WO2009146952A1 - Accumulateur d'énergie électrique - Google Patents

Accumulateur d'énergie électrique Download PDF

Info

Publication number
WO2009146952A1
WO2009146952A1 PCT/EP2009/050153 EP2009050153W WO2009146952A1 WO 2009146952 A1 WO2009146952 A1 WO 2009146952A1 EP 2009050153 W EP2009050153 W EP 2009050153W WO 2009146952 A1 WO2009146952 A1 WO 2009146952A1
Authority
WO
WIPO (PCT)
Prior art keywords
elements
strands
parallel
energy store
memory elements
Prior art date
Application number
PCT/EP2009/050153
Other languages
German (de)
English (en)
Inventor
Volker Doege
Mario Roessler
Markus Backes
Philipp Kohlrausch
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2009146952A1 publication Critical patent/WO2009146952A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/42Grouping of primary cells into batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0445Multimode batteries, e.g. containing auxiliary cells or electrodes switchable in parallel or series connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to an energy storage device comprising a plurality of nominally identical storage elements, wherein at least two strings of serially interconnected storage elements are present and the strands are connected in parallel, wherein the parallel interconnection is present at several points of the strands and each strand has at least two storage elements.
  • Energy storage of the type mentioned are used for example for driving wireless tools, portable data processing equipment or electric vehicles.
  • nominally identical storage elements also have a production-related variance with respect to their internal resistance and their capacity.
  • the parameters of the storage elements can vary as a result of the different temperatures of the individual storage elements which are set during the operation of a network. This relates in particular to the internal resistance of the memory element. This scattering causes individual storage elements to be discharged at different depths under load and the current intensity to vary between several parallel lines.
  • WO 06/03080 A2 From WO 06/03080 A2 it is known to provide the parallel connection at several points of the strands.
  • the parallel connection is carried out as low as possible, i. by an ohmic line connection.
  • the multiple parallel connection makes it possible, once the charge or discharge has been completed, to equalize the charge between differently discharged storage elements to the same desired voltage level. As a result, variations in the capacity of individual memory elements can be compensated.
  • the object of the present invention is to reduce or avoid an uneven current load on individual storage elements of an energy store and at the same time to enable a charge equalization of differently deeply discharged storage elements.
  • an energy storage device containing a plurality, in particular identical, memory elements, wherein at least two strands of series-connected memory elements are present and the strands are connected in parallel, wherein the parallel interconnection is present at several points of the strands and each strand has at least two memory elements, wherein for the parallel connection of the strands at least one active or passive component is provided.
  • the solution proposed according to the invention is based on the principle of controlling the cross-currents via the bridges used for parallel connection by means of at least one active or passive component.
  • the cross-currents can be kept low during the load, on the other hand, however, a charge balance between individual memory elements are made possible in the resting phases without stress of the energy storage. This can be done for example by means of a switching element, for example a field effect transistor. This can take on a higher resistance during the charge or discharge of the electrical energy storage and have a lower electrical resistance during the resting phases of the energy storage.
  • the parallel connection of at least two memory elements for charge equalization can have an electrical resistance as a passive component.
  • Such an electrical resistance limits the cross-currents across the bridges particularly advantageous when the electrical resistance is greater than the internal resistance of the Storage elements. Nevertheless, such a resistance in the resting phases can allow a substantial charge equalization between different memory elements when the time required for the charge equalization is short against the average duration of the rest period.
  • the electrical resistance can be formed from one or more discrete components. Alternatively, a line connection with a desired increased electrical resistance can be used.
  • the energy store according to the invention can be used particularly advantageously for accumulator-operated or battery-operated power tools and vehicle batteries, in particular for electric drives.
  • individual storage elements may comprise a lithium ion accumulator, a lithium polymer accumulator, a nickel metal hydride accumulator, a nickel cadmium accumulator, a nickel / zinc accumulator or a double layer capacitor.
  • the invention does not teach the use of a special memory element. Rather, the skilled person will select the memory element according to the required capacity, the necessary current carrying capacity, the required voltage and the number of serially and in parallel interconnected memory elements.
  • FIG. 1 shows a first embodiment of a
  • FIG. 2 shows another embodiment of an energy storage device, wherein the parallel connection is performed with at least one active device.
  • 1 shows an energy storage device 1.
  • the energy storage device 1 consists of eight individual storage elements 10, 11,
  • the individual storage elements include, for example, lithium-ion batteries or nickel-metal hydride batteries. In some cases, the person skilled in the art can also provide for any other storage element which fulfills its requirements in terms of capacity, voltage and power supply capability.
  • the memory elements 10, 11, 12, 13, 20, 21, 22 and 23 include, for example, lithium-ion batteries or nickel-metal hydride batteries. In some cases, the person skilled in the art can also provide for any other storage element which fulfills its requirements in terms of capacity, voltage and power supply capability.
  • a first strand A consists of the memory elements 10, 11, 12 and 13.
  • a second strand B consists of the memory elements 20, 21, 22 and 23.
  • each strand has four times the electrical voltage of the rated voltage of a single memory element 10, 11, 12, 13, 20, 21, 22 and 23.
  • Both strands A and B, each with four memory elements 10, 11, 12, 13 and 20, 21, 22, 23 are connected in parallel with each other. This causes a doubling of capacity and power delivery capability compared to the values of a single memory element.
  • the invention is not limited to the use of 8 memory elements 10, 11, 12, 13, 20, 21, 22 and 23 or two parallel strands A and B.
  • the person skilled in the art will provide a larger or smaller number of memory elements and / or a greater number of strings connected in parallel. The exact number is determined based on the requirement profile of the energy storage 1.
  • the two strands A and B are connected in parallel not only via the respective connection contacts 60, 61 of the energy store. Rather, the energy storage 1 has a parallel connection at several points of the strands A and B.
  • a parallel connection by means of three resistive elements 40, 41 and 42 between each two adjacent memory elements 10, 11, 20, 21 and 11, 12, 21, 22 and 12, 13, 22, 23 is provided.
  • the value of the resistance elements 40, 41 and 42 is so great that during the load of the energy storage, i. during a charging or discharging process, the current through the resistive elements 40, 41 and 42 remains as low as possible.
  • the resistance of the resistive elements 40, 41 and 42 chosen so small that in the resting phases between individual load cycles as complete as possible charge balance between individual, parallel-connected memory elements.
  • each memory element 10, 11, 13, 20, 21, 22 and 23 of the energy store 1 should have an identical cell voltage U within a typical idle time, ie ⁇ U P soll 0.
  • the amount of charge required for this purpose can be calculated from the inverse function of U (Q), the extracted charge Q and the respective individual capacities, the initial charge state and the final charge state of the storage elements. In the exemplary embodiment considered here, it is assumed that the
  • Time interval tL must be a compensation current flow.
  • this compensating current I A also results from the quotient of the voltage difference .DELTA.U P and the resistance R of the resistive elements 40, 41 and 42.
  • the energy storage device 1 is to be composed of lithium-ion storage elements. These have an internal resistance R 1 of about 0.04 to 0.07 ⁇ . Due to the scattering ⁇ (C) of the capacitances C of the individual memory elements 10, 11, 13, 20, 21, 22 and 23 of about 0.1 Ah (corresponding to 360 As), a voltage difference between parallel memory elements of approximately results after completion of a load phase 0.1 to 0.5 volts.
  • each resistive element 40, 41 and 42 be less than 0.8 ⁇ . At the same time, this value corresponds approximately to 10 to 20 times the internal resistance of the storage elements. As a result, the current flow through the resistance elements 40, 41 and 42 during the load, ie during a charging or discharging process of the energy storage device 1, negligible.
  • FIG. 2 shows a further embodiment of an energy store 1 according to the invention.
  • the energy store 1 according to FIG. 2 has a total of 6 storage elements 10, 11, 12, 20, 21 and 22.
  • the memory elements 10, 11, 12, 20, 21 and 22 are nominally identical, but have differences in their storage capacity C and their internal resistance R 1 due to manufacturing tolerances.
  • the six memory elements from FIG. 2 are again divided into two strands A and B.
  • the strand A contains three serially interconnected memory elements 10, 11 and 12.
  • the strand B contains another three serially interconnected memory elements 20, 21 and 22.
  • Both strands A and B are connected in parallel with each other to form an energy storage 1.
  • the parallel connection is carried out not only at the start and end contacts 60 and 61 of the strands A and B, but at least at a further point.
  • the parallel connection is carried out in the embodiment of Figure 2 by means of a respective field effect transistor 50 and 51.
  • the channel region of a field effect transistor 50, 51 serves as a variable resistor, with which the Resistor of the parallel connection during operation of the energy storage can be changed.
  • the resistance of a channel of a field effect transistor 50, 51 can be so large that it can be regarded as a switch which completely separates the parallel connection between two adjacent strands, A and B. This resistance change takes place as a function of the applied voltage at the gate terminal 5.
  • both such field effect transistors are known, which when applied an electrical voltage to the gate terminal 5 the
  • each field effect transistor 50, 51 has a low electrical resistance, when no voltage is applied to the gate electrode 5. This is for example always the case when the electrical energy storage is not used in an electrical appliance or a charger.
  • the gate electrode 5 is coupled to the connection of an electric motor of a power tool, in which the energy storage 1 is used.
  • the electric motor is switched on, ie when the energy store 1 is discharged, a voltage is always applied to the gate electrode 5.
  • Gate electrodes 5 are disconnected from the power supply again. This reduces the resistance again so that equalizing currents can flow between the storage elements.
  • the electrical resistance of the parallel connections of the two strands A and B can be adjusted in each case to the operating state of the energy storage device 1. This allows shorter compensation times of the charge differences, without the

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

L'invention concerne un accumulateur d'énergie, contenant plusieurs éléments accumulateurs identiques. Il existe au moins deux branches d'éléments accumulateurs montés en série et les branches sont montées en parallèle. Le montage en parallèle se fait à plusieurs endroits des branches et chaque branche comporte au moins deux éléments accumulateurs. Le montage en parallèle des branches s'effectue à l'aide d'au moins un composant actif ou passif.
PCT/EP2009/050153 2008-06-03 2009-01-08 Accumulateur d'énergie électrique WO2009146952A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008002179A DE102008002179A1 (de) 2008-06-03 2008-06-03 Elektrischer Energiespeicher
DE102008002179.2 2008-06-03

Publications (1)

Publication Number Publication Date
WO2009146952A1 true WO2009146952A1 (fr) 2009-12-10

Family

ID=40436440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/050153 WO2009146952A1 (fr) 2008-06-03 2009-01-08 Accumulateur d'énergie électrique

Country Status (2)

Country Link
DE (1) DE102008002179A1 (fr)
WO (1) WO2009146952A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014060319A3 (fr) * 2012-10-19 2014-09-18 H-Tech Ag Dispositif de stockage d'énergie et procédé pour le faire fonctionner
CN112164833A (zh) * 2020-09-28 2021-01-01 珠海市科宏电子科技有限公司 一种具有数据化模型的蓄电池在线监测管理***

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011002673A1 (de) 2011-01-13 2012-07-19 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Gemeinnützige Stiftung Anordnung und Verfahren zum Betreiben verschalteter Energiespeichersysteme
DE102012205957A1 (de) 2012-04-12 2013-10-17 Robert Bosch Gmbh Batteriesystem mit parallel geschalteten Strängen
DE102012212645A1 (de) 2012-07-19 2014-01-23 Robert Bosch Gmbh Batteriesystem mit Batteriemodul für einen hochfrequenten Betrieb
DE102012214956A1 (de) 2012-08-23 2014-02-27 Robert Bosch Gmbh Halbbrückenschaltung
DE102013207187B4 (de) 2013-04-22 2023-09-28 Robert Bosch Gmbh Zeitgesteuerter Ladungsausgleich bei Batteriesystemen
DE102015200406A1 (de) * 2015-01-14 2016-07-14 Robert Bosch Gmbh Prognose interner Kurzschlüsse eines Batteriemoduls
DE102016218505A1 (de) 2016-09-27 2018-03-29 Robert Bosch Gmbh Elektrische Energiespeichereinheit mit einer weiteren elektrischen Schnittstelle zum Austausch elektrischer Ladungen sowie elektrisches Energiespeichersystem mit mehreren elektrischen Energiespeichereinheiten

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010054877A1 (en) * 2000-06-23 2001-12-27 Honda Giken Kogyo Kabushiki Kaisha Charge equalizing device for power storage unit
EP1315227A2 (fr) * 2001-11-22 2003-05-28 Hitachi, Ltd. Système d' alimentation de courant,système d' alimentation en courant distribuée et véhicule électrique comportant ce système
WO2004057723A2 (fr) * 2002-12-19 2004-07-08 Ilion Technology L'invention concerne un dispositif de raccordement electrique destine a un systeme de stockage d'energie electrochimique rechargeable
US20080090139A1 (en) * 2006-10-12 2008-04-17 Aeron Hurst Precision battery pack circuits
WO2009021762A1 (fr) * 2007-08-10 2009-02-19 Robert Bosch Gmbh Unité d'accumulation d'énergie, en particulier accumulateur

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004032535A1 (de) 2004-07-06 2006-02-02 Robert Bosch Gmbh Batteriepack

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010054877A1 (en) * 2000-06-23 2001-12-27 Honda Giken Kogyo Kabushiki Kaisha Charge equalizing device for power storage unit
EP1315227A2 (fr) * 2001-11-22 2003-05-28 Hitachi, Ltd. Système d' alimentation de courant,système d' alimentation en courant distribuée et véhicule électrique comportant ce système
WO2004057723A2 (fr) * 2002-12-19 2004-07-08 Ilion Technology L'invention concerne un dispositif de raccordement electrique destine a un systeme de stockage d'energie electrochimique rechargeable
US20080090139A1 (en) * 2006-10-12 2008-04-17 Aeron Hurst Precision battery pack circuits
WO2009021762A1 (fr) * 2007-08-10 2009-02-19 Robert Bosch Gmbh Unité d'accumulation d'énergie, en particulier accumulateur

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014060319A3 (fr) * 2012-10-19 2014-09-18 H-Tech Ag Dispositif de stockage d'énergie et procédé pour le faire fonctionner
US10008865B2 (en) 2012-10-19 2018-06-26 H-Tech Ag Energy storage device and method for operating it
CN112164833A (zh) * 2020-09-28 2021-01-01 珠海市科宏电子科技有限公司 一种具有数据化模型的蓄电池在线监测管理***

Also Published As

Publication number Publication date
DE102008002179A1 (de) 2009-12-10

Similar Documents

Publication Publication Date Title
WO2009146952A1 (fr) Accumulateur d'énergie électrique
EP2539957B1 (fr) Procédé d'équilibrage des états de charge d'une batterie comportant plusieurs éléments de batterie, système de gestion de batterie correspondant et batterie
EP2611646B1 (fr) Procédé d'équilibrage d'états de charge d'une batterie dotée de plusieurs cellules de batterie, système de gestion de batterie correspondant et batterie
EP1855344B1 (fr) Arrangement d'accumulateurs
DE102011054790A1 (de) Batterie mit mehreren Akkumulator-Zellen und Verfahren zum Betreiben einer solchen
EP2997637A1 (fr) Procédé et dispositif de charge d'éléments accumulateurs rechargeables
EP2601721A2 (fr) Système de batterie ainsi que procédé pour charger une pluralité de cellules de batterie connectées en série
DE102007041526A1 (de) Energiespeicher, insbesondere Akkumulator
DE102015002072A1 (de) Einstellen von Ladungszuständen von Batteriezellen
WO2015110595A1 (fr) Procédé et arrangement de circuit pour déterminer le rendement coulombien de modules de batterie
DE102019201606A1 (de) Verfahren zum elektrischen Vorladen eines Zwischenkreiskondensators im Hochvoltsystem eines zumindest teilweise elektrisch angetriebenen Kraftfahrzeugs sowie ein derartiges Hochvoltsystem
WO2015110592A1 (fr) Procédé et arrangement de circuit pour déterminer le rendement coulombien de modules de batterie
EP2617115B1 (fr) Procédé de charge d'une batterie de véhicule à moteur
DE10297404T5 (de) Mehrplateau-Batterieaufladeverfahren und -system, um das erste Plateau voll aufzuladen
DE102007004569A1 (de) Batterie mit Z-Dioden-Spannungsbegrenzungsschaltung
DE102015120285A1 (de) Batterie, Fahrzeug mit einer solchen Batterie und Verwendung einer solchen Batterie
WO2010133392A1 (fr) Procédé et circuit pour chauffer un accumulateur d'énergie électrique
EP2193589A1 (fr) Système d'entraînement électrique
WO2016155962A1 (fr) Procédé pour faire fonctionner une unité de batterie
DE102015003122A1 (de) Kraftfahrzeug mit einer Batterieanordnung und Verfahren zum Betrieb einer Batterieanordnung
DE102018206822A1 (de) Elektrische Energiespeichervorrichtung, Verfahren und System zum Betreiben einer elektrischen Energiespeichervorrichtung sowie Fahrzeug
DE102015202601A1 (de) Akkumulator mit seriell verschalteten Energiespeichern und Verfahren zum Angleichen des Ladezustands dieser Energiespeicher
EP2446503A1 (fr) Procédé et dispositif pour charger des cellules au lithium-cobalt
DE102008023292A1 (de) Elektrische Energieversorgungseinheit und Verfahren zum Laden und Entladen von Akkumulatoren einer elektrischen Energieversorgungseinheit
DE102020205951A1 (de) Verfahren zum Betreiben eines Batteriepacks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09757335

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 09757335

Country of ref document: EP

Kind code of ref document: A1