WO2009139603A2 - 반도체 발광소자 - Google Patents

반도체 발광소자 Download PDF

Info

Publication number
WO2009139603A2
WO2009139603A2 PCT/KR2009/002596 KR2009002596W WO2009139603A2 WO 2009139603 A2 WO2009139603 A2 WO 2009139603A2 KR 2009002596 W KR2009002596 W KR 2009002596W WO 2009139603 A2 WO2009139603 A2 WO 2009139603A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
conductive semiconductor
conductive
semiconductor layer
light emitting
Prior art date
Application number
PCT/KR2009/002596
Other languages
English (en)
French (fr)
Other versions
WO2009139603A3 (ko
Inventor
임우식
Original Assignee
엘지이노텍주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍주식회사 filed Critical 엘지이노텍주식회사
Priority to EP09746782.3A priority Critical patent/EP2290709B1/en
Priority to CN2009801176605A priority patent/CN102027606B/zh
Priority to US12/992,950 priority patent/US8530919B2/en
Publication of WO2009139603A2 publication Critical patent/WO2009139603A2/ko
Publication of WO2009139603A3 publication Critical patent/WO2009139603A3/ko
Priority to US13/963,724 priority patent/US8766308B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate

Definitions

  • the embodiment relates to a semiconductor light emitting device.
  • the III-V nitride semiconductors include optical devices including blue / green light emitting diodes (LEDs), high-speed switching devices such as metal semiconductor field effect transistors (MOSFETs) and hetero junction field effect transistors (HEMTs), and light sources for lighting or display devices. It has been applied to a variety of applications.
  • the light emitting device using the group III nitride semiconductor has a direct transition band gap corresponding to the region from visible light to ultraviolet light, and high efficiency light emission can be realized.
  • the nitride semiconductor is mainly used as a light emitting diode (LED) or a laser diode (LD), and research for improving a manufacturing process or light efficiency has been continued.
  • LED light emitting diode
  • LD laser diode
  • the embodiment provides a semiconductor light emitting device including an insulating layer around an outer circumference of a plurality of conductive semiconductor layers.
  • the embodiment provides a semiconductor light emitting device including a second electrode layer under the light emitting structure, and including an insulating layer on an outer circumference of at least one of the semiconductor layers of the light emitting structure.
  • the embodiment provides a semiconductor light emitting device in which a passivation layer is disposed outside an upper surface of an insulating layer and a second electrode layer around an outer circumference of a light emitting structure.
  • a semiconductor light emitting device includes a first conductive semiconductor layer; An active layer under the first conductive semiconductor layer; A second conductive semiconductor layer under the active layer; A second electrode layer under the second conductive semiconductor layer; And an insulating layer around at least two layers of the first conductive semiconductor layer, the active layer, and the second conductive semiconductor layer.
  • a semiconductor light emitting device may include a light emitting structure including a first conductive semiconductor layer, an active layer under the first conductive semiconductor layer, and a second conductive semiconductor layer under the active layer; A first electrode on the first conductive semiconductor layer; A second electrode layer under the second conductive semiconductor layer; An insulating layer is formed on an outer circumference of the active layer and the second conductive semiconductor layer.
  • the embodiment has the effect of preventing current leakage to the outside of the light emitting structure.
  • the embodiment can improve the adhesion with the second electrode layer using the insulating layer.
  • the embodiment has the effect of reducing the manufacturing process by removing a separate photolithography process for the second electrode layer.
  • the embodiment can improve the electrical reliability of the semiconductor light emitting device.
  • FIG. 1 is a side cross-sectional view illustrating a semiconductor light emitting device according to a first embodiment.
  • FIG. 2 to 9 are views illustrating a manufacturing process of the semiconductor light emitting device according to the first embodiment of FIG. 1.
  • FIG. 10 is a side sectional view showing a semiconductor light emitting device according to the second embodiment.
  • FIG. 11 is a side cross-sectional view illustrating a semiconductor light emitting device according to a third embodiment.
  • FIG. 12 is a side cross-sectional view illustrating a semiconductor light emitting device according to a fourth embodiment.
  • each layer, region, pattern, or structure is described as being formed “on” or “under” a substrate, each layer (film), region, pad, or pattern. Where “on” and “under” include both “directly” and “indirectly”.
  • FIG. 1 is a side cross-sectional view illustrating a semiconductor light emitting device according to a first embodiment.
  • the semiconductor light emitting device 100 may include a first conductive semiconductor layer 110, an active layer 120, a second conductive semiconductor layer 130, an insulating layer 140, and a second electrode layer 150. , The conductive support member 160.
  • the semiconductor light emitting device 100 includes an LED using a group III-V compound semiconductor, and the LED may be a colored LED or a UV LED emitting light such as blue, green, or red.
  • the emission light of the LED may be implemented in various ways within the technical scope of the embodiment.
  • the first conductive semiconductor layer 110 is a compound semiconductor of Group III-V elements doped with a first conductive dopant, for example, GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP and the like can be selected.
  • a first conductive dopant for example, GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP and the like can be selected.
  • the first conductive dopant includes an N-type dopant such as Si, Ge, Sn, Se, Te, or the like.
  • the first conductive semiconductor layer 110 may function as an electrode contact layer, and may be formed as a single layer or a multilayer, but is not limited thereto.
  • the first electrode 170 is formed on the first conductive semiconductor layer 110, and the first electrode 170 supplies the first polarity power.
  • roughness (not shown) of a predetermined shape may be formed on an upper surface of the first conductive semiconductor layer 110, and the roughness may be added or changed within the technical scope of the embodiment.
  • a transmissive electrode layer may be formed on the first conductive semiconductor layer 110, and the transmissive electrode layer diffuses the first polarity power supplied by the first electrode 170 to all regions.
  • the permeable electrode layer may be formed of indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), indium aluminum zinc oxide (IAZO), indium gallium zinc oxide (IGZO), indium gallium tin oxide (IGTO), May contain at least one of aluminum zinc oxide (AZO), antimony tin oxide (ATO), gallium zinc oxide (GZO), IrOx, RuOx, RuOx / ITO, Ni / IrOx / Au, and Ni / IrOx / Au / ITO have.
  • An active layer 120 is formed under the first conductive semiconductor layer 110, and the active layer 120 may be formed as a single quantum well structure or a multi quantum well structure.
  • the active layer 120 may be formed in a period of a well layer and a barrier layer, for example, an InGaN well layer / GaN barrier layer, using a compound semiconductor material of Group III-V elements.
  • the active layer 120 may be selected as a material having a band gap energy according to the wavelength of light to emit light.
  • the active layer 120 may include a material that emits colored light such as light of blue wavelength, light of red wavelength, and light of green wavelength, but is not limited thereto.
  • a conductive clad layer may be formed on or under the active layer 120, and the conductive clad layer may be formed of an AlGaN layer.
  • a second conductive semiconductor layer 130 is formed below the active layer 120.
  • the second conductive semiconductor layer 130 is a compound semiconductor of Group III-V elements doped with a second conductive dopant, for example, GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP and the like can be selected.
  • the second conductive dopant includes a P-type dopant such as Mg and Ze.
  • the second conductive semiconductor layer 130 may function as an electrode contact layer, and may be formed as a single layer or a multilayer, but is not limited thereto.
  • the first conductive semiconductor layer 110, the active layer 120, and the second conductive semiconductor layer 130 may be defined as a light emitting structure 135.
  • the first conductive semiconductor layer 110 may be a P-type semiconductor
  • the second conductive semiconductor layer 130 may be formed of an N-type semiconductor.
  • a third conductive semiconductor layer, for example, an N-type semiconductor layer or a P-type semiconductor layer may be formed below the second conductive semiconductor layer 130.
  • the light emitting structure 135 may include at least one of an N-P junction, a P-N junction, an N-P-N junction, and a P-N-P junction structure.
  • the insulating layer 140 is formed on the outer circumference of the light emitting structure 135.
  • the insulating layer 140 functions as a sidewall around the outer circumference of the second conductive semiconductor layer 130, the active layer 120, and the first conductive semiconductor layer 110, and has a band shape or a ring shape. Can be.
  • the insulating layer 140 may be formed of an insulating material such as SiO 2 , Si 3 N 4 , Al 2 O 3 , TiO 2 , but is not limited thereto.
  • the insulating layer 140 may be formed as a sidewall around an outer circumference of at least one semiconductor layer.
  • the active layer 120 may be formed outside, or may be formed outside the second conductive half body layer 130 and the active layer 120.
  • an upper end of the insulating layer 140 may extend to a lower portion of the first conductive semiconductor layer 110.
  • a lower end of the insulating layer 140 may extend to a lower portion of the second conductive semiconductor layer 130.
  • the insulating layer 140 may be formed to be less than or equal to the thickness of the light emitting structure 135.
  • the second electrode layer 150 may be formed under the second conductive semiconductor layer 130 or may extend to the bottom of the insulating layer 140.
  • the second electrode layer 150 may be formed of a material consisting of Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf, and a combination thereof.
  • the second electrode layer 150 may be made of a reflective electrode material having a reflectance of 50% or more.
  • An ohmic contact layer may be formed between the second electrode layer 150 and the second conductive semiconductor layer 130 in a plurality of patterns having a matrix shape and / or a layer shape.
  • the ohmic contact layer may include indium tin oxide (ITO), indium zinc oxide (IZO), aluminum zinc oxide (AZO), indium zinc tin oxide (IZTO), indium aluminum zinc oxide (IZAZO), indium gallium zinc oxide (IGZO), At least one of materials such as indium gallium tin oxide (IGTO) and antimony tin oxide (ATO).
  • the second electrode layer 150 may be in Schottky contact or ohmic contact with the second conductive semiconductor layer 130.
  • the second electrode layer 150 may be formed on the second conductive semiconductor layer 130. Schottky contact is made, and the ohmic contact layer is in ohmic contact with the second conductive semiconductor layer 130. Accordingly, since the electrical characteristics of the second electrode layer 150 and the ohmic contact layer are different, the current supplied to the second conductive semiconductor layer 130 can be diffused.
  • the second electrode layer 150 functions as an electrode for stably supplying a second polarity power to the light emitting structure 135, and reflects light incident through the second conductive semiconductor layer 130.
  • the conductive support member 160 is formed under the second electrode layer 150.
  • the conductive support member 160 may include copper (Cu), gold (Au), nickel (Ni), molybdenum (Mo), copper-tungsten (Cu-W), carrier wafers (eg, Si, Ge, GaAs, ZnO, Sic, etc.) may be implemented.
  • the conductive support member 160 may be formed by an electroplating method, but is not limited thereto.
  • the second electrode layer 150 and the conductive support member 160 may be used as a second electrode part for supplying a second polarity power to the light emitting structure 135, and the second electrode part may be a single layer or a multilayer electrode material. It may be formed as or may be attached with an adhesive under the second conductive semiconductor layer 130.
  • the semiconductor light emitting device 100 may prevent the residual material or external moisture from penetrating the outside of the light emitting structure 135 by being disposed outside the light emitting structure 135. Accordingly, electrical shorts between the semiconductor layers 110, 120, and 130 outside the semiconductor light emitting device 100 may be prevented.
  • the insulating layer 140 may be disposed outside the light emitting structure 135 to block a current leaking in an outer direction of the light emitting structure 135.
  • the current injected through the second electrode layer 150 has a property of traveling toward the outside of the light emitting structure 135, and the current is blocked by the insulating layer 140, thereby It can improve the injection efficiency.
  • the insulating layer 140 may be disposed outside the second electrode layer 150 and the second conductive semiconductor layer 130, thereby improving adhesion of the second electrode layer 150.
  • FIGS. 2 to 9 are views illustrating a manufacturing process of the light emitting device according to the first embodiment.
  • a first conductive semiconductor layer 110 is formed on the substrate 101, an active layer 120 is formed on the first conductive semiconductor layer 110, and a first conductive semiconductor layer 110 is formed on the active layer 120.
  • the second conductive semiconductor layer 130 is formed.
  • the substrate 101 may be selected from the group consisting of sapphire substrate (Al 2 O 3 ), GaN, SiC, ZnO, Si, GaP, InP, Ga 2 O 3 , GaAs, and the like.
  • An uneven pattern may be formed on the surface of the substrate 101, but is not limited thereto.
  • Group III-V compound semiconductors may be grown on the substrate 101, and the growth equipment may be an electron beam evaporator, physical vapor deposition (PVD), chemical vapor deposition (CVD), plasma laser deposition (PLD), or dual heat. It can be formed by a dual-type thermal evaporator sputtering, metal organic chemical vapor deposition (MOCVD), etc., but is not limited to such equipment.
  • the growth equipment may be an electron beam evaporator, physical vapor deposition (PVD), chemical vapor deposition (CVD), plasma laser deposition (PLD), or dual heat. It can be formed by a dual-type thermal evaporator sputtering, metal organic chemical vapor deposition (MOCVD), etc., but is not limited to such equipment.
  • a buffer layer (not shown) and / or an undoped semiconductor layer (not shown) may be formed between the substrate 101 and the first conductive semiconductor layer 110 using a group III-V compound semiconductor. It can be separated or removed after growth.
  • the buffer layer may reduce the lattice constant difference from the substrate, and the undoped semiconductor layer may be a base for growth of the compound semiconductor layer.
  • the first conductive semiconductor layer 110 is a compound semiconductor of Group III-V elements doped with a first conductive dopant, for example, GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP and the like can be selected.
  • the first conductive semiconductor layer 110 is an N-type semiconductor layer
  • the first conductive dopant includes an N-type dopant such as Si, Ge, Sn, Se, Te, or the like.
  • the first conductive semiconductor layer 110 may function as an electrode contact layer, and may be formed as a single layer or a multilayer, but is not limited thereto.
  • the active layer 120 may be formed in a single quantum well structure or a multiple quantum well structure.
  • the active layer 120 may be formed in a period of a well layer and a barrier layer, for example, an InGaN well layer / GaN barrier layer, using a compound semiconductor material of Group III-V elements.
  • a conductive clad layer may be formed on or under the active layer 120, and the conductive clad layer may be formed of an AlGaN layer.
  • the second conductive semiconductor layer 130 is formed on the active layer 120.
  • the second conductive semiconductor layer 130 is a compound semiconductor of Group III-V elements doped with a second conductive dopant, for example, GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP and the like can be selected.
  • the second conductive dopant includes a P-type dopant such as Mg and Ze.
  • the second conductive semiconductor layer 130 may function as an electrode contact layer, and may be formed as a single layer or a multilayer, but is not limited thereto.
  • the first conductive semiconductor layer 110, the active layer 120, and the second conductive semiconductor layer 130 may be defined as a light emitting structure 135.
  • the first conductive semiconductor layer 110 may be a P-type semiconductor
  • the second conductive semiconductor layer 130 may be formed of an N-type semiconductor.
  • a third conductive semiconductor layer, for example, an N-type semiconductor layer or a P-type semiconductor layer may be formed on the second conductive semiconductor layer 130.
  • the light emitting structure 135 may include at least one of an N-P junction, a P-N junction, an N-P-N junction, and a P-N-P junction structure.
  • a mask layer 145 is formed in an inner region (eg, a light emitting region) of the second conductive semiconductor layer 130.
  • the mask layer 145 is formed on the second conductive semiconductor layer 130 by a photolithography process, and the outer peripheral region 146 of the second conductive semiconductor layer 130 is etched with a predetermined mask pattern. Can be. Accordingly, the mask layer 145 is formed in the inner region of the second conductive semiconductor layer 130 except for the outer circumferential region 146.
  • the method of forming the mask layer 145 may be variously changed within the technical scope of the embodiment, but is not limited thereto.
  • the first mesa etching is performed through the outer circumferential region 146 of the second conductive semiconductor layer 130.
  • the first mesa etching may be performed by a dry or / and wet etching method, and the dry etching equipment includes, but is not limited to, for example, an inductively coupled plasma (ICP).
  • ICP inductively coupled plasma
  • the depth D1 of the first mesa etching may be formed to a depth at which the substrate 101 is exposed from the second conductive semiconductor layer 130 or a depth at which the first conductive semiconductor layer 110 is exposed. have.
  • the depth D1 of the first mesa etching may be performed on at least one layer or all layers of the semiconductor layers 130, 120, and 110 of the light emitting structure 135.
  • an insulating layer 140 is formed in the first mesa etched region 147.
  • the insulating layer 140 may be formed of an insulating material such as SiO 2 , Si 3 N 4 , Al 2 O 3 , TiO 2 , but is not limited thereto.
  • the insulating layer 140 may be formed in a band shape or a ring shape as a sidewall around an outer circumference of the second conductive semiconductor layer 130, the active layer 120, and the first conductive semiconductor layer 110. have.
  • the insulating layer 140 is formed around the outer periphery of each of the semiconductor layers 130, 120, and 110 to prevent penetration of residual material or external moisture to the outside, and prevent electrical short between the semiconductor layers 130, 120, and 110. have.
  • an upper end of the insulating layer 140 may protrude upward from the second conductive semiconductor layer 130.
  • the insulating layer 140 may be formed to be less than or equal to the thickness of the light emitting structure 135.
  • the mask layer 145 of FIG. 3 is removed.
  • FIG. 6 is a plan view illustrating a plurality of chip regions, and the insulating layer 140 may be formed in a polygonal band or ring shape in the outer peripheral region of each chip.
  • the center line L1 of the insulating layer 140 becomes a chip boundary region for cutting to a chip size.
  • a second electrode layer 150 is formed on the second conductive semiconductor layer 130.
  • the second electrode layer 150 may be formed on the second conductive semiconductor layer 130 or on the second conductive semiconductor layer 130 and the insulating layer 140.
  • the second electrode layer 150 may be formed of a material consisting of Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf, and a combination thereof.
  • the second electrode layer 150 may be made of a reflective electrode material having a reflectance of 50% or more.
  • An ohmic contact layer may be formed between the second electrode layer 150 and the second conductive semiconductor layer 130 in a plurality of patterns having a matrix shape and / or a layer shape.
  • the ohmic contact layer may include indium tin oxide (ITO), indium zinc oxide (IZO), aluminum zinc oxide (AZO), indium zinc tin oxide (IZTO), indium aluminum zinc oxide (IZAZO), indium gallium zinc oxide (IGZO), At least one of materials such as indium gallium tin oxide (IGTO) and antimony tin oxide (ATO).
  • the second electrode layer 150 may be in Schottky contact or ohmic contact with the second conductive semiconductor layer 130.
  • the second electrode layer 150 may be formed on the second conductive semiconductor layer 130. Schottky contact is made, and the ohmic contact layer is in ohmic contact with the second conductive semiconductor layer 130. Accordingly, since the electrical characteristics of the second electrode layer 150 and the ohmic contact layer are different, the current supplied to the second conductive semiconductor layer 130 can be diffused.
  • the second electrode layer 150 functions as an electrode for stably supplying a second polarity power to the light emitting structure 135, and reflects light incident through the second conductive semiconductor layer 130.
  • the conductive support member 160 is formed on the second electrode layer 150.
  • the conductive support member 160 may include copper (Cu), gold (Au), nickel (Ni), molybdenum (Mo), copper-tungsten (Cu-W), carrier wafers (eg, Si, Ge, GaAs, ZnO, Sic, etc.) may be implemented.
  • the conductive support member 160 may be formed by an electroplating method, but is not limited thereto.
  • the second electrode layer 150 and the conductive support member 160 may be used as a second electrode part for supplying a second polarity power to the light emitting structure 135, and the second electrode part may be a single layer or a multilayer electrode material. It may be formed into a, or attached in an adhesive manner.
  • the conductive support member 160 When the conductive support member 160 is formed, the conductive support member 160 is placed on a base and disposed to face the substrate 101 upward.
  • the substrate 101 is separated from the first conductive semiconductor layer 110 by irradiating a laser having a predetermined wavelength through the substrate 101. That is, the substrate 101 may be removed by a laser lift off (LLO) process.
  • LLO laser lift off
  • the substrate 101 may be separated by removing the buffer layer using a wet etching technique.
  • the substrate removal method of the embodiment is an example, and may be removed using various methods.
  • the insulating layer 140 is disposed outside the second conductive semiconductor layer 130 and the second electrode layer 150, whereby the second conductive semiconductor layer 130 and the second electrode layer 150 are disposed. Strengthen the adhesive force between) and protect it from external impact. Accordingly, the electrical reliability of the semiconductor light emitting device can be improved.
  • the insulating layer 140 may transmit the light of the laser, thereby reducing the impact of the laser.
  • the surface of the first conductive semiconductor layer 110 from which the substrate 101 is removed may be polished by an inductively coupled plasma / reactive ion etching (ICP / RIE) method.
  • ICP / RIE inductively coupled plasma / reactive ion etching
  • roughness may be formed on the surface of the first conductive semiconductor layer 110.
  • a first electrode 170 is formed on the first conductive semiconductor layer 110.
  • the second mesa etching is performed.
  • the second mesa etching is to etch the center portion of the insulating layer 140 disposed around the outer periphery of each chip. That is, etching is performed to a predetermined depth along the chip boundary line L1 of FIG. 6.
  • the etching method may be a dry etching or a wet etching method.
  • the first electrode 170 may be formed before or after the first mesa etching, and before the formation of the first electrode 170, a light transmissive conductive layer such as ITO may be formed on the first conductive semiconductor layer 110. H) can be formed. The transmissive conductive layer may diffuse the current supplied through the first electrode 170.
  • the second mesa etching After the second mesa etching, it is separated into individual chips through a breaking process.
  • the insulating layer 140 is etched by the second mesa etching, it is possible to prevent the electrical short problem caused by the etching of the semiconductor material. That is, the stability of the process can be improved.
  • the luminous efficiency may be improved by the ohmic characteristic of the insulating layer 140.
  • the insulating layer 140 Since the insulating layer 140 is formed, a process of forming a separate insulating layer to protect a part of the outer side of the light emitting structure 135 after chip separation is omitted.
  • FIG. 10 is a side sectional view showing a semiconductor light emitting device according to the second embodiment.
  • the same parts as in the first embodiment are referred to the first embodiment, and redundant descriptions thereof will be omitted.
  • the semiconductor light emitting device 100A includes an insulating layer 142 around an outer circumference of the light emitting structure 135.
  • the thickness D2 of the insulating layer 142 may be formed from the second conductive semiconductor layer 142 to a part of the first conductive semiconductor layer 110.
  • the insulating layer 142 may perform the same function even if the insulating layer 142 is not formed in the entire outer region of the first conductive semiconductor layer 110.
  • the upper point P1 of the insulating layer 142 may vary according to the first mesa etching depth.
  • the insulating layer 142 may be formed to have a thickness D3 less than or equal to the active layer 120.
  • the insulating layer 142 may be formed from the active layer 120 to the second conductive semiconductor layer 130 or the third conductive semiconductor layer (not shown).
  • the first embodiment For the material, function, and effect of the insulating layer 142 in the semiconductor light emitting device 100A, the first embodiment will be referred to.
  • FIG. 11 is a side cross-sectional view illustrating a semiconductor light emitting device according to a third embodiment.
  • the same parts as in the first embodiment are referred to the first embodiment, and redundant description thereof will be omitted.
  • the semiconductor light emitting device 100B includes a light emitting structure 135 and an insulating layer 144 around the outer circumference of the second electrode layer 150.
  • the insulating layer 144 may be formed around an outer circumference of the active layer 120, the second conductive semiconductor layer 130, and the second electrode layer 150.
  • the insulating layer 144 protrudes to a predetermined thickness D4 below the second conductive semiconductor layer 130, and thus may be disposed outside the second electrode layer 150.
  • the second electrode layer 150 may be formed under the second conductive semiconductor layer 130, or may be formed under the second conductive semiconductor layer 130 and the insulating layer 144.
  • the insulating layer 144 further moves the outer side of the second electrode layer 150 downward, thereby increasing the separation distance from the semiconductor layers 110, 120, and 130. Such a structure can improve the electrical reliability of the semiconductor light emitting device 100B.
  • the upper end of the insulating layer 144 may be formed to a part or the upper end of the first conductive semiconductor layer 110, but is not limited thereto.
  • the material, function, and effect of the insulating layer 144 in the semiconductor light emitting device 100B will be described with reference to the first embodiment.
  • FIG. 12 is a side cross-sectional view illustrating a semiconductor light emitting device according to a fourth embodiment.
  • the same parts as those of the first and second embodiments are referred to the first and second embodiments, and redundant descriptions thereof will be omitted.
  • the semiconductor light emitting device 100C forms an insulating layer 142 around an outer circumference of the light emitting structure 135, and a passivation layer 155 around an outer circumference of an upper surface of the second electrode layer 150. Include.
  • the passivation layer 155 may be formed in a ring shape or a band shape along an outer circumference between the second electrode layer 150 and the insulating layer 142.
  • the passivation layer 155 may be in contact with the outer circumference of the bottom surface of the second conductive semiconductor layer 130, and in the case of a conductive material, may use electrical characteristics.
  • the passivation layer 155 may be formed of the same insulating material as the insulating layer 142 or a transparent conductive layer.
  • the light transmitting conductive layer may include ITO, IZO, AZO, IZTO, IAZO, IGZO, IGTO, ATO, and the like.
  • the passivation layer 155 may be formed in the chip boundary region to minimize the impact transmitted to the light emitting structure 135 when the substrate is separated.
  • the passivation layer 155 is a transparent conductive layer, the width of the insulating layer 142 may be reduced, thereby improving the emission area.
  • the embodiment can provide a semiconductor light emitting device such as an LED.
  • the embodiment can improve the reliability according to the manufacturing process of the semiconductor light emitting device.
  • the embodiment may be applied to a light source packaging a semiconductor light emitting device in an illumination field, an indication field, a display field, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

실시 예는 반도체 발광소자에 관한 것이다. 실시 예에 따른 반도체 발광소자는 제1도전형 반도체층; 상기 제1도전형 반도체층 아래에 활성층; 상기 활성층 아래에 제2도전형 반도체층; 상기 제2도전형 반도체층 아래에 제2전극층; 및 상기 제1도전형 반도체층, 상기 활성층 및 상기 제2도전형 반도체층 중 적어도 2개의 층 둘레에 절연층을 포함한다.

Description

반도체 발광소자
실시 예는 반도체 발광소자에 관한 것이다.
Ⅲ-Ⅴ족 질화물 반도체는 청색/녹색 발광 다이오드(LED)를 비롯한 광 소자, MOSFET(Metal Semiconductor Field Effect Transistor), HEMT(Hetero junction Field Effect Transistors) 등의 고속 스위칭 소자, 조명 또는 표시 장치의 광원 등으로 다양하게 응용되고 있다. 특히 Ⅲ족 질화물 반도체를 이용한 발광소자는 가시광선에서 자외선까지의 영역에 대응하는 직접 천이형 밴드 갭을 갖고, 고효율 광 방출을 실현할 수 있다.
상기 질화물 반도체는 주로 LED(Light Emitting Diode) 또는 레이저 다이오드(LD)로 활용되고 있으며, 제조 공정이나 광 효율을 개선하기 위한 연구가 지속되고 있다.
실시 예는 복수의 도전형 반도체층의 외측 둘레에 절연층을 포함하는 반도체 발광소자를 제공한다.
실시 예는 발광 구조물의 아래에 제2전극층을 배치하고, 상기 발광 구조물의 반도체층 중 적어도 한 층의 외측 둘레에 절연층을 포함하는 반도체 발광소자를 제공한다.
실시 예는 발광 구조물의 외측 둘레에 절연층 및 제2전극층의 상면 외측에 페시베이션층을 배치한 반도체 발광소자를 제공한다.
실시 예에 따른 반도체 발광소자는 제1도전형 반도체층; 상기 제1도전형 반도체층 아래에 활성층; 상기 활성층 아래에 제2도전형 반도체층; 상기 제2도전형 반도체층 아래에 제2전극층; 및 상기 제1도전형 반도체층, 상기 활성층, 및 상기 제2도전형 반도체층 중 적어도 2개의 층 둘레에 절연층을 포함한다.
실시 예에 따른 반도체 발광소자는, 제1도전형 반도체층, 상기 제1도전형 반도체층 아래에 활성층, 및 상기 활성층 아래에 제2도전형 반도체층을 포함하는 발광 구조물; 상기 제1도전형 반도체층 위에 제1전극; 상기 제2도전형 반도체층 아래에 제2전극층; 상기 활성층과 상기 제2도전형 반도체층의 외측 둘레에 절연층을 포함한다.
실시 예는 발광 구조물의 외측으로의 전류 누설을 방지할 수 있는 효과가 있다.
실시 예는 절연층을 이용하여 제2전극층과의 접착력을 개선시켜 줄 수 있다.
실시 예는 제2전극층에 대한 별도의 포토리소그라피 공정을 제거함으로써, 제조공정이 감소되는 효과가 있다.
실시 예는 반도체 발광소자의 전기적인 신뢰성을 개선시켜 줄 수 있다.
도 1은 제1실시 예에 따른 반도체 발광소자를 나타낸 측 단면도이다.
도 2 내지 도 9는 도 1의 제1실시 예에 따른 반도체 발광소자의 제조과정을 나타낸 도면이다.
도 10은 제2실시 예에 따른 반도체 발광소자를 나타낸 측 단면도이다.
도 11은 제3실시 예에 따른 반도체 발광소자를 나타낸 측 단면도이다.
도 12는 제4실시 예에 따른 반도체 발광소자를 나타낸 측 단면도이다.
이하, 실시 예에 따른 반도체 발광소자에 대하여 첨부된 도면을 참조하여 설명하면 다음과 같다. 이하, 실시 예를 설명함에 있어서, 각 층의 위 또는 아래에 대한 기준은 도면을 참조하여 설명될 수 있으며, 또한 각 층의 두께는 일 예로 설명된 것이며, 도면의 두께로 한정되지는 않는다.
실시 예에 있어서, 각 층(막), 영역, 패턴 또는 구조물들이 기판, 각 층(막), 영역, 패드 또는 패턴들의 "위(on)"에 또는 "아래(under)"에 형성되는 것으로 기재되는 경우에 있어, "위(on)"와 "아래(under)"는 "directly"와 "indirectly"의 의미를 모두 포함한다.
도 1은 제1실시 예에 따른 반도체 발광소자를 나타낸 측 단면도이다.
도 1를 참조하면, 반도체 발광소자(100)는 제 1도전형 반도체층(110), 활성층(120), 제 2도전형 반도체층(130), 절연층(140), 제2전극층(150), 전도성 지지부재(160)를 포함한다.
상기 반도체 발광소자(100)는 3족-5족 화합물 반도체를 이용한 LED를 포함하며, 상기 LED는 청색, 녹색, 또는 적색 등과 같은 광을 방출하는 유색 LED이거나 UV LED일 수 있다. 상기 LED의 방출 광은 실시 예의 기술적 범위 내에서 다양하게 구현될 수 있다.
상기 제 1도전형 반도체층(110)은 제1도전형 도펀트가 도핑된 3족-5족 원소의 화합물 반도체 예컨대, GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP 등에서 선택될 수 있다.
상기 제1도전형 반도체층(110)이 N형 반도체층인 경우, 상기 제1도전형 도펀트는 Si, Ge, Sn, Se, Te 등과 같은 N형 도펀트를 포함한다. 상기 제1도전형 반도체층(110)는 전극 접촉층으로 기능할 수 있으며, 단층 또는 다층으로 형성될 수 있으며, 이에 대해 한정하지는 않는다.
상기 제1도전형 반도체층(110) 위에 제1전극(170)이 형성되며, 상기 제1전극(170)은 제1극성의 전원을 공급하게 된다. 여기서, 상기 제1도전형 반도체층(110)의 상면에는 소정 형상의 러프니스(미도시)가 형성될 수 있으며, 이러한 러프니스는 실시 예의 기술적 범위 내에서 추가하거나 변경될 수 있다.
또한 상기 제1도전형 반도체층(110) 위에는 투광성 전극층(미도시)이 형성될 수 있으며, 상기 투과성 전극층은 상기 제1전극(170)에 의해 공급된 제1극성의 전원을 전 영역으로 확산시켜 주게 된다. 상기 투과성 전극층은 ITO(indium tin oxide), IZO(indium zinc oxide), IZTO(indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), AZO(aluminum zinc oxide), ATO(antimony tin oxide), GZO(gallium zinc oxide), IrOx, RuOx, RuOx/ITO, Ni/IrOx/Au, 및 Ni/IrOx/Au/ITO 중 적어도 하나를 포함할 수 있다.
상기 제 1도전형 반도체층(110) 아래에는 활성층(120)이 형성되며, 상기 활성층(120)은 단일 양자 우물 구조 또는 다중 양자 우물 구조로 형성될 수 있다. 상기 활성층(120)은 3족-5족 원소의 화합물 반도체 재료를 이용하여 우물층과 장벽층의 주기, 예를 들면 InGaN 우물층/GaN 장벽층의 주기로 형성될 수 있다.
상기 활성층(120)은 발광시키는 빛의 파장에 따른 밴드 갭 에너지를 갖는 재료로 선택될 수 있다. 상기 활성층(120)은 청색 파장의 광, 레드 파장의 광, 녹색 파장의 광 등의 유색 광을 발광하는 재료를 포함할 수 있으며, 이에 대해 한정하지는 않는다. 상기 활성층(120)의 위 또는/및 아래에는 도전형 클래드층이 형성될 수 있으며, 상기 도전형 클래드층은 AlGaN층으로 형성될 수 있다.
상기 활성층(120) 아래에는 제 2도전형 반도체층(130)이 형성된다. 상기 제 2도전형 반도체층(130)은 제2도전형 도펀트가 도핑된 3족-5족 원소의 화합물 반도체 예컨대, GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP 등에서 선택될 수 있다. 상기 제2도전형 반도체층(130)이 P형 반도체층인 경우, 상기 제2도전형 도펀트는 Mg, Ze 등과 같은 P형 도펀트를 포함한다. 상기 제2도전형 반도체층(130)는 전극 접촉층으로 기능할 수 있으며, 단층 또는 다층으로 형성될 수 있고, 이에 대해 한정하지는 않는다.
여기서, 상기 제1도전형 반도체층(110), 상기 활성층(120), 상기 제2도전형 반도체층(130)은 발광 구조물(135)로 정의될 수 있다. 또한 상기 제1도전형 반도체층(110)은 P형 반도체이고, 상기 제2도전형 반도체층(130)은 N형 반도체로 형성될 수 있다. 상기 제2도전형 반도체층(130) 아래에는 제3도전형 반도체층 예컨대, N형 반도체층 또는 P형 반도체층이 형성될 수 있다. 이에 따라 상기 발광 구조물(135)은 N-P 접합, P-N 접합, N-P-N 접합, P-N-P 접합 구조 중 적어도 하나를 포함할 수 있다.
상기 발광 구조물(135)의 외측 둘레에는 절연층(140)이 형성된다. 상기 절연층(140)은 상기 제2도전형 반도체층(130), 상기 활성층(120) 및 상기 제1도전형 반도체층(110)의 외측 둘레에 측벽으로 기능하며, 띠 형상 또는 고리 형상으로 형성될 수 있다.
상기 절연층(140)은 SiO2, Si3N4, Al2O3, TiO2 등의 절연 재료로 형성될 수 있으며, 이 재료로 한정하지는 않는다.
상기 절연층(140)은 적어도 한 반도체층의 외측 둘레에 측벽으로 형성될 수 있다. 예를 들면, 상기 활성층(120)의 외측에 형성되거나, 상기 제2도전형 반체층(130) 및 상기 활성층(120)의 외측에 형성될 수 있다.
또한 상기 절연층(140)의 상단은 상기 제1도전형 반도체층(110)의 하부까지 연장될 수 있다. 상기 절연층(140)의 하단은 상기 제 2도전형 반도체층(130)의 보다 아래까지 연장될 수 있다.
상기 절연층(140)은 상기 발광 구조물(135)의 두께 이하 또는 이상으로 형성될 수 있다.
상기 제2전극층(150)은 상기 제2도전형 반도체층(130)의 아래에 형성되거나, 상기 절연층(140)의 아래까지 연장되어 형성될 수 있다.
상기 제2전극층(150)은 Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf 및 이들의 선택적인 조합으로 구성된 물질 중에서 형성될 수 있다. 여기서, 상기 제2전극층(150)은 반사율이 50% 이상의 반사 전극 물질로 이루어질 수 있다.
상기 제2전극층(150)과 상기 제2도전형 반도체층(130) 사이에는 복수개의 패턴이 매트릭스 형상 또는/및 layer 형태로 이루어진 오믹 접촉층(미도시)이 형성될 수 있다. 상기 오믹 접촉층은 ITO(Indium Tin Oxide), IZO(Indium zinc oxide), AZO(Aluminum Zinc Oxide), IZTO(indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), ATO(antimony tin oxide) 등의 재료 중에서 적어도 하나를 포함한다.
여기서, 상기 제2전극층(150)은 상기 제2도전형 반도체층(130)에 쇼트키 접촉 또는 오믹 접촉될 수 있다. 상기 제2전극층(150)과 상기 제2도전형 반도체층(130) 사이에 패턴 형상의 오믹 접촉층이 존재하는 경우, 상기 제2전극층(150)은 상기 제2도전형 반도체층(130)에 쇼트키 접촉되고, 상기 오믹 접촉층은 상기 제2도전형 반도체층(130)에 오믹 접촉된다. 이에 따라 상기 제2전극층(150) 및 상기 오믹 접촉층은 전기적인 특성이 다르기 때문에, 상기 제2도전형 반도체층(130)으로 공급되는 전류를 확산시켜 줄 수 있다.
상기 제2전극층(150)은 제2극성의 전원을 상기 발광구조물(135)에 안정적으로 공급하는 전극으로 기능하며, 상기 제2도전형 반도체층(130)을 통해 입사된 광을 반사시켜 준다.
상기 제2전극층(150)의 아래에는 상기 전도성 지지부재(160)가 형성된다. 상기 전도성 지지부재(160)는 구리(Cu), 금(Au), 니켈(Ni), 몰리브데늄(Mo), 구리-텅스텐(Cu-W), 캐리어 웨이퍼(예: Si, Ge, GaAs, ZnO, Sic 등) 등으로 구현될 수 있다. 상기 전도성 지지부재(160)는 전해 도금 방식으로 형성될 수 있으며, 이에 대해 한정하지는 않는다.
상기 제2전극층(150) 및 상기 전도성 지지부재(160)는 상기 발광 구조물(135)에 제2극성의 전원을 공급하는 제2전극부로 사용될 수 있으며, 상기 제2전극부는 단층 또는 다층의 전극 재료로 형성되거나, 상기 제2도전형 반도체층(130) 아래에 접착제로 부착될 수 있다.
반도체 발광소자(100)는 상기 절연층(140)이 상기 발광 구조물(135)의 외측에 배치됨으로써, 상기 발광구조물(135)의 외측으로 잔류 물질이나 외부 습기가 침투하는 것을 방지할 수 있다. 이에 따라 반도체 발광소자(100)의 외측에서의 각 반도체층(110,120,130) 간의 전기적인 쇼트를 방지할 수 있다.
상기 절연층(140)은 상기 발광 구조물(135)의 외측에 배치됨으로써, 상기 발광 구조물(135)의 외측 방향으로 누설되는 전류를 차단할 수 있다. 예를 들면, 상기 제2전극층(150)을 통해 주입되는 전류는 상기 발광 구조물(135)의 외측 방향으로 진행하는 성질이 있는 데, 이러한 전류는 상기 절연층(140)에 의해 차단됨으로써, 전류의 주입 효율을 개선시켜 줄 수 있다.
상기 절연층(140)은 상기 제2전극층(150)과 상기 제 2도전형 반도체층(130)의 외측에 배치됨으로써, 상기 제2전극층(150)의 접착력을 개선시켜 줄 수 있다.
도 2내지 도 9는 제1실시 예에 따른 발광 소자의 제조 과정을 나타낸 도면이다.
도 2를 참조하면, 기판(101) 위에는 제 1도전형 반도체층(110)이 형성되고, 상기 제 1도전형 반도체층(110) 위에는 활성층(120)이 형성되며, 상기 활성층(120) 위에는 제 2도전형 반도체층(130)이 형성된다.
상기 기판(101)은 사파이어 기판(Al203), GaN, SiC, ZnO, Si, GaP, InP, Ga203, 그리고 GaAs 등으로 이루어진 군에서 선택될 수 있다. 상기 기판(101)의 표면에는 요철 패턴이 형성될 수 있으며, 이에 대해 한정하지는 않는다.
상기 기판(101) 위에는 3족-5족 화합물 반도체가 성장될 수 있으며, 그 성장 장비는 전자빔 증착기, PVD(physical vapor deposition), CVD(chemical vapor deposition), PLD(plasma laser deposition), 이중형의 열증착기(dual-type thermal evaporator) 스퍼터링(sputtering), MOCVD(metal organic chemical vapor deposition) 등에 의해 형성할 수 있으며, 이러한 장비로 한정하지는 않는다.
상기 기판(101)과 상기 제1도전형 반도체층(110) 사이에는 3족-5족 화합물 반도체를 이용한 버퍼층(미도시) 또는/및 언도프드 반도체층(미도시)이 형성될 수도 있으며, 박막 성장 후 분리 또는 제거될 수 있다. 상기 버퍼층은 상기 기판과의 격자 상수 차이를 줄여줄 수 있으며, 상기 언도프드 반도체층은 화합물 반도체층의 성장을 위한 베이스가 될 수 있다.
상기 제 1도전형 반도체층(110)은 제1도전형 도펀트가 도핑된 3족-5족 원소의 화합물 반도체 예컨대, GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP 등에서 선택될 수 있다. 상기 제1도전형 반도체층(110)이 N형 반도체층인 경우, 상기 제1도전형 도펀트는 Si, Ge, Sn, Se, Te 등과 같은 N형 도펀트를 포함한다. 상기 제1도전형 반도체층(110)는 전극 접촉층으로 기능할 수 있으며, 단층 또는 다층으로 형성될 수 있으며, 이에 대해 한정하지는 않는다.
상기 활성층(120)은 단일 양자 우물 구조 또는 다중 양자 우물 구조로 형성될 수 있다. 상기 활성층(120)은 3족-5족 원소의 화합물 반도체 재료를 이용하여 우물층과 장벽층의 주기, 예를 들면 InGaN 우물층/GaN 장벽층의 주기로 형성될 수 있다. 상기 활성층(120)의 위 또는/및 아래에는 도전형 클래드층이 형성될 수 있으며, 상기 도전형 클래드층은 AlGaN층으로 형성될 수 있다.
상기 활성층(120) 위에는 제 2도전형 반도체층(130)이 형성된다. 상기 제 2도전형 반도체층(130)은 제2도전형 도펀트가 도핑된 3족-5족 원소의 화합물 반도체 예컨대, GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP 등에서 선택될 수 있다. 상기 제2도전형 반도체층(130)이 P형 반도체층인 경우, 상기 제2도전형 도펀트는 Mg, Ze 등과 같은 P형 도펀트를 포함한다. 상기 제2도전형 반도체층(130)은 전극 접촉층으로 기능할 수 있으며, 단층 또는 다층으로 형성될 수 있고, 이에 대해 한정하지는 않는다.
여기서, 상기 제1도전형 반도체층(110), 상기 활성층(120), 상기 제2도전형 반도체층(130)은 발광 구조물(135)로 정의될 수 있다. 또한 상기 제1도전형 반도체층(110)은 P형 반도체이고, 상기 제2도전형 반도체층(130)은 N형 반도체로 형성될 수 있다. 상기 제2도전형 반도체층(130) 위에는 제3도전형 반도체층 예컨대, N형 반도체층 또는 P형 반도체층이 형성될 수 있다. 이에 따라 상기 발광 구조물(135)은 N-P 접합, P-N 접합, N-P-N 접합, P-N-P 접합 구조 중 적어도 하나를 포함할 수 있다.
도 3 및 도 4를 참조하면, 상기 제 2도전형 반도체층(130)의 내측 영역(예: 발광 영역)에는 마스크층(145)이 형성된다.
상기 마스크층(145)은 포토 리소그라피 공정에 의해 상기 제 2도전형 반도체층(130) 위에 형성되며, 소정의 마스크 패턴으로 상기 제2도전형 반도체층(130)의 외측 둘레 영역(146)이 에칭될 수 있다. 이에 따라 상기 마스크층(145)은 상기 제 2도전형 반도체층(130)의 외측 둘레 영역(146)을 제외한 내측 영역에 형성된다. 이러한 마스크층(145)의 형성 방법은 실시 예의 기술적 범위 내에서 다양하게 변경될 수 있으며, 이에 대해 한정하지는 않는다.
상기 제 2도전형 반도체층(130)의 외측 둘레 영역(146)을 통해 제1메사 에칭을 수행하게 된다. 상기 제1메사 에칭은 건식 또는/및 습식 에칭 방법으로 수행될 수 있으며, 상기 건식 에칭 장비는 예컨대, ICP(Inductively Coupled Plazma) 등을 포함하며, 이에 대해 한정하지는 않는다.
상기 제1메사 에칭의 깊이(D1)는 상기 제2도전형 반도체층(130)부터 상기 기판(101)이 노출되는 깊이 또는 상기 제1도전형 반도체층(110)이 노출되는 깊이로 형성될 수 있다. 상기 제1메사 에칭의 깊이(D1)는 상기 발광 구조물(135)의 반도체층(130,120,110) 중에서 적어도 한 층 또는 모든 층에 대해 수행할 수 있다.
도 4 및 도 5를 참조하면, 상기 제1메사 에칭된 영역(147)에는 절연층(140)이 형성된다. 상기 절연층(140)은 SiO2, Si3N4, Al2O3, TiO2 등의 절연 재료로 형성될 수 있으며, 이 재료로 한정하지는 않는다.
상기 절연층(140)은 상기 제2도전형 반도체층(130), 상기 활성층(120) 및 상기 제1도전형 반도체층(110)의 외측 둘레에 측벽으로서, 띠 형상 또는 고리 형상으로 형성될 수 있다.
상기 절연층(140)은 각 반도체층(130,120,110)의 외측 둘레에 형성되어, 외측으로 잔류 물질이나 외부 습기가 침투하는 것을 방지할 수 있고, 각 반도체층(130,120,110) 간의 전기적인 쇼트를 방지할 수 있다.
여기서, 상기 절연층(140)의 상단은 상기 제2도전형 반도체층(130) 보다 위로 돌출될 수 있다. 상기 절연층(140)은 상기 발광 구조물(135)의 두께 이하 또는 이상으로 형성될 수 있다.
상기 절연층(140)이 형성되면, 상기 마스크층(도3의 145)은 제거된다.
도 6은 복수개의 칩 영역을 나타낸 평면도로서, 상기 절연층(140)은 각 칩의 외측 둘레 영역에 다각형의 띠 또는 고리 형상으로 형성될 수 있다. 상기 절연층(140)의 센터 라인(L1)은 칩 크기로 커팅하기 위한 칩 경계 영역이 된다.
도 7을 참조하면, 상기 제2도전형 반도체층(130)의 위에는 제2전극층(150)이 형성된다. 상기 제2전극층(150)은 상기 제2도전형 반도체층(130) 위에 형성되거나, 상기 상기 제2도전형 반도체층(130) 및 상기 절연층(140)의 위에 형성될 수 있다.
상기 제2전극층(150)은 Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf 및 이들의 선택적인 조합으로 구성된 물질 중에서 형성될 수 있다. 여기서, 상기 제2전극층(150)은 반사율이 50% 이상의 반사 전극 물질로 이루어질 수 있다.
상기 제2전극층(150)과 상기 제2도전형 반도체층(130) 사이에는 복수개의 패턴이 매트릭스 형상 또는/및 layer 형태로 이루어진 오믹 접촉층(미도시)이 형성될 수 있다. 상기 오믹 접촉층은 ITO(Indium Tin Oxide), IZO(Indium zinc oxide), AZO(Aluminum Zinc Oxide), IZTO(indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), ATO(antimony tin oxide) 등의 재료 중에서 적어도 하나를 포함한다.
여기서, 상기 제2전극층(150)은 상기 제2도전형 반도체층(130)에 쇼트키 접촉 또는 오믹 접촉될 수 있다. 상기 제2전극층(150)과 상기 제2도전형 반도체층(130) 사이에 패턴 형상의 오믹 접촉층이 존재하는 경우, 상기 제2전극층(150)은 상기 제2도전형 반도체층(130)에 쇼트키 접촉되고, 상기 오믹 접촉층은 상기 제2도전형 반도체층(130)에 오믹 접촉된다. 이에 따라 상기 제2전극층(150) 및 상기 오믹 접촉층은 전기적인 특성이 다르기 때문에, 상기 제2도전형 반도체층(130)으로 공급되는 전류를 확산시켜 줄 수 있다.
상기 제2전극층(150)은 제2극성의 전원을 상기 발광구조물(135)에 안정적으로 공급하는 전극으로 기능하며, 상기 제2도전형 반도체층(130)을 통해 입사된 광을 반사시켜 준다.
도 8을 참조하면, 상기 제2전극층(150)의 위에는 상기 전도성 지지부재(160)가 형성된다. 상기 전도성 지지부재(160)는 구리(Cu), 금(Au), 니켈(Ni), 몰리브데늄(Mo), 구리-텅스텐(Cu-W), 캐리어 웨이퍼(예: Si, Ge, GaAs, ZnO, Sic 등) 등으로 구현될 수 있다. 상기 전도성 지지부재(160)는 전해 도금 방식으로 형성될 수 있으며, 이에 대해 한정하지는 않는다.
상기 제2전극층(150) 및 상기 전도성 지지부재(160)는 상기 발광 구조물(135)에 제2극성의 전원을 공급하는 제2전극부로 사용될 수 있으며, 상기 제2전극부는 단층 또는 다층의 전극 재료로 형성되거나, 접착 방식으로 부착될 수 있다.
상기 전도성 지지부재(160)가 형성되면, 상기 전도성 지지부재(160)을 베이스에 놓고 상기 기판(101)을 위로 향하도록 배치한다.
상기 기판(101)을 통해 일정 파장의 레이저를 조사하여 상기 기판(101)을 상기 제1도전형 반도체층(110)로부터 분리시켜 준다. 즉, 레이저 리프트 오프(LLO : Laser Lift Off) 과정으로 상기 기판(101)을 제거할 수 있다. 상기 기판(101)과 제 1도전형 반도체층(110) 사이에 다른 반도체층(예: 버퍼층)이 형성된 경우, 습식 식각 기술을 이용하여 상기 버퍼층을 제거하여, 상기 기판(101)을 분리할 수도 있다. 실시 예의 기판 제거 방식은 일 예이며, 다양한 방법을 사용하여 제거할 수 있다.
여기서, 상기 절연층(140)은 상기 제 2도전형 반도체층(130)과 상기 제2전극층(150)의 외측에 배치됨으로써, 상기 제2도전형 반도체층(130)과 상기 제2전극층(150) 사이의 접착력을 강화시켜 주어, 외부 충격으로부터 보호하게 된다. 이에 따라 반도체 발광소자의 전기적인 신뢰성을 개선시켜 줄 수 있다.
또한 상기 절연층(140)은 상기 레이저의 광이 투과됨으로써, 상기 레이저에 의한 충격을 줄여줄 수 있다.
상기 기판(101)이 제거된 제 1도전형 반도체층(110)의 표면에 대해 ICP/RIE(Inductively coupled Plasma/Reactive Ion Etching) 방식으로 연마하는 공정을 수행할 수 있다.
또한 상기 제1도전형 반도체층(110)의 표면에 러프니스를 형성시켜 줄 수 있다.
도 9를 참조하면, 상기 제 1도전형 반도체층(110) 위에는 제1전극(170)을 형성하게 된다.
여기서, 제2메사 에칭을 수행하게 된다. 상기 제2메사 에칭은 각 칩의 외측 둘레에 배치된 상기 절연층(140)의 센터 부분을 에칭하게 된다. 즉, 도 6의 칩 경계 라인(L1)을 따라 소정 깊이로 에칭하게 된다. 상기 에칭 방식은 건식 에칭 또는 습식 에칭 방식을 이용할 수 있다.
상기 제1전극(170)은 상기 제1메사 에칭 전 또는 후에 형성될 수 있으며, 상기 제1전극(170)의 형성 전에 상기 제1도전형 반도체층(110) 위에 ITO와 같은 투광성 전도층(미도시)을 형성시켜 줄 수 있다. 상기 투광성 전도층은 상기 제1전극(170)을 통해 공급되는 전류를 확산시켜 줄 수 있다.
상기 제2메사 에칭 후, 브레이킹(breaking) 공정을 통해 개별 칩으로 분리하게 된다.
상기 절연층(140)은 제2메사 에칭에 의해 에칭됨으로써, 반도체 재료의 에칭에 의한 전기적인 쇼트 문제를 방지할 수 있다. 즉, 공정의 안정성을 개선시켜 줄 수 있다. 상기 절연층(140)의 오믹 특성에 의해 발광 효율이 개선될 수 있다.
상기 절연층(140)이 형성됨으로써, 칩 분리 후 상기 발광 구조물(135)의 외측 일부를 보호하기 위해 별도의 절연층을 형성하는 과정은 생략된다.
도 10은 제2실시 예에 따른 반도체 발광소자를 나타낸 측 단면도이다. 제2실시 예를 설명함에 있어서, 제1실시 예와 동일한 부분에 대해서는 제1실시 예를 참조하며, 중복 설명은 생략하기로 한다.
도 10을 참조하면, 반도체 발광소자(100A)는 발광 구조물(135)의 외측 둘레에 절연층(142)을 포함한다. 상기 절연층(142)의 두께(D2)는 상기 제2도전형 반도체층(142)부터 상기 제1도전형 반도체층(110)의 일부까지 형성될 수 있다. 상기 절연층(142)은 상기 제1도전형 반도체층(110)의 외측 전 영역에 형성되지 않더라도, 동일한 기능을 수행할 수 있다.
여기서, 상기 절연층(142)의 상단 지점(P1)은 제1메사 에칭 깊이에 따라 달라질 수 있다.
또한 상기 절연층(142)은 상기 활성층(120) 이하의 두께(D3)로 형성될 수 있다. 예를 들면, 상기 절연층(142)은 상기 활성층(120)부터 상기 제2도전형 반도체층(130) 또는 상기 제3도전형 반도체층(미도시)까지 형성될 수 있다.
상기 반도체 발광소자(100A)에서 상기 절연층(142)에 대한 재질, 기능 및 효과는 제1실시 예를 참조하기로 한다.
도 11은 제3실시 예에 따른 반도체 발광소자를 나타낸 측 단면도이다. 제3실시 예를 설명함에 있어서, 제1실시 예와 동일한 부분에 대해서는 제1실시 예를 참조하며, 중복 설명은 생략하기로 한다.
도 11을 참조하면, 반도체 발광소자(100B)는 발광 구조물(135) 및 상기 제2전극층(150)의 외측 둘레에 절연층(144)을 포함한다.
상기 절연층(144)은 상기 활성층(120), 상기 제2도전형 반도체층(130) 및 상기 제2전극층(150)의 외측 둘레에 형성될 수 있다.
상기 절연층(144)은 상기 제2도전형 반도체층(130)보다 아래로 소정 두께(D4)로 돌출됨으로써, 상기 제2전극층(150)의 외측에 배치될 수 있다.
상기 제2전극층(150)은 상기 제2도전형 반도체층(130) 아래에 형성되거나, 상기 제2도전형 반도체층(130) 및 상기 절연층(144)의 아래에 형성될 수 있다.
상기 절연층(144)이 상기 제2전극층(150)의 외측을 아래로 더 이동시켜 줌으로써, 반도체층(110,120,130)과의 이격 거리를 증가시켜 줄 수 있다. 이러한 구조는 반도체 발광소자(100B)의 전기적인 신뢰성을 개선시켜 줄 수 있다.
또한 상기 절연층(144)의 상단은 상기 제1도전형 반도체층(110)의 일부 또는 상단까지 형성될 수 있으며, 이에 대해 한정하지는 않는다.
상기 반도체 발광소자(100B)에서 상기 절연층(144)에 대한 재질, 기능 및 효과는 제1실시 예를 참조하기로 한다.
도 12는 제4실시 예에 따른 반도체 발광소자를 나타낸 측 단면도이다. 제4실시 예를 설명함에 있어서, 상기 제 1 및 제2실시 예들과 동일한 부분에 대해서는 제1 및 제2실시 예를 참조하며, 중복 설명은 생략하기로 한다.
도 12를 참조하면, 반도체 발광소자(100C)는 발광 구조물(135)의 외측 둘레에 절연층(142)을 형성하고, 상기 제2전극층(150)의 상면 외측 둘레에 페시베이션층(155)을 포함한다.
상기 페시베이션층(155)은 상기 제2전극층(150)과 상기 절연층(142) 사이의 외측 둘레를 따라 고리 형상 또는 띠 형상으로 형성될 수 있다. 상기 페시베이션층(155)은 상기 제2도전형 반도체층(130)의 하면 외측 둘레에 접촉될 수 있으며, 전도성 재료인 경우 전기적인 특성을 이용할 수 있다.
또한 상기 페시베이션층(155)은 상기 절연층(142)과 동일한 절연 재료이거나, 투광성 전도층으로 형성될 수 있다. 상기 투광성 전도층인 경우 ITO, IZO, AZO, IZTO, IAZO, IGZO, IGTO, ATO 등을 포함할 수 있다.
상기 페이베이션층(155)은 칩 경계 영역에 형성되어, 상기 기판 분리시 상기 발광 구조물(135)로 전달되는 충격을 최소화시켜 줄 수 있다. 또한 상기 페이베이션층(155)은 투광성 전도층인 경우, 상기 절연층(142)의 폭을 줄여주어, 발광 면적을 개선시켜 줄 수 있다.
상기 각 실시 예의 기술적 특징은 다른 실시 예에 적용될 수 있으며, 각 실시 예로 한정하지는 않는다.
이상은 그 바람직한 실시 예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 발명의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 본 발명의 실시 예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
실시 예는 LED와 같은 반도체 발광소자를 제공할 수 있다.
실시 예는 반도체 발광소자의 제조 과정에 따른 신뢰성을 개선시켜 줄 수 있다.
실시 예는 반도체 발광소자를 패키징한 광원을 조명 분야, 지시 분야, 표시 분야 등에 적용될 수 있다.

Claims (15)

  1. 제1도전형 반도체층;
    상기 제1도전형 반도체층 아래에 활성층;
    상기 활성층 아래에 제2도전형 반도체층;
    상기 제1도전형 반도체층, 상기 활성층 및 상기 제2도전형 반도체층 중 적어도 상기 활성층의 외측 둘레에 절연층; 및
    상기 제2도전형 반도체층 아래에 제2전극층을 포함하는 반도체 발광소자.
  2. 제1항에 있어서, 상기 제1도전형 반도체층 위에 제1전극; 및 상기 제2전극층의 아래에 전도성 지지부재를 포함하는 반도체 발광소자.
  3. 제1항에 있어서, 상기 절연층은 상기 제2도전형 반도체층 및 상기 활성층의 외측 둘레에 형성되는 반도체 발광소자.
  4. 제1항에 있어서, 상기 제2전극층은 상기 제2도전형 반도체층 및 상기 절연층의 아래에 반사 전극층을 포함하는 반도체 발광소자.
  5. 제1항에 있어서, 상기 절연층은 상기 제2도전형 반도체층의 외측부터 상기 제1도전형 반도체층의 외측 일부 또는 외측 전체까지 형성되는 반도체 발광소자.
  6. 제5항에 있어서, 상기 절연층은 상기 전극층의 외측 둘레에 형성되는 반도체 발광소자.
  7. 제1항에 있어서, 상기 절연층은 SiO2, Si3N4, Al2O3, TiO2 중 적어도 하나를 포함하는 반도체 발광소자.
  8. 제3항에 있어서, 상기 절연층과 상기 제2전극층 사이에 페시베이션층을 포함하는 반도체 발광소자.
  9. 제1항에 있어서, 상기 절연층은 고리 형상 또는 띠 형상으로 형성되는 반도체 발광소자.
  10. 제1도전형 반도체층, 상기 제1도전형 반도체층 아래에 활성층, 및 상기 활성층 아래에 제2도전형 반도체층을 포함하는 발광 구조물;
    상기 제1도전형 반도체층 위에 제1전극;
    상기 제2도전형 반도체층 아래에 제2전극층; 및
    상기 활성층과 상기 제2도전형 반도체층의 외측 둘레에 절연층을 포함하는 반도체 발광소자.
  11. 제10항에 있어서, 상기 절연층은 상기 제1도전형 반도체층과 상기 제2전극층 사이에 위치하는 반도체 발광소자.
  12. 제10항에 있어서, 상기 제2전극층 아래에 전도성 지지부재;
    상기 제2전극층과 상기 제2도전형 반도체층 사이에 복수개의 패턴을 갖는 오믹 접촉층을 포함하는 반도체 발광소자.
  13. 제10항에 있어서, 상기 제2도전형 반도체층과 상기 제2전극층 사이에 제3도전형 반도체층을 포함하며,
    상기 제3도전형 반도체층의 외측 둘레에 상기 절연층이 형성되는 반도체 발광소자.
  14. 제10항에 있어서, 상기 제2도전형 반도체층과 상기 제2전극층 사이의 외측 둘레에 투광성 전도층을 포함하며,
    상기 투광성 전도층은 띠 형상 또는 고리 형상으로 형성되는 반도체 발광소자.
  15. 제10항에 있어서, 상기 절연층은 상기 제1도전성 반도체층의 외측 일부에서 상기 제2도전성 반도체층의 외측까지 배치되는 반도체 발광소자.
PCT/KR2009/002596 2008-05-16 2009-05-15 반도체 발광소자 WO2009139603A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09746782.3A EP2290709B1 (en) 2008-05-16 2009-05-15 Semiconductor light-emitting device
CN2009801176605A CN102027606B (zh) 2008-05-16 2009-05-15 半导体发光器件
US12/992,950 US8530919B2 (en) 2008-05-16 2009-05-15 Semi-conductor light-emitting device
US13/963,724 US8766308B2 (en) 2008-05-16 2013-08-09 Semiconductor light-emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080045740A KR20090119596A (ko) 2008-05-16 2008-05-16 반도체 발광소자 및 그 제조방법
KR10-2008-0045740 2008-05-16

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/992,950 A-371-Of-International US8530919B2 (en) 2008-05-16 2009-05-15 Semi-conductor light-emitting device
US13/963,724 Continuation US8766308B2 (en) 2008-05-16 2013-08-09 Semiconductor light-emitting device

Publications (2)

Publication Number Publication Date
WO2009139603A2 true WO2009139603A2 (ko) 2009-11-19
WO2009139603A3 WO2009139603A3 (ko) 2010-02-18

Family

ID=41319183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/002596 WO2009139603A2 (ko) 2008-05-16 2009-05-15 반도체 발광소자

Country Status (5)

Country Link
US (2) US8530919B2 (ko)
EP (1) EP2290709B1 (ko)
KR (1) KR20090119596A (ko)
CN (1) CN102027606B (ko)
WO (1) WO2009139603A2 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110272712A1 (en) * 2010-05-06 2011-11-10 Samsung Electronics Co., Ltd. Vertical light-emitting devices having patterned emitting unit and methods of manufacturing the same
EP2360744A3 (en) * 2010-02-11 2014-01-22 LG Innotek Co., Ltd. Light emitting diode and method of manufacturing the same
KR20150112563A (ko) * 2014-03-28 2015-10-07 동우 화인켐 주식회사 반도체 발광층 소프트 에칭액 조성물, 발광소자 및 디스플레이 소자
KR101771461B1 (ko) * 2015-04-24 2017-08-25 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
KR101771463B1 (ko) * 2016-07-15 2017-08-25 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101039896B1 (ko) * 2009-12-03 2011-06-09 엘지이노텍 주식회사 발광소자 및 그 제조방법
KR101799451B1 (ko) * 2011-06-02 2017-11-20 엘지이노텍 주식회사 발광 소자
KR102271031B1 (ko) * 2019-10-15 2021-06-30 (재)한국나노기술원 절연체 전자친화도를 이용한 고효율 마이크로 led 장치
CN110911536A (zh) * 2019-12-13 2020-03-24 深圳第三代半导体研究院 一种Micro-LED芯片及其制造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3723434B2 (ja) * 1999-09-24 2005-12-07 三洋電機株式会社 半導体発光素子
US6900069B2 (en) * 2001-03-09 2005-05-31 Seiko Epson Corporation Method of fabricating surface-emission type light-emitting device, surface-emitting semiconductor laser, method of fabricating the same, optical module and optical transmission device
CN1848564A (zh) * 2001-03-09 2006-10-18 精工爱普生株式会社 发光元件的制造方法、半导体激光器及其制造方法
EP2105977B1 (en) 2002-01-28 2014-06-25 Nichia Corporation Nitride semiconductor element with supporting substrate and method for producing nitride semiconductor element
JP2006100500A (ja) * 2004-09-29 2006-04-13 Sanken Electric Co Ltd 半導体発光素子及びその製造方法
EP2426743B1 (en) * 2004-10-22 2019-02-20 Seoul Viosys Co., Ltd GaN compound semiconductor light emitting element and method of manufacturing the same
KR101203137B1 (ko) * 2004-10-22 2012-11-20 학교법인 포항공과대학교 GaN계 화합물 반도체 발광 소자 및 그 제조 방법
KR100638819B1 (ko) * 2005-05-19 2006-10-27 삼성전기주식회사 광추출효율이 개선된 수직구조 질화물 반도체 발광소자
KR101154744B1 (ko) 2005-08-01 2012-06-08 엘지이노텍 주식회사 질화물 발광 소자 및 그 제조 방법
JP5016808B2 (ja) 2005-11-08 2012-09-05 ローム株式会社 窒化物半導体発光素子及び窒化物半導体発光素子製造方法
KR100856089B1 (ko) * 2006-08-23 2008-09-02 삼성전기주식회사 수직구조 질화갈륨계 발광 다이오드 소자 및 그 제조방법
JP2008053685A (ja) * 2006-08-23 2008-03-06 Samsung Electro Mech Co Ltd 垂直構造窒化ガリウム系発光ダイオード素子及びその製造方法
KR101371511B1 (ko) * 2007-10-04 2014-03-11 엘지이노텍 주식회사 수직형 발광 소자
KR20110006652A (ko) * 2008-03-25 2011-01-20 라티스 파워(지앙시) 코포레이션 양면 패시베이션을 갖는 반도체 발광 소자
KR100992657B1 (ko) * 2009-02-16 2010-11-05 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2290709A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2360744A3 (en) * 2010-02-11 2014-01-22 LG Innotek Co., Ltd. Light emitting diode and method of manufacturing the same
US8723210B2 (en) 2010-02-11 2014-05-13 Lg Innotek Co., Ltd. Light emitting device and light emitting device package having the same
US20110272712A1 (en) * 2010-05-06 2011-11-10 Samsung Electronics Co., Ltd. Vertical light-emitting devices having patterned emitting unit and methods of manufacturing the same
US8592839B2 (en) * 2010-05-06 2013-11-26 Samsung Electronics Co., Ltd. Vertical light-emitting devices having patterned emitting unit and methods of manufacturing the same
US8871544B2 (en) 2010-05-06 2014-10-28 Samsung Electronics Co., Ltd. Vertical light-emitting devices having patterned emitting unit and methods of manufacturing the same
KR20150112563A (ko) * 2014-03-28 2015-10-07 동우 화인켐 주식회사 반도체 발광층 소프트 에칭액 조성물, 발광소자 및 디스플레이 소자
KR102092911B1 (ko) 2014-03-28 2020-03-24 동우 화인켐 주식회사 반도체 발광층 소프트 에칭액 조성물, 발광소자 및 디스플레이 소자
KR101771461B1 (ko) * 2015-04-24 2017-08-25 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
KR101771463B1 (ko) * 2016-07-15 2017-08-25 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치

Also Published As

Publication number Publication date
EP2290709A2 (en) 2011-03-02
CN102027606A (zh) 2011-04-20
US20110062480A1 (en) 2011-03-17
US8766308B2 (en) 2014-07-01
EP2290709B1 (en) 2016-08-17
CN102027606B (zh) 2013-04-24
US20130320389A1 (en) 2013-12-05
KR20090119596A (ko) 2009-11-19
EP2290709A4 (en) 2012-10-10
US8530919B2 (en) 2013-09-10
WO2009139603A3 (ko) 2010-02-18

Similar Documents

Publication Publication Date Title
WO2009131319A2 (ko) 반도체 발광소자
WO2010011057A2 (ko) 반도체 발광소자 및 그 제조방법
WO2009139603A2 (ko) 반도체 발광소자
WO2009131335A2 (ko) 반도체 발광소자
WO2009134029A2 (ko) 반도체 발광소자
WO2010044642A2 (en) Semiconductor light emitting device and method for manufacturing the same
WO2014092448A1 (ko) 광추출 효율이 향상된 발광다이오드
WO2017014512A1 (ko) 발광 소자
WO2010095781A1 (ko) 발광소자 및 그 제조방법
WO2015190722A1 (ko) 발광 소자 및 조명 장치
EP2311108B1 (en) Semiconductor light emitting device
WO2010044645A2 (en) Semiconductor light emitting device and method for manufacturing the same
WO2009125953A2 (ko) 발광 소자
WO2010011048A2 (ko) 반도체 발광소자 및 그 제조방법
WO2010018946A2 (ko) 반도체 발광소자 및 그 제조방법
US8829538B2 (en) Light emitting device package
WO2016137197A1 (ko) 발광 소자 및 이를 구비한 라이트 유닛
WO2017034212A1 (ko) 발광소자 및 이를 구비한 발광 소자 패키지
WO2015199388A1 (ko) 발광소자
WO2015190735A1 (ko) 발광소자 및 이를 구비한 발광소자 패키지
WO2014193109A1 (en) Light emitting diode having plurality of light emitting elements and method of fabricating the same
WO2016186330A1 (ko) 발광 소자
WO2016159694A1 (ko) 발광 소자
WO2016133337A1 (ko) 발광 소자 패키지, 발광 소자 패키지 제조 방법 및 광원 유닛
WO2020013501A1 (ko) 반도체 소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980117660.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09746782

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 12992950

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009746782

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009746782

Country of ref document: EP