WO2009145352A1 - Carbon material molded body - Google Patents

Carbon material molded body Download PDF

Info

Publication number
WO2009145352A1
WO2009145352A1 PCT/JP2009/060203 JP2009060203W WO2009145352A1 WO 2009145352 A1 WO2009145352 A1 WO 2009145352A1 JP 2009060203 W JP2009060203 W JP 2009060203W WO 2009145352 A1 WO2009145352 A1 WO 2009145352A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon material
nanostructured
film
hollow
hollow carbon
Prior art date
Application number
PCT/JP2009/060203
Other languages
French (fr)
Japanese (ja)
Inventor
江口裕規
渋田匠
阪谷泰一
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2009145352A1 publication Critical patent/WO2009145352A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based

Definitions

  • the present invention relates to a molded article comprising a nanostructured hollow carbon material and inorganic particles, wherein the nanostructured hollow carbon materials are bound together by the inorganic particles, and a method for producing the same. Furthermore, this invention relates to the film
  • the carbon material is a material having extremely diverse properties composed of carbon allotropes such as graphite, diamond, and calvin, or a composite system thereof.
  • carbon allotropes such as graphite, diamond, and calvin, or a composite system thereof.
  • nanostructured carbon materials such as fullerenes, carbon nanotubes, and ultra-fine carbon materials have attracted attention because they have different structures from conventional carbon materials (graphite, diamond, amorphous carbon, etc.). Yes.
  • One of the objects of the present invention is to obtain a molded article containing a nanostructured hollow carbon material and having high conductivity. Is Rukoto.
  • the present invention relates to a molded article comprising a nanostructured hollow carbon material and inorganic particles, wherein the nanostructured hollow carbon materials are bound together by the inorganic particles.
  • each of the nanostructured hollow carbon materials has a carbon part and a hollow part, and the whole hollow part is surrounded by the carbon part, and a part of the hollow part is surrounded by the carbon part.
  • the nanostructured hollow carbon material satisfies the following requirements (A) and (B).
  • the thickness of the carbon part of the nanostructured hollow carbon material is in the range of 1 nm to 20 nm.
  • the diameter of the hollow portion of the nanostructured hollow carbon material is in the range of 0.5 nm to 90 nm.
  • the nanostructured hollow carbon material is a nanostructured hollow carbon material obtained by a method comprising the following steps (1), (2), (3) and (4) in this order: .
  • the inorganic particles are silica.
  • the shaped body is S-shaped.
  • the present invention is a method for producing the molded body
  • a dispersion in which a nanostructured hollow carbon material and inorganic particles are dispersed in a liquid medium is applied to a support. Forming a dispersion film;
  • a molded body containing a nanostructured hollow carbon material and having high conductivity it is possible to obtain a molded body containing a nanostructured hollow carbon material and having high conductivity.
  • the molded body of the present invention is made into a film shape, it can be applied as a conductive film or an antistatic film by taking advantage of its high conductivity, and if the molded body of the present invention is made into a linear shape, it can be used as a conductor. All possible applications. Brief Description of Drawings
  • FIG. 1 is a schematic diagram of multilayer electric double layer capacitors produced in Examples and Comparative Examples of the present invention.
  • reference numeral 1 is a pressure plate
  • 2 is a collecting electrode
  • 3 is a pole
  • 4 is a separator
  • 5 is an insulating material.
  • the molded body of the present invention includes a nanostructured hollow carbon material and inorganic particles.
  • the nanostructured hollow carbon material is nano-sized (about 0.5 ⁇ ! To about 1), and each of the nanostructured hollow carbon materials has a carbon part and a hollow part.
  • the nanostructured hollow carbon material in the present invention preferably satisfies the following requirement ( ⁇ ), and more preferably satisfies the following requirements (() and (C).
  • Each of the nanostructured hollow carbon materials has a carbon part and a hollow part, and the whole hollow part is surrounded by the carbon part, or a part of the hollow part is surrounded by the carbon part, or a plurality of The carbon parts are connected or agglomerated, and each carbon part surrounds the whole or part of the hollow part.
  • the thickness of the carbon part of the nanostructured hollow carbon material is in the range of 1 nm to 100 nm.
  • the diameter of the hollow portion of the nanostructured hollow carbon material is in the range of 0.5 nm to 90 nm.
  • the nanostructured hollow carbon material may have a multilayered carbon portion.
  • the carbon part of the nanostructured hollow carbon material has a multilayer structure composed of 2 to 200 layers.
  • a multilayer structure composed of 2 to 100 layers is preferable from the viewpoint of production efficiency.
  • the nanostructured hollow carbon material is obtained by a method including the following steps (1), (2), (3) and (4) in this order.
  • the template catalyst nanoparticles are produced as follows.
  • One or more types of catalyst precursors and one or more types of dispersants are used, and then the catalyst precursor and the dispersant are reacted or combined to form a catalyst complex.
  • the catalyst complex and the dispersant are dissolved or dispersed in an appropriate solvent, and the catalyst and the dispersant are combined to form the catalyst complex.
  • a solution obtained by dissolving a catalyst precursor and a dispersant in a solvent is referred to as a “catalyst solution”, and a dispersion obtained by dispersing the catalyst precursor and the dispersant in a solvent is referred to as a “catalyst suspension”. ".
  • the catalyst precursor is not particularly limited as long as it promotes the polymerization of the carbon material precursor described below and / or the carbonization of the carbon material intermediate described below, but is preferably selected from transition metals such as iron, cobalt, and nickel. More preferably, it is iron.
  • the catalyst composite includes one or more dispersants. This dispersant is selected from those that promote the production of catalyst nanoparticles having the desired stability, size, and uniformity. Dispersants include various organic molecules, polymers, oligomers and the like. This dispersant is used after being dissolved or dispersed in an appropriate solvent.
  • solvents including water and organic solvents may be used.
  • a solvent is used to allow the catalyst precursor to interact with the dispersant.
  • the solvent may act as a dispersant.
  • the solvent can also be a suspension of catalyst nanoparticles.
  • Preferred solvents include water, methanol, ethanol, n-propanol, isopropyl alcohol, acetonitrile, acetone, tetrahydrofuran, ethylene glycol, dimethylformamide, dimethyl sulfoxide, methylene chloride, and the like. You may mix and use.
  • a dried catalyst composite can be obtained by forming the catalyst composite in a catalyst solution or suspension and then removing the solvent.
  • the dried catalyst complex can be returned to a suspension by adding an appropriate solvent.
  • the molar ratio of dispersant to catalyst precursor can be controlled.
  • the ratio of the catalyst atom to the functional group of the dispersant is about 0.01: 1 to 100: 1, and more preferably about 0.05: 1 to 50: 1.
  • the dispersant can promote the formation of very small and uniform particle size catalyst nanoparticles.
  • catalyst nanoparticles with a size of 1 ⁇ um or less are formed in the presence of a dispersant.
  • the particle size of the catalyst nanoparticle is preferably 5 Onm or less, more preferably 20 nm or less.
  • the catalyst solution or catalyst suspension may contain additives to promote the formation of catalyst nanoparticles.
  • an inorganic acid or a basic compound can be added.
  • inorganic acids include hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid
  • inorganic base compounds include water.
  • a basic substance eg, aqueous ammonia solution
  • a solid substance for promoting the formation of catalyst nanoparticles may be added to the catalyst solution or the catalyst suspension.
  • an ion exchange resin can be added during catalyst nanoparticle formation.
  • the solid material can be removed from the final catalyst solution or catalyst suspension by simple operations.
  • catalyst nanoparticles are obtained by mixing the catalyst solution or catalyst suspension described above for 0.5 hours to 14 days.
  • the mixing temperature is about 0 ° C to 200 ° C. Mixing temperature is an important factor affecting the particle size of catalyst nanoparticles.
  • iron When iron is used as the catalyst precursor, iron is typically present in the solvent as iron compounds such as iron chloride, iron nitrate, and iron sulfide, and these iron compounds are used as dispersants. By reacting or bonding, it becomes catalyst nanoparticles.
  • iron compounds such as ironized iron, iron nitrate, and iron sulfide are often dissolved in water-based solvents.
  • By-products are formed by the formation of catalyst nanoparticles using metal salts.
  • a typical by-product is hydrogen gas that is produced when a catalyst is prepared using a metal.
  • the catalyst nanoparticles are further reduced using force hydrogen activated in the mixing process.
  • the catalyst nanoparticles are formed as a suspension of stably active metal catalyst nanoparticles. Aggregation of particles is suppressed by the stability of the catalyst nanoparticles. Even if some or all of the catalyst nanoparticles settle, the catalyst nanoparticles that can be easily resuspended by mixing are used as template catalyst nanoparticles.
  • the template catalyst nanoparticles serve as catalysts that promote the polymerization of carbon material precursors and the carbonization of Z or carbon material intermediates.
  • the carbon material precursor is not particularly limited as long as it can disperse the template catalyst nanoparticles.
  • Organic materials suitable as a carbon material precursor include benzene and naphthalene derivatives having one or more aromatic rings in the molecule and a functional group for polymerization.
  • Examples of preferred carbon material precursors include resorcinol, phenol resin, melanin formaldehyde gel, polyfurfuryl alcohol, polyacrylonitrile, sugar, and petroleum pitch.
  • the template catalyst nanoparticles are mixed with the carbon material precursor such that the carbon material precursor polymerizes on the surface. Since the template catalyst nanoparticles are catalytically active, they play a role in initiating and / or promoting the polymerization of the carbon material precursor in the vicinity of the particles.
  • the amount of template catalyst nanoparticles relative to the carbon material precursor can be set so that the carbon material precursor uniformly forms the maximum amount of nanocarbon material intermediate.
  • the amount of template catalyst nanoparticles also depends on the type of carbon material precursor used. (Carbon material precursor) (template catalyst nanoparticle) molar ratio is 0 1:. 1 to 1 0 0: is about 1, preferably 1: 1: 1 to 3 0.
  • the molar ratio, the type of catalyst nanoparticles, and the particle size of the catalyst nanoparticles affect the thickness of the carbon part in the resulting nanostructured hollow carbon material.
  • the mixture of the template catalyst nanoparticles and the carbon material precursor is sufficiently aged until the carbon material intermediate is sufficiently formed on the surface of the template nano catalyst particles.
  • the time required to form the carbon material intermediate depends on the temperature, the type of catalyst, the concentration of the catalyst, the pH of the solution, and the type of carbon material precursor used.
  • the polymerization rate can be increased, the amount of crosslinking between the carbon material precursors can be increased, and polymerization can be performed effectively.
  • Carbon material precursors that can be polymerized by heat usually polymerize faster as the polymerization temperature increases.
  • the polymerization temperature is preferably 0 to 200 ° C., more preferably 25 ° C. to 120 ° C.
  • the optimal polymerization conditions for resorcinol monoform aldehyde gel are 0 to 90 ° C and the aging time is 1 to 7 0 which is 2 hours
  • the carbon material intermediate is carbonized to form a carbon material, thereby obtaining a nanostructure composite material.
  • Carbonization is usually performed by firing.
  • the calcination is performed at a temperature of 500 to 2500 ° C.
  • oxygen atoms and nitrogen atoms in the carbon material intermediate are released, and rearrangement of carbon atoms occurs, forming a carbon material.
  • the carbon material has a graphite-like layered structure (multilayered form), and has a thickness of 1 to 100 nm, more preferably 1 to 20 nm.
  • the number of layers can be controlled by the type, thickness, and firing temperature of the carbon material intermediate.
  • the thickness of the carbon part of the nanostructured hollow carbon material can also be controlled by adjusting the degree of progress of the carbon material precursor polymerization and / or carbon material intermediate carbonization.
  • step (4) template catalyst nanoparticles are removed from the nanostructure composite material to obtain a nanostructure hollow carbon material. Removal is typically performed by contacting the nanostructured composite with an acid such as nitric acid or hydrofluoric acid solution or a base such as sodium hydroxide. To remove the template catalyst nanoparticles, it is preferable to contact the nanostructured composite material with nitric acid (eg, 5 N nitric acid), and the nitric acid containing the nanostructured composite material may be refluxed for 3 to 6 hours. . In this removal, a technique that does not completely break the nano hollow body structure or the nano ring structure may be used. In the nanostructured hollow carbon material, the thickness of the carbon portion depends on the thickness of the carbon material in the above step (3).
  • an acid such as nitric acid or hydrofluoric acid solution or a base such as sodium hydroxide.
  • nitric acid eg, 5 N nitric acid
  • the nitric acid containing the nanostructured composite material
  • the nanostructured hollow carbon material is specific in shape, size, and electrical characteristics.
  • a typical shape of the nanostructured hollow carbon material is a substantially spherical shape having a hollow portion, or a shape including a part of a substantially spherical body having a hollow portion.
  • the shape and particle size of the nanostructured hollow carbon material depend greatly on the shape and size of the template catalyst nanoparticles used during production. Nanostructure Since the carbon material is formed around the template catalyst nanoparticles, the shape and particle size of the hollow carbon material also affect the shape and diameter of the hollow part, the shape of the nanostructured hollow carbon material, and the particle size.
  • the nanostructured hollow carbon material has a structure in which the entire hollow part is surrounded by the carbon part, a structure in which a part of the hollow part is surrounded by the carbon part, or a plurality of carbon parts are connected or made into a lump.
  • the carbon part may have a structure surrounding the whole or part of the hollow part.
  • the shape, the number of carbon parts when the carbon part is multilayer, the thickness of the carbon part, and the diameter of the hollow part can be measured by a transmission electron microscope (TEM). it can. Further, the BET specific surface area of the nanostructured hollow carbon material in the present invention is usually about 50 to 500 m 2 Z g.
  • the inorganic particles in the present invention are solid particles that do not contain carbon atoms. However, even if it contains carbon, metal carbonates such as carbon monoxide, carbon dioxide, or calcium carbonate, hydrocyanic acid, metal cyanate, metal cyanate, and metal thiocyanate are included in the inorganic particles.
  • the inorganic particles are binders that bind together the nanostructured hollow carbon materials.
  • the particle size of the inorganic particles is preferably in the range of 0.1 nm to 100 ⁇ , and more preferably in the range of 0.1 nm to 50 nm.
  • the particle size of the inorganic particles is more preferably equal to or less than the particle size of the nanostructured hollow carbon material from the viewpoint of the binding force with the nanostructured hollow carbon material. It is more preferable that it is 1 / min or less.
  • the particle diameter of the inorganic particles is an average particle diameter measured by a laser diffraction / scattering particle distribution measuring device.
  • the inorganic particles are preferably silica particles, alumina particles, or mixed particles of silica force particles and alumina particles, and more preferably silica particles, from the viewpoint of binding force with the nanostructured hollow carbon material.
  • the shape of the inorganic particles is not limited, but from the viewpoint of the binding force with the nanostructured hollow carbon material, the shape is preferably spherical, rod-shaped, or chain-shaped, and the chain-shaped particles connected with the spherical particles are preferable.
  • chain-like silica particles include SNOWTEX PS—S and SNOWTEX PS—so (trade name) manufactured by Nissan Chemical Industries, Ltd. It is possible.
  • the content of inorganic particles in the molded body of the present invention is in the range of 1 to 100 parts by weight with respect to 1 part by weight of nanostructured hollow carbon material from the viewpoint of the binding effect between the nanostructured hollow carbon materials.
  • it is more preferably in the range of 10 to 70 parts by weight, particularly preferably in the range of 15 to 65 parts by weight, Most preferably, it is within the range of 20 to 60 parts by weight.
  • the molded body of the present invention is a film containing a nanostructured hollow carbon material and inorganic particles.
  • the film of the present invention refers to a molded product having a thickness of less than 1 cm. With respect to the molded body, the thickness means the distance between the largest surfaces among the surfaces forming the molded body. Since the nanostructured hollow carbon material has electrical specificity, the membrane of the present invention can also be used as a conductive film such as antistatic, electromagnetic shielding or infrared cut, or as a dry battery, primary battery, secondary battery, redox capacitor. It can also be applied as an electrode film for hybrid capacitors and electric double layer capacitors.
  • the membrane of the present invention includes a sheet molding method in which a mixture of a nanostructured hollow carbon material and inorganic particles is formed into a membrane using a mouth molding or press molding, or a dispersion in which the mixture is dispersed in a liquid medium. It can be produced by a known method such as a coating method in which a dispersion film is formed by coating on a support, and then a liquid medium is removed from the dispersion to form a film.
  • the nanostructured hollow carbon material and inorganic particles are first put into a mixer and mixed.
  • a paste-like mixture is obtained. At this time, by adding a small amount of liquid medium,
  • the film of the present invention can be obtained by molding the paste-like mixture into a sheet by a molding method such as calender molding or press molding.
  • the film obtained by the above-described method may be further rolled with a roll in order to obtain a predetermined thickness. If the liquid medium remains on the membrane, evaporate the liquid medium and remove it. Leave.
  • the coating method is a method in which a dispersion liquid in which a nanostructure hollow carbon material and inorganic particles are dispersed in a liquid medium is applied onto a support to form a dispersion liquid film, and then the liquid medium is removed from the dispersion liquid film. Then, a method of producing a film containing a nanostructured hollow carbon material and inorganic particles. In the coating method, first, a dispersion containing a nanostructured hollow carbon material and inorganic particles is prepared.
  • the dispersion liquid can be prepared by adding a predetermined amount of nanostructured hollow carbon material and inorganic particles to a liquid medium and mixing it, or by adding a liquid medium to a mixture of a predetermined amount of nanostructured hollow carbon material and inorganic particles.
  • a method of adding and mixing a method of adding and mixing, a method of adding and mixing a predetermined amount of nanostructured hollow carbon material to an intermediate dispersion in which a predetermined amount of inorganic particles is dispersed in a liquid medium, and a predetermined amount of inorganic particles being dispersed in the liquid medium
  • a method of adding inorganic particles to the intermediate dispersion and mixing them may be mentioned.
  • a known mixer can be used for mixing.
  • the dispersion is prepared by a method in which the nanostructured hollow carbon material is added and dispersed in the intermediate dispersion liquid in which the inorganic particles are dispersed in the liquid medium. Is preferred.
  • a dispersion by dispersing the nanostructured hollow carbon material in colloidal silica as an intermediate dispersion.
  • Colloidal silica is a colloid of silica or its hydrate.
  • the liquid medium in the present invention is not particularly limited. From the viewpoint of removal and liquid handling when removing the liquid medium after forming the dispersion liquid film, it is preferable to use water, alcohol, or a mixed medium of water and alcohol as the liquid medium. Most preferably, is used.
  • Examples of the apparatus used for producing the dispersion liquid in the present invention include an apparatus generally used in wet pulverization such as a ball mill or a vibration mill. When using a ball mill or vibration mill, There are no particular restrictions on the ball or container, and it can be selected depending on the target nanostructured hollow carbon material and the particle size of the inorganic particles.
  • a known coating apparatus such as a handy film applicator, a bar coater, or a die coater can be used to apply the dispersion onto the support to form a dispersion film.
  • a film containing the nanostructured hollow carbon material and inorganic particles can be formed on the support.
  • a method for removing the liquid medium a method of evaporating the liquid medium at a temperature of usually 50 to 500 ° C can be mentioned.
  • colloidal silica is used as the intermediate dispersion, it is first dried at a temperature of 50 to 80 ° C. for 1 to 60 minutes, and further at a temperature of 10 to 0 to 200 ° C. for 1 to 3 60 minutes.
  • Drying is preferable from the viewpoint of enhancing the binding property between the nanostructured hollow carbon materials and enhancing the formability. Further, after forming a film on the support by a coating method, the film on the support may be pressed in order to adjust the thickness of the film.
  • One aspect of the shaped article of the present invention is a line containing a nanostructured hollow carbon material and inorganic particles. Since nanostructured hollow carbon materials are also electrically unique, the wires of the present invention include capacitor lead wires, transistor lead wires, semiconductor lead wires, and lead wires for tube. It can also be applied as a conductor.
  • the wire of the present invention can be produced by a known method such as an extrusion method in which a mixture of a nanostructure hollow carbon material and inorganic particles is extruded into a wire shape from a die.
  • a nanostructured hollow carbon material and inorganic particles are introduced into a mixer and mixed to obtain a pasty mixture.
  • the uniformity of the mixture can be improved by adding a small amount of liquid medium.
  • the paste of the present invention can be obtained by extruding the paste-like mixture into a linear shape from a die of an extruder. Also, by heating the die, the liquid medium present in the wire during extrusion can be evaporated and removed.
  • the mixture can be produced by the method described in the explanation of the sheet forming method.
  • the nanostructured hollow carbon material produced by the above method was used.
  • the carbon part of the nanostructured hollow carbon material used is multi-layered, the thickness of the carbon part is 16 to 20 nm, the diameter of the hollow part is 8 to ll nm, and the BET specific surface area is 106 m 2 / g Met.
  • Inorganic silica (Snowtex PS-S from Nissan Chemical Industries; average particle size 10 to 50 nra; chain particles with spherical silica bound to a length of 50 to 20 Onm; solid content: 2 Owt %) was used.
  • acetylene black (Denka Black from Denki Kagaku Kogyo Co., Ltd., average particle size: 36 nm; 50 ° /. Pressed product) was used as a conductive material to improve conductivity.
  • Nanostructured hollow carbon material 32.0 g and acetylene black 4.
  • the slurry contained 32.0 g of nanostructured hollow carbon material, 4.0 g of acetylene black, and 16.0 g of silicic force. That is, the amount of inorganic particles per 100 parts by weight of the nanostructured hollow carbon material was 50 parts by weight.
  • the slurry was applied onto an aluminum foil (support) having a thickness of 20 ⁇ using a handy film applicator to form a slurry film, and then heated at 60 ° C. for 1 hour and further at 150 ° C. for 6 hours. By removing water, a film could be formed on the support.
  • a slurry was prepared in the same manner as in Example 1 except that no colloidal silica was added.
  • the slurry contained 16.0 g of nanostructured hollow carbon material and 2. 0 g of acetylene black. That is, the amount of inorganic particles per 100 parts by weight of solid particles was 0 parts by weight.
  • the film could not be formed by force to form a film on the support.
  • a slurry was prepared in the same manner as in Example 1 except that activated carbon was used for ⁇ > instead of the nanostructured hollow carbon material.
  • the slurry contained activated carbon (16.0 g), acetylene black (2.0 g), and silicic force (8 O g). That is, the amount of inorganic particles per 100 parts by weight of solid particles was 44.4 parts by weight.
  • a slurry film was formed by applying the slurry onto a 20 ⁇ -thick aluminum foil (support) using a handy film applicator, and then at 60 ° C for 1 hour, and further at 150 ° C for 6 hours. A film was formed on the support by removing water by heating.
  • the film produced in Example 1 has high conductivity, so it can be used for electrodes of dry batteries, primary batteries, secondary batteries, redox capacitors, hybrid capacitors, electric double layer capacitors, etc. Shielding can also be applied as a conductive film such as infrared power.
  • Nanostructured hollow carbon material 36.0 g and acetylene black 2.8 g colloidal silica 1
  • the slurry contained 36.0 g of nanostructured hollow carbon material, 2.8 g of acetylene black, and 2.4 g of silicic force. That is, the amount of inorganic particles per 100 parts by weight of the nanostructured hollow carbon material was 6.6 parts by weight.
  • the slurry is applied onto a 20 im thick aluminum foil (support) using a handy film applicator to form a slurry film, and then heated at 60 ° C for 1 hour and further at 150 ° C for 6 hours. By removing the water, a film could be formed on the support. Obtained
  • the thickness of S was 108 m.
  • the slurry is applied onto a 20um thick aluminum foil (support) using a handy film applicator to form a slurry film, and then heated at 60 ° C for 1 hour and then at 150 ° C for 6 hours. By removing the water, a film could be formed on the support. The film thickness obtained was 75.0.
  • a film piece having a size of 3.0 cm ⁇ 3.0 cm was cut out from the obtained film, and the surface resistance of the film was measured. Loresta (manufactured by Dia Instruments Co., Ltd.) was used for measuring the surface resistance. Table 2 shows the density and surface resistance results calculated from the weight and film thickness.
  • the lithium cobalt oxide used is a trade name “Cell Seed C-1 ON” (average particle size: 12.0 ⁇ m) of Nippon Chemical Co., Ltd.
  • a slurry was prepared. The slurry contained 36.0 g of lithium cobaltate, 2.8 g of acetylene black, and 2.4 g of silica. That is, the nanostructured hollow carbon material was 0 parts by weight.
  • a film piece having a size of 3.0 cm ⁇ 3.0 cm was cut out from the obtained film, and the surface resistance of the film was measured. Loresta (manufactured by Dia Instruments Co., Ltd.) was used for measuring the surface resistance. Table 2 shows the density and surface resistance results calculated from the weight and film thickness. Table 2
  • a molded body containing a nanostructured hollow carbon material and having high conductivity it is possible to obtain a molded body containing a nanostructured hollow carbon material and having high conductivity.
  • the molded body of the present invention is made into a film shape, it can be applied as a conductive film or an antistatic film by taking advantage of its high conductivity, and if the molded body of the present invention is made into a linear shape, it can be used as a conductor. All possible applications.

Abstract

Disclosed is a molded body containing nanostructured hollow carbon materials and inorganic particles, wherein the nanostructured hollow carbon materials are bonded with each other by the inorganic particles.  Each nanostructured hollow carbon material has a carbon part and a hollow part, and the hollow part is entirely or partially surrounded by the carbon part.

Description

明細書 炭素材成形体  Description Carbon material compact
技術分野 Technical field
本発明は、 ナノ構造中空炭素材料と無機粒子とを含み、 前記ナノ構造中空炭素材料同士 が前記無機粒子で結着されている成形体およびその製造方法に関する。 さらに本発明は、 前記成形体からなる膜に関する。 背景技術  The present invention relates to a molded article comprising a nanostructured hollow carbon material and inorganic particles, wherein the nanostructured hollow carbon materials are bound together by the inorganic particles, and a method for producing the same. Furthermore, this invention relates to the film | membrane which consists of the said molded object. Background art
炭素材料は、 黒鉛、 ダイヤモンド、 カルビンなどの炭素の同素体、 あるいはそれらの複 合系から構成される極めて多様な性質を有する材料である。 最近では、 フラ一レン、 カー ボンナノチューブ類、 極細炭素材料等のナノ構造炭素材料は、 従来の炭素材料 (グラファ イト、 ダイヤモンド、 アモルファスカーボン等) とは異なる構造をもつことから、 注目さ れている。  The carbon material is a material having extremely diverse properties composed of carbon allotropes such as graphite, diamond, and calvin, or a composite system thereof. Recently, nanostructured carbon materials such as fullerenes, carbon nanotubes, and ultra-fine carbon materials have attracted attention because they have different structures from conventional carbon materials (graphite, diamond, amorphous carbon, etc.). Yes.
また、 ナノ構造炭素材料が多方面の応用分野で実用化されるためには、 安定した品質の 製品を安価に供給する体制が整備される必要がある。 更に、 応用製品の特性が大きく異な ることから、 各種応用技術に対応したサイズ、 構造、 配向制御等の形態制御が重要な課題 となっている。  In addition, in order for nanostructured carbon materials to be put into practical use in various fields of application, it is necessary to establish a system for supplying products of stable quality at low cost. In addition, since the characteristics of applied products are greatly different, it is important to control the size, structure, orientation control, etc. corresponding to various applied technologies.
このような課題の解決に向けた検討の中、 最近では新しいナノ構造中空炭素材料が開発 されている (U S 2 0 0 7 / 0 0 6 0 4 7 1 A 1を参照) 。 しかしながら、 そのサイズ や構造に関しては公知であるが、 ナノ構造中空炭素材料を含む組成物に造形性を付与して 、 何らかの用途に応用する技術に関しては、 未だ報告されていない。 発明の開示  Recently, new nanostructured hollow carbon materials have been developed in the course of studying solutions to these issues (see U S 2 0 0 7/0 0 6 0 4 7 1 A 1). However, although its size and structure are known, no technology has been reported yet for applying it to a composition containing a nanostructured hollow carbon material and applying it to some purpose. Disclosure of the invention
本発明の目的の一つは、 ナノ構造中空炭素材料を含み、 高い導電性を有する成形体を得 ることである。 One of the objects of the present invention is to obtain a molded article containing a nanostructured hollow carbon material and having high conductivity. Is Rukoto.
一つの面において、 本発明は、 ナノ構造中空炭素材料と無機粒子とを含み、 前記ナノ構 造中空炭素材料同士が前記無機粒子で結着されている成形体に関する。  In one aspect, the present invention relates to a molded article comprising a nanostructured hollow carbon material and inorganic particles, wherein the nanostructured hollow carbon materials are bound together by the inorganic particles.
一つの好ましい態様において、 前記ナノ構造中空炭素材料の各々は、 炭素部および中空 部を有し、 中空部の全体が炭素部により囲まれた構造、 中空部の一部が炭素部により囲ま れた構造、 または複数の炭素部が連結され、 または塊になっており、 各々の炭素部が中空 部の全体または一部を囲んでレ、る構造を有する。  In one preferred embodiment, each of the nanostructured hollow carbon materials has a carbon part and a hollow part, and the whole hollow part is surrounded by the carbon part, and a part of the hollow part is surrounded by the carbon part. A structure or a structure in which a plurality of carbon parts are connected or formed into a lump, and each carbon part surrounds the whole or part of the hollow part.
—つの好ましい態様において、 ナノ構造中空炭素材料は、 以下の (A) 、 (B) の要件 を満たしている。  In one preferred embodiment, the nanostructured hollow carbon material satisfies the following requirements (A) and (B).
(A) ナノ構造中空炭素材料の炭素部の厚みが、 1 nm〜20 nmの範囲である。  (A) The thickness of the carbon part of the nanostructured hollow carbon material is in the range of 1 nm to 20 nm.
(Β) ナノ構造中空炭素材料の中空部の直径が、 0. 5 nm〜90 nmの範囲である。 一つの好ましい態様において、 前記ナノ構造中空炭素材料は、 以下の (1) 、 (2) 、 (3) および (4) の工程をこの順で含む方法により得られるナノ構造中空炭素材料であ る。  (Ii) The diameter of the hollow portion of the nanostructured hollow carbon material is in the range of 0.5 nm to 90 nm. In one preferred embodiment, the nanostructured hollow carbon material is a nanostructured hollow carbon material obtained by a method comprising the following steps (1), (2), (3) and (4) in this order: .
(1) テンプレート触媒ナノ粒子を製造する工程。  (1) A step of producing template catalyst nanoparticles.
(2) 前記テンプレート触媒ナノ粒子の存在下、 炭素材料前駆体の重合を行い、 前記テン プレート触媒ナノ粒子の表面に炭素材料中間体を形成させる工程。  (2) A step of polymerizing a carbon material precursor in the presence of the template catalyst nanoparticles to form a carbon material intermediate on the surface of the template catalyst nanoparticles.
( 3 ) 前記炭素材料中間体を炭化して炭素材料を形成させ、 ナノ構造複合材料を製造する 工程。  (3) A step of producing a nanostructure composite material by carbonizing the carbon material intermediate to form a carbon material.
(4) 前記ナノ構造複合材料から、 テンプレート触媒ナノ粒子を除去して、 ナノ構造中空 炭素材科を製造する工程。  (4) A step of producing a nanostructured hollow carbonaceous material by removing template catalyst nanoparticles from the nanostructured composite material.
一つの好ましい態様において、 前記無機粒子はシリカである。  In one preferred embodiment, the inorganic particles are silica.
一つの好ましい態様において、 前記成形体は S莫状である。  In one preferred embodiment, the shaped body is S-shaped.
一つの面において、 本発明は、 前記成形体の製造方法であって、  In one aspect, the present invention is a method for producing the molded body,
ナノ構造中空炭素材料と無機粒子とが液体媒体中に分散された分散液を支持体に塗布して 分散液膜を形成すること、 および A dispersion in which a nanostructured hollow carbon material and inorganic particles are dispersed in a liquid medium is applied to a support. Forming a dispersion film; and
前記分散液膜から前記液体媒体を除去してナノ構造中空炭素材料と無機粒子とを含む膜を 形成すること Removing the liquid medium from the dispersion liquid film to form a film containing a nanostructured hollow carbon material and inorganic particles;
を含む方法である。 It is a method including.
本発明によれば、 ナノ構造中空炭素材料を含み、 高い導電性を有する成形体を得ること ができる。 例えば、 本発明の成形体を膜状にすれば、 それは、 その高い導電性を活かし、 導電膜や帯電防止膜として応用可能であるし、 本発明の成形体を線状にすれば、 導線とし ての応用が可能となる。 図面の簡単な説明  According to the present invention, it is possible to obtain a molded body containing a nanostructured hollow carbon material and having high conductivity. For example, if the molded body of the present invention is made into a film shape, it can be applied as a conductive film or an antistatic film by taking advantage of its high conductivity, and if the molded body of the present invention is made into a linear shape, it can be used as a conductor. All possible applications. Brief Description of Drawings
図 1は、 本発明の実施例及び比較例で作製した積層型電気二重層キャパシタの概略図で ある。 図中、 参照符号 1は加圧板を、 2は集電極を、 3は極を、 4はセパレーターを、 5 は絶縁材料をそれぞれ表す。 発明を実施するための形態 '  FIG. 1 is a schematic diagram of multilayer electric double layer capacitors produced in Examples and Comparative Examples of the present invention. In the figure, reference numeral 1 is a pressure plate, 2 is a collecting electrode, 3 is a pole, 4 is a separator, and 5 is an insulating material. Detailed Description of the Invention ''
本発明の成形体は、 ナノ構造中空炭素材料と無機粒子とを含む。  The molded body of the present invention includes a nanostructured hollow carbon material and inorganic particles.
本発明において、 ナノ構造中空炭素材料は、 ナノサイズ (0 . 5 η π!〜 1 程度) で あり、 前記ナノ構造中空炭素材料の各々は、 炭素部および中空部を有する。 本発明のにお けるナノ構造中空炭素材料は、 以下の (Α) の要件満たすことが好ましく、 さらに以下の ( Β ) 、 ( C) の要件満たすことがより好ましい。  In the present invention, the nanostructured hollow carbon material is nano-sized (about 0.5 ηπ! To about 1), and each of the nanostructured hollow carbon materials has a carbon part and a hollow part. The nanostructured hollow carbon material in the present invention preferably satisfies the following requirement (Α), and more preferably satisfies the following requirements (() and (C).
(Α) ナノ構造中空炭素材料の各々が炭素部および中空部を有し、 中空部の全体が炭素部 により囲まれた構造、 中空部の一部が炭素部により囲まれた構造、 または複数の炭素部が 連結され、 または塊になっており、 各々の炭素部が中空部の全体または一部を囲んでいる 構造を有する。  (Ii) Each of the nanostructured hollow carbon materials has a carbon part and a hollow part, and the whole hollow part is surrounded by the carbon part, or a part of the hollow part is surrounded by the carbon part, or a plurality of The carbon parts are connected or agglomerated, and each carbon part surrounds the whole or part of the hollow part.
(Β ) ナノ構造中空炭素材料の炭素部の厚みが、 1 n m〜l 0 0 n mの範囲である。 (C) ナノ構造中空炭素材料の中空部の径が、 0. 5 nm〜90 nmの範囲である。 また、 本発明において、 ナノ構造中空炭素材料は、 その炭素部が多層状であってもよく(Ii) The thickness of the carbon part of the nanostructured hollow carbon material is in the range of 1 nm to 100 nm. (C) The diameter of the hollow portion of the nanostructured hollow carbon material is in the range of 0.5 nm to 90 nm. In the present invention, the nanostructured hollow carbon material may have a multilayered carbon portion.
、 以下の (D) の要件を満たしていてもよい。 The following requirement (D) may be satisfied.
(D) ナノ構造中空炭素材料の炭素部は、 2〜200層からなる多層状の構造である。 製 造効率の観点で好ましいのは、 2〜100層からなる多層状の構造である。  (D) The carbon part of the nanostructured hollow carbon material has a multilayer structure composed of 2 to 200 layers. A multilayer structure composed of 2 to 100 layers is preferable from the viewpoint of production efficiency.
また、 本発明において、 ナノ構造中空炭素材料は、 以下の (1) 、 (2) 、 (3) およ ぴ (4) の工程をこの順で含む方法により得られる。  In the present invention, the nanostructured hollow carbon material is obtained by a method including the following steps (1), (2), (3) and (4) in this order.
(1) テンプレート触媒ナノ粒子を製造する工程。  (1) A step of producing template catalyst nanoparticles.
(2) 前記テンプレート触媒ナノ粒子の存在下、 炭素材料前駆体の重合を行い、 前記テン プレート触媒ナノ粒子の表面に炭素材料中間体を形成させる工程。  (2) A step of polymerizing a carbon material precursor in the presence of the template catalyst nanoparticles to form a carbon material intermediate on the surface of the template catalyst nanoparticles.
(3) 前記炭素材料中間体を炭化して炭素材料を形成させ、 ナノ構造複合材料を製造する 工程。  (3) A step of producing a nanostructure composite material by carbonizing the carbon material intermediate to form a carbon material.
(4) 前記ナノ構造複合材料から、 テンプレート触媒ナノ粒子を除去して、 ナノ構造中空 炭素材料を製造する工程。  (4) A step of producing a nanostructured hollow carbon material by removing template catalyst nanoparticles from the nanostructured composite material.
以下、 上記の (1) 、 (2) 、 (3) および (4) の工程につき、 具体的に説明する 工程 (1) において、 テンプレート触媒ナノ粒子は、 以下のようにして製造される。 1種類以上の触媒前駆体と 1種類以上の分散剤を用い、 次に触媒前駆体と分散剤を反応も しくは結合させて触媒複合体を形成させる。 一般的には、 触媒前駆体と分散剤とを適当な 溶媒に溶解または分散させ、 触媒と分散剤とが結合することによりこの触媒複合体は形成 される。 ここで、 触媒前駆体と分散剤とを溶媒に溶解させて得られる溶液を「触媒溶液」と 称し、 触媒前駆体と分散剤とを溶媒に分散させて得られる分散液を「触媒懸濁液」 と称す る。  Hereinafter, in the step (1) specifically described for the steps (1), (2), (3) and (4), the template catalyst nanoparticles are produced as follows. One or more types of catalyst precursors and one or more types of dispersants are used, and then the catalyst precursor and the dispersant are reacted or combined to form a catalyst complex. In general, the catalyst complex and the dispersant are dissolved or dispersed in an appropriate solvent, and the catalyst and the dispersant are combined to form the catalyst complex. Here, a solution obtained by dissolving a catalyst precursor and a dispersant in a solvent is referred to as a “catalyst solution”, and a dispersion obtained by dispersing the catalyst precursor and the dispersant in a solvent is referred to as a “catalyst suspension”. ".
触媒前駆体は、 後述の炭素材料前駆体の重合および または後述の炭素材料中間体の炭 化を促進するものであれば特に限定されないが、 好ましくは、 鉄、 コバルト、 ニッケルな どの遷移金属から選択され、 より好ましくは鉄である。 触媒複合体は 1種類以上の分散剤を含む。 この分散剤は、 目的とする安定性、 大きさ、 均一性を有する触媒ナノ粒子の生成を促進されるものから選ばれる。 分散剤とは種々の有 機分子、 高分子、 オリゴマー等である。 この分散剤は、 適当な溶媒に溶解もしくは分散さ せて用いる。 The catalyst precursor is not particularly limited as long as it promotes the polymerization of the carbon material precursor described below and / or the carbonization of the carbon material intermediate described below, but is preferably selected from transition metals such as iron, cobalt, and nickel. More preferably, it is iron. The catalyst composite includes one or more dispersants. This dispersant is selected from those that promote the production of catalyst nanoparticles having the desired stability, size, and uniformity. Dispersants include various organic molecules, polymers, oligomers and the like. This dispersant is used after being dissolved or dispersed in an appropriate solvent.
触媒複合体調製用の溶媒としては、 水や有機溶媒を含む種々の溶媒を利用してよい。 触 媒前躯体と分散剤とを相互作用させるために、 溶媒を用いる。 また、 溶媒は、 分散剤とし て作用してもよい。 溶媒は触媒ナノ粒子を懸濁液にすることもできる。 好ましい溶媒とし ては、 水、 メタノール、 エタノール、 n—プロパノール、 イソプロピルアルコール、 ァセ トニトリル、 アセトン、 テトラヒ ドロフラン、 エチレングリコール、 ジメチルホルムアミ ド、 ジメチルスルフォキシド、 メチレンクロライド等が挙げられ、 これらを混合して用い てもよい。  As the solvent for preparing the catalyst complex, various solvents including water and organic solvents may be used. A solvent is used to allow the catalyst precursor to interact with the dispersant. The solvent may act as a dispersant. The solvent can also be a suspension of catalyst nanoparticles. Preferred solvents include water, methanol, ethanol, n-propanol, isopropyl alcohol, acetonitrile, acetone, tetrahydrofuran, ethylene glycol, dimethylformamide, dimethyl sulfoxide, methylene chloride, and the like. You may mix and use.
この触媒複合体は溶媒分子によって囲まれていると考えられる。 触媒複合体を触媒溶液 または触媒懸濁液中で生成させたのち、 溶媒を除去することにより、 乾燥された触媒複合 体を得ることができる。 またこの乾燥された触媒複合体は適当な溶媒を加えることで懸濁 液に戻すこともできる。  This catalyst complex is thought to be surrounded by solvent molecules. A dried catalyst composite can be obtained by forming the catalyst composite in a catalyst solution or suspension and then removing the solvent. The dried catalyst complex can be returned to a suspension by adding an appropriate solvent.
触媒溶液または触媒懸濁液の中で、 分散剤と触媒前駆体とのモル比を制御できる。 好ま しくは、 分散剤の官能基に対する触媒原子の割合としては 0 . 0 1 : 1〜1 0 0 : 1程度 であり、 さらに好ましくは 0 . 0 5 : 1〜5 0 : 1程度である。  In the catalyst solution or suspension, the molar ratio of dispersant to catalyst precursor can be controlled. Preferably, the ratio of the catalyst atom to the functional group of the dispersant is about 0.01: 1 to 100: 1, and more preferably about 0.05: 1 to 50: 1.
分散剤は、 非常に小さくかつ均一な粒径の触媒ナノ粒子の形成を促進させることができ る。 一般的に、 分散剤存在下で 1 ^u m以下の大きさの触媒ナノ粒子が形成される。 触媒ナ ノ粒子の粒径は、 好ましくは、 5 O n m以下であって、 さらに好ましくは 2 0 n m以下で ある。  The dispersant can promote the formation of very small and uniform particle size catalyst nanoparticles. In general, catalyst nanoparticles with a size of 1 ^ um or less are formed in the presence of a dispersant. The particle size of the catalyst nanoparticle is preferably 5 Onm or less, more preferably 20 nm or less.
上記の触媒溶液または.触媒懸濁液は、 触媒ナノ粒子の形成を促進させるための添加物を 含んでもよレ、。 添加物としては、 例えば、 無機酸や塩基化合物を加えることができる。 無 機酸としては例えば、 塩酸、 硝酸、 硫酸、 リン酸などであり、 無機塩基化合物としては水 酸化ナトリウム、 水酸化カリウム、 水酸化カルシウム、 水酸化アンモニゥムなどである。 塩基性物質 (例えば、 アンモ-ァ水溶液) を溶液または懸濁液の p Hを 8〜 1 3に調整す るため、 加えてもよい。 より好ましくは、 溶液または懸濁液の p Hを 1 0〜1 1に調整す る。 高い p H値では、 触媒前駆体が微細に分離し、 触媒ナノ粒子の粒径に影響を与える。 また、 触媒ナノ粒子の形成を促進させるための固体物質を触媒溶液または触媒懸濁液に 加えてもよレ、。 例えば、 イオン交換樹脂を触媒ナノ粒子形成時に加えることができる。 固 体物質は、 最終的な触媒溶液もしくは触媒懸濁液から簡単な操作によつて除去することが できる。 The catalyst solution or catalyst suspension may contain additives to promote the formation of catalyst nanoparticles. As the additive, for example, an inorganic acid or a basic compound can be added. Examples of inorganic acids include hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid, and inorganic base compounds include water. Sodium oxide, potassium hydroxide, calcium hydroxide, ammonium hydroxide, etc. A basic substance (eg, aqueous ammonia solution) may be added to adjust the pH of the solution or suspension to 8-13. More preferably, the pH of the solution or suspension is adjusted to 10 to 11. At high pH values, the catalyst precursor is finely separated and affects the particle size of the catalyst nanoparticles. In addition, a solid substance for promoting the formation of catalyst nanoparticles may be added to the catalyst solution or the catalyst suspension. For example, an ion exchange resin can be added during catalyst nanoparticle formation. The solid material can be removed from the final catalyst solution or catalyst suspension by simple operations.
典型的には、 上記の触媒溶液または触媒懸濁液を 0 . 5時間〜 1 4日間混合することに より、 触媒ナノ粒子は得られる。 混合温度は 0 °C〜2 0 0 °C程度である。 混合温度は、 触 媒ナノ粒子の粒径に影響を与える重要な因子である。  Typically, catalyst nanoparticles are obtained by mixing the catalyst solution or catalyst suspension described above for 0.5 hours to 14 days. The mixing temperature is about 0 ° C to 200 ° C. Mixing temperature is an important factor affecting the particle size of catalyst nanoparticles.
触媒前駆体として鉄を用いた場合には、 鉄は、 典型的には、 溶媒内で塩ィヒ鉄、 硝酸鉄、 硫化鉄などの鉄化合物として存在し、 このような鉄化合物が分散剤と反応もしくは結合す ることにより、 触媒ナノ粒子となる。 ±直化鉄、 硝酸鉄、 硫化鉄などの鉄化合物は水系の溶 媒に溶解する場合が多い。 金属塩を用いた触媒ナノ粒子の形成によって、 副生成物が生成 する。 典型的な副生成物としては、 金属を用いて触媒を調製したときに出る水素ガスであ る。 典型的な実施様態では、 触媒ナノ粒子は、 混合工程で活性化される力 水素を用いて 更に還元を行う。  When iron is used as the catalyst precursor, iron is typically present in the solvent as iron compounds such as iron chloride, iron nitrate, and iron sulfide, and these iron compounds are used as dispersants. By reacting or bonding, it becomes catalyst nanoparticles. ± Iron compounds such as ironized iron, iron nitrate, and iron sulfide are often dissolved in water-based solvents. By-products are formed by the formation of catalyst nanoparticles using metal salts. A typical by-product is hydrogen gas that is produced when a catalyst is prepared using a metal. In a typical embodiment, the catalyst nanoparticles are further reduced using force hydrogen activated in the mixing process.
好ましくは、 触媒ナノ粒子は、 安定的に活性な金属触媒ナノ粒子の懸濁液として形成さ れる。 触媒ナノ粒子の安定性により粒子同士の凝集を抑制する。 一部もしくはすべての触 媒ナノ粒子が沈降したとしても、 混合することによって容易に再懸濁化することができる 上記のようにして得られる触媒ナノ粒子をテンプレート触媒ナノ粒子として用いる。 テ ンプレート触媒ナノ粒子は、 炭素材料前駆体の重合および Zまたは炭素材料中間体の炭化 を促進する触媒としての役割を担う。 工程 (2 ) において、 炭素材料前駆体は、 テンプレート触媒ナノ粒子を分散できるもの であれば特に限定されるものではない。 テンプレート触媒ナノ粒子を媒体中に分散させて 、 該テンプレート触媒ナノ粒子の存在下に炭素材料前駆体を重合することにより、 ナノ粒 子の表面に炭素材料中間体が形成される。 炭素材料前駆体として好適な有機材料としては 、 分子中に芳香族環を 1個以上有し重合のための官能基を有するベンゼンやナフタレン誘 導体が挙げられる。 重合化のための官能基と'しては、 C O〇H、 C = 0、 O H、 C = C、 S 03、 N H2、 S O H、 N = C = 0などが例示される。 Preferably, the catalyst nanoparticles are formed as a suspension of stably active metal catalyst nanoparticles. Aggregation of particles is suppressed by the stability of the catalyst nanoparticles. Even if some or all of the catalyst nanoparticles settle, the catalyst nanoparticles that can be easily resuspended by mixing are used as template catalyst nanoparticles. The template catalyst nanoparticles serve as catalysts that promote the polymerization of carbon material precursors and the carbonization of Z or carbon material intermediates. In the step (2), the carbon material precursor is not particularly limited as long as it can disperse the template catalyst nanoparticles. By dispersing the template catalyst nanoparticles in the medium and polymerizing the carbon material precursor in the presence of the template catalyst nanoparticles, a carbon material intermediate is formed on the surface of the nanoparticle. Organic materials suitable as a carbon material precursor include benzene and naphthalene derivatives having one or more aromatic rings in the molecule and a functional group for polymerization. Examples of the functional group for polymerization include CO 0 H, C = 0, OH, C = C, S 0 3 , NH 2 , SOH, and N = C = 0.
好ましい炭素材料前駆体の例としては、 レゾルシノール、 フエノール樹脂、 メラニン一 ホルムアルデヒ ドゲル、 ポリフルフリルアルコール、 ポリアクリロニトリル、 砂糖、 石油 ピッチが挙げられる。  Examples of preferred carbon material precursors include resorcinol, phenol resin, melanin formaldehyde gel, polyfurfuryl alcohol, polyacrylonitrile, sugar, and petroleum pitch.
テンプレート触媒ナノ粒子は、 その表面で炭素材料前駆体が重合するように、 炭素材料 前駆体と混合される。 テンプレート触媒ナノ粒子は触媒活性であるため、 その粒子近傍で 炭素材料前駆体の重合の開始および/または促進の役割を担う。  The template catalyst nanoparticles are mixed with the carbon material precursor such that the carbon material precursor polymerizes on the surface. Since the template catalyst nanoparticles are catalytically active, they play a role in initiating and / or promoting the polymerization of the carbon material precursor in the vicinity of the particles.
炭素材料前駆体に対するテンプレート触媒ナノ粒子の量は、 炭素材料前駆体が、 均一に ナノ炭素材料中間体を最大量形成するように設定ことができる。 テンプレート触媒ナノ粒 子の量は、 用いる炭素材料前駆体の種類にも依存する。 (炭素材料前駆体) : (テンプレ ート触媒ナノ粒子) モル比は、 0 . 1 : 1〜1 0 0 : 1程度であり、 好ましくは 1 : 1〜 3 0 : 1である。 このモル比、 触媒ナノ粒子の種類、 触媒ナノ粒子の粒径は、 得られるナ ノ構造中空炭素材料における炭素部の厚みに影響を与える。 The amount of template catalyst nanoparticles relative to the carbon material precursor can be set so that the carbon material precursor uniformly forms the maximum amount of nanocarbon material intermediate. The amount of template catalyst nanoparticles also depends on the type of carbon material precursor used. (Carbon material precursor) (template catalyst nanoparticle) molar ratio is 0 1:. 1 to 1 0 0: is about 1, preferably 1: 1: 1 to 3 0. The molar ratio, the type of catalyst nanoparticles, and the particle size of the catalyst nanoparticles affect the thickness of the carbon part in the resulting nanostructured hollow carbon material.
テンプレート触媒ナノ粒子および炭素材料前駆体の混合物は、 テンプレートナノ触媒粒 子の表面に炭素材料中間体が十分に形成されるまで、 十分熟成させる。 炭素材料中間体を 形成させるのに必要な時間は、 温度、 触媒の種類、 触媒の濃度、 溶液の p H、 用いる炭素 材料前駆体の種類に依存する。  The mixture of the template catalyst nanoparticles and the carbon material precursor is sufficiently aged until the carbon material intermediate is sufficiently formed on the surface of the template nano catalyst particles. The time required to form the carbon material intermediate depends on the temperature, the type of catalyst, the concentration of the catalyst, the pH of the solution, and the type of carbon material precursor used.
p H調整のためにアンモニアを加えることで、 重合の速度を速め、 炭素材料前駆体同士 の架橋量が増え、 効果的に重合できることがある。 熱により重合可能な炭素材料前駆体は、 通常、 重合温度が高いほど重合が速く進む。 重 合温度は、 好ましくは 0 ~ 2 0 0 °Cであり、 さらに好ましくは 2 5 °C〜 1 2 0 °Cである。 鉄粒子を用い、 懸濁液の p Hが 1〜1 4の範囲内にある場合、 レゾルシノール一ホルム アルデヒドゲルの最適な重合条件は、 0〜9 0 °Cであり、 熟成時間は 1〜7 2時間である 0 By adding ammonia for pH adjustment, the polymerization rate can be increased, the amount of crosslinking between the carbon material precursors can be increased, and polymerization can be performed effectively. Carbon material precursors that can be polymerized by heat usually polymerize faster as the polymerization temperature increases. The polymerization temperature is preferably 0 to 200 ° C., more preferably 25 ° C. to 120 ° C. When iron particles are used and the pH of the suspension is in the range of 1 to 14, the optimal polymerization conditions for resorcinol monoform aldehyde gel are 0 to 90 ° C and the aging time is 1 to 7 0 which is 2 hours
工程 (3 ) において、 炭素材料中間体を炭化して炭素材料を形成させ、 ナノ構造複合材 料を得る。 炭化は、 通常焼成により行う。 典型的には、 焼成は、 5 0 0〜2 5 0 0 °Cの温 度で行う。 焼成時には、 炭素材料中間体における酸素原子、 窒素原子が放出され、 炭素原 子の再配列が起こり、 炭素材料が形成される。 好ましくは、 炭素材料は、 グラフアイト様 の層状構造 (多層状) であり、 厚みが 1〜 1 0 0 n m、 より好ましくは 1〜 2 0 n mの構 造である。 層数は、 炭素材料中間体の種類、 厚み、 焼成温度により制御できる。 また、 ナ ノ構造中空炭素材料の炭素部の厚みは、 炭素材料前駆体の重合および/または炭素材料中 間体の炭化の進行度の調整によっても制御できる。  In the step (3), the carbon material intermediate is carbonized to form a carbon material, thereby obtaining a nanostructure composite material. Carbonization is usually performed by firing. Typically, the calcination is performed at a temperature of 500 to 2500 ° C. During firing, oxygen atoms and nitrogen atoms in the carbon material intermediate are released, and rearrangement of carbon atoms occurs, forming a carbon material. Preferably, the carbon material has a graphite-like layered structure (multilayered form), and has a thickness of 1 to 100 nm, more preferably 1 to 20 nm. The number of layers can be controlled by the type, thickness, and firing temperature of the carbon material intermediate. The thickness of the carbon part of the nanostructured hollow carbon material can also be controlled by adjusting the degree of progress of the carbon material precursor polymerization and / or carbon material intermediate carbonization.
工程 (4 ) において、 ナノ構造複合材料から、 テンプレート触媒ナノ粒子を除去して、 ナノ構造中空炭素材料を得る。 除去は、 典型的には、 ナノ構造複合材料と、 硝酸、 フッ酸 溶液などの酸や、 水酸化ナトリウムなどの塩基とを接触させることによって行う。 テンプ レート触媒ナノ粒子を除去するには、 ナノ構造複合材料を硝酸 (例えば 5規定の硝酸) と 接触させるのが好ましく、 ナノ構造複合材料を含有する硝酸を 3〜 6時間リフラックスす ればよい。 この除去においては、 ナノ中空体構造やナノリング構造を完全には壊すことの ない手法を用いればよい。 ナノ構造中空炭素材料において、 炭素部の厚みは、 上記の工程 ( 3 ) における炭素材料の厚みに依存する。  In step (4), template catalyst nanoparticles are removed from the nanostructure composite material to obtain a nanostructure hollow carbon material. Removal is typically performed by contacting the nanostructured composite with an acid such as nitric acid or hydrofluoric acid solution or a base such as sodium hydroxide. To remove the template catalyst nanoparticles, it is preferable to contact the nanostructured composite material with nitric acid (eg, 5 N nitric acid), and the nitric acid containing the nanostructured composite material may be refluxed for 3 to 6 hours. . In this removal, a technique that does not completely break the nano hollow body structure or the nano ring structure may be used. In the nanostructured hollow carbon material, the thickness of the carbon portion depends on the thickness of the carbon material in the above step (3).
本発明において、 ナノ構造中空炭素材料は、 形状、 大きさ、 電気的特性において特異的 である。 ナノ構造中空炭素材料の典型的な形状としては中空部を有する略球状、 もしくは 中空部を有する略球状体の一部を含む形状である。 ナノ構造中空炭素材料の形状、 粒径は 、 製造時に用いたテンプレート触媒ナノ粒子の形状、 大きさに大きく依存する。 ナノ構造 中空炭素材料の形状、 粒径は、 テンプレート触媒ナノ粒子の周囲に炭素材料が形成される ので、 中空部の形状、 径、 ナノ構造中空炭素材料の形状、 粒子径にも影響を与える。 ナノ 構造中空炭素材料は、 中空部の全体が炭素部により囲まれた構造、 中空部の一部が炭素部 により囲まれた構造、 または複数の炭素部が連結されまたは塊になっており、 各々の炭素 部が中空部の全体または一部を囲んでいる構造を有していてもよい。 In the present invention, the nanostructured hollow carbon material is specific in shape, size, and electrical characteristics. A typical shape of the nanostructured hollow carbon material is a substantially spherical shape having a hollow portion, or a shape including a part of a substantially spherical body having a hollow portion. The shape and particle size of the nanostructured hollow carbon material depend greatly on the shape and size of the template catalyst nanoparticles used during production. Nanostructure Since the carbon material is formed around the template catalyst nanoparticles, the shape and particle size of the hollow carbon material also affect the shape and diameter of the hollow part, the shape of the nanostructured hollow carbon material, and the particle size. The nanostructured hollow carbon material has a structure in which the entire hollow part is surrounded by the carbon part, a structure in which a part of the hollow part is surrounded by the carbon part, or a plurality of carbon parts are connected or made into a lump. The carbon part may have a structure surrounding the whole or part of the hollow part.
上記のナノ構造中空炭素材料において、 その形状、 炭素部が多層状の場合の炭素部の層 数、 炭素部の厚み、 中空部の径は、 透過型電子顕微鏡 (T EM) によって測定することが できる。 また、 本発明におけるナノ構造中空炭素材料の B E T比表面積は、 通常、 5 0〜 5 0 0 m2Z g程度である。 In the above-mentioned nanostructured hollow carbon material, the shape, the number of carbon parts when the carbon part is multilayer, the thickness of the carbon part, and the diameter of the hollow part can be measured by a transmission electron microscope (TEM). it can. Further, the BET specific surface area of the nanostructured hollow carbon material in the present invention is usually about 50 to 500 m 2 Z g.
本発明における無機粒子とは、 炭素原子を含まない固体粒子である。 但し、 炭素を含ん でいても、 一酸化炭素、 二酸化炭素、 あるいは炭酸カルシウムなどの金属炭酸塩、 青酸、 金属青酸塩、 金属シアン酸塩、 金属チォシアン酸塩は無機粒子に含まれる。 本発明の成形 体において、 無機粒子は、 ナノ構造中空炭素材料同士を結着しているバインダーである。 無機粒子の粒径は、 0 . 1 n m〜 1 0 0 η ΐϊΐの範囲が好ましく、 0 . l n m〜5 0 n m の範囲であることがより好ましい。 また、 無機粒子の粒径は、 ナノ構造中空炭素材料との 結着力の観点から、 ナノ構造中空炭素材料の粒径以下であることがより好ましく、 ナノ構 造中空炭素材料の粒径の 1 0分の 1以下であることがより好ましい。 本発明において無機 粒子の粒径は、 レーザー回折/散乱式粒 分布測定装置で測定される平均粒径である。 無機粒子は、 ナノ構造中空炭素材料との結着力の観点から、 シリカ粒子、 アルミナ粒子 またはシリ力粒子とアルミナ粒子との混合粒子であることが好ましく、 シリカ粒子である ことがより好ましい。  The inorganic particles in the present invention are solid particles that do not contain carbon atoms. However, even if it contains carbon, metal carbonates such as carbon monoxide, carbon dioxide, or calcium carbonate, hydrocyanic acid, metal cyanate, metal cyanate, and metal thiocyanate are included in the inorganic particles. In the molded article of the present invention, the inorganic particles are binders that bind together the nanostructured hollow carbon materials. The particle size of the inorganic particles is preferably in the range of 0.1 nm to 100 ηΐϊΐ, and more preferably in the range of 0.1 nm to 50 nm. Further, the particle size of the inorganic particles is more preferably equal to or less than the particle size of the nanostructured hollow carbon material from the viewpoint of the binding force with the nanostructured hollow carbon material. It is more preferable that it is 1 / min or less. In the present invention, the particle diameter of the inorganic particles is an average particle diameter measured by a laser diffraction / scattering particle distribution measuring device. The inorganic particles are preferably silica particles, alumina particles, or mixed particles of silica force particles and alumina particles, and more preferably silica particles, from the viewpoint of binding force with the nanostructured hollow carbon material.
本発明において、 無機粒子の形状に限定は無いが、 ナノ構造中空炭素材料との結着力の 観点から、 球状、 棒状、 または鎖状であることが好ましく、 球状の粒子がつながった鎖状 粒子が好ましい。  In the present invention, the shape of the inorganic particles is not limited, but from the viewpoint of the binding force with the nanostructured hollow carbon material, the shape is preferably spherical, rod-shaped, or chain-shaped, and the chain-shaped particles connected with the spherical particles are preferable.
具体的には、 球状のシリカ粒子としては日産化学工業 (株) 製のスノーテックス ST— XS (商品名).、 スノーテックス ST— XL (商品名) 、 鎖状のシリカ粒子としては日産化学 工業 (株) 製のスノーテックス PS— S、 スノーテックス PS— so (商品名) 等が挙げられ る。 Specifically, as a spherical silica particle, Snowtex ST— manufactured by Nissan Chemical Industries, Ltd. XS (trade name)., Snowtex ST—XL (trade name), and chain-like silica particles include SNOWTEX PS—S and SNOWTEX PS—so (trade name) manufactured by Nissan Chemical Industries, Ltd. It is possible.
本発明の成形体における無機粒子の含有量は、 ナノ構造中空炭素材料同士の結着効果と いう観点から、 ナノ構造中空炭素材料 1◦ 0重量部に対して 1〜1 0 0重量部の範囲内で あることが好ましく、 成形体の強度と安定性の観点から 1 0〜 7 0重量部の範囲であるこ とがより好ましく、 1 5〜6 5重量部の範囲内であることが特に好ましく、' 2 0〜6 0重 量部の範囲内であることが最も好ましい。  The content of inorganic particles in the molded body of the present invention is in the range of 1 to 100 parts by weight with respect to 1 part by weight of nanostructured hollow carbon material from the viewpoint of the binding effect between the nanostructured hollow carbon materials. In view of the strength and stability of the molded body, it is more preferably in the range of 10 to 70 parts by weight, particularly preferably in the range of 15 to 65 parts by weight, Most preferably, it is within the range of 20 to 60 parts by weight.
本発明の成形体の一態様は、 ナノ構造中空炭素材料と無機粒子とを含む膜である。 本発 明の膜とは成形体の中でも厚みが 1 c m未満のものをいう。 成形体について、 厚みとは、 成形体を成す面のうち最も大きい面同士の距離をいう。 ナノ構造中空炭素材料は電気的に も特異性を持っているため、 本発明の膜も、 帯電防止、 電磁波シールドや赤外線カットな どの導電膜として、 あるいは乾電池、 一次電池、 二次電池、 レドックスキャパシタ、 ハイ ブリッドキャパシタ、 電気二重層キャパシタなどの電極膜としても応用可能である。  One aspect of the molded body of the present invention is a film containing a nanostructured hollow carbon material and inorganic particles. The film of the present invention refers to a molded product having a thickness of less than 1 cm. With respect to the molded body, the thickness means the distance between the largest surfaces among the surfaces forming the molded body. Since the nanostructured hollow carbon material has electrical specificity, the membrane of the present invention can also be used as a conductive film such as antistatic, electromagnetic shielding or infrared cut, or as a dry battery, primary battery, secondary battery, redox capacitor. It can also be applied as an electrode film for hybrid capacitors and electric double layer capacitors.
次に本発明のナノ構造中空炭素材料と無機粒子とを含む膜の製造方法を説明する。  Next, the manufacturing method of the film | membrane containing the nano structure hollow carbon material and inorganic particle of this invention is demonstrated.
本発明の膜は、 ナノ構造中空炭素材料と無機粒子の混合物を口ール成形やプレス成形を 用いて膜にするシ一ト成形法や、 前記混合物が液体媒体中に分散された分散液を支持体上 に塗布して分散液膜を形成し、 次いで前記分散液から液体媒体を除去して膜を形成する塗 布法等、 公知の方法により製造することができる。  The membrane of the present invention includes a sheet molding method in which a mixture of a nanostructured hollow carbon material and inorganic particles is formed into a membrane using a mouth molding or press molding, or a dispersion in which the mixture is dispersed in a liquid medium. It can be produced by a known method such as a coating method in which a dispersion film is formed by coating on a support, and then a liquid medium is removed from the dispersion to form a film.
シート成形法では、 まずナノ構造中空炭素材料と無機粒子とを混合機に投入して混合し In the sheet molding method, the nanostructured hollow carbon material and inorganic particles are first put into a mixer and mixed.
、 ペースト状混合物を得る。 このとき、 少量の液体媒体を加えることにより、 混合物の均A paste-like mixture is obtained. At this time, by adding a small amount of liquid medium,
—性を向上させることができる。 次に前記ペースト状混合物を、 カレンダー成形等のロー ル成形やプレス成形等の成形方法でシ一ト状に成形することにより、 本発明の膜を得るこ とができ.る。 また、 前記した方法で得られた膜を、 所定の厚みにするためにさらにロール により圧延しても良い。 膜に液体媒体が残存している場合には、 液体媒体を蒸発させて除 去する。 —Improves sex. Next, the film of the present invention can be obtained by molding the paste-like mixture into a sheet by a molding method such as calender molding or press molding. In addition, the film obtained by the above-described method may be further rolled with a roll in order to obtain a predetermined thickness. If the liquid medium remains on the membrane, evaporate the liquid medium and remove it. Leave.
厚みの均一な膜を容易に作製できることから、 塗布法により膜を製造することが好まし い。 ここで塗布法による本発明の膜の製造について更に詳細に説明する。 塗布法とは、 ナ ノ構造中空炭素材料と無機粒子とが液体媒体中に分散された分散液を支持体上に塗布して 分散液膜を形成した後、 前記分散液膜から液体媒体を除去して、 ナノ構造中空炭素材料と 無機粒子を含む膜を作製する方法である。 塗布法では、 先ず、 ナノ構造中空炭素材料と無 機粒子を含む分散液を調製する。 分散液の調^方法としては、 液体媒体に所定量のナノ構 造中空炭素材料と無機粒子を添加して混合する方法、 所定量のナノ構造中空炭素材料と無 機粒子の混合物に液体媒体を添加して混合する方法、 所定量の無機粒子が液体媒体に分散 された中間分散液に所定量のナノ構造中空炭素材料を添加して混合する方法、 所定量の無 機粒子が液体媒体に分散された第 1の中間分散液と所定量のナノ構造中空炭素材料が液体 媒体に分散された第 2の中間分散液とを混合する方法、 所定量のナノ構造中空炭素材料が 液体媒体に分散された中間分散液に無機粒子を添加して混合する方法が挙げられる。 混合 には、 公知の混合機を用いることができる。 無機粒子およびナノ構造中空炭素材料をより 均一に分散させやすいことから、 無機粒子が液体媒体に分散された中間分散液にナノ構造 中空炭素材料を添加して分散させる方法により分散液を調製することが好ましい。 また、 分散性の高い膜を得るためには、 中間分散液としてコロイダノレシリカにナノ構造中空炭素 材料を分散させて分散液を調製することが好ましい。 コロイダルシリカとは、 シリカまた はその水和物のコロイドである。  Since a film having a uniform thickness can be easily produced, it is preferable to produce the film by a coating method. Here, the production of the film of the present invention by the coating method will be described in more detail. The coating method is a method in which a dispersion liquid in which a nanostructure hollow carbon material and inorganic particles are dispersed in a liquid medium is applied onto a support to form a dispersion liquid film, and then the liquid medium is removed from the dispersion liquid film. Then, a method of producing a film containing a nanostructured hollow carbon material and inorganic particles. In the coating method, first, a dispersion containing a nanostructured hollow carbon material and inorganic particles is prepared. The dispersion liquid can be prepared by adding a predetermined amount of nanostructured hollow carbon material and inorganic particles to a liquid medium and mixing it, or by adding a liquid medium to a mixture of a predetermined amount of nanostructured hollow carbon material and inorganic particles. A method of adding and mixing, a method of adding and mixing a predetermined amount of nanostructured hollow carbon material to an intermediate dispersion in which a predetermined amount of inorganic particles is dispersed in a liquid medium, and a predetermined amount of inorganic particles being dispersed in the liquid medium A first intermediate dispersion liquid and a second intermediate dispersion liquid in which a predetermined amount of nanostructured hollow carbon material is dispersed in a liquid medium, and a predetermined amount of nanostructured hollow carbon material is dispersed in the liquid medium A method of adding inorganic particles to the intermediate dispersion and mixing them may be mentioned. A known mixer can be used for mixing. Since it is easy to disperse the inorganic particles and the nanostructured hollow carbon material more uniformly, the dispersion is prepared by a method in which the nanostructured hollow carbon material is added and dispersed in the intermediate dispersion liquid in which the inorganic particles are dispersed in the liquid medium. Is preferred. In order to obtain a highly dispersible film, it is preferable to prepare a dispersion by dispersing the nanostructured hollow carbon material in colloidal silica as an intermediate dispersion. Colloidal silica is a colloid of silica or its hydrate.
本発明における液体媒体は、 特に限定されるものではない。 分散液膜を形成した後に液 体媒体を除去する際の、 除去のしゃすさや、 分散液の取扱の観点から、 液体媒体として、 水、 アルコール、 水とアルコールの混合媒体を用いることが好ましく、 水を用いることが 最も好ましい。  The liquid medium in the present invention is not particularly limited. From the viewpoint of removal and liquid handling when removing the liquid medium after forming the dispersion liquid film, it is preferable to use water, alcohol, or a mixed medium of water and alcohol as the liquid medium. Most preferably, is used.
本発明において分散液を作製する際に用いる装置と.しては、 ボールミルゃ振動ミルなど 一般に湿式粉砕で用いられる装置が挙げられる。 ボールミルや振動ミルを用いる場合は、 特にボールや容器の限定はされるものではなく、 目的とするナノ構造中空炭素材料、 無機 粒子の粒径によつて選択すればょレ、。 Examples of the apparatus used for producing the dispersion liquid in the present invention include an apparatus generally used in wet pulverization such as a ball mill or a vibration mill. When using a ball mill or vibration mill, There are no particular restrictions on the ball or container, and it can be selected depending on the target nanostructured hollow carbon material and the particle size of the inorganic particles.
分散液を支持体上に塗布して分散液膜を形成するのには、 ハンディ · フィルムアプリケ 一ター、 バーコ一ター、 ダイコ一ター等の公知の塗布装置を用いることができる。 形成し た分散液膜から液体媒体を除去することにより、 支持体上にナノ構造中空炭素材料と無機 粒子を含む膜を形成することができる。 - 液体媒体を除去する方法としては、 通常 5 0〜5 0 0 °Cの温度で液体媒体を蒸発させる 方法が挙げられる。 中間分散液としてコロイダルシリカを用いる場合、 まず 5 0〜8 0 °C の温度で 1〜 6 0分の乾燥した後、 さらに 1 0 0〜 2 0 0 °Cの温度で 1〜 3 6 0分乾燥す ることが、 ナノ構造中空炭素材料同士の結着性を高め、 造形性を高める観点から好ましい 。 また、 塗布法で支持体上に膜を形成した後、 膜の厚さを調整する為に支持体上の膜をプ レスしても良い。  A known coating apparatus such as a handy film applicator, a bar coater, or a die coater can be used to apply the dispersion onto the support to form a dispersion film. By removing the liquid medium from the formed dispersion film, a film containing the nanostructured hollow carbon material and inorganic particles can be formed on the support. -As a method for removing the liquid medium, a method of evaporating the liquid medium at a temperature of usually 50 to 500 ° C can be mentioned. When colloidal silica is used as the intermediate dispersion, it is first dried at a temperature of 50 to 80 ° C. for 1 to 60 minutes, and further at a temperature of 10 to 0 to 200 ° C. for 1 to 3 60 minutes. Drying is preferable from the viewpoint of enhancing the binding property between the nanostructured hollow carbon materials and enhancing the formability. Further, after forming a film on the support by a coating method, the film on the support may be pressed in order to adjust the thickness of the film.
本発明の成形体の一態様は、 ナノ構造中空炭素材料と無機粒子とを含む線である。 ナノ 構造中空炭素材料は電気的にも特異性を持っているため、 本発明の線は、 コンデンサリー ド線、 トランジスタリ一ド線、 半導体リ一ド線、 管球用リ一ド線などの導線としても応用 可能である。  One aspect of the shaped article of the present invention is a line containing a nanostructured hollow carbon material and inorganic particles. Since nanostructured hollow carbon materials are also electrically unique, the wires of the present invention include capacitor lead wires, transistor lead wires, semiconductor lead wires, and lead wires for tube. It can also be applied as a conductor.
次に本発明のナノ構造中空炭素材料と無機粒子とを含む線の製造方法を説明する。 本発明の線は、 ナノ構造中空炭素材料と無機粒子の混合物をダイスより線状に押出して 線に成形する押出し法など公知の方法により製造できる。  Next, the manufacturing method of the line | wire containing the nano structure hollow carbon material and inorganic particle of this invention is demonstrated. The wire of the present invention can be produced by a known method such as an extrusion method in which a mixture of a nanostructure hollow carbon material and inorganic particles is extruded into a wire shape from a die.
押出し法では、 まずナノ構造中空炭素材料と無機粒子とを混合機に投入して混合し、 ぺ 一スト状混合物を得る。 このとき、 少量の液体媒体を加えることにより、 混合物の均一性 を向上させることができる。 次に前記ペースト状混合物を、 押出し機のダイスより線状に 押出し成形することにより、 本発明の線を得ることができる。 また、 ダイスを加熱してお く事で押出し成形時に線中に存在している液体媒体を蒸発させて除去することができる。 混合物は、 前記シート成形法の説明にて記載した方法で作製する事ができる。 実施例 In the extrusion method, first, a nanostructured hollow carbon material and inorganic particles are introduced into a mixer and mixed to obtain a pasty mixture. At this time, the uniformity of the mixture can be improved by adding a small amount of liquid medium. Next, the paste of the present invention can be obtained by extruding the paste-like mixture into a linear shape from a die of an extruder. Also, by heating the die, the liquid medium present in the wire during extrusion can be evaporated and removed. The mixture can be produced by the method described in the explanation of the sheet forming method. Example
以下、 本件を実施例によってさらに具体的に説明するが、 本発明はこれら実施例に限ら れることではない。  Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
[実施例 1 ]  [Example 1]
ナノ構造中空炭素材料は前記の方法で製造したものを用いた。 用いたナノ構造中空炭素 材料の炭素部は多層状であり、 炭素部の厚みは 16〜 20 n mであり、 中空部の径は 8〜 l l nmであり、 また、 BET比表面積は 106m2/gであった。 無機粒子としてはコ 口ィダルシリカ (日産化学工業のスノーテックス PS— S;平均粒径 10〜 50 nra;球状シ リカが 50〜 20 Onmの長さに結合した鎖状粒子;固形分濃度: 2 Owt%) を用いた。 ま た、 導電性を向上させるため導電材としてアセチレンブラック (電気化学工業株式会社の デンカブラック、 平均粒径 36 nm; 50 °/。プレス品) を用いた。 The nanostructured hollow carbon material produced by the above method was used. The carbon part of the nanostructured hollow carbon material used is multi-layered, the thickness of the carbon part is 16 to 20 nm, the diameter of the hollow part is 8 to ll nm, and the BET specific surface area is 106 m 2 / g Met. Inorganic silica (Snowtex PS-S from Nissan Chemical Industries; average particle size 10 to 50 nra; chain particles with spherical silica bound to a length of 50 to 20 Onm; solid content: 2 Owt %) Was used. In addition, acetylene black (Denka Black from Denki Kagaku Kogyo Co., Ltd., average particle size: 36 nm; 50 ° /. Pressed product) was used as a conductive material to improve conductivity.
ナノ構造中空炭素材料 32. 0 gとアセチレンブラック 4. O gにコロイダルシリカ 8 0. O gを添カ卩し、 さらに純水を添カ卩して、 固形分濃度 30重量%のスラリーを調製した 。 該スラリーは、 ナノ構造中空炭素材料 32. 0 g、 アセチレンブラック 4. 0 g、 シリ 力 1 6. 0 gを含有していた。 すなわちナノ構造中空炭素材料 100重量部当りの無機粒 子の量は 50重量部であった。  Nanostructured hollow carbon material 32.0 g and acetylene black 4. Add colloidal silica 8 0. O g to O g and add pure water to prepare a slurry with a solid content concentration of 30% by weight. did . The slurry contained 32.0 g of nanostructured hollow carbon material, 4.0 g of acetylene black, and 16.0 g of silicic force. That is, the amount of inorganic particles per 100 parts by weight of the nanostructured hollow carbon material was 50 parts by weight.
厚さ 20 μπιのアルミニウム箔 (支持体) 上に、 前記スラリーをハンディ ·フィルムァ プリケーターを用いて塗布しスラリー膜を形成した後、 60°Cで 1時間、 さらに 150°C で 6時間加熱して水を除去することで、 支持体上に膜を形成することが出来た。  The slurry was applied onto an aluminum foil (support) having a thickness of 20 μπι using a handy film applicator to form a slurry film, and then heated at 60 ° C. for 1 hour and further at 150 ° C. for 6 hours. By removing water, a film could be formed on the support.
また、 電気特性の評価も行った。 まず、 得られた支持体と該支持体上に形成された膜と からなる積層体を 1. 5 cmX 2. 0 cmの大きさに 2枚切り出した。 それぞれの厚みは 、 77 μπιと 80 μ ΐΏであった。 これらを十分に乾燥した後、 グローブボックス (窒素雰 囲気) 中で、 ステンレス鋼を集電極として用い、 図 1に示すような電気二重層キャパシタ を組み立てた。 すなわち、 前記 2枚の積層体片を、 電極膜同士が対向するように配置し、 两電極膜間に天然セル口一ス紙 (セパレーター) を配置してセルを形成し、 これを電解液 (富山薬品工業株式会社の LIPASTE-P/TEMAF14N) と共にアルミニウム製ケースに封入し、 電気二重層キャパシタを得た。 The electrical characteristics were also evaluated. First, two laminates each having a size of 1.5 cm × 2.0 cm were cut out from the obtained support and a film formed on the support. The respective thicknesses were 77 μπι and 80 μΐΏ. After these were sufficiently dried, an electric double layer capacitor as shown in Fig. 1 was assembled using stainless steel as a collector electrode in a glove box (nitrogen atmosphere). That is, the two laminate pieces are arranged so that the electrode films face each other, a natural cell mouth paper (separator) is arranged between the two electrode films to form a cell, and this is used as an electrolyte solution. (Toyama Pharmaceutical Co., Ltd. LIPASTE-P / TEMAF14N) was enclosed in an aluminum case to obtain an electric double layer capacitor.
得られた電気二重層キャパシタを 30 OmA/gの定電流で電圧が 2. 8Vに達するまで充 電後、 30 OmA/gの停電竜で電圧が 0Vになるまで放電させることにより、 充放電試験 を行った。 この結果より電気抵抗を概算し、 その結果を表 1に示した。  After charging the obtained electric double layer capacitor at a constant current of 30 OmA / g until the voltage reaches 2.8 V, it is discharged by a 30 OmA / g blackout dragon until the voltage reaches 0 V. Went. The electrical resistance was estimated from these results, and the results are shown in Table 1.
[比較例 1 ]  [Comparative Example 1]
コロイダルシリカを添加しなかった以外は、 実施例 1と同様にしてスラリーを調製した。 該スラリーは、 ナノ構造中空炭素材料 16. 0 g、 アセチレンブラック 2. O gを含有し ていた。 すなわち固体粒子 100重量部当りの無機粒子の量は 0重量部であった。 次に、 実施例 1と同様に支持体上に膜を形成させようとした力 製膜できなかった。  A slurry was prepared in the same manner as in Example 1 except that no colloidal silica was added. The slurry contained 16.0 g of nanostructured hollow carbon material and 2. 0 g of acetylene black. That is, the amount of inorganic particles per 100 parts by weight of solid particles was 0 parts by weight. Next, in the same manner as in Example 1, the film could not be formed by force to form a film on the support.
[比較例 2 ]  [Comparative Example 2]
ナノ構造中空炭素材料の代わ ζ>に活性炭を使用した以外は、 実施例 1と同様にしてスラ リーを調製した。 該スラリーは、 活性炭 16. 0 g、 アセチレンブラック 2. 0 g、 シリ 力 8. O gを含有していた。 すなわち固体粒子 100重量部当りの無機粒子の量は 44. 4重量部であった。 厚さ 20 μιηのアルミニウム箔 (支持体) 上に、 前記スラリーをハン ディ ·フィルムアプリケータ一を用いて塗布しスラリー膜を形成した後、 60°Cで 1時間、 さらに 150°Cで 6時間加熱して水を除去することで、 支持体上に膜を形成することが出 来た。  A slurry was prepared in the same manner as in Example 1 except that activated carbon was used for ζ> instead of the nanostructured hollow carbon material. The slurry contained activated carbon (16.0 g), acetylene black (2.0 g), and silicic force (8 O g). That is, the amount of inorganic particles per 100 parts by weight of solid particles was 44.4 parts by weight. A slurry film was formed by applying the slurry onto a 20 μιη-thick aluminum foil (support) using a handy film applicator, and then at 60 ° C for 1 hour, and further at 150 ° C for 6 hours. A film was formed on the support by removing water by heating.
また、 電気特性の評価も行った。 使用した膜の厚みはそれぞれ、 87 πι、 7 8 μΐ で あった。 実施例 1と同様に電極を作製し、 電気二重層キャパシタを組み立て、 充放電試験 を行った。 この結果より電気抵抗を概算し、 その結果を表 1に示した。 表 1 The electrical characteristics were also evaluated. The film thicknesses used were 87 πι and 7 8 μΐ, respectively. An electrode was prepared in the same manner as in Example 1, an electric double layer capacitor was assembled, and a charge / discharge test was performed. The electrical resistance was estimated from these results, and the results are shown in Table 1. table 1
Figure imgf000016_0001
実施例 1により作製した膜は、 導電性が髙いため乾電池、 一次電池、 二次電池、 レドッ クスキャパシタ、 ハイブリッドキャパシタ、 電気二重層キャパシタなどの電極に用いるこ とができるのはもちろん帯電防止、 電磁波シールドゃ赤外線力ットなどの導電膜としても 応用可能である。
Figure imgf000016_0001
The film produced in Example 1 has high conductivity, so it can be used for electrodes of dry batteries, primary batteries, secondary batteries, redox capacitors, hybrid capacitors, electric double layer capacitors, etc. Shielding can also be applied as a conductive film such as infrared power.
[実施例 2]  [Example 2]
ナノ構造中空炭素材料 36. 0 gとアセチレンブラック 2. 8 gにコロイダルシリカ 1Nanostructured hollow carbon material 36.0 g and acetylene black 2.8 g colloidal silica 1
2. 0 gを添加し、 さらに純水を添加して、 固形分濃度 50重量%のスラリーを調製した 。 該スラリーは、 ナノ構造中空炭素材料 36. 0 g、 アセチレンブラック 2. 8 g、 シリ 力 2. 4 gを含有していた。 すなわちナノ構造中空炭素材料 1 00重量部当りの無機粒子 の量は 6. 6重量部であった。 2.0 g was added, and pure water was further added to prepare a slurry having a solid concentration of 50% by weight. The slurry contained 36.0 g of nanostructured hollow carbon material, 2.8 g of acetylene black, and 2.4 g of silicic force. That is, the amount of inorganic particles per 100 parts by weight of the nanostructured hollow carbon material was 6.6 parts by weight.
厚さ 20 imのアルミニウム箔 (支持体) 上に、 前記スラリーをハンディ ·フィルムァ プリケーターを用いて塗布しスラリー膜を形成した後、 60°Cで 1時間、 さらに 1 50°C で 6時間加熱して水を除去することで、 支持体上に膜を形成することが出来た。 得られた The slurry is applied onto a 20 im thick aluminum foil (support) using a handy film applicator to form a slurry film, and then heated at 60 ° C for 1 hour and further at 150 ° C for 6 hours. By removing the water, a film could be formed on the support. Obtained
S莫の厚さは 108 mであった。 The thickness of S was 108 m.
得られた膜から 3. 0 c m X 3. 0 cmの大きさの膜片 1枚を切り出して、 膜の表面抵 抗を測定した。 表面抵抗の測定にはロレスタ (株式会社ダイァインストルメンッ製) を用 いた。 重量と膜厚から算出した密度と表面抵抗結果を表 2に示した。 A piece of membrane having a size of 3.0 cm × 3.0 cm was cut out from the obtained membrane, and the surface resistance of the membrane was measured. Loresta (manufactured by Dia Instruments Co., Ltd.) is used for surface resistance measurement It was. Table 2 shows the density and surface resistance results calculated from the weight and film thickness.
[実施例 3 ]  [Example 3]
コバルト酸リチウム (正極材) 36. 0 gとナノ構造中空炭素材料 2. 8 gにコロイダ ルシリカ 12. 0 gを添加し、 さらに純水を添加して、 固形分濃度 50重量%のスラリ一 を調製した。 該スラリーは、 コバルト酸リチウム 36. O g、 ナノ構造中空炭素材料 2. 8 g、 シリカ 2. 4 gを含有していた。 すなわちナノ構造中空炭素材料 100重量部当り の無機粒子の量は 85. 7重量部であった。  Lithium cobaltate (positive electrode material) 36.0 g and nanostructured hollow carbon material 2.8 g of colloidal silica 12.0 g, and pure water are added to obtain a slurry with a solid content of 50% by weight. Prepared. The slurry contained 36. O g of lithium cobaltate, 2.8 g of nanostructured hollow carbon material, and 2.4 g of silica. That is, the amount of inorganic particles per 100 parts by weight of the nanostructured hollow carbon material was 85.7 parts by weight.
厚さ 20 ;umのアルミニウム箔 (支持体) 上に、 前記スラリーをハンディ ' フィルムァ プリケーターを用いて塗布しスラリー膜を形成した後、 60°Cで 1時間、 さらに 150°C で 6時間加熱して水を除去することで、 支持体上に膜を形成することが出来た。 得られた 膜の厚さは 75. 0 つであった。  The slurry is applied onto a 20um thick aluminum foil (support) using a handy film applicator to form a slurry film, and then heated at 60 ° C for 1 hour and then at 150 ° C for 6 hours. By removing the water, a film could be formed on the support. The film thickness obtained was 75.0.
得られた膜から 3. 0 cmX 3. 0 cmの大きさの膜片 1枚を切り出して、 膜の表面抵 抗を測定した。 表面抵抗の測定にはロレスタ (株式会社ダイァインストルメンッ製) を用 いた。 重量と膜厚から算出した密度と表面抵抗結果を表 2に示した。  A film piece having a size of 3.0 cm × 3.0 cm was cut out from the obtained film, and the surface resistance of the film was measured. Loresta (manufactured by Dia Instruments Co., Ltd.) was used for measuring the surface resistance. Table 2 shows the density and surface resistance results calculated from the weight and film thickness.
なお、 使用したコバルト酸リチウムは、 日本化学株式会社の商品名 「セルシード C— 1 ON」 (平均粒径: 12. 0 μ m) である。  The lithium cobalt oxide used is a trade name “Cell Seed C-1 ON” (average particle size: 12.0 μm) of Nippon Chemical Co., Ltd.
[比較例 3] .  [Comparative Example 3]
コバルト酸リチウム (セルシ一ド C一 1 ON) 36. 0 gとアセチレンプラック 2. 8 gにコロイダルシリカ 12. 0 gを添加し、 さらに純水を添カロして、 固形分濃度 50重量 %のスラリーを調製した。 該スラリーは、 コバルト酸リチウム 36. 0 g、 アセチレンブ ラック 2. 8 g、 シリカ 2. 4 gを含有していた。 すなわちナノ構造中空炭素材料は 0重 量部であった。 Lithium cobaltate (Celciide C 1 ON) 36.0 g and acetylene plaque 2.8 g , colloidal silica 12.0 g added, and pure water is added, and the solid content concentration is 50% by weight. A slurry was prepared. The slurry contained 36.0 g of lithium cobaltate, 2.8 g of acetylene black, and 2.4 g of silica. That is, the nanostructured hollow carbon material was 0 parts by weight.
厚さ 20 μπιのアルミニウム箔 (支持体) 上に、 前記スラリーをハンディ ·フィルムァ プリケーターを用いて塗布しスラリー膜を形成した後、 60°Cで 1時間、 さらに 150°C で 6時間加熱して水を除去することで、 支持体上に膜を形成することが出来た。 得られた 膜の厚さは 8 5.' 3 mであった。 On an aluminum foil having a thickness of 20 μ πι (support), then the slurry to form a coating slurry membrane using a handy Firumua applicator, 1 hour at 60 ° C, further heated for 6 hours at 0.99 ° C By removing the water, a film could be formed on the support. Obtained The film thickness was 8 5. '3 m.
得られた膜から 3. 0 cmX 3. 0 cmの大きさの膜片 1枚を切り出して、 膜の表面抵 抗を測定した。 表面抵抗の測定にはロレスタ (株式会社ダイァインストルメンッ製) を用 いた。 重量と膜厚から算出した密度と表面抵抗結果を表 2に示した。 表 2  A film piece having a size of 3.0 cm × 3.0 cm was cut out from the obtained film, and the surface resistance of the film was measured. Loresta (manufactured by Dia Instruments Co., Ltd.) was used for measuring the surface resistance. Table 2 shows the density and surface resistance results calculated from the weight and film thickness. Table 2
Figure imgf000018_0001
産業上の利用可能性
Figure imgf000018_0001
Industrial applicability
本発明によれば、 ナノ構造中空炭素材料を含み、 高い導電性を有する成形体を得ること ができる。 例えば、 本発明の成形体を膜状にすれば、 それは、 その高い導電性を活かし、 導電膜や帯電防止膜として応用可能であるし、 本発明の成形体を線状にすれば、 導線とし ての応用が可能となる。  According to the present invention, it is possible to obtain a molded body containing a nanostructured hollow carbon material and having high conductivity. For example, if the molded body of the present invention is made into a film shape, it can be applied as a conductive film or an antistatic film by taking advantage of its high conductivity, and if the molded body of the present invention is made into a linear shape, it can be used as a conductor. All possible applications.

Claims

請求の範囲 [1] ナノ構造中空炭素材料と無機粒子とを含み、 前記ナノ構造中空炭素材料同士が前 記無機粒子で結着されている成形体。 [2] ナノ構造中空炭素材料の各々が、 炭素部おょぴ中空部を有し、 中空部の全体が炭 素部により囲まれた構造、 中空部の一部が炭素部により囲まれた構造、 または複数の炭素 部が連結されまたは塊になっており、 各々の炭素部が中空部の全体または一部を囲んでい る構造を有する第 1項に記載の成形体。 [3] ナノ構造中空炭素材料が、 以下の (A) 、 (B) の要件を満たす第 2項に記載の 成形体。 (A) ナノ構造中空炭素材料の炭素部の厚みが、 1 ηπ!〜 20 nmの範囲である。 (B) ナノ構造中空炭素材料の中空部の直径が、 0. 5 nm〜90 nmの範囲である。 [4] 前記ナノ構造中空炭素材料は、 以下の (1) 、 (2) 、 (3) および (4) のェ 程をこの順で含む方法により得られるナノ構造中空炭素材料である第 1項〜第 3項のいず れか 1項に記載の成形体。 Claims [1] A molded article comprising a nanostructured hollow carbon material and inorganic particles, wherein the nanostructured hollow carbon materials are bound together by the inorganic particles. [2] Each of the nano-structured hollow carbon materials has a carbon part, a hollow part, a structure in which the whole hollow part is surrounded by a carbon part, and a structure in which a part of the hollow part is surrounded by a carbon part. The molded article according to item 1, wherein a plurality of carbon parts are connected or formed into a lump, and each carbon part surrounds the whole or part of the hollow part. [3] The molded article according to item 2, wherein the nanostructured hollow carbon material satisfies the following requirements (A) and (B). (A) The thickness of the carbon part of the nanostructured hollow carbon material is 1 ηπ! It is in the range of ~ 20 nm. (B) The diameter of the hollow part of the nanostructured hollow carbon material is in the range of 0.5 nm to 90 nm. [4] The nanostructured hollow carbon material is a nanostructured hollow carbon material obtained by a method including the following steps (1), (2), (3) and (4) in this order: -The molded article according to any one of items 3 to 4.
( 1 ) テンプレート触媒ナノ粒子を製造する工程。  (1) A process for producing template catalyst nanoparticles.
(2) 前記テンプレート触媒ナノ粒子の存在下、 炭素材料前駆体の重合を行い、 前記テン プレート触媒ナノ粒子の表面に炭素材料中間体を形成させる工程。  (2) A step of polymerizing a carbon material precursor in the presence of the template catalyst nanoparticles to form a carbon material intermediate on the surface of the template catalyst nanoparticles.
(3) 前記炭素材料中間体を炭化して炭素材料を形成させ、 ナノ構造複合材料を製造する 工程。  (3) A step of producing a nanostructure composite material by carbonizing the carbon material intermediate to form a carbon material.
(4) 前記ナノ構造複合材料から、 テンプレート触媒ナノ粒子を除去して、 ナノ構造中空 炭素材料を製造する工程。  (4) A step of producing a nanostructured hollow carbon material by removing template catalyst nanoparticles from the nanostructured composite material.
[ 5 ] 前記無機粒子がシリカである第 1項〜第 4項のいずれか 1項に記載の成形体。  [5] The molded article according to any one of items 1 to 4, wherein the inorganic particles are silica.
[6] 膜状である、 第 1項〜第 5項のいずれか 1項に記載の成形体。  [6] The molded article according to any one of items 1 to 5, which is a film.
[7] 第 1項に記載の成形体の製造方法であって、 ナノ構造中空炭素材料と無機粒子とが液体媒体中に分散された分散液を支持体に塗布して 分散液膜を形成すること、 および [7] A method for producing a molded article according to paragraph 1, Applying a dispersion liquid in which a nanostructured hollow carbon material and inorganic particles are dispersed in a liquid medium to a support to form a dispersion film; and
前記分散液膜から前記液体媒体を除去してナノ構造中空炭素材料と無機粒子とを含む膜を 形成すること Removing the liquid medium from the dispersion liquid film to form a film containing a nanostructured hollow carbon material and inorganic particles;
を含む方法。 Including methods.
PCT/JP2009/060203 2008-05-30 2009-05-28 Carbon material molded body WO2009145352A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-142376 2008-05-30
JP2008142376 2008-05-30

Publications (1)

Publication Number Publication Date
WO2009145352A1 true WO2009145352A1 (en) 2009-12-03

Family

ID=41377216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060203 WO2009145352A1 (en) 2008-05-30 2009-05-28 Carbon material molded body

Country Status (3)

Country Link
JP (1) JP2010006691A (en)
TW (1) TW201006762A (en)
WO (1) WO2009145352A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003303539A (en) * 2002-04-10 2003-10-24 Mitsubishi Electric Corp Electron emission source and its manufacturing method
JP2004148305A (en) * 2002-10-11 2004-05-27 Osaka Gas Co Ltd Photocatalyst and air cleaner using the same
WO2007044614A2 (en) * 2005-10-06 2007-04-19 Headwaters Technology Innovation Llc Carbon nanostructures manufactured from catalytic templating nanoparticles
JP2007290913A (en) * 2006-04-25 2007-11-08 Sharp Corp Electroconductive porous honeycomb structure and its manufacturing method
JP2008037919A (en) * 2006-08-02 2008-02-21 Mitsubishi Rayon Co Ltd Composition comprising carbon nanotube and composite composed of the same
WO2009008558A1 (en) * 2007-07-12 2009-01-15 Sumitomo Chemical Company, Limited Electrode for electrochemical energy storage device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5269390B2 (en) * 2006-11-02 2013-08-21 住友化学株式会社 Electrode film, electrode, manufacturing method thereof, and electric double layer capacitor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003303539A (en) * 2002-04-10 2003-10-24 Mitsubishi Electric Corp Electron emission source and its manufacturing method
JP2004148305A (en) * 2002-10-11 2004-05-27 Osaka Gas Co Ltd Photocatalyst and air cleaner using the same
WO2007044614A2 (en) * 2005-10-06 2007-04-19 Headwaters Technology Innovation Llc Carbon nanostructures manufactured from catalytic templating nanoparticles
JP2007290913A (en) * 2006-04-25 2007-11-08 Sharp Corp Electroconductive porous honeycomb structure and its manufacturing method
JP2008037919A (en) * 2006-08-02 2008-02-21 Mitsubishi Rayon Co Ltd Composition comprising carbon nanotube and composite composed of the same
WO2009008558A1 (en) * 2007-07-12 2009-01-15 Sumitomo Chemical Company, Limited Electrode for electrochemical energy storage device

Also Published As

Publication number Publication date
JP2010006691A (en) 2010-01-14
TW201006762A (en) 2010-02-16

Similar Documents

Publication Publication Date Title
Ren et al. Current progress on the modification of carbon nanotubes and their application in electromagnetic wave absorption
Ghosh et al. Development of 3D urchin-shaped coaxial manganese dioxide@ polyaniline (MnO2@ PANI) composite and self-assembled 3D pillared graphene foam for asymmetric all-solid-state flexible supercapacitor application
Chen et al. Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries
Fan et al. Carbon nanosheets: synthesis and application
Keppeler et al. Synthesis of α-Fe 2 O 3/carbon nanocomposites as high capacity electrodes for next generation lithium ion batteries: a review
Zheng et al. In-situ synthesis of MnCo2O4. 5 nanosheets on reduced graphene oxide for a great promotion in the thermal decomposition of ammonium perchlorate
Yu et al. Synthesis of microspherical polyaniline/graphene composites and their application in supercapacitors
Xu et al. Assembly of chemically modified graphene: methods and applications
Xu et al. One-step strategy to graphene/Ni (OH) 2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials
Wang et al. Solvothermal-induced 3D macroscopic SnO2/nitrogen-doped graphene aerogels for high capacity and long-life lithium storage
Yang et al. Graphene nanosheets-polypyrrole hybrid material as a highly active catalyst support for formic acid electro-oxidation
Gao et al. Electrochemical synthesis of layer-by-layer reduced graphene oxide sheets/polyaniline nanofibers composite and its electrochemical performance
Cui et al. In situ synthesized heteropoly acid/polyaniline/graphene nanocomposites to simultaneously boost both double layer-and pseudo-capacitance for supercapacitors
Yin et al. Assembly of graphene sheets into hierarchical structures for high-performance energy storage
US10157711B2 (en) Covalently-grafted polyaniline on graphene oxide sheets and its application in electrochemical supercapacitors
Bae et al. Microwave self-assembly of 3D graphene-carbon nanotube-nickel nanostructure for high capacity anode material in lithium ion battery
Xiao et al. A simple process to prepare nitrogen-modified few-layer graphene for a supercapacitor electrode
Tang et al. Highly oxidized graphene anchored Ni (OH) 2 nanoflakes as pseudocapacitor materials for ultrahigh loading electrode with high areal specific capacitance
Ma et al. Enhanced electrocatalytic activity of Pt nanoparticles supported on functionalized graphene for methanol oxidation and oxygen reduction
Yu et al. Facile synthesis of MnO2/polyaniline nanorod arrays based on graphene and its electrochemical performance
KR101938439B1 (en) Manufacturing method for electrode material
Upadhyay et al. Free-standing N-Graphene as conductive matrix for Ni (OH) 2 based supercapacitive electrodes
Wu et al. Preparation and characterization of coaxial multiwalled carbon nanotubes/polyaniline tubular nanocomposites for electrochemical energy storage in the presence of sodium alginate
Kim et al. Bridge effect of silver nanoparticles on electrochemical performance of graphite nanofiber/polyaniline for supercapacitor
Zhao et al. Scalable synthesis of sub-100 nm hollow carbon nanospheres for energy storage applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754860

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09754860

Country of ref document: EP

Kind code of ref document: A1