WO2009145096A1 - 音声入力装置及びその製造方法、並びに、情報処理システム - Google Patents

音声入力装置及びその製造方法、並びに、情報処理システム Download PDF

Info

Publication number
WO2009145096A1
WO2009145096A1 PCT/JP2009/059291 JP2009059291W WO2009145096A1 WO 2009145096 A1 WO2009145096 A1 WO 2009145096A1 JP 2009059291 W JP2009059291 W JP 2009059291W WO 2009145096 A1 WO2009145096 A1 WO 2009145096A1
Authority
WO
WIPO (PCT)
Prior art keywords
microphone
input device
signal
voltage signal
voice input
Prior art date
Application number
PCT/JP2009/059291
Other languages
English (en)
French (fr)
Inventor
陸男 高野
精 杉山
敏美 福岡
雅敏 小野
隆介 堀邊
史記 田中
岳司 猪田
Original Assignee
株式会社船井電機新応用技術研究所
船井電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社船井電機新応用技術研究所, 船井電機株式会社 filed Critical 株式会社船井電機新応用技術研究所
Priority to EP09754604A priority Critical patent/EP2280559A1/en
Priority to CN2009801186556A priority patent/CN102037738A/zh
Priority to US12/994,142 priority patent/US20110172996A1/en
Publication of WO2009145096A1 publication Critical patent/WO2009145096A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3005Automatic control in amplifiers having semiconductor devices in amplifiers suitable for low-frequencies, e.g. audio amplifiers
    • H03G3/301Automatic control in amplifiers having semiconductor devices in amplifiers suitable for low-frequencies, e.g. audio amplifiers the gain being continuously variable
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/32Automatic control in amplifiers having semiconductor devices the control being dependent upon ambient noise level or sound level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/60Substation equipment, e.g. for use by subscribers including speech amplifiers
    • H04M1/6008Substation equipment, e.g. for use by subscribers including speech amplifiers in the transmitter circuit
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/20Speech recognition techniques specially adapted for robustness in adverse environments, e.g. in noise, of stress induced speech
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L2021/02161Number of inputs available containing the signal or the noise to be suppressed
    • G10L2021/02165Two microphones, one receiving mainly the noise signal and the other one mainly the speech signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/74Details of telephonic subscriber devices with voice recognition means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/02Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/11Transducers incorporated or for use in hand-held devices, e.g. mobile phones, PDA's, camera's
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor

Definitions

  • the present invention relates to a voice input device, a manufacturing method thereof, and an information processing system.
  • the microphone has a sharp directivity, or the arrival direction of the sound wave is identified using the difference in arrival time of the sound wave, and the noise is removed by signal processing.
  • the method is known.
  • An object of the present invention is to provide a voice input device having a function of removing a noise component, a manufacturing method thereof, and an information processing system.
  • the present invention A first microphone having a first vibrating membrane; A second microphone having a second vibrating membrane; A differential signal between the first voltage signal and the second voltage signal is generated based on the first voltage signal acquired by the first microphone and the second voltage signal acquired by the second microphone.
  • a voice input device including a differential signal generation unit, The first and second vibrating membranes are The noise intensity ratio indicating the ratio of the intensity of the noise component included in the difference signal to the intensity of the noise component included in the first or second voltage signal is the intensity of the input speech component included in the difference signal.
  • the difference signal generator is A gain unit that gives a predetermined gain to the first voltage signal acquired by the first microphone; When the first voltage signal given a predetermined gain by the gain unit and the second voltage signal obtained by the second microphone are inputted, the first voltage given the predetermined gain And a differential signal output unit configured to generate and output a differential signal between the signal and the second voltage signal.
  • the gain unit has a function of giving a predetermined gain to the input signal in a predetermined manner, and is configured by an analog amplifier circuit when processed as an analog signal, and digital when processed as a digital signal. You may comprise with a multiplier etc.
  • the sensitivity (gain) of the microphone often varies due to electrical or mechanical factors in the manufacturing process. Accordingly, variations in the amplitude of the voltage signals output from the first microphone and the second microphone (variations in the gain of the microphone) may occur, and there is usually a variation of about ⁇ 3 dB. It has been experimentally confirmed that such a variation causes a reduction in the far noise suppression effect as a differential microphone.
  • the first voltage signal and the second voltage signal can be obtained by giving a predetermined gain to the first voltage signal (when the gain is increased or when the gain is decreased). Variation in gain (gain variation) can be corrected. Correction is performed so that the amplitudes of the first voltage signal and the second voltage signal with respect to the input sound pressure are equal, or the amplitude difference between the first voltage signal and the second voltage signal is within a predetermined range. Also good. As a result, it is possible to prevent a noise suppression effect from being reduced due to sensitivity variations due to individual differences of microphones generated in the manufacturing process.
  • the first and second microphones are arranged so as to satisfy a predetermined condition.
  • the difference signal indicating the difference between the first and second voltage signals acquired by the first and second microphones can be regarded as a signal indicating the input sound from which the noise component has been removed. Therefore, according to the present invention, it is possible to provide a voice input device capable of realizing a noise removal function with a simple configuration that only generates a differential signal.
  • the difference signal generation unit generates a difference signal without performing analysis processing (Fourier analysis processing or the like) on the first and second voltage signals. Therefore, it is possible to reduce the signal processing load of the differential signal generation unit, or to realize the differential signal generation unit with a very simple circuit.
  • the first and second diaphragms may be arranged such that the intensity ratio based on the phase difference component of the noise component is smaller than the intensity ratio based on the amplitude of the input voice component. Good.
  • the difference signal generator is A gain unit configured to change an amplification factor according to a voltage applied to a predetermined terminal or a flowing current;
  • a gain control unit for controlling a voltage applied to the predetermined terminal or a flowing current;
  • the gain controller is A resistor array in which a plurality of resistors are connected in series or in parallel is included, and a part of the resistor or conductor constituting the resistor array is cut, or at least one resistor is included and a part of the resistor is cut Thus, it is preferable that the voltage applied to the predetermined terminal of the gain unit or the flowing current can be changed.
  • the resistance value of the resistor array may be changed by cutting a part of the resistors or conductors constituting the resistor array by cutting with a laser or by applying a high voltage or high current.
  • the resistance value may be changed by cutting a part.
  • the gain of the first voltage signal so as to eliminate the gain difference caused by the variation by examining the gain variation due to the individual difference generated in the manufacturing process of the microphone. Then, a part of the resistor or conductor (for example, fuse) constituting the resistor array is cut so that the voltage or current for realizing the determined amplification factor can be supplied to a predetermined terminal, and the resistance of the gain control unit It is preferable to set the value to an appropriate value. Thereby, the balance of the amplitude of the output of the gain unit and the second voltage signal acquired by the second microphone can be adjusted.
  • the difference signal generator is The first voltage signal and the second voltage signal that are input to the difference signal output unit are received, and a first difference signal is generated based on the received first voltage signal and second voltage signal.
  • An amplitude difference detection unit that detects an amplitude difference between the voltage signal and the second voltage signal and generates and outputs an amplitude difference signal based on the detection result;
  • a gain control unit that performs control to change an amplification factor in the gain unit based on the amplitude difference signal.
  • the amplitude difference detector includes a first amplitude detector that detects the output signal amplitude of the gain unit, and a second amplitude that detects the signal amplitude of the second voltage signal acquired by the second microphone.
  • the gain controller is The noise difference between the output signal of the gain unit and the second voltage signal acquired by the second microphone is equal to or less than a predetermined ratio with respect to any signal, or noise suppression at a predetermined level. It is preferable to control the gain of the gain section so as to obtain an effect.
  • the difference in amplitude may be in the range of ⁇ 3% or more and + 3% or less with respect to the output signal or the second voltage signal of the gain unit, or may be ⁇ 6% or more and + 6% or less. You may make it become a range.
  • the noise suppression effect is about 10 decibels for a 1 kHz sound wave, and in the latter case, the noise suppression effect is about 6 decibels, and an appropriate suppression effect can be obtained.
  • the amplification may be controlled to obtain a noise suppression effect of a predetermined decibel (for example, about 10 decibels).
  • this voice input device Either of claims 3 or 4, A sound source unit installed at an equal distance from the first microphone and the second microphone; The difference signal generator is It is preferable to perform control to change the amplification factor in the gain unit based on the sound from the sound source unit.
  • the gain unit output is adjusted to be equal to the signal amplitude of the second voltage signal acquired by the second microphone. May be.
  • the present invention also provides: A first microphone having a first vibrating membrane; A second microphone having a second vibrating membrane; A differential signal between the first voltage signal and the second voltage signal is generated based on the first voltage signal acquired by the first microphone and the second voltage signal acquired by the second microphone.
  • a differential signal generation unit A sound source unit installed at an equal distance from the first microphone and the second microphone;
  • the difference signal generator is A gain unit that gives a predetermined gain to the first voltage signal acquired by the first microphone; The first voltage signal and the second voltage signal that are input to the difference signal output unit are received, and a first difference signal is generated based on the received first voltage signal and second voltage signal.
  • An amplitude difference detection unit that detects an amplitude difference between the voltage signal of the second voltage signal and the second voltage signal and generates and outputs an amplitude difference signal based on the detection result;
  • a gain control unit that performs control to change an amplification factor in the gain unit based on the amplitude difference signal;
  • An audio input device is provided that adjusts an amplification factor in the gain unit so that amplitudes of the first voltage signal and the second voltage signal are equal based on sound from the sound source unit.
  • the sound source unit may be a sound source that generates a single frequency sound.
  • the frequency of the sound source unit is preferably set outside the audible band. Therefore, even when the user is used, the phase difference or delay difference of the input signal can be adjusted using the sound source unit without causing any trouble.
  • the gain can be adjusted dynamically during use, so that the gain can be adjusted according to the surrounding environment such as a temperature change.
  • the amplitude difference detector is A band-pass filter that passes the band near the single frequency of the first voltage signal and the second voltage signal that are input to the differential signal output unit; An amplitude difference signal between the first voltage signal and the second voltage signal after passing through the band-pass filter is detected, and an amplitude difference signal is generated based on the detection result.
  • the sound signal of the sound source section can be selectively captured and adjusted, it is possible to perform adjustment with high accuracy. Then, it is possible to detect and adjust the variation of the gain of the microphone that changes depending on the situation (environment and age of use) at the time of use in real time or intermittently.
  • the difference signal generator is It is preferable to include a low-pass filter section that cuts a high frequency region component of the differential signal.
  • the differential microphone has the characteristic that the high frequency range component of the sound is emphasized (gain increases), and noise in the high frequency range may be harsh on hearing. Therefore, as described above, when the differential signal generation unit includes the low-pass filter, the high-frequency component of the differential signal is attenuated by using the low-pass filter, thereby flattening the frequency characteristics and causing a sense of discomfort in hearing. Can be prevented.
  • the low-pass filter unit is preferably a filter having a primary cutoff characteristic.
  • the frequency characteristic of the differential signal should be flat. It is possible to prevent a sense of incongruity from occurring.
  • the cut-off frequency of the low-pass filter unit is preferably set to any value between 1 kHz and 5 kHz.
  • the cut-off frequency of the low-pass filter section When the cut-off frequency of the low-pass filter section is set low, the sound becomes muffled. When the cut-off frequency is set high, the high-frequency noise becomes annoying.
  • the optimum cutoff frequency varies depending on the distance between the microphones. For example, when the distance between the microphones is about 5 mm, it is preferable to set the cutoff frequency of the low-pass filter unit to 1.5 kHz or more and 2 kHz or less.
  • this voice input device First AD converting means for analog-to-digital conversion of the first voltage signal; A second AD conversion means for analog-digital conversion of the second voltage signal;
  • the difference signal generator is A first voltage based on the first voltage signal converted into a digital signal by the first AD conversion means and the second voltage signal converted into a digital signal by the second AD conversion means.
  • a differential signal between the signal and the second voltage signal is generated.
  • the present invention also provides: A first microphone having a first vibrating membrane; A second microphone having a second vibrating membrane; A difference signal generation unit that generates a difference signal indicating a difference between the first voltage signal acquired by the first microphone and the second voltage signal acquired by the second microphone; Including The first and second diaphragms have a noise intensity ratio indicating a ratio of the intensity of the noise component included in the differential signal to the intensity of the noise component included in the first or second voltage signal.
  • the input voice component included in the difference signal is disposed so as to be smaller than an input voice intensity ratio indicating a ratio of the intensity of the input voice component included in the first or second voltage signal to the intensity of the input voice component.
  • a voice input device is provided.
  • the first and second microphones are arranged so as to satisfy a predetermined condition.
  • the difference signal indicating the difference between the first and second voltage signals acquired by the first and second microphones can be regarded as a signal indicating the input voice from which the noise component has been removed. Therefore, according to the present invention, it is possible to provide a voice input device capable of realizing a noise removal function with a simple configuration that only generates a differential signal.
  • the difference signal generation unit generates a difference signal without performing analysis processing (Fourier analysis processing or the like) on the first and second voltage signals. Therefore, it is possible to reduce the signal processing load of the differential signal generation unit, or to realize the differential signal generation unit with a very simple circuit.
  • the first and second diaphragms may be arranged such that the intensity ratio based on the phase difference component of the noise component is smaller than the intensity ratio based on the amplitude of the input voice component. Good.
  • this voice input device It further includes a base having a recess formed on the main surface, The first vibrating membrane is installed on the bottom surface of the recess, The second vibrating membrane is preferably installed on the main surface.
  • this voice input device It is preferable that the base is installed such that an opening communicating with the concave portion is disposed closer to the model sound source of the input sound than the formation region of the second vibration film on the main surface.
  • phase shift of the input sound incident on the first and second diaphragms can be reduced. Therefore, a differential signal with less noise can be generated, and a voice input device having a highly accurate noise removal function can be provided.
  • this voice input device further includes a base formed with a first recess and a second recess shallower than the first recess,
  • the first diaphragm is installed on a bottom surface of the first recess;
  • the second vibrating membrane is preferably installed on the bottom surface of the second recess.
  • phase shift of the input sound incident on the first and second diaphragms can be reduced. Therefore, a differential signal with less noise can be generated, and a voice input device having a highly accurate noise removal function can be provided.
  • this voice input device It is preferable that the base is installed so that the input sound arrives at the first and second diaphragms simultaneously.
  • this voice input device The first diaphragm and the second vibration with respect to the intensity of sound pressure of the sound incident on the first diaphragm with respect to the sound having a frequency band of 10 kHz or less between the centers of the first and second diaphragms.
  • the phase component of the sound intensity ratio which is the ratio of the intensity of the differential sound pressure of the sound incident on the film, may be set to a distance that is 0 decibel or less.
  • the present invention also provides: A voice input device according to any of the above; There is provided an information processing system comprising: an analysis processing unit that performs analysis processing of voice information input to the voice input device based on the difference signal.
  • the information processing system may be a system that performs voice recognition processing, voice authentication processing, or voice-based command generation processing.
  • the manufacturing method of the present invention it is possible to manufacture a voice input device that can be downsized and has a highly accurate noise removal function.
  • the input voice intensity ratio is preferably an intensity ratio based on an amplitude component of the input voice.
  • the noise intensity ratio is preferably an intensity ratio based on a phase difference of the noise component.
  • the figure which shows the example which adjusts resistance value by laser trimming The figure for demonstrating the relationship of distribution of the phase component of a user audio
  • FIG. 3 shows an example of a circuit capable of realizing the differential signal generation unit 30 and the gain unit.
  • the first and second voltage signals are received, and a signal obtained by amplifying the difference signal indicating the difference by 10 times is output.
  • the circuit configuration for realizing the differential signal generation unit 30 and the gain unit is not limited to this.
  • the voice input device may further include a communication processing unit 60.
  • the communication processing unit 60 controls communication between the voice input device and another terminal (such as a mobile phone terminal or a host computer).
  • the communication processing unit 60 may have a function of transmitting a signal (difference signal) to another terminal via a network.
  • the communication processing unit 60 may also have a function of receiving signals from other terminals via a network.
  • the host computer may analyze the differential signal acquired via the communication processing unit 60 and perform various information processing such as voice recognition processing, voice authentication processing, command generation processing, and data storage processing. Good. That is, the voice input device may constitute an information processing system in cooperation with other terminals. In other words, the voice input device may be regarded as an information input terminal that constructs an information processing system. However, the voice input device may not have the communication processing unit 60.
  • the user in the close-talking sound input device, the user emits sound from a position closer to the first and second microphones 10 and 20 (first and second vibrating membranes 12 and 22) than a noise source. . Therefore, the user's voice is greatly attenuated between the first and second vibrating membranes 12 and 22, and a difference appears in the intensity of the user voice included in the first and second voltage signals.
  • the noise component is hardly attenuated between the first and second vibrating membranes 12 and 22 because the sound source is farther than the user's voice. Therefore, it can be considered that no difference appears in the intensity of noise included in the first and second voltage signals.
  • the voice input device does not include noise as the difference signal indicating the difference between the first and second voltage signals. It is considered as an input audio signal.
  • the noise component included in the differential signal is smaller than the noise component included in the first or second voltage signal, it can be evaluated that the noise removal function has been realized.
  • the noise intensity ratio indicating the ratio of the intensity of the noise component included in the difference signal to the intensity of the noise component included in the first or second voltage signal is equal to the intensity of the audio component included in the difference signal. If the ratio is smaller than the voice intensity ratio indicating the ratio of the voice component included in the first or second voltage signal, it can be evaluated that the noise removal function has been realized.
  • the sound pressure of the sound incident on the first and second microphones 10 and 20 (first and second vibrating membranes 12 and 22) will be examined.
  • the distance from the sound source of the input voice (user's voice) to the first diaphragm 12 is R, and the distance between the centers of the first and second diaphragms 12, 22 (first and second microphones 10, 20). If ⁇ r is ⁇ r, and the phase difference is ignored, the sound pressures (intensities) P (S1) and P (S2) of the input speech acquired by the first and second microphones 10 and 20 are
  • a speech intensity ratio ⁇ (P) indicating the ratio of the strength of the input speech component included in the difference signal to the strength of the input speech component acquired by the first microphone 10 when the phase difference of the input speech is ignored.
  • is a phase difference
  • the term sin ⁇ t ⁇ sin ( ⁇ t ⁇ ) indicates the intensity ratio of the phase component
  • the ⁇ r / R sin ⁇ t term indicates the intensity ratio of the amplitude component. Even if it is an input audio component, the phase difference component becomes noise with respect to the amplitude component. Therefore, in order to accurately extract the input audio (user's audio), the intensity ratio of the phase component is greater than the intensity ratio of the amplitude component. Must be sufficiently small. That is, sin ⁇ t ⁇ sin ( ⁇ t ⁇ ) and ⁇ r / R sin ⁇ t are
  • the voice input device Considering the amplitude component of Equation (10), the voice input device according to the present embodiment is
  • ⁇ r can be considered to be sufficiently smaller than R, so sin ( ⁇ / 2) can be considered to be sufficiently small.
  • the expression (D) can be expressed as
  • the amplitudes of the noise components acquired by the first and second microphones are A and A ′
  • the sound pressures Q (N1) and Q (N2) of the noise considering the phase difference component are A and A ′
  • the noise intensity ratio ⁇ (N) indicating the ratio of the intensity of the noise component included in the difference signal to the intensity of the noise component acquired by the first microphone 10 is expressed as follows:
  • equation (17) is
  • ⁇ r / R is the intensity ratio of the amplitude component of the input voice (user voice) as shown in Expression (A). From the expression (F), it can be seen that in this voice input device, the noise intensity ratio is smaller than the intensity ratio ⁇ r / R of the input voice.
  • the noise intensity ratio is the input voice intensity ratio. (See formula (F)).
  • a highly accurate noise removal function can be realized.
  • the first and second vibrating membranes 12 and 22 are arranged so that the noise intensity ratio is smaller than the input voice intensity ratio. According to the voice input device, it is possible to realize a highly accurate noise removal function.
  • ⁇ r / ⁇ indicating the ratio between the center-to-center distance ⁇ r of the first and second vibrating membranes 12 and 22 and the noise wavelength ⁇ and the noise intensity ratio (the intensity based on the phase component of the noise).
  • the voice input device is manufactured using the data indicating the correspondence relationship with the ratio.
  • FIG. 5 shows an example of data representing the correspondence between the phase difference and the intensity ratio when the horizontal axis is ⁇ / 2 ⁇ and the vertical axis is the intensity ratio (decibel value) based on the phase component of noise. .
  • the phase difference ⁇ can be expressed as a function of ⁇ r / ⁇ , which is the ratio of the distance ⁇ r to the wavelength ⁇ , as shown in Equation (12), and the horizontal axis in FIG. 5 is regarded as ⁇ r / ⁇ . Can do. That is, FIG. 5 can be said to be data indicating a correspondence relationship between the intensity ratio based on the phase component of noise and ⁇ r / ⁇ .
  • FIG. 6 is a flowchart for explaining the procedure for manufacturing the voice input device using this data.
  • step S10 data (see FIG. 5) showing the correspondence between the noise intensity ratio (intensity ratio based on the noise phase component) and ⁇ r / ⁇ is prepared (step S10).
  • the noise intensity ratio is set according to the application (step S12). In the present embodiment, it is necessary to set the noise intensity ratio so that the noise intensity decreases. Therefore, in this step, the noise intensity ratio is set to 0 dB or less.
  • step S14 a value of ⁇ r / ⁇ corresponding to the noise intensity ratio is derived (step S14).
  • a condition for a noise intensity ratio to be 0 dB or less is examined.
  • the value of ⁇ r / ⁇ may be 0.16 or less in order to make the noise intensity ratio 0 dB or less. That is, it can be seen that the value of ⁇ r should be 55.46 mm or less, which is a necessary condition for this voice input device.
  • the value of ⁇ r / ⁇ may be 0.015 in order to reduce the noise intensity by 20 dB.
  • 0.347 m
  • this condition is satisfied when the value of ⁇ r is 5.20 mm or less. That is, if the center-to-center distance ⁇ r between the first and second vibrating membranes 12 and 22 (the first and second microphones 10 and 20) is set to about 5.2 mm or less, a close-talking type having a noise removal function.
  • a voice input device can be manufactured.
  • the voice input device is a close-talking voice input device, and the distance between the sound source of the user's voice and the first or second diaphragm 12, 22 is usually 5 cm or less. Further, the distance between the sound source of the user voice and the first and second vibrating membranes 12 and 22 can be controlled by the design of the housing 40. Therefore, the value of ⁇ r / R, which is the intensity ratio of the input voice (user's voice), becomes larger than 0.1 (noise intensity ratio), and it can be seen that the noise removal function is realized.
  • noise is not normally limited to a single frequency.
  • noise having a frequency lower than that of noise assumed as the main noise has a longer wavelength than the main noise, the value of ⁇ r / ⁇ becomes small and is removed by the voice input device. Further, the sound wave decays faster as the frequency is higher. For this reason, noise having a higher frequency than the noise assumed as the main noise attenuates faster than the main noise, so that the influence on the voice input device can be ignored.
  • the voice input device according to the present embodiment can exhibit an excellent noise removal function even in an environment where noise having a frequency different from that assumed as main noise exists.
  • noise incident from the straight line connecting the first and second vibrating membranes 12 and 22 is assumed.
  • This noise is a noise in which the apparent distance between the first and second vibrating membranes 12 and 22 is the largest, and is a noise in which the phase difference is the largest in an actual use environment. That is, the voice input device according to the present embodiment is configured to be able to remove the noise having the largest phase difference. Therefore, according to the voice input device according to the present embodiment, noise incident from all directions is removed.
  • the noise component is generated only by generating a differential signal indicating the difference between the voltage signals acquired by the first and second microphones 10 and 20.
  • the removed audio component can be acquired. That is, in this voice input device, a noise removal function can be realized without performing complicated analysis calculation processing. Therefore, according to the present embodiment, it is possible to provide a voice input device capable of realizing a highly accurate noise removal function with a simple configuration. In particular, by providing the center-to-center distance ⁇ r between the first and second vibrating membranes to 5.2 mm or less, a voice input device that can realize a more accurate noise removal function with less phase distortion is provided. can do.
  • the phase component of the sound intensity ratio which is the ratio of the intensity of the differential sound pressure of the sound incident on the second diaphragm, may be set to a distance that is 0 decibel or less.
  • the first and second diaphragms are arranged along a traveling direction of a sound of a sound source (for example, voice), and the diaphragm is arranged with respect to a sound having a frequency band of 10 kHz or less from the traveling direction.
  • the center-to-center distance between the first and second diaphragms may be set to a distance that does not exceed the sound pressure when the sound pressure phase component is used as a single microphone.
  • the delay distortion removal effect produced by the voice input device 1 will be described.
  • the user voice intensity ratio ⁇ (S) is expressed by the following equation (8).
  • phase component ⁇ (S) phase of the user voice intensity ratio ⁇ (S) is a term of sin ⁇ t ⁇ sin ( ⁇ t ⁇ ).
  • FIG. 41 shows a phase component ⁇ (S) of the user voice intensity ratio ⁇ (S) when a sound having a frequency of 1 kHz, 7 kHz, and 10 kHz is captured by a differential microphone when the distance between microphones ( ⁇ r) is 5 mm. The distribution of phase is shown.
  • phase component ⁇ (S) phase of the sound user voice intensity ratio ⁇ (S) is 0 dB or less for any frequency of 1 kHz, 7 kHz, and 10 kHz. It is.
  • the phase component ⁇ (S) phase of the user voice intensity ratio ⁇ (S) is 0 dB or less for the sound of 1 kHz and 7 kHz, but the frequency of 10 kHz
  • the phase component ⁇ (S) phase of the user voice intensity ratio ⁇ (S) is 0 decibels or more and delay distortion (noise) is increased.
  • 44 (A) to 52 (B) are diagrams for explaining the directivity of the differential microphone for each sound source frequency, microphone-to-microphone distance ⁇ r, and microphone-sound source distance.
  • Reference numeral 1114 denotes a first direction for causing sound waves to reach both sides of a microphone when a differential microphone is realized by using a single microphone or a straight line connecting both microphones when a differential microphone is configured using two microphones.
  • the direction of a straight line connecting the vibrating membrane and the second vibrating membrane (0 ° to 180 °, two microphones M1, M2 constituting the differential microphone or the first vibrating membrane and the second vibrating membrane are placed on this straight line. Is shown).
  • the direction of this straight line is 0 degrees and 180 degrees, and the direction perpendicular to the direction of this straight line is 90 degrees and 270 degrees.
  • 50A and 50B are diagrams showing the directivity of the differential microphone when the frequency of the sound source is 300 Hz, the distance between microphones ⁇ r is 5 mm, and the distance between the microphone and the sound source is 2.5 cm and 1 m, respectively. is there.
  • the area indicated by the graph 1240 indicating the directivity of the differential microphone is included in the area indicated by the graph 1242 indicating the uniform characteristic of the single microphone. It can be said that the moving microphone is excellent in the far-field noise suppression effect compared to the single microphone.
  • 51A and 51B are diagrams showing the directivity of the differential microphone when the frequency of the sound source is 300 Hz, the distance ⁇ r between the microphones is 10 mm, and the distance between the microphone and the sound source is 2.5 cm and 1 m, respectively. is there. Even in such a case, as shown in FIG. 51B, the area indicated by the graph 1260 indicating the directivity of the differential microphone is included in the area indicated by the graph 1262 indicating the uniform characteristic of the single microphone. It can be said that the moving microphone is excellent in the far-field noise suppression effect compared to the single microphone.
  • the voice input device includes a base 70.
  • a recess 74 is formed in the main surface 72 of the base 70.
  • the first vibration film 12 (first microphone 10) is disposed on the bottom surface 75 of the recess 74
  • the second vibration film 22 ( A second microphone 20) is arranged.
  • the recess 74 may extend perpendicular to the main surface 72, and the bottom surface 75 of the recess 74 may be a surface parallel to the main surface 72.
  • the bottom surface 75 may be a surface orthogonal to the recess 74. Further, the recess 74 may have the same outer shape as the first vibrating membrane 12.
  • the base 70 is installed so that the opening 78 communicating with the recess 74 is disposed at a position closer to the sound source of the input sound than the region 76 in the main surface 72 where the second vibrating membrane 22 is disposed.
  • the base portion 70 may be installed so that the input sound arrives at the first and second vibrating membranes 12 and 22 at the same time.
  • the base 70 may be installed such that the distance between the input sound source (model sound source) and the first diaphragm 12 is the same as the distance between the model sound source and the second diaphragm 22.
  • the base unit 70 may be installed in a housing in which a basic posture is set so as to satisfy the above-described conditions.
  • the amplitude component (difference signal) of the input voice can be acquired so as not to include noise based on the phase difference component of the input voice. Therefore, it is possible to realize a highly accurate noise removal function.
  • the voice input device includes a base 80.
  • a first recess 84 and a second recess 86 shallower than the first recess 84 are formed on the main surface 82 of the base 80.
  • ⁇ d which is the difference between the depths of the first and second recesses 84, 86, is between the first opening 85 that communicates with the first recess 84 and the second opening 87 that communicates with the second recess 86. It may be smaller than ⁇ G which is the interval.
  • the first vibration film 12 is disposed on the bottom surface of the first recess 84, and the second vibration film 22 is disposed on the bottom surface of the second recess 86.
  • the first diaphragm of the first microphone 710-1 and the first diaphragm of the second microphone 710-2 have the intensity of the noise component included in the differential signal 742 and the first or second voltage signal.
  • the noise intensity ratio indicating the ratio of the noise component included in 712-1 and 712-2 to the intensity of the noise component is included in the first or second voltage signal of the intensity of the input speech component included in the difference signal 742.
  • the input voice component is arranged so as to be smaller than an input voice intensity ratio indicating a ratio to the intensity of the input voice component.
  • the voice input device 700 includes a first voltage signal 712-1 acquired by the first microphone 710-1 and a second voltage signal 712 acquired by the second microphone.
  • -2 includes a difference signal generation unit 720 that generates 742 a difference signal between the first voltage signal 712-1 and the second voltage signal 712-2.
  • the differential signal generation unit 720 includes a delay unit 730.
  • the delay unit 730 gives a predetermined delay to at least one of the first voltage signal 712-1 acquired by the first microphone and the second voltage signal 712-2 acquired by the second microphone, and outputs the delayed signal. To do.
  • the differential signal generation unit 720 includes a differential signal output unit 740.
  • the differential signal output unit 740 is a signal in which at least one of the first voltage signal acquired by the first microphone and the second voltage signal acquired by the second microphone is delayed by the delay unit. To generate and output a differential signal between the first voltage signal and the second voltage signal.
  • the first voltage signal and the second voltage signal caused by individual differences at the time of microphone manufacture are provided. Since it is possible to correct the delay variation of the second voltage signal, it is possible to prevent the noise suppression effect from being reduced due to the delay variation of the first voltage signal and the second voltage signal.
  • the difference signal generation unit 720 may include a delay control unit 734.
  • the delay control unit 734 performs control to change the delay amount in the delay unit (here, the first delay unit 732-1).
  • the delay control unit 734 dynamically or statically controls an appropriate delay amount of the delay unit (here, the first delay unit 732-1), so that the delay unit output S1 and the second microphone acquired by the second microphone can be obtained.
  • the signal delay balance with the second voltage signal 712-2 may be adjusted.
  • FIG. 15 is a diagram illustrating an example of a specific configuration of the delay unit and the delay control unit.
  • the delay unit here, the first delay unit 732-1
  • the delay control unit 734 dynamically or statically controls the delay amount of the group delay filter based on the voltage between the control terminals 736 and GND of the group delay filter 732-1 or the amount of current flowing between the control terminals 736 and GND. It may be.
  • a resistor array including a plurality of resistors (r) connected in series is provided, and a predetermined terminal (control terminal 734 in FIG. 15) of the delay unit is connected via the resistor array.
  • the resistor (r) or the conductor (F of 738) constituting the resistor array is blown by laser cutting or application of a high voltage or high current according to a predetermined current magnitude. May be.
  • the magnitude of the current flowing through the predetermined terminal of the delay unit may be set to a value that can eliminate this based on the variation in delay generated in the manufacturing stage.
  • a resistance value corresponding to the delay variation generated in the manufacturing stage is created.
  • the delay control unit is connected to a predetermined terminal and functions as a delay control unit that supplies a current for controlling the delay amount of the delay unit.
  • the resistor R1 or R2 in FIG. 33 may be configured by one resistor as shown in FIG. 40, and the resistance value may be adjusted by so-called laser trimming by cutting a part of the resistor. Absent.
  • the resistor may be trimmed by using a printed resistor formed by patterning, for example, by spraying the resistor onto a wiring board on which the microphone 710 is mounted. Further, in order to perform trimming in the actual operation state when the microphone unit is completed, it is more preferable to provide a resistor on the surface of the casing of the microphone unit.
  • FIG. 17 is a diagram illustrating an example of the configuration of the voice input device according to the third embodiment.
  • the difference signal generation unit 720 may include a phase difference detection unit 750.
  • the phase difference detection unit 750 receives the first voltage signal (S1) and the second voltage signal (S2) that are input to the difference signal output unit 740, and receives the first voltage signal (S1) and the second voltage signal that are received. Based on the voltage signal (S2), the phase difference between the first voltage signal (S1) and the second voltage signal (S2) when the difference signal 742 is generated is detected, and the phase difference signal is based on the detection result. (FD) is generated and output.
  • the delay control unit 734 may change the delay amount in the delay unit (here, the first delay unit 732-1) based on the phase difference signal (FD).
  • the differential signal generation unit 720 may include a gain unit 760.
  • the gain unit 760 gives a predetermined gain to at least one of the first voltage signal acquired by the first microphone 710-1 and the second voltage signal acquired by the second microphone 710-2, and outputs it.
  • the differential signal output unit 740 is configured such that at least one of the first voltage signal acquired by the first microphone 710-1 and the second voltage signal acquired by the second microphone 710-2 is gained by the gain unit 760. May be input to generate a differential signal between the first voltage signal (S1) and the second voltage signal (S2).
  • the phase difference detection unit 740 calculates the phase difference between the delay unit (here, the first delay unit 732-1) output S1 and the gain unit output S2 and outputs the phase difference signal FD.
  • the delay control unit 734 The delay amount of the delay unit (here, the first delay unit 732-1) may be dynamically changed according to the polarity of the phase difference signal FD.
  • the first delay unit 732-1 receives the first voltage signal 712-1 acquired by the first microphone 710-1 and receives a predetermined delay according to a delay control signal (for example, a predetermined current) 735. Is output as a voltage signal S1.
  • the gain unit 760 receives the second voltage signal 712-2 acquired by the second microphone 710-2 and outputs a voltage signal S2 given a predetermined gain.
  • the phase difference signal output unit 754 receives the voltage signal S1 output from the first delay unit 732-1 and the voltage signal S2 output from the gain unit 760, and outputs the phase difference signal FD.
  • the delay control unit 734 receives the phase difference signal FD output from the phase difference signal output unit 754 and outputs a delay control signal (for example, a predetermined current) 735. By controlling the delay amount of the first delay unit 732-1 by this delay control signal (for example, a predetermined current) 735, feedback control of the delay amount of the first delay unit 732-1 may be performed. .
  • FIG. 18 is a diagram illustrating an example of the configuration of the voice input device according to the third embodiment.
  • the phase difference detection unit 720 may include a first binarization unit 752-1.
  • the first binarization unit 752-1 binarizes the received first voltage signal S1 at a predetermined level and converts it into a first digital signal D1.
  • phase difference detection unit 720 may include a second binarization unit 752-2.
  • the second binarization unit 752-2 binarizes the received second voltage signal S2 at a predetermined level and converts it into a second digital signal D2.
  • the phase difference detection unit 720 includes a phase difference signal output unit 754.
  • the phase difference signal output unit 754 calculates a phase difference between the first digital signal D1 and the second digital signal D2 and outputs a phase difference signal FD.
  • the first delay unit 732-1 receives the first voltage signal 712-1 acquired by the first microphone 710-1 and receives a predetermined delay according to a delay control signal (for example, a predetermined current) 735.
  • the signal S1 given is output.
  • the gain unit 760 receives the second voltage signal 712-2 acquired by the second microphone 710-2, and outputs a signal S2 given a predetermined gain.
  • the first binarization unit 752-1 receives the first voltage signal S1 output from the first delay unit 732-1 and outputs the first digital signal D1 binarized at a predetermined level. .
  • the second binarization unit 752-2 receives the second voltage signal S2 output from the gain unit 760, and outputs a second digital signal D2 binarized at a predetermined level.
  • the phase difference signal output unit 754 includes a first digital signal D1 output from the first binarization unit 752-1 and a second digital signal D2 output from the second binarization unit 752-2. And the phase difference signal FD is output.
  • the delay control unit 734 receives the phase difference signal FD output from the phase difference signal output unit 754 and outputs a delay control signal (for example, a predetermined current) 735. By controlling the delay amount of the first delay unit 732-1 by this delay control signal (for example, a predetermined current) 735, feedback control of the delay amount of the first delay unit 732-1 may be performed. .
  • FIG. 19 is a timing chart of the phase difference detection unit.
  • S1 is a voltage signal output from the first delay unit 732-1
  • S2 is a voltage signal output from the gain unit. It is assumed that the voltage signal S2 is delayed in phase by ⁇ with respect to the voltage signal S1.
  • D1 is a binarized signal of the voltage signal S1
  • D2 is a binarized signal of the voltage signal S2.
  • the signal D1 or D2 is obtained by binarizing the voltage signal S1 or S2 with a comparator circuit after passing through a high-pass filter.
  • FD is a phase difference signal generated based on the binarized signal D1 and the binarized signal D2. For example, as shown in FIG. 19, when the phase of the first voltage signal is advanced compared to the phase of the second voltage signal, a positive pulse P having a pulse width corresponding to the advanced phase difference is generated for each period. If the phase of the first voltage signal is delayed compared to the phase of the second voltage signal, a negative pulse having a pulse width corresponding to the delayed phase difference may be generated for each period.
  • FIG. 21 is a diagram illustrating an example of the configuration of the voice input device according to the third embodiment.
  • the phase difference detection unit 750 includes a first band pass filter 756-1.
  • the first band-pass filter 756-1 is a band-pass filter that receives the received first voltage signal S1 and passes a signal K1 having a predetermined single frequency.
  • the phase difference detection unit 750 includes a second band pass filter 756-2.
  • the second band-pass filter 756-2 is a band-pass filter that receives the received second voltage signal S2 and passes a signal K2 having a predetermined single frequency.
  • the phase difference detector 750 detects a phase difference based on the first voltage signal K1 and the second voltage signal K2 after passing through the first bandpass filter 756-1 and the second bandpass filter 756-2. Also good.
  • the sound source unit 770 is disposed at an equal distance from the first microphone 710-1 and the second microphone 710-2, generates a single frequency sound, receives the sound,
  • the S / N ratio of the phase comparison signal is improved by detecting the phase difference after cutting the sound of the frequency other than the single frequency by the first band pass filter 756-1 and the second band pass filter 756-2.
  • the phase difference or the delay amount can be detected with high accuracy.
  • a test sound source is temporarily installed in the vicinity of the sound input device at the time of the test, and sound is output to the first microphone and the second microphone.
  • Sound is output to the first microphone and the second microphone.
  • the delay amount of the delay unit may be changed so that.
  • the first delay unit 732-1 receives the first voltage signal 712-1 acquired by the first microphone 710-1 and receives a predetermined delay according to a delay control signal (for example, a predetermined current) 735.
  • the signal S1 given is output.
  • the gain unit 760 receives the second voltage signal 712-2 acquired by the second microphone 710-2, and outputs a signal S2 given a predetermined gain.
  • the first bandpass filter 756-1 receives the first voltage signal S1 output from the first delay unit 732-1 and outputs a single-frequency signal K1.
  • the second band pass filter 756-2 receives the second voltage signal S2 output from the gain unit 760, and outputs a single frequency signal K2.
  • the first binarization unit 752-1 receives the single-frequency signal K1 output from the first bandpass filter 756-1 and outputs the first digital signal D1 binarized at a predetermined level. To do.
  • the second binarization unit 752-2 receives the single frequency signal K2 output from the second bandpass filter 756-2 and outputs the second digital signal D2 binarized at a predetermined level. To do.
  • the phase difference signal output unit 754 includes a first digital signal D1 output from the first binarization unit 752-1 and a second digital signal D2 output from the second binarization unit 752-2. And the phase difference signal FD is output.
  • the delay control unit 734 receives the phase difference signal FD output from the phase difference signal output unit 754 and outputs a delay control signal (for example, a predetermined current) 735. By controlling the delay amount of the first delay unit 732-1 by this delay control signal (for example, a predetermined current) 735, feedback control of the delay amount of the first delay unit 732-1 may be performed. .
  • 22A and 22B are diagrams for explaining the directivity of the differential microphone.
  • FIG. 22 (A) shows the directivity characteristics when the two microphones M1 and M2 are not out of phase.
  • Circular regions 810-1 and 810-2 indicate directivity characteristics obtained by the difference between the outputs of both microphones M 1 and M 2, and the linear directions connecting both microphones M 1 and M 2 are 0 degrees and 180 degrees, If the direction perpendicular to the straight line connecting both microphones M1 and M2 is 90 degrees and 270 degrees, the maximum sensitivity is in the directions of 0 and 180 degrees, and the sensitivity is not in the directions of 90 and 270 degrees. It represents something.
  • the directivity changes. For example, when a delay corresponding to the time obtained by dividing the microphone interval d by the sound speed c is given to the output of the microphone M1, the area indicating the directivity of both the microphones M1 and M2 is as indicated by 820 in FIG. Become a cardioid type. In such a case, it is possible to realize insensitive (null) directional characteristics with respect to the 0-degree speaker direction, and to selectively cut the speaker's voice and capture only the surrounding sound (ambient noise). it can.
  • the surrounding noise level can be detected using the above characteristics.
  • FIG. 23 is a diagram showing an example of the configuration of a voice input device provided with noise detection means.
  • the voice input device includes a noise detection delay unit 780.
  • the noise detection delay unit 780 gives a noise detection delay to the second voltage signal 712-2 acquired by the second microphone 710-2 and outputs the second voltage signal 712-2.
  • the voice input device includes a noise detection differential signal generation unit 782.
  • the noise detection differential signal generation unit 782 includes a signal 781 provided with a predetermined noise detection delay by the noise detection delay unit 780, and the first voltage signal 712 acquired by the first microphone 710-1.
  • a difference signal 783 for noise detection indicating a difference from ⁇ 1 is generated.
  • the voice input device includes a noise detection unit 784.
  • the noise detection unit 784 determines the noise level based on the noise detection difference signal 783 and outputs a noise detection signal 785 based on the determination result.
  • the noise detection unit 784 may calculate the average level of the difference signal for noise detection and generate the difference signal 785 for noise detection based on the average level.
  • the voice input device includes a signal switching unit 786.
  • the signal switching unit 786 receives the difference signal 742 output from the difference signal generation unit 720 and the first voltage signal 712-1 acquired by the first microphone, and receives a first voltage based on the noise detection signal 785.
  • the signal 712-1 and the difference signal 742 are switched and output.
  • the signal switching unit 786 outputs the first voltage signal acquired by the first microphone when the noise level is lower than the predetermined level, and outputs the difference signal when the average level is higher than the predetermined level. May be.
  • the difference signal generation unit may have the configuration described with reference to FIGS. 13, 14, 17, 18, and 21, or may have the configuration of a general differential microphone that has been conventionally known.
  • the first diaphragm of the first microphone 710-1 and the second diaphragm of the second microphone 710-1 have the first or second intensity of the noise component included in the difference signal 742.
  • the intensity of the input audio component included in the first or second voltage signal is a noise intensity ratio indicating the ratio of the noise component included in the voltage signal to the intensity of the input audio component included in the differential signal. It may be arranged so as to be smaller than the input voice intensity ratio indicating the ratio to, or may be another configuration without such limitation.
  • the noise detection delay may not be the time obtained by dividing the distance between the centers of the first and second vibrating plates (see d in FIG. 20) by the speed of sound. Even if the direction of the speaker is not the 0 degree direction, if the direction with no directivity sensitivity (null) can be set as the direction of the speaker, the directivity that cuts the speaker's voice and covers the surrounding noise can be obtained. Characteristics suitable for noise detection can be realized. For example, the speaker voice may be cut by setting a delay so as to have a hyper cardioid or super cardioid type directivity characteristic.
  • the differential signal generation unit 720 inputs the first voltage signal 712-1 acquired by the first microphone 710-1 and the second voltage signal 712-2 acquired by the second microphone 710-2, and A difference signal 742 is generated and output.
  • the noise detection delay unit 780 receives the second voltage signal 712-2 acquired by the second microphone 710-2, and outputs a signal 781 with a noise detection delay.
  • the noise detection differential signal generation unit 782 includes a signal 781 provided with a predetermined noise detection delay by the noise detection delay unit 780, and the first voltage signal 712 acquired by the first microphone 710-1.
  • a difference signal 783 for noise detection indicating a difference from ⁇ 1 is generated and output.
  • the noise detection unit 784 receives the noise detection difference signal 783, determines the noise level based on the noise detection difference signal 783, and outputs the noise detection signal 785 based on the determination result.
  • the signal switching unit 786 inputs the difference signal 742 output from the difference signal generation unit 720, the first voltage signal 712-1 acquired by the first microphone, and the noise detection signal 785, and enters the noise detection signal 785. Based on this, the first voltage signal 712-1 and the difference signal 742 are switched and output.
  • FIG. 24 is a flowchart showing an example of signal switching operation based on noise detection.
  • the signal switching unit When the noise detection signal output from the noise detection unit is smaller than a predetermined threshold value (LTH) (step S110), the signal switching unit outputs a single microphone signal (step S112) and is output from the noise detection unit. When the detected noise detection signal is not smaller than the predetermined threshold value (LTH) (step S110), the signal switching unit outputs a differential microphone signal (step S114).
  • LTH predetermined threshold value
  • a voice input device having a speaker that outputs sound information may include a volume control unit that controls the volume of the speaker based on a noise detection signal.
  • FIG. 25 is a flowchart showing an operation example of speaker volume control based on noise detection.
  • step S120 When the noise detection signal output from the noise detection unit is smaller than a predetermined threshold value (LTH) (step S120), the volume of the speaker is set to the first value (step S122), and the noise detection unit If the output noise detection signal is not smaller than the predetermined threshold value (LTH) (step S120), the volume of the speaker is set to the second value of the first larger volume (step S124).
  • LTH predetermined threshold value
  • the volume of the speaker is lowered, and the noise detection signal output from the noise detection unit is set to the predetermined threshold value (LTH). ), The volume of the speaker may be increased.
  • FIG. 26 is a diagram illustrating an example of the configuration of a voice input device including AD conversion means.
  • the voice input device may include the first AD conversion means 790-1.
  • the first AD conversion means 790-1 performs analog / digital conversion on the first voltage signal 712-1 acquired by the first microphone 710-1.
  • the voice input device may include the second AD conversion means 790-2.
  • the second AD conversion means 790-2 performs analog / digital conversion on the second voltage signal 712-2 acquired by the second microphone 710-2.
  • the voice input device includes a differential signal generation unit 720.
  • the differential signal generator 720 converts the first voltage signal 782-1 converted into a digital signal by the first AD converter 790-1 and the digital signal by the second AD converter 790-2.
  • a difference signal 742 between the first voltage signal and the second voltage signal may be generated based on the second voltage signal 782-2.
  • the difference signal generation unit 720 may have the configuration described in FIGS. 13, 14, 17, 18, and 21.
  • the delay of the difference signal generation unit 720 may be set to an integral multiple of the conversion period of the analog / digital conversion of the first AD conversion unit 790-1 or the second AD conversion unit 790-2. In this way, the delay unit can realize the delay by digitally shifting the input signal by one flip or several clocks with the flip-flop.
  • the center-to-center distance between the first diaphragm of the first microphone 710-1 and the second diaphragm of the second microphone 710-2 is a value obtained by multiplying the conversion period of analog / digital conversion by the speed of sound, or It may be set to an integer multiple.
  • the noise detection delay unit is a simple operation of shifting the input voltage signal by n clocks (n is an integer), and directivity characteristics (for example, cardioid type) convenient for picking up ambient noise. Can be realized with high accuracy.
  • the distance between the centers of the first and second diaphragms is about 7.7 mm
  • the sampling frequency is 16 kHz
  • the first and second The distance between the centers of the second vibrating plates is about 21 mm.
  • FIG. 27 is a diagram illustrating an example of a configuration of a voice input device including a gain adjusting unit.
  • the difference signal generation unit 720 of the voice input device includes a gain control unit 910.
  • the gain control unit 910 performs control to change the gain (gain) in the gain unit 760.
  • the gain control unit 910 dynamically controls the gain of the gain unit 760 based on the amplitude difference signal AD output from the amplitude difference detection unit, so that the first voltage signal 712-acquired by the first microphone 710-1 is obtained.
  • the amplitude balance between the first voltage signal 712-2 acquired by the first microphone 710-2 and the second microphone 710-2 may be adjusted.
  • the difference signal generation unit 720 includes an amplitude difference detection unit 930.
  • the amplitude difference detection unit 930 includes first amplitude detection means 920-1.
  • the first amplitude detector 920-1 detects the amplitude of the output signal S1 of the first delay unit 732-1 and outputs the first amplitude signal A1.
  • the amplitude difference detection unit 930 includes second amplitude detection means 920-2.
  • the second amplitude detecting means 920-2 detects the amplitude of the output signal S2 of the gain unit 760 and outputs the second amplitude signal A2.
  • the amplitude difference detection unit 930 includes an amplitude difference signal output unit 925.
  • the amplitude difference signal output unit 925 receives the first amplitude signal A1 output from the first amplitude detection means 920-1 and the second amplitude signal A2 output from the second amplitude detection means 920-2, and inputs these signals. And an amplitude difference signal AD is output.
  • the gain of the gain unit 760 may be feedback controlled by controlling the gain of the gain unit 760 using the amplitude difference signal AD.
  • FIGS. 28 and 29 are diagrams showing an example of the configuration of the voice input device according to the fourth embodiment.
  • the voice input device 700 according to the fourth embodiment includes a first microphone 710-1 having a first diaphragm.
  • the voice input device 700 according to the fourth embodiment includes a second microphone 710-2 having a second diaphragm.
  • the first diaphragm of the first microphone 710-1 and the first diaphragm of the second microphone 710-2 have the intensity of the noise component included in the differential signal 742 and the first or second voltage signal.
  • the noise intensity ratio indicating the ratio of the noise component included in 712-1 and 712-2 to the intensity of the noise component is included in the first or second voltage signal of the intensity of the input speech component included in the difference signal 742.
  • the input voice component is arranged so as to be smaller than an input voice intensity ratio indicating a ratio to the intensity of the input voice component.
  • first microphone 710-1 having the first vibration film and the second microphone 710-2 having the second vibration film may be configured as described with reference to FIGS.
  • the voice input device 700 includes a first voltage signal 712-1 acquired by the first microphone 710-1 and a second voltage signal 712 acquired by the second microphone.
  • -2 includes a difference signal generation unit 720 that generates 742 a difference signal between the first voltage signal 712-1 and the second voltage signal 712-2.
  • the differential signal generation unit 720 includes a gain unit 760.
  • the gain unit 760 amplifies the first voltage signal 712-1 acquired by the first microphone 710-1 with a predetermined gain and outputs the amplified signal.
  • the differential signal generation unit 720 includes a differential signal output unit 740.
  • the differential signal output unit 740 receives the first voltage signal S1 amplified by the gain unit 760 with a predetermined gain and the second voltage signal acquired by the second microphone, and outputs the first voltage signal S1 with the predetermined gain. A differential signal between the amplified first voltage signal S1 and the second voltage signal is generated and output.
  • the first voltage signal 712-1 By amplifying the first voltage signal 712-1 with a predetermined gain (which means that the gain is increased or decreased), there is no amplitude difference between the first voltage signal and the second voltage signal. Therefore, it is possible to prevent the noise suppression effect as a differential microphone from deteriorating due to a sensitivity difference between two microphones due to manufacturing variation or the like.
  • FIGS. 30 and 31 are diagrams illustrating an example of the configuration of the voice input device according to the fourth embodiment.
  • the difference signal generation unit 720 may include a gain control unit 910.
  • the gain control unit 910 performs control to change the gain in the gain unit 760. By controlling the gain of the gain unit 760 dynamically or statically by the gain control unit 910, the amplitude balance between the gain unit output S1 and the second voltage signal 712-2 acquired by the second microphone is adjusted. You may adjust.
  • FIG. 32 is a diagram illustrating an example of a specific configuration of the gain unit and the gain control unit.
  • the gain unit 760 may be configured by an analog circuit such as an operational amplifier (for example, a non-inverting amplifier circuit as shown in FIG. 32).
  • an operational amplifier for example, a non-inverting amplifier circuit as shown in FIG. 32.
  • 33 (A) and 33 (B) are examples of a configuration that statically controls the gain of the gain section.
  • the resistor R1 or R2 in FIG. 32 includes a resistor array in which a plurality of resistors are connected in series as shown in FIG. 33A, and a predetermined terminal ( ⁇ in FIG. 32) of the gain section is connected through the resistor array. A voltage having a predetermined magnitude may be applied to the terminal.
  • the resistor (r) or the conductor (912 F) constituting the resistor array is cut by a laser in the manufacturing stage, Or you may blow by application of a high voltage or a high current.
  • the resistor R1 or R2 of FIG. 32 includes a resistor array in which a plurality of resistors are connected in parallel as shown in FIG. 33B, and a predetermined terminal (FIG. 32) of the gain section is connected via the resistor array.
  • a voltage having a predetermined magnitude may be applied to the negative terminal.
  • the resistor (r) or the conductor (912 F) constituting the resistor array is cut by a laser in the manufacturing stage, Or you may blow by application of a high voltage or a high current.
  • an appropriate amplification value may be set to a value that can cancel the gain balance of the microphone generated in the manufacturing process.
  • a resistance value corresponding to the gain balance of the microphone generated in the manufacturing process can be created. It is connected to a predetermined terminal and functions as a gain control unit that controls the gain of the gain unit.
  • a plurality of resistors (r) may be connected in series or in parallel without a fuse (F), and in this case, at least one resistor may be disconnected.
  • the resistor R1 or R2 in FIG. 33 may be configured by one resistor as shown in FIG. 40, and the resistance value may be adjusted by so-called laser trimming by cutting a part of the resistor. Absent.
  • FIG. 34 is a diagram illustrating an example of the configuration of the voice input device according to the fourth embodiment.
  • the difference signal generation unit 720 may include an amplitude difference detection unit 940.
  • the amplitude difference detection unit 940 receives the first voltage signal (S1) and the second voltage signal (S2) that are input to the difference signal output unit 740, and receives the received first voltage signal (S1) and the second voltage signal. Based on the voltage signal (S2), an amplitude difference between the first voltage signal (S1) and the second voltage signal (S2) when the difference signal 742 is generated is detected, and the amplitude difference signal is based on the detection result. 942 is generated and output.
  • the gain control unit 910 may change the gain in the gain unit 760 based on the amplitude difference signal 942.
  • the amplitude difference detection unit 940 includes a first amplitude detection unit that detects the amplitude of the output signal of the gain unit 760 and a second amplitude that detects the signal amplitude of the second voltage signal acquired by the second microphone.
  • An amplitude difference signal generation unit 930 that takes the difference from 1 and generates an amplitude difference signal 942 may be included.
  • the first amplitude detector 920-1 receives the output signal S1 of the gain unit 760, detects the amplitude, outputs the first amplitude signal 922-1 based on the detection result
  • the second amplitude detector 920- 2 receives the second voltage signal 912-2 acquired by the second microphone, detects the amplitude, and outputs the second amplitude signal 922-2 based on the detection result.
  • the amplitude difference signal generation unit 930 The first amplitude signal 922-1 output from the first amplitude detection means 920-1 and the second amplitude signal 922-2 output from the second amplitude signal 922-2 are input to obtain the difference.
  • the amplitude difference signal 942 may be generated and output.
  • the gain control unit determines that the difference in amplitude between the output signal S1 of the gain unit and the second voltage signal 712-2 (S2) acquired by the second microphone is any signal (S1 or S2). On the other hand, it may be adjusted so as to be a predetermined ratio or less. Or you may adjust the gain of a gain part so that a predetermined noise suppression effect (for example, about 10 or more) may be acquired.
  • the difference between the amplitudes of the signals S1 and S2 may be adjusted to be in a range of ⁇ 3% to + 3% with respect to S1 or S2, or may be adjusted to a range of ⁇ 6% to + 6%. May be.
  • noise can be suppressed by about 10 decibels
  • noise can be suppressed by about 6 decibels.
  • the voice input device includes a differential signal generation unit 720.
  • the differential signal generator 720 converts the first voltage signal 782-1 converted into a digital signal by the first AD converter 790-1 and the digital signal by the second AD converter 790-2. Further, based on the second voltage signal 782-2, gain balance adjustment and delay balance adjustment are all performed by digital signal processing calculation to generate a difference signal 742 between the first voltage signal and the second voltage signal. Good.
  • the voice input device has a sound source installed at an equal distance from the first microphone (first vibrating membrane 711-1) and the second microphone (second vibrating membrane 711-2).
  • the unit 770 may be included.
  • the sound source unit 770 can be configured by an oscillator or the like, and the center point C1 of the first diaphragm (diaphragm) 711-1 of the first microphone 710-1 and the second diaphragm of the second microphone 710-2. (Diaphragm) It may be installed equidistant from the center point C2 of 711-2.
  • the phase difference or delay difference between the first voltage signal S1 and the second voltage signal S2 that are input to the difference signal generation unit 740 may be adjusted based on the sound from the sound source unit 770 to be zero. .
  • the amplitude difference between the first voltage signal S1 and the second voltage signal S2 that are input to the difference signal generation unit 740 may be adjusted to be zero.
  • the sound source unit 770 may use a sound source that generates a single frequency sound. For example, a 1 kHz sound may be generated.
  • the frequency of the sound source unit 770 may be set outside the audible band. For example, if a sound having a frequency higher than 20 kHz (for example, 30 kHz) is used, it cannot be heard by the human ear.
  • the frequency of the sound source unit 770 is set outside the audible band, the phase difference or delay difference and sensitivity (gain) difference of the input signal can be adjusted using the sound source unit 770 without causing any trouble even when the user is using it. .
  • the delay amount may change depending on the temperature characteristics.
  • the delay adjustment corresponding to the environmental change such as the temperature change is performed. be able to.
  • the delay adjustment may be performed constantly, intermittently, or may be performed when the power is turned on.
  • the voice input device is acquired by the first microphone 710-1 having the first vibration film, the second microphone 710-2 having the second vibration film, and the first microphone.
  • a differential signal generator (not shown) that generates a differential signal indicating a difference between the first voltage signal and the second voltage signal acquired by the second microphone, and the first diaphragm
  • at least one of the second vibrating membranes may be configured to acquire sound waves via a cylindrical sound guide tube 1100 installed so as to be perpendicular to the membrane surface.
  • the sound guide tube 1100 is arranged around the vibrating membrane so that the sound wave input from the cylindrical opening 1102 reaches the vibrating membrane of the second microphone 710-2 so that it does not leak outside through the acoustic hole 714-2. You may install in the board
  • a sound guide tube on at least one of the first vibrating membrane and the second vibrating membrane, the distance until sound reaches the vibrating membrane can be changed. Accordingly, the delay can be eliminated by installing a sound guide tube having an appropriate length (for example, several millimeters) according to the variation in the delay balance.
  • the present invention includes configurations that are substantially the same as the configurations described in the embodiments (for example, configurations that have the same functions, methods, and results, or configurations that have the same objects and effects).
  • the invention includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced.
  • the present invention includes a configuration that achieves the same effect as the configuration described in the embodiment or a configuration that can achieve the same object.
  • the invention includes a configuration in which a known technique is added to the configuration described in the embodiment.
  • remote controller 600 ... Information processing system, 602 ... Information input terminal, 604 ... Host computer, 700 ... Voice input device, 710-1 ... First micro , 710-2 ... second microphone, 712-1 ... first voltage signal, 712-2 ... second voltage signal, 714-1 ... first vibration membrane, 714-2 ... second vibration Membrane, 720 ... differential signal generation circuit, 730 ... delay unit, 734 ... delay control unit, 740 ... differential signal output unit, 742 ... differential signal, 750 ... phase difference detection unit, 752-1 ... first binarization unit 752-2 ... second binarization unit, 754 ... phase difference signal generation unit, 756-1 ... first bandpass filter, 756-2 ... second bandpass filter, 760 ...
  • Second AD conversion means 900 ... amplitude difference detection section, 910 ... gain control section, 920-1 ... first amplitude detection means, 920-2 ... second amplitude detection means, 930 ... amplitude difference detection section, 1100 ... Sound guide pipe

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Quality & Reliability (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

 第1の振動膜を有する第1のマイクロフォン710-1と、第2の振動膜を有する第2のマイクロフォン710-2と、第1の電圧信号と、第2の電圧信号の差分信号を生成する差分信号生成部720とを含み、前記第1及び第2の振動膜は、雑音強度比が入力音声成分の強度に対する比率を示す入力音声強度比よりも小さくなるように配置され、差分信号生成部720は、第1の電圧信号に所定のゲインを与えるゲイン部760と、ゲイン部によって所定のゲインを与えられた第1の電圧信号と、第2の電圧信号の差分信号を生成して出力する差分信号出力部740とを含むことにより、雑音成分を除去する機能を有する音声入力装置、及びその製造方法、並びに、情報処理システムを提供する。

Description

音声入力装置及びその製造方法、並びに、情報処理システム
 本発明は、音声入力装置及びその製造方法、並びに、情報処理システムに関する。
 電話などによる通話や、音声認識、音声録音などに際しては、目的の音声(ユーザの音声)のみを収音することが好ましい。しかし、音声入力装置の使用環境では、背景雑音など目的の音声以外の音が存在することがある。そのため、雑音を除去する機能を有する音声入力装置の開発が進んでいる。
 雑音が存在する使用環境で雑音を除去する技術として、マイクロフォンに鋭い指向性を持たせること、あるいは、音波の到来時刻差を利用して音波の到来方向を識別して信号処理により雑音を除去する方法が知られている。
 また、近年では、電子機器の小型化が進んでおり、音声入力装置を小型化する技術が重要になっている。
日本国特許出願公開平7-312638号公報 日本国特許出願公開平9-331377号公報 日本国特許出願公開2001-186241号公報
 マイクロフォンに鋭い指向性を持たせるためには、多数の振動膜を並べる必要があり、小型化は困難であった。
 また、音波の到来時刻差を利用して音波の到来方向を精度よく検出するためには、複数の振動膜を、可聴音波の数波長分の1程度の間隔で設置する必要があるため、小型化は困難である。
 また、複数のマイクで取得した音波の差分信号を利用する場合には、マイクの製造過程で生じる遅延やゲインのばらつきが雑音除去の精度に影響を与えることがあった。
 本発明の目的は、雑音成分を除去する機能を有する音声入力装置及びその製造方法、並びに、情報処理システムを提供することにある。
(1)本発明は、
 第1の振動膜を有する第1のマイクロフォンと、
 第2の振動膜を有する第2のマイクロフォンと、
 前記第1のマイクロフォンで取得された第1の電圧信号と、前記第2のマイクロフォンで取得された第2の電圧信号とに基づき第1の電圧信号と第2の電圧信号の差分信号を生成する差分信号生成部とを含む音声入力装置であって、
 前記第1及び第2の振動膜は、
 前記差分信号に含まれる雑音成分の強度の、前記第1又は第2の電圧信号に含まれる前記雑音成分の強度に対する比率を示す雑音強度比が、前記差分信号に含まれる入力音声成分の強度の、前記第1又は第2の電圧信号に含まれる前記入力音声成分の強度に対する比率を示す入力音声強度比よりも小さくなるように配置され、
 前記差分信号生成部は、
 前記第1のマイクロフォンで取得された第1の電圧信号に所定のゲインを与えるゲイン部と、
 前記ゲイン部によって所定のゲインを与えられた第1の電圧信号と、前記第2のマイクロフォンで取得された第2の電圧信号とが入力されると、所定のゲインを与えられた第1の電圧信号と第2の電圧信号の差分信号を生成して出力する差分信号出力部とを含むことを特徴とする。
 また、この音声入力装置において、ゲイン部は、入力信号を所定に所定ゲインを与える機能を有し、アナログ信号として処理する場合にはアナログアンプ回路で構成し、デジタル信号として処理する場合にはデジタル乗算器等で構成してもよい。
 ところで、製造工程における電気的又はメカ的な要因によりマイクロフォンの感度(ゲイン)にはばらつきが生じることが多い。従って第1のマイクロフォンと前記第2のマイクロフォンから出力される電圧信号の振幅のばらつき(マイクロフォンのゲインのばらつき)が生じることがあり、通常±3dB程度のばらつきがある。このようなばらつきがあると、差動マイクロフォンとしての遠方ノイズ抑制効果が低減する原因となることが実験的に確認された。
 しかしながら、本発明によれば、第1の電圧信号を所定のゲインを与えること(ゲインを上げる場合でのよいし、ゲインを下げる場合でもよい)により、第1の電圧信号及び第2の電圧信号の振幅のばらつき(ゲインのばらつき)を補正することができる。入力音圧に対する第1の電圧信号及び第2の電圧信号の振幅が等しくなるように、または第1の電圧信号及び第2の電圧信号の振幅差が所定の範囲内におさまるように補正してもよい。これにより、製造工程で生じたマイクロフォンの個体差による感度ばらつきによるノイズ抑制効果の低減を防止することができる。
 また、この音声入力装置によると、第1及び第2のマイクロフォン(第1及び第2の振動膜)が所定の条件を満たすように配置されている。これによると、第1及び第2のマイクロフォンで取得された第1及び第2の電圧信号の差を示す差分信号を、雑音成分が除去された、入力音声を示す信号とみなすことができる。そのため、本発明によると、差分信号を生成するだけの単純な構成で雑音除去機能を実現することが可能な音声入力装置を提供することができる。
 なお、この音声入力装置では、差分信号生成部は、第1及び第2の電圧信号に対する解析処理(フーリエ解析処理など)を行うことなく、差分信号を生成する。そのため、差分信号生成部の信号処理負担を軽減し、あるいは、差分信号生成部を非常に簡易な回路によって実現することが可能になる。
 このことから、本発明によると、小型化が可能で、かつ、精度の高い雑音除去機能を実現することが可能な音声入力装置を提供することができる。
 なお、この音声入力装置では、第1及び第2の振動膜は、雑音成分の位相差成分に基づく強度比が、入力音声成分の振幅に基づく強度比よりも小さくなるように配置されていてもよい。
 (2)また、この音声入力装置において、
 前記差分信号生成部は、
 所定の端子にかかる電圧または流れる電流に応じて増幅率が変化するよう構成されたゲイン部と、
 前記所定の端子にかかる電圧または流れる電流を制御するゲイン制御部を含み、
 前記ゲイン制御部は、
 複数の抵抗が直列または並列に接続された抵抗アレーを含み、前記抵抗アレーを構成する抵抗体又は導体の一部を切断する、もしくは少なくとも1つの抵抗体を含み、該抵抗体の一部を切断することでゲイン部の所定の端子にかかる電圧または流れる電流を変更可能に構成されていることが好ましい。
 なお、抵抗アレーを構成する抵抗体又は導体の一部をレーザによるカット、あるいは高電圧または高電流の印加により溶断することで抵抗アレーの抵抗値を変更してもよいし、1つの抵抗体の一部に切れ込みを入れることで抵抗値を変更してもよい。
 また、マイクロフォンの製造過程で生じる個体差によるゲインのばらつきを調べて、当該ばらつきにより生じる振幅差を解消するように、第1の電圧信号の増幅率を決定することが好ましい。そして、決定した増幅率を実現するための電圧または電流を所定の端子に供給できるように前記抵抗アレーを構成する抵抗体又は導体(例えばヒューズ)の一部を切断して、ゲイン制御部の抵抗値を適切な値に設定することが好ましい。これにより、ゲイン部の出力と、前記第2のマイクロフォンで取得された第2の電圧信号との振幅のバランスを調整することができる。
(3)また、この音声入力装置において、
 前記差分信号生成部は、
 前記差分信号出力部の入力となる第1の電圧信号と第2の電圧信号を受け取り、受けとった第1の電圧信号と第2の電圧信号に基づいて、差分信号が生成される際の第1の電圧信号と第2の電圧信号との振幅差を検出して、検出結果に基づき振幅差信号を生成して出力する振幅差検出部と、
 前記振幅差信号に基づき、前記ゲイン部における増幅率を変化させる制御を行うゲイン制御部と、を含むことを特徴とする。
 ここで、振幅差検出部は、ゲイン部の出力信号振幅を検出する第1の振幅検出部と、前記第2のマイクロフォンで取得された第2の電圧信号の信号振幅を検出する第2の振幅検出部と、前記第1の振幅検出手段で検出された振幅信号と前記第2の振幅検出手段で検出された振幅信号との差分信号を検出する振幅差信号生成部とを含んで構成してもよい。
 また、例えばゲイン調整用にテスト用の音源を用意して、当該音源からの音を第1のマイクロフォンと第2のマイクロフォンに対して等しい音圧で入力されるように設定し、第1のマイクロフォンと第2のマイクロフォンで受音して出力される第1の電圧信号と第2の電圧信号の波形をモニタして(例えばオシロスコープ等を用いてモニタしてもよい)振幅が一致するように、または振幅差が所定の範囲内になるように増幅率を変更してもよい。
(4)また、この音声入力装置において、
 前記ゲイン制御部は、
 前記ゲイン部の出力信号と、前記第2のマイクロフォンで取得された第2の電圧信号の振幅の差が、いずれかの信号に対して所定の割合以下になるように、または所定レベルのノイズ抑圧効果が得るようにゲイン部の増幅率を制御することが好ましい。
 ここで、例えば振幅の差がゲイン部の出力信号または第2の電圧信号に対して-3%以上、+3%以下の範囲になるようにしても良いし、-6%以上、+6%以下の範囲になるようにしても良い。前者の場合1kHzの音波に対してノイズ抑圧効果が約10デシベルとなり、後者の場合ノイズ抑圧効果が約6デシベルとなり、適切な抑圧効果を得ることができる。
 また、これに替えて、所定のデシベル(例えば約10デシベル)のノイズ抑圧効果を得るように増幅を制御してもよい。
(5)また、この音声入力装置は、
 請求項3又は4のいずれかにおいて、
 前記第1のマイクロフォンおよび前記第2のマイクロフォンから等距離に設置された音源部を含み、
 前記差分信号生成部は、
 前記音源部からの音に基づいて前記ゲイン部における増幅率を変化させる制御を行うことが好ましい。
 また、前記差分信号生成部は、
 前記第1のマイクロフォンおよび前記第2のマイクロフォンで受音した音源部からの音に基づきゲイン部出力と、前記第2のマイクロフォンで取得された第2の電圧信号の信号振幅が等しくなるように調整してもよい。
(6)また、本発明は、
 第1の振動膜を有する第1のマイクロフォンと、
 第2の振動膜を有する第2のマイクロフォンと、
 前記第1のマイクロフォンで取得された第1の電圧信号と、前記第2のマイクロフォンで取得された第2の電圧信号とに基づき第1の電圧信号と第2の電圧信号の差分信号を生成する差分信号生成部と、
 前記第1のマイクロフォンおよび前記第2のマイクロフォンから等距離に設置された音源部を含み、
 前記差分信号生成部は、
 前記第1のマイクロフォンで取得された第1の電圧信号に所定のゲインを与えるゲイン部と、
 前記差分信号出力部の入力となる第1の電圧信号と第2の電圧信号を受け取り、受けとった第1の電圧信号と第2の電圧信号に基づいて、差分信号が生成される際の第1の電圧信号と第2の電圧信号の振幅差を検出して、検出結果に基づき振幅差信号を生成して出力する振幅差検出部と、
 前記振幅差信号に基づき、前記ゲイン部における増幅率を変化させる制御を行うゲイン制御部と、を含み、
 前記音源部からの音に基づいて前記第1の電圧信号と第2の電圧信号の振幅が等しくなるように前記ゲイン部における増幅率を調整することを特徴とする音声入力装置を提供する。
 このような音声入力装置によれば、使用時の状況(環境や使用年数)等により変化するマイクロフォンのゲインのばらつきを調整することができる。
(7)また、この音声入力装置において、
 前記音源部は、単一周波数の音を発生する音源であってもよい。
(8)また、この音声入力装置において、
 前記音源部の周波数は、可聴帯域外に設定されることが好ましい。
 これにより、ユーザ使用時においても、支障をきたすことなく音源部を用いて入力信号の位相差あるいは遅延差を調整することができる。本発明によれば、使用時にダイナミックにゲイン調整できるので、温度変化等の周囲の環境に応じたゲイン調整を行うことができる。
(9)また、この音声入力装置において、
 前記振幅差検出部は、
 差分信号出力部の入力となる第1の電圧信号と第2の電圧信号の前記単一周波数近傍帯域を通過させるバンドパスフィルタを含み、
 前記バンドパスフィルタ通過後の前記第1の電圧信号と前記第2の電圧信号との振幅差を検出して、検出結果に基づき振幅差信号を生成することを特徴とする。
 本明によれば、音源部の音声信号を選択的に捉えて調整することができるため、精度の良い調整が可能である。そして、使用時の状況(環境や使用年数)等により変化するマイクロフォンのゲインのばらつきをリアルタイムもしくは間欠的に検出して調整を行うことができる。
(10)また、この音声入力装置において、
 前記差分信号生成部は、
 前記差分信号の高周波数域成分をカットするローパスフィルタ部を含むことが好ましい。
 差動マイクは、音の高周波数域成分が強調される(ゲインがあがる)という特性を有しており、聴感上高周波数域のノイズが耳障りになることある。したがって、上記のように差分信号生成部がローパスフィルタを含むことにより、当該ローパスフィルタを用いて前記差分信号の高域成分を減衰させることで、周波数特性をフラットにし、聴感上の違和感が発生するのを防止することができる。
(11)また、この音声入力装置において、
 前記ローパスフィルタ部は、1次の遮断特性を有するフィルタであることが好ましい。
 差分信号の高周波数域は1次特性(20dB/dec)で上がっていくので、この逆特性を持つ1次のローパスフィルタで高域を減衰させると、差分信号の周波数特性をフラットにたもつことができ、聴感上の違和感が発生するのを防止することができる。
(12)また、この音声入力装置において、
 前記ローパスフィルタ部のカットオフ周波数は、1kHz以上、5kHz以下の間のいずれかの値に設定されることが好ましい。
 ローパスフィルタ部のカットオフ周波数低く設定すると音がこもったようになり、高く設定すると高域ノイズが耳障りであるので、マイク間の距離に応じて適切な値に設定することが好ましい。最適なカットオフ周波数はマイク間の距離によってもかわるが、例えばマイク間の距離が約5mm程度の場合にはローパスフィルタ部のカットオフ周波数を1.5kHz以上、2kHz以下に設定することが好ましい。
(13)また、この音声入力装置は、
 前記第1の電圧信号をアナログ・デジタル変換する第1のAD変換手段と、
 前記第2の電圧信号をアナログ・デジタル変換する第2のAD変換手段と、をさらに含み、
 前記差分信号生成部は、
 前記第1のAD変換手段によってデジタル信号に変換された前記第1の電圧信号と、前記第2のAD変換手段によってデジタル信号に変換された前記第2の電圧信号と、に基づき第1の電圧信号と第2の電圧信号の差分信号を生成することが好ましい。
(14)また、本発明は、
 第1の振動膜を有する第1のマイクロフォンと、
 第2の振動膜を有する第2のマイクロフォンと、
 前記第1のマイクロフォンで取得された第1の電圧信号と、前記第2のマイクロフォンで取得された第2の電圧信号との差を示す差分信号を生成する差分信号生成部と、
 を含み、
 前記第1及び第2の振動膜は、前記差分信号に含まれる雑音成分の強度の、前記第1又は第2の電圧信号に含まれる前記雑音成分の強度に対する比率を示す雑音強度比が、前記差分信号に含まれる入力音声成分の強度の、前記第1又は第2の電圧信号に含まれる前記入力音声成分の強度に対する比率を示す入力音声強度比よりも小さくなるように配置されていることを特徴とする音声入力装置を提供する。
 この音声入力装置によると、第1及び第2のマイクロフォン(第1及び第2の振動膜)が所定の条件を満たすように配置されている。これにより、第1及び第2のマイクロフォンで取得された第1及び第2の電圧信号の差を示す差分信号を、雑音成分が除去された、入力音声を示す信号とみなすことができる。そのため、本発明によると、差分信号を生成するだけの単純な構成で雑音除去機能を実現することが可能な音声入力装置を提供することができる。
 なお、この音声入力装置では、差分信号生成部は、第1及び第2の電圧信号に対する解析処理(フーリエ解析処理など)を行うことなく、差分信号を生成する。そのため、差分信号生成部の信号処理負担を軽減し、あるいは、差分信号生成部を非常に簡易な回路によって実現することが可能になる。
 このことから、本発明によると、小型化が可能で、かつ、精度の高い雑音除去機能を実現することが可能な音声入力装置を提供することができる。
 なお、この音声入力装置では、第1及び第2の振動膜は、雑音成分の位相差成分に基づく強度比が、入力音声成分の振幅に基づく強度比よりも小さくなるように配置されていてもよい。
(15)また、この音声入力装置は、
 主面に凹部が形成された基部をさらに含み、
 前記第1の振動膜は前記凹部の底面に設置され、
 前記第2の振動膜は前記主面に設置されていることが好ましい。
(16)また、この音声入力装置は、
 前記基部が、前記凹部に連通する開口が、前記主面における前記第2の振動膜の形成領域よりも、前記入力音声のモデル音源の近くに配置されるように設置されることが好ましい。
 これにより、第1及び第2の振動膜に入射する入力音声の位相ずれを小さくすることができる。そのため、ノイズの少ない差分信号を生成することが可能になり、精度の高い雑音除去機能を有する音声入力装置を提供することができる。
(17)また、この音声入力装置において、
 前記凹部は、前記開口と前記第2の振動膜の形成領域との間隔よりも浅いことが好ましい。
(18)また、この音声入力装置は、
 主面に、第1の凹部と、前記第1の凹部よりも浅い第2の凹部が形成された基部をさらに含み、
 前記第1の振動膜は前記第1の凹部の底面に設置され、
 前記第2の振動膜は前記第2の凹部の底面に設置されていることが好ましい。
(19)また、この音声入力装置は、
 前記基部が、前記第1の凹部に連通する第1の開口が、前記第2の凹部に連通する第2の開口よりも、前記入力音声のモデル音源の近くに配置されるように設置されることが好ましい。
 これにより、第1及び第2の振動膜に入射する入力音声の位相ずれを小さくすることができる。そのため、ノイズの少ない差分信号を生成することが可能になり、精度の高い雑音除去機能を有する音声入力装置を提供することができる。
(20)また、この音声入力装置において、
 前記第1及び第2の凹部の深さの差は、前記第1及び第2の開口の間隔よりも小さいことが好ましい。
(21)また、この音声入力装置は、
 前記基部が、前記入力音声が、第1及び第2の振動膜に同時に到着するように設置されることが好ましい。
 これにより、入力音声の位相ずれを含まない差分信号を生成することができるため、精度の高い雑音除去機能を有する音声入力装置を提供することができる。
(22)また、この音声入力装置において、
 前記第1及び第2の振動膜は、法線が平行になるように配置されていることが好ましい。
(23)また、この音声入力装置において、
 前記第1及び第2の振動膜は、法線が同一直線とならないように配置されていることが好ましい。
(24)また、この音声入力装置において、
 前記第1及び第2のマイクロフォンは、半導体装置として構成されていることが好ましい。
 ここで、第1及び第2のマイクロフォンは、例えばシリコンマイク(Siマイク)であってもよい。そして、第1及び第2のマイクロフォンは、1つの半導体基板として構成されていてもよい。このとき、第1及び第2のマイクロフォンと、差分信号生成部とが、1つの半導体基板として構成されていてもよい。第1及び第2のマイクロフォンと、差分信号生成部とは、いわゆるメムス(MEMS:Micro Electro Mechanical Systems)として構成されていてもよい。また、振動膜については無機圧電薄膜、あるいは有機圧電薄膜を使用して、圧電効果により音響―電気変換するようなものであっても構わない。
 (25)また、この音声入力装置において、
 前記第1及び第2の振動膜の中心間距離は、5.2mm以下であることを特徴とする。
 なお、第1及び第2の振動膜は、法線が平行になるように、かつ、法線の間隔が5.2mm以下となるように配置されていてもよい。
 (26)また、この音声入力装置において、
 前記振動膜を、SN比が約60デシベル以上の振動子で構成してもよい。例えば、前記振動膜を、SN比が60デシベル以上の振動子で構成してもよいし、60±αデシベル以上の振動子で構成してもよい。
(27)また、この音声入力装置は、
 前記第1及び第2の振動膜の中心間距離が、10kHz以下の周波数帯域の音に対して第1の振動膜に入射する音声の音圧の強度に対する第1の振動膜と第2の振動膜に入射する音声の差分音圧の強度の比率である音声強度比の位相成分が0デシベル以下となる距離に設定されていてもよい。
(28)また、この音声入力装置は、
 前記第1及び第2の振動膜の中心間距離が、抽出対象周波数帯域の音に対して、前記振動膜を差動マイクとして使用した場合の音圧が全方位において単体マイクとして使用した場合の音圧を上回らない範囲の距離に設定されていてもよい。
 ここで、抽出対象周波数は、本音声入力装置で抽出したい音の周波数である。例えば7kHz以下の周波数を抽出対象周波数として前記第1及び第2の振動膜の中心間距離が設定されていてもよい。
(29)また、本発明は、
 上記のいずれかに記載の音声入力装置と、
 前記差分信号に基づいて、前記音声入力装置に入力された音声情報の解析処理を行う解析処理部と、を含むことを特徴とする情報処理システムを提供する。
 この情報処理システムによると、第1及び第2の振動膜が所定の条件を満たすように配置された音声入力装置で取得された差分信号に基づいて、音声情報の解析処理を行う。この音声入力装置によると、差分信号は、雑音成分が除去された音声成分を示す信号となるため、この差分信号を解析処理することによって、入力音声に基づく種々の情報処理が可能になる。
 本発明に係る情報処理システムは、音声認識処理や、音声認証処理、あるいは、音声に基づくコマンド生成処理などを行うシステムであってもよい。
(30)また、本発明は、
 上記のいずれかに記載の音声入力装置と、
 前記差分信号に基づいて、前記音声入力装置に入力された音声情報の解析処理を行うホストコンピュータと、を含み、
 前記通信処理部によって、前記ホストコンピュータとのネットワークを介した通信処理を行うことを特徴とする情報処理システムを提供する。
 この情報処理システムによると、第1及び第2の振動膜が所定の条件を満たすように配置された音声入力装置で取得された差分信号に基づいて、音声情報の解析処理を行う。この音声入力装置によると、差分信号は、雑音成分が除去された音声成分を示す信号となるため、差分信号を解析処理することによって、入力音声に基づく種々の情報処理が可能になる。
 本発明に係る情報処理システムでは、音声認識処理や、音声認証処理、あるいは、音声に基づくコマンド生成処理などを行うシステムであってもよい。
(31)また、本発明は、
 第1の振動膜を有する第1のマイクロフォンと、第2の振動膜を有する第2のマイクロフォンと、前記第1のマイクロフォンで取得された第1の電圧信号と、前記第2のマイクロフォンで取得された第2の電圧信号との差を示す差分信号を生成する差分信号生成部と、を含む、雑音成分を除去する機能を有する接話型の音声入力装置を製造する方法であって、
 前記第1及び第2の振動膜の中心間距離Δrと雑音の波長λとの比率を示すΔr/λの値と、前記差分信号に含まれる前記雑音成分の強度の、前記第1又は第2の電圧信号に含まれる前記雑音成分の強度に対する比率を示す雑音強度比との対応関係を示すデータを用意する手順と、
 前記データに基づいて、前記Δr/λの値を設定する手順と、
 設定された前記Δr/λの値、及び、前記雑音の波長に基づいて、前記中心間距離を設定する手順と、
 を含むことを特徴とする音声入力装置の製造方法を提供する。
 本発明に係る製造方法によると、小型化が可能で、かつ、精度の高い雑音除去機能を有する音声入力装置を製造することができる。
(32)また、この音声入力装置の製造方法において、
 前記Δr/λの値を設定する手順では、
 前記データに基づいて、前記雑音強度比が、前記差分信号に含まれる入力音声成分の強度の、前記第1又は第2の電圧信号に含まれる前記入力音声成分の強度に対する比率を示す入力音声強度比よりも小さくなるように、前記Δr/λの値を設定することが好ましい。
 (33)また、この音声入力装置の製造方法において、
 前記入力音声強度比は、前記入力音声の振幅成分に基づく強度比であることが好ましい。
 (34)また、この音声入力装置の製造方法において、
 前記雑音強度比は、前記雑音成分の位相差に基づく強度比であることが好ましい。
 (35)この音声入力装置の製造方法において、
 前記音声入力装置の差分信号生成部は、
 所定の端子にかかる電圧または流れる電流に応じて、前記第1のマイクロフォンで取得された第1の電圧信号に所定ゲインを与えるゲイン部と、
 前記所定の端子にかかる電圧または流れる電流を制御するゲイン制御部と、
 前記ゲイン部によって所定のゲインを与えられた第1の電圧信号と、前記第2のマイクロフォンで取得された第2の電圧信号を入力して、所定のゲインを与えられた第1の電圧信号と第2の電圧信号の差分信号を生成して出力する差分信号出力部とを含んで構成され、
 前記ゲイン制御部を複数の抵抗が直列または並列に接続された抵抗アレーを含むように構成し、前記抵抗アレーを構成する抵抗体又は導体の一部を切断する手順、又は前記ゲイン制御部を少なくとも1つの抵抗体を含むように構成し、該抵抗体の一部を切断する手順のいずれかの手順を含むことが好ましい。
 (36)また、この音声入力装置の製造方法において、
 前記第1のマイクロフォンおよび前記第2のマイクロフォンから等距離に音源を設置し、
 前記音源部からの音に基づいて、第1のマイクロフォンおよび前記第2のマイクロフォンかとの振幅差を判定し、当該振幅差が所定の範囲内におさまる抵抗値となるように前記抵抗アレーを構成する抵抗体又は導体の一部、又は抵抗体の一部を切断することが好ましい。
音声入力装置について説明するための図。 音声入力装置について説明するための図。 音声入力装置について説明するための図。 音声入力装置について説明するための図。 音声入力装置を製造する方法について説明するための図。 音声入力装置を製造する方法について説明するための図。 音声入力装置について説明するための図。 音声入力装置について説明するための図。 音声入力装置の一例としての携帯電話を示す図。 音声入力装置の一例としてのマイクを示す図。 音声入力装置の一例としてのリモートコントローラを示す図。 情報処理システムの概略図。 音声入力装置の構成の一例を示す図。 音声入力装置の構成の一例を示す図。 遅延部と遅延制御部の具体的構成の一例を示す図。 群遅延フィルタの遅延量をスタティックに制御する構成の一例を示す図。 群遅延フィルタの遅延量をスタティックに制御する構成の一例を示す図。 音声入力装置の構成の一例を示す図。 音声入力装置の構成の一例を示す図。 位相差検出部のタイミングチャート。 音声入力装置の構成の一例を示す図。 音声入力装置の構成の一例を示す図。 差動マイクの指向性について説明するための図。 差動マイクの指向性について説明するための図。 ノイズ検出手段を備えた音声入力装置の構成の一例を示す図。 ノイズ検出による信号切り替えの動作例を示すフローチャート。 ノイズ検出によるスピーカの音量制御の動作例を示すフローチャート。 AD変換手段を備えた音声入力装置の構成の一例を示す図。 ゲイン調整手段を備えた音声入力装置の構成の一例を示す図。 音声入力装置の構成の一例を示す図。 音声入力装置の構成の一例を示す図。 音声入力装置の構成の一例を示す図。 音声入力装置の構成の一例を示す図。 ゲイン部とゲイン制御部の具体的構成の一例を示す図。 ゲイン部の増幅率をスタティックに制御する構成の一例。 ゲイン部の増幅率をスタティックに制御する構成の一例。 音声入力装置の構成の一例を示す図。 音声入力装置の構成の一例を示す図。 音声入力装置の構成の一例を示す図。 音声入力装置の構成の一例を示す図。 AD変換手段を備えた音声入力装置の構成の一例を示す図。 音声入力装置の構成の一例を示す図。 レーザートリミングにより抵抗値を調整する例を示す図。 マイク間距離が5mmの場合のユーザー音声強度比の位相成分の分布の関係について説明するための図。 マイク間距離が10mmの場合のユーザー音声強度比の位相成分の分布について説明するための図。 マイク間距離が20mmの場合のユーザー音声強度比の位相成分の分布について説明するための図。 マイク間距離5mm、音源周波数1kHz、マイク-音源間の距離2.5cmの場合の差動マイクの指向性について説明するための図。 マイク間距離5mm、音源周波数1kHz、マイク-音源間の距離1mの場合の差動マイクの指向性について説明するための図。 マイク間距離10mm、音源周波数1kHz、マイク-音源間の距離2.5cmの場合の差動マイクの指向性について説明するための図。 マイク間距離10mm、音源周波数1kHz、マイク-音源間の距離1mの場合の差動マイクの指向性について説明するための図。 マイク間距離20mm、音源周波数1kHz、マイク-音源間の距離2.5cmの場合の差動マイクの指向性について説明するための図。 マイク間距離20mm、音源周波数1kHz、マイク-音源間の距離1mの場合の差動マイクの指向性について説明するための図。 マイク間距離5mm、音源周波数7kHz、マイク-音源間の距離2.5cmの場合の差動マイクの指向性について説明するための図。 マイク間距離5mm、音源周波数7kHz、マイク-音源間の距離1mの場合の差動マイクの指向性について説明するための図。 マイク間距離10mm、音源周波数7kHz、マイク-音源間の距離2.5cmの場合の差動マイクの指向性について説明するための図。 マイク間距離10mm、音源周波数7kHz、マイク-音源間の距離1mの場合の差動マイクの指向性について説明するための図。 マイク間距離20mm、音源周波数7kHz、マイク-音源間の距離2.5cmの場合の差動マイクの指向性について説明するための図。 マイク間距離20mm、音源周波数7kHz、マイク-音源間の距離1mの場合の差動マイクの指向性について説明するための図。 マイク間距離5mm、音源周波数300Hz、マイク-音源間の距離2.5cmの場合の差動マイクの指向性について説明するための図。 マイク間距離5mm、音源周波数300Hz、マイク-音源間の距離1mの場合の差動マイクの指向性について説明するための図。 マイク間距離10mm、音源周波数300Hz、マイク-音源間の距離2.5cmの場合の差動マイクの指向性について説明するための図。 マイク間距離10mm、音源周波数300Hz、マイク-音源間の距離1mの場合の差動マイクの指向性について説明するための図。 マイク間距離20mm、音源周波数300Hz、マイク-音源間の距離2.5cmの場合の差動マイクの指向性について説明するための図。 マイク間距離20mm、音源周波数300Hz、マイク-音源間の距離1mの場合の差動マイクの指向性について説明するための図。
 以下、本発明を適用した実施の形態について図面を参照して説明する。ただし、本発明は以下の実施の形態に限定されるものではない。また、本発明は、以下の内容を自由に組み合わせたものを含むものとする。
1.第1の実施の形態に係る音声入力装置の構成
 はじめに、図1~図3を参照して、本発明を適用した実施の形態に係る音声入力装置1の構成について説明する。なお、以下に説明する音声入力装置1は、接話式の音声入力装置であって、例えば、携帯電話やトランシーバー等の音声通信機器や、入力された音声を解析する技術を利用した情報処理システム(音声認証システム、音声認識システム、コマンド生成システム、電子辞書、翻訳機や、音声入力方式のリモートコントローラなど)、あるいは、録音機器やアンプシステム(拡声器)、マイクシステムなどに適用することができる。
 本実施の形態に係る音声入力装置は、第1の振動膜12を有する第1のマイクロフォン10と、第2の振動膜22を有する第2のマイクロフォン20とを含む。ここで、マイクロフォンとは、音響信号を電気信号へ変換する電気音響変換器である。第1及び第2のマイクロフォン10,20は、それぞれ、第1及び第2の振動膜12,22(振動板)の振動を、電圧信号として出力する変換器であってもよい。
 本実施の形態に係る音声入力装置では、第1のマイクロフォン10は第1の電圧信号を生成する。また、第2のマイクロフォン20は第2の電圧信号を生成する。すなわち、第1及び第2のマイクロフォン10,20で生成された電圧信号を、それぞれ、第1及び第2の電圧信号と呼んでもよい。
 第1及び第2のマイクロフォン10,20の機構については特に限定されるものではない。図2には、第1及び第2のマイクロフォン10,20に適用可能なマイクロフォンの一例として、コンデンサ型マイクロフォン100の構造を示す。コンデンサ型マイクロフォン100は、振動膜102を有する。振動膜102は、音波を受けて振動する膜(薄膜)で、導電性を有し、電極の一端を形成している。コンデンサ型マイクロフォン100は、また、電極104を有する。電極104は、振動膜102と対向して配置されている。これにより、振動膜102と電極104とは容量を形成する。コンデンサ型マイクロフォン100に音波が入射すると、振動膜102が振動して、振動膜102と電極104との間隔が変化し、振動膜102と電極104との間の静電容量が変化する。この静電容量の変化を、例えば電圧の変化として出力することによって、コンデンサ型マイクロフォン100に入射する音波を、電気信号に変換することができる。なお、コンデンサ型マイクロフォン100では、電極104は、音波の影響を受けない構造をなしていてもよい。例えば、電極104はメッシュ構造をなしていてもよい。
 ただし、本発明に適用可能なマイクロフォンは、コンデンサ型マイクロフォンに限られるものではなく、既に公知となっているいずれかのマイクロフォンを適用することができる。例えば、第1及び第2のマイクロフォン10,20として、動電型(ダイナミック型)、電磁型(マグネティック型)、圧電型(クリスタル型)等のマイクロフォンを適用してもよい。
 第1及び第2のマイクロフォン10,20は、第1及び第2の振動膜12,22がシリコンによって構成されたシリコンマイク(Siマイク)であってもよい。シリコンマイクを利用することで、第1及び第2のマイクロフォン10,20の小型化、及び、高性能化を実現することができる。このとき、第1及び第2のマイクロフォン10,20は、1つの集積回路装置として構成されていてもよい。すなわち、第1及び第2のマイクロフォン10,20は、1つの半導体基板に構成されていてもよい。このとき、後述する差分信号生成部30も、同一の半導体基板に形成されていてもよい。すなわち、第1及び第2のマイクロフォン10,20は、いわゆるメムス(MEMS:Micro Electro Mechanical Systems)として構成されていてもよい。ただし、第1のマイクロフォン10と第2のマイクロフォン20とは、別々のシリコンマイクとして構成されていてもよい。
 前記振動膜を、SN(Signal to Noise)比が約60デシベル以上の振動子で構成してもよい。振動子を差動マイクとして機能させる場合には単体マイクとして機能させる場合に比べてSN比が低下する。従ってSN比に優れた振動子(例えばSN比が60デシベル以上のMEMS振動子)を用いて前記振動膜を構成することで、感度のよい音声入力装置を実現することができる。
 例えば、単体マイク2個を5mm程度離して配置し、これらの差分をとることで差動マイクを構成し、話者とマイク間の距離を約2.5cm程度(接話型の音声入力装置)の条件で使用する場合には、単体マイクの場合に比べて出力感度が10デシベル程度低下する。すなわち、単体マイクに比べて差動マイクは少なくとも10デシベルはSB比が低下することになる。マイクの実用性を考えた場合、SN比は50デシベル程度必要であるとされているため、差動マイクにおいてこの条件を満たすためには、単体の状態でSN比が約60デシベル以上確保できるような振動子を用いてマイクロフォンを構成する必要があり、これにより、前記感度の低下による影響を鑑みてもマイクとしての機能の必要レベルを満たした音声入力装置を実現することができる。
 本実施の形態に係る音声入力装置では、後述するように、第1及び第2の電圧信号の差を示す差分信号を利用して、雑音成分を除去する機能を実現する。この機能を実現するために、第1及び第2のマイクロフォン(第1及び第2の振動膜12,22)は、一定の制約を満たすように配置される。第1及び第2の振動膜12,22が満たすべき制約の詳細については後述するが、本実施の形態では、第1及び第2の振動膜12,22(第1及び第2のマイクロフォン10,20)は、雑音強度比が、入力音声強度比よりも小さくなるように配置される。これにより、差分信号を、雑音成分が除去された音声成分を示す信号とみなすことが可能になる。第1及び第2の振動膜12,22は、例えば、中心間距離が5.2mm以下になるように配置されていてもよい。
 なお、本実施の形態に係る音声入力装置では、第1及び第2の振動膜12,22の向きは、特に限定されるものではない。第1及び第2の振動膜12,22は、法線が平行になるように配置されていてもよい。このとき、第1及び第2の振動膜12,22は、法線が同一直線にならないように配置されていてもよい。例えば、第1及び第2の振動膜12,22は、図示しない基部(例えば回路基板)の表面に、間隔をあけて配置されていてもよい。あるいは、第1及び第2の振動膜12,22は、法線方向にずれて配置されていてもよい。ただし、第1及び第2の振動膜12,22は、法線が平行にならないように配置されていてもよい。第1及び第2の振動膜12,22は、法線が直交するように配置されていてもよい。
 そして、本実施の形態に係る音声入力装置は、差分信号生成部30を有する。差分信号生成部30は、第1のマイクロフォン10で取得された第1の電圧信号と、第2のマイクロフォン20で取得された第2の電圧信号との差(電圧差)を示す差分信号を生成する。差分信号生成部30では、第1及び第2の電圧信号に対して例えばフーリエ解析などの解析処理を行うことなく、時間領域において両者の差を示す差分信号を生成する処理を行う。差分信号生成部30の機能は、専用のハードウェア回路(差分信号生成回路)によって実現してもよく、CPUなどによる信号処理によって実現してもよい。
 本実施の形態に係る音声入力装置は、差分信号を増幅する(ゲインを上げる場合もゲインを下げる場合も含む意味である)ゲイン部をさらに含んでいてもよい。差分信号生成部30とゲイン部とは、1つの制御回路によって実現してもよい。ただし、本実施の形態に係る音声入力装置は、ゲイン部を内部に持たない構成をなしていてもよい。
 図3には、差分信号生成部30とゲイン部とを実現可能な回路の一例を示す。図3に示す回路によれば、第1及び第2の電圧信号を受け付けて、その差を示す差分信号を10倍に増幅した信号を出力することになる。ただし、差分信号生成部30及びゲイン部を実現するための回路構成は、これに限られるものではない。
 本実施の形態に係る音声入力装置は、筐体40を含んでいてもよい。このとき、音声入力装置の外形は、筐体40によって構成されていてもよい。筐体40には基本姿勢が設定されていてもよく、これにより、入力音声の進行径路を規制することができる。第1及び第2の振動膜12,22は、筐体40の表面に形成されていてもよい。あるいは、第1及び第2の振動膜12,22は、筐体40に形成された開口(音声入射口)と対向するように、筐体40内部に配置されていてもよい。そして、第1及び第2の振動膜12,22は、音源(入射音声のモデル音源)からの距離が異なるように配置されていてもよい。例えば図1に示すように、筐体40は、入力音声の進行径路が筐体40の表面に沿うように、基本姿勢が設定されていてもよい。そして、第1及び第2の振動膜12,22は、入力音声の進行径路に沿って配置されていてもよい。そして、入力音声の進行径路の上流側に配置される振動膜を第1の振動膜12とし、下流側に配置される振動膜を第2の振動膜22としてもよい。
 本実施の形態に係る音声入力装置は、演算処理部50をさらに含んでいてもよい。演算処理部50は、差分信号生成部30で生成された差分信号に基づいて各種の演算処理を行う。演算処理部50は、差分信号に対する解析処理を行ってもよい。演算処理部50は、差分信号を解析することにより、入力音声を発した人物を特定する処理(いわゆる音声認証処理)を行ってもよい。あるいは、演算処理部50は、差分信号を解析処理することにより、入力音声の内容を特定する処理(いわゆる音声認識処理)を行ってもよい。演算処理部50は、入力音声に基づいて、各種のコマンドを作成する処理を行ってもよい。演算処理部50は、差分信号を増幅する処理を行ってもよい。また、演算処理部50は、後述する通信処理部60の動作を制御してもよい。なお、演算処理部50は、上記各機能を、CPUやメモリによる信号処理によって実現してもよい。
 演算処理部50は、筐体40の内部に配置されていてもよいが、筐体40の外部に配置されていてもよい。演算処理部50が筐体40の外部に配置されている場合、演算処理部50は、後述する通信処理部60を介して、差分信号を取得してもよい。
 本実施の形態に係る音声入力装置は、通信処理部60をさらに含んでいてもよい。通信処理部60は、音声入力装置と、他の端末(携帯電話端末や、ホストコンピュータなど)との通信を制御する。通信処理部60は、ネットワークを介して、他の端末に信号(差分信号)を送信する機能を有していてもよい。通信処理部60は、また、ネットワークを介して、他の端末から信号を受信する機能を有していてもよい。そして、例えばホストコンピュータで、通信処理部60を介して取得した差分信号を解析処理して、音声認識処理や音声認証処理、コマンド生成処理や、データ蓄積処理など、種々の情報処理を行ってもよい。すなわち、音声入力装置は、他の端末と協働して、情報処理システムを構成していてもよい。言い換えると、音声入力装置は、情報処理システムを構築する情報入力端末であるとみなしてもよい。ただし、音声入力装置は、通信処理部60を有しない構成となっていてもよい。
 本実施の形態に係る音声入力装置は、表示パネルなどの表示装置や、スピーカ等の音声出力装置をさらに含んでいてもよい。また、本実施の形態に係る音声入力装置は、操作情報を入力するための操作キーをさらに含んでいてもよい。
 本実施の形態に係る音声入力装置は、以上の構成をなしていてもよい。この音声入力装置によると、第1及び第2の電圧信号の差を出力するだけの簡単な処理によって、雑音成分が除去された音声成分を示す信号(電圧信号)が生成される。そのため、本発明によると、小型化が可能で、かつ、優れた雑音除去機能を有する音声入力装置を提供することができる。なお、その原理については、後で詳述する。
2.雑音除去機能
 以下、本実施の形態に係る音声入力装置が採用する音声除去原理、及び、これを実現するための条件について説明する。
 (1)雑音除去原理
 はじめに、本実施の形態に係る音声入力装置の雑音除去原理について説明する。
 音波は、媒質中を進行するにつれ減衰し、音圧(音波の強度・振幅)が低下する。音圧は、音源からの距離に反比例するため、音圧Pは、音源からの距離Rとの関係において、
Figure JPOXMLDOC01-appb-M000001
と表すことができる。なお、式(1)中、Kは比例定数である。図4には、式(1)を表すグラフを示すが、本図からもわかるように、音圧(音波の振幅)は、音源に近い位置(グラフの左側)では急激に減衰し、音源から離れるほどなだらかに減衰する。本実施の形態に係る音声入力装置では、この減衰特性を利用して雑音成分を除去する。
 すなわち、接話型の音声入力装置では、ユーザは、雑音の音源よりも、第1及び第2のマイクロフォン10,20(第1及び第2の振動膜12,22)に近い位置から音声を発する。そのため、第1及び第2の振動膜12,22の間で、ユーザの音声は大きく減衰し、第1及び第2の電圧信号に含まれるユーザ音声の強度には差が現れる。これに対して、雑音成分は、ユーザの音声に比べて音源が遠いため、第1及び第2の振動膜12,22の間でほとんど減衰しない。そのため、第1及び第2の電圧信号に含まれる雑音の強度には、差が現れないとみなすことができる。このことから、第1及び第2の電圧信号の差を検出すれば雑音が消去されるため、雑音成分が含まれない、ユーザの音声成分のみを示す電圧信号(差分信号)を取得することができる。すなわち、差分信号を、雑音成分が除去されたユーザの音声を示す信号であるとみなすことができる。
 ただし、音波は位相成分を有する。そのため、信頼性の高い雑音除去機能を実現するためには、第1及び第2の電圧信号に含まれる音声成分及び雑音成分の位相差を考慮する必要がある。
 以下、差分信号を生成することによって雑音除去機能を実現するために、音声入力装置が満たすべき具体的な条件について説明する。
 (2)音声入力装置が満たすべき具体的条件
 本実施の形態に係る音声入力装置は、先に説明したように、第1及び第2の電圧信号の差分を示す差分信号を、雑音を含まない入力音声信号であるとみなす。この音声入力装置によると、差分信号に含まれる雑音成分が、第1又は第2の電圧信号に含まれる雑音成分よりも小さくなれば、雑音除去機能が実現できたと評価することができる。詳しくは、差分信号に含まれる雑音成分の強度の、第1又は第2の電圧信号に含まれる雑音成分の強度に対する比を示す雑音強度比が、差分信号に含まれる音声成分の強度の、第1又は第2の電圧信号に含まれる音声成分の強度に対する比を示す音声強度比よりも小さくなれば、この雑音除去機能が実現されたと評価することができる。
 以下、この雑音除去機能を実現するために、音声入力装置(第1及び第2の振動膜12,22)が満たすべき具体的な条件について説明する。
 はじめに、第1及び第2のマイクロフォン10,20(第1及び第2の振動膜12,22)に入射する音声の音圧について検討する。入力音声(ユーザの音声)の音源から第1の振動膜12までの距離をRとし、第1及び第2の振動膜12,22(第1及び第2のマイクロフォン10,20)の中心間距離をΔrとすれば、位相差を無視すれば、第1及び第2のマイクロフォン10,20で取得される、入力音声の音圧(強度)P(S1)及びP(S2)は、
Figure JPOXMLDOC01-appb-M000002
と表すことができる。
 そのため、入力音声の位相差を無視した時の、第1のマイクロフォン10で取得される入力音声成分の強度に対する、差分信号に含まれる入力音声成分の強度の比率を示す音声強度比ρ(P)は、
と表される。
 ここで、本実施の形態に係る音声入力装置は接話式の音声入力装置であって、ΔrはRに比べて充分小さいとみなすことができる。
 そのため、上述の式(4)は、
Figure JPOXMLDOC01-appb-M000004
と変形することができる。
 すなわち、入力音声の位相差を無視した場合の音声強度比は、式(A)と表されることがわかる。
 ところで、入力音声の位相差を考慮すると、ユーザ音声の音圧Q(S1)及びQ(S2)は、
Figure JPOXMLDOC01-appb-M000005
と表すことができる。なお、式中、αは位相差である。
 このとき、音声強度比ρ(S)は、
Figure JPOXMLDOC01-appb-M000006
と表される。式(7)を考慮すると、音声強度比ρ(S)の大きさは、
Figure JPOXMLDOC01-appb-M000007
と表すことができる。
 ところで、式(8)のうち、sinωt-sin(ωt-α)項は位相成分の強度比を示し、Δr/R sinωt項は振幅成分の強度比を示す。入力音声成分であっても、位相差成分は、振幅成分に対するノイズとなるため、入力音声(ユーザの音声)を精度よく抽出するためには、位相成分の強度比が、振幅成分の強度比よりも充分に小さいことが必要である。すなわち、sinωt-sin(ωt-α)と、Δr/R sinωtとは、
Figure JPOXMLDOC01-appb-M000008
の関係を満たしていることが必要である。
 ここで、
Figure JPOXMLDOC01-appb-M000009
と表すことができるため、上述の式(B)は、
Figure JPOXMLDOC01-appb-M000010
と表すことができる。
 式(10)の振幅成分を考慮すると、本実施の形態に係る音声入力装置は、
Figure JPOXMLDOC01-appb-M000011
を満たす必要があることがわかる。
 なお、上述したように、ΔrはRに比べて充分小さいとみなすことができるため、sin(α/2)は充分小さいとみなすことができ、
Figure JPOXMLDOC01-appb-M000012
と近似することができる。
 そのため、式(C)は、
Figure JPOXMLDOC01-appb-M000013
と変形することができる。
 また、位相差であるαとΔrとの関係を、
Figure JPOXMLDOC01-appb-M000014
と表せば、式(D)は、
Figure JPOXMLDOC01-appb-M000015
と変形することができる。
 すなわち、本実施の形態では、入力音声(ユーザの音声)を精度よく抽出するためには、音声入力装置を、式(E)に示す関係を満たすように製造することが必要である。
 次に、第1及び第2のマイクロフォン10,20(第1及び第2の振動膜12,22)に入射する雑音の音圧について検討する。
 第1及び第2のマイクロフォンで取得される雑音成分の振幅を、A,A´とすると、位相差成分を考慮した雑音の音圧Q(N1)及びQ(N2)は、
Figure JPOXMLDOC01-appb-M000016
と表すことができ、第1のマイクロフォン10で取得される雑音成分の強度に対する、差分信号に含まれる雑音成分の強度の比率を示す雑音強度比ρ(N)は、
Figure JPOXMLDOC01-appb-M000017
と表すことができる。
 なお、先に説明したように、第1及び第2のマイクロフォンで取得される雑音成分の振幅(強度)はほぼ同じであり、A=A´と扱うことができる。そのため、上記の式(15)は、
Figure JPOXMLDOC01-appb-M000018
と変形することができる。
 そして、雑音強度比の大きさは、
Figure JPOXMLDOC01-appb-M000019
と表すことができる。
 ここで、上述の式(9)を考慮すると、式(17)は、
Figure JPOXMLDOC01-appb-M000020
と変形することができる。
 そして、式(11)を考慮すると、式(18)は、
Figure JPOXMLDOC01-appb-M000021
と変形することができる。
 ここで、式(D)を参照すれば、雑音強度比は、
Figure JPOXMLDOC01-appb-M000022
と表すことができる。なお、Δr/Rとは、式(A)に示すように、入力音声(ユーザ音声)の振幅成分の強度比である。式(F)から、この音声入力装置では、雑音強度比が入力音声の強度比Δr/Rよりも小さくなることがわかる。
 以上のことから、入力音声の位相成分の強度比が振幅成分の強度比よりも小さくなるように設計された音声入力装置によれば(式(B)参照)、雑音強度比が入力音声強度比よりも小さくなる(式(F)参照)。逆に言うと、雑音強度比が入力音声強度比よりも小さくなるように設計された音声入力装置によると、精度の高い雑音除去機能を実現することができる。
 すなわち、第1及び第2の振動膜12,22(第1及び第2のマイクロフォン10,20)が、雑音強度比が入力音声強度比よりも小さくなるように配置される本実施の形態に係る音声入力装置によれば、精度の高い雑音除去機能を実現することができる。
3.音声入力装置の製造方法
 以下、本実施の形態に係る音声入力装置の製造方法について説明する。本実施の形態では、第1及び第2の振動膜12,22の中心間距離Δrと雑音の波長λとの比率を示すΔr/λの値と、雑音強度比(雑音の位相成分に基づく強度比)との対応関係を示すデータを利用して、音声入力装置を製造する。
 雑音の位相成分に基づく強度比は、上述した式(18)で表される。そのため、雑音の位相成分に基づく強度比のデシベル値は、
Figure JPOXMLDOC01-appb-M000023
と表すことができる。
 そして、式(20)のαに各値を代入すれば、位相差αと雑音の位相成分に基づく強度比との対応関係を明らかにすることができる。図5には、横軸をα/2πとし、縦軸に雑音の位相成分に基づく強度比(デシベル値)を取った時の、位相差と強度比との対応関係を表すデータの一例を示す。
 なお、位相差αは、式(12)に示すように、距離Δrと波長λとの比であるΔr/λの関数で表すことができ、図5の横軸は、Δr/λとみなすことができる。すなわち、図5は、雑音の位相成分に基づく強度比と、Δr/λとの対応関係を示すデータであるといえる。
 本実施の形態では、このデータを利用して、音声入力装置を製造する。図6は、このデータを利用して音声入力装置を製造する手順について説明するためのフローチャート図である。
 はじめに、雑音の強度比(雑音の位相成分に基づく強度比)と、Δr/λとの対応関係を示すデータ(図5参照)を用意する(ステップS10)。
 次に、用途に応じて、雑音の強度比を設定する(ステップS12)。なお、本実施の形態では、雑音の強度が低下するように雑音の強度比を設定する必要がある。そのため、本ステップでは、雑音の強度比を、0dB以下に設定する。
 次に、当該データに基づいて、雑音の強度比に対応するΔr/λの値を導出する(ステップS14)。
 そして、λに主要な雑音の波長を代入することによって、Δrが満たすべき条件を導出する(ステップS16)。
 具体例として、主要な雑音が1kHzであり、その波長が0.347mとなる環境下で、雑音の強度が20dB低下する音声入力装置を製造する場合について考える。
 はじめに、必要条件として、雑音の強度比が0dB以下になるための条件について検討する。図5を参照すると、雑音の強度比を0dB以下とするためには、Δr/λの値を0.16以下とすればよいことがわかる。すなわち、Δrの値が55.46mm以下とすればよいことがわかり、これが、この音声入力装置の必要条件となる。
 次に、1kHzの雑音の強度を20dB低下させるための条件について考える。図5を参照すると、雑音の強度を20dB低下させるためには、Δr/λの値を0.015とすればよいことがわかる。そして、λ=0.347mとすると、Δrの値が5.20mm以下のときに、この条件を満たすことがわかる。すなわち、第1及び第2の振動膜12,22(第1及び第2のマイクロフォン10,20)の中心間距離Δrを約5.2mm以下に設定すれば、雑音除去機能を有する接話型の音声入力装置を製造することが可能になる。
 なお、本実施の形態に係る音声入力装置は接話式の音声入力装置であり、ユーザの音声の音源と第1又は第2の振動膜12,22との間隔は、通常5cm以下である。また、ユーザ音声の音源と第1及び第2の振動膜12,22との間隔は、筐体40の設計によって制御することが可能である。そのため、入力音声(ユーザの音声)の強度比であるΔr/Rの値は、0.1(雑音の強度比)よりも大きくなり、雑音除去機能が実現されることがわかる。
 なお、通常、雑音は単一の周波数に限定されるものではない。しかし、主要な雑音として想定された雑音よりも周波数の低い雑音は、当該主要な雑音よりも波長が長くなるため、Δr/λの値は小さくなり、この音声入力装置によって除去される。また、音波は、周波数が高いほどエネルギーの減衰が早い。そのため、主要な雑音として想定された雑音よりも周波数の高い雑音は、当該主要な雑音よりも早く減衰するため、音声入力装置に与える影響を無視することができる。このことから、本実施の形態に係る音声入力装置は、主要な雑音として想定された雑音とは異なる周波数の雑音が存在する環境下でも、優れた雑音除去機能を発揮することができる。
 また、本実施の形態では、式(12)からもわかるように、第1及び第2の振動膜12,22を結ぶ直線上から入射する雑音を想定した。この雑音は、第1及び第2の振動膜12,22の見かけ上の間隔が最も大きくなる雑音であり、現実の使用環境において、位相差が最も大きくなる雑音である。すなわち、本実施の形態に係る音声入力装置は、位相差が最も大きくなる雑音を除去することが可能に構成されている。そのため、本実施の形態に係る音声入力装置によると、すべての方向から入射する雑音が除去される。
4.効果
 以下、本実施の形態に係る音声入力装置が奏する効果について説明する。
 先に説明したように、本実施の形態に係る音声入力装置によると、第1及び第2のマイクロフォン10,20で取得された電圧信号の差分を示す差分信号を生成するだけで、雑音成分が除去された音声成分を取得することができる。すなわち、この音声入力装置では、複雑な解析演算処理を行うことなく雑音除去機能を実現することができる。そのため本実施の形態によれば、簡単な構成で、精度の高い雑音除去機能を実現することが可能な音声入力装置を提供することができる。特に、第1及び第2の振動膜の中心間距離Δrを5.2mm以下に設定することで、位相歪が少なく、より精度の高い雑音除去機能を実現することが可能な音声入力装置を提供することができる。
 また、前記第1及び第2の振動膜の中心間距離が、10kHz以下の周波数帯域の音に対して、第1の振動膜に入射する音声の音圧の強度に対する第1の振動膜と第2の振動膜に入射する音声の差分音圧の強度の比率である音声強度比の位相成分が、0デシベル以下となる距離に設定してもよい。
 前記第1及び第2の振動膜を音源の音(例えば音声)の進行方向に沿って配置して、前記進行方向からの10kHz以下の周波数帯域の音に対して、前記振動膜を差動マイクとして使用した場合の音圧の位相成分が単体マイクとして使用した場合の音圧を上回らない範囲の距離に前記第1及び第2の振動膜の中心間距離を設定してもよい。
 音声入力装置1が奏する遅延歪除去効果について説明する。
 先に説明したように、ユーザ音声強度比ρ(S)は以下の式(8)で表される。
Figure JPOXMLDOC01-appb-M000024
 ここで、ユーザ音声強度比ρ(S)の位相成分ρ(S)phaseは、sinωt-sin(ωt-α)の項である。式(8)に、
Figure JPOXMLDOC01-appb-M000025
と、
Figure JPOXMLDOC01-appb-M000026
を代入すると、ユーザ音声強度比ρ(S)の位相成分ρ(S)phaseは、以下の式で表すことができる。
Figure JPOXMLDOC01-appb-M000027
 したがって、ユーザ音声強度比ρ(S)の位相成分ρ(S)phaseに基づく強度比のデシベル値は、以下の式で表すことができる。
Figure JPOXMLDOC01-appb-M000028
 そして、式(22)のαに各値を代入すれば、位相差αと、ユーザ音声の位相成分に基づく強度比との対応関係を明らかにすることができる。
 図41から図43は、マイク間距離とユーザ音声強度比ρ(S)の位相成分ρ(S)phaseの関係について説明するための図である。図41から図44の横軸はΔr/λであり、縦軸はユーザ音声強度比ρ(S)の位相成分ρ(S)phaseである。ユーザ音声強度比ρ(S)の位相成分ρ(S)phaseとは差動マイクと単体マイクの音圧比の位相成分(ユーザ音声の位相成分に基づく強度比)であり、差動マイクを構成するマイクを単体マイクとして使用した場合の音圧が差動音圧と同じになるところを0デシベルとしている。
 すなわち、図41から図43のグラフは、Δr/λに対応した差動音圧の遷移を示しており、縦軸が0デシベル以上のエリアは、遅延歪(ノイズ)が大きいと考えることができる。
 現行の電話回線は、3.4kHzの音声周波数帯域で設計されているが、より高品質な音声通信を実現しようとした場合、7kHz以上、好ましくは10kHzの音声周波数帯域が必要とされる。以下、10kHzの音声周波数帯域を想定した場合における、遅延による音声歪みの影響について考察する。
 図41は、マイク間距離(Δr)が5mmである場合の、1kHz、7kHz、10kHzの周波数の音を差動マイクでとらえた場合のユーザ音声強度比ρ(S)の位相成分ρ(S)phaseの分布を示している。
 マイク間距離が5mmの場合には、図41に示すように1kHz、7kHz、10kHzのいずれの周波数の音についても音ユーザ音声強度比ρ(S)の位相成分ρ(S)phaseは0デシベル以下である。
 また、図42は、マイク間距離(Δr)が10mmである場合の、1kHz、7kHz、10kHzの周波数の音を差動マイクでとらえた場合のユーザ音声強度比ρ(S)の位相成分ρ(S)phaseの分布を示している。
 マイク間距離が10mmになると、図42に示すように1kHz、7kHzの周波数の音についてはユーザ音声強度比ρ(S)の位相成分ρ(S)phaseは0デシベル以下であるが、10kHzの周波数の音についてはユーザ音声強度比ρ(S)の位相成分ρ(S)phaseが0デシベル以上となり遅延ひずみ(ノイズ)が大きくなっている。
 また、図43は、マイク間距離(Δr)が20mmである場合の、1kHz、7kHz、10kHzの周波数の音を差動マイクでとらえた場合の音ユーザ音声強度比ρ(S)の位相成分ρ(S)phaseの分布を示している。
 マイク間距離が20mmになると、図43に示すように1kHzの周波数の音についてはユーザ音声強度比ρ(S)の位相成分ρ(S)phaseは0デシベル以下であるが、7kHz、10kHzの音についてはユーザ音声強度比ρ(S)の位相成分ρ(S)phaseが0デシベル以上となり遅延ひずみ(ノイズ)が大きくなっている。
 従って、マイク間距離を約5mm~6mm程度(より具体的には5.2mm以下)にすることで、周波数が10kHz帯域まで話者音声を忠実に抽出し、かつ遠方雑音の抑制効果の高い音声入力装置を実現することができる。
 ここで、マイク間距離を短くするほど、話者音声の位相歪みを抑えられて忠実性は良くなるが、逆に差動マイクの出力レベルが低下して、SN比が低下してしまう。したがって、実用性を考えた場合、最適なマイク間距離範囲が存在する。
 本実施の形態では第1及び第2の振動膜の中心間距離を約5mm~6mm程度(より具体的には5.2mm以下)にすることで、10kHz帯域まで話者音声を忠実に抽出し、かつ実用レベルのSN比を確保し、遠方雑音の抑制効果の高い音声入力装置を実現することができる。
 また、この音声入力装置は、位相差に基づく雑音の強度比が、入力音声の強度比よりも小さくなることによって、雑音除去機能を実現する。ところで、位相差に基づく雑音強度比は、第1及び第2の振動膜12,22の配列方向と雑音の入射方向によって変化する。すなわち、雑音に対する第1及び第2の振動膜12,22の間隔(見かけ上の間隔)が広くなるほど、雑音の位相差が大きくなり、位相差に基づく雑音強度比が大きくなる。ところで、本実施の形態では、音声入力装置は、式(12)からもわかるように、第1及び第2の振動膜12,22の見かけ上の間隔が最も広くなる雑音を除去することができるように構成されている。言い換えると、本実施の形態では、位相差に基づく雑音強度比が最も大きくなるように入射する雑音を除去することができるように、第1及び第2の振動膜12,22が配置されている。そのため、この音声入力装置によると、全方位から入射する雑音が除去される。すなわち、本発明によると、全方位から入射する雑音を除去することが可能な音声入力装置を提供することができる。
 図44(A)から図52(B)は音源周波数とマイク間距離Δrとマイク-音源間の距離毎の差動マイクの指向性について説明するための図である。
 図44(A)および図44(B)は音源の周波数が1kHz、マイク間距離Δrが5mm、マイク-音源間距離がそれぞれ2.5cm(接話型の話者の口元からマイクまでの距離に相当)および1m(遠方雑音に相当)の場合の差動マイクの指向性を示す図である。
 1116は差動マイクの全方位に対する感度(差動音圧)を示すグラフであり、差動マイクの指向特性を示している。また1112は差動マイクを単体マイクとして使用した場合の全方位に対する感度(音圧)を示すグラフであり、単体マイクの均等特性を示している。
 1114はマイクを2つ用いて差動マイクを構成する場合の両マイクを結ぶ直線の方向又はマイクを1つで差動マイクを実現する場合にマイクの両面に音波を到達させるための第1の振動膜と第2の振動膜を結ぶ直線の方向(0度-180度、差動マイクを構成する2つのマイクM1、M2又は第1の振動膜と第2の振動膜はこの直線上に置かれている)を示している。この直線の方向を0度、180度とし、この直線の方向と直角な方向を90度、270度とする。
 1112、1122に示すように単体マイクは全方位から均一に音を取っており指向性を有していない。また音源が遠くなるほど取得する音圧は減衰している。
 1116、1120に示すように差動マイクは90度、270度方向で多少感度が落ちるが全方位にほぼ均一な指向性を有している。また単体マイクより取得する音圧が減衰しており、単体マイクと同様に音源が遠くなるほど取得する音圧は減衰している。
 図44(B)に示すように音源の周波数が1kHz、マイク間距離Δrが5mmの場合には、差動マイクの指向性を示す差動音圧のグラフ1120の示す領域は単体マイクの均等特性を示すグラフ1122の示す領域に内包されており、差動マイクは単体マイクに比べ遠方雑音の抑制効果に優れているといえる。
 図45(A)および図45(B)は音源の周波数が1kHz、マイク間距離Δrが10mm、マイク-音源間距離がそれぞれ2.5cm及び1mの場合の差動マイクの指向性を説明する図である。このような場合にも、図45(B)に示すように、差動マイクの指向性を示すグラフ1140の示す領域は単体マイクの均等特性を示すグラフ1422の示す領域に内包されており、差動マイクは単体マイクに比べ遠方雑音の抑制効果に優れているといえる。
 図46(A)および図46(B)は音源の周波数が1kHz、マイク間距離Δrが20mm、マイク-音源間距離がそれぞれ2.5cm及び1mの場合の差動マイクの指向性を示す図である。このような場合にも、図46(B)に示すように、差動マイクの指向性を示すグラフ1160の示す領域は単体マイクの均等特性を示すグラフ1462の示す領域に内包されており、差動マイクは単体マイクに比べ遠方雑音の抑制効果に優れているといえる。
 図47(A)および図47(B)は音源の周波数が7kHz、マイク間距離Δrが5mm、マイク-音源間距離がそれぞれ2.5cm及び1mの場合の差動マイクの指向性を示す図である。このような場合にも、図47(B)に示すように、差動マイクの指向性を示すグラフ1180の示す領域は単体マイクの均等特性を示すグラフ1182の示す領域に内包されており、差動マイクは単体マイクに比べ遠方雑音の抑制効果に優れているといえる。
 図48(A)および図48(B)は音源の周波数が7kHz、マイク間距離Δrが10mm、マイク-音源間距離がそれぞれ2.5cm及び1mの場合の差動マイクの指向性を示す図である。このような場合には、図48(B)に示すように、差動マイクの指向性を示すグラフ1200の示す領域は単体マイクの均等特性を示すグラフ1202の示す領域に内包されておらず、差動マイクは単体マイクに比べ遠方雑音の抑制効果に優れているとはいえない。
 図49(A)および図49(B)は音源の周波数が7kHz、マイク間距離Δrが20mm、マイク-音源間距離がそれぞれ2.5cm及び1mの場合の差動マイクの指向性を示す図である。このような場合にも、図49(B)に示すように、差動マイクの指向性を示すグラフ1220の示す領域は単体マイクの均等特性を示すグラフ1222の示す領域に内包されておらず、差動マイクは単体マイクに比べ遠方雑音の抑制効果に優れているとはいえない。
 図50(A)および図50(B)は音源の周波数が300Hz、マイク間距離Δrが5mm、マイク-音源間距離がそれぞれ2.5cm及び1mの場合の差動マイクの指向性を示す図である。このような場合には、図50(B)に示すように、差動マイクの指向性を示すグラフ1240の示す領域は単体マイクの均等特性を示すグラフ1242の示す領域に内包されており、差動マイクは単体マイクに比べ遠方雑音の抑制効果に優れているといえる。
 図51(A)および図51(B)は音源の周波数が300Hz、マイク間距離Δrが10mm、マイク-音源間距離がそれぞれ2.5cm及び1mの場合の差動マイクの指向性を示す図である。このような場合にも、図51(B)に示すように、差動マイクの指向性を示すグラフ1260の示す領域は単体マイクの均等特性を示すグラフ1262の示す領域に内包されており、差動マイクは単体マイクに比べ遠方雑音の抑制効果に優れているといえる。
 図52(A)および図52(B)は音源の周波数が300Hz、マイク間距離Δrが20mm、マイク-音源間距離がそれぞれ2.5cm及び1mの場合の差動マイクの指向性を示す図である。このような場合にも、図52(B)に示すように、差動マイクの指向性を示すグラフ1280の示す領域は単体マイクの均等特性を示すグラフ1282の示す領域に内包されており、差動マイクは単体マイクに比べ遠方雑音の抑制効果に優れているといえる。
 マイク間距離が5mmである場合には、図44(B)、図47(B)、図50(B)に示すように音の周波数が1kHz、7kHz、300Hzのいずれの場合についても、差動マイクの指向性を示すグラフの示す領域は単体マイクの均等特性を示すグラフの示す領域に内包されている。すなわちマイク間距離が5mmである場合については音の周波数が7kHz以下の帯域では、差動マイクは単体マイクに比べ遠方雑音の抑制効果に優れているといえる。
 ところがマイク間距離が10mmである場合には、図45(B)、図48(B)、図50(B)に示すように音の周波数が7kHzの場合には、差動マイクの指向性を示すグラフの示す領域は単体マイクの均等特性を示すグラフの示す領域に内包されていない。すなわちマイク間距離が10mmである場合については音の周波数が7kHz付近(又は7kHz以上)では、差動マイクは単体マイクに比べ遠方雑音の抑制効果に優れているといえない。
 またマイク間距離が20mmである場合には、図46(B)、図49(B)、図52(B)に示すように音の周波数が7kHzの場合には、差動マイクの指向性を示すグラフの示す領域は単体マイクの均等特性を示すグラフの示す領域に内包されていない。すなわちマイク間距離が20mmである場合については音の周波数が7kHz付近(又は7kHz以上)では、差動マイクは単体マイクに比べ遠方雑音の抑制効果に優れているといえない。
 差動マイクのマイク間距離を約5mm~6mm程度(より具体的には5.2mm以下)にすることで、7kHz以下の音については指向性によらず全方位の遠方雑音の抑圧効果が単体マイクに比べ高くなる。従って第1及び第2の振動膜の中心間距離を約5mm~6mm程度(より具体的には5.2mm以下)にすることで、7kHz以下の音については指向性によらず全方位の遠方雑音を抑圧することが可能な音声入力装置を実現することができる。
 なお、この音声入力装置によると、壁などで反射した後に音声入力装置に入射したユーザ音声成分も除去することができる。詳しくは、壁などで反射したユーザ音声の音源は、通常のユーザ音声の音源よりも遠いとみなすことができ、かつ、反射により大きくエネルギーを消失しているため、雑音成分と同様に、第1及び第2の振動膜12,22の間で音圧が大きく減衰することがない。そのため、この音声入力装置によると、壁などで反射した後に音声入力装置に入射するユーザ音声成分も、雑音と同様に(雑音の一種として)除去される。
 そして、この音声入力装置を利用すれば、雑音を含まない、入力音声を示す信号を取得することができる。そのため、この音声入力装置を利用することで、精度の高い音声認識や音声認証、コマンド生成処理を実現することができる。
 また、この音声入力装置をマイクシステムに適用すれば、スピーカから出力されるユーザの声も、雑音として除去される。そのため、ハウリングが起こりにくいマイクシステムを提供することができる。
5.第2の実施の形態に係る音声入力装置
 次に、本発明を適用した第2の実施の形態に係る音声入力装置について、図7を参照して説明する。
 本実施の形態に係る音声入力装置は、基部70を含む。基部70の主面72には、凹部74が形成されている。そして、本実施の形態に係る音声入力装置では、凹部74の底面75に第1の振動膜12(第1のマイクロフォン10)が配置され、基部70の主面72に第2の振動膜22(第2のマイクロフォン20)が配置される。なお、凹部74は、主面72に対して垂直に延びていてもよく、凹部74の底面75は、主面72と平行な面であってもよい。底面75は、凹部74と直交する面であってもよい。また、凹部74は、第1の振動膜12と同じ外形をなしていてもよい。
 本実施の形態では、凹部74は、領域76と開口78との間隔よりも浅くなっていてもよい。すなわち、凹部74の深さをdとし、領域76と開口78との間隔をΔGとすると、基部70は、d≦ΔGを満たしていてもよい。基部70は、2d=ΔGを満たしていてもよい。なお、ΔGは5.2mm以下であってもよい。あるいは、基部70は、第1及び第2の振動膜12,22の中心間を結ぶ直線距離が5.2mm以下になるように構成されていてもよい。
 基部70は、凹部74に連通する開口78が、主面72における第2の振動膜22が配置される領域76よりも、入力音声の音源に近い位置に配置されるように設置される。基部70は、入力音声が、第1及び第2の振動膜12,22に、同時に到着するように設置されていてもよい。例えば、基部70は、入力音声の音源(モデル音源)と第1の振動膜12との間隔が、モデル音源と第2の振動膜22との間隔と同じになるように設置されていてもよい。基部70は、上記の条件を満たすように、基本姿勢が設定された筐体に設置されていてもよい。
 本実施の形態に係る音声入力装置によると、第1及び第2の振動膜12,22に入射する入力音声(ユーザの音声)の、入射時間のずれを低減することができる。すなわち、入力音声の位相差成分が含まれないように差分信号を生成することができることから、入力音声の振幅成分を精度よく抽出することが可能になる。
 なお、凹部74内では音波は拡散しないため、音波の振幅ほとんど減衰しない。そのため、この音声入力装置では、第1の振動膜12を振動させる入力音声の強度(振幅)は、開口78における入力音声の強度と同じとみなすことができる。このことから、音声入力装置が、入力音声が第1及び第2の振動膜12,22に同時に到達するように構成されている場合でも、第1及び第2の振動膜12,22を振動させる入力音声の強度には差が現れる。そのため、第1及び第2の電圧信号の差を示す差分信号を取得することで、入力音声を抽出することができる。
 まとめると、この音声入力装置によると、入力音声の位相差成分に基づくノイズを含まないように、入力音声の振幅成分(差分信号)を取得することができる。そのため、精度の高い雑音除去機能を実現することが可能になる。
 なお、凹部74の深さをΔG以下(5.2mm以下)とすることで、凹部74の共振周波数を高く設定することができるため、凹部74で共振ノイズが発生することを防止することができる。
 図8には、本実施の形態に係る音声入力装置の変形例を示す。
 本実施の形態に係る音声入力装置は、基部80を含む。基部80の主面82には、第1の凹部84と、第1の凹部84よりも浅い第2の凹部86が形成されている。第1及び第2の凹部84,86の深さの差であるΔdは、第1の凹部84に連通する第1の開口85と、第2の凹部86に連通する第2の開口87との間隔であるΔGよりも小さくなっていてもよい。そして、第1の振動膜12は第1の凹部84の底面に配置され、第2の振動膜22は第2の凹部86の底面に配置される。
 この音声入力装置であっても、上記と同様の効果を奏するため、精度の高い雑音除去機能を実現することが可能になる。
 最後に、図9~図11に、本発明の実施の形態に係る音声入力装置の例として、携帯電話300、マイク(マイクシステム)400、及び、リモートコントローラ500を、それぞれ示す。また、図12には、情報入力端末としての音声入力装置602と、ホストコンピュータ604とを含む、情報処理システム600の概略図を示す。
6.第3の実施の形態に係る音声入力装置の構成
 図13は第3の実施の形態の音声入力装置の構成の一例を示す図である。
 第3の実施の形態の音声入力装置700は、第1の振動膜を有する第1のマイクロフォン710-1を含む。また第3の実施の形態の音声入力装置700は、第2の振動膜を有する第2のマイクロフォン710-2を含む。
 第1のマイクロフォン710-1の第1の振動膜及び第2のマイクロフォン710-2の第1の振動膜は、差分信号742に含まれる雑音成分の強度の、前記第1又は第2の電圧信号712-1,712-2に含まれる前記雑音成分の強度に対する比率を示す雑音強度比が、前記差分信号742に含まれる入力音声成分の強度の、前記第1又は第2の電圧信号に含まれる前記入力音声成分の強度に対する比率を示す入力音声強度比よりも小さくなるように配置されている。
 また第1の振動膜を有する第1のマイクロフォン710-1と第2の振動膜を有する第2のマイクロフォン710-2は図1~図8で説明したように構成されていても良い。
 第3の実施の形態の音声入力装置700は、前記第1のマイクロフォン710-1で取得された第1の電圧信号712-1と、前記第2のマイクロフォンで取得された第2の電圧信号712-2とに基づき第1の電圧信号712-1と第2の電圧信号712-2の差分信号を742生成する差分信号生成部720を含む。
 また差分信号生成部720は、遅延部730を含む。遅延部730は、前記第1のマイクロフォンで取得された第1の電圧信号712-1及び前記第2のマイクロフォンで取得された第2の電圧信号712-2の少なくとも一方に所定遅延を与えて出力する。
 また差分信号生成部720は、差分信号出力部740を含む。差分信号出力部740は、前記第1のマイクロフォンで取得された第1の電圧信号及び前記第2のマイクロフォンで取得された第2の電圧信号の少なくとも一方は前記遅延部によって遅延を与えられた信号を入力して、第1の電圧信号と第2の電圧信号の差分信号を生成して出力する。
 遅延部730は、第1のマイクロフォンで取得された第1の電圧信号712-1に所定遅延を与えて出力する第1の遅延部732-1、第2の電圧信号712-2に所定遅延を与えて出力する第2の遅延部732-2のいずれか一方を設けていずれか一方の電圧信号を遅延させて差分信号を生成してもよい。また第1の遅延部732-1と第2の遅延部732-2の両方を設けて第1の電圧信号712-1と第2の電圧信号712-2の両方を遅延させて差分信号を生成してもよい。第1の遅延部732-1と第2の遅延部732-2の両方を設ける場合にはいずれか一方を固定遅延を与える遅延部として構成し、他方を遅延を可変に調整可能な可変遅延部として構成してもよい。
 このようにすると、第1の電圧信号712-1及び第2の電圧信号712-2の少なくとも一方に所定遅延を与えることにより、マイク製造時の個体差に起因する、第1の電圧信号及び第2の電圧信号の遅延のばらつきを補正することができるので、第1の電圧信号及び第2の電圧信号の遅延のばらつきによるノイズ抑制効果の低減を防止することができる。
 図14は、第3の実施の形態の音声入力装置の構成の一例を示す図である。
 本実施の形態の差分信号生成部720は、遅延制御部734を含んで構成してもよい。遅延制御部734は、遅延部(ここでは第1の遅延部732-1)における遅延量を変化させる制御を行う。遅延制御部734で遅延部(ここでは第1の遅延部732-1)の適遅延量をダイナミックにまたはスタティックに制御することで、遅延部出力S1と、前記第2のマイクロフォンで取得された第2の電圧信号712-2との信号遅延バランスを調整してもよい。
 図15は、遅延部と遅延制御部の具体的構成の一例を示す図である。例えば遅延部(ここでは第1の遅延部732-1)を、群遅延フィルタなどのアナログフィルタで構成してもよい。例えば、遅延制御部734は、群遅延フィルタ732-1のコントロール端子736-GND間の電圧あるいはコントロール端子736-GND間に流れる電流量により、群遅延フィルタの遅延量をダイナミックまたはスタティックに制御するようにしてもよい。
 図16(A)および図16(B)は、群遅延フィルタの遅延量をスタティックに制御する構成の一例である。
 例えば図16(A)に示すように、複数の抵抗体(r)が直列に接続された抵抗アレーを含み、当該抵抗アレーを介して遅延部の所定の端子(図15のコントロール端子734)に所定の大きさの電流を供給するよう構成してもよい。ここで製造過程において、所定の電流の大きさに応じて、前記抵抗アレーを構成する抵抗体(r)又は導体(738のF)をレーザによるカット、あるいは高電圧または高電流の印加により溶断してもよい。
 また、例えば図16(B)に示すように、複数の抵抗体(r)が並列に接続された抵抗アレーを含み、当該抵抗アレーを介して遅延部の所定の端子(図15のコントロール端子734)に所定の大きさの電流を供給するよう構成してもよい。ここで製造過程において、所定の電流の大きさに応じて、前記抵抗アレーを構成する抵抗体(r)又は導体(F)をレーザによるカット、あるいは高電圧または高電流の印加により溶断してもよい。
 ここで、遅延部の所定の端子に流す電流の大きさは、製造段階で生じた遅延のばらつきに基づき、これを解消できる値に設定するとよい。図16(A)(B)のように複数の抵抗体(r)が直列又は並列に接続された抵抗アレーを用いることにより、製造段階で生じた遅延のばらつきに対応した抵抗値を作り込むことができ、所定の端子に接続され、前記遅延部の遅延量を制御する電流を供給する遅延制御部として機能する。
 なお、上記実施の形態では複数の抵抗体(r)がヒューズ(F)を介して接続されている構成を例にとり説明したがこれに限られない。複数の抵抗(r)がヒューズ(F)を介さずに直列または並列に接続されている構成でもよく、この場合少なくとも1つの抵抗を切断してもよい。
 また、例えば図33の抵抗R1又R2を、図40に示すように1つの抵抗体で構成し、抵抗体の一部を切断する、いわゆるレーザートリミングにより抵抗値を調整する構成であっても構わない。
 また、抵抗体はマイクロフォン710が搭載される配線基板上に、抵抗体を吹き付ける等により、パターンニングして形成されたプリント抵抗を使用し、トリミングを行うものであって構わない。また、マイクロホンユニットの完成状態で実動作状態でのトリミングを行うためには、マイクロホンユニットの筐体表面に抵抗体を設けることがより好ましい。
 図17は、第3の実施の形態の音声入力装置の構成の一例を示す図である。
 差分信号生成部720は、位相差検出部750を含んで構成してもよい。位相差検出部750は、差分信号出力部740の入力となる第1の電圧信号(S1)と第2の電圧信号(S2)を受け取り、受けとった第1の電圧信号(S1)と第2の電圧信号(S2)に基づいて、差分信号742が生成される際の第1の電圧信号(S1)と第2の電圧信号(S2)の位相差を検出して、検出結果に基づき位相差信号(FD)を生成して出力する。
 遅延制御部734は、位相差信号(FD)に基づき、遅延部(ここでは第1の遅延部732-1)における遅延量を変化させるようにしてもよい。
 また差分信号生成部720は、ゲイン部760を含んで構成してもよい。ゲイン部760は第1のマイクロフォン710-1で取得された第1の電圧信号及び前記第2のマイクロフォン710-2で取得された第2の電圧信号の少なくとも一方に所定ゲインを与えて出力する。
 差分信号出力部740は、第1のマイクロフォン710-1で取得された第1の電圧信号及び前記第2のマイクロフォン710-2で取得された第2の電圧信号の少なくとも一方がゲイン部760によってゲインを与えられた信号(S2)を入力して、第1の電圧信号(S1)と第2の電圧信号(S2)の差分信号を生成して出力してもよい。
 例えば位相差検出部740は、遅延部(ここでは第1の遅延部732-1)出力S1とゲイン部出力S2の位相差を演算して位相差信号FDを出力し、遅延制御部734は、位相差信号FDの極性に応じて遅延部(ここでは第1の遅延部732-1)の遅延量をダイナミックに変化させてもよい。
 第1の遅延部732-1は、第1のマイクロフォン710-1で取得された第1の電圧信号712-1を入力して、遅延制御信号(例えば所定の電流)735に応じて所定の遅延を与えた電圧信号S1を出力する。ゲイン部760は第2のマイクロフォン710-2で取得された第2の電圧信号712-2を入力して、所定のゲインを与えた電圧信号S2を出力する。位相差信号出力部754は、第1の遅延部732-1から出力された電圧信号S1とゲイン部760から出力された電圧信号S2とを入力して位相差信号FDを出力する。遅延制御部734は位相差信号出力部754から出力された位相差信号FDを入力し、遅延制御信号(例えば所定の電流)735を出力する。この遅延制御信号(例えば所定の電流)735によって第1の遅延部732-1の遅延量をコントロールすることで、第1の遅延部732-1の遅延量のフィードバック制御をおこなうようにしてもよい。
 図18は、第3の実施の形態の音声入力装置の構成の一例を示す図である。
 位相差検出部720は、第1の2値化部752-1を含んで構成してもよい。第1の2値化部752-1は、受け取った前記第1の電圧信号S1を所定レベルで2値化して第1のデジタル信号D1に変換する。
 また位相差検出部720は、第2の2値化部752-2を含んで構成してもよい。第2の2値化部752-2は、受け取った前記第2の電圧信号S2を所定レベルで2値化して第2のデジタル信号D2に変換する。
 位相差検出部720は、位相差信号出力部754を含む。位相差信号出力部754は、第1のデジタル信号D1と前記第2のデジタル信号D2との位相差を演算して位相差信号FDを出力する。
 第1の遅延部732-1は、第1のマイクロフォン710-1で取得された第1の電圧信号712-1を入力して、遅延制御信号(例えば所定の電流)735に応じて所定の遅延を与えた信号S1を出力する。ゲイン部760は第2のマイクロフォン710-2で取得された第2の電圧信号712-2を入力して、所定のゲインを与えた信号S2を出力する。第1の2値化部752-1は、第1の遅延部732-1から出力される第1の電圧信号S1を受け取り、所定レベルで2値化された第1のデジタル信号D1を出力する。第2の2値化部752-2は、ゲイン部760から出力される第2の電圧信号S2を受け取り、所定レベルで2値化された第2のデジタル信号D2を出力する。位相差信号出力部754は、第1の2値化部752-1から出力された第1のデジタル信号D1と第2の2値化部752-2から出力された第2のデジタル信号D2とを入力して位相差信号FDを出力する。遅延制御部734は位相差信号出力部754から出力された位相差信号FDを入力し、遅延制御信号(例えば所定の電流)735を出力する。この遅延制御信号(例えば所定の電流)735によって第1の遅延部732-1の遅延量をコントロールすることで、第1の遅延部732-1の遅延量のフィードバック制御をおこなうようにしてもよい。
 図19は、位相差検出部のタイミングチャートである。S1は第1の遅延部732-1から出力される電圧信号であり、S2はゲイン部から出力される電圧信号である。電圧信号S2は電圧信号S1に対して、Δφだけ位相が遅れているとする。
 D1は、電圧信号S1の2値化信号であり、D2は電圧信号S2の2値化信号である。例えば、D1あるいはD2の信号は、電圧信号S1あるいはS2に対しハイパスフィルターを通した後、コンパレータ回路で2値化することで得られる。
 FDは、2値化信号D1と2値化信号D2に基づき生成される位相差信号である。例えば図19に示すように第1の電圧信号の位相が第2の電圧信号の位相に比べて進んでいる場合には進み位相差に応じたパルス幅の正のパルスPを各周期毎に生成し、第1の電圧信号の位相が第2の電圧信号の位相に比べて遅れている場合には遅れ位相差に応じたパルス幅の負のパルスを各周期毎に生成してもよい。
 図21は、第3の実施の形態の音声入力装置の構成の一例を示す図である。
 位相差検出部750は、第1のバンドパスフィルタ756-1を含む。第1のバンドパスフィルタ756-1は受け取った第1の電圧信号S1を入力して所定の単一周波数の信号K1を通過させるバンドパスフィルタである。
 位相差検出部750は、第2のバンドパスフィルタ756-2を含む。第2のバンドパスフィルタ756-2は受け取った第2の電圧信号S2を入力して所定の単一周波数の信号K2を通過させるバンドパスフィルタである。
 位相差検出部750は、第1のバンドパスフィルタ756-1及び第2のバンドパスフィルタ756-2通過後の第1の電圧信号K1と第2の電圧信号K2に基づき位相差を検出してもよい。
 例えば図20に示すように、音源部770を第1のマイクロフォン710-1および第2のマイクロフォン710-2から等距離の位置に配置し、単一周波数の音を発生させて受音し、該単一周波数の音以外の周波数の音を第1のバンドパスフィルタ756-1と第2のバンドパスフィルタ756-2でカットしたあと位相差を検出することで、位相比較信号のSN比を改善し、位相差または遅延量を精度良く検出することができる。
 なお、音声入力装置自体が音源部770を有していない場合でも、テスト時に音声入力装置の近傍にテスト用音源を一時的に設置して、第1のマイクロフォンと第2のマイクロフォンに対して音が同位相で入力されるように設定し、第1のマイクロフォンと第2のマイクロフォンで受音して、出力される第1の電圧信号と第2の電圧信号の波形をモニタして両者の位相が一致するように遅延部の遅延量を変更してもよい。
 第1の遅延部732-1は、第1のマイクロフォン710-1で取得された第1の電圧信号712-1を入力して、遅延制御信号(例えば所定の電流)735に応じて所定の遅延を与えた信号S1を出力する。ゲイン部760は第2のマイクロフォン710-2で取得された第2の電圧信号712-2を入力して、所定のゲインを与えた信号S2を出力する。第1のバンドパスフィルタ756-1は第1の遅延部732-1から出力される第1の電圧信号S1を受け取り、単一周波数の信号K1を出力する。第2のバンドパスフィルタ756-2はゲイン部760から出力される第2の電圧信号S2を受け取り、単一周波数の信号K2を出力する。第1の2値化部752-1は、第1のバンドパスフィルタ756-1から出力される単一周波数の信号K1を受け取り、所定レベルで2値化された第1のデジタル信号D1を出力する。第2の2値化部752-2は、第2のバンドパスフィルタ756-2から出力される単一周波数の信号K2を受け取り、所定レベルで2値化された第2のデジタル信号D2を出力する。位相差信号出力部754は、第1の2値化部752-1から出力された第1のデジタル信号D1と第2の2値化部752-2から出力された第2のデジタル信号D2とを入力して位相差信号FDを出力する。遅延制御部734は位相差信号出力部754から出力された位相差信号FDを入力し、遅延制御信号(例えば所定の電流)735を出力する。この遅延制御信号(例えば所定の電流)735によって第1の遅延部732-1の遅延量をコントロールすることで、第1の遅延部732-1の遅延量のフィードバック制御をおこなうようにしてもよい。
 図22(A)および図22(B)は差動マイクの指向性について説明するための図である。
 図22(A)は2つのマイクM1、M2の位相がずれていない状態での指向特性を表している。円状の領域810-1と、810-2は、両マイクM1、M2の出力の差分により得られる指向特性を示しており、両マイクM1、M2を結ぶ直線方向を0度、180度とし、両マイクM1、M2を結ぶ直線方向と直角な方向を90度、270度とすると、0度、180度方向に最大感度を有し、90度、270度方向に感度を持たない両指向性であることを表している。
 両マイクM1、M2でとらえた信号の一方に遅延を与えた場合、指向特性が変化する。例えば、マイクM1の出力に対し、マイク間隔dを音速cで除算した時間に相当する遅延を与えた場合、両マイクM1、M2の指向性を示す領域は図22(B)の820に示すようなカーディオイド型になる。このような場合、0度の話者方向に対して感度のない(ヌル)指向特性を実現でき、話者の音声を選択的にカットして周囲の音(周囲の雑音)のみをとらえることができる。
 上記の特性を利用して周囲の雑音レベルの状態を検出することができる。
 図23は、ノイズ検出手段を備えた音声入力装置の構成の一例を示す図である。
 本実施の形態の音声入力装置は、ノイズ検出用遅延部780を含む。ノイズ検出用遅延部780は、第2のマイクロフォン710-2で取得された第2の電圧信号712-2にノイズ検出用の遅延を与えて出力する。
 本実施の形態の音声入力装置は、ノイズ検出用差分信号生成部782を含む。ノイズ検出用差分信号生成部782は、ノイズ検出用遅延部780によってノイズ検出用の所定の遅延を与えられた信号781と、前記第1のマイクロフォン710-1で取得された第1の電圧信号712-1との差を示すノイズ検出用の差分信号783を生成する。
 本実施の形態の音声入力装置は、ノイズ検出部784を含む。ノイズ検出部784は、ノイズ検出用の差分信号783に基づきノイズのレベルを判定し、判定結果に基づきノイズ検出信号785を出力する。ノイズ検出部784は、ノイズ検出用の差分信号の平均レベルを算出して、平均レベルに基づきノイズ検出用の差分信号785を生成してもよい。
 本実施の形態の音声入力装置は、信号切り替え部786を含む。信号切り替え部786は、差分信号生成部720から出力される差分信号742と前記第1のマイクロフォンで取得された第1の電圧信号712-1を受け取り、前記ノイズ検出信号785に基づき第1の電圧信号712-1と前記差分信号742を切り替えて出力する。信号切り替え部786は、ノイズレベルが所定レベル以下の場合は前記第1のマイクロフォンで取得された第1の電圧信号を出力し、前記平均レベルが所定レベルより大きい場合は差分信号を出力するようにしてもよい。このようにすると、静かな環境(ノイズレベルが所定レベル以下)のときは、SNR(Signal to Noise Ratio:SN比)のよいシングルマイクでとらえた音が出力される。また高騒音下の環境(ノイズレベルが所定レベル以上)のときは、雑音除去性能に優れる差動マイクでとらえた音が出力される。
 ここで、差分信号生成部は、図13,図14、図17、図18、図21で説明した構成でもよいし、従来から知られている一般的な差動マイクの構成でもよい。また第1のマイクロフォン710-1の第1の振動膜と第2のマイクロフォン710-1の第2の振動膜は、前記差分信号742に含まれる雑音成分の強度の、前記第1又は第2の電圧信号に含まれる前記雑音成分の強度に対する比率を示す雑音強度比が、前記差分信号に含まれる入力音声成分の強度の、前記第1又は第2の電圧信号に含まれる前記入力音声成分の強度に対する比率を示す入力音声強度比よりも小さくなるように配置されている構成でもよいし、そのような限定のない他の構成でもよい。
 また、前記ノイズ検出用の遅延は、第1および第2の振動版の中心間距離(図20のd参照)を音速で除算した時間でなくてもよい。話者の方向が0度方向でない場合であっても、指向特性の感度のない方向(ヌル)を話者方向に設定できれば、話者音声をカットして周囲の雑音をひろうような指向性をもつノイズ検出に適した特性を実現することができる。例えば、ハイパーカーディオイド、スーパーカーディオイド型の指向特性を持つように遅延を設定して、話者音声をカットするものであって構わない。
 差分信号生成部720は第1のマイクロフォン710-1で取得された第1の電圧信号712-1を第2のマイクロフォン710-2で取得された第2の電圧信号712-2を入力して、差分信号742を生成して出力する。
 ノイズ検出用遅延部780は、第2のマイクロフォン710-2で取得された第2の電圧信号712-2を入力してノイズ検出用の遅延を与えた信号781を出力する。ノイズ検出用差分信号生成部782は、ノイズ検出用遅延部780によってノイズ検出用の所定の遅延を与えられた信号781と、前記第1のマイクロフォン710-1で取得された第1の電圧信号712-1との差を示すノイズ検出用の差分信号783を生成して出力する。ノイズ検出部784はノイズ検出用の差分信号783を入力して、ノイズ検出用の差分信号783に基づきノイズのレベルを判定し、判定結果に基づきノイズ検出信号785を出力する。
 信号切り替え部786は、差分信号生成部720から出力される差分信号742と前記第1のマイクロフォンで取得された第1の電圧信号712-1とノイズ検出信号785を入力し、ノイズ検出信号785に基づき第1の電圧信号712-1と前記差分信号742を切り替えて出力する。
 図24は、ノイズ検出による信号切り替えの動作例を示すフローチャートである。
 ノイズ検出部から出力されるノイズ検出信号が所定のしきい値(LTH)よりの小さい場合には(ステップS110)信号切り替え部はシングルマイクの信号を出力し(ステップS112)、ノイズ検出部から出力されるノイズ検出信号が所定のしきい値(LTH)よりの小さくない場合には(ステップS110)信号切り替え部は差動マイクの信号を出力する(ステップS114)。
 なお、音情報を出力するスピーカを有する音声入力装置においては、ノイズ検出信号に基づきスピーカの音量を制御する音量制御部を含むようにしてもよい。
 図25はノイズ検出によるスピーカの音量制御の動作例を示すフローチャートである。
 ノイズ検出部から出力されるノイズ検出信号が所定のしきい値(LTH)よりの小さい場合には(ステップS120)、スピーカの音量を第1の値に設定し(ステップS122)、ノイズ検出部から出力されるノイズ検出信号が所定のしきい値(LTH)よりの小さくない場合には(ステップS120)スピーカの音量を第1のより大きな音量の第2の値に設定する(ステップS124)。
 またノイズ検出部から出力されるノイズ検出信号が所定のしきい値(LTH)よりの小さい場合にはスピーカの音量を下げ、ノイズ検出部から出力されるノイズ検出信号が所定のしきい値(LTH)よりの小さくない場合にはスピーカの音量を上げるようにしてもよい。
 図26は、AD変換手段を備えた音声入力装置の構成の一例を示す図である。
 本実施の形態の音声入力装置は、第1のAD変換手段790-1を含んで構成してもよい。第1のAD変換手段790-1は、第1のマイクロフォン710-1で取得された第1の電圧信号712-1をアナログ・デジタル変換する。
 本実施の形態の音声入力装置は、第2のAD変換手段790-2を含んで構成してもよい。第2のAD変換手段790-2は、第2のマイクロフォン710-2で取得された第2の電圧信号712-2をアナログ・デジタル変換する。
 本実施の形態の音声入力装置は、差分信号生成部720を含む。差分信号生成部720は、第1のAD変換手段790-1によってデジタル信号に変換された前記第1の電圧信号782-1と、前記第2のAD変換手段790-2によってデジタル信号に変換された前記第2の電圧信号782-2とに基づき第1の電圧信号と第2の電圧信号の差分信号742を生成してもよい。
 ここで差分信号生成部720は、図13,図14、図17、図18、図21で説明した構成でもよい。差分信号生成部720の遅延は、第1のAD変換手段790-1や第2のAD変換手段790-2のアナログ・デジタル変換の変換周期の整数倍に設定してもよい。このようにすると遅延部は入力信号をデジタル的に1クロック又は数クロック分、フリップフロップでずらすことで遅延を実現することができる。
 また、第1のマイクロフォン710-1の第1の振動膜と第2のマイクロフォン710-2の第2の振動膜の中心間距離は、アナログ・デジタル変換の変換周期に音速を乗じた値もしくはその整数倍に設定してもよい。
 このようにすることで、ノイズ検出用遅延部では、入力電圧信号をnクロック(nは整数)ずらすという簡単な動作で、周囲のノイズを拾うのに都合の良い指向特性(例えば、カーディオイド型)を精度良く実現することができる。
 例えばアナログ・デジタル変換の際のサンプリング周波数が44.1kHzの場合には、第1および第2の振動板の中心間距離は約7.7mm程度となり、サンプリング周波数が16kHzの場合には第1および第2の振動版の中心間距離は約21mm程度となる。
 図27は、ゲイン調整手段を備えた音声入力装置の構成の一例を示す図である。
 本実施の形態の音声入力装置の差分信号生成部720は、ゲイン制御部910を含む。ゲイン制御部910は、ゲイン部760における増幅率(ゲイン)を変化させる制御を行う。ゲイン制御部910で振幅差検出部が出力する振幅差信号ADに基づきゲイン部760の増幅率をダイナミックに制御することで、第1のマイクロフォン710-1で取得された第1の電圧信号712-1と第2のマイクロフォン710-2で取得された第2の電圧信号712-2との振幅のバランスを調整してもよい。
 差分信号生成部720は、振幅差検出部930を有する。そして、振幅差検出部930は、第1の振幅検出手段920-1を含む。第1の振幅検出手段920-1は第1の遅延部732-1の出力信号S1の振幅を検出して第1の振幅信号A1を出力する。
 振幅差検出部930は、第2の振幅検出手段920-2を含む。第2の振幅検出手段920-2はゲイン部760の出力信号S2の振幅を検出して第2の振幅信号A2を出力する。
 振幅差検出部930は、振幅差信号出力部925を含む。振幅差信号出力部925は第1の振幅検出手段920-1が出力した第1の振幅信号A1及び第2の振幅検出手段920-2が出力した第2の振幅信号A2を入力して、これらの振幅差を求めて振幅差信号ADを出力する。この振幅差信号ADによってゲイン部760のゲインをコントロールすることで、ゲイン部760のゲインのフィードバック制御をおこなうようにしてもよい。
7.第4の実施の形態に係る音声入力装置の構成
 図28、29は第4の実施の形態の音声入力装置の構成の一例を示す図である。
 第4の実施の形態の音声入力装置700は、第1の振動膜を有する第1のマイクロフォン710-1を含む。また第4の実施の形態の音声入力装置700は、第2の振動膜を有する第2のマイクロフォン710-2を含む。
 第1のマイクロフォン710-1の第1の振動膜及び第2のマイクロフォン710-2の第1の振動膜は、差分信号742に含まれる雑音成分の強度の、前記第1又は第2の電圧信号712-1,712-2に含まれる前記雑音成分の強度に対する比率を示す雑音強度比が、前記差分信号742に含まれる入力音声成分の強度の、前記第1又は第2の電圧信号に含まれる前記入力音声成分の強度に対する比率を示す入力音声強度比よりも小さくなるように配置されている。
 また、第1の振動膜を有する第1のマイクロフォン710-1と第2の振動膜を有する第2のマイクロフォン710-2は図1~図8で説明したように構成されていても良い。
 第4の実施の形態の音声入力装置700は、前記第1のマイクロフォン710-1で取得された第1の電圧信号712-1と、前記第2のマイクロフォンで取得された第2の電圧信号712-2とに基づき第1の電圧信号712-1と第2の電圧信号712-2の差分信号を742生成する差分信号生成部720を含む。
 また、差分信号生成部720は、ゲイン部760を含む。ゲイン部760は、第1のマイクロフォン710-1で取得された第1の電圧信号712-1に所定のゲインで増幅して出力する。
 また、差分信号生成部720は、差分信号出力部740を含む。差分信号出力部に740は、ゲイン部760によって所定のゲインで増幅された第1の電圧信号S1と、前記第2のマイクロフォンで取得された第2の電圧信号を入力して、所定のゲインで増幅された第1の電圧信号S1と第2の電圧信号の差分信号を生成して出力する。
 第1の電圧信号712-1を所定のゲインで増幅する(ゲインを上げる場合もゲインを下げる場合も含む意味である)ことにより、第1の電圧信号及び第2の電圧信号の振幅差が無くなるように補正することができるので、製造ばらつき等に起因する2つのマイクロフォン間の感度差に起因して差動マイクとしてのノイズ抑制効果が劣化するのを防止することができる。
 図30、31は、第4の実施の形態の音声入力装置の構成の一例を示す図である。
 本実施の形態の差分信号生成部720は、ゲイン制御部910を含んで構成してもよい。ゲイン制御部910は、ゲイン部760におけるゲインを変化させる制御を行う。ゲイン制御部910でゲイン部760のゲインをダイナミックにまたはスタティックに制御することで、ゲイン部出力S1と、前記第2のマイクロフォンで取得された第2の電圧信号712-2との振幅のバランスを調整してもよい。
 図32はゲイン部とゲイン制御部の具体的構成の一例を示す図である。例えばアナログ信号を処理する場合にはゲイン部760を、オペアンプ(例えば図32に示すような非反転増幅回路)などのアナログ回路で構成してもよい。抵抗R1、R2の値を変更することにより、又は例えば製造時に所定の値にトリミング設定することで、オペアンプの-端子にかかる電圧をダイナミックまたはスタティックに制御することでオペアンプの増幅率を制御してもよい。
 図33(A)(B)は、ゲイン部の増幅率をスタティックに制御する構成の一例である。
 例えば図32の抵抗R1又R2は、図33(A)に示すように複数の抵抗が直列に接続された抵抗アレーを含み、当該抵抗アレーを介してゲイン部の所定の端子(図32の-端子)に所定の大きさの電圧をかけるよう構成してもよい。適切な増幅率を求めて、当該増幅率を実現するための抵抗値をとるように、製造段階において、前記抵抗アレーを構成する抵抗体(r)又は導体(912のF)をレーザによるカット、あるいは高電圧または高電流の印加により溶断してもよい。
 また、例えば図32の抵抗R1又R2を、図33(B)に示すように複数の抵抗が並列に接続された抵抗アレーを含み、当該抵抗アレーを介してゲイン部の所定の端子(図32の-端子)に所定の大きさの電圧をかけるよう構成してもよい。適切な増幅率を求めて、当該増幅率を実現するための抵抗値をとるように、製造段階において、前記抵抗アレーを構成する抵抗体(r)又は導体(912のF)をレーザによるカット、あるいは高電圧または高電流の印加により溶断してもよい。
 ここで適切な増幅値は、製造工程で生じたマイクロフォンのゲインバランスを解消できる値に設定するとよい。図33(A)(B)のように複数の抵抗が直列又は並列に接続された抵抗アレーを用いることにより、製造工程で生じたマイクロフォンのゲインバランスに対応した抵抗値を作り込むことができ、所定の端子に接続され、前記ゲイン部のゲインを制御するゲイン制御部として機能する。
 なお、上記実施の形態では複数の抵抗体(r)がヒューズ(F)を介して接続されている構成を例にとり説明したがこれに限られない。複数の抵抗(r)がヒューズ(F)を介さずに直列または並列に接続されている構成でもよく、この場合少なくとも1つの抵抗を切断してもよい。
 また、例えば図33の抵抗R1又R2を、図40に示すように1つの抵抗体で構成し、抵抗体の一部を切断する、いわゆるレーザートリミングにより抵抗値を調整する構成であっても構わない。
 図34は、第4の実施の形態の音声入力装置の構成の一例を示す図である。
 差分信号生成部720は、振幅差検出部940を含んで構成してもよい。振幅差検出部940は、差分信号出力部740の入力となる第1の電圧信号(S1)と第2の電圧信号(S2)を受け取り、受け取った第1の電圧信号(S1)と第2の電圧信号(S2)に基づいて、差分信号742が生成される際の第1の電圧信号(S1)と第2の電圧信号(S2)の振幅差を検出して、検出結果に基づき振幅差信号942を生成して出力する。
 ゲイン制御部910は、振幅差信号942に基づき、ゲイン部760におけるゲインを変化させるようにしてもよい。
 振幅差検出部940は、ゲイン部760の出力信号の振幅を検出する第1の振幅検出部と、前記第2のマイクロフォンで取得された第2の電圧信号の信号振幅を検出する第2の振幅検出部922-1と、前記第1の振幅検出部922-2で検出された第1の振幅信号922-1と第2の振幅検出部920-1で検出された第2の振幅信号922-1との差分をとり振幅差信号942を生成する振幅差信号生成部930とを含んで構成してもよい。
 第1の振幅検出手段920-1は、ゲイン部760の出力信号S1を入力して振幅を検出し検出結果に基づき第1の振幅信号922-1を出力し、第2の振幅検出手段920-2は、第2のマイクロフォンで取得された第2の電圧信号912-2を入力して振幅を検出し検出結果に基づき第2の振幅信号922-2を出力し、振幅差信号生成部930は、第1の振幅検出手段920-1から出力された第1の振幅信号922-1と第2の振幅信号922-2から出力された第2の振幅信号922-2とを入力して差分をとり振幅差信号942を生成して出力してもよい。
 ゲイン制御部910は振幅差信号出力部930から出力された振幅差信号942を入力し、ゲイン制御信号(例えば所定の電流)912を出力する。このゲイン制御信号(例えば所定の電流)912によってゲイン部760のゲインをコントロールすることで、ゲイン部760のゲインのフィードバック制御をおこなうようにしてもよい。
 本実施の形態によれば、使用時に様々な理由で変化する振幅差をリアルタイムに検出して調整を行うことができる。
 前記ゲイン制御部は、ゲイン部の出力信号S1と、前記第2のマイクロフォンで取得された第2の電圧信号712-2(S2)の振幅の差が、いずれかの信号(S1又はS2)に対して所定の割合以下になるように調整してもよい。または所定のノイズ抑圧効果(例えば約10以上)を得るようにゲイン部の増幅率を調整してもよい。
 例えば信号S1とS2振幅の差がS1又はS2に対して-3%以上、+3%以下の範囲になるように調整しても良いし、-6%以上、+6%以下の範囲になるようにしても良い。前者の場合ノイズを約10デシベル抑圧することができ、後者の場合ノイズを約6デシベル抑圧することができる。
 図35、図36,図37は第4の実施の形態の音声入力装置の構成の一例を示す図である。
 差分信号生成部720は、ローパスフィルタ部950を含んで構成してもよい。ローパスフィルタ部950は、差分信号の高域成分をカットする。ローパスフィルタ部950は、1次の遮断特性を有するフィルタを用いてもよい。またローパスフィルタ部950のカットオフ周波数は、1kHz以上、5kHz以下の間のいずれかの値Kに設定してもよい。例えば、ローパスフィルタ部950のカットオフ周波数が1.5以上、2kHz以下程度に設定されていることがより好ましい。
 ゲイン部760は第1のマイクロフォン710-1で取得された第1の電圧信号712-1を入力して所定の増幅率(ゲイン)で増幅して、所定のゲインで増幅された第1の電圧信号S1を出力する。差分信号出力部740は、ゲイン部760によって所定のゲインで増幅された第1の電圧信号S1と、前記第2のマイクロフォン710-2で取得された第2の電圧信号S2を入力して、所定のゲインで増幅された第1の電圧信号S1と第2の電圧信号の差分信号742を生成して出力する。ローパスフィルタ部950は、差分信号出力部740から出力された差分信号742を入力して、差分信号742に含まれる高域周波数(K以上の帯域の周波数)を減衰させた差分信号952を出力する。
 図37は、差動マイクのゲイン特性について説明するための図である。横軸は周波数であり縦軸はゲインである。1020はシングルマイク(単一マイク)の周波数とゲインの関係を示すグラフである。シングルマイクは、フラットな周波数特性を有している。1010は、差動マイクの話者想定位置での周波数とゲインの関係を示すグラフであり、例えば第1のマイクロフォン710-1および第2のマイクロフォン710-2の中心から50mm離れた位置での周波数特性を表している。第1のマイクロフォン710-1および第2のマイクロフォン710-2がフラットな周波数特性であっても、差分信号の高周波数域は約1kHz付近から1次特性(20dB/dec)で上がっていくため、この逆特性を持つ1次のローパスフィルタで高域を減衰させると、差分信号の周波数特性をフラットにすることができ、聴感上の違和感が発生するのを防止することができる。
 従って、図36で示したように差分信号をローパスフィルタを通して周波数特性を補正することで、1012に示すようにほぼフラットな周波数特性を得ることができる。これにより、話者音声の高域あるいはノイズの高域が強調されて耳障りな音質になるのを防止することができる。
 図38は、AD変換手段を備えた音声入力装置の構成の一例を示す図である。
 本実施の形態の音声入力装置は、第1のAD変換手段790-1を含んで構成してもよい。第1のAD変換手段790-1は、第1のマイクロフォン710-1で取得された第1の電圧信号712-1をアナログ・デジタル変換する。
 本実施の形態の音声入力装置は、第2のAD変換手段790-2を含んで構成してもよい。第2のAD変換手段790-2は、第2のマイクロフォン710-2で取得された第2の電圧信号712-2をアナログ・デジタル変換する。
 本実施の形態の音声入力装置は、差分信号生成部720を含む。差分信号生成部720は、第1のAD変換手段790-1によってデジタル信号に変換された前記第1の電圧信号782-1と、前記第2のAD変換手段790-2によってデジタル信号に変換された前記第2の電圧信号782-2とに基づき、全てデジタル信号処理演算によりゲインバランス調整および遅延バランス調整を行い、第1の電圧信号と第2の電圧信号の差分信号742を生成してもよい。
 ここで、差分信号生成部720は、図29,図31、図34、図36等で説明した構成でもよい。
8.第5の実施の形態に係る音声入力装置の構成
 図20は第5の実施の形態の音声入力装置の構成の一例を示す図である。
 本実施の形態の音声入力装置は、第1のマイクロフォン(の第1の振動膜711-1)および前記第2のマイクロフォン(の第2の振動膜711-2)から等距離に設置された音源部770を含んで構成してもよい。音源部770は発振器等で構成することができ、第1のマイクロフォン710-1の第1の振動膜(ダイヤフラム)711-1の中心点C1と第2のマイクロフォン710-2の第2の振動膜(ダイヤフラム)711-2の中心点C2から等距離に設置してもよい。
 そして、音源部770からの音に基づいて差分信号生成部740の入力となる第1の電圧信号S1と第2の電圧信号S2の位相差あるいは遅延差が零となるように調整してもよい。
 また、音源部770からの音に基づいてゲイン部760における増幅率を変化させる制御を行うようにしてもよい。
 そして、音源部770からの音に基づいて差分信号生成部740の入力となる第1の電圧信号S1と第2の電圧信号S2の振幅差が零となるように調整してもよい。
 ここで、音源部770は、単一周波数の音を発生する音源を用いてもよい。例えば1kHzの音を発生させてもよい。
 また、音源部770の周波数は、可聴帯域外に設定してもよい。例えば20kHzより高い周波数(例えば30kHz)の音を使用すれば人間の耳には聞こえない。音源部770の周波数を可聴帯域外に設定すると、ユーザ使用時においても支障をきたすことなく音源部770を用いて入力信号の位相差あるいは遅延差、および感度(ゲイン)差を調整することができる。
 例えば遅延部732-1をアナログフィルタで構成する場合、温度特性によって遅延量が変化する場合もあるが、本実施の形態によれば、温度変化等の周囲の環境変化に対応した遅延調整を行うことができる。遅延調整は常時行うようにしてもよいし、間欠的に行うようにしてもよいし、電源投入時等に行うようにしても良い。
9.第6の実施の形態に係る音声入力装置の構成
 図39は第6の実施の形態の音声入力装置の構成の一例を示す図である。
 本実施の形態の音声入力装置は、第1の振動膜を有する第1のマイクロフォン710-1と、第2の振動膜を有する第2のマイクロフォン710-2と、前記第1のマイクロフォンで取得された第1の電圧信号と、前記第2のマイクロフォンで取得された第2の電圧信号との差を示す差分信号を生成する図示しない差分信号生成部とを含んでおり、前記第1の振動膜及び前記第2の振動膜の少なくとも一方は、膜面に対して垂直になるように設置された筒状の導音管1100を介して音波を取得するように構成してもよい。
 導音管1100は、筒の開口部1102からから入力した音波が音響孔714-2を介して外部に漏れないよう第2のマイクロフォン710-2の振動膜まで届くように、振動膜の周囲の基板1110に設置してもよい。このようすると、導音管1100に入った音は減衰することなく第2のマイクロフォン710-2の振動膜に届く。本実施の形態によれば前記第1の振動膜及び前記第2の振動膜の少なくとも一方に導音管を設置することにより、音が振動膜に届くまでの距離を変えることができる。従って遅延バランスのばらつきに応じて、適当な長さ(例えば数ミリ)の導音管を設置することにより遅延を解消することができる。
 なお、本発明は、上述の実施の形態に限定されるものではなく、種々の変形が可能である。本発明は、実施の形態で説明した構成と実質的に同一の構成(例えば、機能、方法及び結果が同一の構成、あるいは目的及び効果が同一の構成)を含む。また、本発明は、実施の形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施の形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施の形態で説明した構成に公知技術を付加した構成を含む。
 また、本出願は、2008年5月20日出願の日本特許出願(特願2008-132459)に基づくものであり、その内容はここに参照として取り込まれる。
 1…音声入力装置、 10…第1のマイクロフォン、 12…第1の振動膜、 20…第2のマイクロフォン、 22…第2の振動膜、 30…差分信号生成部、 40…筐体、 50…演算処理部、 60…通信処理部、 70…基部、 72…主面、 74…凹部、 75…底面、 76…領域、 78…開口、 80…基部、 82…主面、 84…第1の凹部、 85…第1の開口、 86…第2の凹部、 87…第2の開口、 100…コンデンサ型マイクロフォン、 102…振動膜、 104…電極、 300…携帯電話、 400…マイク、 500…リモートコントローラ、 600…情報処理システム、 602…情報入力端末、 604…ホストコンピュータ、700…音声入力装置、710-1…第1のマイクロフォン、710-2…第2のマイクロフォン、 712-1…第1の電圧信号、 712-2…第2の電圧信号、 714-1…第1の振動膜、 714-2…第2の振動膜、 720…差分信号生成回路、 730…遅延部、 734…遅延制御部、 740…差分信号出力部、 742…差分信号、 750…位相差検出部、 752-1…第1の2値化部、 752-2…第2の2値化部、 754…位相差信号生成部、 756-1…第1のバンドパスフィルタ、 756-2…第2のバンドパスフィルタ、 760…ゲイン部、 770…音源部、 780…ノイズ検出量遅延部、 782…ノイズ検出用差分信号生成部、 784…ノイズ検出部、 786…信号切り替え部、 790-1…第1のAD変換手段、 790-2…第2のAD変換手段、 900…振幅差検出部、 910…ゲイン制御部、 920-1…第1の振幅検出手段、 920-2…第2の振幅検出手段、 930…振幅差検出部、 1100…導音管

Claims (36)

  1.  第1の振動膜を有する第1のマイクロフォンと、
     第2の振動膜を有する第2のマイクロフォンと、
     前記第1のマイクロフォンで取得された第1の電圧信号と、前記第2のマイクロフォンで取得された第2の電圧信号とに基づき第1の電圧信号と第2の電圧信号の差分信号を生成する差分信号生成部とを含む音声入力装置であって、
     前記第1及び第2の振動膜は、
     前記差分信号に含まれる雑音成分の強度の、前記第1又は第2の電圧信号に含まれる前記雑音成分の強度に対する比率を示す雑音強度比が、前記差分信号に含まれる入力音声成分の強度の、前記第1又は第2の電圧信号に含まれる前記入力音声成分の強度に対する比率を示す入力音声強度比よりも小さくなるように配置され、
     前記差分信号生成部は、
     前記第1のマイクロフォンで取得された第1の電圧信号に所定のゲインを与えるゲイン部と、
     前記ゲイン部によって所定のゲインを与えられた第1の電圧信号と、前記第2のマイクロフォンで取得された第2の電圧信号とが入力されると、所定のゲインを与えられた第1の電圧信号と第2の電圧信号の差分信号を生成して出力する差分信号出力部とを含むことを特徴とする音声入力装置。
  2.  請求項1において、
     前記差分信号生成部は、
     所定の端子にかかる電圧または流れる電流に応じて増幅率が変化するよう構成されたゲイン部と、
     前記所定の端子にかかる電圧または流れる電流を制御するゲイン制御部を含み、
     前記ゲイン制御部は、
     複数の抵抗が直列または並列に接続された抵抗アレーを含み、前記抵抗アレーを構成する抵抗体又は導体の一部を切断する、もしくは少なくとも1つの抵抗体を含み、該抵抗体の一部を切断することでゲイン部の所定の端子にかかる電圧または流れる電流が変更可能に構成されていることを特徴とする音声入力装置。
  3.  請求項1又は2のいずれかにおいて、
     前記差分信号生成部は、
     前記差分信号出力部の入力となる第1の電圧信号と第2の電圧信号を受け取り、受けとった第1の電圧信号と第2の電圧信号に基づいて、差分信号が生成される際の第1の電圧信号と第2の電圧信号との振幅差を検出して、検出結果に基づき振幅差信号を生成して出力する振幅差検出部と、
     前記振幅差信号に基づき、前記ゲイン部における増幅率を変化させる制御を行うゲイン制御部と、を含むことを特徴とする音声入力装置。
  4.  請求項2又は3のいずれかにおいて、
     前記ゲイン制御部は、
     前記ゲイン部の出力信号と、前記第2のマイクロフォンで取得された第2の電圧信号との振幅の差が、いずれかの信号に対して所定の割合以下になるように、または所定のデシベルのノイズ抑圧効果を得るようにゲイン部の増幅率を制御することを特徴とする音声入力装置。
  5.  請求項3又は4のいずれかにおいて、
     前記第1のマイクロフォンおよび前記第2のマイクロフォンから等距離に設置された音源部を含み、
     前記差分信号生成部は、
     前記音源部からの音に基づいて前記ゲイン部における増幅率を変化させる制御を行うことを特徴とする音声入力装置。
  6.  音声入力装置であって、
     第1の振動膜を有する第1のマイクロフォンと、
     第2の振動膜を有する第2のマイクロフォンと、
     前記第1のマイクロフォンで取得された第1の電圧信号と、前記第2のマイクロフォンで取得された第2の電圧信号とに基づき第1の電圧信号と第2の電圧信号の差分信号を生成する差分信号生成部と、
     前記第1のマイクロフォンおよび前記第2のマイクロフォンから等距離に設置された音源部を含み、
     前記差分信号生成部は、
     前記第1のマイクロフォンで取得された第1の電圧信号に所定のゲインを与えるゲイン部と、
     前記差分信号出力部の入力となる第1の電圧信号と第2の電圧信号を受け取り、受けとった第1の電圧信号と第2の電圧信号に基づいて、差分信号が生成される際の第1の電圧信号と第2の電圧信号との振幅差を検出して、検出結果に基づき振幅差信号を生成して出力する振幅差検出部と、
     前記振幅差信号に基づき、前記ゲイン部における増幅率を変化させる制御を行うゲイン制御部と、を含み、
     前記音源部からの音に基づいて前記第1の電圧信号と第2の電圧信号の振幅が等しくなるように前記ゲイン部における増幅率を調整することを特徴とする音声入力装置。
  7.  請求項5又は6のいずれかにおいて、
     前記音源部は、単一周波数の音を発生する音源であることを特徴とする音声入力装置。
  8.  請求項5乃至7のいずれかにおいて、
     前記音源部の周波数は、可聴帯域外に設定されることを特徴とする音声入力装置。
  9.  請求項7又は8のいずれかにおいて、
     前記振幅差検出部は、
     差分信号出力部の入力となる第1の電圧信号と第2の電圧信号の前記単一周波数近傍帯域を通過させるバンドパスフィルタを含み、
     前記バンドパスフィルタ通過後の前記第1の電圧信号と前記第2の電圧信号との振幅差を検出して、検出結果に基づき振幅差信号を生成することを特徴とする音声入力装置。
  10.  請求項1乃至9のいずれかにおいて、
     前記差分信号生成部は、
     前記差分信号の高域成分をカットするローパスフィルタ部を含むことを特徴とする音声入力装置。
  11.  請求項10において、
     前記ローパスフィルタ部は、1次の遮断特性を有するフィルタであることを特徴とする音声入力装置。
  12.  請求項10又は11のいずれかにおいて、
     前記ローパスフィルタ部のカットオフ周波数は、1kHz以上、5kHz以下のいずれかの値に設定されることを特徴とする音声入力装置。
  13.  請求項1乃至12のいずれかにおいて、
     前記第1の電圧信号をアナログ・デジタル変換する第1のAD変換手段と、
     前記第2の電圧信号をアナログ・デジタル変換する第2のAD変換手段と、をさらに含み、
     前記差分信号生成部は、
     前記第1のAD変換手段によってデジタル信号に変換された前記第1の電圧信号と、前記第2のAD変換手段によってデジタル信号に変換された前記第2の電圧信号と、に基づき第1の電圧信号と第2の電圧信号の差分信号を生成することを特徴とする音声入力装置。
  14.  音声入力装置であって、
     第1の振動膜を有する第1のマイクロフォンと、
     第2の振動膜を有する第2のマイクロフォンと、
     前記第1のマイクロフォンで取得された第1の電圧信号と、前記第2のマイクロフォンで取得された第2の電圧信号との差を示す差分信号を生成する差分信号生成部と、
     を含み、
     前記第1及び第2の振動膜は、前記差分信号に含まれる雑音成分の強度の、前記第1又は第2の電圧信号に含まれる前記雑音成分の強度に対する比率を示す雑音強度比が、前記差分信号に含まれる入力音声成分の強度の、前記第1又は第2の電圧信号に含まれる前記入力音声成分の強度に対する比率を示す入力音声強度比よりも小さくなるように配置されていることを特徴とする音声入力装置。
  15.  請求項1乃至14のいずれかにおいて、
     主面に凹部が形成された基部をさらに含み、
     前記第1の振動膜は前記凹部の底面に設置され、
     前記第2の振動膜は前記主面に設置されていることを特徴とする音声入力装置。
  16.  請求項15において、
     前記基部が、前記凹部に連通する開口が、前記主面における前記第2の振動膜の形成領域よりも、前記入力音声のモデル音源の近くに配置されるように設置されたことを特徴とする音声入力装置。
  17.  請求項1乃至16のいずれかにおいて、
     前記凹部は、前記開口と前記第2の振動膜の形成領域との間隔よりも浅いことを特徴とする音声入力装置。
  18.  請求項1乃至17のいずれかにおいて、
     主面に、第1の凹部と、前記第1の凹部よりも浅い第2の凹部が形成された基部をさらに含み、
     前記第1の振動膜は前記第1の凹部の底面に設置され、
     前記第2の振動膜は前記第2の凹部の底面に設置されていることを特徴とする音声入力装置。
  19.  請求項18において、
     前記基部が、前記第1の凹部に連通する第1の開口が、前記第2の凹部に連通する第2の開口よりも、前記入力音声のモデル音源の近くに配置されるように設置されたことを特徴とする音声入力装置。
  20.  請求項18又は20のいずれかにおいて、
     前記第1及び第2の凹部の深さの差は、前記第1及び第2の開口の間隔よりも小さいことを特徴とする音声入力装置。
  21.  請求項15乃至20のいずれかにおいて、
     前記基部が、前記入力音声が、第1及び第2の振動膜に同時に到着するように設置されたことを特徴とする音声入力装置。
  22.  請求項15乃至21のいずれかにおいて、
     前記第1及び第2の振動膜は、法線が平行になるように配置されていることを特徴とする音声入力装置。
  23.  請求項15乃至22のいずれかにおいて、
     前記第1及び第2の振動膜は、法線が同一直線とならないように配置されていることを特徴とする音声入力装置。
  24.  請求項15乃至23のいずれかにおいて、
     前記第1及び第2のマイクロフォンは、半導体装置として構成されていることを特徴とする音声入力装置。
  25.  請求項15乃至24のいずれかにおいて、
     前記第1及び第2の振動膜の中心間距離は、5.2mm以下であることを特徴とする音声入力装置。
  26.  請求項1乃至請求項25のいずれかにおいて、
     前記振動膜を、SN比が約60デシベル以上の振動子で構成することを特徴とする音声入力装置。
  27.  請求項1乃至請求項26のいずれかにおいて、
     前記第1及び第2の振動膜の中心間距離が、10kHz以下の周波数帯域の音に対して第1の振動膜に入射する音声の音圧の強度に対する第1の振動膜と第2の振動膜に入射する音声の差分音圧の強度の比率である音声強度比の位相成分が0デシベル以下となる距離に設定されていることを特徴とする音声入力装置。
  28.  請求項1乃至請求項27のいずれかにおいて、
     前記第1及び第2の振動膜の中心間距離が、抽出対象周波数帯域の音に対して、前記振動膜を差動マイクとして使用した場合の音圧が全方位において単体マイクとして使用した場合の音圧を上回らない範囲の距離に設定されていることを特徴とする音声入力装置。
  29.  請求項1乃至28のいずれかに記載の音声入力装置と、
     前記差分信号に基づいて、前記音声入力装置に入力された音声情報の解析処理を行う解析処理部と、を含むことを特徴とする情報処理システム。
  30.  請求項1から請求項29のいずれかに記載の音声入力装置と、
     前記差分信号に基づいて、前記音声入力装置に入力された音声情報の解析処理を行うホストコンピュータと、を含み、
     前記通信処理部によって、前記ホストコンピュータとのネットワークを介した通信処理を行うことを特徴とする情報処理システム。
  31.  第1の振動膜を有する第1のマイクロフォンと、第2の振動膜を有する第2のマイクロフォンと、前記第1のマイクロフォンで取得された第1の電圧信号と、前記第2のマイクロフォンで取得された第2の電圧信号との差を示す差分信号を生成する差分信号生成部と、を含む、雑音成分を除去する機能を有する音声入力装置を製造する方法であって、
     前記第1及び第2の振動膜の中心間距離Δrと雑音の波長λとの比率を示すΔr/λの値と、前記差分信号に含まれる前記雑音成分の強度の、前記第1又は第2の電圧信号に含まれる前記雑音成分の強度に対する比率を示す雑音強度比との対応関係を示すデータを用意する手順と、
     前記データに基づいて、前記Δr/λの値を設定する手順と、
     設定された前記Δr/λの値、及び、前記雑音の波長に基づいて、前記中心間距離を設定する手順と、
     を含むことを特徴とする音声入力装置の製造方法。
  32.  請求項31に記載の音声入力装置の製造方法の前記Δr/λの値を設定する手順では、
     前記データに基づいて、前記雑音強度比が、前記差分信号に含まれる入力音声成分の強度の、前記第1又は第2の電圧信号に含まれる前記入力音声成分の強度に対する比率を示す入力音声強度比よりも小さくなるように、前記Δr/λの値を設定することを特徴とする音声入力装置の製造方法。
  33.  請求項31又は32のいずれかに記載の音声入力装置の製造方法において、
     前記入力音声強度比は、前記入力音声の振幅成分に基づく強度比であることを特徴とする音声入力装置の製造方法。
  34.  請求項31乃至33のいずれかに記載の音声入力装置の製造方法において、
     前記雑音強度比は、前記雑音成分の位相差に基づく強度比であることを特徴とする音声入力装置の製造方法。
  35.  請求項31乃至34のいずれかに記載の音声入力装置の製造方法において、
     前記音声入力装置の差分信号生成部は、
     所定の端子にかかる電圧または流れる電流に応じて、前記第1のマイクロフォンで取得された第1の電圧信号に所定ゲインを与えるゲイン部と、
     前記所定の端子にかかる電圧または流れる電流を制御するゲイン制御部と、
     前記ゲイン部によって所定のゲインを与えられた第1の電圧信号と、前記第2のマイクロフォンで取得された第2の電圧信号を入力して、所定のゲインを与えられた第1の電圧信号と第2の電圧信号の差分信号を生成して出力する差分信号出力部とを含んで構成され、
     前記ゲイン制御部を複数の抵抗が直列または並列に接続された抵抗アレーを含むように構成し、前記抵抗アレーを構成する抵抗体又は導体の一部を切断する手順、又は前記ゲイン制御部を少なくとも1つの抵抗体を含むように構成し、該抵抗体の一部を切断する手順のいずれかの手順を含むことを特徴とする音声入力装置の製造方法。
  36.  請求項35に記載の音声入力装置の製造方法のゲイン設定手順において、
     前記第1のマイクロフォンおよび前記第2のマイクロフォンから等距離に音源を設置し、
     前記音源部からの音に基づいて、第1のマイクロフォンおよび前記第2のマイクロフォンかとの振幅差を判定し、当該振幅差が所定の範囲内におさまる抵抗値となるように前記抵抗アレーを構成する抵抗体又は導体の一部、又は前記少なくとも1つの抵抗体の一部を切断することを特徴とする音声入力装置の製造方法。
PCT/JP2009/059291 2008-05-20 2009-05-20 音声入力装置及びその製造方法、並びに、情報処理システム WO2009145096A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09754604A EP2280559A1 (en) 2008-05-20 2009-05-20 Audio input device, method for manufacturing the same, and information processing system
CN2009801186556A CN102037738A (zh) 2008-05-20 2009-05-20 声音输入装置及其制造方法、以及信息处理***
US12/994,142 US20110172996A1 (en) 2008-05-20 2009-05-20 Voice input device, method for manufacturing the same, and information processing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-132459 2008-05-20
JP2008132459A JP2009284110A (ja) 2008-05-20 2008-05-20 音声入力装置及びその製造方法、並びに、情報処理システム

Publications (1)

Publication Number Publication Date
WO2009145096A1 true WO2009145096A1 (ja) 2009-12-03

Family

ID=41376975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059291 WO2009145096A1 (ja) 2008-05-20 2009-05-20 音声入力装置及びその製造方法、並びに、情報処理システム

Country Status (5)

Country Link
US (1) US20110172996A1 (ja)
EP (1) EP2280559A1 (ja)
JP (1) JP2009284110A (ja)
CN (1) CN102037738A (ja)
WO (1) WO2009145096A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010148694A1 (zh) * 2009-12-24 2010-12-29 中兴通讯股份有限公司 抗噪声干扰的音频输入装置及音频噪声干扰的消除方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103858446A (zh) * 2011-08-18 2014-06-11 美商楼氏电子有限公司 用于mems装置的灵敏度调整装置和方法
DE102012215239B4 (de) 2012-08-28 2023-12-21 Robert Bosch Gmbh Bauteil und Verfahren zum Prüfen eines solchen Bauteils
JP6031364B2 (ja) * 2013-01-24 2016-11-24 日本電信電話株式会社 収音装置及び再生装置
TWI533289B (zh) * 2013-10-04 2016-05-11 晨星半導體股份有限公司 用於降噪的電子裝置、調校系統與方法
US9602930B2 (en) 2015-03-31 2017-03-21 Qualcomm Incorporated Dual diaphragm microphone
CN106323455B (zh) * 2016-08-18 2018-12-04 中国地震局地壳应力研究所 基于mems微气压计的差分式次声波监测仪
EP3606090A4 (en) * 2017-03-24 2021-01-06 Yamaha Corporation SOUND RECORDING DEVICE AND SOUND RECORDING METHOD
JP7139628B2 (ja) * 2018-03-09 2022-09-21 ヤマハ株式会社 音処理方法および音処理装置
US10917727B2 (en) * 2018-03-16 2021-02-09 Vesper Technologies, Inc. Transducer system with configurable acoustic overload point
KR102477099B1 (ko) * 2018-08-21 2022-12-13 삼성전자주식회사 소리 방향 탐지 센서 및 이를 포함하는 전자 장치
CN109756818B (zh) * 2018-12-29 2021-04-06 上海瑾盛通信科技有限公司 双麦克风降噪方法、装置、存储介质及电子设备
CN110970052B (zh) * 2019-12-31 2022-06-21 歌尔光学科技有限公司 降噪方法、装置、头戴显示设备和可读存储介质
CN112073872B (zh) * 2020-07-31 2022-03-11 深圳市沃特沃德信息有限公司 远距离声音放大方法、装置、***、存储介质及智能设备

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720088A (en) * 1980-07-10 1982-02-02 Mitsubishi Electric Corp Amplifier for microphone
JPH04181897A (ja) * 1990-11-15 1992-06-29 Ricoh Co Ltd マイクロホン
JPH04217199A (ja) * 1990-02-28 1992-08-07 American Teleph & Telegr Co <Att> 指向性マイクロホンアセンブリ
JPH07312638A (ja) 1994-05-18 1995-11-28 Mitsubishi Electric Corp ハンズフリー通話装置
JPH08256196A (ja) * 1995-03-17 1996-10-01 Casio Comput Co Ltd 音声入力装置および電話機
JPH09331377A (ja) 1996-06-12 1997-12-22 Nec Corp ノイズキャンセル回路
JP2001186241A (ja) 1999-12-27 2001-07-06 Toshiba Corp 電話端末装置
JP2002218583A (ja) * 2001-01-17 2002-08-02 Sony Corp 音場合成演算方法及び装置
JP2003032779A (ja) * 2001-07-17 2003-01-31 Sony Corp 音処理装置、音処理方法及び音処理プログラム
JP2004129038A (ja) * 2002-10-04 2004-04-22 Sony Corp マイクロホンのレベル調整方法及びマイクロホンのレベル調整装置及び電子機器
JP2005247181A (ja) * 2004-03-05 2005-09-15 Matsushita Electric Ind Co Ltd 車載ハンズフリー装置
JP2006191359A (ja) * 2005-01-06 2006-07-20 Nec Electronics Corp 電圧供給回路、マイクユニットおよびマイクユニットの感度調整方法
JP2007228300A (ja) * 2006-02-23 2007-09-06 Matsushita Electric Works Ltd 通話装置
WO2008062848A1 (fr) * 2006-11-22 2008-05-29 Funai Electric Advanced Applied Technology Research Institute Inc. Dispositif d'entrée vocale, procédé de production de ce dernier et système de traitement d'informations
JP2008132459A (ja) 2006-11-29 2008-06-12 Technos Kk 微生物脱臭装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5029215A (en) * 1989-12-29 1991-07-02 At&T Bell Laboratories Automatic calibrating apparatus and method for second-order gradient microphone
AT407815B (de) * 1990-07-13 2001-06-25 Viennatone Gmbh Hörgerät
US5732143A (en) * 1992-10-29 1998-03-24 Andrea Electronics Corp. Noise cancellation apparatus
JP2007129038A (ja) * 2005-11-02 2007-05-24 Sony Corp 半導体装置およびその製造方法
JP5166117B2 (ja) * 2008-05-20 2013-03-21 株式会社船井電機新応用技術研究所 音声入力装置及びその製造方法、並びに、情報処理システム

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720088A (en) * 1980-07-10 1982-02-02 Mitsubishi Electric Corp Amplifier for microphone
JPH04217199A (ja) * 1990-02-28 1992-08-07 American Teleph & Telegr Co <Att> 指向性マイクロホンアセンブリ
JPH04181897A (ja) * 1990-11-15 1992-06-29 Ricoh Co Ltd マイクロホン
JPH07312638A (ja) 1994-05-18 1995-11-28 Mitsubishi Electric Corp ハンズフリー通話装置
JPH08256196A (ja) * 1995-03-17 1996-10-01 Casio Comput Co Ltd 音声入力装置および電話機
JPH09331377A (ja) 1996-06-12 1997-12-22 Nec Corp ノイズキャンセル回路
JP2001186241A (ja) 1999-12-27 2001-07-06 Toshiba Corp 電話端末装置
JP2002218583A (ja) * 2001-01-17 2002-08-02 Sony Corp 音場合成演算方法及び装置
JP2003032779A (ja) * 2001-07-17 2003-01-31 Sony Corp 音処理装置、音処理方法及び音処理プログラム
JP2004129038A (ja) * 2002-10-04 2004-04-22 Sony Corp マイクロホンのレベル調整方法及びマイクロホンのレベル調整装置及び電子機器
JP2005247181A (ja) * 2004-03-05 2005-09-15 Matsushita Electric Ind Co Ltd 車載ハンズフリー装置
JP2006191359A (ja) * 2005-01-06 2006-07-20 Nec Electronics Corp 電圧供給回路、マイクユニットおよびマイクユニットの感度調整方法
JP2007228300A (ja) * 2006-02-23 2007-09-06 Matsushita Electric Works Ltd 通話装置
WO2008062848A1 (fr) * 2006-11-22 2008-05-29 Funai Electric Advanced Applied Technology Research Institute Inc. Dispositif d'entrée vocale, procédé de production de ce dernier et système de traitement d'informations
JP2008132459A (ja) 2006-11-29 2008-06-12 Technos Kk 微生物脱臭装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010148694A1 (zh) * 2009-12-24 2010-12-29 中兴通讯股份有限公司 抗噪声干扰的音频输入装置及音频噪声干扰的消除方法

Also Published As

Publication number Publication date
JP2009284110A (ja) 2009-12-03
US20110172996A1 (en) 2011-07-14
EP2280559A1 (en) 2011-02-02
CN102037738A (zh) 2011-04-27

Similar Documents

Publication Publication Date Title
WO2009145096A1 (ja) 音声入力装置及びその製造方法、並びに、情報処理システム
JP5166117B2 (ja) 音声入力装置及びその製造方法、並びに、情報処理システム
US8180082B2 (en) Microphone unit, close-talking voice input device, information processing system, and method of manufacturing microphone unit
JP4293377B2 (ja) 音声入力装置及びその製造方法、並びに、情報処理システム
JP5129024B2 (ja) 音声入力装置及び音声会議システム
EP2007167A2 (en) Voice input-output device and communication device
JP5166122B2 (ja) 音声入力装置
WO2009142250A1 (ja) 集積回路装置及び音声入力装置、並びに、情報処理システム
WO2008062850A1 (fr) Dispositif d&#39;entrée vocale, procédé de production de ce dernier et système de traitement d&#39;informations
WO2008062848A1 (fr) Dispositif d&#39;entrée vocale, procédé de production de ce dernier et système de traitement d&#39;informations
EP2265038A1 (en) Microphone unit, voice input device of close-talking type, information processing system, and method for manufacturing microphone unit
JP2008154224A (ja) 集積回路装置及び音声入力装置、並びに、情報処理システム
US8135144B2 (en) Microphone system, sound input apparatus and method for manufacturing the same
JP4212635B1 (ja) 音声入力装置及びその製造方法、並びに、情報処理システム
JP5097511B2 (ja) 音声入力装置及びその製造方法、並びに、情報処理システム
JP2009296517A (ja) 音声入力装置及び音声リモコンシステム
JP5097692B2 (ja) 音声入力装置及びその製造方法、並びに、情報処理システム
JP5008638B2 (ja) マイクロフォンユニット、音声入力装置、情報処理システム及びマイクロフォンユニットの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980118655.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754604

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009754604

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12994142

Country of ref document: US