed. Na Ag metal is particularly preferred. Moreover, you may use a metal layer as an alloy which used 2 or more types as needed.
 また、前記熱線遮断構成層は、第1の酸化物層、第1の金属層、第2の酸化物層、第2の金属層、第3の酸化物層からなるファブリーペロ干渉フィルターであってもよい。 The heat ray blocking component layer is a Fabry-Perot interference filter including a first oxide layer, a first metal layer, a second oxide layer, a second metal layer, and a third oxide layer. Also good.
 ファブリーペロ干渉フィルター中の金属層は主として銀であって、銀に対して質量50%未満の金または銅合金であるかまたはクラッド層であって、化学的および光耐久性を付与している。酸化物層にはインジウム酸化物が好ましいが、酸化物の屈折率が1.8以上で可視光線吸収レベルが10%未満の透明誘電層の場合には、酸化亜鉛、酸化錫、酸化チタン、酸化ニオビウムなどの他の酸化物であってもよい。適当に透明で、且つ屈折率が1.8より大きいならば、窒化物や弗化物なども使用できる。ファブリーペロフィルター製造のより詳細な設計、挙動および手法などは、米国特許第4,799,745号明細書に記載されている。 The metal layer in the Fabry-Perot interference filter is mainly silver, and is a gold or copper alloy having a mass of less than 50% with respect to silver or a clad layer, and imparts chemical and light durability. Indium oxide is preferable for the oxide layer, but in the case of a transparent dielectric layer having a refractive index of 1.8 or more and a visible light absorption level of less than 10%, zinc oxide, tin oxide, titanium oxide, oxide Other oxides such as niobium may be used. If it is suitably transparent and has a refractive index greater than 1.8, nitride or fluoride can also be used. More detailed design, behavior and techniques for manufacturing Fabry-Perot filters are described in US Pat. No. 4,799,745.
 金属層の厚みは、本発明の遮熱樹脂基材の第1の透明基材は、波長400~750nmにおける積分可視光透過率(この波長領域での可視光線透過率の平均値)が55%以上および波長5~30μmの積分赤外線反射率(この波長領域での赤外線反射率の平均値)が75%以上を満足するように定めるのが好ましい。具体的には、金属層の1層での厚みは5~1000nmの範囲内にあることが好ましい。この厚みが5nm未満であると、十分な熱線反射効果が発揮されず、赤外線透過率が高くなり、他方1000nmを超えると可視光反射率が増加し、防眩性が悪くなるので好ましくない。 The thickness of the metal layer is such that the first transparent substrate of the heat-shielding resin substrate of the present invention has an integrated visible light transmittance (average value of visible light transmittance in this wavelength region) of 55% at a wavelength of 400 to 750 nm. It is preferable that the integral infrared reflectivity (average value of infrared reflectivity in this wavelength region) with a wavelength of 5 to 30 μm satisfies 75% or more. Specifically, the thickness of one metal layer is preferably in the range of 5 to 1000 nm. When the thickness is less than 5 nm, sufficient heat ray reflection effect is not exhibited and the infrared transmittance is increased. On the other hand, when the thickness exceeds 1000 nm, the visible light reflectance is increased and the antiglare property is deteriorated.
 より好ましい範囲は5~30nmである。金属層を30nm以下とすることで可視光透過率を十分確保する事ができ、灰色金属層と合わせて設けることで防眩性と可視透過性を併せ持った熱線遮断層を形成することができる。 A more preferable range is 5 to 30 nm. Visible light transmittance can be sufficiently ensured by setting the metal layer to 30 nm or less, and a heat ray blocking layer having both antiglare property and visible transmittance can be formed by providing together with the gray metal layer.
 また、前記高屈折率セラミック構成層は少なくともZn、Ti、Sn、In、Nb、SiまたはAlを含む酸化物、Zn、Ti、Sn、In、Nb、SiまたはAlを含む窒酸化物、Zn、Ti、Sn、In、Nb、SiまたはAlを含む窒化物を主成分とする少なくとも1層からなり、屈折率が1.8以上2.5未満の層であり、前述の金属層をサンドイッチ状に挟む積層構造をとることにより、透明性の改良効果が増すためより好ましい。 The high-refractive index ceramic constituent layer includes an oxide containing at least Zn, Ti, Sn, In, Nb, Si, or Al, a nitrided oxide containing Zn, Ti, Sn, In, Nb, Si, or Al, Zn, It is composed of at least one layer mainly composed of nitride containing Ti, Sn, In, Nb, Si or Al, and has a refractive index of 1.8 or more and less than 2.5, and the aforementioned metal layer is sandwiched. It is more preferable to take a laminated structure between the two because the effect of improving transparency is increased.
 かかる高屈折率セラミック構成層の厚みは、熱線遮断構成層の光学特性を満足するように、積層される前述の金属層と併せて設定することが好ましい。高屈折率セラミック構成層の一層での厚みは2~1000nmの範囲が好ましい。 The thickness of the high refractive index ceramic constituting layer is preferably set in combination with the above-described metal layer to be laminated so as to satisfy the optical characteristics of the heat ray shielding constituting layer. The thickness of one layer of the high refractive index ceramic constituting layer is preferably in the range of 2 to 1000 nm.
 また、好ましい態様においては、前記高屈折率セラミック構成層と前記金属層の間に、更に金、銀、銅、アルミニウムの単体もしくはこれらの合金からなる0.1nm以上30nm未満からなる1層以上からなる金属層、および少なくともZn、Ti、Sn、In、Nb、SiまたはAlを含む酸化物、Zn、Ti、Sn、In、Nb、SiまたはAlを含む窒酸化物、Zn、Ti、Sn、In、Nb、SiまたはAlを含む窒化物を主成分とする少なくとも1層からなる高屈折率セラミック構成層が1組以上あることである。 Further, in a preferred embodiment, between the high refractive index ceramic constituting layer and the metal layer, from one layer or more consisting of 0.1 nm or more and less than 30 nm consisting of a simple substance of gold, silver, copper, aluminum or an alloy thereof. A metal layer, and an oxide containing at least Zn, Ti, Sn, In, Nb, Si or Al, a nitride oxide containing Zn, Ti, Sn, In, Nb, Si or Al, Zn, Ti, Sn, In There are at least one set of high refractive index ceramic constituent layers composed of at least one layer mainly composed of a nitride containing Nb, Si or Al.
 このような金属層の両側に高屈折率セラミック構成層を設けたサンドイッチ構造、また金属層と高屈折率セラミック構成層を設けた2層構造の如く複数の金属層と複数の高屈折率セラミック構成層を交互に積層した3乃至10の積層構造をとることが好ましく、好ましい層数は3乃至7である。 A sandwich structure in which high-refractive index ceramic constituent layers are provided on both sides of such a metal layer, or a two-layer structure in which a metal layer and a high-refractive index ceramic constituent layer are provided, a plurality of metal layers and a plurality of high-refractive index ceramic constituents It is preferable to have a stacked structure of 3 to 10 in which layers are stacked alternately, and the preferable number of layers is 3 to 7.
 本発明の遮熱樹脂基材(熱線反射フィルム)は、このように基材フィルムの少なくとも片面に熱線遮断構成層を積層してなる積層フィルムであって、好ましくは可視光線反射率が5%以下、赤外線反射率が75%以上である透明積層フィルムで達成される。 The heat-shielding resin base material (heat ray reflective film) of the present invention is a laminated film formed by laminating a heat ray shielding constituent layer on at least one side of the base film as described above, and preferably has a visible light reflectance of 5% or less. This is achieved with a transparent laminated film having an infrared reflectance of 75% or more.
 本発明においては、高い熱線反射効果を奏する金、銀、銅等からなる金属薄膜層を高屈折率の透明誘電体層で挟んだ構造をもつ熱線遮断構成層を、少なくともSiまたはAlを含む酸化物、SiまたはAlを含む窒酸化物、SiまたはAlを含む窒化物を主成分とする屈折率が、1.3以上1.8未満である低屈折率セラミック構成層を形成した透明基材上に有することを特徴としている。 In the present invention, a heat ray blocking constituent layer having a structure in which a metal thin film layer made of gold, silver, copper or the like having a high heat ray reflecting effect is sandwiched between transparent dielectric layers having a high refractive index is formed by an oxidation containing at least Si or Al. A transparent base material on which a low refractive index ceramic constituent layer having a refractive index of 1.3 or more and less than 1.8 is mainly composed of an oxide, a nitride oxide containing Si or Al, or a nitride containing Si or Al It is characterized by having.
 本発明において、灰色金属はチタン、クロム、ステンレスおよびニッケル-クロム、およびそれらを含む合金である。特にニッケル-クロム(ニクロムまたはNiCr)などの金属または合金であるのが望ましく、第2の透明基材上に2~20nmの厚さで形成される。その他の使用できる灰色金属または合金としては、インコネル、モネルがある。灰色金属とは考えられないが、「灰色状」のもので、薄くまたは非連続被覆を助成する状態で堆積されるものとしては、銅、金、アルミニウムおよび銀があり、使用できる。 In the present invention, the gray metal is titanium, chromium, stainless steel, nickel-chromium, and alloys containing them. In particular, a metal or an alloy such as nickel-chromium (nichrome or NiCr) is desirable, and is formed on the second transparent substrate with a thickness of 2 to 20 nm. Other usable gray metals or alloys include Inconel and Monel. Although not considered a gray metal, those that are “gray” and deposited in a thin or non-continuous coating aid include copper, gold, aluminum and silver and can be used.
 可視領域における光学特性が薄膜の状態において、可視光線を反射や分散や、散乱および/または吸収できる、これらの灰色金属と類似したものであれば他の金属も使用できる。薄膜であるとは、2~50nmの厚みであることを指す。好ましい厚みとしては2~20nmの厚みである。これにより低い可視光反射率と低い可視光透過率を達成できる。 Other metals can be used as long as they are similar to these gray metals that can reflect, disperse, scatter and / or absorb visible light when the optical properties in the visible region are thin. A thin film means a thickness of 2 to 50 nm. A preferred thickness is 2 to 20 nm. Thereby, low visible light reflectance and low visible light transmittance can be achieved.
 本発明において、ニッケルクロム層のAVIS/RVISが0.6より大であり、より好ましくはAVIS/RVISが1.07~1.44である。なお、AVISとは窓により吸収される可視光線または放射光のパーセントを言い、RVISとは窓において反射される可視光線または放射光のパーセントを言う。 In the present invention, A VIS / R VIS of the nickel chromium layer is larger than 0.6, more preferably A VIS / R VIS is 1.07 to 1.44. Note that A VIS refers to the percentage of visible or emitted light that is absorbed by the window, and R VIS refers to the percentage of visible or emitted light that is reflected at the window.
 低屈折率セラミック構成層は、少なくともSiまたはAlを含む酸化物、SiまたはAlを含む窒酸化物、SiまたはAlを含む窒化物を主成分とし、屈折率が1.3以上2.0未満であるセラミック構成層であり、特に酸化珪素から構成されることが好ましい。 The low refractive index ceramic constituent layer is mainly composed of an oxide containing at least Si or Al, a nitride oxide containing Si or Al, a nitride containing Si or Al, and a refractive index of 1.3 or more and less than 2.0. It is a certain ceramic constituent layer, and is particularly preferably made of silicon oxide.
 前記低屈折率セラミック構成層の形成方法としては気相成長法が好ましく、更に真空蒸着法、スパッタ法、イオンプレーティング法、触媒化学気相成長(Cat-CVD)法、またはプラズマCVD法が好ましい。特に大気圧もしくはその近傍の圧力下、放電空間に薄膜形成ガスおよび放電ガスを含有するガスを供給し、該放電空間に高周波電界を印加することにより該ガスを励起し、透明基材を励起したガスに晒すことにより、該透明基材上に薄膜を形成する薄膜形成方法により形成される、所謂大気圧プラズマCVD法により形成される膜は、低残留応力であり好ましい。 The method for forming the low refractive index ceramic constituent layer is preferably a vapor deposition method, and more preferably a vacuum deposition method, a sputtering method, an ion plating method, a catalytic chemical vapor deposition (Cat-CVD) method, or a plasma CVD method. . In particular, a gas containing a thin film forming gas and a discharge gas is supplied to the discharge space under atmospheric pressure or a pressure in the vicinity thereof, and the gas is excited by applying a high-frequency electric field to the discharge space, thereby exciting the transparent substrate. A film formed by a so-called atmospheric pressure plasma CVD method, which is formed by a thin film forming method in which a thin film is formed on the transparent substrate by being exposed to gas, has a low residual stress and is preferable.
 本発明において、放電空間とは、対向する2つの電極に挟まれた、放電を生成する空間のことを指す。 In the present invention, the discharge space refers to a space that generates a discharge sandwiched between two opposing electrodes.
 また、大気圧プラズマCVD法において形成される前記低屈折率セラミック構成層は、炭素含有量0.1at%未満である酸化ケイ素膜と炭素含有量が1~40at%である酸化ケイ素膜を少なくともそれぞれ1層ずつ含むことが好ましい。これらの炭素含有量の異なる膜を積層し構成したセラミック構成層は、水分またガス透過率低い(ガスバリア性の)比較的柔軟性に富んだ低屈折率の膜となり好ましい。例えば、これらの層を交互に2~5層積層した構成が好ましい。 Further, the low refractive index ceramic constituent layer formed in the atmospheric pressure plasma CVD method includes at least a silicon oxide film having a carbon content of less than 0.1 at% and a silicon oxide film having a carbon content of 1 to 40 at%, respectively. It is preferable to include one layer at a time. A ceramic constituent layer formed by laminating films having different carbon contents is preferable because it is a low refractive index film having a relatively high moisture and low gas permeability (gas barrier property) and a relatively high flexibility. For example, a configuration in which these layers are alternately laminated by 2 to 5 layers is preferable.
 大気圧プラズマ法および大気圧プラズマ法による、少なくともSiまたはAlを含む酸化物、SiまたはAlを含む窒酸化物、SiまたはAlを含む窒化物を主成分とする低屈折率のセラミック層の形成については後述する。 Formation of low-refractive index ceramic layer mainly composed of oxide containing at least Si or Al, nitride oxide containing Si or Al, nitride containing Si or Al by atmospheric pressure plasma method and atmospheric pressure plasma method Will be described later.
 次に、前記高屈折率セラミック構成層、前記金属薄膜層および前記高屈折率セラミック構成層から構成される熱線遮断構成層について説明する。 Next, the heat ray blocking constituent layer composed of the high refractive index ceramic constituent layer, the metal thin film layer, and the high refractive index ceramic constituent layer will be described.
 本発明の熱線遮断構成層について、高屈折率セラミック構成層は、少なくともZn、Ti、Sn、In、Nb、SiまたはAlを含む酸化物、Zn、Ti、Sn、In、Nb、SiまたはAlを含む窒化酸化物、Zn、Ti、Sn、In、Nb、SiまたはAlを含む窒化物を主成分とする少なくとも1層からなり、例えば、アルキルチタネート等の加水分解により得られる、有機化合物由来のTiOが加工性に優れるため好ましい。加えて、酸化亜鉛、酸化インジウムや酸化錫も単一層または多層にて適用できる。また、かかる高屈折率セラミック構成層は、前述の金属層をサンドイッチ状に挟む積層構造をとることにより、透明性の改良効果を増すことができ好ましい。かかる高屈折率セラミック構成層の厚みは、熱線遮断構成層の光学特性を満足するように、前述の金属層と併せて設定することが好ましい。 As for the heat ray blocking component layer of the present invention, the high refractive index ceramic component layer is made of an oxide containing at least Zn, Ti, Sn, In, Nb, Si or Al, Zn, Ti, Sn, In, Nb, Si or Al. TiO derived from an organic compound comprising at least one layer mainly composed of a nitride containing nitride oxide, Zn, Ti, Sn, In, Nb, Si or Al, and obtained by hydrolysis of, for example, alkyl titanate 2 is preferable because of excellent workability. In addition, zinc oxide, indium oxide, and tin oxide can be applied in a single layer or multiple layers. Such a high refractive index ceramic constituent layer is preferable because it can increase the effect of improving transparency by adopting a laminated structure in which the aforementioned metal layer is sandwiched. The thickness of the high refractive index ceramic constituent layer is preferably set in combination with the above metal layer so as to satisfy the optical characteristics of the heat ray blocking constituent layer.
 本発明に係る高屈折率セラミック構成層の屈折率は、1.8~2.5であることが好ましい。更に好ましくは2.0~2.5である。本発明において、高屈折率セラミック構成層の屈折率は低屈折率セラミック構成層の屈折率より大きい。このように、低屈折率セラミック構成層が存在することにより可視光反射率を低減することができる。 The refractive index of the high refractive index ceramic constituting layer according to the present invention is preferably 1.8 to 2.5. More preferably, it is 2.0 to 2.5. In the present invention, the refractive index of the high refractive index ceramic constituent layer is larger than the refractive index of the low refractive index ceramic constituent layer. Thus, the presence of the low refractive index ceramic constituent layer can reduce the visible light reflectance.
 かかる高屈折率セラミック構成層の形成方法としては、気相成長法が好ましく、更に真空蒸着法、スパッタ法、イオンプレーティング法、Cat-CVD法、またはプラズマCVD法が特に好ましい。また、後述する大気圧プラズマCVD法を用いて形成してもよい。 As a method for forming such a high refractive index ceramic constituent layer, a vapor phase growth method is preferable, and a vacuum deposition method, a sputtering method, an ion plating method, a Cat-CVD method, or a plasma CVD method is particularly preferable. Moreover, you may form using the atmospheric pressure plasma CVD method mentioned later.
 前記熱線遮断構成層のうち、金属層を構成する金属としては、金、銀、銅、アルミニウム等の金属が好ましく挙げられる。これらの中、可視光線の吸収がほとんど無いAg金属が特に好ましい。また、前記金属は必要に応じて2種以上を用いた合金として用いてもよい。かかる金属層の厚みは、本発明の遮熱樹脂基材の第1の透明基材において、積層フィルムの波長400~750nmにおける積分可視光透過率(この波長領域での可視光線透過率の平均値)が55%以上、および波長5~30μmの積分赤外線反射率(この波長領域での赤外線反射率の平均値)が75%以上を満足するように定めるのが好ましい。更に具体的には、金属層の1層での厚みは5~1000nmの範囲内にあることが好ましい。この厚みが5nm未満であると十分な熱線反射効果が発揮されず、赤外線透過率が高くなり、他方1000nmを超えると可視光反射率が増加し、防眩性が悪くなるので好ましくない。 Among the heat ray blocking constituent layers, the metal constituting the metal layer is preferably a metal such as gold, silver, copper, or aluminum. Among these, Ag metal that hardly absorbs visible light is particularly preferable. Moreover, you may use the said metal as an alloy which used 2 or more types as needed. The thickness of the metal layer in the first transparent substrate of the heat-shielding resin substrate of the present invention is the integrated visible light transmittance (average value of visible light transmittance in this wavelength region) of the laminated film at a wavelength of 400 to 750 nm. ) Is 55% or more, and the integrated infrared reflectance (average value of infrared reflectance in this wavelength region) of 5 to 30 μm is preferably 75% or more. More specifically, the thickness of one metal layer is preferably in the range of 5 to 1000 nm. If the thickness is less than 5 nm, sufficient heat ray reflection effect is not exhibited and the infrared transmittance is increased. On the other hand, if it exceeds 1000 nm, the visible light reflectance is increased and the antiglare property is deteriorated.
 より好ましい範囲は5~30nmである。金属層を30nm以下とすることで可視光透過率を十分確保することができ、灰色金属層と合わせて設けることで防眩性と可視透過性を併せ持った熱線遮断層を形成することができる。 A more preferable range is 5 to 30 nm. Visible light transmittance can be sufficiently ensured by setting the metal layer to 30 nm or less, and a heat ray blocking layer having both antiglare property and visible transmittance can be formed by providing it together with the gray metal layer.
 かかる金属層の形成方法としては気相成長法が好ましく、更に真空蒸着法、スパッタ法またはプラズマCVD法が好ましい。 As a method for forming such a metal layer, a vapor phase growth method is preferable, and a vacuum deposition method, a sputtering method, or a plasma CVD method is more preferable.
 本発明における熱線遮断構成層は、高耐久性を得るために高屈折率層に加えて低屈折率層を有することが好ましい。 In order to obtain high durability, the heat ray blocking constituent layer in the present invention preferably has a low refractive index layer in addition to a high refractive index layer.
 低屈折率セラミック構成層の屈折率を1.8未満にすることで、可視光透過率および赤外線反射率に殆ど影響を及ぼさずに耐久性やハンドリング性を向上させるために、低屈折率層の層設計を比較的自由に行うことができる。また、屈折率が1.3以上になると膜が緻密になり、耐久性の向上が望める。 By reducing the refractive index of the low refractive index ceramic constituting layer to less than 1.8, in order to improve durability and handling properties without substantially affecting the visible light transmittance and infrared reflectance, Layer design can be done relatively freely. Further, when the refractive index is 1.3 or more, the film becomes dense, and improvement in durability can be expected.
 また、前記熱線遮断構成層を順次積層した遮熱樹脂基材の第1の透明基材においては、反射率として、400nmから700nmの波長領域で最大15%以下であることが好ましい。特に550nmにおける反射率が10%以下、更には5%以下であることが好ましく、これは各層の厚みを所定の関係に基づいて設定することで得ることができる。 Further, in the first transparent base material of the heat shielding resin base material in which the heat ray shielding constituent layers are sequentially laminated, it is preferable that the reflectance is 15% or less in the wavelength region of 400 nm to 700 nm. In particular, the reflectance at 550 nm is preferably 10% or less, and more preferably 5% or less, and this can be obtained by setting the thickness of each layer based on a predetermined relationship.
 また、前記熱線遮断構成層を順次積層した遮熱樹脂基材においては、可視光線反射防止層の耐擦傷性向上のために、基材フィルムの上にポリマー層を設け、その上に熱線遮断構成層を設けてもよい。ポリマー層は、光硬化性または熱硬化性の樹脂を主成分とすることが好ましい。 In addition, in the heat shielding resin base material in which the heat ray blocking constitution layers are sequentially laminated, a polymer layer is provided on the base film for improving the scratch resistance of the visible light reflection preventing layer, and the heat ray blocking constitution is provided thereon. A layer may be provided. The polymer layer preferably contains a photocurable or thermosetting resin as a main component.
 更には、透明基材の片面又は両面に、ポリマー層として紫外線吸収剤またはヒンダードアミン系光安定剤の少なくとも1種が添加されたアクリル樹脂の塗膜を設けてもよい。特に外貼りに用いたりする場合、耐候性を高めるため前記光安定剤を含有したポリマー層を用いることが好ましい。更に水酸基を有する紫外線吸収剤を使用し、イソシアネート化合物を添加するとイソシアネート化合物がポリエステルフィルムとの密着性を向上させると共に、紫外線吸収剤が水酸基導入アクリル樹脂とウレタン結合で結ばれ、紫外線吸収剤がブリードアウトしにくくなるため、更なる耐候性向上を図ることができる。 Furthermore, an acrylic resin coating film to which at least one of an ultraviolet absorber or a hindered amine light stabilizer is added as a polymer layer may be provided on one side or both sides of the transparent substrate. In particular, when used for external pasting, it is preferable to use a polymer layer containing the light stabilizer in order to improve weather resistance. Furthermore, when an ultraviolet absorber having a hydroxyl group is used and an isocyanate compound is added, the isocyanate compound improves the adhesion to the polyester film, and the ultraviolet absorber is connected to the hydroxyl group-introduced acrylic resin by a urethane bond, and the ultraviolet absorber is bleeded. Since it becomes difficult to go out, the weather resistance can be further improved.
 アクリル樹脂は、メタクリル酸、メタクリル酸エステルまたはアクリル酸、アクリル酸エステルなどのモノマーなどから、複数のモノマーが共重合されることが多い。詳しくは、メチルメタクリレート、ブチルメタクリレート、メチルアクリレート、ブチルアクリレートやこれらの変性物である。モノマーの段階で水酸基が導入された、ヒドロキシエチルメタクリレート、ヒドロキシブチルメタクリレートなどを、上記モノマーと共に適宜重合時に添加していくことで、アクリル樹脂骨格の側鎖に水酸基が導入された水酸基導入アクリル樹脂を得ることができる。詳しくは、4-ヒドロキシブチルアクリレート(HBA)、2-ヒドロキシエチルアクリレート(HEA)、2-ヒドロキシプロピルアクリレート(HPA)、2-ヒドロキシエチルメタクリレート(2-HEMA)などやこれらの変性物、重合物、誘導体などが挙げられる。 In the acrylic resin, a plurality of monomers are often copolymerized from monomers such as methacrylic acid, methacrylic acid ester or acrylic acid, acrylic acid ester. Specifically, they are methyl methacrylate, butyl methacrylate, methyl acrylate, butyl acrylate and modified products thereof. Hydroxyethyl methacrylate, hydroxybutyl methacrylate, etc., in which hydroxyl groups are introduced at the monomer stage, are added together with the above monomers at the time of polymerization, so that a hydroxyl group-introduced acrylic resin in which hydroxyl groups are introduced into the side chains of the acrylic resin skeleton is obtained. Obtainable. Specifically, 4-hydroxybutyl acrylate (HBA), 2-hydroxyethyl acrylate (HEA), 2-hydroxypropyl acrylate (HPA), 2-hydroxyethyl methacrylate (2-HEMA) and the like, modified products, polymers thereof, Derivatives and the like.
 上記樹脂には、耐候性の処方を行うため紫外線吸収剤(ベンゾトリアゾール系、トリアジン系、ベンゾフェノン系など)の耐候性処方剤を添加する。添加部数は所望の耐候性に応じて添加すればよいが、樹脂固形分に対して0.1~50質量%、好ましくは1~30質量%である。紫外線吸収剤の中でも、ベンゾトリアゾール系としては、2-(2-ヒドロキシ-5-t-ブチルフェニル)-2H-ベンゾトリアゾール、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(3-t-ブチル-5-メチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-5′-オクチルフェニル)ベンゾトリアゾールなどやこれらの混合物、変性物、重合物、誘導体が挙げられる。また、トリアジン系としては、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(ヘキシル)オキシ]-フェノール、2-〔4-[(2-ヒドロキシ-3-ドデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル〕-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-〔4-[(2-ヒドロキシ-3-トリデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル〕-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2,4-ビス(2,4-ジメチルフェニル)-6-(2-ヒドロキシ-4-イソ-オクチルオキシフェニル)-s-トリアジンなどやこれらの混合物、変性物、重合物、誘導体が挙げられる。更にベンゾフェノン系としては、オクタベンゾンや変性物、重合物、誘導体が挙げられる。紫外線吸収剤は、イソシアネート化合物の添加による架橋によって樹脂成分との結合が望めるため、水酸基を有したものが適している。 To the above resin, a weather-resistant prescription agent such as an ultraviolet absorber (benzotriazole-based, triazine-based, benzophenone-based, etc.) is added in order to perform a weather-resistant formulation. The added part may be added according to the desired weather resistance, but is 0.1 to 50% by mass, preferably 1 to 30% by mass, based on the resin solid content. Among ultraviolet absorbers, 2- (2-hydroxy-5-tert-butylphenyl) -2H-benzotriazole, 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [ 2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2H-benzotriazole, 2- (3,5-di-t-butyl-2-hydroxyphenyl) benzotriazole, 2- (3 -T-butyl-5-methyl-2-hydroxyphenyl) -5-chlorobenzotriazole, 2- (3,5-di-t-butyl-2-hydroxyphenyl) -5-chlorobenzotriazole, 2- (3 , 5-Di-t-amyl-2-hydroxyphenyl) benzotriazole, 2- (2'-hydroxy-5'-octylphenyl) benzoto Examples thereof include riazole and the like, mixtures thereof, modified products, polymers, and derivatives. Examples of triazines include 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-[(hexyl) oxy] -phenol, 2- [4-[(2-hydroxy -3-dodecyloxypropyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine, 2- [4-[(2-hydroxy-3 -Tridecyloxypropyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine, 2,4-bis (2,4-dimethylphenyl) Examples include -6- (2-hydroxy-4-iso-octyloxyphenyl) -s-triazine, mixtures thereof, modified products, polymers, and derivatives. Further, examples of the benzophenone series include octabenzone, modified products, polymers, and derivatives. Since the ultraviolet absorber can be bonded to the resin component by crosslinking by addition of an isocyanate compound, one having a hydroxyl group is suitable.
 大気圧プラズマ法および大気圧プラズマ法による、少なくともSiまたはAlを含む酸化物、SiまたはAlを含む窒酸化物、SiまたはAlを含む窒化物を主成分とする低屈折率セラミック構成層の形成について説明する。 Formation of Low Refractive Index Ceramic Constituent Layer Containing Mainly Oxide Containing at least Si or Al, Nitrogen Oxide Containing Si or Al, Nitride Containing Si or Al by Atmospheric Pressure Plasma Method and Atmospheric Pressure Plasma Method explain.
 これらの酸化珪素膜は略同一組成物といっても、気相成長法を用いて薄膜を形成する場合、例えば、大気圧プラズマCVD法の場合において、製造条件、また用いる薄膜形成ガス(原料ガス、添加ガス等の種類、比率等)によって、酸化珪素粒子の充填の程度、また混入する微量の不純物粒子等に差が生じることで、物性、例えば、密度等が異なってくる。 Although these silicon oxide films have substantially the same composition, when a thin film is formed by vapor deposition, for example, in the case of atmospheric pressure plasma CVD, the manufacturing conditions and the thin film forming gas used (raw material gas) Depending on the type, ratio, etc. of the additive gas, the physical properties such as the density differ due to the difference in the degree of filling of the silicon oxide particles and the small amount of impurity particles mixed therein.
 本発明に係る低屈折率セラミック構成層の屈折率は1.3以上、1.8未満が好ましく、具体的には、例えば、酸化珪素膜の屈折率はX線反射率法により求めた値を用いる。 The refractive index of the low refractive index ceramic constituent layer according to the present invention is preferably 1.3 or more and less than 1.8. Specifically, for example, the refractive index of the silicon oxide film is a value obtained by the X-ray reflectance method. Use.
 〈X線反射率法〉
 X線反射率法の概要は、X線回折ハンドブック 151ページ(理学電機株式会社編 2000年 国際文献印刷社)や化学工業1999年1月No.22を参照して行うことができる。
<X-ray reflectivity method>
The outline of the X-ray reflectivity method is described in page 151 of the X-ray diffraction handbook (Science Electric Co., Ltd., 2000, International Literature Printing Co., Ltd.) 22 can be performed.
 本発明に有用な測定方法の具体例を以下に示す。 Specific examples of measurement methods useful in the present invention are shown below.
 これは、表面が平坦な物質に非常に浅い角度でX線を入射させ測定をおこなう方法で、測定装置としてはマックサイエンス社製MXP21を用いて行う。X線源のターゲットには銅を用い、42kV、500mAで作動させる。インシデントモノクロメータには多層膜パラボラミラーを用いる。入射スリットは0.05mm×5mm、受光スリットは0.03mm×20mmを用いる。2θ/θスキャン方式で0から5°をステップ幅0.005°、1ステップ10秒のFT法にて測定をおこなう。得られた反射率曲線に対し、マックサイエンス社製Reflectivity Analysis Program Ver.1を用いてカーブフィッティングを行い、実測値とフィッティングカーブの残差平方和が最小になるように各パラメータを求める。各パラメータから積層膜の屈折率、厚さおよび密度を求めることができる。本発明における積層膜の膜厚評価も、上記X線反射率測定より求めることができる。 This is a method in which X-rays are incident on a material with a flat surface at a very shallow angle, and measurement is performed using MXP21 manufactured by Mac Science. Copper is used as the target of the X-ray source and it is operated at 42 kV and 500 mA. A multilayer parabolic mirror is used for the incident monochromator. The incident slit is 0.05 mm × 5 mm, and the light receiving slit is 0.03 mm × 20 mm. Measurement is performed by the FT method with a step width of 0.005 ° and a step of 10 seconds from 0 to 5 ° in the 2θ / θ scan method. With respect to the obtained reflectance curve, Reflectivity Analysis Program Ver. Curve fitting is performed using 1, and each parameter is obtained so that the residual sum of squares of the actual measurement value and the fitting curve is minimized. The refractive index, thickness and density of the laminated film can be obtained from each parameter. The film thickness evaluation of the laminated film in the present invention can also be obtained from the X-ray reflectivity measurement.
 酸化珪素膜の密度は、微量成分である炭素含有量と密接に相関があり、例えば、炭素原子濃度が低い(0.1at%未満)膜は密度が高くガスバリア性が高い膜であるが、炭素原子濃度がこれよりも高い(1~40at%)膜は、膜密度もより低くより柔らかい組成物である。 The density of the silicon oxide film is closely correlated with the carbon content as a trace component. For example, a film having a low carbon atom concentration (less than 0.1 at%) is a film having a high density and a high gas barrier property. Films with higher atomic concentrations (1-40 at%) are softer compositions with lower film density.
 本発明においてセラミック層の炭素含有量(at%)は、原子数濃度%(atomic concentration)を表す。 In the present invention, the carbon content (at%) of the ceramic layer represents an atomic concentration (%).
 炭素含有量を示す原子数濃度%(at%)は公知の分析手段を用いて求めることができるが、本発明においては下記のXPS法によって算出されるもので、以下に定義される。 The atomic concentration% (at%) indicating the carbon content can be determined using a known analysis means, but in the present invention, it is calculated by the following XPS method and is defined below.
 原子数濃度%(atomic concentration)=炭素原子の個数/全原子の個数×100
 XPS表面分析装置は、本発明ではVGサイエンティフィックス社製ESCALAB-200Rを用いた。具体的には、X線アノードにはMgを用い、出力600W(加速電圧15kV、エミッション電流40mA)で測定した。エネルギー分解能は、清浄なAg3d5/2ピークの半値幅で規定したとき、1.5eV~1.7eVとなるように設定した。
Atomic concentration% = number of carbon atoms / number of all atoms × 100
As the XPS surface analysis apparatus, ESCALAB-200R manufactured by VG Scientific, Inc. was used in the present invention. Specifically, Mg was used for the X-ray anode, and measurement was performed at an output of 600 W (acceleration voltage: 15 kV, emission current: 40 mA). The energy resolution was set to be 1.5 eV to 1.7 eV when defined by the half width of a clean Ag3d5 / 2 peak.
 測定としては、先ず結合エネルギー0eV~1100eVの範囲をデータ取り込み間隔1.0eVで測定し、いかなる元素が検出されるかを求めた。 As a measurement, first, a range of binding energy of 0 eV to 1100 eV was measured at a data acquisition interval of 1.0 eV to determine what elements were detected.
 次に、検出されたエッチングイオン種を除く全ての元素について、データの取り込み間隔を0.2eVとして、その最大強度を与える光電子ピークについてナロースキャンを行い、各元素のスペクトルを測定した。 Next, with respect to all the elements except the detected etching ion species, the data acquisition interval was set to 0.2 eV, and the photoelectron peak giving the maximum intensity was subjected to narrow scan, and the spectrum of each element was measured.
 得られたスペクトルは、測定装置、あるいはコンピュータの違いによる含有率算出結果の違いを生じせしめなくするために、VAMAS-SCA-JAPAN製のCOMMON DATA PROCESSING SYSTEM (Ver.2.3以降が好ましい)上に転送した後、同ソフトで処理を行い、各分析ターゲットの元素(炭素、酸素、ケイ素、チタン等)の含有率の値を原子数濃度(atomic concentration:at%)として求めた。 The obtained spectrum is on COMMON DATA PROCESSING SYSTEM (Ver. 2.3 or later is preferable) manufactured by VAMAS-SCA-JAPAN in order not to cause a difference in the content calculation result due to a difference in measuring apparatus or computer. Then, the processing was performed with the same software, and the content values of the elements (carbon, oxygen, silicon, titanium, etc.) of each analysis target were determined as atomic concentration (atomic concentration: at%).
 定量処理を行う前に、各元素についてCount Scaleのキャリブレーションをおこない、5ポイントのスムージング処理を行った。定量処理では、バックグラウンドを除去したピークエリア強度(cps×eV)を用いた。バックグラウンド処理には、Shirleyによる方法を用いた。また、Shirley法については、D.A.Shirley,Phys.Rev.,B5,4709(1972)を参考にすることができる。 Before performing the quantitative processing, calibration of Count Scale was performed for each element, and a 5-point smoothing processing was performed. In the quantitative process, the peak area intensity (cps × eV) from which the background was removed was used. For the background treatment, the method by Shirley was used. For the Shirley method, see D.C. A. Shirley, Phys. Rev. , B5, 4709 (1972).
 本発明に係る前記低屈折率セラミック構成層、例えば、第1、第2、あるいは第3の酸化珪素膜を製造する方法において、気相成長法のうち、特に大気圧プラズマCVD法による製造方法で用いられる原料化合物について説明する。 In the method for manufacturing the low refractive index ceramic constituent layer according to the present invention, for example, the first, second, or third silicon oxide film, among the vapor phase growth methods, in particular, the manufacturing method by the atmospheric pressure plasma CVD method. The raw material compound used will be described.
 本発明に係る酸化珪素膜は、大気圧プラズマCVD法において、原料である有機金属化合物、分解ガス、分解温度、投入電力などの条件を選ぶことで、SiまたはAlを含む酸化物、窒化酸化物、窒化物を主成分とする低屈折率セラミック構成層の組成を作り分けることができる。 The silicon oxide film according to the present invention is an oxide or nitride oxide containing Si or Al by selecting conditions such as an organometallic compound as a raw material, a decomposition gas, a decomposition temperature, and input power in an atmospheric pressure plasma CVD method. The composition of the low refractive index ceramic constituent layer mainly composed of nitride can be made differently.
 例えば、珪素化合物を原料化合物として用い、分解ガスに酸素を用いれば珪素酸化物が生成する。また、シラザン等を原料化合物として用いれば酸化窒化珪素が生成する。これはプラズマ空間内では非常に活性な荷電粒子・活性ラジカルが高密度で存在するため、プラズマ空間内では多段階の化学反応が非常に高速に促進され、プラズマ空間内に存在する元素は、熱力学的に安定な化合物へと非常な短時間で変換されるためである。 For example, if a silicon compound is used as a raw material compound and oxygen is used as a decomposition gas, silicon oxide is generated. Further, if silazane or the like is used as a raw material compound, silicon oxynitride is generated. This is because highly active charged particles and active radicals exist in the plasma space at a high density, so that multi-step chemical reactions are accelerated very rapidly in the plasma space. This is because it is converted into a mechanically stable compound in a very short time.
 このような酸化珪素膜の形成原料としては、珪素化合物であれば常温常圧下で気体、液体、固体いずれの状態であっても構わない。気体の場合にはそのまま放電空間に導入できるが、液体、固体の場合は、加熱、バブリング、減圧、超音波照射等の手段により気化させて使用する。また、溶媒によって希釈して使用してもよく、溶媒は、メタノール、エタノール、n-ヘキサンなどの有機溶媒およびこれらの混合溶媒が使用できる。なお、これらの希釈溶媒は、プラズマ放電処理中において分子状、原子状に分解されるため、影響は殆ど無視することができる。 The raw material for forming such a silicon oxide film may be in the state of gas, liquid, or solid at normal temperature and pressure as long as it is a silicon compound. In the case of gas, it can be introduced into the discharge space as it is, but in the case of liquid or solid, it is used after being vaporized by means such as heating, bubbling, decompression or ultrasonic irradiation. The solvent may be diluted with a solvent, and an organic solvent such as methanol, ethanol, n-hexane or a mixed solvent thereof may be used as the solvent. In addition, since these dilution solvents are decomposed | disassembled into molecular form and atomic form during a plasma discharge process, the influence can be disregarded almost.
 このような珪素化合物としては、シラン、テトラメトキシシラン、テトラエトキシシラン、テトラn-プロポキシシラン、テトライソプロポキシシラン、テトラn-ブトキシシラン、テトラt-ブトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、フェニルトリエトキシシラン、(3,3,3-トリフルオロプロピル)トリメトキシシラン、ヘキサメチルジシロキサン、ビス(ジメチルアミノ)ジメチルシラン、ビス(ジメチルアミノ)メチルビニルシラン、ビス(エチルアミノ)ジメチルシラン、N,O-ビス(トリメチルシリル)アセトアミド、ビス(トリメチルシリル)カルボジイミド、ジエチルアミノトリメチルシラン、ジメチルアミノジメチルシラン、ヘキサメチルジシラザン、ヘキサメチルシクロトリシラザン、ヘプタメチルジシラザン、ノナメチルトリシラザン、オクタメチルシクロテトラシラザン、テトラキスジメチルアミノシラン、テトライソシアナートシラン、テトラメチルジシラザン、トリス(ジメチルアミノ)シラン、トリエトキシフルオロシラン、アリルジメチルシラン、アリルトリメチルシラン、ベンジルトリメチルシラン、ビス(トリメチルシリル)アセチレン、1,4-ビストリメチルシリル-1,3-ブタジイン、ジ-t-ブチルシラン、1,3-ジシラブタン、ビス(トリメチルシリル)メタン、シクロペンタジエニルトリメチルシラン、フェニルジメチルシラン、フェニルトリメチルシラン、プロパルギルトリメチルシラン、テトラメチルシラン、トリメチルシリルアセチレン、1-(トリメチルシリル)-1-プロピン、トリス(トリメチルシリル)メタン、トリス(トリメチルシリル)シラン、ビニルトリメチルシラン、ヘキサメチルジシラン、オクタメチルシクロテトラシロキサン、テトラメチルシクロテトラシロキサン、ヘキサメチルシクロテトラシロキサン、Mシリケート51等が挙げられる。 Examples of such silicon compounds include silane, tetramethoxysilane, tetraethoxysilane, tetra n-propoxysilane, tetraisopropoxysilane, tetra n-butoxysilane, tetrat-butoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, Diethyldimethoxysilane, diphenyldimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, phenyltriethoxysilane, (3,3,3-trifluoropropyl) trimethoxysilane, hexamethyldisiloxane, bis (dimethylamino) dimethylsilane Bis (dimethylamino) methylvinylsilane, bis (ethylamino) dimethylsilane, N, O-bis (trimethylsilyl) acetamide, bis (trimethylsilyl) carbodiimide, die Ruaminotrimethylsilane, dimethylaminodimethylsilane, hexamethyldisilazane, hexamethylcyclotrisilazane, heptamethyldisilazane, nonamethyltrisilazane, octamethylcyclotetrasilazane, tetrakisdimethylaminosilane, tetraisocyanatosilane, tetramethyldisilazane , Tris (dimethylamino) silane, triethoxyfluorosilane, allyldimethylsilane, allyltrimethylsilane, benzyltrimethylsilane, bis (trimethylsilyl) acetylene, 1,4-bistrimethylsilyl-1,3-butadiyne, di-t-butylsilane, 1,3-disilabutane, bis (trimethylsilyl) methane, cyclopentadienyltrimethylsilane, phenyldimethylsilane, phenyltrimethylsilane, pro Rugyltrimethylsilane, tetramethylsilane, trimethylsilylacetylene, 1- (trimethylsilyl) -1-propyne, tris (trimethylsilyl) methane, tris (trimethylsilyl) silane, vinyltrimethylsilane, hexamethyldisilane, octamethylcyclotetrasiloxane, tetramethyl Examples thereof include cyclotetrasiloxane, hexamethylcyclotetrasiloxane, M silicate 51, and the like.
 アルミニウム化合物としては、アルミニウムエトキシド、アルミニウムトリイソプロポキシド、アルミニウムイソプロポキシド、アルミニウムn-ブトキシド、アルミニウムs-ブトキシド、アルミニウムt-ブトキシド、アルミニウムアセチルアセトナート、トリエチルジアルミニウムトリ-s-ブトキシド等が挙げられる。 Examples of the aluminum compound include aluminum ethoxide, aluminum triisopropoxide, aluminum isopropoxide, aluminum n-butoxide, aluminum s-butoxide, aluminum t-butoxide, aluminum acetylacetonate, triethyldialuminum tri-s-butoxide, and the like. Can be mentioned.
 また、これら珪素またアルミニウムを含む原料ガスを分解して酸化珪素、または酸化アルミニウム膜を得るための分解ガスとしては、水素ガス、メタンガス、アセチレンガス、一酸化炭素ガス、二酸化炭素ガス、窒素ガス、アンモニアガス、亜酸化窒素ガス、酸化窒素ガス、二酸化窒素ガス、酸素ガス、水蒸気、フッ素ガス、フッ化水素、トリフルオロアルコール、トリフルオロトルエン、硫化水素、二酸化硫黄、二硫化炭素、塩素ガスなどが挙げられる。 In addition, as a decomposition gas for decomposing the source gas containing silicon or aluminum to obtain silicon oxide or an aluminum oxide film, hydrogen gas, methane gas, acetylene gas, carbon monoxide gas, carbon dioxide gas, nitrogen gas, Ammonia gas, nitrous oxide gas, nitrogen oxide gas, nitrogen dioxide gas, oxygen gas, water vapor, fluorine gas, hydrogen fluoride, trifluoroalcohol, trifluorotoluene, hydrogen sulfide, sulfur dioxide, carbon disulfide, chlorine gas, etc. Can be mentioned.
 例えば、珪素を含む原料ガスと分解ガスを適宜選択することで、酸化珪素、また窒化物、炭化物等を含有する酸化珪素膜を得ることができる。 For example, a silicon oxide film containing silicon oxide, nitride, carbide, or the like can be obtained by appropriately selecting a source gas containing silicon and a decomposition gas.
 プラズマCVD法においては、これらの反応性ガスに対して主にプラズマ状態になりやすい放電ガスを混合し、プラズマ放電発生装置にガスを送りこむ。このような放電ガスとしては、窒素ガスおよび/または周期表の第18属原子、具体的には、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が用いられる。これらの中でも、特に窒素、ヘリウム、アルゴンが好ましく用いられる。 In the plasma CVD method, a discharge gas that tends to be in a plasma state is mainly mixed with these reactive gases, and the gas is sent to a plasma discharge generator. As such a discharge gas, nitrogen gas and / or 18th group atom of the periodic table, specifically, helium, neon, argon, krypton, xenon, radon, etc. are used. Among these, nitrogen, helium, and argon are particularly preferably used.
 上記放電ガスと反応性ガスを混合し、薄膜形成(混合)ガスとしてプラズマ放電発生装置(プラズマ発生装置)に供給することで膜形成を行う。放電ガスと反応性ガスの割合は得ようとする膜の性質によって異なるが、混合ガス全体に対し放電ガスの割合を50%以上として反応性ガスを供給する。 The film is formed by mixing the discharge gas and the reactive gas and supplying them to a plasma discharge generator (plasma generator) as a thin film forming (mixed) gas. Although the ratio of the discharge gas and the reactive gas varies depending on the properties of the film to be obtained, the reactive gas is supplied with the ratio of the discharge gas to 50% or more of the entire mixed gas.
 本発明に係る低屈折率セラミック構成層を構成する積層された酸化珪素膜においては、例えば、上記有機珪素化合物に、更に酸素ガスや窒素ガスを所定割合で組み合わせて、O原子とN原子の少なくともいずれかと、Si原子とを含む本発明に係る酸化珪素を主体とした酸化珪素膜を得ることができる。 In the laminated silicon oxide film constituting the low refractive index ceramic constituent layer according to the present invention, for example, the organic silicon compound is further combined with oxygen gas or nitrogen gas at a predetermined ratio, and at least O atoms and N atoms are combined. A silicon oxide film mainly containing silicon oxide according to the present invention containing any of them and Si atoms can be obtained.
 本発明に係る前記低屈折率セラミック構成層は、前記第1、第2等の酸化珪素膜からなる1組のユニットを、1組以上透明樹脂基材上に形成したものが好ましく、2組、またこれ以上のユニットが形成されていてもよい。例としては、透明基材上に、第1の酸化珪素膜、第2の酸化珪素膜といった1組のユニットのみを有する形態があり、また、例えば、透明基材上に、第1の、第2の酸化珪素膜、からなる前記ユニットを2、あるいは3つ有する構成でもよい。 The low refractive index ceramic constituting layer according to the present invention is preferably formed by forming one set of units made of the first, second, etc. silicon oxide films on one or more transparent resin base materials, and two sets, Further, more units may be formed. As an example, there is a form having only one set of units such as a first silicon oxide film and a second silicon oxide film on a transparent substrate, and, for example, the first, first, A configuration having two or three units of two silicon oxide films may be used.
 前記ユニットとは、前記酸化珪素膜が、炭素原子濃度が低い(0.1at%未満)酸化珪素膜1層と、炭素原子濃度がこれよりも高い(1~40at%)酸化珪素膜とが少なくとも1層から構成される層のことを指す。 The unit includes at least one silicon oxide film having a low carbon atom concentration (less than 0.1 at%) and a silicon oxide film having a higher carbon atom concentration (1 to 40 at%) than the silicon oxide film. It refers to a layer composed of one layer.
 低屈折率セラミック構成層における各酸化珪素層の膜厚は、1~500nmの範囲とすればよい。低屈折率セラミック構成層全体としては10nm~5μmの範囲が好ましい。 The film thickness of each silicon oxide layer in the low refractive index ceramic constituent layer may be in the range of 1 to 500 nm. The entire low refractive index ceramic constituting layer is preferably in the range of 10 nm to 5 μm.
 更に第1の透明基材においては熱線遮断構成層、低屈折率セラミック構成層を別々の面に、第2の透明基材においては両面に灰色金属層を設ける場合、一方の層を設けた後、もう一方の層を設ける際に、それぞれの透明基材において既に設けた層の傷や異物付着防止のため、離型性の透明基材を設けてもよい。離型性の透明基材は以下に説明するものを使用できる。 Furthermore, in the case where the first transparent base material is provided with the heat ray blocking constituent layer and the low refractive index ceramic constituent layer on separate surfaces, and the second transparent base material is provided with the gray metal layer on both sides, after one layer is provided When the other layer is provided, a releasable transparent substrate may be provided in order to prevent scratches and foreign matter adhesion on the layer already provided in each transparent substrate. As the releasable transparent substrate, those described below can be used.
 《離型性を有する樹脂材料》
 本発明のガスバリア性の遮熱樹脂基材の製造方法においては、透明基材の一方の面側(A面)に、プラズマ処理法で低屈折率セラミック構成層を形成した後、裏面側(B面)に低屈折率セラミック構成層を設ける前に、既に形成したA面側の低屈折率セラミック構成層上に離型性を有する樹脂材料をラミネートすることを特徴とする。
<< Resin material with releasability >>
In the method for producing a gas barrier heat shielding resin substrate of the present invention, a low refractive index ceramic constituent layer is formed by plasma treatment on one surface side (A surface) of a transparent substrate, and then the back surface side (B Before providing the low refractive index ceramic constituent layer on the surface), a resin material having releasability is laminated on the already formed low refractive index ceramic constituent layer on the A side.
 本発明に係る離型性を有する樹脂材料は特に制限はないが、少なくともフィルムと、該フィルムの片面に形成された粘着剤を含む粘着層からなり、該粘着剤がアクリル系粘着剤、シリコン系粘着剤およびゴム系粘着剤から選ばれる少なくとも1種であり、該粘着剤の粘着力が1mN/cm以上、2N/cm以下であることが好ましく、更には1mN/cm以上、200mN/cm以下であることが好ましい。 The resin material having releasability according to the present invention is not particularly limited, but includes at least a film and an adhesive layer containing an adhesive formed on one side of the film, and the adhesive is an acrylic adhesive, a silicon-based adhesive It is at least one selected from a pressure-sensitive adhesive and a rubber-based pressure-sensitive adhesive, and the pressure-sensitive adhesive strength of the pressure-sensitive adhesive is preferably 1 mN / cm or more and 2 N / cm or less, more preferably 1 mN / cm or more and 200 mN / cm or less. Preferably there is.
 粘着剤の粘着力が1mN/cm以上であれば、樹脂材料と低屈折率セラミック構成層との十分な密着力を得ることができ、連続搬送中での剥離が発生しなくなると共に、搬送時のロール等の接触による既に形成した低屈折率セラミック構成層に対する影響を防止することができる。また、粘着力が2N/cm以下であれば、樹脂材料を剥離するときに低屈折率セラミック構成層に対し過度の力を掛けることなく、低屈折率セラミック構成層層の破壊や低屈折率セラミック構成層上への粘着剤の残留を起こさない。 If the adhesive strength of the pressure-sensitive adhesive is 1 mN / cm or more, sufficient adhesion between the resin material and the low refractive index ceramic constituent layer can be obtained, and peeling during continuous conveyance does not occur. The influence on the already formed low refractive index ceramic constituent layer due to contact with a roll or the like can be prevented. Further, if the adhesive force is 2 N / cm or less, the low refractive index ceramic constituent layer layer is destroyed or the low refractive index ceramic is not excessively applied to the low refractive index ceramic constituent layer when the resin material is peeled off. Does not cause the adhesive to remain on the constituent layers.
 本発明に係る粘着剤の粘着力は、JIS Z 0237に準拠した測定法に従って、試験板としてコーニング1737を用い、樹脂材料を試験板に圧着して20分後に測定して求めることができる。 The adhesive strength of the pressure-sensitive adhesive according to the present invention can be determined by measuring 20 minutes after the resin material is pressure-bonded to the test plate using Corning 1737 as a test plate according to a measurement method based on JIS Z 0237.
 また、粘着剤の厚さとしては、0.1μm以上、30μm以下であることが好ましい。粘着剤の厚さが0.1μm以上であれば、樹脂材料と透明基材との十分な密着力を得ることができ、連続搬送中での剥離が発生しなくなると共に、搬送時のロール等の接触による既に形成した低屈折率セラミック構成層に対する影響を防止することができる。また、粘着剤の厚さが30μm以下であれば、樹脂材料を剥離するときに低屈折率セラミック構成層に対し過度の力を掛けることなく、低屈折率セラミック構成層の破壊や上への粘着剤の残留を起こすことがない。 The thickness of the pressure-sensitive adhesive is preferably 0.1 μm or more and 30 μm or less. If the thickness of the pressure-sensitive adhesive is 0.1 μm or more, sufficient adhesion between the resin material and the transparent substrate can be obtained, peeling during continuous conveyance does not occur, and rolls during conveyance, etc. The influence of the contact on the already formed low refractive index ceramic constituent layer can be prevented. Moreover, if the thickness of the pressure-sensitive adhesive is 30 μm or less, the low refractive index ceramic constituent layer is destroyed or adhered to the top without applying excessive force to the low refractive index ceramic constituent layer when the resin material is peeled off. There will be no residual agent.
 また、粘着層を構成する粘着剤の重量平均分子量は、40万以上、140万以下であることが好ましい。重量平均分子量が40万以上であれば、過度の粘着力となることはなく、140万以下であれば十分な粘着力を得ることができる。本発明で規定する重量平均分子量の範囲であれば、低屈折率セラミック構成層上への粘着剤の残留を防止することができ、また特にプラズマ処理法で低屈折率セラミック構成層を形成する際には、熱やエネルギーがかかるため、適当な分子量範囲でないと粘着材料の転写や剥離が生じる恐れがある。 The weight average molecular weight of the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer is preferably 400,000 or more and 1.4 million or less. If the weight average molecular weight is 400,000 or more, the adhesive strength is not excessive, and if it is 1.4 million or less, sufficient adhesive strength can be obtained. When the weight average molecular weight is within the range specified in the present invention, it is possible to prevent the adhesive from remaining on the low refractive index ceramic constituent layer, and particularly when the low refractive index ceramic constituent layer is formed by the plasma treatment method. Since heat and energy are applied, the adhesive material may be transferred or peeled off if the molecular weight is not within an appropriate range.
 次いで、離型性を有する樹脂材料の各構成材料について説明する。 Next, each constituent material of the resin material having releasability will be described.
 本発明に係る離型性を有する樹脂材料は、主には、基材と、この基材の片面に形成された粘着層と、粘着層の表面、即ち基材とは反対側の表面に積層された透明基材等からなる剥離層とから構成されている。 The resin material having releasability according to the present invention mainly includes a base material, an adhesive layer formed on one side of the base material, and a surface of the adhesive layer, that is, a surface opposite to the base material. It is comprised from the peeling layer which consists of a transparent base material etc. which were made.
 (離型性樹脂材料に用いる基材)
 本発明に係る離型性樹脂材料に用いられる基材としては特に制限はないが、ポリエチレンフィルム、ポリプロピレンフィルム等のポリオレフィン系フィルム;ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステルフィルム;ヘキサメチレンアジパミド等のポリアミド系フィルム;ポリビニルクロライド、ポリビニリデンクロライド、ポリフルオロエチレン等の含ハロゲン系フィルム;ポリ酢酸ビニル、ポリビニルアルコール、エチレン酢酸ビニル共重合体等の酢酸ビニルおよびその誘導体フィルム等のプラスチックフィルムが、紙とは異なり微細塵を発生しないことから好ましい。なお、本発明においては、耐熱性および入手の容易性の観点からポリエチレンテレフタラートフィルムが好ましく用いられる。
(Base material used for releasable resin material)
Although there is no restriction | limiting in particular as a base material used for the release resin material which concerns on this invention; Polyolefin-type films, such as a polyethylene film and a polypropylene film; Polyester films, such as a polyethylene terephthalate and a polybutylene terephthalate; Hexamethylene adipamide, etc. Polyamide film of: halogen-containing film such as polyvinyl chloride, polyvinylidene chloride, polyfluoroethylene, etc .; plastic film such as polyvinyl acetate such as polyvinyl acetate, polyvinyl alcohol, ethylene vinyl acetate copolymer and its derivative film is paper Unlike this, fine dust is not generated, which is preferable. In the present invention, a polyethylene terephthalate film is preferably used from the viewpoint of heat resistance and availability.
 基材の厚さも特に制限はされないが、10~300μmのものが使用される。好ましくは25~150μmのものである。10μm以下であるとフィルムが薄いことから取り扱いが困難であり、300μm以上だと硬くなり、搬送性やロールへの密着性が悪くなる。 The thickness of the base material is not particularly limited, but 10 to 300 μm is used. It is preferably 25 to 150 μm. When the thickness is 10 μm or less, handling is difficult because the film is thin, and when the thickness is 300 μm or more, the film becomes hard and the transportability and the adhesion to the roll are deteriorated.
 (離型性樹脂材料に用いる粘着層)
 本発明においては、離型性樹脂材料に用いる粘着剤の種類として、特に制限はなく、例えば、ゴム系粘着剤、アクリル系粘着剤、ゴム系粘着剤、ウレタン系粘着剤、シリコーン系粘着剤、紫外線硬化型粘着剤などを挙げることができるが、アクリル系粘着剤、シリコン系粘着剤およびゴム系粘着剤から選ばれる少なくとも1種であることが好ましい。
(Adhesive layer used for releasable resin materials)
In the present invention, the type of pressure-sensitive adhesive used for the releasable resin material is not particularly limited. For example, a rubber-based pressure-sensitive adhesive, an acrylic pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, a urethane-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, Examples of the ultraviolet curable pressure-sensitive adhesive include at least one selected from an acrylic pressure-sensitive adhesive, a silicon pressure-sensitive adhesive, and a rubber-based pressure-sensitive adhesive.
 〈アクリル系粘着剤〉
 アクリル系粘着剤としては、例えば、(メタ)アクリル酸エステルの単独重合体または他の共重合性モノマーとの共重合体が用いられる。更に、これらの共重合体を構成するモノマーもしくは共重合性モノマーとしては、例えば、(メタ)アクリル酸のアルキルエステル(例えば、メチルエステル、エチルエステル、ブチルエステル、2-エチルヘキシルエステル、オクチルエステル、イソノニルエステル等)、(メタ)アクリル酸のヒドロキシアルキルエステル(例えば、ヒドロキシエチルエステル、ヒドロキシブチルエステル、ヒドロキシヘキシルエステル)、(メタ)アクリル酸グリシジルエステル、(メタ)アクリル酸、イタコン酸、無水マレイン酸、(メタ)アクリル酸アミド、(メタ)アクリル酸N-ヒドロキシメチルアミド、(メタ)アクリル酸アルキルアミノアルキルエステル(例えば、ジメチルアミノエチルメタクリレート、t-ブチルアミノエチルメタクリレート等)、酢酸ビニル、スチレン、アクリロニトリルなどが挙げられる。主要成分のモノマーとしては、通常、ホモポリマーのガラス転移点が-50℃以下のアクリル酸アルキルエステルが使用される。
<Acrylic adhesive>
As the acrylic pressure-sensitive adhesive, for example, a homopolymer of (meth) acrylic acid ester or a copolymer with another copolymerizable monomer is used. Further, examples of monomers or copolymerizable monomers constituting these copolymers include alkyl esters of (meth) acrylic acid (for example, methyl esters, ethyl esters, butyl esters, 2-ethylhexyl esters, octyl esters, isoforms). Nonyl esters, etc.), hydroxyalkyl esters of (meth) acrylic acid (eg, hydroxyethyl ester, hydroxybutyl ester, hydroxyhexyl ester), (meth) acrylic acid glycidyl ester, (meth) acrylic acid, itaconic acid, maleic anhydride (Meth) acrylic acid amide, (meth) acrylic acid N-hydroxymethylamide, (meth) acrylic acid alkylaminoalkyl ester (for example, dimethylaminoethyl methacrylate, t-butylaminoethyl methacrylate) Over DOO), vinyl acetate, styrene, and acrylonitrile. As the monomer of the main component, an alkyl acrylate having a homopolymer glass transition point of −50 ° C. or lower is usually used.
 アクリル系粘着剤の硬化剤としては、例えば、イソシアネート系、エポキシ系、アリジリン系硬化剤が利用できる。イソシアネート系硬化剤では、長期保存後も安定した粘着力を得ることと、より硬い粘着層とする目的でトルイレンジイソシアネート(TDI)等の芳香族系のタイプを好ましく用いることができる。更にこの粘着剤には、添加剤として、例えば、安定剤、紫外線吸収剤、難燃剤、帯電防止剤を含有させることもできる。 As the curing agent for the acrylic pressure-sensitive adhesive, for example, an isocyanate-based, epoxy-based, or alidiline-based curing agent can be used. As the isocyanate curing agent, an aromatic type such as toluylene diisocyanate (TDI) can be preferably used for the purpose of obtaining a stable adhesive force even after long-term storage and making it a harder adhesive layer. Furthermore, the pressure-sensitive adhesive may contain, for example, a stabilizer, an ultraviolet absorber, a flame retardant, and an antistatic agent as additives.
 また、再剥離性を付与させるため、あるいは粘着力を低く安定に維持するために、それらの成分が相手基材に移行しない程度にワックス等の有機樹脂、シリコーン、フッ素等の低表面エネルギーを有する成分を添加してもよい。例えば、ワックス等の有機樹脂では、高級脂肪酸エステルや低分子のフタル酸エステルを用いてもよい。 In addition, in order to impart removability or to keep the adhesive force low and stable, it has low surface energy such as organic resin such as wax, silicone, fluorine, etc. to such an extent that these components do not migrate to the counterpart substrate Ingredients may be added. For example, in an organic resin such as wax, a higher fatty acid ester or a low molecular weight phthalate ester may be used.
 〈ゴム系粘着剤〉
 ゴム系粘着剤としては、ポリイソブチレンゴム、ブチルゴムとこれらの混合物、或いはこれらゴム系粘着剤にアビエチン酸ロジンエステル、テルペン・フェノール共重合体、テルペン・インデン共重合体などの粘着付与剤を配合したものが用いられる。
<Rubber adhesive>
As rubber-based adhesives, polyisobutylene rubber, butyl rubber and mixtures thereof, or tackifiers such as abietic rosin ester, terpene / phenol copolymer, terpene / indene copolymer, etc. were blended with these rubber-based adhesives. Things are used.
 ゴム系粘着剤のベースポリマーとしては、例えば、天然ゴム、イソプレン系ゴム、スチレン-ブタジエン系ゴム、再生ゴム、ポリイソブチレン系ゴム、更にはスチレン-イソプレン-スチレン系ゴム、スチレン-ブタジエン-スチレン系ゴム等が挙げられる。 Examples of the base polymer of the rubber adhesive include natural rubber, isoprene rubber, styrene-butadiene rubber, recycled rubber, polyisobutylene rubber, styrene-isoprene-styrene rubber, and styrene-butadiene-styrene rubber. Etc.
 中でも、ブロックゴム系粘着剤は、一般式A-B-Aで表されるブロック共重合体や一般式A-Bで表されるブロック共重合体(但し、Aはスチレン系重合体ブロック、Bはブタジエン重合体ブロック、イソプレン重合体ブロック、またはそれらを水素添加して得られるオレフィン重合体ブロックであり、以下、スチレン系熱可塑性エラストマーという)を主体に粘着付与樹脂、軟化剤などが配合された組成物が挙げられる。 Among them, the block rubber-based pressure-sensitive adhesive is a block copolymer represented by the general formula ABA or a block copolymer represented by the general formula AB (where A is a styrene polymer block, B Is a butadiene polymer block, an isoprene polymer block, or an olefin polymer block obtained by hydrogenating them, hereinafter referred to as a styrene-based thermoplastic elastomer), and a tackifier resin, a softener and the like are blended. A composition.
 上記ブロックゴム系粘着剤において、スチレン系重合体ブロックAは平均分子量が4,000~120,000程度のものが好ましく、更に10,000~60,000程度のものがより好ましい。そのガラス転移温度は15℃以上のものが好ましい。また、ブタジエン重合体ブロック、イソプレン重合体ブロックまたはこれらを水素添加して得られるオレフィン重合体ブロックBは、平均分子量が30,000~400,000程度のものが好ましく、更に60,000~200,000程度のものがより好ましい。そのガラス転移温度は-15℃以下のものが好ましい。 In the block rubber adhesive, the styrene polymer block A preferably has an average molecular weight of about 4,000 to 120,000, and more preferably about 10,000 to 60,000. The glass transition temperature is preferably 15 ° C. or higher. Further, the butadiene polymer block, the isoprene polymer block, or the olefin polymer block B obtained by hydrogenation thereof, preferably has an average molecular weight of about 30,000 to 400,000, and more preferably 60,000 to 200,000. About 000 is more preferable. The glass transition temperature is preferably −15 ° C. or lower.
 上記A成分とB成分との好ましい質量比はA/B=5/95~50/50であり、更に好ましくはA/B=10/90~30/70である。A/Bの値が50/50を超えると、常温においてポリマーのゴム弾性が小さくなり、粘着性が発現しにくくなり、5/95未満ではスチレンドメインが疎になり、凝集力が不足し、所望の接着力が得られないばかりか、剥離時に接着層がちぎれてしまう等の不具合が見られる。 The preferable mass ratio of the A component and the B component is A / B = 5/95 to 50/50, and more preferably A / B = 10/90 to 30/70. When the value of A / B exceeds 50/50, the rubber elasticity of the polymer becomes small at room temperature, and the tackiness is hardly expressed, and when it is less than 5/95, the styrene domain becomes sparse and the cohesive force is insufficient. In addition, the adhesive force cannot be obtained, and the adhesive layer is broken at the time of peeling.
 更に上記粘着剤にポリオレフィン系樹脂を添加することにより、剥離紙もしくは剥離フィルムからの離型性を向上することができる。このポリオレフィン系樹脂としては、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン、エチレン-αオレフィン共重合体、プロピレン-αオレフィン共重合体、エチレン-エチルアクリレート共重合体、エチレン-酢酸ビニル共重合体、エチレン-メチルメタクリレート共重合体、エチレン-n-ブチルアクリレート共重合体及びこれらの混合物が挙げられる。 Furthermore, by adding a polyolefin resin to the above-mentioned pressure-sensitive adhesive, the releasability from the release paper or release film can be improved. Examples of the polyolefin resin include low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, ethylene-α olefin copolymer, propylene-α olefin copolymer, and ethylene-ethyl acrylate copolymer. , Ethylene-vinyl acetate copolymer, ethylene-methyl methacrylate copolymer, ethylene-n-butyl acrylate copolymer, and mixtures thereof.
 このポリオレフィン系樹脂は低分子量分が少ないことが好ましく、具体的には、n-ペンタンによる沸点乾留で抽出される低分子量分が1.0質量%未満であることが好ましい。低分子量分が1.0質量%を超えて存在すると、この低分子量分が温度変化や経時変化に応じて粘着特性に悪影響を及ぼし、粘着力を低下させるからである。 The polyolefin-based resin preferably has a low molecular weight, and specifically, the low molecular weight extracted by boiling boiling with n-pentane is preferably less than 1.0% by mass. This is because if the low molecular weight component exceeds 1.0% by mass, the low molecular weight component adversely affects the adhesive properties in accordance with temperature changes and changes with time, and decreases the adhesive force.
 また、上記粘着剤にはシリコーンオイルを添加することにより、ポリビニルアルコールを主成分とする塗膜が設けられた自背面との親和性を更に低下せしめることができる。このシリコーンオイルはポリアルコキシシロキサン鎖を主鎖にもつ高分子化合物で、粘着層の疎水性を高め、更に接着界面、即ち、粘着層表面にブリードするため、粘着剤の接着力を抑制し、接着昂進現象が起き難くする働きがある。 Further, by adding silicone oil to the above-mentioned pressure-sensitive adhesive, it is possible to further reduce the affinity with the self-back surface provided with a coating film mainly composed of polyvinyl alcohol. This silicone oil is a polymer compound with a polyalkoxysiloxane chain in the main chain, which increases the hydrophobicity of the adhesive layer and further bleeds to the adhesive interface, that is, the surface of the adhesive layer. There is a function that makes it difficult for a phenomenon to occur.
 上記ゴム系粘着剤に架橋剤を添加し、架橋することで粘着層とする。 A cross-linking agent is added to the above rubber-based pressure-sensitive adhesive and crosslinked to form an adhesive layer.
 架橋剤としては、例えば、天然ゴム系粘着剤の架橋にはイオウと加硫助剤および加硫促進剤(代表的なものとして、ジブチルチオカーバメイト亜鉛など)が使用される。天然ゴムおよびカルボン酸共重合ポリイソプレンを原料とした粘着剤を室温で架橋可能な架橋剤として、ポリイソシアネート類が使用される。ブチルゴムおよび天然ゴムなどの架橋剤に耐熱性と非汚染性の特色がある架橋剤として、ポリアルキルフェノール樹脂類が使用される。ブタジエンゴム、スチレンブタジエンゴムおよび天然ゴムを原料とした粘着剤の架橋に有機過酸化物、例えば、ベンゾイルパーオキサイド、ジクミルパーオキサイドなどがあり、非汚染性の粘着剤が得られる。架橋助剤として多官能メタクリルエステル類を使用する。その他、紫外線架橋、電子線架橋などの架橋による粘着剤の形成がある。 As the crosslinking agent, for example, sulfur, a vulcanization aid, and a vulcanization accelerator (typically, dibutylthiocarbamate zinc, etc.) are used for crosslinking the natural rubber-based pressure-sensitive adhesive. Polyisocyanates are used as a cross-linking agent capable of cross-linking an adhesive made from natural rubber and carboxylic acid copolymerized polyisoprene at room temperature. Polyalkylphenol resins are used as cross-linking agents that have heat-resistant and non-fouling characteristics in cross-linking agents such as butyl rubber and natural rubber. There are organic peroxides such as benzoyl peroxide and dicumyl peroxide in the crosslinking of pressure-sensitive adhesives made from butadiene rubber, styrene-butadiene rubber and natural rubber, and non-fouling pressure-sensitive adhesives can be obtained. Polyfunctional methacrylic esters are used as a crosslinking aid. In addition, there is formation of a pressure-sensitive adhesive by crosslinking such as ultraviolet crosslinking or electron beam crosslinking.
 〈シリコーン系粘着剤〉
 本発明に係る粘着層においては、シリコーン系粘着剤としては付加反応硬化型シリコーン粘着剤と縮重合硬化型シリコーン粘着剤があるが、本発明では付加反応硬化型が好ましく用いられる。
<Silicone adhesive>
In the pressure-sensitive adhesive layer according to the present invention, the silicone-based pressure-sensitive adhesive includes an addition reaction curable type silicone pressure sensitive adhesive and a condensation polymerization curable type silicone pressure sensitive adhesive. In the present invention, an addition reaction curable type is preferably used.
 付加反応硬化型シリコーン粘着剤組成物の組成としては、以下に挙げるものが好適に用いられる。 As the composition of the addition reaction curable silicone pressure-sensitive adhesive composition, those listed below are preferably used.
 (A)1分子中に2個以上のアルケニル基を有するポリジオルガノシロキサン
 (B)SiH基を含有するポリオルガノシロキサン
 (C)制御剤
 (D)白金触媒
 (E)導電性微粒子
 ここで、(A)成分は1分子中に2個以上のアルケニル基を有するポリジオルガノシロキサンであり、このようなアルケニル基含有ポリジオルガノシロキサンとしては、下記一般式(1)で示されるものが例示できる。
(A) Polydiorganosiloxane having two or more alkenyl groups in one molecule (B) Polyorganosiloxane containing SiH group (C) Control agent (D) Platinum catalyst (E) Conductive fine particles where (A ) Component is a polydiorganosiloxane having two or more alkenyl groups in one molecule, and examples of such alkenyl group-containing polydiorganosiloxane include those represented by the following general formula (1).
 一般式(1)
   R(3-a)SiO-(RXSiO)-(RSiO)-(RXSiO)-R(3-a)XaSiO
 一般式(1)において、Rは炭素数1~10の1価炭化水素基であり、Xはアルケニル基含有の有機基である。aは0~3の整数で1が好ましく、mは0以上であるが、a=0の場合、mは2以上であり、mおよびnはそれぞれ100≦m+n≦20,000を満足する数であり、pは2以上である。
General formula (1)
R (3-a) X a SiO— (RXSiO) m — (R 2 SiO) n — (RXSiO) p —R (3-a) XaSiO
In the general formula (1), R is a monovalent hydrocarbon group having 1 to 10 carbon atoms, and X is an alkenyl group-containing organic group. a is an integer of 0 to 3, preferably 1, and m is 0 or more, but when a = 0, m is 2 or more, and m and n are numbers satisfying 100 ≦ m + n ≦ 20,000, respectively. Yes, p is 2 or more.
 Rは炭素数1~10の1価炭化水素基であり、具体的には、メチル基、エチル基、プロピル基、ブチル基などのアルキル基、シクロヘキシル基などのシクロアルキル基、フェニル基、トリル基などのアリール基などが挙げられるが、特にメチル基、フェニル基が好ましい。 R is a monovalent hydrocarbon group having 1 to 10 carbon atoms, specifically, an alkyl group such as a methyl group, an ethyl group, a propyl group or a butyl group, a cycloalkyl group such as a cyclohexyl group, a phenyl group or a tolyl group. An aryl group such as, for example, is mentioned, and a methyl group and a phenyl group are particularly preferable.
 Xはアルケニル基含有の有機基で炭素数2~10のものが好ましく、具体的には、ビニル基、アリル基、ヘキセニル基、オクテニル基、アクリロイルプロピル基、アクリロイルメチル基、メタクリロイルプロピル基、シクロヘキセニルエチル基、ビニルオキシプロピル基等が挙げられるが、特にビニル基、ヘキセニル基などが好ましい。 X is an organic group containing 2 to 10 carbon atoms containing an alkenyl group, and specifically, vinyl group, allyl group, hexenyl group, octenyl group, acryloylpropyl group, acryloylmethyl group, methacryloylpropyl group, cyclohexenyl. Examples thereof include an ethyl group and a vinyloxypropyl group, and a vinyl group and a hexenyl group are particularly preferable.
 このポリジオルガノシロキサンの性状は、オイル状、生ゴム状であればよく、(A)成分の粘度は25℃において100mPa・s以上、特に1,000mPa・s以上が好ましい。なお、上限としては特に限定されないが、他成分との混合の容易さから、重合度が20,000以下となるように選定することが好ましい。また、(A)成分は1種を単独で用いてもよいし、2種以上を併用してもよい。 The properties of the polydiorganosiloxane may be oily or raw rubbery, and the viscosity of the component (A) is preferably 100 mPa · s or more, particularly 1,000 mPa · s or more at 25 ° C. In addition, although it does not specifically limit as an upper limit, It is preferable to select so that a polymerization degree may be 20,000 or less from the ease of mixing with another component. Moreover, (A) component may be used individually by 1 type, and may use 2 or more types together.
 (B)成分であるSiH基を含有するポリオルガノシロキサンは架橋剤であり、1分子中にケイ素原子に結合した水素原子を少なくとも2個、好ましくは3個以上有するオルガノヒドロポリシロキサンで、直鎖状、分岐状、環状のものなどを使用することができる。 The polyorganosiloxane containing SiH groups as the component (B) is a crosslinking agent, and is an organohydropolysiloxane having at least 2, preferably 3 or more hydrogen atoms bonded to silicon atoms in one molecule. , Branched, annular, etc. can be used.
 (B)成分としては、下記一般式(2)で表される化合物を挙げることができるが、これらのものには限定されない。 (B) As a component, although the compound represented by following General formula (2) can be mentioned, it is not limited to these.
 一般式(2)
   H (3-b)SiO-(HRSiO)-(R SiO)-SiR (3-b)
 一般式(2)において、Rは炭素数1~6の脂肪族不飽和結合を含有しない1価炭化水素基である。bは0~3の整数、x、yはそれぞれ整数であり、このオルガノヒドロポリシロキサンの25℃における粘度が1~5,000mPa・sとなる数を示す。
General formula (2)
H b R 1 (3-b) SiO— (HR 1 SiO) x — (R 1 2 SiO) y —SiR 1 (3-b) H b
In the general formula (2), R 1 is a monovalent hydrocarbon group containing no aliphatic unsaturated bond having 1 to 6 carbon atoms. b is an integer of 0 to 3, and x and y are integers, respectively, and indicate the number at which the viscosity of this organohydropolysiloxane at 25 ° C. is 1 to 5,000 mPa · s.
 このオルガノヒドロポリシロキサンの25℃における粘度は、1~5,000mPa・s、特に5~1000mPa・sであることが好ましく、また2種以上の混合物でもよい。 The viscosity of this organohydropolysiloxane at 25 ° C. is preferably 1 to 5,000 mPa · s, particularly 5 to 1000 mPa · s, and may be a mixture of two or more.
 付加反応による架橋は、(A)成分と架橋剤の(B)成分の間で生じ、硬化後の粘着層のゲル分率は架橋成分の割合によって決まる。(B)成分の使用量は、(A)成分中のアルケニル基に対する(B)成分中のSiH基のモル比が0.5~20、特に0.8~15の範囲となるように配合することが好ましい。0.5未満では架橋密度が低くなり、これにともない保持力が低くなることがある。一方で、20を越えると粘着力およびタックが低下したり、処理液の使用可能時間が短くなる場合がある。 Crosslinking by addition reaction occurs between the component (A) and the component (B) of the crosslinking agent, and the gel fraction of the adhesive layer after curing is determined by the ratio of the crosslinking component. Component (B) is used so that the molar ratio of SiH groups in component (B) to alkenyl groups in component (A) is in the range of 0.5 to 20, particularly 0.8 to 15. It is preferable. If it is less than 0.5, the crosslinking density is lowered, and the holding force may be lowered accordingly. On the other hand, if it exceeds 20, the adhesive strength and tack may be reduced, or the usable time of the treatment liquid may be shortened.
 また、耐熱保持力などの耐熱性や溶剤浸透抑制などの耐溶媒性を向上させるためには、組成物中の架橋成分の割合を増やせばよいが、過剰に増やすと粘着力の低下や膜の柔軟性が低下するなどの影響が発生する場合がある。このような点から、(A)/(B)成分の配合質量比は20/80~80/20とすればよく、特に45/55~70/30とすることが好ましい。(A)成分の配合割合が20/80より少ないと粘着力、タックなどの粘着特性が低下することがあり、また80/20より多いと十分な耐熱性が得られない。 In addition, in order to improve the heat resistance such as heat resistance and solvent resistance such as suppression of solvent penetration, the proportion of the cross-linking component in the composition may be increased. There may be effects such as reduced flexibility. From such a point, the blending mass ratio of the component (A) / (B) may be 20/80 to 80/20, and particularly preferably 45/55 to 70/30. When the blending ratio of the component (A) is less than 20/80, adhesive properties such as adhesive strength and tack may be deteriorated, and when it is more than 80/20, sufficient heat resistance cannot be obtained.
 (C)成分は付加反応制御剤であり、シリコーン粘着剤組成物を調合し、基材に塗工する際、加熱硬化の以前に処理液が増粘やゲル化をおこさないようにするために添加するものである。 Component (C) is an addition reaction control agent, so that when a silicone pressure-sensitive adhesive composition is prepared and applied to a substrate, the treatment liquid does not thicken or gel before heat curing. It is to be added.
 (C)成分の具体例としては、
 3-メチル-1-ブチン-3-オール、
 3-メチル-1-ペンチン-3-オール、
 3,5-ジメチル-1-ヘキシン-3-オール、
 1-エチニルシクロヘキサノール、
 3-メチル-3-トリメチルシロキシ-1-ブチン、
 3-メチル-3-トリメチルシロキシ-1-ペンチン、
 3,5-ジメチル-3-トリメチルシロキシ-1-ヘキシン、
 1-エチニル-1-トリメチルシロキシシクロヘキサン、
 ビス(2,2-ジメチル-3-ブチノキシ)ジメチルシラン、
 1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン、
 1,1,3,3-テトラメチル-1,3-ジビニルジシロキサン
などが挙げられる。
As a specific example of the component (C),
3-methyl-1-butyn-3-ol,
3-methyl-1-pentyn-3-ol,
3,5-dimethyl-1-hexyn-3-ol,
1-ethynylcyclohexanol,
3-methyl-3-trimethylsiloxy-1-butyne,
3-methyl-3-trimethylsiloxy-1-pentyne,
3,5-dimethyl-3-trimethylsiloxy-1-hexyne,
1-ethynyl-1-trimethylsiloxycyclohexane,
Bis (2,2-dimethyl-3-butynoxy) dimethylsilane,
1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane,
Examples include 1,1,3,3-tetramethyl-1,3-divinyldisiloxane.
 (C)成分の配合量は、(A)及び(B)成分の合計100質量部に対して0~5.0質量部の範囲であることが好ましく、特に0.05~2.0質量部が好ましい。5.0質量部を越えると硬化性が低下することがある。 The amount of component (C) is preferably in the range of 0 to 5.0 parts by weight, particularly 0.05 to 2.0 parts by weight, based on a total of 100 parts by weight of components (A) and (B). Is preferred. If it exceeds 5.0 parts by mass, curability may be lowered.
 (D)成分は白金系触媒であり、塩化白金酸、塩化白金酸のアルコール溶液、塩化白金酸とアルコールとの反応物、塩化白金酸とオレフィン化合物との反応物、塩化白金酸とビニル基含有シロキサンとの反応物などが挙げられる。 Component (D) is a platinum catalyst, containing chloroplatinic acid, an alcohol solution of chloroplatinic acid, a reaction product of chloroplatinic acid and alcohol, a reaction product of chloroplatinic acid and an olefin compound, and containing chloroplatinic acid and a vinyl group A reaction product with siloxane can be used.
 (D)成分の添加量は、(A)及び(B)成分の合計量に対し、白金分として1~5,000ppm、特に5~2,000ppmとすることが好ましい。1ppm未満では硬化性が低下し、架橋密度が低くなり、保持力が低下することがあり、5,000ppmを越えると処理浴の使用可能時間が短くなる場合がある。 The addition amount of the component (D) is preferably 1 to 5,000 ppm, particularly 5 to 2,000 ppm in terms of platinum with respect to the total amount of the components (A) and (B). If it is less than 1 ppm, the curability is lowered, the crosslinking density is lowered, and the holding power may be lowered. If it exceeds 5,000 ppm, the usable time of the treatment bath may be shortened.
 (E)成分の導電性微粒子の形状は、球状、樹枝状、針状など特に制限はない。また、粒径は特に制限はないが、最大粒径が粘着剤の塗工厚みの1.5倍を越えないことが好ましく、これを越えると粘着剤塗工表面に導電性微粒子の突出が大きくなりすぎて、この部分を起点に被着体からの浮きなどが発生しやすくなる。 (E) The shape of the conductive fine particles of the component is not particularly limited, such as spherical, dendritic, and needle-like. The particle size is not particularly limited, but it is preferable that the maximum particle size does not exceed 1.5 times the coating thickness of the pressure-sensitive adhesive. Therefore, the floating from the adherend tends to occur starting from this portion.
 粘着層には種々の添加剤が添加されていてもよい。例えば、架橋剤、触媒、可塑剤、酸化防止剤、着色剤、帯電防止剤、充填剤、粘着付与剤、界面活性剤等を添加してもよい。 Various additives may be added to the adhesive layer. For example, a crosslinking agent, a catalyst, a plasticizer, an antioxidant, a colorant, an antistatic agent, a filler, a tackifier, a surfactant, and the like may be added.
 粘着層の基材上への塗布方法としては、ロールコーター、ブレードコーター、バーコーター、エアーナイフコーター、グラビアコーター、リバースコーター、ダイコーター、リップコーター、スプレーコーター、コンマコーター等により行われ、必要によりスムージングや、乾燥、加熱、紫外線等電子線露光工程等を経て、粘着層が形成される。 As a method for applying the adhesive layer onto the substrate, it is performed by a roll coater, blade coater, bar coater, air knife coater, gravure coater, reverse coater, die coater, lip coater, spray coater, comma coater, etc. An adhesive layer is formed through smoothing, drying, heating, electron beam exposure processes such as ultraviolet rays, and the like.
 (剥離層)
 剥離層として用いられる素材は、塵埃を発生しないプラスチックフィルム等が好ましい。本発明に係る剥離層に用いられるプラスチックフィルムとしては特に制限はないが、ポリエチレンフィルム、ポリプロピレンフィルム等のポリオレフィン系フィルム;ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステルフィルム;ヘキサメチレンアジパミド等のポリアミド系フィルム;ポリビニルクロライド、ポリビニリデンクロライド、ポリフルオロエチレン等の含ハロゲン系フィルム;ポリ酢酸ビニル、ポリビニルアルコール、エチレン酢酸ビニル共重合体等の酢酸ビニルおよびその誘導体フィルムが用いられる。好ましくはポリエステル系フィルムであり、例えば、ポリエチレンテレフタレートである。適度な弾性を有するからである。剥離層に用いられるプラスチックフィルムは、剥離剤が塗布されているものであってもよい。
(Peeling layer)
The material used as the release layer is preferably a plastic film that does not generate dust. Although there is no restriction | limiting in particular as a plastic film used for the peeling layer which concerns on this invention; Polyolefin films, such as a polyethylene film and a polypropylene film; Polyester films, such as a polyethylene terephthalate and a polybutylene terephthalate; Polyamide type, such as a hexamethylene adipamide Film: Halogen-containing film such as polyvinyl chloride, polyvinylidene chloride, polyfluoroethylene, etc .; Vinyl acetate such as polyvinyl acetate, polyvinyl alcohol, ethylene vinyl acetate copolymer and its derivative films are used. A polyester film is preferred, and for example, polyethylene terephthalate. It is because it has moderate elasticity. The plastic film used for the release layer may be one to which a release agent is applied.
 離型処理を施すための塗布液の具体例を挙げると、旭化成ワッカーシリコーン株式会社製のDEHESIVEシリーズのうち、無溶剤型の636、919、920、921、924、エマルジョン型の929、430、440、39005、39006、溶剤型の940、942、952、953、811等が、GE東芝シリコーン株式会社製の剥離紙用シリコーン:TPR6500、TPR6501、UV9300、UV9315、XS56-A2775、XS56-A2982、TPR6600、TPR6605、TPR6604、TPR6705、TPR6722、TPR6721、TPR6702、XS56-B3884、XS56-A8012、XS56-B2654、TPR6700 、TPR6701、TPR6707、TPR6710、TPR6712、XS56-A3969、XS56-A3075、YSR3022等が挙げられる。 Specific examples of the coating solution for performing the mold release treatment include: solvent-free 636, 919, 920, 921, 924, emulsion type 929, 430, 440 in DEHESIVE series manufactured by Asahi Kasei Wacker Silicone Co., Ltd. 39005, 39006, solvent type 940, 942, 952, 953, 811, etc. are release paper silicones manufactured by GE Toshiba Silicone Co., Ltd .: TPR6500, TPR6501, UV9300, UV9315, XS56-A2775, XS56-A2982, TPR6600, TPR6605, TPR6604, TPR6705, TPR6722, TPR6721, TPR6702, XS56-B3884, XS56-A8012, XS56-B2654, TPR6700, TPR6701, TPR6707, T R6710, TPR6712, XS56-A3969, XS56-A3075, YSR3022 and the like.
 《透明基材》
 本発明に係る遮熱樹脂基材で用いられる透明基材は、上述した各種の層を保持することができる樹脂フィルムであれば特に限定されるものではない。
<Transparent substrate>
The transparent substrate used in the heat-shielding resin substrate according to the present invention is not particularly limited as long as it is a resin film that can hold the various layers described above.
 具体的には、エチレン、ポリプロピレン、ブテン等の単独重合体または共重合体または共重合体等のポリオレフィン(PO)樹脂、環状ポリオレフィン等の非晶質ポリオレフィン樹脂(APO)、ポリエチレンテレフタレート(PET)、ポリブチレンナフタレート、ポリエチレン-2,6-ナフタレート(PEN)等のポリエステル系樹脂、ナイロン6、ナイロン12、共重合ナイロン等のポリアミド系(PA)樹脂、ポリビニルアルコール(PVA)樹脂、エチレン-ビニルアルコール共重合体(EVOH)等のポリビニルアルコール系樹脂、ポリイミド(PI)樹脂、ポリエーテルイミド(PEI)樹脂、ポリサルホン(PS)樹脂、ポリエーテルサルホン(PES)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリカーボネート(PC)樹脂、ポリビニルブチラート(PVB)樹脂、ポリアリレート(PAR)樹脂、エチレン-四フッ化エチレン共重合体(ETFE)、三フッ化塩化エチレン(PFA)、四フッ化エチレン-パーフルオロアルキルビニルエーテル共重合体(FEP)、フッ化ビニリデン(PVDF)、フッ化ビニル(PVF)、パーフルオロエチレン-パーフロロプロピレン-パーフロロビニルエーテル-共重合体(EPA)等のフッ素系樹脂等を用いることができる。 Specifically, a homopolymer such as ethylene, polypropylene, butene or a polyolefin (PO) resin such as a copolymer or a copolymer, an amorphous polyolefin resin (APO) such as a cyclic polyolefin, polyethylene terephthalate (PET), Polyester resins such as polybutylene naphthalate, polyethylene-2,6-naphthalate (PEN), polyamide (PA) resins such as nylon 6, nylon 12, copolymer nylon, polyvinyl alcohol (PVA) resin, ethylene-vinyl alcohol Polyvinyl alcohol resin such as copolymer (EVOH), polyimide (PI) resin, polyetherimide (PEI) resin, polysulfone (PS) resin, polyethersulfone (PES) resin, polyetheretherketone (PEEK) resin , Polycar Nate (PC) resin, polyvinyl butyrate (PVB) resin, polyarylate (PAR) resin, ethylene-tetrafluoroethylene copolymer (ETFE), ethylene trifluoride chloride (PFA), tetrafluoroethylene-perfluoro Use of fluororesins such as alkyl vinyl ether copolymer (FEP), vinylidene fluoride (PVDF), vinyl fluoride (PVF), perfluoroethylene-perfluoropropylene-perfluorovinyl ether-copolymer (EPA) Can do.
 また、上記に挙げた樹脂以外にも、ラジカル反応性不飽和化合物を有するアクリレート化合物によりなる樹脂組成物や、上記アクリルレート化合物とチオール基を有するメルカプト化合物よりなる樹脂組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート等のオリゴマーを多官能アクリレートモノマーに溶解せしめた樹脂組成物等の光硬化性樹脂およびこれらの混合物等を用いることも可能である。更に、これらの樹脂の1または2種以上をラミネート、コーティング等の手段によって積層させたものを樹脂フィルムとして用いることも可能である。 In addition to the resins listed above, a resin composition comprising an acrylate compound having a radical-reactive unsaturated compound, a resin composition comprising an acrylate compound and a mercapto compound having a thiol group, epoxy acrylate, urethane acrylate It is also possible to use a photocurable resin such as a resin composition in which an oligomer such as polyester acrylate or polyether acrylate is dissolved in a polyfunctional acrylate monomer, and a mixture thereof. Furthermore, it is also possible to use what laminated | stacked 1 or 2 or more types of these resin by means, such as a lamination and a coating, as a resin film.
 これらの素材は単独であるいは適宜混合されて使用することもできる。中でも、ゼオネックスやゼオノア(日本ゼオン(株)製)、非晶質シクロポリオレフィン樹脂フィルムのARTON(ジェイエスアール(株)製)、ポリカーボネートフィルムのピュアエース(帝人(株)製)、セルローストリアセテートフィルムのコニカタックKC4UX、KC8UX(コニカミノルタオプト(株)製)などの市販品を好ましく使用することができる。 These materials can be used alone or in combination as appropriate. Among them, ZEONEX and ZEONOR (manufactured by ZEON Corporation), ARTON of amorphous cyclopolyolefin resin film (manufactured by JSR Corporation), pure ace of polycarbonate film (manufactured by Teijin Limited), Konica of cellulose triacetate film Commercial products such as Tack KC4UX and KC8UX (manufactured by Konica Minolta Opto Co., Ltd.) can be preferably used.
 また、樹脂フィルムは透明、高耐光性、高耐候性であることが好ましい。また、上記に挙げた樹脂フィルムは未延伸フィルムでもよく、延伸フィルムでもよい。 The resin film is preferably transparent, high light resistance, and high weather resistance. The resin film listed above may be an unstretched film or a stretched film.
 本発明に係る樹脂フィルムは、従来公知の一般的な方法により製造することが可能である。例えば、材料となる樹脂を押し出し機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の基材を製造することができる。また、未延伸の基材を一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸などの公知の方法により、基材の流れ(縦軸)方向、または基材の流れ方向と直角(横軸)方向に延伸することにより延伸基材を製造することができる。この場合の延伸倍率は、基材の原料となる樹脂に合わせて適宜選択することできるが、縦軸方向および横軸方向にそれぞれ2~10倍が好ましい。 The resin film according to the present invention can be manufactured by a conventionally known general method. For example, an unstretched substrate that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching. In addition, the unstretched base material is subjected to a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular-type simultaneous biaxial stretching, or the flow direction of the base material (vertical axis), or A stretched substrate can be produced by stretching in the direction perpendicular to the flow direction of the substrate (horizontal axis). The draw ratio in this case can be appropriately selected according to the resin as the raw material of the base material, but is preferably 2 to 10 times in each of the vertical axis direction and the horizontal axis direction.
 かかる基材フィルムを構成する樹脂のうち、ポリエチレンテレフタレートやポリエチレン-2,6-ナフタレートに代表される芳香族ポリエステル、ナイロン6やナイロン66に代表される脂肪族ポリアミド、芳香族ポリアミド、ポリエチレンやポリプロピレンに代表されるポリオレフィン、ポリカーボネート等が好ましい。これらの中、芳香族ポリエステル、更にはポリエチレンテレフタレート、ポリブチレンナフタレート、およびポリエチレン-2,6-ナフタレート、特にポリエチレンテレフタレートフィルムがより好ましい。 Among the resins constituting such a base film, aromatic polyesters represented by polyethylene terephthalate and polyethylene-2,6-naphthalate, aliphatic polyamides represented by nylon 6 and nylon 66, aromatic polyamides, polyethylene and polypropylene Representative polyolefins and polycarbonates are preferred. Of these, aromatic polyesters, polyethylene terephthalate, polybutylene naphthalate, and polyethylene-2,6-naphthalate, particularly polyethylene terephthalate films are more preferred.
 また、熱可塑性樹脂フィルムとしては機械強度を高めた二軸延伸フィルム、更には耐熱性および機械的強度に優れる、二軸延伸ポリエチレンテレフタレートフィルムや二軸延伸ポリエチレン-2,6-ナフタレートフィルムが好ましく、特に二軸延伸ポリエチレンテレフタレートフィルムが好ましい。 The thermoplastic resin film is preferably a biaxially stretched film with increased mechanical strength, and further a biaxially stretched polyethylene terephthalate film or a biaxially stretched polyethylene-2,6-naphthalate film having excellent heat resistance and mechanical strength. In particular, a biaxially stretched polyethylene terephthalate film is preferred.
 前記芳香族ポリエステルには、必要により適当なフィラーを含有させることができる。このフィラーとしては、従来からポリエステルフィルムの滑り性付与剤として知られているものが挙げられるが、その例を挙げると、炭酸カルシウム、酸化カルシウム、酸化アルミニウム、カオリン、酸化珪素、酸化亜鉛、カーボンブラック、炭化珪素、酸化錫、架橋アクリル樹脂粒子、架橋ポリスチレン樹脂粒子、メラミン樹脂粒子、架橋シリコーン樹脂粒子等が挙げられる。かかる滑り性付与剤の平均粒径は0.01~10μm、含有量はフィルムが透明性を保持する量範囲であって、0.0001~5質量%であることが好ましい。更に芳香族ポリエステルには、着色剤、帯電防止剤、酸化防止剤、有機滑剤、触媒残渣微粒子なども適宜含有させることができる。 The aromatic polyester can contain an appropriate filler if necessary. Examples of the filler include those conventionally known as a slipperiness-imparting agent for polyester films. Examples of the filler include calcium carbonate, calcium oxide, aluminum oxide, kaolin, silicon oxide, zinc oxide, and carbon black. , Silicon carbide, tin oxide, crosslinked acrylic resin particles, crosslinked polystyrene resin particles, melamine resin particles, crosslinked silicone resin particles, and the like. The average particle diameter of the slipperiness-imparting agent is 0.01 to 10 μm, and the content is within an amount range in which the film maintains transparency, and is preferably 0.0001 to 5% by mass. Further, the aromatic polyester can contain a colorant, an antistatic agent, an antioxidant, an organic lubricant, catalyst residue fine particles and the like as appropriate.
 また、本発明においては、光安定剤を含有するポリエステルフィルムであることが、本発明の遮熱樹脂基材が外貼り用として用いられるとき好ましい。ここで光安定剤とはポリエステルを紫外線照射での劣化から防ぐ効果を有するものであり、例えば、紫外線吸収剤、ラジカル補足剤、酸化防止剤などが例示される。このような光安定剤としては、ヒンダードアミン系、サリチル酸系、ベンゾフェノン系、ベンゾトリアゾール系、シアノアクリレート系、トリアジン系、ベンゾエート系、蓚酸アニリド系などの有機系の光安定剤、あるいはゾルゲルなどの無機系の光安定剤を用いることができる。好適に用いられる光安定剤の具体例を以下に示すが、もちろんこれらに限定されるものではない。 In the present invention, a polyester film containing a light stabilizer is preferable when the heat-shielding resin substrate of the present invention is used for external application. Here, the light stabilizer has an effect of preventing polyester from being deteriorated by ultraviolet irradiation, and examples thereof include an ultraviolet absorber, a radical scavenger, and an antioxidant. Examples of such light stabilizers include hindered amines, salicylic acids, benzophenones, benzotriazoles, cyanoacrylates, triazines, benzoates, oxalic acid anilides, and other organic light stabilizers, or sol-gel inorganics. The light stabilizer can be used. Specific examples of the light stabilizer suitably used are shown below, but of course not limited thereto.
 ヒンダードアミン系:ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、コハク酸ジメチル・1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン重縮合物
 サリチル酸系:p-t-ブチルフェニルサリシレート、p-オクチルフェニルサリシレート
 ベンゾフェノン系:2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン、2,2′-4,4′-テトラヒドロキシベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシベンゾフェノン、2,2′-ジヒドロキシ-4,4′-ジメトキシベンゾフェノン、ビス(2-メトキシ-4-ヒドロキシ-5-ベンゾイルフェニル)メタン
 ベンゾトリアゾール系:2-(2′-ヒドロキシ-5′-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-5′-t-ブチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′-t-ブチル-5′-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ・t-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2′-ヒドロキシ-5′-t-オクチルフェノール)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ・t-アミルフェニル)ベンゾトリアゾール、2,2′-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]、2(2′ヒドロキシ-5′-メタアクリロキシフェニル)-2H-ベンゾトリアゾール、2-[2′-ヒドロキシ-3′-(3″,4″,5″,6″-テトラヒドロフタルイミドメチル)-5′-メチルフェニル]ベンゾトリアゾール、2-(2′-ヒドロキシ-5-アクリロイルオキシエチルフェニル)-2H-ベンゾトリアゾール、2-(2′-ヒドロキシ-5′-メタクリロキシエチルフェニル)-2H-ベンゾトリアゾール、2-(2′-ヒドロキシ-3′-t-ブチル-5′-アクリロイルエチルフェニル)-5-クロロ-2H-ベンゾトリアゾール
 シアノアクリレート系:エチル-2-シアノ-3,3′-ジフェニルアクリレート
 上記以外:ニッケルビス(オクチルフェニル)サルファイド、[2,2′-チオビス(4-t-オクチルフェノラート)]-n-ブチルアミンニッケル、ニッケルコンプレックス-3,5-ジ・t-ブチル-4-ヒドロキシベンジル・リン酸モノエチレート、ニッケル・ジブチルジチオカーバメート、2,4-ジ-t-ブチルフェニル-3′,5′-ジ・t-ブチル-4′-ヒドロキシベンゾエート、2,4-ジ・t-ブチルフェニル-3′,5′-ジ・t-ブチル-4′-ハイドロキシベンゾエート、2-エトキシ-2′-エチルオキザックアシッドビスアニリド、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(ヘキシル)オキシ]-フェノール。
Hindered amines: bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, dimethyl succinate 1- (2-hydroxyethyl) -4-hydroxy-2,2,6,6-tetramethylpiperidine Polycondensates Salicylic acid series: pt-butylphenyl salicylate, p-octylphenyl salicylate Benzophenone series: 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone 2,2'-4,4'-tetrahydroxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, bis (2-methoxy-4- Hydroxy-5-benzoylphenyl) methane ben Triazole series: 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-5'-t-butylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-t-butylphenyl) benzotriazole, 2- (2'-hydroxy-3'-t-butyl-5'-methylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3 ', 5'-di-t-butylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-5'-t-octylphenol) benzotriazole, 2- (2'-hydroxy-3', 5 ' -Di-t-amylphenyl) benzotriazole, 2,2'-methylenebis [4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotri Sol-2-yl) phenol], 2 (2′hydroxy-5′-methacryloxyphenyl) -2H-benzotriazole, 2- [2′-hydroxy-3 ′-(3 ″, 4 ″, 5 ″, 6 ″ -tetrahydrophthalimidomethyl) -5′-methylphenyl] benzotriazole, 2- (2′-hydroxy-5-acryloyloxyethylphenyl) -2H-benzotriazole, 2- (2′-hydroxy-5′-methacrylic) Roxyethylphenyl) -2H-benzotriazole, 2- (2'-hydroxy-3'-t-butyl-5'-acryloylethylphenyl) -5-chloro-2H-benzotriazole cyanoacrylate series: ethyl-2-cyano -3,3'-diphenyl acrylate Other than above: nickel bis (octylphenyl) sulfide [2,2'-thiobis (4-t-octylphenolate)]-n-butylamine nickel, nickel complex-3,5-di-t-butyl-4-hydroxybenzyl phosphate monoethylate, nickel-dibutyldithiocarbamate 2,4-di-t-butylphenyl-3 ', 5'-di-t-butyl-4'-hydroxybenzoate, 2,4-di-t-butylphenyl-3', 5'-di-t -Butyl-4'-hydroxybenzoate, 2-ethoxy-2'-ethyl oxazac acid bisanilide, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-[(hexyl ) Oxy] -phenol.
 本発明においては、上記具体例のうち、少なくともヒンダードアミン系、ベンゾフェノン系、ベンゾトリアゾール系のいずれかを用いることが好ましく、更にはこれらを併用して用いることがより好ましい。 In the present invention, among the above specific examples, at least one of hindered amine, benzophenone, and benzotriazole is preferably used, and more preferably used in combination.
 また、本発明の遮熱樹脂基材においては、低屈折率セラミック構成層、金属層、また高屈折率セラミック構成層等を形成する前に、コロナ処理、火炎処理、プラズマ処理、グロー放電処理、粗面化処理、薬品処理などの表面処理を行ってもよい。 Further, in the heat shielding resin substrate of the present invention, before forming the low refractive index ceramic constituent layer, the metal layer, the high refractive index ceramic constituent layer, etc., corona treatment, flame treatment, plasma treatment, glow discharge treatment, Surface treatment such as roughening treatment or chemical treatment may be performed.
 樹脂フィルムはロール状に巻き上げられた長尺品が便利である。樹脂フィルムの厚さは、遮熱樹脂基材としての適性から10~400μm、中でも30~200μmの範囲内とすることが好ましい。 Resin film is conveniently a long product rolled up. The thickness of the resin film is preferably in the range of 10 to 400 μm, and more preferably in the range of 30 to 200 μm, from the viewpoint of suitability as a heat shielding resin substrate.
 本発明に係る低屈折率セラミック構成層の水蒸気透過率としては、JIS K7129:1992 B法に従って測定(MOCON製、水蒸気透過率測定装置 PERMATRAN-W3/33 MGモジュールを使用)した水蒸気透過率が、0.01g/(m・24h)以下(40℃90%RH条件下)であり、より好ましくは1×10-3g/(m・24h)以下であり、より好ましくは1×10-5g/(m・24h)以下である。低屈折率セラミック構成層の水蒸気透過度は、樹脂脂基材上に少なくとも低屈折率セラミック構成層のみを設け水蒸気透過率を測定すればよい。 As the water vapor transmission rate of the low refractive index ceramic constituent layer according to the present invention, the water vapor transmission rate measured according to JIS K7129: 1992 B method (manufactured by MOCON, using a water vapor transmission rate measuring device PERMATRAN-W3 / 33 MG module) 0.01 g / (m 2 · 24 h) or less (under 40 ° C. and 90% RH), more preferably 1 × 10 −3 g / (m 2 · 24 h) or less, more preferably 1 × 10 − 5 g / (m 2 · 24 h) or less. The water vapor permeability of the low refractive index ceramic constituent layer may be measured by providing at least only the low refractive index ceramic constituent layer on the resin fat substrate.
 次に大気圧プラズマCVD法について説明する。 Next, the atmospheric pressure plasma CVD method will be described.
 本発明に係る低屈折率セラミック積層膜、例えば、酸化珪素膜、またこれらの積層体の形成には、物理、あるいは化学気相成長法が用いられる。中でも、これらのうち最も好ましい方法である、大気圧プラズマCVD法について以下説明する。 The physical or chemical vapor deposition method is used to form the low refractive index ceramic laminated film according to the present invention, for example, a silicon oxide film, or a laminated body thereof. Among these, the atmospheric pressure plasma CVD method which is the most preferable method among them will be described below.
 大気圧プラズマCVD法は、例えば、特開平10-154598号公報や特開2003-49272号公報、国際公開第02/048428号パンフレットなどに記載されているが、特に特開2004-68143号公報に記載されている薄膜形成方法が、緻密でガスバリア性が高い酸化珪素膜を形成するには好ましい。また、ロール状の元巻きからウエブ状の透明基材を繰り出して、組成の異なる酸化珪素膜を連続的に形成することができる。 The atmospheric pressure plasma CVD method is described in, for example, Japanese Patent Application Laid-Open No. 10-154598, Japanese Patent Application Laid-Open No. 2003-49272, pamphlet of International Publication No. 02/048428, etc., and particularly in Japanese Patent Application Laid-Open No. 2004-68143. The described thin film forming method is preferable for forming a dense silicon oxide film having a high gas barrier property. Moreover, a web-like transparent base material is drawn out from a roll-shaped original winding, and silicon oxide films having different compositions can be continuously formed.
 本発明に係る低屈折率セラミック構成層の形成に用いられる上記の大気圧プラズマCVD法は、大気圧もしくはその近傍の圧力下で行われるプラズマCVD法であり、大気圧もしくはその近傍の圧力とは20~110kPa程度であり、本発明に記載の良好な効果を得るためには93~104kPaが好ましい。 The atmospheric pressure plasma CVD method used for forming the low refractive index ceramic constituent layer according to the present invention is a plasma CVD method performed under atmospheric pressure or a pressure in the vicinity thereof. What is atmospheric pressure or a pressure in the vicinity thereof? The pressure is about 20 to 110 kPa, and 93 to 104 kPa is preferable for obtaining the good effects described in the present invention.
 低屈折率セラミック構成層を構成する、例えば、酸化珪素膜の形成において、放電条件は、放電空間に異なる周波数の電界を2つ以上印加するものが好ましく、第1の高周波電界と第2の高周波電界とを重畳し、電界を印可する。 In the formation of the low refractive index ceramic constituent layer, for example, in the formation of the silicon oxide film, it is preferable that the discharge condition is that two or more electric fields having different frequencies are applied to the discharge space. An electric field is applied by superimposing the electric field.
 前記第1の高周波電界の周波数ω1より前記第2の高周波電界の周波数ω2が高く、且つ前記第1の高周波電界の強さV1と、前記第2の高周波電界の強さV2と、放電開始電界の強さIVとの関係が、
     V1≧IV>V2
 または V1>IV≧V2 を満たし、前記第2の高周波電界の出力密度が1W/cm以上である。
The frequency ω2 of the second high-frequency electric field is higher than the frequency ω1 of the first high-frequency electric field, the strength V1 of the first high-frequency electric field, the strength V2 of the second high-frequency electric field, and the discharge start electric field The relationship with strength IV of
V1 ≧ IV> V2
Alternatively, V1> IV ≧ V2 is satisfied, and the output density of the second high-frequency electric field is 1 W / cm 2 or more.
 高周波とは少なくとも0.5kHzの周波数を有するものを言う。 ¡High frequency means that having a frequency of at least 0.5 kHz.
 重畳する高周波電界がともにサイン波である場合、第1の高周波電界の周波数ω1と該周波数ω1より高い第2の高周波電界の周波数ω2とを重ね合わせた成分となり、その波形は、周波数ω1のサイン波上にそれより高い周波数ω2のサイン波が重なった鋸歯状の波形となる。 When the superimposed high-frequency electric field is a sine wave, it becomes a component obtained by superimposing the frequency ω1 of the first high-frequency electric field and the frequency ω2 of the second high-frequency electric field higher than the frequency ω1, and the waveform is a sine of the frequency ω1. A sawtooth waveform in which a sine wave with a higher frequency ω2 is superimposed on the wave is obtained.
 本発明において、放電開始電界の強さとは、実際の薄膜形成方法に使用される放電空間(電極の構成など)および反応条件(ガス条件など)において放電を起こすことのできる最低電界強度のことを指す。放電開始電界強度は、放電空間に供給されるガス種や電極の誘電体種または電極間距離などによって多少変動するが、同じ放電空間においては、放電ガスの放電開始電界強度に支配される。 In the present invention, the strength of the electric field at which discharge starts is the lowest electric field intensity that can cause discharge in the discharge space (electrode configuration, etc.) and reaction conditions (gas conditions, etc.) used in the actual thin film formation method. Point to. The discharge start electric field strength varies somewhat depending on the type of gas supplied to the discharge space, the dielectric type of the electrode, or the distance between the electrodes, but is controlled by the discharge start electric field strength of the discharge gas in the same discharge space.
 上記で述べたような高周波電界を放電空間に印加することによって、薄膜形成可能な放電を起こし、高品位な薄膜形成に必要な高密度プラズマを発生することができると推定される。 It is presumed that by applying a high-frequency electric field as described above to the discharge space, a discharge capable of forming a thin film is generated, and a high-density plasma necessary for forming a high-quality thin film can be generated.
 ここで重要なのは、このような高周波電界が対向する電極間に印加され、即ち同じ放電空間に印加されることである。特開平11-16696号公報のように印加電極を2つ併置し、離間した異なる放電空間それぞれに異なる高周波電界を印加する方法は好ましくない。 It is important here that such a high-frequency electric field is applied between the opposing electrodes, that is, applied to the same discharge space. A method in which two application electrodes are juxtaposed and different high-frequency electric fields are applied to different spaced discharge spaces as in JP-A-11-16696 is not preferable.
 上記でサイン波等の連続波の重畳について説明したが、これに限られるものではなく、両方パルス波であっても、一方が連続波でもう一方がパルス波であっても構わない。また、更に周波数の異なる第3の電界を有していてもよい。 Although the superposition of continuous waves such as sine waves has been described above, the present invention is not limited to this, and both pulse waves may be used, one may be continuous waves and the other may be pulse waves. Further, a third electric field having a different frequency may be included.
 上記本発明に係る高周波電界を同一放電空間に印加する具体的な方法としては、例えば、対向電極を構成する第1電極に周波数ω1であって、電界強度V1である第1の高周波電界を印加する第1電源を接続し、第2電極に周波数ω2であって、電界強度V2である第2の高周波電界を印加する第2電源を接続した大気圧プラズマ放電処理装置を用いる。 As a specific method of applying the high-frequency electric field according to the present invention to the same discharge space, for example, the first high-frequency electric field having the frequency ω1 and the electric field strength V1 is applied to the first electrode constituting the counter electrode. An atmospheric pressure plasma discharge processing apparatus is used in which a first power source is connected, and a second power source is connected to the second electrode to apply a second high-frequency electric field having a frequency ω2 and an electric field strength V2.
 上記の大気圧プラズマ放電処理装置には、対向電極間に放電ガスと薄膜形成ガスとを供給するガス供給手段を備える。更に、電極の温度を制御する電極温度制御手段を有することが好ましい。 The above atmospheric pressure plasma discharge treatment apparatus includes gas supply means for supplying a discharge gas and a thin film forming gas between the counter electrodes. Furthermore, it is preferable to have an electrode temperature control means for controlling the temperature of the electrode.
 また、第1電極、第1電源またはそれらの間のいずれかには第1フィルターを、また第2電極、第2電源またはそれらの間のいずれかには第2フィルターを接続することが好ましく、第1フィルターは第1電源から第1電極への第1の高周波電界の電流を通過しやすくし、第2の高周波電界の電流をアースして、第2電源から第1電源への第2の高周波電界の電流を通過しにくくする。また、第2フィルターはその逆で、第2電源から第2電極への第2の高周波電界の電流を通過しやすくし、第1の高周波電界の電流をアースして、第1電源から第2電源への第1の高周波電界の電流を通過しにくくする機能が備わっているものを使用する。ここで、通過しにくいとは、好ましくは電流の20%以下、より好ましくは10%以下しか通さないことを言う。逆に通過しやすいとは、好ましくは電流の80%以上、より好ましくは90%以上を通すことを言う。 Further, it is preferable to connect the first filter to either the first electrode, the first power source or between them, and to connect the second filter to the second electrode, the second power source or any of them, The first filter facilitates passage of a first high-frequency electric field current from the first power source to the first electrode, and grounds the second high-frequency electric field current to provide a second from the second power source to the first power source. It makes it difficult to pass the current of the high frequency electric field. On the other hand, the second filter makes it easy to pass the current of the second high-frequency electric field from the second power source to the second electrode, grounds the current of the first high-frequency electric field, and the second power from the first power source. A power supply having a function of making it difficult to pass the current of the first high-frequency electric field to the power supply is used. Here, the phrase “difficult to pass” means that only 20% or less, more preferably 10% or less of the current is passed. On the contrary, being easy to pass means that preferably 80% or more, more preferably 90% or more of the current is passed.
 例えば、第1フィルターとしては、第2電源の周波数に応じて数10pF~数万pFのコンデンサ、もしくは数μH程度のコイルを用いることができる。第2フィルターとしては、第1電源の周波数に応じて10μH以上のコイルを用い、これらのコイルまたはコンデンサを介してアース接地することでフィルターとして使用できる。 For example, as the first filter, a capacitor of several tens of pF to tens of thousands of pF or a coil of about several μH can be used depending on the frequency of the second power source. As the second filter, a coil of 10 μH or more is used according to the frequency of the first power supply, and it can be used as a filter by grounding through these coils or capacitors.
 更に本発明に係る大気圧プラズマ放電処理装置の第1電源は、第2電源より高い電界強度を印加できる能力を有していることが好ましい。 Furthermore, it is preferable that the first power source of the atmospheric pressure plasma discharge treatment apparatus according to the present invention has a capability of applying a higher electric field strength than the second power source.
 ここで、本発明で言う印加電界強度と放電開始電界強度は、下記の方法で測定されたものをいう。 Here, the applied electric field strength and the discharge start electric field strength referred to in the present invention are those measured by the following method.
 印加電界強度V1およびV2(単位:kV/mm)の測定方法:
 各電極部に高周波電圧プローブ(P6015A)を設置し、該高周波電圧プローブの出力信号をオシロスコープ(Tektronix社製、TDS3012B)に接続し、所定の時点の電界強度を測定する。
Measuring method of applied electric field strengths V1 and V2 (unit: kV / mm):
A high-frequency voltage probe (P6015A) is installed in each electrode portion, and an output signal of the high-frequency voltage probe is connected to an oscilloscope (Tektronix, TDS3012B), and the electric field strength at a predetermined time is measured.
 放電開始電界強度IV(単位:kV/mm)の測定方法:
 電極間に放電ガスを供給し、この電極間の電界強度を増大させていき、放電が始まる電界強度を放電開始電界強度IVと定義する。測定器は上記印加電界強度測定と同じである。
Measuring method of electric discharge starting electric field intensity IV (unit: kV / mm):
A discharge gas is supplied between the electrodes, the electric field strength between the electrodes is increased, and the electric field strength at which discharge starts is defined as a discharge starting electric field strength IV. The measuring instrument is the same as the applied electric field strength measurement.
 なお、上記測定に使用する高周波電圧プローブとオシロスコープによる電界強度の測定位置については、後述の図1に示してある。 In addition, the measurement position of the electric field strength by the high-frequency voltage probe and oscilloscope used for the above measurement is shown in FIG.
 本発明で規定する放電条件をとることにより、例え窒素ガスのように放電開始電界強度が高い放電ガスでも放電を開始し、高密度で安定なプラズマ状態を維持でき、高性能な薄膜形成を行うことができる。 By adopting the discharge conditions specified in the present invention, discharge can be started even with a discharge gas with a high discharge starting electric field strength, such as nitrogen gas, and a high-density thin film can be formed while maintaining a high density and stable plasma state. be able to.
 上記の測定により放電ガスを窒素ガスとした場合、その放電開始電界強度IV(1/2Vp-p)は3.7kV/mm程度であり、従って、上記の関係において、第1の印加電界強度をV1≧3.7kV/mmとして印加することによって、窒素ガスを励起し、プラズマ状態にすることができる。 When the discharge gas is nitrogen gas according to the above measurement, the discharge start electric field strength IV (1/2 Vp-p) is about 3.7 kV / mm. Therefore, in the above relationship, the first applied electric field strength is By applying V1 ≧ 3.7 kV / mm, the nitrogen gas can be excited and put into a plasma state.
 ここで、第1電源の周波数としては、200kHz以下が好ましく用いることができる。また、この電界波形としては連続波でもパルス波でもよい。下限は1kHz程度が望ましい。 Here, the frequency of the first power source is preferably 200 kHz or less. The electric field waveform may be a continuous wave or a pulse wave. The lower limit is preferably about 1 kHz.
 一方、第2電源の周波数としては、800kHz以上が好ましく用いられる。この第2電源の周波数が高い程プラズマ密度が高くなり、緻密で良質な薄膜が得られる。上限は200MHz程度が望ましい。 On the other hand, the frequency of the second power source is preferably 800 kHz or more. The higher the frequency of the second power source, the higher the plasma density, and a dense and high-quality thin film can be obtained. The upper limit is preferably about 200 MHz.
 このような2つの電源から高周波電界を印加することは、第1の高周波電界によって高い放電開始電界強度を有する放電ガスの放電を開始するのに必要であり、また第2の高周波電界の高い周波数および高い出力密度によりプラズマ密度を高くして、緻密で良質な薄膜を形成することが本発明の重要な点である。 The application of a high frequency electric field from such two power sources is necessary to start the discharge of a discharge gas having a high discharge start electric field strength by the first high frequency electric field, and the high frequency of the second high frequency electric field. In addition, it is an important point of the present invention to form a dense and high-quality thin film by increasing the plasma density with a high power density.
 また、第1の高周波電界の出力密度を高くすることで、放電の均一性を維持したまま、第2の高周波電界の出力密度を向上させることができる。これにより更なる均一高密度プラズマが生成でき、更なる製膜速度の向上と膜質の向上が両立できる。 Also, by increasing the output density of the first high-frequency electric field, it is possible to improve the output density of the second high-frequency electric field while maintaining the uniformity of discharge. As a result, a further uniform high-density plasma can be generated, and a further improvement in film formation speed and an improvement in film quality can be achieved.
 本発明に用いられる大気圧プラズマ放電処理装置は、上述のように対向電極の間で放電させ、前記対向電極間に導入したガスをプラズマ状態とし、前記対向電極間に静置あるいは電極間を移送される基材を該プラズマ状態のガスに晒すことによって、該基材の上に薄膜を形成させるものである。また、他の方式として、大気圧プラズマ放電処理装置は上記同様の対向電極間で放電させ、該対向電極間に導入したガスを励起しまたはプラズマ状態とし、該対向電極外にジェット状に励起またはプラズマ状態のガスを吹き出し、該対向電極の近傍にある基材(静置していても移送されていてもよい)を晒すことによって該基材の上に薄膜を形成させるジェット方式の装置がある。 The atmospheric pressure plasma discharge treatment apparatus used in the present invention discharges between the counter electrodes as described above, changes the gas introduced between the counter electrodes into a plasma state, and allows the gas to stand between the counter electrodes or transfer between the electrodes. A thin film is formed on the base material by exposing the base material to the plasma state gas. As another method, the atmospheric pressure plasma discharge treatment apparatus discharges between the counter electrodes similar to the above, excites the gas introduced between the counter electrodes or puts it in a plasma state, and excites or jets the gas outside the counter electrodes. There is a jet type apparatus that blows out a plasma gas and exposes a substrate (which may be stationary or transferred) in the vicinity of the counter electrode to form a thin film on the substrate. .
 図1は、本発明に有用なジェット方式の大気圧プラズマ放電処理装置の一例を示した概略図である。 FIG. 1 is a schematic view showing an example of a jet-type atmospheric pressure plasma discharge treatment apparatus useful for the present invention.
 ジェット方式の大気圧プラズマ放電処理装置は、プラズマ放電処理装置、二つの電源を有する電界印加手段の他に、図1では図示してない(後述の図2に図示してある)が、ガス供給手段、電極温度調節手段を有している装置である。 In addition to the plasma discharge processing apparatus and the electric field applying means having two power sources, the jet type atmospheric pressure plasma discharge processing apparatus is not shown in FIG. And an electrode temperature adjusting means.
 プラズマ放電処理装置10は、第1電極11と第2電極12から構成されている対向電極を有しており、該対向電極間に、第1電極11からは第1電源21からの周波数ω1、電界強度V1、電流I1の第1の高周波電界が印加され、また第2電極12からは第2電源22からの周波数ω2、電界強度V2、電流I2の第2の高周波電界が印加されるようになっている。第1電源21は、第2電源22より高い高周波電界強度(V1>V2)を印加し、また第1電源21の第1の周波数ω1は、第2電源22の第2の周波数ω2より低い周波数を印加する。 The plasma discharge processing apparatus 10 has a counter electrode composed of a first electrode 11 and a second electrode 12, and the frequency ω <b> 1 from the first power supply 21 is output from the first electrode 11 between the counter electrodes. A first high-frequency electric field of electric field strength V1 and current I1 is applied, and a second high-frequency electric field of frequency ω2, electric field strength V2, and current I2 from the second power source 22 is applied from the second electrode 12. It has become. The first power supply 21 applies a higher frequency electric field strength (V1> V2) than the second power supply 22, and the first frequency ω1 of the first power supply 21 is lower than the second frequency ω2 of the second power supply 22. Apply.
 第1電極11と第1電源21との間には、第1フィルター23が設置されており、第1電源21から第1電極11への電流を通過しやすくし、第2電源22からの電流をアースして、第2電源22から第1電源21への電流が通過しにくくなるように設計されている。 A first filter 23 is installed between the first electrode 11 and the first power source 21 to facilitate passage of a current from the first power source 21 to the first electrode 11, and a current from the second power source 22. Is designed so that the current from the second power source 22 to the first power source 21 is less likely to pass through.
 また、第2電極12と第2電源22との間には、第2フィルター24が設置されており、第2電源22から第2電極への電流を通過しやすくし、第1電源21からの電流をアースして、第1電源21から第2電源への電流を通過しにくくするように設計されている。 In addition, a second filter 24 is installed between the second electrode 12 and the second power source 22 to facilitate passage of current from the second power source 22 to the second electrode, and from the first power source 21. It is designed to ground the current and make it difficult to pass the current from the first power source 21 to the second power source.
 第1電極11と第2電極12との対向電極間(放電空間)13に、後述の図2に図示してあるようなガス供給手段から前述した薄膜形成ガスGを導入し、第1電源21と第2電源22により、第1電極11と第2電極12間に前述した高周波電界を印加して放電を発生させ、前述した薄膜形成ガスGをプラズマ状態にしながら対向電極の下側(紙面下側)にジェット状に吹き出させて、対向電極下面と基材Fとで作る処理空間をプラズマ状態のガスG°で満たし、図示してない基材の元巻き(アンワインダー)から巻きほぐされて搬送して来るか、あるいは前工程から搬送して来る基材Fの上に、処理位置14付近で薄膜を形成させる。薄膜形成中、後述の図2に図示してあるような電極温度調節手段から媒体が配管を通って電極を加熱または冷却する。 The above-described thin film forming gas G is introduced from the gas supply means as illustrated in FIG. 2 described later into the space (discharge space) 13 between the opposing electrodes of the first electrode 11 and the second electrode 12, and the first power source 21. And a second power source 22 to apply the above-described high-frequency electric field between the first electrode 11 and the second electrode 12 to generate a discharge, while the above-described thin film forming gas G is in a plasma state. The processing space formed by the lower surface of the counter electrode and the base material F is filled with a gas G ° in a plasma state, and is unwound from a base winding (unwinder) (not shown). A thin film is formed in the vicinity of the processing position 14 on the base material F that is transported or transported from the previous process. During the thin film formation, the medium heats or cools the electrode through the pipe from the electrode temperature adjusting means as shown in FIG.
 プラズマ放電処理の際の基材の温度によっては、得られる薄膜の物性や組成等は変化することがあり、これに対して適宜制御することが望ましい。温度調節の媒体としては、蒸留水、油等の絶縁性材料が好ましく用いられる。プラズマ放電処理の際、基材の幅手方向あるいは長手方向での温度ムラができるだけ生じないように、電極の内部の温度を均等に調節することが望まれる。 Depending on the temperature of the substrate during the plasma discharge treatment, the physical properties and composition of the resulting thin film may change, and it is desirable to appropriately control this. As the temperature control medium, an insulating material such as distilled water or oil is preferably used. During the plasma discharge treatment, it is desirable to uniformly adjust the temperature inside the electrode so that temperature unevenness in the width direction or the longitudinal direction of the substrate does not occur as much as possible.
 また、図1に前述の印加電界強度と放電開始電界強度の測定に使用する測定器と測定位置を示した。25および26は高周波電圧プローブであり、27および28はオシロスコープである。 In addition, FIG. 1 shows a measuring instrument and a measurement position used for measuring the applied electric field strength and the discharge starting electric field strength. Reference numerals 25 and 26 are high-frequency voltage probes, and reference numerals 27 and 28 are oscilloscopes.
 ジェット方式の大気圧プラズマ放電処理装置を、基材Fの搬送方向と平行に複数台並べ、同時に同じプラズマ状態のガスを放電させることにより、同一位置に複数層の薄膜を形成可能となり、短時間で所望の膜厚を形成可能となる。また、基材Fの搬送方向と平行に複数台並べ、各装置に異なる薄膜形成ガスを供給して異なったプラズマ状態のガスをジェット噴射すれば、異なった層の積層薄膜を形成することもできる。 By arranging a plurality of jet-type atmospheric pressure plasma discharge treatment apparatuses in parallel with the transport direction of the base material F and simultaneously discharging gas in the same plasma state, it becomes possible to form a plurality of thin films at the same position, and for a short time. Thus, a desired film thickness can be formed. Further, if a plurality of units are arranged in parallel with the transport direction of the base material F, different thin film forming gases are supplied to each apparatus and different plasma states of the gas are jetted, it is also possible to form laminated thin films of different layers. .
 図2は、本発明に有用な対向電極間で基材を処理する方式の大気圧プラズマ放電処理装置の一例を示す概略図である。 FIG. 2 is a schematic view showing an example of an atmospheric pressure plasma discharge treatment apparatus of a method for treating a substrate between counter electrodes useful for the present invention.
 本発明に係る大気圧プラズマ放電処理装置は、少なくともプラズマ放電処理装置30、二つの電源を有する電界印加手段40、ガス供給手段50、電極温度調節手段60を有している装置である。 The atmospheric pressure plasma discharge processing apparatus according to the present invention is an apparatus having at least a plasma discharge processing apparatus 30, an electric field applying means 40 having two power sources, a gas supply means 50, and an electrode temperature adjusting means 60.
 ロール回転電極(第1電極)35と角筒型固定電極群(第2電極)(以下角筒型固定電極群を固定電極群と記す)36との対向電極間32(以下対向電極間を放電空間32とも記す)で、基材Fをプラズマ放電処理して薄膜を形成するものである。 Between the counter electrodes 32 (hereinafter referred to as discharge between the counter electrodes) between the roll rotating electrode (first electrode) 35 and the square tube type fixed electrode group (second electrode) 36 (hereinafter, the square tube type fixed electrode group is referred to as a fixed electrode group). In this case, the base material F is plasma-discharged to form a thin film.
 ロール回転電極35と固定電極群36との間に形成された放電空間32に、ロール回転電極35には第1電源41から周波数ω1、電界強度V1、電流I1の第1の高周波電界を、また固定電極群36には第2電源42から周波数ω2、電界強度V2、電流I2の第2の高周波電界をかけるようになっている。 In the discharge space 32 formed between the roll rotating electrode 35 and the fixed electrode group 36, the roll rotating electrode 35 receives a first high-frequency electric field of frequency ω1, electric field strength V1, current I1 from the first power source 41, and A second high-frequency electric field having a frequency ω2, an electric field strength V2, and a current I2 is applied to the fixed electrode group 36 from the second power source 42.
 ロール回転電極35と第1電源41との間には、第1フィルター43が設置されており、第1フィルタ43は第1電源41から第1電極への電流を通過しやすくし、第2電源42からの電流をアースして、第2電源42から第1電源への電流を通過しにくくするように設計されている。また、固定電極群36と第2電源42との間には、第2フィルタ44が設置されており、第2フィルター44は、第2電源42から第2電極への電流を通過しやすくし、第1電源41からの電流をアースして、第1電源41から第2電源への電流を通過しにくくするように設計されている。 A first filter 43 is installed between the roll rotation electrode 35 and the first power supply 41. The first filter 43 facilitates the passage of current from the first power supply 41 to the first electrode, and the second power supply. It is designed to ground the current from 42 and make it difficult to pass the current from the second power source 42 to the first power source. In addition, a second filter 44 is installed between the fixed electrode group 36 and the second power source 42, and the second filter 44 facilitates passage of current from the second power source 42 to the second electrode, It is designed to ground the current from the first power supply 41 and make it difficult to pass the current from the first power supply 41 to the second power supply.
 なお、本発明においては、ロール回転電極35を第2電極、また角筒型固定電極群36を第1電極としてもよい。いずれにしろ、第1電極には第1電源が、また第2電極には第2電源が接続される。第1電源は第2電源より高い高周波電界強度(V1>V2)を印加することが好ましい。また、周波数はω1<ω2となる能力を有している。 In the present invention, the roll rotating electrode 35 may be the second electrode, and the square tube type fixed electrode group 36 may be the first electrode. In any case, the first power source is connected to the first electrode, and the second power source is connected to the second electrode. The first power source preferably applies a higher high-frequency electric field strength (V1> V2) than the second power source. Further, the frequency has the ability to satisfy ω1 <ω2.
 また、電流はI1<I2となることが好ましい。第1の高周波電界の電流I1は、好ましくは0.3mA/cm~20mA/cm、更に好ましくは1.0mA/cm~20mA/cmである。また、第2の高周波電界の電流I2は、好ましくは10mA/cm~100mA/cm、更に好ましくは20mA/cm~100mA/cmである。 The current is preferably I1 <I2. The current I1 of the first high-frequency electric field is preferably 0.3 mA / cm 2 to 20 mA / cm 2 , more preferably 1.0 mA / cm 2 to 20 mA / cm 2 . The current I2 of the second high frequency electric field is preferably 10 mA / cm 2 to 100 mA / cm 2 , more preferably 20 mA / cm 2 to 100 mA / cm 2 .
 ガス供給手段50のガス発生装置51で発生させた薄膜形成ガスGは、不図示のガス流量調整手段により流量を制御して、給気口52よりプラズマ放電処理容器31内に導入する。 The thin film forming gas G generated by the gas generator 51 of the gas supply means 50 is introduced into the plasma discharge processing vessel 31 from the air supply port 52 while the flow rate is controlled by a gas flow rate adjusting means (not shown).
 樹脂フィルム基材Fを、図示されていない元巻きから巻きほぐして搬送されて来るか、または前工程から矢印方向に搬送されて来て、ガイドロール64を経てニップロール65で基材に同伴されて来る空気等を遮断し、ロール回転電極35に接触したまま巻き回しながら角筒型固定電極群36との間に移送する。 The resin film substrate F is unwound from the original winding (not shown) and conveyed, or is conveyed in the direction of the arrow from the previous process, and accompanied by the nip roll 65 via the guide roll 64 and the substrate. The incoming air or the like is cut off and transferred to the rectangular tube fixed electrode group 36 while being wound while being in contact with the roll rotating electrode 35.
 移送中にロール回転電極35と固定電極群36との両方から電界をかけ、対向電極間(放電空間)32で放電プラズマを発生させる。基材Fは、ロール回転電極35に接触したまま巻き回されながらプラズマ状態のガスにより薄膜を形成する。 During transfer, an electric field is applied from both the roll rotating electrode 35 and the fixed electrode group 36 to generate discharge plasma between the counter electrodes (discharge space) 32. The base material F forms a thin film with a gas in a plasma state while being wound while being in contact with the roll rotating electrode 35.
 なお、角筒型固定電極の数は、上記ロール電極の円周より大きな円周上に沿って複数本設置されており、該電極の放電面積はロール回転電極35に対向している全ての角筒型固定電極のロール回転電極35と対向する面の面積の和で表される。 A plurality of rectangular tube-shaped fixed electrodes are provided along a circumference larger than the circumference of the roll electrode, and the discharge areas of the electrodes are all the corners facing the roll rotating electrode 35. It is represented by the sum of the areas of the surface of the cylindrical fixed electrode facing the roll rotation electrode 35.
 樹脂フィルム基材Fは、ニップロール66、ガイドロール67を経て、図示してない巻き取り機で巻き取るか、次工程に移送する。 Resin film base material F passes through nip roll 66 and guide roll 67 and is wound up by a winder (not shown) or transferred to the next step.
 放電処理済みの処理排ガスG′は排気口53より排出する。 Discharged treated exhaust gas G ′ is discharged from the exhaust port 53.
 薄膜形成中、ロール回転電極35および固定電極群36を加熱または冷却するために、電極温度調節手段60で温度を調節した媒体を送液ポンプPで配管61を経て両電極に送り、電極内側から温度を調節する。なお、68および69はプラズマ放電処理容器31と外界とを仕切る仕切板である。 During the formation of the thin film, in order to heat or cool the roll rotating electrode 35 and the fixed electrode group 36, the medium whose temperature is adjusted by the electrode temperature adjusting means 60 is sent to both electrodes via the pipe 61 by the liquid feed pump P, and from inside the electrodes. Adjust the temperature. Reference numerals 68 and 69 denote partition plates that partition the plasma discharge processing vessel 31 from the outside.
 図3は、図2に示したロール回転電極の導電性の金属質母材とその上に被覆されている誘電体の構造の一例を示す斜視図である。 FIG. 3 is a perspective view showing an example of the structure of the conductive metallic base material of the roll rotating electrode shown in FIG. 2 and the dielectric material coated thereon.
 図3において、ロール電極35aは導電性の金属質母材35Aとその上に誘電体35Bが被覆されたものである。プラズマ放電処理中の電極表面温度を制御し、また基材Fの表面温度を所定値に保つため、温度調節用の媒体(水もしくはシリコンオイル等)が循環できる構造となっている。 In FIG. 3, a roll electrode 35a has a conductive metallic base material 35A and a dielectric 35B coated thereon. In order to control the electrode surface temperature during the plasma discharge process and to keep the surface temperature of the base material F at a predetermined value, a temperature adjusting medium (such as water or silicon oil) can be circulated.
 図4は、角筒型電極の導電性の金属質母材とその上に被覆されている誘電体の構造の一例を示す斜視図である。 FIG. 4 is a perspective view showing an example of the structure of a conductive metallic base material of a rectangular tube type electrode and a dielectric material coated thereon.
 図4において、角筒型電極36aは、導電性の金属質母材36Aに対し、図3同様の誘電体36Bの被覆を有しており、該電極の構造は金属質のパイプになっていて、それがジャケットとなり、放電中の温度調節が行えるようになっている。 In FIG. 4, a rectangular tube electrode 36a has a coating of a dielectric 36B similar to that of FIG. 3 on a conductive metallic base material 36A, and the structure of the electrode is a metallic pipe. , It becomes a jacket so that the temperature can be adjusted during discharge.
 図4に示した角筒型電極36aは円筒型電極でもよいが、角筒型電極は円筒型電極に比べて放電範囲(放電面積)を広げる効果があるので、本発明に好ましく用いられる。 The rectangular tube electrode 36a shown in FIG. 4 may be a cylindrical electrode, but the rectangular tube electrode is preferably used in the present invention because it has an effect of expanding the discharge range (discharge area) as compared with the cylindrical electrode.
 図3および図4において、ロール電極35aおよび角筒型電極36aは、それぞれ導電性の金属質母材35Aおよび36Aの上に誘電体35Bおよび36Bとしてのセラミックスを溶射後、無機化合物の封孔材料を用いて封孔処理したものである。セラミックス誘電体は片肉で1mm程度被覆あればよい。溶射に用いるセラミックス材としては、アルミナ・窒化珪素等が好ましく用いられるが、この中でもアルミナが加工し易いので、特に好ましく用いられる。また、誘電体層がライニングにより無機材料を設けたライニング処理誘電体であってもよい。 3 and 4, the roll electrode 35a and the rectangular tube electrode 36a are formed by spraying ceramics as dielectrics 35B and 36B on conductive metallic base materials 35A and 36A, respectively, and then sealing the inorganic compound. Is subjected to a sealing treatment. The ceramic dielectric may be covered by about 1 mm with a single wall. As the ceramic material used for thermal spraying, alumina, silicon nitride, or the like is preferably used. Among these, alumina is particularly preferable because it is easily processed. The dielectric layer may be a lining-processed dielectric provided with an inorganic material by lining.
 導電性の金属質母材35Aおよび36Aとしては、チタン金属またはチタン合金、銀、白金、ステンレススティール、アルミニウム、鉄等の金属等や、鉄とセラミックスとの複合材料またはアルミニウムとセラミックスとの複合材料を挙げることができるが、後述の理由からはチタン金属またはチタン合金が特に好ましい。 Examples of the conductive metallic base materials 35A and 36A include titanium metal or titanium alloy, metal such as silver, platinum, stainless steel, aluminum and iron, a composite material of iron and ceramics, or a composite material of aluminum and ceramics. Although titanium metal or a titanium alloy is particularly preferable for the reasons described later.
 対向する第1電極および第2の電極の電極間距離は、電極の一方に誘電体を設けた場合、該誘電体表面ともう一方の電極の導電性の金属質母材表面との最短距離のことを言う。双方の電極に誘電体を設けた場合、誘電体表面同士の距離の最短距離のことを言う。電極間距離は、導電性の金属質母材に設けた誘電体の厚さ、印加電界強度の大きさ、プラズマを利用する目的等を考慮して決定されるが、いずれの場合も均一な放電を行う観点から0.1~20mmが好ましく、特に好ましくは0.5~2mmである。 When the dielectric is provided on one of the electrodes, the distance between the opposing first electrode and second electrode is the shortest distance between the surface of the dielectric and the surface of the conductive metal base material of the other electrode. Say that. When a dielectric is provided on both electrodes, it means the shortest distance between the dielectric surfaces. The distance between the electrodes is determined in consideration of the thickness of the dielectric provided on the conductive metallic base material, the magnitude of the applied electric field strength, the purpose of using the plasma, etc. From the viewpoint of performing the above, 0.1 to 20 mm is preferable, and 0.5 to 2 mm is particularly preferable.
 本発明に有用な導電性の金属質母材および誘電体についての詳細については後述する。 Details of the conductive metallic base material and dielectric useful in the present invention will be described later.
 プラズマ放電処理容器31は、パイレックス(登録商標)ガラス製の処理容器等が好ましく用いられるが、電極との絶縁がとれれば金属製を用いることも可能である。例えば、アルミニウム、またはステンレススティールのフレームの内面にポリイミド樹脂等を張り付けてもよく、該金属フレームにセラミックス溶射を行い絶縁性をとってもよい。平行した両電極の両側面(基材面近くまで)を上記のような材質のもので覆うことが好ましい。 The plasma discharge treatment vessel 31 is preferably a treatment vessel made of Pyrex (registered trademark) glass or the like, but may be made of metal as long as it can be insulated from the electrodes. For example, polyimide resin or the like may be attached to the inner surface of an aluminum or stainless steel frame, and the metal frame may be thermally sprayed to obtain insulation. It is preferable to cover both side surfaces of the parallel electrodes (up to the vicinity of the base material surface) with the material as described above.
 本発明の大気圧プラズマ放電処理装置に設置する第1電源(高周波電源)としては、
 印加電源記号  メーカー      周波数      製品名
 A1      神鋼電機      3kHz       SPG3-4500
 A2      神鋼電機      5kHz       SPG5-4500
 A3      春日電機      15kHz       AGI-023
 A4      神鋼電機      50kHz       SPG50-4500
 A5      ハイデン研究所   100kHz*      PHF-6k
 A6      パール工業     200kHz      CF-2000-200k
 A7      パール工業     400kHz      CF-2000-400k
等の市販のものを挙げることができ、いずれも使用することができる。
As the first power source (high frequency power source) installed in the atmospheric pressure plasma discharge processing apparatus of the present invention,
Applied power symbol Manufacturer Frequency Product name A1 Shinko Electric 3kHz SPG3-4500
A2 Shinko Electric 5kHz SPG5-4500
A3 Kasuga Electric 15kHz AGI-023
A4 Shinko Electric 50kHz SPG50-4500
A5 HEIDEN Laboratory 100kHz * PHF-6k
A6 Pearl Industry 200kHz CF-2000-200k
A7 Pearl Industry 400kHz CF-2000-400k
And the like, and any of them can be used.
 また、第2電源(高周波電源)としては、
 印加電源記号  メーカー      周波数      製品名
 B1      パール工業     800kHz      CF-2000-800k
 B2      パール工業     2MHz       CF-2000-2M
 B3      パール工業     13.56MHz     CF-5000-13M
 B4      パール工業     27MHz       CF-2000-27M
 B5      パール工業     150MHz      CF-2000-150M
等の市販のものを挙げることができ、いずれも好ましく使用できる。
As the second power source (high frequency power source),
Applied power symbol Manufacturer Frequency Product name B1 Pearl Industry 800kHz CF-2000-800k
B2 Pearl Industry 2MHz CF-2000-2M
B3 Pearl Industry 13.56MHz CF-5000-13M
B4 Pearl Industry 27MHz CF-2000-27M
B5 Pearl Industry 150MHz CF-2000-150M
And the like, and any of them can be preferably used.
 なお、上記電源のうち、*印はハイデン研究所インパルス高周波電源(連続モードで100kHz)である。それ以外は連続サイン波のみ印加可能な高周波電源である。 Of the above power sources, * indicates a HEIDEN Laboratory impulse high-frequency power source (100 kHz in continuous mode). Other than that, it is a high-frequency power source that can apply only a continuous sine wave.
 本発明においては、このような電界を印加して、均一で安定な放電状態を保つことができる電極を大気圧プラズマ放電処理装置に採用することが好ましい。 In the present invention, it is preferable to employ an electrode capable of maintaining a uniform and stable discharge state by applying such an electric field in an atmospheric pressure plasma discharge treatment apparatus.
 本発明において、対向する電極間に印加する電力は、第2電極(第2の高周波電界)に1W/cm以上の電力(出力密度)を供給し、放電ガスを励起してプラズマを発生させ、エネルギーを薄膜形成ガスに与え、薄膜を形成する。第2電極に供給する電力の上限値としては、好ましくは50W/cm、より好ましくは20W/cmである。下限値は好ましくは1.0W/cmである。なお、放電面積(cm)は電極間において放電が起こる範囲の面積のことを指す。 In the present invention, the power applied between the electrodes facing each other is such that power (power density) of 1 W / cm 2 or more is supplied to the second electrode (second high-frequency electric field) to excite the discharge gas to generate plasma. The energy is applied to the thin film forming gas to form a thin film. The upper limit value of the power supplied to the second electrode is preferably 50 W / cm 2 , more preferably 20 W / cm 2 . The lower limit is preferably 1.0 W / cm 2 . The discharge area (cm 2 ) refers to the area in which discharge occurs between the electrodes.
 また、第1電極(第1の高周波電界)にも1W/cm以上の電力(出力密度)を供給することにより、第2の高周波電界の均一性を維持したまま、出力密度を向上させることができる。これにより更なる均一高密度プラズマを生成でき、更なる製膜速度の向上と膜質の向上が両立できる。好ましくは5W/cm以上である。第1電極に供給する電力の上限値は、好ましくは50W/cmである。 Further, by supplying power (output density) of 1 W / cm 2 or more to the first electrode (first high frequency electric field), the output density can be improved while maintaining the uniformity of the second high frequency electric field. Can do. Thereby, a further uniform high-density plasma can be generated, and a further improvement in film forming speed and an improvement in film quality can be achieved. Preferably it is 5 W / cm 2 or more. The upper limit value of the power supplied to the first electrode is preferably 50 W / cm 2 .
 ここで高周波電界の波形としては特に限定されない。連続モードと呼ばれる連続サイン波状の連続発振モードと、パルスモードと呼ばれるON/OFFを断続的に行う断続発振モード等があり、そのどちらを採用してもよいが、少なくとも第2電極側(第2の高周波電界)は連続サイン波の方がより緻密で良質な膜が得られるので好ましい。 Here, the waveform of the high frequency electric field is not particularly limited. There are a continuous sine wave continuous oscillation mode called a continuous mode, an intermittent oscillation mode called ON / OFF intermittently called a pulse mode, and either of them may be adopted, but at least the second electrode side (second The high-frequency electric field is preferably a continuous sine wave because a denser and better quality film can be obtained.
 このような大気圧プラズマによる薄膜形成法に使用する電極は、構造的にも性能的にも過酷な条件に耐えられるものでなければならない。このような電極としては、金属質母材上に誘電体を被覆したものであることが好ましい。 The electrodes used in such a method for forming a thin film by atmospheric pressure plasma must be able to withstand severe conditions in terms of structure and performance. Such an electrode is preferably a metal base material coated with a dielectric.
 本発明に使用する誘電体被覆電極においては、様々な金属質母材と誘電体との間に特性が合うものが好ましく、その一つの特性として、金属質母材と誘電体との線熱膨張係数の差が10×10-6/℃以下となる組み合わせのものである。好ましくは8×10-6/℃以下、更に好ましくは5×10-6/℃以下、特に好ましくは2×10-6/℃以下である。なお、線熱膨張係数とは周知の材料特有の物性値である。 In the dielectric-coated electrode used in the present invention, it is preferable that the characteristics match between various metallic base materials and dielectrics. One of the characteristics is linear thermal expansion between the metallic base material and the dielectric. The combination is such that the difference in coefficient is 10 × 10 −6 / ° C. or less. It is preferably 8 × 10 −6 / ° C. or less, more preferably 5 × 10 −6 / ° C. or less, and particularly preferably 2 × 10 −6 / ° C. or less. The linear thermal expansion coefficient is a well-known physical property value of a material.
 線熱膨張係数の差が、この範囲にある導電性の金属質母材と誘電体との組み合わせとしては、
 1:金属質母材が純チタンまたはチタン合金で、誘電体がセラミックス溶射被膜
 2:金属質母材が純チタンまたはチタン合金で、誘電体がガラスライニング
 3:金属質母材がステンレススティールで、誘電体がセラミックス溶射被膜
 4:金属質母材がステンレススティールで、誘電体がガラスライニング
 5:金属質母材がセラミックスおよび鉄の複合材料で、誘電体がセラミックス溶射被膜
 6:金属質母材がセラミックスおよび鉄の複合材料で、誘電体がガラスライニング
 7:金属質母材がセラミックスおよびアルミの複合材料で、誘電体がセラミックス溶射皮膜
 8:金属質母材がセラミックスおよびアルミの複合材料で、誘電体がガラスライニング等がある。線熱膨張係数の差という観点では、上記1項または2項および5~8項が好ましく、特に1項が好ましい。
As a combination of a conductive metallic base material and a dielectric whose difference in linear thermal expansion coefficient is within this range,
1: Metal base material is pure titanium or titanium alloy, dielectric is ceramic spray coating 2: Metal base material is pure titanium or titanium alloy, dielectric is glass lining 3: Metal base material is stainless steel, Dielectric is ceramic spray coating 4: Metal base material is stainless steel, Dielectric is glass lining 5: Metal base material is a composite material of ceramics and iron, Dielectric is ceramic spray coating 6: Metal base material Ceramic and iron composite material, dielectric is glass lining 7: Metal base material is ceramic and aluminum composite material, dielectric is ceramic sprayed coating 8: Metal base material is ceramic and aluminum composite material, dielectric The body has glass lining. From the viewpoint of the difference in linear thermal expansion coefficient, the above-mentioned item 1 or item 2 and item 5 to 8 are preferable, and item 1 is particularly preferable.
 本発明において、金属質母材は、上記の特性からはチタンまたはチタン合金が特に有用である。金属質母材をチタンまたはチタン合金とすることにより、誘電体を上記とすることにより、使用中の電極の劣化、特にひび割れ、剥がれ、脱落等がなく、過酷な条件での長時間の使用に耐えることができる。 In the present invention, titanium or a titanium alloy is particularly useful as the metallic base material from the above characteristics. By using titanium or a titanium alloy as the metal base material, the dielectric is used as described above, so that there is no deterioration of the electrode in use, especially cracking, peeling, dropping off, etc., and it can be used for a long time under harsh conditions. Can withstand.
 本発明に有用な電極の金属質母材は、チタンを70質量%以上含有するチタン合金またはチタン金属である。本発明において、チタン合金またはチタン金属中のチタンの含有量は、70質量%以上であれば問題なく使用できるが、好ましくは80質量%以上のチタンを含有しているものが好ましい。本発明に有用なチタン合金またはチタン金属は、工業用純チタン、耐蝕性チタン、高力チタン等として一般に使用されているものを用いることができる。工業用純チタンとしては、TIA、TIB、TIC、TID等を挙げることができ、いずれも鉄原子、炭素原子、窒素原子、酸素原子、水素原子等を極僅か含有しているもので、チタンの含有量としては99質量%以上を有している。耐蝕性チタン合金としては、T15PBを好ましく用いることができ、上記含有原子の他に鉛を含有しており、チタン含有量としては98質量%以上である。 The metallic base material of the electrode useful for the present invention is a titanium alloy or titanium metal containing 70% by mass or more of titanium. In the present invention, the content of titanium in the titanium alloy or titanium metal can be used without any problem as long as it is 70% by mass or more, but preferably contains 80% by mass or more of titanium. As the titanium alloy or titanium metal useful in the present invention, those generally used as industrial pure titanium, corrosion resistant titanium, high strength titanium and the like can be used. Examples of industrial pure titanium include TIA, TIB, TIC, TID, etc., all of which contain very little iron, carbon, nitrogen, oxygen, hydrogen, etc. As content, it has 99 mass% or more. As the corrosion-resistant titanium alloy, T15PB can be preferably used, and it contains lead in addition to the above-mentioned contained atoms, and the titanium content is 98% by mass or more.
 また、チタン合金としては、鉛を除く上記の原子の他に、アルミニウムを含有し、その他バナジウムや錫を含有しているT64、T325、T525、TA3等を好ましく用いることができ、これらのチタン含有量としては、85質量%以上を含有しているものである。これらのチタン合金またはチタン金属はステンレススティール、例えば、AISI316に比べて、熱膨張係数が1/2程度小さく、金属質母材としてチタン合金またはチタン金属の上に施された後述の誘電体との組み合わせがよく、高温、長時間での使用に耐えることができる。 Further, as the titanium alloy, T64, T325, T525, TA3, etc. containing aluminum and vanadium or tin other than the above atoms except lead can be preferably used. As a quantity, it contains 85 mass% or more. These titanium alloys or titanium metals have a thermal expansion coefficient smaller than that of stainless steel, for example, AISI 316, by a dielectric material described later applied on the titanium alloy or titanium metal as a metallic base material. The combination is good and it can withstand use at high temperature for a long time.
 一方、誘電体の求められる特性としては、具体的には比誘電率が6~45の無機化合物であることが好ましく、またこのような誘電体としては、アルミナ、窒化珪素等のセラミックス、あるいはケイ酸塩系ガラス、ホウ酸塩系ガラス等のガラスライニング材等がある。この中では、後述のセラミックスを溶射したものやガラスライニングにより設けたものが好ましい。特にアルミナを溶射して設けた誘電体が好ましい。 On the other hand, the required characteristics of the dielectric are preferably inorganic compounds having a relative dielectric constant of 6 to 45, and such dielectrics include ceramics such as alumina and silicon nitride, or silica. There are glass lining materials such as acid salt glass and borate glass. In this, what sprayed the ceramics mentioned later and the thing provided by glass lining are preferable. In particular, a dielectric provided by spraying alumina is preferable.
 または、上述のような大電力に耐える仕様の一つとして、誘電体の空隙率が10体積%以下、好ましくは8体積%以下であることで、好ましくは0体積%を越えて5体積%以下である。なお、誘電体の空隙率はBET吸着法や水銀ポロシメーターにより測定することができる。後述の実施例においては、島津製作所製の水銀ポロシメーターにより金属質母材に被覆された誘電体の破片を用い、空隙率を測定する。誘電体が低い空隙率を有することにより、高耐久性が達成される。このような空隙を有しつつも空隙率が低い誘電体としては、後述の大気プラズマ溶射法等による高密度、高密着のセラミックス溶射被膜等を挙げることができる。更に空隙率を下げるためには、封孔処理をおこなうことが好ましい。 Alternatively, as one of the specifications that can withstand high power as described above, the porosity of the dielectric is 10% by volume or less, preferably 8% by volume or less, preferably more than 0% by volume and 5% by volume or less. It is. The porosity of the dielectric can be measured by a BET adsorption method or a mercury porosimeter. In the examples described later, the porosity is measured using a dielectric fragment covered with a metallic base material by a mercury porosimeter manufactured by Shimadzu Corporation. High durability is achieved because the dielectric has a low porosity. Examples of the dielectric having such a void and a low void ratio include a high-density, high-adhesion ceramic spray coating by an atmospheric plasma spraying method described later. In order to further reduce the porosity, it is preferable to perform a sealing treatment.
 上記、大気プラズマ溶射法はセラミックス等の微粉末、ワイヤ等をプラズマ熱源中に投入し、溶融または半溶融状態の微粒子として被覆対象の金属質母材に吹き付け、皮膜を形成させる技術である。プラズマ熱源とは分子ガスを高温にし、原子に解離させ、更にエネルギーを与えて電子を放出させた高温のプラズマガスである。このプラズマガスの噴射速度は大きく、従来のアーク溶射やフレーム溶射に比べて、溶射材料が高速で金属質母材に衝突するため、密着強度が高く、高密度な被膜を得ることができる。 The above-mentioned atmospheric plasma spraying method is a technique in which fine powders such as ceramics, wires, and the like are put into a plasma heat source and sprayed onto a metal base material to be coated as fine particles in a molten or semi-molten state to form a film. A plasma heat source is a high-temperature plasma gas in which a molecular gas is heated to a high temperature, dissociated into atoms, and further given energy to release electrons. This plasma gas injection speed is high, and since the sprayed material collides with the metallic base material at a higher speed than conventional arc spraying or flame spraying, it is possible to obtain a coating film with high adhesion strength and high density.
 詳しくは、特開2000-301655号公報に記載の高温被曝部材に熱遮蔽皮膜を形成する溶射方法を参照することができる。この方法により、上記のような被覆する誘電体(セラミック溶射膜)の空隙率にすることができる。 For details, a thermal spraying method for forming a heat shielding film on a high-temperature exposed member described in JP-A No. 2000-301655 can be referred to. By this method, the porosity of the dielectric (ceramic sprayed film) to be coated can be obtained.
 また、大電力に耐える別の好ましい仕様としては、誘電体の厚みが0.5~2mmであることである。この膜厚変動は5%以下であることが望ましく、好ましくは3%以下、更に好ましくは1%以下である。 Also, another preferred specification that can withstand high power is that the dielectric thickness is 0.5 to 2 mm. The film thickness variation is desirably 5% or less, preferably 3% or less, and more preferably 1% or less.
 誘電体の空隙率をより低減させるためには、上記のようにセラミックス等の溶射膜に、更に無機化合物で封孔処理を行うことが好ましい。前記無機化合物としては、金属酸化物が好ましく、この中では特に酸化ケイ素(SiO)を主成分として含有するものが好ましい。 In order to further reduce the porosity of the dielectric, it is preferable that the thermal sprayed film of ceramics or the like is further sealed with an inorganic compound as described above. As the inorganic compound, a metal oxide is preferable, and among these, a compound containing silicon oxide (SiO x ) as a main component is particularly preferable.
 封孔処理の無機化合物は、ゾルゲル反応により硬化して形成したものであることが好ましい。封孔処理の無機化合物が金属酸化物を主成分とするものである場合には、金属アルコキシド等を封孔液として前記セラミック溶射膜上に塗布し、ゾルゲル反応により硬化する。無機化合物がシリカを主成分とするものの場合には、アルコキシシランを封孔液として用いることが好ましい。 The inorganic compound for sealing is preferably formed by curing by a sol-gel reaction. In the case where the inorganic compound for sealing treatment contains a metal oxide as a main component, a metal alkoxide or the like is applied as a sealing liquid on the ceramic sprayed film and cured by a sol-gel reaction. When the inorganic compound is mainly composed of silica, it is preferable to use alkoxysilane as the sealing liquid.
 ここで、ゾルゲル反応の促進にはエネルギー処理を用いることが好ましい。エネルギー処理としては、熱硬化(好ましくは200℃以下)や紫外線照射などがある。更に封孔処理の仕方として、封孔液を希釈し、コーティングと硬化を逐次で数回繰り返すと、よりいっそう無機質化が向上し、劣化のない緻密な電極ができる。 Here, it is preferable to use energy treatment to promote the sol-gel reaction. Examples of the energy treatment include thermosetting (preferably 200 ° C. or less) and ultraviolet irradiation. Furthermore, as a method of sealing treatment, when the sealing liquid is diluted and coating and curing are sequentially repeated several times, the mineralization is further improved and a dense electrode without deterioration can be obtained.
 本発明に係る誘電体被覆電極の金属アルコキシド等を封孔液として、セラミックス溶射膜にコーティングした後、ゾルゲル反応で硬化する封孔処理を行う場合、硬化した後の金属酸化物の含有量は60モル%以上であることが好ましい。封孔液の金属アルコキシドとしてアルコキシシランを用いた場合には、硬化後のSiO(xは2以下)含有量が60モル%以上であることが好ましい。硬化後のSiO含有量は、XPS(X線光電子分光法)により誘電体層の断層を分析することにより測定する。 In the case of performing a sealing treatment that cures by a sol-gel reaction after coating a ceramic sprayed film using the metal alkoxide or the like of the dielectric-coated electrode according to the present invention as a sealing liquid, the content of the metal oxide after curing is 60 It is preferably at least mol%. When alkoxysilane is used as the metal alkoxide of the sealing liquid, the cured SiO x (x is 2 or less) content is preferably 60 mol% or more. The SiO x content after curing is measured by analyzing the tomographic layer of the dielectric layer by XPS (X-ray photoelectron spectroscopy).
 本発明に係る薄膜形成方法の電極においては、電極の少なくとも基材と接する側のJIS B 0601で規定される表面粗さの最大高さ(Rmax)が10μm以下になるように調整することが、本発明に記載の効果を得る観点から好ましいが、更に好ましくは表面粗さの最大値が8μm以下であり、特に好ましくは7μm以下に調整することである。 In the electrode of the thin film forming method according to the present invention, the maximum height (Rmax) of the surface roughness defined by JIS B 0601 on the side in contact with at least the base material of the electrode may be adjusted to 10 μm or less. Although it is preferable from the viewpoint of obtaining the effects described in the present invention, the maximum value of the surface roughness is more preferably 8 μm or less, and particularly preferably 7 μm or less.
 このように誘電体被覆電極の誘電体表面を研磨仕上げする等の方法により、誘電体の厚みおよび電極間のギャップを一定に保つことができ、放電状態を安定化できること、更に熱収縮差や残留応力による歪やひび割れを無くし、且つ高精度で、耐久性を大きく向上させることができる。誘電体表面の研磨仕上げは、少なくとも基材と接する側の誘電体において行われることが好ましい。更にJIS B 0601で規定される中心線平均表面粗さ(Ra)は0.5μm以下が好ましく、更に好ましくは0.1μm以下である。 In this way, the dielectric surface of the dielectric-coated electrode can be polished and the dielectric thickness and the gap between the electrodes can be kept constant, the discharge state can be stabilized, and the heat shrinkage difference and residual It is possible to eliminate distortion and cracking due to stress, and to greatly improve durability with high accuracy. The polishing finish of the dielectric surface is preferably performed at least on the dielectric in contact with the substrate. Furthermore, the center line average surface roughness (Ra) specified by JIS B 0601 is preferably 0.5 μm or less, more preferably 0.1 μm or less.
 本発明に使用する誘電体被覆電極において、大電力に耐える他の好ましい仕様としては、耐熱温度が100℃以上であることである。更に好ましくは120℃以上、特に好ましくは150℃以上である。また、上限は500℃である。なお、耐熱温度とは、大気圧プラズマ処理で用いられる電圧において絶縁破壊が発生せず、正常に放電できる状態において耐えられる最も高い温度のことを指す。このような耐熱温度は、上記のセラミックス溶射や、泡混入量の異なる層状のガラスライニングで設けた誘電体を適用したり、上記金属質母材と誘電体の線熱膨張係数の差の範囲内の材料を適宜選択する手段を適宜組み合わせることによって達成可能である。 In the dielectric-coated electrode used in the present invention, another preferable specification that can withstand high power is that the heat-resistant temperature is 100 ° C. or higher. More preferably, it is 120 degreeC or more, Most preferably, it is 150 degreeC or more. The upper limit is 500 ° C. The heat-resistant temperature refers to the highest temperature that can withstand normal discharge without causing dielectric breakdown at the voltage used in the atmospheric pressure plasma treatment. Such heat-resistant temperature can be applied within the range of the difference between the linear thermal expansion coefficient of the metallic base material and the dielectric material by applying the dielectric material provided by the above-mentioned ceramic spraying or layered glass lining with different bubble mixing amounts. This can be achieved by appropriately combining means for appropriately selecting the materials.
 以上、低屈折率セラミック構成層である、少なくともSiまたはAlを含む酸化物、SiまたはAlを含む窒酸化物、SiまたはAlを含む窒化物を主成分とするセラミック層の形成について述べたが、高屈折率セラミック構成を構成するZn、Ti、Sn、In、Nb、SiまたはAlを含む酸化物、Zn、Ti、Sn、In、Nb、SiまたはAlを含む窒酸化物、Zn、Ti、Sn、In、Nb、SiまたはAlを含む窒化物を主成分とするセラミック層についても、前記大気圧プラズマCVD法により、原料化合物を選択することで低屈折率セラミック構成層と同様に作製することができる。 As described above, formation of a ceramic layer mainly composed of an oxide containing at least Si or Al, a nitride oxide containing Si or Al, or a nitride containing Si or Al, which is a low refractive index ceramic constituent layer, Zn, Ti, Sn, In, Nb, Si or Al-containing oxide, Zn, Ti, Sn, In, Nb, Si or Al-containing nitride oxide, Zn, Ti, Sn constituting the high refractive index ceramic structure A ceramic layer mainly composed of a nitride containing In, Nb, Si, or Al can be produced in the same manner as the low-refractive index ceramic constituent layer by selecting a raw material compound by the atmospheric pressure plasma CVD method. it can.
 高屈折率セラミック構成層に用いられる原料となる有機金属化合物としては、前記ケイ素化合物、アルミニウム化合物に加え、チタン化合物として、例えば、チタンメトキシド、チタンエトキシド、チタンイソプロポキシド、チタンテトライソポロポキシド、チタンn-ブトキシド、チタンジイソプロポキシド(ビス-2,4-ペンタンジオネート)、チタンジイソプロポキシド(ビス-2,4-エチルアセトアセテート)、チタンジ-n-ブトキシド(ビス-2,4-ペンタンジオネート)、チタンアセチルアセトネート、ブチルチタネートダイマー等が挙げられる。 Examples of the organic metal compound used as a raw material for the high refractive index ceramic constituent layer include, in addition to the silicon compound and aluminum compound, titanium compounds such as titanium methoxide, titanium ethoxide, titanium isopropoxide, and titanium tetraisopoloxide. Poxide, titanium n-butoxide, titanium diisopropoxide (bis-2,4-pentanedionate), titanium diisopropoxide (bis-2,4-ethylacetoacetate), titanium di-n-butoxide (bis- 2,4-pentanedionate), titanium acetylacetonate, butyl titanate dimer and the like.
 ジルコニウム化合物としては、ジルコニウムn-プロポキシド、ジルコニウムn-ブトキシド、ジルコニウムt-ブトキシド、ジルコニウムトリ-n-ブトキシドアセチルアセトネート、ジルコニウムジ-n-ブトキシドビスアセチルアセトネート、ジルコニウムアセチルアセトネート、ジルコニウムアセテート、ジルコニウムヘキサフルオロペンタンジオネート等が挙げられる。 Zirconium compounds include zirconium n-propoxide, zirconium n-butoxide, zirconium t-butoxide, zirconium tri-n-butoxide acetylacetonate, zirconium di-n-butoxide bisacetylacetonate, zirconium acetylacetonate, zirconium acetate, Zirconium hexafluoropentanedioate and the like can be mentioned.
 また、錫化合物として、テトラエチル錫、テトラメチル錫、二酢酸ジ-n-ブチル錫、テトラブチル錫、テトラオクチル錫、テトラエトキシ錫、メチルトリエトキシ錫、ジエチルジエトキシ錫、トリイソプロピルエトキシ錫、ジエチル錫、ジメチル錫、ジイソプロピル錫、ジブチル錫、ジエトキシ錫、ジメトキシ錫、ジイソプロポキシ錫、ジブトキシ錫、錫ジブチラート、錫ジアセトアセトナート、エチル錫アセトアセトナート、エトキシ錫アセトアセトナート、ジメチル錫ジアセトアセトナート等、錫水素化合物等、ハロゲン化錫としては、二塩化錫、四塩化錫等が挙げられる。 Further, as tin compounds, tetraethyltin, tetramethyltin, di-n-butyltin diacetate, tetrabutyltin, tetraoctyltin, tetraethoxytin, methyltriethoxytin, diethyldiethoxytin, triisopropylethoxytin, diethyltin , Dimethyltin, diisopropyltin, dibutyltin, diethoxytin, dimethoxytin, diisopropoxytin, dibutoxytin, tin dibutyrate, tin diacetoacetonate, ethyltin acetoacetonate, ethoxytin acetoacetonate, dimethyltin diacetoacetate Examples of tin halides such as nates, tin hydride compounds, etc. include tin dichloride and tin tetrachloride.
 また、その他の有機金属化合物として、例えば、インジウムアセチルアセトナート、インジウム2,6-ジメチルアミノヘプタンジオネート、ニオブメトキシド、ニオブトリフルオロエトキシド、亜鉛アセチルアセトナート、ジエチル亜鉛、などが挙げられる。 Other organometallic compounds include, for example, indium acetylacetonate, indium 2,6-dimethylaminoheptanedionate, niobium methoxide, niobium trifluoroethoxide, zinc acetylacetonate, diethylzinc, and the like.
 このようにして得られる遮熱樹脂基材の熱線遮断構成層(金属層)の表面抵抗としては、8Ω/□以下が好ましい。この表面抵抗値が8Ω/□を超えると電磁波シールド効果が十分に発揮されない。更に好ましい表面抵抗値は6Ω/□以下である。また金属層端部に金属層の表面抵抗値より低い表面抵抗値を持つ電極を設け、アースを取り出すことにより、電磁波シールド効果は更に発揮される。 The surface resistance of the heat ray shielding constituent layer (metal layer) of the heat shielding resin substrate thus obtained is preferably 8Ω / □ or less. When this surface resistance value exceeds 8Ω / □, the electromagnetic wave shielding effect is not sufficiently exhibited. A more preferable surface resistance value is 6Ω / □ or less. Further, by providing an electrode having a surface resistance value lower than the surface resistance value of the metal layer at the end of the metal layer and taking out the ground, the electromagnetic wave shielding effect is further exhibited.
 このようにして得られる遮熱樹脂基材は、ガラス等の基板に貼り合わせるため接着剤層を塗設することが好ましい。 It is preferable that the heat shielding resin base material thus obtained is coated with an adhesive layer so as to be bonded to a substrate such as glass.
 接着剤層は、樹脂フィルム基材側あるいは熱線遮断構成層がある側のどちらに設けてもよいが、ガラス等の基板上に貼り合わせたとき、熱線遮断構成層が基板と樹脂フィルム基材とに挟持されると水分等周囲ガスから封止できるため、遮熱樹脂基材の最表面層に設けることが好ましい。 The adhesive layer may be provided on either the resin film substrate side or the side with the heat ray blocking component layer, but when bonded to a substrate such as glass, the heat ray blocking component layer is formed between the substrate and the resin film substrate. Since it can be sealed from ambient gas such as moisture, it is preferably provided on the outermost surface layer of the heat shielding resin substrate.
 前記接着剤としては、光硬化性もしくは熱硬化性の樹脂を主成分とする接着剤を用いることができる。 As the adhesive, an adhesive mainly composed of a photocurable or thermosetting resin can be used.
 前記接着剤としては、紫外線に対して耐久性を有するものが好ましく、アクリル系粘着剤またはシリコーン系粘着剤が好ましい。更に粘着特性やコストの観点から、アクリル系粘着剤が好ましい。特に剥離強さの制御が容易なことから、アクリル系粘着剤において、溶剤系およびエマルジョン系の中で溶剤系が好ましい。アクリル溶剤系粘着剤として溶液重合ポリマーを使用する場合、そのモノマーとしては公知のものを使用できる。 The adhesive preferably has durability against ultraviolet rays, and is preferably an acrylic pressure-sensitive adhesive or a silicone pressure-sensitive adhesive. Furthermore, an acrylic adhesive is preferable from the viewpoint of adhesive properties and cost. In particular, since the peel strength can be easily controlled, a solvent system is preferable among the solvent system and the emulsion system in the acrylic adhesive. When a solution polymerization polymer is used as the acrylic solvent-based pressure-sensitive adhesive, known monomers can be used as the monomer.
 例えば、骨格としての主モノマーとしては、エチルアクリレート、ブチルアクリレート、2-エチルヘキシルアクリレート、オクリルアクリレート等のアクリル酸エステルを好ましく例示できる。凝集力を向上させるためのコモノマーとしては、酢酸ビニル、アクリルニトリル、スチレン、メチルメタクリレート等を好ましく例示できる。更に架橋を促進して安定した粘着力を付与させ、また水の存在下でもある程度の粘着力を保持するための官能基含有モノマーとしては、メタクリル酸、アクリル酸、イタコン酸、ヒドロキシエチルメタクリレート、グリシジルメタクリレート等を好ましく例示できる。 For example, preferred examples of the main monomer as a skeleton include acrylic acid esters such as ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and acryl acrylate. Preferred examples of the comonomer for improving the cohesive force include vinyl acetate, acrylonitrile, styrene, and methyl methacrylate. In addition, methacrylic acid, acrylic acid, itaconic acid, hydroxyethyl methacrylate, glycidyl can be used as functional group-containing monomers to promote cross-linking and to provide stable adhesive strength and to maintain a certain level of adhesive strength even in the presence of water. Preferred examples include methacrylate.
 粘着剤の製造は公知の方法で行うことができる。例えば、酢酸エチルやトルエン等の有機溶剤の存在下で反応釜内に所定の出発物質を投入し、ベンゾイルパーオキサイド等のパーオキサイド系やアゾビスイソブチロニトリル等のアゾビス系を触媒として、加熱下で重合させることで製造できる。分子量を上げるためには、例えば、反応初期にモノマーを一括投入する方法や、また使用する有機溶剤種では、連鎖移動係数が大きくポリマー成長を抑制するトルエンより酢酸エチルを使用するとよい。ポリマーの重量平均分子量(Mw)は40万以上が好ましく、50万以上が更に好ましい。分子量が40万未満では、イソシアネート硬化剤で架橋されても凝集力が十分なものが得られず、荷重をかけての保持力評価でもすぐに落下したり、またガラス板に貼り合せた後経時後に剥がしたとき、粘着剤がガラス板に残ることがある。 The production of the pressure-sensitive adhesive can be performed by a known method. For example, in the presence of an organic solvent such as ethyl acetate or toluene, a predetermined starting material is introduced into the reaction kettle, and heated using a peroxide system such as benzoyl peroxide or an azobis system such as azobisisobutyronitrile as a catalyst. It can manufacture by polymerizing under. In order to increase the molecular weight, for example, ethyl acetate is preferably used rather than toluene, which has a large chain transfer coefficient and suppresses polymer growth in a method in which monomers are added all at the beginning of the reaction or in an organic solvent species to be used. The weight average molecular weight (Mw) of the polymer is preferably 400,000 or more, and more preferably 500,000 or more. When the molecular weight is less than 400,000, a sufficient cohesive force cannot be obtained even when crosslinked with an isocyanate curing agent. When peeled off later, the adhesive may remain on the glass plate.
 粘着剤の硬化剤としては、特にアクリル溶剤系では一般的なイソシアネート系硬化剤やエポキシ系硬化剤が使用できるが、均一な皮膜を得るためには経時による粘着剤の流動性と架橋が必要なため、イソシアネート系硬化剤が好ましい。 As the curing agent for the adhesive, general isocyanate curing agents and epoxy curing agents can be used, particularly in the acrylic solvent system, but in order to obtain a uniform film, the fluidity and crosslinking of the adhesive over time are required. Therefore, an isocyanate curing agent is preferable.
 前記粘着層には、添加剤として、例えば、安定剤、紫外線吸収剤、難燃剤、帯電防止剤等を含有させることもできる。粘着層の厚みは5~50μmが好ましい。 The adhesive layer may contain, for example, a stabilizer, an ultraviolet absorber, a flame retardant, an antistatic agent and the like as an additive. The thickness of the adhesive layer is preferably 5 to 50 μm.
 粘着層の塗布形成方法としては任意の公知の方法が使用でき、例えば、ダイコーター法、グラビアコーター法、ブレードコーター法、スプレーコーター法、エアーナイフコート法、ディップコート法などが挙げられる。更に粘着層の積層前に、必要に応じて密着性、塗工性向上の目的で、フィルム表面に火炎処理、コロナ放電処理、プラズマ放電処理などの物理的表面処理、易接着性の有機または無機樹脂塗布などの化学的表面処理を行うことが好ましい。 Any known method can be used as a method for coating and forming the adhesive layer, and examples thereof include a die coater method, a gravure coater method, a blade coater method, a spray coater method, an air knife coating method, and a dip coating method. Furthermore, before the adhesion layer is laminated, the surface of the film is subjected to physical surface treatment such as flame treatment, corona discharge treatment, plasma discharge treatment, organic or inorganic, which is easily adhesive, for the purpose of improving adhesion and coating properties as necessary. It is preferable to perform a chemical surface treatment such as resin coating.
 上記粘着材は、本発明に係る第1の透明基材と第2の透明基材を接着させる接着層にも用いることができる。第1の透明基材と第2の透明基材を接着させる接着層の厚みは、熱線遮断構成層からの反射光が灰色金属層との再反射による光の干渉による発色が発生しない厚みにする必要があり、少なくとも2μm以上の厚みを有さなければならない。 The above-mentioned pressure-sensitive adhesive material can also be used for an adhesive layer for bonding the first transparent substrate and the second transparent substrate according to the present invention. The thickness of the adhesive layer for adhering the first transparent base material and the second transparent base material is set so that the reflected light from the heat ray blocking constituent layer does not generate color due to light interference due to re-reflection from the gray metal layer. It must be at least 2 μm thick.
 以下、実施例により本発明を説明するが、本発明はこれにより限定されるものではない。 Hereinafter, although an example explains the present invention, the present invention is not limited by this.
 実施例1
 《PET上ポリマー層の形成》PET/CHC
 帝人デュポン社製PET(ポリエチレンテレフタラート)フィルム(厚さ38μm)HSを第1の透明基材として、この上に下記組成の活性線硬化樹脂層用塗布液を調製、硬化後の膜厚が2μmとなるようにマイクログラビアコーターを用いて塗布し、溶剤を蒸発乾燥後、高圧水銀灯を用いて0.2J/cmの紫外線照射により硬化させ、アクリル系硬化層からなるポリマー膜を形成した。
Example 1
<< Formation of polymer layer on PET >> PET / CHC
Using a Teijin DuPont PET (polyethylene terephthalate) film (thickness 38 μm) HS as a first transparent base material, an actinic radiation curable resin layer coating solution having the following composition was prepared thereon, and the cured film thickness was 2 μm. Then, it was applied using a microgravure coater, and after evaporating and drying the solvent, it was cured by irradiation with ultraviolet rays of 0.2 J / cm 2 using a high-pressure mercury lamp to form a polymer film composed of an acrylic cured layer.
 〈活性線硬化樹脂層用塗布液〉
ジペンタエリスリトールヘキサアクリレート単量体      60質量部
ジペンタエリスリトールヘキサアクリレート2量体      20質量部
ジペンタエリスリトールヘキサアクリレート3量体以上の成分 20質量部
 ジメトキシベンゾフェノン光反応開始剤           4質量部
 メチルエチルケトン                   75質量部
 プロピレングリコールモノメチルエーテル         75質量部
 《低屈折率セラミック構成層の形成》
 形成したアクリル系硬化層からなるポリマー層を有する透明基材上に、以下の作製条件で低屈折率セラミック構成層1(50nm、C含有量7.8at%)、低屈折率セラミック構成層2(50nm、C含有量<0.1at%)、低屈折率セラミック構成層3(500nm、C含有量7.8at%)と以下に記した条件で順次低屈折率セラミック構成層の形成を行った(屈折率は1.46であった)。
<Coating liquid for active ray curable resin layer>
Dipentaerythritol hexaacrylate monomer 60 parts by weight Dipentaerythritol hexaacrylate dimer 20 parts by weight Dipentaerythritol hexaacrylate trimer or higher component 20 parts by weight Dimethoxybenzophenone photoinitiator 4 parts by weight Methyl ethyl ketone 75 parts by weight Propylene Glycol monomethyl ether 75 parts by mass << Formation of low refractive index ceramic constituent layer >>
On the transparent base material which has the polymer layer which consists of the formed acrylic hardening layer, low refractive index ceramic constituent layer 1 (50 nm, C content 7.8 at%), low refractive index ceramic constituent layer 2 ( 50 nm, C content <0.1 at%), low refractive index ceramic constituting layer 3 (500 nm, C content 7.8 at%) and low refractive index ceramic constituting layer were sequentially formed under the conditions described below ( The refractive index was 1.46).
 (低屈折率セラミック構成層1の作製)
 〈低屈折率セラミック構成層1混合ガス組成物〉
 放電ガス:窒素ガス 94.85体積%
 薄膜形成ガス:ヘキサメチルジシロキサン 0.15体積%
 添加ガス:酸素ガス 5.0体積%
 〈低屈折率セラミック構成層1成膜条件〉
 第1電極側
 電源種類 ハイデン研究所 100kHz(連続モード) PHF-6k
 周波数 100kHz
 出力密度 10W/cm(この時の電圧Vpは7kVであった)
 電極温度 120℃
 第2電極側
 電源種類 パール工業 13.56MHz CF-5000-13M
 周波数 13.56MHz
 出力密度 5W/cm(この時の電圧Vpは1kVであった)
 電極温度 90℃。
(Preparation of low refractive index ceramic constituent layer 1)
<Low refractive index ceramic constituent layer 1 mixed gas composition>
Discharge gas: Nitrogen gas 94.85% by volume
Thin film forming gas: hexamethyldisiloxane 0.15% by volume
Additive gas: Oxygen gas 5.0% by volume
<Low refractive index ceramic constituent layer 1 film formation conditions>
1st electrode side Power supply type HEIDEN Laboratory 100kHz (continuous mode) PHF-6k
Frequency 100kHz
Output density 10 W / cm 2 (the voltage Vp at this time was 7 kV)
Electrode temperature 120 ° C
Second electrode side Power supply type Pearl Industry 13.56MHz CF-5000-13M
Frequency 13.56MHz
Output density 5 W / cm 2 (the voltage Vp at this time was 1 kV)
Electrode temperature 90 ° C.
 (低屈折率セラミック構成層2の作製)
 〈低屈折率セラミック構成層2混合ガス組成物〉
 放電ガス:窒素ガス 94.99体積%
 薄膜形成ガス:テトラエトキシシラン 0.01体積%
 添加ガス:酸素ガス 5.0体積%
 〈低屈折率セラミック構成層2成膜条件〉
 第1電極側
 電源種類 ハイデン研究所 100kHz(連続モード) PHF-6k
 周波数 100kHz
 出力密度 10W/cm(この時の電圧Vpは7kVであった)
 電極温度 120℃
 第2電極側
 電源種類 パール工業 13.56MHz CF-5000-13M
 周波数 13.56MHz
 出力密度 10W/cm(この時の電圧Vpは2kVであった)
 電極温度 90℃
 (低屈折率セラミック構成層3の作製)
 〈低屈折率セラミック構成層3混合ガス組成物〉
 放電ガス:窒素ガス 94.5体積%
 薄膜形成ガス:ヘキサメチルジシロキサン 0.5体積%
 添加ガス:酸素ガス 5.0体積%
 〈低屈折率セラミック構成層3成膜条件〉
 第1電極側
 電源種類 ハイデン研究所 100kHz(連続モード) PHF-6k
 周波数 100kHz
 出力密度 10W/cm(この時の電圧Vpは7kVであった)
 電極温度 120℃
 第2電極側
 電源種類 パール工業 13.56MHz CF-5000-13M
 周波数 13.56MHz
 出力密度 5W/cm(この時の電圧Vpは1kVであった)
 電極温度 90℃
 《熱線遮断構成層の形成》In/Ag/In
 〈第1高屈折率セラミック構成層の形成〉
 次に、帝人デュポン社製PET(ポリエチレンテレフタラート)フィルム(厚さ38μm)HSを第2の透明基材としてマグネトロンスパッタ装置にセットし、真空引きをした。そして、チャンバー中にArガスに酸素ガスを2%添加した混合ガスを圧力0.40Paとなるように導入し、Inターゲットをセットしたカソードに直流を印加してスパッタリングを引き起こし、In膜を10nm形成した(屈折率2.06)。
(Preparation of low refractive index ceramic constituent layer 2)
<Low refractive index ceramic constituent layer 2 mixed gas composition>
Discharge gas: Nitrogen gas 94.99 volume%
Thin film forming gas: tetraethoxysilane 0.01% by volume
Additive gas: Oxygen gas 5.0% by volume
<Low refractive index ceramic constituent layer 2 film formation conditions>
1st electrode side Power supply type HEIDEN Laboratory 100kHz (continuous mode) PHF-6k
Frequency 100kHz
Output density 10 W / cm 2 (the voltage Vp at this time was 7 kV)
Electrode temperature 120 ° C
Second electrode side Power supply type Pearl Industry 13.56MHz CF-5000-13M
Frequency 13.56MHz
Power density 10 W / cm 2 (voltage Vp at this time was 2 kV)
Electrode temperature 90 ° C
(Preparation of low refractive index ceramic constituent layer 3)
<Low refractive index ceramic constituent layer 3 mixed gas composition>
Discharge gas: Nitrogen gas 94.5% by volume
Thin film forming gas: Hexamethyldisiloxane 0.5% by volume
Additive gas: Oxygen gas 5.0% by volume
<Low refractive index ceramic constituent layer 3 film formation conditions>
1st electrode side Power supply type HEIDEN Laboratory 100kHz (continuous mode) PHF-6k
Frequency 100kHz
Output density 10 W / cm 2 (the voltage Vp at this time was 7 kV)
Electrode temperature 120 ° C
Second electrode side Power supply type Pearl Industry 13.56MHz CF-5000-13M
Frequency 13.56MHz
Output density 5 W / cm 2 (the voltage Vp at this time was 1 kV)
Electrode temperature 90 ° C
<< Formation of Heat Ray Blocking Constituent Layer >> In 2 O 3 / Ag / In 2 O 3
<Formation of first high refractive index ceramic constituent layer>
Next, PET (polyethylene terephthalate) film (thickness 38 μm) HS manufactured by Teijin DuPont was set as a second transparent substrate in a magnetron sputtering apparatus and evacuated. Then, a mixed gas of oxygen gas was added 2% Ar gas into the chamber is introduced so that the pressure 0.40 Pa, an In 2 O 3 cause sputtering by applying a DC to the cathode equipped with a target, an In 2 An O 3 film was formed to a thickness of 10 nm (refractive index 2.06).
 〈金属層の形成〉
 形成した第1高屈折率セラミック構成層の上に、真空チャンバー中のガスをArガスに切り替え第1圧力を0.45Paとなるようにし、銀ターゲットをセットしたカソードに直流を印加してスパッタリングを引き起こし、銀膜を10nm形成した。
<Formation of metal layer>
On the formed first high refractive index ceramic constituent layer, the gas in the vacuum chamber is switched to Ar gas so that the first pressure is 0.45 Pa, and direct current is applied to the cathode on which the silver target is set to perform sputtering. The silver film was formed to 10 nm.
 〈第2高屈折率セラミック構成層の形成〉
 形成した金属層上に、先に形成した第1高屈折率セラミック構成層と同様な条件でIn膜を26nm形成した。
<Formation of second high refractive index ceramic constituent layer>
On the formed metal layer, an In 2 O 3 film having a thickness of 26 nm was formed under the same conditions as those of the first high refractive index ceramic constituent layer formed earlier.
 《灰色金属層の形成》Ni-Cr
 上記低屈折率セラミック構成層を設けた第1の透明基材の裏側に、真空チャンバー中のガスをArガスとし、第1圧力を0.45Paとなるようにし、Ni-Crターゲットをセットしたカソードに直流を印加してスパッタリングを引き起こし、Ni-Cr膜を8.45nm形成した。
<< Formation of gray metal layer >> Ni-Cr
On the back side of the first transparent base material provided with the low refractive index ceramic constituent layer, a cathode in which a gas in a vacuum chamber is Ar gas, a first pressure is 0.45 Pa, and a Ni—Cr target is set. A direct current was applied to the substrate to cause sputtering, and a Ni—Cr film was formed to 8.45 nm.
 《接着層の形成》
 ブチルアクリレートとメチルアクリレートとを3:1のモル比で共重合した重量平均分子量65万の粘着剤用ポリマーに、イソシアネート架橋剤を添加したアクリル系粘着剤を準備し、第1の透明基材の熱線遮断構成層の表面に該粘着剤を15質量%溶解した塗液を10g/mの割合で塗布・乾燥し、厚み5μmの接着層を設けた。
<Formation of adhesive layer>
An acrylic pressure-sensitive adhesive in which an isocyanate crosslinking agent is added to a pressure-sensitive adhesive polymer having a weight average molecular weight of 650,000 obtained by copolymerizing butyl acrylate and methyl acrylate in a molar ratio of 3: 1 is prepared. A coating solution in which 15% by mass of the pressure-sensitive adhesive was dissolved on the surface of the heat ray blocking constitution layer was applied and dried at a rate of 10 g / m 2 to provide an adhesive layer having a thickness of 5 μm.
 上記各層を帝人デュポン社製PET(ポリエチレンテレフタラート)フィルム(厚さ38μm)HS(PET)の上に、図6(a)のように積層し、PET~低屈折率セラミック構成層からなる遮熱樹脂基材を作製した。 Each of the above layers is laminated on a PET (polyethylene terephthalate) film (thickness 38 μm) HS (PET) manufactured by Teijin DuPont as shown in FIG. A resin substrate was prepared.
 実施例2
 《灰色金属層の形成》Ni-Cr
 帝人デュポン社製PET(ポリエチレンテレフタラート)フィルム(厚さ38μm)HSを第1の透明基材として片側に、真空チャンバー中のガスをArガスとし、第1圧力を0.45Paとなるようにし、Ni-Crターゲットをセットしたカソードに直流を印加してスパッタリングを引き起こし、Ni-Cr膜を3.8nm形成した。更に、Ni-Cr膜を形成した透明基材の反対側の面にも同様にして、Ni-Cr膜を3.8nm形成した。
Example 2
<< Formation of gray metal layer >> Ni-Cr
Teijin DuPont PET (polyethylene terephthalate) film (thickness 38 μm) HS as a first transparent substrate on one side, the gas in the vacuum chamber Ar gas, the first pressure is 0.45 Pa, A direct current was applied to the cathode on which the Ni—Cr target was set to cause sputtering to form a Ni—Cr film of 3.8 nm. Further, a 3.8 nm Ni—Cr film was similarly formed on the opposite surface of the transparent substrate on which the Ni—Cr film was formed.
 《低屈折率セラミック構成層の形成》
 両面にNi-Cr膜を有する第1の透明基材上に、実施例1と同様の方法で、構成層1(50nm、C含有量7.8at%)、低屈折率セラミック構成層2(50nm、C含有量<0.1at%)、低屈折率セラミック構成層3(500nm、C含有量7.8at%)と以下に記した条件で順次低屈折率セラミック構成層の形成を行った(屈折率は1.46であった)。
<< Formation of low refractive index ceramic constituent layer >>
On the first transparent substrate having Ni—Cr films on both sides, in the same manner as in Example 1, component layer 1 (50 nm, C content 7.8 at%), low refractive index ceramic component layer 2 (50 nm , C content <0.1 at%), low refractive index ceramic constituting layer 3 (500 nm, C content 7.8 at%) and low refractive index ceramic constituting layer were sequentially formed under the conditions described below (refractive The rate was 1.46).
 上記の第1の低屈折率セラミック構成層と灰色金属層を形成した第1の透明基材と、実施例1と同様にして形成した第2の透明基材とを図6(b)のように積層し、PET~低屈折率セラミック構成層からなる遮熱樹脂基材を作製した。 FIG. 6B shows the first transparent base material on which the first low refractive index ceramic constituent layer and the gray metal layer are formed, and the second transparent base material formed in the same manner as in Example 1. And a heat shielding resin substrate composed of a PET-low refractive index ceramic constituent layer was produced.
 実施例3
 《熱線遮断構成層の形成》In/Ag/In/Ag/In
 〈第1高屈折率セラミック構成層の形成〉
 帝人デュポン社製PET(ポリエチレンテレフタラート)フィルム(厚さ38μm)HSを第2の透明基材としてマグネトロンスパッタ装置にセットし、真空引きをした。そして、チャンバー中にArガスに酸素ガスを2%添加した混合ガスを圧力0.40Paとなるように導入し、Inターゲットをセットしたカソードに直流を印加してスパッタリングを引き起こし、In膜を35nm形成した(屈折率2.06)。
Example 3
<< Formation of Heat Ray Blocking Component Layer >> In 2 O 3 / Ag / In 2 O 3 / Ag / In 2 O 3
<Formation of first high refractive index ceramic constituent layer>
A Teijin DuPont PET (polyethylene terephthalate) film (thickness 38 μm) HS was set as a second transparent substrate in a magnetron sputtering apparatus, and evacuated. Then, a mixed gas of oxygen gas was added 2% Ar gas into the chamber is introduced so that the pressure 0.40 Pa, an In 2 O 3 cause sputtering by applying a DC to the cathode equipped with a target, an In 2 An O 3 film was formed to a thickness of 35 nm (refractive index 2.06).
 〈金属層の形成〉
 形成した第1高屈折率セラミック構成層の上に、真空チャンバー中のガスをArガスに切り替え、第1圧力を0.45Paとなるようにし、銀ターゲットをセットしたカソードに直流を印加してスパッタリングを引き起こし、銀膜を10nm形成した。
<Formation of metal layer>
On the formed first high refractive index ceramic constituent layer, the gas in the vacuum chamber is switched to Ar gas, the first pressure is set to 0.45 Pa, and direct current is applied to the cathode on which the silver target is set to perform sputtering. A silver film having a thickness of 10 nm was formed.
 〈第2高屈折率セラミック構成層の形成〉
 形成した金属層上に、先に形成した第1高屈折率セラミック構成層と同様な条件でIn膜を35nm形成した。
<Formation of second high refractive index ceramic constituent layer>
On the formed metal layer, an In 2 O 3 film having a thickness of 35 nm was formed under the same conditions as those for the first high-refractive index ceramic constituent layer formed earlier.
 〈金属層の形成〉
 形成した第2高屈折率セラミック構成層の上に、真空チャンバー中のガスをArガスに切り替え、第1圧力を0.45Paとなるようにし、銀ターゲットをセットしたカソードに直流を印加してスパッタリングを引き起こし、銀膜を9nm形成した。
<Formation of metal layer>
On the formed second high refractive index ceramic constituent layer, the gas in the vacuum chamber is switched to Ar gas, the first pressure is set to 0.45 Pa, and direct current is applied to the cathode on which the silver target is set to perform sputtering. A silver film having a thickness of 9 nm was formed.
 〈第3高屈折率セラミック構成層の形成〉
 形成した金属層上に、先に形成した第1高屈折率セラミック構成層と同様な条件でIn膜を35nm形成した。
<Formation of third high refractive index ceramic constituent layer>
On the formed metal layer, an In 2 O 3 film having a thickness of 35 nm was formed under the same conditions as those for the first high-refractive index ceramic constituent layer formed earlier.
 実施例1における各層および上記熱線遮断構成層を用い、図6(c)のように積層し、PET~低屈折率セラミック構成層からなる遮熱樹脂基材を作製した。 Using each layer in Example 1 and the heat ray blocking constituent layer, lamination was performed as shown in FIG. 6C to prepare a heat shielding resin base material composed of PET to a low refractive index ceramic constituent layer.
 実施例4
 《低屈折率セラミック構成層の形成》
 帝人デュポン社製PET(ポリエチレンテレフタラート)フィルム(厚さ38μm)HSを第1の透明基材として片側に、実施例1と同様の方法で、構成層1(50nm、C含有量7.8at%)、低屈折率セラミック構成層2(50nm、C含有量<0.1at%)、低屈折率セラミック構成層3(500nm、C含有量7.8at%)と以下に記した条件で順次低屈折率セラミック構成層の形成を行った(屈折率は1.46であった)。
Example 4
<< Formation of low refractive index ceramic constituent layer >>
Using Teijin DuPont's PET (polyethylene terephthalate) film (thickness 38 μm) HS as a first transparent substrate on one side, in the same manner as in Example 1, component layer 1 (50 nm, C content 7.8 at%) ), Low refractive index ceramic constituent layer 2 (50 nm, C content <0.1 at%), low refractive index ceramic constituent layer 3 (500 nm, C content 7.8 at%), and low refraction in order An index ceramic constituent layer was formed (refractive index was 1.46).
 《灰色金属層の形成》Ni-Cr
 前記低屈折率セラミック構成を形成した第1の透明基材において、低屈折率セラミック構成層をターゲット側に設置し、真空チャンバー中のガスをArガスとし、第1圧力を0.45Paとなるようにし、Ni-Crターゲットをセットしたカソードに直流を印加してスパッタリングを引き起こし、低屈折率セラミック構成層の上にNi-Cr膜を8.45nm形成した。
<< Formation of gray metal layer >> Ni-Cr
In the first transparent substrate having the low refractive index ceramic structure, the low refractive index ceramic structure layer is disposed on the target side, the gas in the vacuum chamber is Ar gas, and the first pressure is 0.45 Pa. Then, direct current was applied to the cathode on which the Ni—Cr target was set to cause sputtering, and a Ni—Cr film of 8.45 nm was formed on the low refractive index ceramic constituent layer.
 実施例3における各層および上記熱線遮断構成層を用い、図6(d)のように積層し、PET~低屈折率セラミック構成層からなる遮熱樹脂基材を作製した。 Using each layer in Example 3 and the heat ray blocking constitution layer, the layers were laminated as shown in FIG. 6 (d) to produce a heat shielding resin substrate composed of PET to a low refractive index ceramic constituting layer.
 実施例5
 実施例2における第1の透明基材、および実施例3の熱線遮断構成層を用い、図6(e)のように積層し、PET~PETからなる遮熱樹脂基材を作製した。
Example 5
Using the first transparent base material in Example 2 and the heat ray blocking constitution layer in Example 3, lamination was performed as shown in FIG. 6E to prepare a heat shielding resin base material made of PET to PET.
 実施例6
 《灰色金属層の形成》Ni-Cr
 帝人デュポン社製PET(ポリエチレンテレフタラート)フィルム(厚さ38μm)HSを第1の透明基材として片側に、真空チャンバー中のガスをArガスとし、第1圧力を0.45Paとなるようにし、Ni-Crターゲットをセットしたカソードに直流を印加してスパッタリングを引き起こし、Ni-Cr膜を8.45nm形成した。
Example 6
<< Formation of gray metal layer >> Ni-Cr
Teijin DuPont PET (polyethylene terephthalate) film (thickness 38 μm) HS as a first transparent substrate on one side, the gas in the vacuum chamber Ar gas, the first pressure is 0.45 Pa, A direct current was applied to the cathode on which the Ni—Cr target was set to cause sputtering to form a 8.45 nm Ni—Cr film.
 《熱線遮断構成層の形成》In/Ag/In/Ag/In
 帝人デュポン社製PET(ポリエチレンテレフタラート)フィルム(厚さ38μm)HSを第2の透明基材として用意し、実施例3と同様に熱線遮断構成層を形成した。
<< Formation of Heat Ray Blocking Component Layer >> In 2 O 3 / Ag / In 2 O 3 / Ag / In 2 O 3
A Teijin DuPont PET (polyethylene terephthalate) film (thickness 38 μm) HS was prepared as a second transparent base material, and a heat ray blocking constitution layer was formed in the same manner as in Example 3.
 《低屈折率セラミック構成層の形成》
 第2の透明基材の熱線遮断構成層の上に、実施例1と同様の方法で、構成層1(50nm、C含有量7.8at%)、低屈折率セラミック構成層2(50nm、C含有量<0.1at%)、低屈折率セラミック構成層3(500nm、C含有量7.8at%)と以下に記した条件で順次低屈折率セラミック構成層の形成を行った(屈折率は1.46であった)。
<< Formation of low refractive index ceramic constituent layer >>
On the heat ray blocking constituent layer of the second transparent substrate, constituent layer 1 (50 nm, C content 7.8 at%), low refractive index ceramic constituent layer 2 (50 nm, C) in the same manner as in Example 1. A low refractive index ceramic constituent layer was formed in order under the conditions described below (content <0.1 at%), low refractive index ceramic constituent layer 3 (500 nm, C content 7.8 at%). 1.46).
 第1の透明基材と第2の透明基材を、図6(f)のように積層し、PET~PETからなる遮熱樹脂基材を作製した。 The first transparent substrate and the second transparent substrate were laminated as shown in FIG. 6 (f) to produce a heat shielding resin substrate made of PET to PET.
 実施例7
 《光安定剤含有PETの形成》PET+光安定剤
 酢酸マグネシウム、三酸化アンチモン、リン酸を用いて重合し、ポリエステルA1を得た。該ポリエステルA1と紫外線吸収剤として2,2′-(1,4-フェニレン)ビス(4H-3,1-ベンズオキサジン-4-オン)を、ベント付き2軸押出機にて紫外線吸収剤が15質量%となる様にコンパウンドし、紫外線吸収剤入りポリエステルA2を得た。ポリエステルA1とポリエステルA2を紫外線吸収剤が全体のポリエステルに対し0.5質量%となる様に仕込み、先ず150℃にて2時間真空乾燥した後、引き続き175℃で3時間真空乾燥し、278℃で溶融押出して、キャスティングドラムにて、テープ状の電極で静電印加させながら、キャスト上で急冷固化し、未延伸フィルムを得た。これを75℃で予熱し、ラジエーションヒーターを併用しながら80℃のロールにて、長手方向に3.3倍延伸し、一軸延伸フィルムとした。この後、該一軸延伸フィルムの両面に、積層膜として易滑剤(粒径0.1μmのコロイダルシリカ固形分比0.35質量部)を含む水分散性アクリル系樹脂(濃度4.0質量%)を#4のメタバーにて両面に塗布した後、110℃で幅方向に3.6倍延伸し、220℃で熱処理して、全体の膜厚が125μmの二軸延伸ポリエステルフィルムを得た。
Example 7
<< Formation of Light Stabilizer-Containing PET >> PET + Light Stabilizer Polyester A1 was obtained by polymerization using magnesium acetate, antimony trioxide, and phosphoric acid. The polyester A1 and 2,2 ′-(1,4-phenylene) bis (4H-3,1-benzoxazin-4-one) as an ultraviolet absorber were mixed with a vented twin screw extruder with an ultraviolet absorber of 15 It compounded so that it might become mass%, and obtained polyester A2 containing a ultraviolet absorber. Polyester A1 and polyester A2 were charged so that the UV absorber was 0.5% by mass with respect to the total polyester, first vacuum dried at 150 ° C. for 2 hours, and then vacuum dried at 175 ° C. for 3 hours. The film was melt-extruded with a casting drum and rapidly solidified on cast while electrostatically applied with a tape-like electrode to obtain an unstretched film. This was preheated at 75 ° C., and stretched 3.3 times in the longitudinal direction with an 80 ° C. roll while using a radiation heater together to obtain a uniaxially stretched film. Thereafter, a water-dispersible acrylic resin (concentration: 4.0% by mass) containing a lubricant (a colloidal silica solid content ratio of 0.35 parts by mass with a particle size of 0.1 μm) as a laminated film on both surfaces of the uniaxially stretched film. Was applied to both sides with a # 4 metabar, stretched 3.6 times in the width direction at 110 ° C., and heat treated at 220 ° C. to obtain a biaxially stretched polyester film having a total film thickness of 125 μm.
 《ポリマー層の形成》CHC
 光安定剤含有PETを第1の透明基材として、この上に下記組成の活性線硬化樹脂層用塗布液を調製、硬化後の膜厚が2μmとなるようにマイクログラビアコーターを用いて塗布し、溶剤を蒸発乾燥後、高圧水銀灯を用いて0.2J/cmの紫外線照射により硬化させ、アクリル系硬化層からなるポリマー膜を形成した。
<< Formation of polymer layer >> CHC
Using the light stabilizer-containing PET as the first transparent substrate, an actinic radiation curable resin layer coating solution having the following composition is prepared thereon, and applied using a micro gravure coater so that the film thickness after curing is 2 μm. The solvent was evaporated and dried, and then cured by irradiation with 0.2 J / cm 2 of ultraviolet light using a high-pressure mercury lamp to form a polymer film composed of an acrylic cured layer.
 《低屈折率セラミック構成層の形成》
 第1の透明基材のポリマー層の上に、実施例1と同様の方法で、構成層1(50nm、C含有量7.8at%)、低屈折率セラミック構成層2(50nm、C含有量<0.1at%)、低屈折率セラミック構成層3(500nm、C含有量7.8at%)と以下に記した条件で、順次低屈折率セラミック構成層の形成を行った(屈折率は1.46であった)。
<< Formation of low refractive index ceramic constituent layer >>
On the polymer layer of the first transparent substrate, in the same manner as in Example 1, component layer 1 (50 nm, C content 7.8 at%), low refractive index ceramic component layer 2 (50 nm, C content) <0.1 at%), low refractive index ceramic constituent layer 3 (500 nm, C content 7.8 at%) and low refractive index ceramic constituent layers were sequentially formed (refractive index was 1). .46).
 《熱線遮断構成層の形成》In/Ag/In/Ag/In
 第1の透明基材の低屈折率セラミック構成層の上に、実施例3と同様に熱線遮断構成層を形成した。
<< Formation of Heat Ray Blocking Component Layer >> In 2 O 3 / Ag / In 2 O 3 / Ag / In 2 O 3
On the low refractive index ceramic constituting layer of the first transparent substrate, a heat ray shielding constituting layer was formed in the same manner as in Example 3.
 《灰色金属層の形成》Ni-Cr
 帝人デュポン社製PET(ポリエチレンテレフタラート)フィルム(厚さ38μm)HSを第2の透明基材として片側に、真空チャンバー中のガスをArガスとし、第1圧力を0.45Paとなるようにし、Ni-Crターゲットをセットしたカソードに直流を印加してスパッタリングを引き起こし、Ni-Cr膜を8.45nm形成した。
<< Formation of gray metal layer >> Ni-Cr
Teijin DuPont PET (polyethylene terephthalate) film (thickness 38 μm) HS as a second transparent substrate on one side, the gas in the vacuum chamber Ar gas, the first pressure is 0.45 Pa, A direct current was applied to the cathode on which the Ni—Cr target was set to cause sputtering to form a 8.45 nm Ni—Cr film.
 前記第1の透明基材と前記第2の透明基材を図6(g)のように積層し、PET~PET+光安定剤からなる遮熱樹脂基材を作製した。  The first transparent base material and the second transparent base material were laminated as shown in FIG. 6G to produce a heat shielding resin base material made of PET to PET + light stabilizer.
 実施例8
 《紫外線吸収剤含有ポリマー層の形成》CHC+紫外線吸収剤
 メチルメタクリレート65質量%、2-ヒドロキシエチルメタクリレート35質量%を共重合させ、平均分子量50000の水酸基導入メタクリル酸エステル樹脂を得た。この樹脂に対して、紫外線吸収剤としてベンゾトリアゾール系紫外線吸収剤である2-(2H-ベンゾトリアゾール-2-イル)-4,6-ジ-t-ペンチルフェノール(TINUVIN328;チバ・ジャパン(株)製)を5質量%、光安定剤としてヒンダードアミン系光安定剤であるデカン二酸ビス[2,2,6,6-テトラメチル-1(オクチルオキシ)-4-ピペリジニル]エステル(TINUVIN123;チバ・ジャパン(株)製)を5質量%配合し、粘度調整のためメチルエチルケトンにて希釈し、固形分が20質量%となるよう調整した主剤(a)を得た。一方、架橋剤(硬化剤)となるポリイソシアネート化合物として、アダクト型のヘキサメチレンジイソシアネートをメチルエチルケトンで固形分が75質量%となるように調整した硬化剤(b)を得た。上記主剤(a)に対して、上記硬化剤(b)を15質量%添加して塗工液を調製した。
Example 8
<< Formation of UV Absorber-Containing Polymer Layer >> CHC + UV Absorber Methyl methacrylate 65% by mass and 2-hydroxyethyl methacrylate 35% by mass were copolymerized to obtain a hydroxyl group-introduced methacrylate resin having an average molecular weight of 50000. For this resin, 2- (2H-benzotriazol-2-yl) -4,6-di-t-pentylphenol (TINUVIN328; Ciba Japan Co., Ltd.), which is a benzotriazole-based ultraviolet absorber as an ultraviolet absorber. Decanedioic acid bis [2,2,6,6-tetramethyl-1 (octyloxy) -4-piperidinyl] ester (TINUVIN123; Ciba (Made by Japan Co., Ltd.) was blended in an amount of 5% by mass, diluted with methyl ethyl ketone to adjust the viscosity, and the main component (a) adjusted to a solid content of 20% by mass was obtained. On the other hand, as a polyisocyanate compound serving as a cross-linking agent (curing agent), a curing agent (b) obtained by adjusting adduct-type hexamethylene diisocyanate with methyl ethyl ketone so that the solid content was 75% by mass was obtained. A coating liquid was prepared by adding 15% by mass of the curing agent (b) to the main agent (a).
 この塗工液を実施例7で作製した光安定剤含有PET上に、塗布量が固形分で5g/mとなるように連続塗工し、乾燥温度60℃の条件で乾燥した。 This coating solution was continuously coated on the light stabilizer-containing PET prepared in Example 7 so that the coating amount was 5 g / m 2 in terms of solid content, and dried at a drying temperature of 60 ° C.
 実施例1における各層、実施例3の熱線遮断構成層および上記光安定剤含有PET上の紫外線吸収剤含有ポリマー層を用い、図6(h)のように積層し、PET~低屈折率セラミック構成層からなる遮熱樹脂基材を作製した。 Each layer in Example 1, the heat ray blocking constitution layer in Example 3, and the UV absorber-containing polymer layer on the light stabilizer-containing PET are laminated as shown in FIG. A thermal insulation resin substrate composed of layers was prepared.
 第1の透明基材を作製時に低屈折率セラミック構成層を設けた後、以下に記載の離型性の樹脂材料を低屈折率セラミック構成層の上にラミネートし、低屈折率セラミック層に傷や異物付着を防止して熱線遮断構成層を設けた。 After providing the low refractive index ceramic constituent layer during the production of the first transparent substrate, the release resin material described below is laminated on the low refractive index ceramic constituent layer, and the low refractive index ceramic layer is scratched. And a heat ray blocking component layer was provided to prevent adhesion of foreign matter.
 (離型性の樹脂材料の作製)
 厚さ38μmのポリエチレンテレフタレートフィルム上にシリコーン系剥離剤を塗布し、このシリコーン系剥離剤が塗布された面に、アクリル系粘着剤(ブチルアクリレートを主モノマーとする重合体)100質量部、架橋剤として75質量%濃度のヘキサメチレンジイソシアネート・トリメチロールプロパンアダクト溶液(商品名コロネートHL、固形分濃度75質量%、日本ポリウレタン株式会社製)6質量部、20質量%濃度のメチル化メチロールメラミン4質量部、および架橋触媒としてジノニルナフタレン・ジスルホニックアシド0.5質量部を、乾燥後の厚みが5μmとなるように塗布し、乾燥装置により100℃で3分間乾燥させて接着層を形成し、その直後、接着層と厚さ38μmのポリエチレンテレフタレートフィルム(基材)とを貼り合わせ、離型性の樹脂材料を作製した。
(Production of releasable resin material)
A silicone release agent is applied onto a 38 μm thick polyethylene terephthalate film, and 100 parts by mass of an acrylic pressure-sensitive adhesive (polymer containing butyl acrylate as a main monomer) is applied to the surface on which the silicone release agent is applied. 6 parts by mass of hexamethylene diisocyanate / trimethylolpropane adduct solution (trade name: Coronate HL, solid content: 75% by mass, manufactured by Nippon Polyurethane Co., Ltd.) of 75% by mass, 4 parts by mass of 20% by mass of methylated methylolmelamine And 0.5 parts by weight of dinonylnaphthalene / disulfonic acid as a crosslinking catalyst are applied so that the thickness after drying is 5 μm, and dried at 100 ° C. for 3 minutes with a drying apparatus to form an adhesive layer, Immediately thereafter, the adhesive layer and a 38 μm thick polyethylene terephthalate film (base ) And the bonding to prepare a releasing property of the resin material.
 比較例1
 低屈折率セラミック構成層を用いない以外は、実施例1と同様の構成で遮熱樹脂基材を作製した(図6(i))。
Comparative Example 1
Except not using a low refractive index ceramic structural layer, the heat-shielding resin base material was produced by the structure similar to Example 1 (FIG.6 (i)).
 比較例2
 低屈折率セラミック構成層を用いない以外は、実施例8と同様の構成で遮熱樹脂基材を作製した(図6(j))。
Comparative Example 2
Except not using a low refractive index ceramic structural layer, the heat-shielding resin base material was produced by the structure similar to Example 8 (FIG.6 (j)).
 〔評価〕
 評価の際は、図に示すように、3.2mmのフロートガラスに前記第1の透明基材と第2の透明基材とを張り合わせた際に使用した粘着剤を使用し、張り合わせて評価した。
[Evaluation]
At the time of evaluation, as shown in the figure, the adhesive used when the first transparent substrate and the second transparent substrate were bonded to a 3.2 mm float glass was used for evaluation. .
 《耐久性試験1》
 サンシャインウェザーメーター(スガ試験機(株)製、WEL-SUN-HCL型)を使用し、JIS R 5759に準じてフィルムに3000時間(屋外暴露3年間相当)照射することにより、屋外暴露促進試験を行った。試験後の試料について各測定を実施した。
<< Durability Test 1 >>
Using a sunshine weather meter (Suga Test Instruments Co., Ltd., WEL-SUN-HCL type), irradiating the film for 3000 hours (equivalent to outdoor exposure for 3 years) according to JIS R 5759 went. Each measurement was performed on the sample after the test.
 ヘイズ
 全自動直読ヘイズコンピューターHGM-2DP(スガ試験機(株)製)を用いて、耐候試験後の試料について厚み方向のヘイズを耐候試験前後で測定し、以下の基準で判定した。
Haze Using a fully automatic direct reading haze computer HGM-2DP (manufactured by Suga Test Instruments Co., Ltd.), the haze in the thickness direction was measured before and after the weathering test for the sample after the weathering test, and judged according to the following criteria.
 ◎:ヘイズ1.0%未満
 △:ヘイズ1.0%以上3.0%未満
 ×:ヘイズ3.0%以上。
A: Haze of less than 1.0% Δ: Haze of 1.0% or more and less than 3.0% ×: Haze of 3.0% or more.
 黄変度
 分光式色差計SE-2000型(日本電色工業(株)製)を用い、JIS K 7105に従って、透過法で耐候試験前後の試料のL、a、bを測定し、黄変をbで評価し、以下の評価を行った。
Yellowing degree Using a spectroscopic color difference meter SE-2000 (manufactured by Nippon Denshoku Industries Co., Ltd.), according to JIS K 7105, the L, a, and b of the sample before and after the weather resistance test were measured by the transmission method. Evaluation was made by b, and the following evaluation was performed.
 ◎:耐候試験前後のbの増加量1.0未満
 △:耐候試験前後のbの増加量1.0以上3.0未満
 ×:耐候試験前後のbの増加量3.0以上。
A: Increase in b before and after weathering test is less than 1.0 Δ: Increase in b before and after weathering test 1.0 to less than 3.0 ×: Increase in b before and after weathering test 3.0 or more
 機械強度
 フィルムの長手方向および横方向の引張強度は、ISO 527-1-2に従い、引張応力測定装置(Ulm製、Zwick 010)を使用し、以下の基準で判定した。
Mechanical strength The tensile strength in the longitudinal direction and the transverse direction of the film was determined according to the following criteria using a tensile stress measuring device (manufactured by Ulm, Zwick 010) according to ISO 527-1-2.
 ◎:耐候試験前の引張強度に対して、80%以上
 △:耐候試験前の引張強度に対して、60%以上80%未満
 ×:耐候試験前の引張強度に対して、60%未満。
A: 80% or more with respect to the tensile strength before the weathering test Δ: 60% or more and less than 80% with respect to the tensile strength before the weathering test ×: Less than 60% with respect to the tensile strength before the weathering test
 《耐久性試験2》
 作製した各試料を3mm厚のフロートガラスに粘着材を介して貼り合わせ、図5に示すような装置を用いて、ガラスに粘着材を介して貼り合わせた遮熱樹脂基材試料を105℃100%RH環境下に24時間(HR)、48時間(HR)曝し、耐湿性試験を行った。試験後の試料について各測定を実施した。
<< Durability Test 2 >>
Each manufactured sample was bonded to a 3 mm thick float glass via an adhesive, and a thermal insulation resin substrate sample bonded to the glass via an adhesive using an apparatus as shown in FIG. The moisture resistance test was performed by exposing to a% RH environment for 24 hours (HR) and 48 hours (HR). Each measurement was performed on the sample after the test.
 《耐久性試験3》
 作製した各試料を、-30℃30min、80℃30minのサイクルを100回(昇温1h、降温2h)の繰り返し加熱冷却サイクル下に静置し、上記の耐久性試験1を24HR行った。試験後の試料について各測定を実施した。
<< Durability Test 3 >>
Each of the prepared samples was allowed to stand under a repeated heating and cooling cycle of -30 ° C. for 30 minutes and 80 ° C. for 30 minutes 100 times (temperature increase 1 h, temperature decrease 2 h), and the durability test 1 was performed for 24 HR. Each measurement was performed on the sample after the test.
 光学性能
 日立製作所製U-4000型分光光度計を使用して、JIS R5756に基づいて反射スペクトルを測定して可視光反射率(%)を算出し、以下の基準で判定した。
Optical performance Using a U-4000 spectrophotometer manufactured by Hitachi, Ltd., a reflection spectrum was measured based on JIS R5756 to calculate a visible light reflectance (%), and the determination was made according to the following criteria.
 ◎:変化なし
 △:やや劣化
 ×:大きく劣化
 SC(遮蔽係数)
 JIS R5756に基づいて遮蔽係数を測定および算出した。ここで遮蔽係数とは、3mmの透明板ガラス(単板)の透過、および再放射による室内流入熱量を1としたときの流入熱量を表す相対値であり、JIS R3106で規定される日射熱取得率との間には、遮蔽係数=日射熱取得率/0.88の関係がある。
◎: No change △: Slightly degraded ×: Majorly degraded SC (shielding coefficient)
The shielding coefficient was measured and calculated based on JIS R5756. Here, the shielding coefficient is a relative value representing the inflow heat amount when the inflow heat amount in the room due to the transmission and re-radiation of 3 mm transparent plate glass (single plate) is 1, and the solar heat acquisition rate specified in JIS R3106 There is a relation of shielding factor = solar heat acquisition rate / 0.88.
 ◎:変化なし
 △:やや劣化
 ×:大きく劣化。
A: No change Δ: Slightly degraded ×: Degraded greatly.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、本発明の遮熱樹脂基材は、全ての耐久性試験で比較に対して優れていることがわかる。 From Table 1, it can be seen that the thermal barrier resin substrate of the present invention is superior to comparison in all durability tests.
 10 プラズマ放電処理装置
 11 第1電極
 12 第2電極
 21 第1電源
 22 第2電源
 24 第2フィルタ
 30 プラズマ放電処理装置
 32 放電空間
 35 ロール回転電極
 35a ロール電極
 35A 金属質母材
 35B 誘電体
 36 角筒型固定電極群
 40 電界印加手段
 41 第1電源
 42 第2電源
 43 第1フィルタ
 44 第2フィルタ
 50 ガス供給手段
 51 ガス発生装置
 52 給気口
 53 排気口
 60 電極温度調節手段
 G 薄膜形成ガス
 G° プラズマ状態のガス
 G′ 処理排ガス
 F 基材
DESCRIPTION OF SYMBOLS 10 Plasma discharge processing apparatus 11 1st electrode 12 2nd electrode 21 1st power supply 22 2nd power supply 24 2nd filter 30 Plasma discharge processing apparatus 32 Discharge space 35 Roll rotation electrode 35a Roll electrode 35A Metal base material 35B Dielectric 36 Angle Cylindrical fixed electrode group 40 Electric field applying means 41 1st power supply 42 2nd power supply 43 1st filter 44 2nd filter 50 Gas supply means 51 Gas generator 52 Air supply port 53 Exhaust port 60 Electrode temperature adjusting means G Thin film forming gas G ° Gas in plasma G 'treated exhaust gas F Base material

Claims (22)

  1. 金、銀、銅、アルミニウムの単体もしくはこれらの合金からなる金属層を少なくとも1層含む熱線遮断構成層と、チタン、クロム、ステンレスおよびニッケル-クロムの単体またはそれらを含む合金のうち、少なくとも1種類の灰色金属層と、SiまたはAlを含む酸化物、SiまたはAlを含む窒酸化物、SiまたはAlを含む窒化物を主成分とする少なくとも1層の低屈折率セラミック構成層とを有することを特徴とする遮熱樹脂基材。 At least one of a heat ray shielding component layer including at least one metal layer made of gold, silver, copper, aluminum alone or an alloy thereof and at least one of titanium, chromium, stainless steel and nickel-chromium alone or an alloy containing them. A gray metal layer and at least one low refractive index ceramic constituent layer mainly composed of an oxide containing Si or Al, a nitride oxide containing Si or Al, or a nitride containing Si or Al. Heat insulation resin base material.
  2. 前記遮熱樹脂基材が、熱線遮断構成層、灰色金属層、低屈折率セラミック構成層の順で配置されていることを特徴とする請求項1に記載の遮熱樹脂基材。 The heat-insulating resin base material according to claim 1, wherein the heat-insulating resin base material is disposed in the order of a heat ray shielding constituent layer, a gray metal layer, and a low refractive index ceramic constituent layer.
  3. 前記遮熱樹脂基材が、灰色金属層、熱線遮断構成層、低屈折率セラミック構成層の順で配置されていることを特徴とする請求項1に記載の遮熱樹脂基材。 The heat-insulating resin base material according to claim 1, wherein the heat-insulating resin base material is arranged in the order of a gray metal layer, a heat ray shielding constituent layer, and a low refractive index ceramic constituent layer.
  4. 前記熱線遮断構成層が第1の透明基材に設けられ、前記灰色金属層が第2の透明基材に設けられ、該第1の透明基材と該第2の透明基材とを接着層により貼り合わせたことを特徴とする請求項1~3のいずれか1項に記載の遮熱樹脂基材。 The heat ray blocking component layer is provided on a first transparent substrate, the gray metal layer is provided on a second transparent substrate, and the first transparent substrate and the second transparent substrate are bonded to each other. The heat-shielding resin base material according to any one of claims 1 to 3, wherein the heat-shielding resin base material is bonded together.
  5. 前記低屈折率セラミック構成層が、炭素含有量0.1at%未満である酸化ケイ素膜と炭素含有量が1~40at%である酸化ケイ素膜を少なくともそれぞれ1層ずつ含むことを特徴とする請求項1~4のいずれか1項に記載の遮熱樹脂基材。 The low refractive index ceramic constituting layer includes at least one silicon oxide film having a carbon content of less than 0.1 at% and one silicon oxide film having a carbon content of 1 to 40 at%, respectively. 5. The heat shielding resin substrate according to any one of 1 to 4.
  6. 前記低屈折率セラミック構成層が、大気圧もしくはその近傍の圧力下、放電空間に薄膜形成ガスおよび放電ガスを含有するガスを供給し、該放電空間に高周波電界を形成することにより該ガスを励起し、樹脂基材を励起したガスに晒すことにより、該樹脂基材上に薄膜を形成する薄膜形成方法により形成されたことを特徴とする請求項1~5のいずれか1項に記載の遮熱樹脂基材。 The low-refractive index ceramic constituent layer supplies a gas containing a thin film forming gas and a discharge gas to the discharge space under atmospheric pressure or a pressure in the vicinity thereof, thereby exciting the gas by forming a high-frequency electric field in the discharge space. The shielding film according to any one of claims 1 to 5, which is formed by a thin film forming method in which a thin film is formed on the resin substrate by exposing the resin substrate to an excited gas. Thermal resin base material.
  7. 前記放電ガスが窒素ガスであり、放電空間に印加される高周波電界は、第1の高周波電界および第2の高周波電界を重畳したものであり、該第1の高周波電界の周波数ω1より該第2の高周波電界の周波数ω2が高く、該第1の高周波電界の強さV1、該第2の高周波電界の強さV2および放電開始電界の強さIVとの関係が、V1≧IV>V2またはV1>IV≧V2の関係を満たし、且つ該第2の高周波電界の出力密度が1W/cm以上であることを特徴とする請求項6に記載の遮熱樹脂基材。 The discharge gas is nitrogen gas, and the high-frequency electric field applied to the discharge space is a superposition of the first high-frequency electric field and the second high-frequency electric field. The frequency ω2 of the high-frequency electric field is high, and the relationship among the first high-frequency electric field strength V1, the second high-frequency electric field strength V2, and the discharge starting electric field strength IV is V1 ≧ IV> V2 or V1 The thermal insulation resin substrate according to claim 6, wherein a relationship of> IV ≧ V2 is satisfied, and an output density of the second high-frequency electric field is 1 W / cm 2 or more.
  8. 前記低屈折率セラミック構成層の屈折率が、1.3以上2.0未満であることを特徴とする請求項1~7のいずれか1項に記載の遮熱樹脂基材。 The heat-shielding resin substrate according to any one of claims 1 to 7, wherein a refractive index of the low refractive index ceramic constituting layer is 1.3 or more and less than 2.0.
  9. 前記低屈折率セラミック構成層の水蒸気透過率(JIS K7129-1992 B法)が、0.01g/(m・24h)以下(40℃90%RH条件下)であることを特徴とする請求項1~8のいずれか1項に記載の遮熱樹脂基材。 The water vapor permeability (JIS K7129-1992 B method) of the low refractive index ceramic constituent layer is 0.01 g / (m 2 · 24 h) or less (40 ° C., 90% RH condition). 9. The heat shielding resin substrate according to any one of 1 to 8.
  10. 前記熱線遮断構成層が、少なくともZn、Ti、Sn、In、Nb、SiまたはAlを含む酸化物、Zn、Ti、Sn、In、Nb、SiまたはAlを含む窒酸化物、Zn、Ti、Sn、In、Nb、SiまたはAlを含む窒化物を主成分とする少なくとも1層からなる高屈折率セラミック構成層、前記金属層、少なくともZn、Ti、Sn、In、Nb、SiまたはAlを含む酸化物、Zn、Ti、Sn、In、Nb、SiまたはAlを含む窒酸化物、Zn、Ti、Sn、In、Nb、SiまたはAlを含む窒化物を主成分とする少なくとも1層からなる高屈折率セラミック構成層、と順次積層された構成を有することを特徴とする請求項1~9のいずれか1項に記載の遮熱樹脂基材。 The heat ray blocking constituent layer is an oxide containing at least Zn, Ti, Sn, In, Nb, Si or Al, a nitride oxide containing Zn, Ti, Sn, In, Nb, Si or Al, Zn, Ti, Sn A high refractive index ceramic constituent layer comprising at least one layer mainly composed of nitride containing In, Nb, Si or Al, the metal layer, an oxide containing at least Zn, Ti, Sn, In, Nb, Si or Al High refractive index consisting of at least one layer mainly composed of nitrides containing Zn, Ti, Sn, In, Nb, Si or Al, nitrides containing Zn, Ti, Sn, In, Nb, Si or Al The thermal barrier resin base material according to any one of claims 1 to 9, wherein the thermal barrier resin base material has a configuration in which a ceramic layer is sequentially laminated.
  11. 前記高屈折率セラミック構成層と前記金属層の間に、更に金、銀、銅、アルミニウムの単体もしくはこれらの合金からなる1層以上の金属層および少なくともZn、Ti、Sn、In、Nb、SiまたはAlを含む酸化物、Zn、Ti、Sn、In、Nb、SiまたはAlを含む窒酸化物、Zn、Ti、Sn、In、Nb、SiまたはAlを含む窒化物を主成分とする少なくとも1層からなる高屈折率セラミック構成層が1組以上あることを特徴とする請求項10に記載の遮熱樹脂基材。 Between the high-refractive-index ceramic constituent layer and the metal layer, one or more metal layers made of a simple substance of gold, silver, copper, aluminum or an alloy thereof and at least Zn, Ti, Sn, In, Nb, Si Or an oxide containing Al, a nitride oxide containing Zn, Ti, Sn, In, Nb, Si or Al, or a nitride containing Zn, Ti, Sn, In, Nb, Si or Al as a main component. The heat-shielding resin base material according to claim 10, wherein there are one or more sets of high refractive index ceramic constituting layers.
  12. 前記高屈折率セラミック構成層の屈折率が、1.8以上2.5未満であることを特徴とする請求項10または11に記載の遮熱樹脂基材。 The thermal insulation resin substrate according to claim 10 or 11, wherein the high refractive index ceramic constituting layer has a refractive index of 1.8 or more and less than 2.5.
  13. 前記熱線遮断構成層が、ファブリーペロ干渉フィルターであり、該ファブリーペロ干渉フィルターが第1の酸化物層、第1の金属層、第2の酸化物層、第2の金属層、第3の酸化物層からなることを特徴とする請求項1~9のいずれか1項に記載の遮熱樹脂基材。 The heat ray blocking layer is a Fabry-Perot interference filter, and the Fabry-Perot interference filter includes a first oxide layer, a first metal layer, a second oxide layer, a second metal layer, and a third oxidation. 10. The heat-insulating resin base material according to claim 1, comprising a physical layer.
  14. 前記灰色金属層がニッケルクロム層であることを特徴とする請求項1~13のいずれか1項に記載の遮熱樹脂基材。 The thermal barrier resin substrate according to any one of claims 1 to 13, wherein the gray metal layer is a nickel chromium layer.
  15. 前記ニッケルクロム層のAVIS/RVISが0.6より大であることを特徴とする請求項14に記載の遮熱樹脂基材。 The heat shielding resin substrate according to claim 14, wherein A VIS / R VIS of the nickel chromium layer is larger than 0.6.
  16. 前記AVIS/RVISが1.07~1.44であることを特徴とする請求項15に記載の遮熱樹脂基材。 The heat shielding resin substrate according to claim 15, wherein the A VIS / R VIS is 1.07 to 1.44.
  17. 前記第1の透明基材と第2の透明基材が、ポリエチレンテレフタレート、ポリブチレンテレフタレートまたはポリエチレンナフタレートであることを特徴とする請求項1~16のいずれか1項に記載の遮熱樹脂基材。 The heat shielding resin group according to any one of claims 1 to 16, wherein the first transparent substrate and the second transparent substrate are polyethylene terephthalate, polybutylene terephthalate, or polyethylene naphthalate. Wood.
  18. 前記第1の透明基材と第2の透明基材に紫外線吸収剤または酸化防止剤の少なくとも1種が含まれていることを特徴とする請求項1~17のいずれか1項に記載の遮熱樹脂基材。 The light-shielding device according to any one of claims 1 to 17, wherein the first transparent substrate and the second transparent substrate contain at least one of an ultraviolet absorber and an antioxidant. Thermal resin base material.
  19. ポリマー層が更に設けられていることを特徴とする請求項1~18のいずれか1項に記載の遮熱樹脂基材。 The heat-shielding resin substrate according to any one of claims 1 to 18, further comprising a polymer layer.
  20. 前記ポリマー層が光硬化性もしくは熱硬化性の樹脂を主成分とすることを特徴とする請求項19に記載の遮熱樹脂基材。 The thermal barrier resin base material according to claim 19, wherein the polymer layer contains a photocurable or thermosetting resin as a main component.
  21. 前記ポリマー層に紫外線吸収剤または酸化防止剤の少なくとも1種が含まれていることを特徴とする請求項19または20に記載の遮熱樹脂基材。 21. The heat-insulating resin substrate according to claim 19 or 20, wherein the polymer layer contains at least one of an ultraviolet absorber and an antioxidant.
  22. 請求項1~21のいずれか1項に記載の遮熱樹脂基材を、接着剤を介してガラスもしくはガラス代替樹脂基材に貼り合わせたことを特徴とする建築部材。 A building member comprising the heat-shielding resin substrate according to any one of claims 1 to 21 bonded to glass or a glass substitute resin substrate via an adhesive.
PCT/JP2009/060047 2008-06-06 2009-06-02 Heat shielding resin base and construction member using the same WO2009148045A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-149157 2008-06-06
JP2008149157 2008-06-06

Publications (1)

Publication Number Publication Date
WO2009148045A1 true WO2009148045A1 (en) 2009-12-10

Family

ID=41398121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060047 WO2009148045A1 (en) 2008-06-06 2009-06-02 Heat shielding resin base and construction member using the same

Country Status (1)

Country Link
WO (1) WO2009148045A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161785A1 (en) * 2012-04-26 2013-10-31 コニカミノルタ株式会社 Transparent gas barrier film and electronic device
JPWO2013161893A1 (en) * 2012-04-24 2015-12-24 コニカミノルタ株式会社 Method for producing laminated gas barrier resin base material
JP2018517938A (en) * 2015-06-03 2018-07-05 サン−ゴバン パフォーマンス プラスティックス コーポレイション Solar control film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001310407A (en) * 2000-04-28 2001-11-06 Teijin Ltd Transparent laminated film
JP2002506398A (en) * 1998-03-06 2002-02-26 サウスウォール テクノロジーズ,インコーポレイテッド Multi-layer absorption anti-reflection coating
JP2002523798A (en) * 1998-08-24 2002-07-30 サウスウォール テクノロジーズ インコーポレイテッド Glare-suppressing selective wavelength processing film
JP2006297868A (en) * 2005-04-25 2006-11-02 Dainippon Printing Co Ltd Metal laminate
JP2008056967A (en) * 2006-08-30 2008-03-13 Konica Minolta Holdings Inc Gas barrier property resin base material, and organic electroluminescence device
JP2008063402A (en) * 2006-09-06 2008-03-21 Mitsubishi Engineering Plastics Corp Polycarbonate resin composition and molded article equipped with heat ray-shielding capacity

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002506398A (en) * 1998-03-06 2002-02-26 サウスウォール テクノロジーズ,インコーポレイテッド Multi-layer absorption anti-reflection coating
JP2002523798A (en) * 1998-08-24 2002-07-30 サウスウォール テクノロジーズ インコーポレイテッド Glare-suppressing selective wavelength processing film
JP2001310407A (en) * 2000-04-28 2001-11-06 Teijin Ltd Transparent laminated film
JP2006297868A (en) * 2005-04-25 2006-11-02 Dainippon Printing Co Ltd Metal laminate
JP2008056967A (en) * 2006-08-30 2008-03-13 Konica Minolta Holdings Inc Gas barrier property resin base material, and organic electroluminescence device
JP2008063402A (en) * 2006-09-06 2008-03-21 Mitsubishi Engineering Plastics Corp Polycarbonate resin composition and molded article equipped with heat ray-shielding capacity

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013161893A1 (en) * 2012-04-24 2015-12-24 コニカミノルタ株式会社 Method for producing laminated gas barrier resin base material
WO2013161785A1 (en) * 2012-04-26 2013-10-31 コニカミノルタ株式会社 Transparent gas barrier film and electronic device
JPWO2013161785A1 (en) * 2012-04-26 2015-12-24 コニカミノルタ株式会社 Transparent gas barrier film and electronic device
JP2018517938A (en) * 2015-06-03 2018-07-05 サン−ゴバン パフォーマンス プラスティックス コーポレイション Solar control film

Similar Documents

Publication Publication Date Title
JP5482656B2 (en) Weather-resistant article, weather-resistant film and optical member
WO2009150992A1 (en) Weather-resistant resin base material and optical member
EP2588314B1 (en) Barrier assembly with encapsulant and photovoltaic cell
EP2732966B1 (en) Gas barrier film and method for producing same
JP5093107B2 (en) Gas barrier resin base material manufacturing method and gas barrier resin base material manufacturing apparatus
WO2012173040A1 (en) Water-vapor barrier film, process for producing same, and electronic appliance including same
JP2011000723A (en) Heat shielding article, method for manufacturing heat shielding article, and outdoor building member
CN108156813B (en) Multilayer barrier coatings
JP5993541B2 (en) Moist heat resistant transparent conductive laminate for touch panel and moisture heat resistant transparent laminated plastic touch panel
JP2014019056A (en) Film roll package and method of manufacturing the same
JP5983454B2 (en) Gas barrier film
WO2010024143A1 (en) Heat-insulating article, process for producing heat-insulating article, and building member
WO2009148045A1 (en) Heat shielding resin base and construction member using the same
JP2003340971A (en) Gas barrier plastic film
WO2009147928A1 (en) Heat shielding resin film and building construction member to which the film is bonded
JP6048498B2 (en) Method for producing laminated gas barrier resin base material
JP2005256061A (en) Laminate
JP2005508728A (en) Method for producing a coated plastic object
JP4014357B2 (en) Water repellent antifouling film
WO2010082581A1 (en) Heat insulating article, method for producing heat insulating article, and building member
WO2009131136A1 (en) Heat insulation resin base and architectural member using the same
JP2008105313A (en) Transparent element equipped with hard coat structure and hard coat structure
JP2017071133A (en) Gas barrier film laminate and electronic device
WO2015133620A1 (en) Gas barrier film
WO2014125877A1 (en) Gas barrier film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09758312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09758312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP