WO2009140875A1 - 一种机柜及机柜温控*** - Google Patents

一种机柜及机柜温控*** Download PDF

Info

Publication number
WO2009140875A1
WO2009140875A1 PCT/CN2009/071225 CN2009071225W WO2009140875A1 WO 2009140875 A1 WO2009140875 A1 WO 2009140875A1 CN 2009071225 W CN2009071225 W CN 2009071225W WO 2009140875 A1 WO2009140875 A1 WO 2009140875A1
Authority
WO
WIPO (PCT)
Prior art keywords
machine
buried
air
temperature control
control unit
Prior art date
Application number
PCT/CN2009/071225
Other languages
English (en)
French (fr)
Inventor
吴卫星
洪宇平
翟立谦
孔小明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP09006732A priority Critical patent/EP2124518B1/en
Publication of WO2009140875A1 publication Critical patent/WO2009140875A1/zh
Priority to US12/849,779 priority patent/US8839848B2/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20536Modifications to facilitate cooling, ventilating, or heating for racks or cabinets of standardised dimensions, e.g. electronic racks for aircraft or telecommunication equipment
    • H05K7/20609Air circulating in closed loop within cabinets wherein heat is removed through air-to-liquid heat-exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20536Modifications to facilitate cooling, ventilating, or heating for racks or cabinets of standardised dimensions, e.g. electronic racks for aircraft or telecommunication equipment
    • H05K7/206Air circulating in closed loop within cabinets wherein heat is removed through air-to-air heat-exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/30Geothermal collectors using underground reservoirs for accumulating working fluids or intermediate fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Definitions

  • the invention relates to a temperature control system, in particular to a machine rejection and machine rejection temperature control system.
  • Electronic equipment has high requirements on the temperature of the working environment.
  • the electronic equipment generally dissipates heat during operation, and the accumulated heat is concentrated in the environment around the electronic equipment, which causes the working environment temperature of the electronic equipment to rise.
  • the electronic device will not work properly, so it is often necessary to install a refrigerating air conditioner or other heat sink for the electronic device.
  • low ambient temperatures can also affect the operation of electronic devices, so it is often necessary to heat electronic devices located in low temperature zones.
  • the natural heat dissipation scheme of the outdoor unit is widely used in medium and small power outdoor equipment.
  • the existing outdoor unit is installed on the top of the machine to reject the heat insulation layer or increase the sun. Outside the hood, the pleated wall structure rejected by the outdoor unit can effectively increase the heat dissipation area, and is a common measure to enhance the natural heat exchange capacity.
  • the air heated by the power consumption device circulates inside the machine, and exchanges heat with the external environment through the machine rejection wall to keep the machine from refusing normal operation.
  • the embodiment of the invention provides a machine temperature rejection control system, which utilizes the ground source heat pump system to fully utilize the cold storage and heat storage function of the shallow soil to improve the efficiency and reliability of the heat dissipation performance.
  • the machine rejects an air outlet chamber and an air inlet chamber, and the air outlet chamber and the air inlet chamber of the machine are connected to each other inside the machine;
  • the air outlet chamber of the machine is connected to the air inlet chamber of the buried temperature control unit, and the air outlet chamber of the buried temperature control unit is connected with the air inlet chamber of the machine, so that the machine Rejecting an air circulation loop with the buried temperature control unit;
  • the buried temperature control unit further includes a heat sink disposed in the air circulation loop.
  • the embodiment of the present invention further provides a buried temperature control device, wherein the buried temperature control device includes an air outlet chamber and an air inlet chamber, and an air outlet chamber and an air inlet chamber of the buried temperature control unit are The air outlet chamber and the air inlet chamber are respectively communicated with the air inlet chamber and the air outlet chamber of an external device, so that air forms a circulation loop between the buried temperature control device and the external device;
  • the buried temperature control unit further includes a heat sink disposed in the air circulation loop. Further, a machine rejection is provided, the machine rejects the air outlet chamber and the air inlet chamber, and the air outlet chamber and the air inlet chamber of the machine are connected to each other in the machine rejection;
  • the machine temperature rejection control system comprises a machine rejection and a buried temperature control unit, both of which are provided with an air outlet chamber and an air inlet chamber, and communicate with each other to form an air circulation loop; Under the air circulation in the air circulation loop; combined with the temperature regulation of the buried temperature control unit, the air rejected by the machine reaches a suitable temperature, and the system fully utilizes the cold storage and heat storage of the shallow soil to improve the heat dissipation performance. Efficiency and reliability, and environmental protection and energy saving.
  • FIG. 1 is a schematic structural view of a first embodiment of a machine temperature rejection control system of the present invention
  • FIG. 2 is a schematic structural view showing a heat dissipating fin at one end of the heat sink of the system shown in FIG. 1;
  • FIG. 3 is a schematic top plan view of the heat pipe arrangement in the system of FIG. 1;
  • the machine temperature control system of the embodiment of the present invention includes a machine rejection 10 located on the ground and a buried temperature control unit 20 located below the ground, wherein
  • the air temperature control unit 20 also has an air outlet chamber 201 and an air inlet chamber 202, and the air outlet chamber 201 and the air inlet chamber 202 inside the buried temperature control unit 20 are connected at the inner bottom end position of the buried temperature control unit 20. through.
  • the air outlet chamber 102 inside the machine rejection 10 communicates with the air inlet chamber 202 inside the buried temperature control unit 20, and the air outlet chamber 201 inside the buried temperature control unit 20 communicates with the air inlet chamber 101 inside the machine rejection unit 10, Form an air circulation loop.
  • An air delivery device 103 is mounted on the air circulation circuit, which in this example is a fan. Under the action of the air delivery device 103, the air in the closed system flows in the air circulation circuit; in conjunction with the temperature regulation of the buried temperature control unit 20, the air in the machine 10 is brought to a suitable temperature.
  • the end of the radiator 203 Since the end of the radiator 203 is inside the buried base 21 and one end is in contact with the soil or the groundwater, it can perform a good heat exchange function, and on the other hand, the high temperature of the air in the buried base 21 can be transmitted to the earth, thereby The machine rejects 10 to generate a cooling effect; on the other hand, the high temperature in the earth can be transmitted to the air in the buried base 21, thereby generating a warming effect on the machine rejection 10.
  • the portion of the heat sink 203 located inside the buried base 21 is provided with heat dissipating fins 204.
  • the structure of the buried base is as shown in FIG. 2; the heat sink 203 extends to the soil around the buried base 21. Or a portion of the groundwater with heat dissipating fins 204.
  • the heat dissipating fins 204 can increase the contact area of the heat sink 203 with the soil or the groundwater, thereby allowing the heat to be exchanged more quickly.
  • the heat sink 203 In order to prevent the heat sink 203 from being corroded, the heat sink 203 extends to a portion of the soil or groundwater surrounding the buried base 21, which is a ceramic heat sink, or a stainless steel or profile heat sink whose outer layer is spray-treated, thereby being better.
  • the protection radiator 203 is anti-corrosive and rustproof.
  • the heat sink 203 and the buried base 21 are sealed, and one solution is: the two are connected by a flange, that is, in the middle of the radiator 203 The double-sided flange is embedded in the buried base 21 and combined with a sealing rubber coil to ensure its tightness; another solution is: the two are welded together to ensure their tightness.
  • the heat sink 203 functions as a heat exchanger, preferably a heat pipe heat sink.
  • the heat pipe is a single piece, it is preferable to connect the flange to the buried base 21; if it is a plurality of pipes, it is preferable to integrally weld the plurality of heat pipes to the buried base 21 to ensure the sealing property.
  • the heat pipe radiator uses a straight heat pipe or an L-shaped heat pipe to prevent heat from being concentrated in one place and improve heat exchange capacity.
  • the machine can be placed on the elevated platform, and the air outlet chamber 102 inside the machine rejection 10 is connected to the air inlet chamber 202 inside the buried temperature control unit 20 through the air guiding tube, and the air guiding tube is passed through the air guiding tube.
  • the air inlet chamber 101 inside the machine 10 is in communication with the air outlet chamber 201 inside the buried temperature control unit 20, and may also be buried in the air outlet chamber 201 and the air inlet chamber 202 through the air duct buried temperature control unit 20.
  • the inner bottom end position of the temperature control unit 20 is in communication.
  • the air delivery device is configured to flow air between the machine 10 and the buried temperature control unit 20, may use a fan or a pump or other equipment, and is preferably installed adjacent to the machine to reject the internal air outlet chamber and the air inlet chamber. Pass through to ensure good air flow.
  • the air in the machine reject 10 located on the ground is fed into the buried temperature control unit 20 located below the ground.
  • the buried temperature control unit 20 exchanges the air with the soil or groundwater under the ground; the step is specifically: passing the heat sink 203 disposed on the buried temperature control unit 20, The air is exchanged heat with soil or groundwater under the ground. The heat-exchanged air is returned to the machine reject 10.
  • the machine rejection temperature control method provided by the embodiment of the invention causes the air to circulate in the machine rejection and the buried temperature control unit, and the buried temperature control unit exchanges air with the soil or groundwater under the ground, thereby making the machine reject
  • the air reaches a suitable temperature, and the system makes full use of the cold storage and heat storage of the shallow soil to improve the efficiency and reliability of the heat dissipation performance, and is environmentally friendly and energy-saving.
  • a system fan is added to the passage 102 of the air outlet chamber of the machine.
  • FIG. 4 a schematic diagram of another embodiment of the present invention is shown. Different from the previous embodiment is the addition of a system fan including a ground source system fan 106 for feeding hot air into the buried temperature control unit 20, and an internal circulation fan for providing a machine to reject internal hot air circulation flow. 105. And a control module (not shown) can be added, which is used to control the switching and rotating speed of the fan.
  • the control strategy of the system control module in conjunction with the embodiment of the present invention describes the operation of the system and the machine rejection.
  • Ta is the ambient air temperature
  • TO is a reference temperature
  • Te is the temperature allowed by the device
  • Tmax is the maximum temperature allowed by the device.
  • Ta>T0 the outdoor unit refuses to use the ground source to dissipate heat.
  • the ground source system fan 106 starts up and runs at full speed, and the inner circulation fan 105 stops.
  • the control module compares with the obtained T value according to the obtained Te value. Analysis: When Te ⁇ Tmax, the fan is controlled according to the built-in fan speed control strategy.
  • Te>Tmax the power consumption of the device exceeds the heat dissipation capacity of the heat dissipation system, and the fan runs at full speed.
  • Ta ⁇ T0 and Te ⁇ Tmax the outdoor unit refuses to use the natural heat dissipation scheme of the wall rejection surface to dissipate heat.
  • the inner circulation fan 105 starts and runs at full speed, the ground source system fan 106 stops, and the equipment operation project, the control module According to the obtained Te value, compared with Tmax, the ground source heat dissipation is started when Te>Tmax, at this time, the ground source system fan 106 is started, and the inner circulation fan 105 is stopped; when Te ⁇ Tmax, according to the built-in fan speed regulation strategy Speed control.
  • the above embodiment makes the heat dissipation mode of the machine more flexible by adding a system fan, and the soil temperature is easily recovered due to the use of the internal circulation fan.
  • the above is only a specific embodiment of the present invention, but the scope of the present invention is not limited thereto, and any person skilled in the art can easily think of changes or substitutions within the technical scope of the present invention. It should be covered by the scope of the present invention. Therefore, the scope of the invention should be determined by the scope of the claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

一种机拒及机拒温控***
本申请要求于 2008 年 5 月 23 日提交中国专利局、 申请号为 200810067337.9、 发明名称为"一种机拒及机拒温控***,,的中国专利申请的优 先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及温控***, 特别涉及一种机拒及机拒温控***。
背景技术
随着地球工业的发展, 各种资源的消耗越来越严重, 环境越来越恶化, 比 较明显的现象包括: 温室效应, 酸雨等等, 如何保护我们自己的地球家园, 如 何利用有限的资源促进工业进一步发展, 是目前人类共同关注的问题。
电子设备对工作环境的温度有较高的要求,电子设备在运行过程中一般会 散热,散出的热量聚集在电子设备周围的环境中,会导致电子设备的工作环境 温度升高, 在高到一定程度时, 电子器件将无法正常工作, 因此常常需要为电 子设备安装制冷空调或其他散热装置。 类似地, 环境温度过低也会影响电子器 件的工作, 因此, 对于位于低温地带的电子设备, 也常常需要为其加热。
目前户外机拒的自然散热方案在中小功率户外设备中应用广泛,为了增强 户外机拒的散热能力,提高户外设备的功耗水平, 现有户外机除在机拒顶部安 装隔热层或增加太阳罩外, 户外机拒的褶皱壁面结构可以有效增加散热面积, 是常见的增强自然换热能力的措施。被功耗设备加热的空气在机拒内部循环流 动, 并通过机拒壁面与外界环境进行换热, 保持机拒内设备的正常运行。
现在电子设备的功能越来越强大, 集成度越来越高,如何节省能源又环保 的前提下提高电子设备的散热能力成为一个亟待解决的问题。
发明内容
本发明实施例提供一种机拒温控***, 利用地源热泵***, 充分利用了浅 层土壤的储冷储热作用提高散热性能的效率与可靠性。
所述机拒温控***, 包括机拒和埋地温控单元, 其中,
所述机拒包括出风腔和进风腔,并且所述机拒的出风腔和进风腔在所述机 拒的内部相连通;
所述埋地温控单元内部包括出风腔和进风腔,并且所述埋地温控单元的出 风腔和进风腔在所述埋地温控单元的内部相连通;
所述机拒的出风腔与所述埋地温控单元的进风腔相连通,所述埋地温控单 元的出风腔与所述机拒的进风腔相连通,使所述机拒与所述埋地温控单元形成 空气循环回路;
所述埋地温控单元还包括散热器, 该散热器置于所述空气循环回路中。 同时本发明实施例还提供一种埋地温控装置 ,所述埋地温控装置内部包括 出风腔和进风腔, 并且所述埋地温控单元的出风腔和进风腔在其内部相连通; 所述出风腔与进风腔分别与一外部设备的进风腔与出风腔相通,使空气在该埋 地温控装置与所述外部设备之间形成一循环回路;
所述埋地温控单元还包括散热器, 该散热器置于所述空气循环回路中。 进一步提供一种机拒, 所述机拒包括出风腔和进风腔, 并且所述机拒的出 风腔和进风腔在机拒内部相连通;
所述出风腔与所述进风腔分别与一埋地散热装置的进风腔与出风腔连通, 使空气在所述机拒与所述埋地散热装置间形成循环回路。
本发明实施例提供的机拒温控***包括机拒和埋地温控单元,两者内部都 设置有出风腔和进风腔, 并且互相连通形成一个空气循环回路; 在空气输送装 置的作用下,空气在空气循环回路中流动;结合埋地温控单元的温度调节作用, 使机拒中的空气达到合适的温度,该***充分利用了浅层土壤的储冷储热作用 提高散热性能的效率与可靠性, 并且环保节能。
附图说明
图 1为本发明机拒温控***实施例一的结构示意图;
图 2为图 1所示***的散热器一端设有散热翅片的结构示意图;
图 3为图 1所示***中热管排布的俯视结构示意图;
图 4为本发明机拒温控***实施例二的结构示意图。 具体实施方式
如图 1所示, 本发明实施例的机拒温控***包括位于地面上的机拒 10和 位于地面下的埋地温控单元 20, 其中,
机拒 10内部有进风腔 101和出风腔 102 , 并且机拒 10内部的进风腔 101 和出风腔 102在机拒 10的内部顶端位置处相连通, 该出风腔 102为机拒 10 中热风风道的出口。
埋地温控单元 20内部也有出风腔 201和进风腔 202, 并且埋地温控单元 20内部的出风腔 201和进风腔 202在埋地温控单元 20的内部底端位置处相连 通。
机拒 10内部的出风腔 102与埋地温控单元 20内部的进风腔 202相连通, 埋地温控单元 20内部的出风腔 201与机拒 10内部的进风腔 101相连通,形成 空气循环回路。
在所述空气循环回路上安装有空气输送装置 103 , 本例中该空气输送装置 为风扇。在空气输送装置 103的作用下, 该封闭***内的空气在空气循环回路 中流动; 结合埋地温控单元 20的温度调节作用,使机拒 10中的空气达到合适 的温度。
所述埋地温控单元 20包括埋地底座 21 , 埋地底座 21内部有散热器 203 , 该散热器 203位于进风腔 202及出风腔 201中 ,或者只选择一个风腔安装一个 散热器 203。 散热器 203的一端位于埋地底座 21的内部, 另一端穿出埋地底 座 21并延伸于埋地底座 21周围的土壤或地下水中。
由于散热器 203—端在埋地底座 21内部, 一端与土壤或地下水接触, 因 此它能够起到较好的热交换作用, 一方面可以将埋地底座 21 内空气的高温传 递到大地中, 从而对机拒 10产生降温作用; 另一方面也可以将大地中的高温 传递到埋地底座 21内的空气, 从而对机拒 10产生保暖作用。
为了提高热交换的效率, 散热器 203位于埋地底座 21 内部的部分设有散 热翅片 204, 此时埋地底座的结构如图 2所示; 散热器 203延伸于埋地底座 21 周围的土壤或地下水中的部分, 设有散热翅片 204。 散热翅片 204能够增加散 热器 203与土壤或地下水的接触面积, 从而使热量更快速的进行交换。
为了防止散热器 203被腐蚀, 散热器 203延伸于埋地底座 21周围的土壤 或地下水中的部分, 为陶瓷散热器, 或者为外层经过喷塑处理的不锈钢或型材 散热器, 从而能够较好的保护散热器 203防腐防锈。
同时, 为了保护设备, 增加温控效率, 散热器 203与埋地底座 21之间为 密封连接, 一种方案是: 两者之间通过法兰盘相连接, 即在散热器 203中部做 双面法兰盘, 嵌入埋地底座 21上, 并结合密封橡胶线圈来保证其密封性; 另 一种方案是: 两者通过焊接连为一体来保证其密封性。
本实施例中, 散热器 203起热交换作用, 优选为热管散热器。 如果热管为 单根, 优选釆用法兰盘与埋地底座 21连接; 如果为多根, 优选将多根热管做 成一个整体, 焊接在埋地底座 21上, 从而保证密封性。 热管散热器釆用直型 热管或 L型热管, 从而避免热量集中于一处, 提高热交换能力。
如图 3所示,为热管散热器 203釆用直型热管 37和 L型热管 38两种组合 排布时, 埋地底座 21的俯视结构示意图。
由于受区域影响, 土壤的导热系数低, 当热量传至土壤内部时, 为避免土 壤热量积聚, 帮助土壤及时散热, 可使用现有技术中的热棒单向导热技术: 参 见图 1所示, 在埋地温控单元 20的周边区域设置热棒 44 , 热棒 44的一端伸 出地面之上(可在该部分上也设有散热翅片)。 当土壤温度大于空气温度时, 热棒 44工作, 将土壤的热量传导至大气中。 综合考虑施工安装的方便以及大 地热交换的效率, 埋地底座 21 的底部到地面的距离可以大于 1.5米, 小于 3 米。
在实际的实施中, 可以将机拒 10置于高架平台上, 通过导气管将机拒 10 内部的出风腔 102与埋地温控单元 20内部的进风腔 202相连通, 通过导气管 将机拒 10内部的进风腔 101与埋地温控单元 20内部的出风腔 201相连通,也 可以通过导气管埋地温控单元 20内部的出风腔 201和进风腔 202在埋地温控 单元 20的内部底端位置处相连通。
另外, 空气输送装置用于使空气在机拒 10和埋地温控单元 20之间流动, 可以釆用风扇或泵或其他设备 ,并且优选安装在靠近机拒内部出风腔和进风腔 相连通位置处, 以确保空气有较好的流动性。
本发明实施例使用时,机拒一般为内部设置有电子设备的机拒, 由于热空 气向上流动, 为了便于电子设备的散热, 电子设备可设置在机拒内部的进风腔 中。
在具体的应用中, 将位于地面上的机拒 10中的空气送入位于地面下的埋 地温控单元 20中。所述埋地温控单元 20将所述空气与地面下的土壤或地下水 进行热交换; 该步骤具体为: 通过埋地温控单元 20上设置的散热器 203 , 将 将所述空气与地面下的土壤或地下水进行热交换。将所述经过热交换后的空气 送回至所述机拒 10中。
本发明实施例提供的机拒温控方法使空气在机拒与埋地温控单元中循环 流动, 并且埋地温控单元将空气与地面下的土壤或地下水进行热交换,从而使 机拒中的空气达到合适的温度,该***充分利用了浅层土壤的储冷储热作用提 高散热性能的效率与可靠性, 并且环保节能。
为了提高散热***的灵活性,在机拒的出风腔 102通道中增加***风扇,。 如图 4所示, 本发明另一实施例示意图。 与前实施例不同的是增加***风扇, 该***风扇包括用于将热空气送入埋地温控单元 20的地源***风扇 106 , 以 及用于提供机拒内部热空气循环流动的内循环风扇 105。 并且可以增加一控制 模块(图未示), 该控制模块用于控制风扇的开关及转速。 所述地源***风扇 106位于机拒 10的出风腔 102与所述埋地温控单元 20的进风腔 202之间, 工 作时使空气由所述机拒 10进入所述埋地温控单元 20。 所述内循环风扇 105位 于机拒的出风腔 102与进风腔 101之间,工作时使空气由机拒的出风腔进入进 风腔; 使空气在机拒的热风风道与内部间循环。
结合本发明实施例***控制模块的控制策略对所述***及机拒的工作进 行描述。 Ta为环境空气温度, TO为一基准温度, 用于确定是否釆用地源散热 的主要判据, Te 为设备所允许的温度, Tmax 为设备所允许的最高温度。 当 Ta>T0时 , 户外机拒釆用地源散热 , 此时地源***风扇 106启动并全速运行, 内循环风扇 105停止,在设备运行过程中,控制模块根据获取的 Te值,与 Tmax 进行对比分析, 当 Te<Tmax时根据内置的风扇调速策略对风扇进行转速控制, 当 Te>Tmax时设备功耗超过散热***的散热能力, 风扇全速运行。 当 Ta<T0 且 Te<Tmax时 , 户外机拒釆用机拒壁面的自然散热方案进行散热 , 此时内循 环风扇 105启动并全速运行, 地源***风扇 106停止, 设备运行工程中, 控制 模块根据获取的 Te值,与 Tmax进行对比分析, 当 Te>Tmax时启动地源散热, 此时地源***风扇 106启动, 内循环风扇 105停止; 当 Te<Tmax时, 根据内 置的风扇调速策略进行调速。
以上实施例通过增加***风扇,使机拒的散热方式更灵活, 由于使用内循 环风扇使得土壤温度容易得到恢复。 以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于 此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到 变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应 所述以权利要求的保护范围为准。

Claims

权 利 要 求
1、 一种机拒温控***, 其特征在于, 包括机拒和埋地温控单元, 其中, 所述机拒包括出风腔和进风腔,并且所述机拒的出风腔和进风腔在所述机 拒的内部相连通;
所述埋地温控单元内部包括出风腔和进风腔,并且所述埋地温控单元的出 风腔和进风腔在所述埋地温控单元的内部相连通;
所述机拒的出风腔与所述埋地温控单元的进风腔相连通,所述埋地温控单 元的出风腔与所述机拒的进风腔相连通,使所述机拒与所述埋地温控单元形成 空气循环回路;
所述埋地温控单元还包括散热器, 该散热器置于所述空气循环回路中。
2、 如权利要求 1所述的***, 其特征在于, 所述机拒还包括:
地源***风扇、 内循环风扇及控制模块;
所述地源***风扇位于所述机拒的出风腔与所述埋地温控单元的进风腔 之间, 工作时使空气由所述机拒进入所述埋地温控单元;
所述内循环风扇位于机拒的出风腔与进风腔之间,工作时使空气由所述机 拒的出风腔进入进风腔;
所述控制模块,用于控制所述地源***风扇与所述内循环风扇的开启和关 闭。
3、 根据权利要求 1所述的机拒温控***, 其特征在于, 所述埋地温控单 元包括埋地底座, 所述散热器密封连接于所述埋地底座; 其中,
所述散热器的一端位于所述埋地底座的内部,另一端穿出所述埋地底座并 延伸于埋地底座周围的土壤中。
4、 根据权利要求 3所述的机拒温控***, 其特征在于, 所述散热器密封 连接于所述埋地底座, 具体实现为:
所述散热器与所述埋地底座之间通过法兰盘相连接, 或通过焊接连为一 体。
5、 根据权利要求 1所述的机拒温控***, 其特征在于, 所述散热器釆用 直型热管或 L型热管。
6、 根据权利要求 1所述的机拒温控***, 其特征在于, 所述机拒的出风 腔和进风腔在机拒内部相连处装有空气输送装置。
7、 一种埋地温控装置, 其特征在于, 所述埋地温控装置内部包括出风腔 和进风腔, 并且所述埋地温控单元的出风腔和进风腔在其内部相连通;
所述出风腔与进风腔分别与一外部设备的进风腔与出风腔相通,使空气在 该埋地温控装置与所述外部设备之间形成一循环回路;
所述埋地温控单元还包括散热器, 该散热器置于所述空气循环回路中。
8、 如权利要求 7所述的装置, 其特征在于, 所述埋地温控单元包括埋地 底座, 所述散热器密封连接于所述埋地底座; 其中,
所述散热器的一端位于所述埋地底座的内部,另一端穿出所述埋地底座并 延伸于埋地底座周围的土壤中。
9、 如权利要求 8所述的装置, 其特征在于, 所述散热器密封连接于所述 埋地底座, 具体实现为:
所述散热器与所述埋地底座之间通过法兰盘相连接, 或通过焊接连为一 体。
10、 如权利要求 9所述的装置, 其特征在于, 所述散热器釆用直型热管或
L型热管。
11、 一种机拒, 其特征在于, 所述机拒包括出风腔和进风腔, 并且所述机 拒的出风腔和进风腔在机拒内部相连通;
所述出风腔与所述进风腔分别与一埋地散热装置的进风腔与出风腔连通, 使空气在所述机拒与所述埋地散热装置间形成循环回路。
12、 如权利要求 11所述的机拒, 其特征在于, 所述机拒内部的出风腔和 进风腔在机拒的内部相连处装有空气输送装置。
13、 如权利要求 11所述的机拒, 其特征在于,
所述机拒还包括: 地源***风扇、 内循环风扇及控制模块;
所述地源***风扇位于所述机拒的出风腔与所述埋地温控单元的进风腔 之间, 工作时使空气由所述机拒进入所述埋地温控单元;
所述内循环风扇位于机拒的出风腔与进风腔之间,工作时使空气由机拒的 出风腔进入进风腔;
所述控制模块,用于控制所述地源***风扇与所述内循环风扇的开启和关 闭及风扇的转速。
PCT/CN2009/071225 2008-05-23 2009-04-10 一种机柜及机柜温控*** WO2009140875A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09006732A EP2124518B1 (en) 2008-05-23 2009-05-19 Cabinet temperature control system
US12/849,779 US8839848B2 (en) 2008-05-23 2010-08-03 Cabinet, and cabinet temperature control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810067337.9 2008-05-23
CN2008100673379A CN101588705B (zh) 2008-05-23 2008-05-23 一种机柜及机柜温控***

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/849,779 Continuation US8839848B2 (en) 2008-05-23 2010-08-03 Cabinet, and cabinet temperature control system

Publications (1)

Publication Number Publication Date
WO2009140875A1 true WO2009140875A1 (zh) 2009-11-26

Family

ID=41339758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071225 WO2009140875A1 (zh) 2008-05-23 2009-04-10 一种机柜及机柜温控***

Country Status (3)

Country Link
US (1) US8839848B2 (zh)
CN (1) CN101588705B (zh)
WO (1) WO2009140875A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012061613A1 (en) * 2010-11-03 2012-05-10 Huawei Technologies Co., Ltd. Air -based geothermal cooling system for telecom utility cabinet
US9447992B2 (en) 2010-11-03 2016-09-20 Futurewei Technologies, Inc. Geothermal system with earth grounding component
CN108471069A (zh) * 2018-05-29 2018-08-31 广东电网有限责任公司 自动控温开关柜

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8783336B2 (en) * 2008-12-04 2014-07-22 Io Data Centers, Llc Apparatus and method of environmental condition management for electronic equipment
CN102080857B (zh) * 2009-11-30 2013-04-17 ***通信集团四川有限公司 一种调节室内温度的***及方法
US9291372B2 (en) * 2011-07-25 2016-03-22 Tai-Her Yang Closed-loop temperature equalization device having a heat releasing device and multiple flowpaths
CN102510700A (zh) * 2011-10-08 2012-06-20 郭琛 设备散热用热管型电子风道装置
CN103313575B (zh) * 2012-03-09 2017-11-10 鸿富锦精密工业(深圳)有限公司 电子设备及其制冷方法
US9484615B2 (en) * 2012-05-03 2016-11-01 Telefonaktiebolaget L M Ericsson (Publ) Mast arrangement radio network node and related method
US20140000301A1 (en) * 2012-06-29 2014-01-02 Anthony Samuel Martinez Cool air loop system
US20160116174A1 (en) * 2012-06-29 2016-04-28 Anthony Martinez Cool air loop structure cooling system
EP2685798B1 (en) * 2012-07-11 2019-02-13 ABB Schweiz AG An electrical room of an industrial equipment such as a container crane, the electrical room comprising a cooling device
CN102811592B (zh) * 2012-07-31 2014-07-23 广州汇安科技有限公司 机柜的节能改造方法
US9288932B2 (en) * 2012-11-08 2016-03-15 International Business Machines Corporation Ground-based heat sink facilitating electronic system cooling
CN103533813B (zh) * 2013-10-28 2016-06-29 福建润达动力机械有限公司 一种高散热发电机组箱体
CN104254233B (zh) * 2014-09-17 2017-01-11 广东申菱环境***股份有限公司 一种热管一次环路服务器机柜散热***的控制方法
CN104808752A (zh) * 2015-04-23 2015-07-29 中山弘博企业管理咨询有限公司 鼓风式计算机水冷降温***
CN105276734B (zh) * 2015-11-20 2018-06-01 中国通信建设第四工程局有限公司 无线通信网基站机房用热管降温***及方法
CN105806092B (zh) * 2016-05-18 2017-07-28 张富华 循环水地下冷却装置
CN106207787B (zh) * 2016-09-06 2017-12-15 国网江西省电力公司九江供电分公司 一种恒温干燥电力配电柜
CN106231880A (zh) * 2016-09-26 2016-12-14 国网安徽省电力公司检修公司 一种具有空气循环冷却的智能终端柜
CN108738274A (zh) * 2017-04-22 2018-11-02 华为技术有限公司 散热结构及机柜
CN107092290B (zh) * 2017-05-20 2022-06-24 丁跃军 一种地震监测恒温台站
CN107613735B (zh) * 2017-10-11 2019-03-19 国网四川省电力公司自贡供电公司 一种节能降温的电力箱
CN108302669A (zh) * 2017-10-30 2018-07-20 四川联衡能源发展有限公司 一种基于空气介质的地埋套管式换热装置
CN107702251A (zh) * 2017-10-30 2018-02-16 四川联衡能源发展有限公司 一种基于空气介质的基站机房地埋式换热装置
CN107889426A (zh) * 2017-10-30 2018-04-06 四川联衡能源发展有限公司 一种基于空气介质的基站机房内设备换热方法
CN107676903A (zh) * 2017-10-30 2018-02-09 四川联衡能源发展有限公司 一种基于空气介质的地埋套管式紊流装置
CN107676904A (zh) * 2017-10-30 2018-02-09 四川联衡能源发展有限公司 一种基于空气介质的地埋式换热方法的基站机房结构
CN108770313A (zh) * 2018-07-05 2018-11-06 东莞市仲宣五金制品有限公司 一种散热机柜
CN110061438B (zh) * 2019-04-26 2020-07-17 广东名田科技有限公司 一种配电箱结构
CN111405816A (zh) * 2020-03-12 2020-07-10 宁波通冠电气自动化设备有限公司 一种室外型透气式一体化基站机箱的散热装置
CN111615311A (zh) * 2020-06-17 2020-09-01 李东飞 一种计算机技术开发用机房机柜散热装置
CN111711091B (zh) * 2020-07-08 2022-01-28 广东电网有限责任公司 一种配电柜
CN112490908A (zh) * 2020-12-07 2021-03-12 深圳市旭能达电气科技有限公司 具有快速散热的高低压开关柜
CN114719356B (zh) * 2022-04-11 2023-04-18 湖南汽车工程职业学院 一种计算机房的地面散热结构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6208510B1 (en) * 1999-07-23 2001-03-27 Teradyne, Inc. Integrated test cell cooling system
CN2446434Y (zh) * 2000-08-10 2001-09-05 王敬雷 一种利用地温制冷的空调机
CN2540604Y (zh) * 2002-05-01 2003-03-19 王英坡 地埋式套管地源热交换器
JP2003194420A (ja) * 2001-10-18 2003-07-09 Shoden Corp 情報通信用シェルター
US20050225936A1 (en) * 2002-03-28 2005-10-13 Tony Day Cooling of a data centre
JP2006202816A (ja) * 2005-01-18 2006-08-03 Japan Radio Co Ltd 電子機器筐体の放熱器
EP1755368A2 (en) * 2005-08-17 2007-02-21 Isolectra B.V. Cooling system and method for cooling electronic devices
CN1946279A (zh) * 2006-02-24 2007-04-11 华为技术有限公司 机柜温控装置、处理装置、***及方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4234037A (en) * 1978-02-21 1980-11-18 Rogers Walter E Underground heating and cooling system
US4476921A (en) * 1982-03-29 1984-10-16 Aire-Wrap, Inc. Insulating air sheath for buildings and the like
US4674561A (en) * 1985-03-29 1987-06-23 Kelley Norman B Air temperature control system
US5216577A (en) * 1991-10-25 1993-06-01 Comtronics Enclosures Corporation Stable thermal enclosure for outdoor electronics
US5978218A (en) * 1994-11-24 1999-11-02 Advantest Corp. Cooling system for IC tester
JPH08179008A (ja) * 1994-12-22 1996-07-12 Advantest Corp テスト・ヘッド冷却装置
EP0848469B1 (fr) 1996-12-10 2003-05-07 Barat S.A. Dispositif de dissipateur thermique pour armoire de distribution électrique ou analogue, contenue dans un ouvrage souterrain
US5950712A (en) * 1998-04-09 1999-09-14 At&T Corp. Method and apparatus for cooling and warming pole-mounted electronics
US6691766B1 (en) * 2000-09-15 2004-02-17 Lucent Technologies Inc. Cabinet cooling with heat pipe
US6538883B1 (en) * 2001-09-19 2003-03-25 Turin Networks Method and apparatus for thermally insulated and earth cooled electronic components within an electronic system
US6628520B2 (en) * 2002-02-06 2003-09-30 Hewlett-Packard Development Company, L.P. Method, apparatus, and system for cooling electronic components
CN2623748Y (zh) 2003-05-15 2004-07-07 江苏中圣石化工程有限公司 带中心测温管的低温热棒
CN2836281Y (zh) 2005-11-10 2006-11-08 上海科宏变电设备有限公司 一种热管散热的变压器室
AU2007356363B2 (en) 2007-07-10 2011-02-03 Airmaker Gtr Ltd Geothermal air-conditioner device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6208510B1 (en) * 1999-07-23 2001-03-27 Teradyne, Inc. Integrated test cell cooling system
CN2446434Y (zh) * 2000-08-10 2001-09-05 王敬雷 一种利用地温制冷的空调机
JP2003194420A (ja) * 2001-10-18 2003-07-09 Shoden Corp 情報通信用シェルター
US20050225936A1 (en) * 2002-03-28 2005-10-13 Tony Day Cooling of a data centre
CN2540604Y (zh) * 2002-05-01 2003-03-19 王英坡 地埋式套管地源热交换器
JP2006202816A (ja) * 2005-01-18 2006-08-03 Japan Radio Co Ltd 電子機器筐体の放熱器
EP1755368A2 (en) * 2005-08-17 2007-02-21 Isolectra B.V. Cooling system and method for cooling electronic devices
CN1946279A (zh) * 2006-02-24 2007-04-11 华为技术有限公司 机柜温控装置、处理装置、***及方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012061613A1 (en) * 2010-11-03 2012-05-10 Huawei Technologies Co., Ltd. Air -based geothermal cooling system for telecom utility cabinet
US8749976B2 (en) 2010-11-03 2014-06-10 Futurewei Technologies, Inc. Telecom utility cabinet arranged for air-based geothermal cooling
US8925621B2 (en) 2010-11-03 2015-01-06 Futurewei Technologies, Inc. Air-based geothermal cooling maintenance system
US9241426B2 (en) 2010-11-03 2016-01-19 Futurewei Technologies, Inc. Air-based geothermal cooling system for a telecom utility cabinet
US9447992B2 (en) 2010-11-03 2016-09-20 Futurewei Technologies, Inc. Geothermal system with earth grounding component
CN108471069A (zh) * 2018-05-29 2018-08-31 广东电网有限责任公司 自动控温开关柜
CN108471069B (zh) * 2018-05-29 2023-05-26 广东电网有限责任公司 自动控温开关柜

Also Published As

Publication number Publication date
CN101588705A (zh) 2009-11-25
US8839848B2 (en) 2014-09-23
CN101588705B (zh) 2011-06-22
US20100295429A1 (en) 2010-11-25

Similar Documents

Publication Publication Date Title
WO2009140875A1 (zh) 一种机柜及机柜温控***
US20120125019A1 (en) Self sustaining energy system for a building
EP2124518B1 (en) Cabinet temperature control system
CN105387532A (zh) 空调器和换热***
JP2011141073A (ja) 空調装置の効率改善装置及び方法
CN201061185Y (zh) 一种户外通信设备散热***及户外通信设备
JP2015190754A (ja) 空冷式空調室外熱交換器の熱交換効率向上装置
CN205373483U (zh) 换热管、换热器及空调器
CN101514833A (zh) 一种全电子无压缩机民用空调及其制作方法
CN101338958B (zh) 空调热交换式冷凝器及喷淋蒸发冷却***
JP2010038507A (ja) 地下蓄熱利用のヒートポンプ
CN203633039U (zh) 空调机组
CN209594172U (zh) 风力发电机组的海水冷却***及风力发电机组
CN106440599A (zh) 一种可实现宽温区自然冷却的液冷温控***
CN104534598B (zh) 采用双水源热泵的机房空调热水***及其控制方法
CN110593588A (zh) 一种大体积混凝土冷凝***
CN111588110A (zh) 一种便携式制冷服
CN206895096U (zh) 一种双液冷循环散热***及使用该散热***的充电设备
CN206890910U (zh) 一种半导体制冷与热泵耦合式装置
CN203633038U (zh) 空调机组
CN203375702U (zh) 分体式热泵热水机
CN205119294U (zh) 空调器和换热***
CN215113496U (zh) 一种换热结构及充电桩
CN201690721U (zh) 室外通信装置
CN206247725U (zh) 一种可实现宽温区自然冷却的液冷温控***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09749418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09749418

Country of ref document: EP

Kind code of ref document: A1