WO2009131128A1 - Optical imaging device and optical imaging method using the same - Google Patents

Optical imaging device and optical imaging method using the same Download PDF

Info

Publication number
WO2009131128A1
WO2009131128A1 PCT/JP2009/057934 JP2009057934W WO2009131128A1 WO 2009131128 A1 WO2009131128 A1 WO 2009131128A1 JP 2009057934 W JP2009057934 W JP 2009057934W WO 2009131128 A1 WO2009131128 A1 WO 2009131128A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical imaging
light control
control panel
planar light
Prior art date
Application number
PCT/JP2009/057934
Other languages
French (fr)
Japanese (ja)
Inventor
智彦 藤島
誠 大坪
Original Assignee
Fujishima Tomohiko
Otsubo Makoto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41216860&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2009131128(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fujishima Tomohiko, Otsubo Makoto filed Critical Fujishima Tomohiko
Priority to JP2010509189A priority Critical patent/JP4865088B2/en
Publication of WO2009131128A1 publication Critical patent/WO2009131128A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/18Stereoscopic photography by simultaneous viewing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/34Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers
    • G02B30/35Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers using reflective optical elements in the optical path between the images and the observer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors

Definitions

  • the present invention relates to an optical imaging apparatus for forming a stereoscopic image in the air and an optical imaging method using the same.
  • an optical imaging device that forms a three-dimensional image using light (scattered light) emitted from the object surface, an opaque panel provided with a large number of minutely transparent parts, and a minutely placed on the back of the opaque panel
  • a stereoscopic image display device having an image display panel on which a large number of small images corresponding to a light transmitting portion are displayed (see, for example, Patent Documents 1 and 2).
  • an imaging element in which a plurality of double-sided reflection bands having a width of several microns to several tens of microns are arranged so that adjacent reflection surfaces face each other. (For example, refer to Patent Document 3).
  • Patent Document 4 discloses a light-bending surface composed of a reflection-type plane-symmetric imaging element in which unit optical elements having two mirror elements perpendicular to each other are formed on a plurality of planes, and toward the light-bending surface. An image arranged on the observation side opposite to the mirror surface across the light beam bending surface is transmitted through the light beam bending surface and reflected by the mirror surface. Furthermore, an optical system has been proposed in which an image is formed at a position reflected on a virtual mirror that does not actually exist by being transmitted through a light-bending surface and moved to a plane-symmetrical position with respect to the light-bending surface of the mirror surface.
  • Patent Documents 1 and 2 it is necessary to record a large number of small images in advance, and a great deal of labor is required to form an optical image.
  • an optical image is processed, an enormous amount of information is required, and there is a problem that data processing becomes difficult.
  • the invention of Patent Document 3 has a problem that scattered light from an object does not necessarily converge to one point after passing through the imaging element.
  • the present invention has been made in view of such circumstances, and is relatively easy to manufacture, and an optical imaging apparatus capable of easily forming a three-dimensional image in the air on the side of an observer viewing an object, and an optical device using the same
  • An object is to provide an imaging method.
  • An optical imaging apparatus that meets the above-described object is the first optical image forming apparatus in which a plurality of strip-shaped planar light reflecting portions are arranged at a constant pitch perpendicular to one surface of the transparent flat plate.
  • the first and second light control panels are used, and one surface side of each of the first and second light control panels is configured to face each other with the planar light reflecting portions orthogonal to each other.
  • one surface side of the first and second light control panels is preferably arranged to face each other in parallel.
  • the elongated rectangular (strip-shaped) planar light reflecting portion of the first light control panel and the elongated rectangular planar light reflecting portion of the second light control panel are orthogonal to each other in the longitudinal direction.
  • the planar light reflecting portion of the first light control panel and the planar light reflecting portion of the second light control panel also form orthogonal surfaces.
  • the planar light reflecting portion of the first and second light control panels is a metal reflecting surface (for example, a thin plate of silver or aluminum, a plating layer, a vapor deposition layer, or the like). It is preferable that Further, the planar light reflecting portion may be a double-sided reflecting plate.
  • the first and second light control panels are each a transparent composite in which grooves having vertical surfaces extending in the thickness direction from one surface are formed at the constant pitch.
  • the vertical plane is formed using a resin plate, and the vertical surface is the planar light reflecting portion that reflects light incident obliquely into the transparent synthetic resin plate, and is reflected from the planar light reflecting portion between the grooves. What formed the light passage surface which allows reflected light to pass through may be formed.
  • the groove has a right-angled triangle cross section, and that a surface forming the hypotenuse of the right-angled triangle is subjected to a light shielding process or a scattered light process.
  • first and second light control panels can be arranged in close contact with each other with a fixed gap in a state where the planar light reflecting portions of the first and second light control panels are orthogonal to each other.
  • the constant gap is preferably, for example, about 0.5 to 4 times the interval between adjacent planar light reflecting portions, but the present invention is not limited to this value.
  • a clear image is acquired, so that the pitch of the planar light reflection part of the 1st, 2nd light control panel is made fine and the number of planar light reflection parts is increased.
  • the planar light reflecting portion is a double-sided reflector, and the plurality of planar light reflecting members respectively disposed in the first and second light control panels.
  • the width of the part may gradually increase from the central part to the peripheral part.
  • the first and second optical image forming methods according to the present invention are formed by arranging a large number of strip-shaped planar light reflecting portions in the transparent flat plate so as to be perpendicular to one surface of the transparent flat plate.
  • the first light control panel and the first light control panel face each other with the planar light reflecting portion orthogonal to each other, and the planar light reflecting portion of the first light control panel faces the object. (Or a light source) is incident, the reflected light reflected by the planar light reflecting unit is reflected again by the planar light reflecting unit of the second light control panel, and the image of the object is reflected by the optical imaging device. Image on the opposite side.
  • the planar light reflecting portions are arranged on the first and second light control panels at a constant pitch. It should be noted that the present invention is applied even when the distance between the planar light reflecting portions arranged in the first and second light control panels is not constant.
  • the planar light reflecting section may be a double-sided reflecting plate (a metal plate, a metal plating layer, or a metal vapor deposition layer may be used).
  • the light from the object is reflected an odd number of times by the double-sided reflecting plate facing one or both of the first and second light control panels.
  • the present invention is applied even when an image of the object is formed.
  • the first and second light controls are formed by arranging a large number of strip-shaped planar light reflecting portions arranged at a constant pitch inside the transparent flat plate and perpendicular to the surface on one side. Since one surface of each panel faces each other with the respective plane light reflecting portions orthogonal to each other, light emitted from an object arranged on one side of this optical imaging device Converge to the side and form an image. Further, this optical imaging apparatus uses two light control panels formed by arranging a large number of strip-shaped planar light reflecting portions arranged at a constant pitch perpendicularly to the surface on one side inside a transparent flat plate. Since the control panel is easy to manufacture, it can be manufactured inexpensively.
  • the planar light reflecting portions of the first and second light control panels are metal reflecting surfaces
  • the incident angle of light reflected by the planar light reflecting portion is limited. Therefore, a lot of reflected light can be obtained, and a bright object image can be obtained by forming an image in a wide range.
  • the first and second light control panels are each a transparent synthetic resin plate in which grooves having vertical surfaces extending in the thickness direction from one surface are formed at a constant pitch.
  • the vertical plane is a planar light reflecting portion that reflects light incident obliquely into the transparent synthetic resin plate, and the light passing surface that allows the reflected light reflected from the planar light reflecting portion to pass between the grooves Since the first and second light control panels can be manufactured with a mold, the first and second light control panels can be manufactured relatively inexpensively.
  • the planar light reflecting portion is a double-sided reflecting plate, and the widths of a large number of planar light reflecting portions respectively disposed in the first and second light control panels.
  • the widths of a large number of planar light reflecting portions respectively disposed in the first and second light control panels are gradually increasing from the central part to the peripheral part, it is possible to collect the light hitting the peripheral part of the first and second light control panels, and a brighter image can be obtained.
  • the first and second optical imaging methods according to the present invention are formed by arranging a large number of strip-shaped planar light reflecting portions in the transparent flat plate so as to be perpendicular to one surface of the transparent flat plate.
  • the light control panel one surface side of each of the first and second light control panels face each other in a state where the planar light reflecting portions are orthogonal to each other, and the planar light reflecting portion of the first light control panel is placed from the object. Since the reflected light reflected by the planar light reflecting portion is reflected again by the planar light reflecting portion of the second light control panel, the object image is connected to the opposite side of the optical imaging device. Can be imaged. According to this method, it is easy to manufacture the first and second light control panels with high accuracy, and the image of the object can be reproduced in the space at a lower cost.
  • the planar light reflecting portion is constituted by a double-sided reflector
  • incident light light from an object
  • a reproduced image Can be made brighter.
  • (A) is a plan view of the optical imaging apparatus according to the first embodiment of the present invention
  • (B) is an FF sectional view
  • (C) is a GG sectional view.
  • SYMBOLS 10 Optical imaging device, 11, 12: Plane light reflection part, 13, 14: Groove, 15, 16: Light transmission part, 19, 20: Slope, 21: Optical imaging device, 22, 23: Plane light reflection Part, 26: optical imaging device, 27, 28: planar light reflecting part, 29: contact surface, A, C, E: first light control panel, B, D, F: second light control panel
  • the optical imaging apparatus 10 is an example of a transparent flat plate, and includes two transparent synthetic resin plates (0.5 to 10 mm in thickness)
  • a large number of strip-shaped planar light reflecting portions 11 and 12 are formed at a constant pitch (for example, 0.1 to 1 mm) perpendicular to one surface of each transparent synthetic resin plate.
  • the first light control panel A hereinafter simply referred to as “light control panel A”
  • the second light control panel B hereinafter simply referred to as “light control panel B” are used.
  • One surface side of each surface is brought into close contact with the planar light reflecting portions 11 and 12 orthogonal to each other. This will be described in detail below.
  • grooves 13 and 14 having a right-angled triangular cross section each having a vertical surface extending in the thickness direction from one surface of the transparent synthetic resin plate are the same as the pitch of the planar light reflecting portions 11 and 12. It is formed at a predetermined pitch.
  • the vertical surfaces of the grooves 13 and 14 are planar light reflecting portions 11 and 12 that reflect light incident obliquely into the light control panels A and B, respectively.
  • light transmitting portions 15 and 16 constituting light passing surfaces through which the reflected light reflected from the planar light reflecting portions 11 and 12 pass are formed.
  • the vertical surfaces of the grooves 13 and 14 may be formed with a metal (for example, silver) plating layer or a metal vapor deposition layer (which constitutes a metal reflection surface).
  • the light control panels A and B can be manufactured by press molding using a mold, but are preferably manufactured by injecting a transparent synthetic resin into a mold having a predetermined shape and solidifying it.
  • the grooves 13 and 14 have a base shape formed in advance in the mold, and are formed on one surface of the light control panels A and B when the light control panels A and B are manufactured.
  • the surface of the mold part that forms the slopes 19 and 20 of the grooves 13 and 14 is subjected to, for example, shot blasting or matte treatment that forms uneven portions of 3 to 50 ⁇ m, so that the slopes 19 and 20 of the grooves 13 and 14 are formed.
  • the end of the planar light reflecting portion 11 of the light control panel A and the end of the planar light reflecting portion 12 of the light control panel B are arranged in contact with each other.
  • the width w of the planar light reflecting portions 11 and 12 is, for example, 0.5 p or more and 3 p or less with respect to the pitch p of the planar light reflecting portions 11 and 12 (grooves 13 and 14). (Preferably 0.9p to 1.1p, more preferably p).
  • the width of the planar light reflecting portions 11 and 12 exceeds 3p, the light reflected by the planar light reflecting portions 11 and 12 is scattered by the slopes 19 and 20, and a part of the scattered light is reflected again by the planar light reflecting portions 11 and 12. Repeatedly, a clear image cannot be obtained.
  • the width of the planar light reflecting portions 11 and 12 is less than 0.5p, the light reflected by the planar light reflecting portions 11 and 12 is reduced and a clear image cannot be obtained.
  • FIG. 3 in order to clearly show the light reflection state in the light control panels A and B of the optical imaging apparatus 10, the light control panel on the left side with respect to the object M and the object image M ′ in a side view is shown.
  • the right light control panel In the right light control panel, the right light control panels A and B are shown rotated by 90 degrees in the same plane with respect to the left light control panels A and B. Since the object image M ′ is obtained when the light is reflected twice in succession by the vertical planar light reflecting portion 11 of the light control panel A and the vertical planar light reflecting portion 12 of the light control panel B, the light control of the optical imaging device is performed.
  • the panels A and B are divided into left and right sides when viewed from the side, and the object image is obtained even when the right light control panels A and B are rotated 90 degrees with respect to the left light control panels A and B in the same plane. Is obtained.
  • the vertical plane becomes the planar light reflecting portion 11.
  • the light control panel A and the light control panel B are in close contact with each other.
  • a part of the light totally reflected by the vertical surface of the light control panel A enters the light control panel B, and the rest is scattered and attenuated by the slope 19 subjected to the scattered light processing.
  • the light that has entered the light control panel B travels in the light control panel B and reaches the vertical plane of the groove 14 having a right-angled triangular section.
  • the vertical surface acts as the planar light reflecting portion 12 only for the light incident on the point b in the vertical surface at an incident angle causing total reflection among the light reaching the vertical surface of the groove 14 and totally reflected.
  • the light further travels in the light control panel B, and is emitted to the outside from the surface on the other side (the side on which the planar light reflecting portion 12 is not formed) in the light control panel B.
  • FIG. 1 the light incident angle to the vertical plane of the light control panel A is incident at less than theta c is refracted in the vertical plane enters the groove 13, part of the light-scattering It is scattered and attenuated by the light-treated slope 19, and the remaining part passes through the light transmission part 16 of the light control panel B and enters the light control panel B.
  • the light that has entered the light control panel B the light that is totally reflected by the vertical surface of the groove 14 and the light that travels in the light control panel B travels to the other side of the light control panel B. It is emitted from the surface of the outside.
  • the light incident angle to the vertical surface of the groove 13 of the light control panel A is incident at theta c, taken with the light along the vertical plane is reflected on the vertical surface of the groove 13 the light transmission of the light control panel B Enter the light control panel B from the part 16.
  • a part of the light is scattered and attenuated by the inclined surface 20 of the groove 14 subjected to the scattered light treatment, and the remaining part is emitted from the other surface of the light control panel B to the outside. Is done.
  • planar light reflecting portions 11 and 12 are disposed in a state of being orthogonally opposed to each other, they travel in the light control panel B and are emitted to the outside from the other surface of the light control panel B.
  • incident light incident on the planar light reflecting portion 11 is reflected at the point a of the planar light reflecting portion 11 for the first time, and the reflected light is reflected at the point b of the planar light reflecting portion 12 for the second time.
  • the second reflected light is radiated at the same angle as the incident angle of the incident light incident on the planar light reflecting portion 11.
  • the reflected light continuously reflected by the planar light reflecting portions 11 and 12 is in a symmetrical position with the object M across the optical imaging apparatus 10. It converges and an object image M ′ is generated at a symmetrical position with respect to the object M across the optical imaging apparatus 10.
  • the light enters the light control panel B proceeds to the other side of the light control panel B, and is emitted to the outside from the other side surface.
  • the light enters the vertical surface of the groove 13 at an incident angle ⁇ c enters the light control panel B as light along the vertical surface of the groove 13, travels to the other side of the light control panel B, and enters the outside from the other surface.
  • the light emitted from the light control panel A directly enters the light control panel B, travels through the light control panel B, and is emitted from the other side of the light control panel B to the outside.
  • the incident light entering the light control panel A is not reflected at the same angle. For this reason, the light emitted to the outside from the other surface of the light control panel B does not intersect and an image is not formed.
  • the optical imaging apparatus 21 has a large number and a strip shape vertically in the thickness direction of the transparent flat plate inside the two transparent flat plates.
  • the first light control panel C hereinafter simply referred to as “light control panel C”
  • the second light control panel D hereinafter referred to as “light control panel C”
  • the first light control panel C (hereinafter simply referred to as “light control panel C”) and the second light control panel D (hereinafter referred to as “light control panel C”) formed by arranging the planar light reflecting portions 22 and 23 made of metal reflective surfaces at a constant pitch.
  • light control panel D simply referred to as “light control panel D”), and one surface side of each of the light control panels C and D is brought into close contact with each other with the planar light reflecting portions 22 and 23 orthogonal to each other. This will be described in detail below.
  • Each of the light control panels C and D has a constant thickness in which a metal reflecting surface (and thus a double-sided reflecting plate) made of a deposited layer (or plating layer) of aluminum or silver, which is an example of a metal, is formed on one surface side.
  • a large number of plate-like transparent synthetic resin plates (for example, acrylic resin plates) or glass plates are laminated so that the metal reflection surface is arranged on one side, and a laminate is produced.
  • the light control panels C and D are manufactured by cutting so that a cut surface perpendicular to the surface is formed. And the thickness of a transparent synthetic resin board or a glass plate is equivalent to the pitch of the plane light reflection parts 22 and 23, and the thickness of the light control panels C and D is determined by the thickness at the time of cutting out from a laminated body.
  • the thickness at the time of cutting needs to be adjusted according to the intensity of the light control panels C and D and the vertical and horizontal dimensions of the light control panels C and D, and is, for example, 0.5 to 10 mm.
  • the width of the planar light reflecting portions 22 and 23 is, for example, 0.5q to 3q (preferably 0.9q to 1.1q, more preferably) with respect to the pitch q of the planar light reflecting portions 22 and 23. q).
  • the width of the planar light reflecting portions 22 and 23 exceeds 3q, the light reflected by the planar light reflecting portions 22 and 23 is reflected by the adjacent planar light reflecting portions 22 and 23 and again reflected by the planar light reflecting portions 22 and 23. Repeatedly, a clear image cannot be obtained.
  • the widths of the planar light reflecting portions 22 and 23 are less than 0.5 q, the light reflected by the planar light reflecting portions 22 and 23 is reduced and a clear image cannot be obtained.
  • the light control panels C and D are fixed to each other by a restraining member (for example, an adhesive, a heat seal, a screw, etc.) that is not shown, in close contact with each other.
  • the operation of the optical imaging apparatus 21 according to the second embodiment of the present invention will be described.
  • the light emitted from the object N arranged on the other side of the light control panel C of the optical imaging device 21 (the non-contact side with the light control panel D) is reflected by the light control panel C.
  • the incident light enters the light control panel C and is reflected at the point c of the planar light reflecting portion 22.
  • the reflected light reflected by the planar light reflecting portion 22 passes through the surface on one side of the light control panel D (the contact side with the light control panel C) from the surface on one side of the light control panel C, and the light. Enter the control panel D.
  • a part of the light is reflected at the point d of the planar light reflecting portion 23 of the light control panel D and further travels through the light control panel D to control the light.
  • the light is discharged from the other side of the panel D to the outside. Further, a part of the remaining light travels in the light control panel D and is emitted to the outside from the other surface of the light control panel D.
  • planar light reflecting portions 22 and 23 are arranged in a state of being orthogonally opposed to each other, they travel in the light control panel D and are emitted to the outside from the other surface of the light control panel D.
  • incident light incident on the planar light reflecting portion 22 is reflected at the point c of the planar light reflecting portion 22 for the first time, and the reflected light is reflected at the point d of the planar light reflecting portion 23 for the second time.
  • the second reflected light becomes parallel to the incident light incident on the planar light reflecting portion 22 in plan view (see FIG. 4).
  • the reflected light continuously reflected by the planar light reflecting portions 22 and 23 is in a symmetrical position with the object N across the optical imaging device 21. It converges and an object image N ′ is generated at a symmetrical position with respect to the object N across the optical imaging device 21.
  • light that is reflected by the planar light reflecting portion 22 of the light control panel C enters the light control panel D, travels through the light control panel D, and is emitted to the outside from the other surface, the light control panel C.
  • the incident light is not parallel to the incident light in plan view. For this reason, the light emitted to the outside from the other surface of the light control panel D does not intersect and an image is not formed.
  • planar light reflecting portions 22 and 23 are metal reflecting surfaces, the incident angle of light reflected by the planar light reflecting portions 22 and 23 is not limited, and the light reflection angle is arbitrary. For this reason, an image can be formed at a wider range of angles than the reflecting surface using the principle of “total reflection of matter”.
  • FIG. 7 shows an optical imaging apparatus 26 according to a third embodiment of the present invention.
  • a first light control panel E hereinafter simply referred to as “light control panel E”
  • a second light control panel F hereinafter simply referred to as a light control panel F
  • the light control panel E is provided with a number of long planar light reflecting portions 27 made of double-sided reflectors in parallel
  • the light control panel F has a number of long planar light reflecting portions 28 made of double-sided reflectors in parallel. Is provided.
  • the plane light reflecting portions 27 and 28 are erected in the same direction. Accordingly, the planar light reflecting portions 27 and 28 are arranged perpendicular to the contact surface 29 between the light control panel E and the light control panel F.
  • planar light reflecting portion 27 and the longitudinal direction of the planar light reflecting portion 28 are orthogonal to each other. These planar light reflecting portions 27 and 28 are embedded at a predetermined pitch in a transparent resin (for example, acrylic) or glass as in the optical imaging apparatus 21 according to the second embodiment.
  • the planar light reflecting portions 27 and 28 in the light control panels E and F are gradually increased in height (width) from the central portion toward the peripheral portion.
  • One side cross section of F has an arc shape.
  • the light (incident light) emitted from the light source P is reflected once by the planar light reflecting unit 27 in the center of the light control panel E to the planar light reflecting unit 28 of the light control panel F. And converges to the image point P ′.
  • the light incident on the planar light reflecting portion 27 of the high portion in the peripheral portion of the light control panel F is internally reflected an odd number of times and enters the light control panel F, and the light control panel F has an odd number of times ( Once), the light is reflected and converges at or near the image point P ′.
  • the light reflected by the light control panel E or the light control panel F an even number of times does not converge at the imaging point P ′. Therefore, although it is difficult for the optical imaging devices 10 and 21 to collect the light at the peripheral portion of the light control panel, the optical imaging device 26 can collect a part of the light hitting the peripheral portion of the light control panel. .
  • the optical imaging apparatus is configured such that one surface side of each of the first and second light control panels on which the planar light reflecting portions are formed faces each other so that the planar light reflecting portions are orthogonal to each other.
  • a gap may be formed between the first and second light control panels.
  • the width of the gap can be, for example, 100 times or less the width of the band-shaped planar light reflecting portion.
  • the metal reflection surface is formed on one side of the transparent synthetic resin plate.
  • the metal reflection surface may be formed on both sides of the transparent synthetic resin plate or the glass plate.
  • a laminated body is produced by laminating a large number of transparent synthetic resin plates or glass plates having metal reflecting surfaces formed on both side surfaces, and cut-out surfaces perpendicular to the respective metal reflecting surfaces are formed from this laminated body.
  • the first and second light control panels can be formed by cutting out.
  • the pitch of the planar light reflecting portion of the first light control panel and the pitch of the planar light reflecting portion of the second light control panel B are the same.
  • the pitch of the planar light reflecting portions of the light control panel may be different from the pitch of the planar light reflecting portions of the second light control panel. Further, in each embodiment, the interval (pitch) between the planar light reflecting portions in the light control panel is not necessarily the same. Further, a light shielding process can be applied to the slope of the groove formed in the light control panel.
  • a plurality of strip-shaped planar light reflecting portions are formed in a transparent flat plate so as to be arranged perpendicularly to one surface at a constant pitch. Since one surface side of each of the first and second light control panels faces each other with the respective planar light reflecting portions orthogonal to each other, the light emitted from the object disposed on one side of the optical imaging device is Then, it converges on the other side of the optical imaging device and forms an image. Therefore, a stereoscopic image can be projected in the space, and can be applied to a stereoscopic display device, a game machine, a game machine, an advertising tower, and the like. Furthermore, since the structure is simple, an inexpensive optical imaging apparatus can be provided.

Abstract

Provided are an optical imaging device (10) which can easily form a 3-dimensional image in space on the side of an observer who is viewing an object and an optical imaging method using the device. The optical imaging device (10) uses first and second light control panels (A,B) formed by aligning a plurality of band-shaped flat light reflectors (11,12) on the interior of a transparent flat plate so that the reflectors (11, 12) are perpendicular to the surface on one side of the transparent flat plate and have a constant pitch. One surface of the first light control panel (A) and one surface of the second light control panel (B) are disposed facing one another so that the flat light reflectors (11, 12) are perpendicular to one another. The optical imaging method using the optical imaging device (10) makes light from the object (M) fall incident on the flat light reflector (11) of the first light control panel (A), reflects the reflected light reflected by the flat light reflector (11) again by the flat light reflector (12) of the second light control panel (B), and forms the image of the object (M) on the opposite side of the optical imaging device (10).

Description

光学結像装置及びそれを用いた光学結像方法Optical imaging apparatus and optical imaging method using the same
本発明は、空中に立体像を形成する光学結像装置及びそれを用いた光学結像方法に関する。 The present invention relates to an optical imaging apparatus for forming a stereoscopic image in the air and an optical imaging method using the same.
物体表面から発する光(散乱光)を用いて立体像を形成する光学結像装置として、多数の微小透光部を備えた不透光パネルと、この不透光パネルの背部に配置されて微小透光部に対応する多数の小画像が表示された画像表示パネルとを有する立体像表示装置が提案されている(例えば、特許文献1、2参照)。また、レンズ等の光学手段を使用しない立体像表示装置として、幅が数ミクロンから数十ミクロンの複数本の両面反射帯を隣接する反射面が互いに向かい合うように並べて構成した結像素子が提案されている(例えば、特許文献3参照)。 As an optical imaging device that forms a three-dimensional image using light (scattered light) emitted from the object surface, an opaque panel provided with a large number of minutely transparent parts, and a minutely placed on the back of the opaque panel There has been proposed a stereoscopic image display device having an image display panel on which a large number of small images corresponding to a light transmitting portion are displayed (see, for example, Patent Documents 1 and 2). In addition, as a stereoscopic image display device that does not use optical means such as lenses, there has been proposed an imaging element in which a plurality of double-sided reflection bands having a width of several microns to several tens of microns are arranged so that adjacent reflection surfaces face each other. (For example, refer to Patent Document 3).
また、特許文献4には、相互に直交する2つの鏡面要素を備えた単位光学素子を複数平面上に形成した反射型面対称結像素子からなる光線屈曲面と、この光線屈曲面に向けて配置された鏡面とを具備し、光線屈曲面を挟んで、鏡面とは反対側にある観察側に配置した像を、被投影物から発せられる光が光線屈曲面を透過して鏡面に反射し、更に光線屈曲面を透過することによって、鏡面の光線屈曲面に対する面対称位置に移動させた実態のない仮想鏡に映した位置に結像させる光学システムが提案されている。 Patent Document 4 discloses a light-bending surface composed of a reflection-type plane-symmetric imaging element in which unit optical elements having two mirror elements perpendicular to each other are formed on a plurality of planes, and toward the light-bending surface. An image arranged on the observation side opposite to the mirror surface across the light beam bending surface is transmitted through the light beam bending surface and reflected by the mirror surface. Furthermore, an optical system has been proposed in which an image is formed at a position reflected on a virtual mirror that does not actually exist by being transmitted through a light-bending surface and moved to a plane-symmetrical position with respect to the light-bending surface of the mirror surface.
特開平7-56112号公報JP 7-56112 A 特開平6-160770号公報JP-A-6-160770 特開昭58-21702号公報JP 58-21702 A 特開2008-158114号公報JP 2008-158114 A
しかしながら、特許文献1、2の発明には、予め多数の小画像を記録しておく必要があり、光学像を結像させるために多大の労力を必要とすると共に、特に動いている対象物の光学像を処理する場合には膨大な情報量を必要とするため、データ処理が困難になるという問題がある。また、特許文献3の発明には、物体からの散乱光は、結像素子を通過した後は、必ずしも一点には収束しないという問題がある。
また、特許文献4記載の光学システムにおいては、反射型面対称結像素子からなる光線屈曲面の製造が極めて難しく、実用化に障害があった。
However, in the inventions of Patent Documents 1 and 2, it is necessary to record a large number of small images in advance, and a great deal of labor is required to form an optical image. When an optical image is processed, an enormous amount of information is required, and there is a problem that data processing becomes difficult. Further, the invention of Patent Document 3 has a problem that scattered light from an object does not necessarily converge to one point after passing through the imaging element.
In addition, in the optical system described in Patent Document 4, it is extremely difficult to manufacture a light-bending surface composed of a reflection-type plane-symmetric imaging element, which hinders practical use.
本発明はかかる事情に鑑みてなされたもので、比較的製造が容易で、物体を見る観察者側の空中に立体像を簡便に形成することが可能な光学結像装置及びそれを用いた光学結像方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and is relatively easy to manufacture, and an optical imaging apparatus capable of easily forming a three-dimensional image in the air on the side of an observer viewing an object, and an optical device using the same An object is to provide an imaging method.
前記目的に沿う第1の発明に係る光学結像装置は、透明平板の内部に、該透明平板の一方側の面に垂直に多数かつ帯状の平面光反射部を一定のピッチで並べて形成した第1及び第2の光制御パネルを用い、該第1及び第2の光制御パネルのそれぞれの一面側を、前記平面光反射部を直交させて向かい合わせて構成されている。
なお、第1及び第2の光制御パネルの一面側は向かい合わせて平行に配置するのがよい。
この場合、第1の光制御パネルの細長長方形(短冊状)の平面光反射部と、第2の光制御パネルの細長長方形の平面光反射部とは、長手方向が直交する。かつ第1の光制御パネルの平面光反射部と第2の光制御パネルの平面光反射部も直交面を形成する。
An optical imaging apparatus according to a first invention that meets the above-described object is the first optical image forming apparatus in which a plurality of strip-shaped planar light reflecting portions are arranged at a constant pitch perpendicular to one surface of the transparent flat plate. The first and second light control panels are used, and one surface side of each of the first and second light control panels is configured to face each other with the planar light reflecting portions orthogonal to each other.
It should be noted that one surface side of the first and second light control panels is preferably arranged to face each other in parallel.
In this case, the elongated rectangular (strip-shaped) planar light reflecting portion of the first light control panel and the elongated rectangular planar light reflecting portion of the second light control panel are orthogonal to each other in the longitudinal direction. In addition, the planar light reflecting portion of the first light control panel and the planar light reflecting portion of the second light control panel also form orthogonal surfaces.
第1の発明に係る光学結像装置において、前記第1及び第2の光制御パネルの前記平面光反射部は、金属反射面(例えば、銀又はアルミニウム等の薄板、メッキ層、蒸着層等)であることが好ましい。また、前記平面光反射部は、両面反射板であってもよい。 In the optical imaging apparatus according to the first aspect, the planar light reflecting portion of the first and second light control panels is a metal reflecting surface (for example, a thin plate of silver or aluminum, a plating layer, a vapor deposition layer, or the like). It is preferable that Further, the planar light reflecting portion may be a double-sided reflecting plate.
第1の発明に係る光学結像装置において、前記第1及び第2の光制御パネルが、それぞれ一方側の面から厚み方向に伸びる垂直面を有する溝が前記一定のピッチで形成された透明合成樹脂板を用いて形成され、かつ前記垂直面は該透明合成樹脂板内に斜めに入射する光を反射する前記平面光反射部となって、前記溝間に該平面光反射部から反射された反射光を通過させる光通過面を形成したものでもよい。ここで、前記溝は断面直角三角形となって、該直角三角形の斜辺を形成する面には遮光処理又は散乱光処理が施されていることがより好ましい。 In the optical imaging apparatus according to the first aspect of the present invention, the first and second light control panels are each a transparent composite in which grooves having vertical surfaces extending in the thickness direction from one surface are formed at the constant pitch. The vertical plane is formed using a resin plate, and the vertical surface is the planar light reflecting portion that reflects light incident obliquely into the transparent synthetic resin plate, and is reflected from the planar light reflecting portion between the grooves. What formed the light passage surface which allows reflected light to pass through may be formed. Here, it is more preferable that the groove has a right-angled triangle cross section, and that a surface forming the hypotenuse of the right-angled triangle is subjected to a light shielding process or a scattered light process.
また、前記第1及び第2の光制御パネルは、該第1及び第2の光制御パネルの平面光反射部を直交させた状態で、密着又は一定のギャップを介して配置することができる。ここで、一定のギャップとは、例えば、隣り合う平面光反射部の間隔の0.5~4倍程度が好ましいが、本発明はこの数値に限定されるものではない。なお、第1、第2の光制御パネルの平面光反射部のピッチを細かくして、平面光反射部の数を多くする程、鮮明な画像が得られる。 In addition, the first and second light control panels can be arranged in close contact with each other with a fixed gap in a state where the planar light reflecting portions of the first and second light control panels are orthogonal to each other. Here, the constant gap is preferably, for example, about 0.5 to 4 times the interval between adjacent planar light reflecting portions, but the present invention is not limited to this value. In addition, a clear image is acquired, so that the pitch of the planar light reflection part of the 1st, 2nd light control panel is made fine and the number of planar light reflection parts is increased.
また、第1の発明に係る光学結像装置において、前記平面光反射部が両面反射板であって、前記第1及び第2の光制御パネル内にそれぞれ配置されている複数の前記平面光反射部の幅が、中央部から周辺部にかけて徐々に大きくなっているものであってもよい。 In the optical imaging apparatus according to the first aspect of the present invention, the planar light reflecting portion is a double-sided reflector, and the plurality of planar light reflecting members respectively disposed in the first and second light control panels. The width of the part may gradually increase from the central part to the peripheral part.
前記目的に沿う第2の発明に係る光学結像方法は、透明平板の内部に、該透明平板の一方側の面に垂直に多数かつ帯状の平面光反射部を並べて形成した第1及び第2の光制御パネルを用い、該第1及び第2の光制御パネルのそれぞれの一面側を、前記平面光反射部を直交させて向かい合わせ、前記第1の光制御パネルの平面光反射部に物体(又は光源)からの光を入射させ、該平面光反射部で反射した反射光を前記第2の光制御パネルの平面光反射部で再度反射させ、前記物体の像を該光学結像装置の反対側に結像させる。 In the optical imaging method according to the second aspect of the present invention, the first and second optical image forming methods according to the present invention are formed by arranging a large number of strip-shaped planar light reflecting portions in the transparent flat plate so as to be perpendicular to one surface of the transparent flat plate. The first light control panel and the first light control panel face each other with the planar light reflecting portion orthogonal to each other, and the planar light reflecting portion of the first light control panel faces the object. (Or a light source) is incident, the reflected light reflected by the planar light reflecting unit is reflected again by the planar light reflecting unit of the second light control panel, and the image of the object is reflected by the optical imaging device. Image on the opposite side.
第2の発明に係る光学結像方法において、前記平面光反射部は一定のピッチで前記第1及び第2の光制御パネルに配置されているのが好ましい。なお、第1及び第2の光制御パネルにそれぞれ配置されている平面光反射部の間隔は一定でない場合であっても本発明は適用される。 In the optical imaging method according to the second aspect of the present invention, it is preferable that the planar light reflecting portions are arranged on the first and second light control panels at a constant pitch. It should be noted that the present invention is applied even when the distance between the planar light reflecting portions arranged in the first and second light control panels is not constant.
第2の発明に係る光学結像方法において、前記平面光反射部は、両面反射板(金属板、金属メッキ層、金属蒸着層を使用するのがよい)からなるのがよい。 In the optical imaging method according to the second aspect of the present invention, the planar light reflecting section may be a double-sided reflecting plate (a metal plate, a metal plating layer, or a metal vapor deposition layer may be used).
そして、第2の発明に係る光学結像方法において、前記物体からの光は、前記第1及び第2の光制御パネルのいずれか一方又は双方の対向する前記両面反射板を奇数回反射して、前記物体の像を結像する場合であっても本発明は適用される。 In the optical imaging method according to the second aspect of the invention, the light from the object is reflected an odd number of times by the double-sided reflecting plate facing one or both of the first and second light control panels. The present invention is applied even when an image of the object is formed.
第1の発明に係る光学結像装置においては、透明平板の内部に、一方側の面に垂直に多数かつ帯状の平面光反射部を一定のピッチで並べて形成した第1及び第2の光制御パネルのそれぞれの一面側を、それぞれの平面光反射部を直交させて向かい合わせているので、この光学結像装置の一側に配置された物体から放射される光は、光学結像装置の他側に収束して結像する。
更に、この光学結像装置は、透明平板の内部に、一方側の面に垂直に多数かつ帯状の平面光反射部を一定のピッチで並べて形成した光制御パネルを2枚用いており、各光制御パネルの製造は容易であるので、安価に製造が可能である。
In the optical imaging apparatus according to the first aspect of the present invention, the first and second light controls are formed by arranging a large number of strip-shaped planar light reflecting portions arranged at a constant pitch inside the transparent flat plate and perpendicular to the surface on one side. Since one surface of each panel faces each other with the respective plane light reflecting portions orthogonal to each other, light emitted from an object arranged on one side of this optical imaging device Converge to the side and form an image.
Further, this optical imaging apparatus uses two light control panels formed by arranging a large number of strip-shaped planar light reflecting portions arranged at a constant pitch perpendicularly to the surface on one side inside a transparent flat plate. Since the control panel is easy to manufacture, it can be manufactured inexpensively.
特に、第1の発明に係る光学結像装置において、第1及び第2の光制御パネルの平面光反射部が金属反射面である場合は、平面光反射部で反射する光の入射角度に制限がなく多くの反射光が得られるので、広い範囲で結像し明るい物体像が得られる。 In particular, in the optical imaging apparatus according to the first invention, when the planar light reflecting portions of the first and second light control panels are metal reflecting surfaces, the incident angle of light reflected by the planar light reflecting portion is limited. Therefore, a lot of reflected light can be obtained, and a bright object image can be obtained by forming an image in a wide range.
第1の発明に係る光学結像装置において、第1及び第2の光制御パネルが、それぞれ一方側の面から厚み方向に伸びる垂直面を有する溝が一定のピッチで形成された透明合成樹脂板を用いて形成され、垂直面は透明合成樹脂板内に斜めに入射する光を反射する平面光反射部となって、溝間に平面光反射部から反射された反射光を通過させる光通過面が形成されている場合、第1、第2の光制御パネルを金型で製造できるので、比較的安価に製造できる。
なお、前記溝が断面直角三角形となって、直角三角形の斜辺を形成する面には遮光処理又は散乱光処理が施されている場合、光の反射面が決められるので、ゴースト又はノイズが低減された状態で物体像を得ることができる。
In the optical imaging apparatus according to the first invention, the first and second light control panels are each a transparent synthetic resin plate in which grooves having vertical surfaces extending in the thickness direction from one surface are formed at a constant pitch. The vertical plane is a planar light reflecting portion that reflects light incident obliquely into the transparent synthetic resin plate, and the light passing surface that allows the reflected light reflected from the planar light reflecting portion to pass between the grooves Since the first and second light control panels can be manufactured with a mold, the first and second light control panels can be manufactured relatively inexpensively.
Note that when the groove has a right-angled triangle cross-section, and the surface forming the hypotenuse of the right-angled triangle is subjected to a light shielding process or a scattered light process, the light reflection surface is determined, so that ghost or noise is reduced. An object image can be obtained in a state where
更に、第1の発明に係る光学結像装置において、平面光反射部が両面反射板であって、第1及び第2の光制御パネル内にそれぞれ配置されている多数の平面光反射部の幅が、中央部から周辺部にかけて徐々に大きくなっていることによって、第1、第2の光制御パネルの周辺部に当たる光の回収も可能となり、より明るい像を得ることができる。 Furthermore, in the optical imaging apparatus according to the first invention, the planar light reflecting portion is a double-sided reflecting plate, and the widths of a large number of planar light reflecting portions respectively disposed in the first and second light control panels. However, by gradually increasing from the central part to the peripheral part, it is possible to collect the light hitting the peripheral part of the first and second light control panels, and a brighter image can be obtained.
前記目的に沿う第2の発明に係る光学結像方法は、透明平板の内部に、透明平板の一方側の面に垂直に多数かつ帯状の平面光反射部を並べて形成した第1及び第2の光制御パネルを用い、第1及び第2の光制御パネルのそれぞれの一面側を、前記平面光反射部を直交させた状態で向かい合わせ、第1の光制御パネルの平面光反射部に物体からの光を入射させ、この平面光反射部で反射した反射光を第2の光制御パネルの平面光反射部で再度反射させているので、物体の像をこの光学結像装置の反対側に結像させることができる。
この方法によれば、精度の高い第1、第2の光制御パネルの製造が容易であり、より安価に対象物の画像を空間に再生できる。
In the optical imaging method according to the second aspect of the present invention, the first and second optical imaging methods according to the present invention are formed by arranging a large number of strip-shaped planar light reflecting portions in the transparent flat plate so as to be perpendicular to one surface of the transparent flat plate. Using the light control panel, one surface side of each of the first and second light control panels face each other in a state where the planar light reflecting portions are orthogonal to each other, and the planar light reflecting portion of the first light control panel is placed from the object. Since the reflected light reflected by the planar light reflecting portion is reflected again by the planar light reflecting portion of the second light control panel, the object image is connected to the opposite side of the optical imaging device. Can be imaged.
According to this method, it is easy to manufacture the first and second light control panels with high accuracy, and the image of the object can be reproduced in the space at a lower cost.
特に、第2の発明に係る光学結像方法において、平面光反射部を、両面反射板から構成した場合には、入射光(物体からの光)の奇数回反射を行うことができ、再生画像をより明るくすることができる。 In particular, in the optical imaging method according to the second aspect of the invention, when the planar light reflecting portion is constituted by a double-sided reflector, incident light (light from an object) can be reflected an odd number of times, and a reproduced image Can be made brighter.
(A)は本発明の第1の実施例に係る光学結像装置の平面図、(B)はF-F断面図、(C)はG-G断面図である。(A) is a plan view of the optical imaging apparatus according to the first embodiment of the present invention, (B) is an FF sectional view, and (C) is a GG sectional view. 同光学結像装置の斜視図である。It is a perspective view of the same optical imaging device. 同光学結像装置の各光制御パネルの平面光反射部で反射して得られた反射光による物体像形成の説明図である。It is explanatory drawing of object image formation by the reflected light obtained by reflecting with the planar light reflection part of each light control panel of the optical imaging device. 本発明の第2の実施例に係る光学結像装置の平面図である。It is a top view of the optical imaging device which concerns on the 2nd Example of this invention. 同光学結像装置の斜視図である。It is a perspective view of the same optical imaging device. 同光学結像装置の各光制御パネルの平面光反射部で連続して反射して得られた反射光による物体像形成の説明図である。It is explanatory drawing of the object image formation by the reflected light obtained by continuously reflecting with the planar light reflection part of each light control panel of the optical imaging device. 本発明の第3の実施例に係る光学結像装置の説明図である。It is explanatory drawing of the optical imaging device which concerns on the 3rd Example of this invention.
10:光学結像装置、11、12:平面光反射部、13、14:溝、15、16:光透過部、19、20:斜面、21:光学結像装置、22、23:平面光反射部、26:光学結像装置、27、28:平面光反射部、29:当接面、A、C、E:第1の光制御パネル、B、D、F:第2の光制御パネル DESCRIPTION OF SYMBOLS 10: Optical imaging device, 11, 12: Plane light reflection part, 13, 14: Groove, 15, 16: Light transmission part, 19, 20: Slope, 21: Optical imaging device, 22, 23: Plane light reflection Part, 26: optical imaging device, 27, 28: planar light reflecting part, 29: contact surface, A, C, E: first light control panel, B, D, F: second light control panel
続いて、添付した図面を参照しつつ、本発明を具体化した実施例につき説明し、本発明の理解に供する。
図1、図2に示すように、本発明の第1の実施例に係る光学結像装置10は、透明平板の一例であり、厚みが0.5~10mmの2枚の透明合成樹脂板(例えば、アクリル樹脂板)の内部に、各透明合成樹脂板の一方側の面に垂直に多数かつ帯状の平面光反射部11、12を一定のピッチ(例えば、0.1~1mm)で並べて形成した第1の光制御パネルA(以下、単に「光制御パネルA」という)及び第2の光制御パネルB(以下、単に「光制御パネルB」という)を用い、光制御パネルA、Bのそれぞれの一面側を、平面光反射部11、12を直交させて向かい合わせて密着させている。以下詳細に説明する。
Subsequently, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIGS. 1 and 2, the optical imaging apparatus 10 according to the first embodiment of the present invention is an example of a transparent flat plate, and includes two transparent synthetic resin plates (0.5 to 10 mm in thickness) For example, inside the acrylic resin plate), a large number of strip-shaped planar light reflecting portions 11 and 12 are formed at a constant pitch (for example, 0.1 to 1 mm) perpendicular to one surface of each transparent synthetic resin plate. The first light control panel A (hereinafter simply referred to as “light control panel A”) and the second light control panel B (hereinafter simply referred to as “light control panel B”) are used. One surface side of each surface is brought into close contact with the planar light reflecting portions 11 and 12 orthogonal to each other. This will be described in detail below.
光制御パネルA、Bには、それぞれ透明合成樹脂板の一方側の面から厚み方向に伸びる垂直面を有する断面直角三角形の溝13、14が、平面光反射部11、12のピッチと同一の所定ピッチで形成されている。なお、溝13、14の垂直面が、光制御パネルA、B内に斜めに入射する光を反射する平面光反射部11、12となっている。溝13間及び溝14間にはそれぞれ、平面光反射部11、12から反射された反射光を通過させる光通過面を構成する光透過部15、16が形成されている。なお、溝13、14の垂直面は金属(例えば、銀)めっき層又は金属蒸着層(金属反射面を構成する)が形成されていてもよい。 In the light control panels A and B, grooves 13 and 14 having a right-angled triangular cross section each having a vertical surface extending in the thickness direction from one surface of the transparent synthetic resin plate are the same as the pitch of the planar light reflecting portions 11 and 12. It is formed at a predetermined pitch. Note that the vertical surfaces of the grooves 13 and 14 are planar light reflecting portions 11 and 12 that reflect light incident obliquely into the light control panels A and B, respectively. Between the grooves 13 and 14, light transmitting portions 15 and 16 constituting light passing surfaces through which the reflected light reflected from the planar light reflecting portions 11 and 12 pass are formed. The vertical surfaces of the grooves 13 and 14 may be formed with a metal (for example, silver) plating layer or a metal vapor deposition layer (which constitutes a metal reflection surface).
光制御パネルA、Bは、金型を用いるプレス成形によって製造することも可能であるが、所定形状の金型内に透明合成樹脂を注入し固化することで製造するのが好ましい。溝13、14は、予め金型にその基形状が形成されていて、光制御パネルA、Bの製造時に、この光制御パネルA、Bの一方側の面に形成される。溝13、14の斜面19、20を形成する金型部分の表面に、例えば、3~50μmの凹凸部を形成するショットブラスト処理又は梨地処理することにより、溝13、14の斜面19、20には金型の凹凸部が転写された凸凹部が形成されて散乱光処理が施される。
なお、この実施例において、光制御パネルAの平面光反射部11の端部と、光制御パネルBの平面光反射部12の端部とはを当接させて配置した。
The light control panels A and B can be manufactured by press molding using a mold, but are preferably manufactured by injecting a transparent synthetic resin into a mold having a predetermined shape and solidifying it. The grooves 13 and 14 have a base shape formed in advance in the mold, and are formed on one surface of the light control panels A and B when the light control panels A and B are manufactured. The surface of the mold part that forms the slopes 19 and 20 of the grooves 13 and 14 is subjected to, for example, shot blasting or matte treatment that forms uneven portions of 3 to 50 μm, so that the slopes 19 and 20 of the grooves 13 and 14 are formed. Is formed with convex and concave portions to which the concave and convex portions of the mold are transferred and subjected to the scattered light treatment.
In this embodiment, the end of the planar light reflecting portion 11 of the light control panel A and the end of the planar light reflecting portion 12 of the light control panel B are arranged in contact with each other.
ここで、図2に示すように、平面光反射部11、12の幅wは、平面光反射部11、12(溝13、14)のピッチpに対して、例えば、0.5p以上3p以下(好ましくは0.9p~1.1p、より好ましくはp)としている。平面光反射部11、12の幅が3pを超えると、平面光反射部11、12で反射した光が斜面19、20で散乱され散乱光の一部が再び平面光反射部11、12で反射することが繰返され鮮明な像が得られない。一方、平面光反射部11、12の幅が0.5p未満の場合、平面光反射部11、12で反射される光が少なくなって鮮明な像が得られない。 Here, as shown in FIG. 2, the width w of the planar light reflecting portions 11 and 12 is, for example, 0.5 p or more and 3 p or less with respect to the pitch p of the planar light reflecting portions 11 and 12 (grooves 13 and 14). (Preferably 0.9p to 1.1p, more preferably p). When the width of the planar light reflecting portions 11 and 12 exceeds 3p, the light reflected by the planar light reflecting portions 11 and 12 is scattered by the slopes 19 and 20, and a part of the scattered light is reflected again by the planar light reflecting portions 11 and 12. Repeatedly, a clear image cannot be obtained. On the other hand, when the width of the planar light reflecting portions 11 and 12 is less than 0.5p, the light reflected by the planar light reflecting portions 11 and 12 is reduced and a clear image cannot be obtained.
続いて、第1の実施例に係る光学結像装置10について、図1~図3を参照してその作用及び動作について説明する。なお、図3では、光学結像装置10の光制御パネルA、Bにおいて光の反射状態を明確に示すため、側面視して、物体M及び物体像M´に対して左側の光制御パネルと右側の光制御パネルでは、左側の光制御パネルA、Bに対して右側の光制御パネルA、Bを同一平面内で90度回転させた状態で示している。なお、光制御パネルAの垂直な平面光反射部11と光制御パネルBの垂直な平面光反射部12で続けて2回反射すると物体像M´が得られるので、光学結像装置の光制御パネルA、Bを側面視して左右に分割し、同一平面内で左側の光制御パネルA、Bに対して右側の光制御パネルA、Bを90度回転した状態で配置しても物体像が得られる。 Next, the operation and operation of the optical imaging apparatus 10 according to the first embodiment will be described with reference to FIGS. In FIG. 3, in order to clearly show the light reflection state in the light control panels A and B of the optical imaging apparatus 10, the light control panel on the left side with respect to the object M and the object image M ′ in a side view is shown. In the right light control panel, the right light control panels A and B are shown rotated by 90 degrees in the same plane with respect to the left light control panels A and B. Since the object image M ′ is obtained when the light is reflected twice in succession by the vertical planar light reflecting portion 11 of the light control panel A and the vertical planar light reflecting portion 12 of the light control panel B, the light control of the optical imaging device is performed. The panels A and B are divided into left and right sides when viewed from the side, and the object image is obtained even when the right light control panels A and B are rotated 90 degrees with respect to the left light control panels A and B in the same plane. Is obtained.
光学結像装置10の光制御パネルAの他方側(平面光反射部11が形成されていない側)に配置した物体Mから放射された光が、光制御パネルAの他方側の面に斜めに入射すると、入射した光は光制御パネルA内に進入し進行する。ここで、断面直角三角形の溝13、14内(垂直面の外側領域)には空気が存在しているので、光制御パネル内(垂直面の内側領域)の光屈折率nは、垂直面の外側領域、すなわち空気の光屈折率nより大きい。このため、光制御パネルA内を進行した光が垂直面に入射角θで入射する際に、入射角θがsinθ=n/nの関係を満たす角度θを超える角度で垂直面内のa点に入射する場合、垂直面内のa点で光の全反射が起こり、このとき垂直面は平面光反射部11となる。 Light emitted from the object M arranged on the other side of the light control panel A of the optical imaging apparatus 10 (the side on which the planar light reflecting portion 11 is not formed) is inclined obliquely on the other surface of the light control panel A. When incident, the incident light enters the light control panel A and travels. Here, since the inner groove 13, 14 of the sectional right-angled triangle (outer region of the vertical plane) are present air, refractive index n m of the light control panel (inner region of the vertical plane), vertical plane Is larger than the optical refractive index na of the outside region, that is, air. Therefore, when the light that has traveled a light control panel A is incident at an incident angle theta in a vertical plane, the vertical plane at an angle greater than the angle theta c incident angle theta satisfies the relation of sinθ c = n m / n a When the light enters the point a, the total reflection of light occurs at the point a in the vertical plane. At this time, the vertical plane becomes the planar light reflecting portion 11.
そして、光制御パネルAの垂直面で全反射した光が光透過部15に到達すると、光制御パネルAと光制御パネルBは密着しているので、互いに当接している光通過部15、16を介して光制御パネルAの垂直面で全反射した光の一部は光制御パネルB内に進入し、残部は散乱光処理された斜面19で散乱して減衰する。光制御パネルB内に進入した光は、光制御パネルB内を進行し断面直角三角形の溝14の垂直面に到達する。そして、溝14の垂直面に到達した光のなかで全反射を起こす入射角度で垂直面内のb点に入射した光に対してのみ垂直面は平面光反射部12として作用し、全反射した光は光制御パネルB内を更に進行し、光制御パネルB内の他方側(平面光反射部12が形成されていない側)の面から外部に放出される。 When the light totally reflected by the vertical surface of the light control panel A reaches the light transmission part 15, the light control panel A and the light control panel B are in close contact with each other. A part of the light totally reflected by the vertical surface of the light control panel A enters the light control panel B, and the rest is scattered and attenuated by the slope 19 subjected to the scattered light processing. The light that has entered the light control panel B travels in the light control panel B and reaches the vertical plane of the groove 14 having a right-angled triangular section. The vertical surface acts as the planar light reflecting portion 12 only for the light incident on the point b in the vertical surface at an incident angle causing total reflection among the light reaching the vertical surface of the groove 14 and totally reflected. The light further travels in the light control panel B, and is emitted to the outside from the surface on the other side (the side on which the planar light reflecting portion 12 is not formed) in the light control panel B.
なお、図1、図3に示すように、光制御パネルAの垂直面に入射角がθ未満で入射した光は垂直面で屈折して溝13内に進入し、一部の光は散乱光処理がなされた斜面19で散乱して減衰し、残部は光制御パネルBの光透過部16を通過して光制御パネルBに進入する。そして、光制御パネルBに進入した光のなかで、溝14の垂直面で全反射された光、光制御パネルB内をそのまま進行する光は、光制御パネルBの他方側まで進行し他方側の面から外部に放出される。また、光制御パネルAの溝13の垂直面に入射角がθで入射した光は、溝13の垂直面で反射してこの垂直面に沿った光となって光制御パネルBの光透過部16から光制御パネルB内に進入する。そして光制御パネルB内に進入した光のなかで、一部は散乱光処理がなされた溝14の斜面20で散乱して減衰し、残部は光制御パネルBの他方側の面から外部に放出される。更に、光通過部15、16を介して光制御パネルAから光制御パネルB内に直接進入し、光制御パネルB内を進行して光制御パネルBの他方側の面から外部に放出される光も存在する。 Incidentally, FIG. 1, as shown in FIG. 3, the light incident angle to the vertical plane of the light control panel A is incident at less than theta c is refracted in the vertical plane enters the groove 13, part of the light-scattering It is scattered and attenuated by the light-treated slope 19, and the remaining part passes through the light transmission part 16 of the light control panel B and enters the light control panel B. Of the light that has entered the light control panel B, the light that is totally reflected by the vertical surface of the groove 14 and the light that travels in the light control panel B travels to the other side of the light control panel B. It is emitted from the surface of the outside. The light incident angle to the vertical surface of the groove 13 of the light control panel A is incident at theta c, taken with the light along the vertical plane is reflected on the vertical surface of the groove 13 the light transmission of the light control panel B Enter the light control panel B from the part 16. Of the light that has entered the light control panel B, a part of the light is scattered and attenuated by the inclined surface 20 of the groove 14 subjected to the scattered light treatment, and the remaining part is emitted from the other surface of the light control panel B to the outside. Is done. Further, the light enters directly into the light control panel B from the light control panel A via the light passing portions 15 and 16, travels through the light control panel B, and is emitted to the outside from the other surface of the light control panel B. There is also light.
ここで、平面光反射部11、12は、直交させて向かい合わせた状態で配置されているため、光制御パネルB内を進行して光制御パネルBの他方側の面から外部に放出される光のなかで、平面光反射部11に入射した入射光が平面光反射部11のa点で1回目の反射をしてその反射光が平面光反射部12のb点で2回目の反射を起こすと、2回目の反射光は、平面光反射部11に入射した入射光の入射角度と同一の角度で放射される。このため、物体Mから光学結像装置10に入射した光のなかで、平面光反射部11、12で連続して反射した反射光は、光学結像装置10を挟んで物体Mと対称位置に収束し、光学結像装置10を挟んで物体Mと対称位置に物体像M´が生成する。 Here, since the planar light reflecting portions 11 and 12 are disposed in a state of being orthogonally opposed to each other, they travel in the light control panel B and are emitted to the outside from the other surface of the light control panel B. Of the light, incident light incident on the planar light reflecting portion 11 is reflected at the point a of the planar light reflecting portion 11 for the first time, and the reflected light is reflected at the point b of the planar light reflecting portion 12 for the second time. When this happens, the second reflected light is radiated at the same angle as the incident angle of the incident light incident on the planar light reflecting portion 11. For this reason, among the light incident on the optical imaging apparatus 10 from the object M, the reflected light continuously reflected by the planar light reflecting portions 11 and 12 is in a symmetrical position with the object M across the optical imaging apparatus 10. It converges and an object image M ′ is generated at a symmetrical position with respect to the object M across the optical imaging apparatus 10.
一方、光制御パネルAの溝13内を通過してから光制御パネルB内に進入し光制御パネルBの他方側まで進行し他方側の面から外部に放出された光、光制御パネルAの溝13の垂直面に入射角θで入射し、溝13の垂直面に沿った光となって光制御パネルB内に進入し光制御パネルBの他方側まで進行し他方側の面から外部に放出された光、及び光制御パネルAから光制御パネルB内に直接進入し、光制御パネルB内を進行して光制御パネルBの他方側の面から外部に放出される光は、いずれも光制御パネルAに入射する入射光とは同一角度で反射しない。このため、光制御パネルBの他方側の面から外部に放出される光は交わることがなく、像は形成されない。 On the other hand, after passing through the groove 13 of the light control panel A, the light enters the light control panel B, proceeds to the other side of the light control panel B, and is emitted to the outside from the other side surface. The light enters the vertical surface of the groove 13 at an incident angle θ c , enters the light control panel B as light along the vertical surface of the groove 13, travels to the other side of the light control panel B, and enters the outside from the other surface. The light emitted from the light control panel A directly enters the light control panel B, travels through the light control panel B, and is emitted from the other side of the light control panel B to the outside. Also, the incident light entering the light control panel A is not reflected at the same angle. For this reason, the light emitted to the outside from the other surface of the light control panel B does not intersect and an image is not formed.
図4、図5に示すように、本発明の第2の実施例に係る光学結像装置21は、2枚の透明平板の内部に、透明平板の厚み方向に渡って垂直に多数かつ帯状で、金属反射面からなる平面光反射部22、23を一定のピッチで並べて形成した第1の光制御パネルC(以下、単に「光制御パネルC」という)及び第2の光制御パネルD(以下、単に「光制御パネルD」という)を用い、光制御パネルC、Dのそれぞれの一面側を、平面光反射部22、23を直交させて向かい合わせて密着させている。以下詳細に説明する。 As shown in FIGS. 4 and 5, the optical imaging apparatus 21 according to the second embodiment of the present invention has a large number and a strip shape vertically in the thickness direction of the transparent flat plate inside the two transparent flat plates. The first light control panel C (hereinafter simply referred to as “light control panel C”) and the second light control panel D (hereinafter referred to as “light control panel C”) formed by arranging the planar light reflecting portions 22 and 23 made of metal reflective surfaces at a constant pitch. , Simply referred to as “light control panel D”), and one surface side of each of the light control panels C and D is brought into close contact with each other with the planar light reflecting portions 22 and 23 orthogonal to each other. This will be described in detail below.
光制御パネルC、Dは、金属の一例であるアルミニウム又は銀等の蒸着層(又はめっき層)からなる金属反射面(従って、両面反射板となる)が、一面側に形成された一定厚みの板状の透明合成樹脂板(例えば、アクリル樹脂板)又はガラス板を、金属反射面が一方側に配置されるように多数枚積層して積層体を作製し、この積層体から各金属反射面に対して垂直な切出し面が形成されるように切出すことにより光制御パネルC、Dを作製する。そして、透明合成樹脂板又はガラス板の厚みが平面光反射部22、23のピッチに相当し、積層体から切出す際の厚みで光制御パネルC、Dの厚みが決定される。 Each of the light control panels C and D has a constant thickness in which a metal reflecting surface (and thus a double-sided reflecting plate) made of a deposited layer (or plating layer) of aluminum or silver, which is an example of a metal, is formed on one surface side. A large number of plate-like transparent synthetic resin plates (for example, acrylic resin plates) or glass plates are laminated so that the metal reflection surface is arranged on one side, and a laminate is produced. The light control panels C and D are manufactured by cutting so that a cut surface perpendicular to the surface is formed. And the thickness of a transparent synthetic resin board or a glass plate is equivalent to the pitch of the plane light reflection parts 22 and 23, and the thickness of the light control panels C and D is determined by the thickness at the time of cutting out from a laminated body.
ここで、切出す際の厚みは、光制御パネルC、Dの強度や光制御パネルC、Dの縦寸法及び横寸法に応じて調整する必要があるが、例えば、0.5~10mmである。ここで、平面光反射部22、23の幅は、平面光反射部22、23のピッチqに対して、例えば、0.5q以上3q以下(好ましくは0.9q~1.1q、より好ましくはq)である。平面光反射部22、23の幅が3qを超えると、平面光反射部22、23で反射した光が隣の平面光反射部22、23で反射され、再び平面光反射部22、23で反射することが繰返され鮮明な像が得られない。一方、平面光反射部22、23の幅が0.5q未満の場合、平面光反射部22、23で反射される光が少なくなって鮮明な像が得られない。そして、光制御パネルC、Dは、それぞれの一面側同士が密着して、図示しない拘束部材(例えば、接着剤、熱シール、ねじ等)で固定されている。 Here, the thickness at the time of cutting needs to be adjusted according to the intensity of the light control panels C and D and the vertical and horizontal dimensions of the light control panels C and D, and is, for example, 0.5 to 10 mm. . Here, the width of the planar light reflecting portions 22 and 23 is, for example, 0.5q to 3q (preferably 0.9q to 1.1q, more preferably) with respect to the pitch q of the planar light reflecting portions 22 and 23. q). When the width of the planar light reflecting portions 22 and 23 exceeds 3q, the light reflected by the planar light reflecting portions 22 and 23 is reflected by the adjacent planar light reflecting portions 22 and 23 and again reflected by the planar light reflecting portions 22 and 23. Repeatedly, a clear image cannot be obtained. On the other hand, when the widths of the planar light reflecting portions 22 and 23 are less than 0.5 q, the light reflected by the planar light reflecting portions 22 and 23 is reduced and a clear image cannot be obtained. The light control panels C and D are fixed to each other by a restraining member (for example, an adhesive, a heat seal, a screw, etc.) that is not shown, in close contact with each other.
続いて、本発明の第2の実施例に係る光学結像装置21の作用について説明する。
図4~図6に示すように、光学結像装置21の光制御パネルCの他方側(光制御パネルDとの非当接側)に配置した物体Nから放射された光が光制御パネルCの他方側の面に斜めに入射すると、入射した光は光制御パネルC内に進入し平面光反射部22のc点で反射される。そして、平面光反射部22で反射された反射光は、光制御パネルCの一方側の面から光制御パネルDの一方側(光制御パネルCとの当接側)の面を通過して光制御パネルD内に進入する。ここで、光制御パネルD内に進入した光のなかで、一部の光は光制御パネルDの平面光反射部23のd点で反射されて更に光制御パネルD内を進行し、光制御パネルD内の他方側の面から外部に放出される。また、残部の光の一部は、光制御パネルD内を進行して光制御パネルDの他方側の面から外部に放出される。
Subsequently, the operation of the optical imaging apparatus 21 according to the second embodiment of the present invention will be described.
As shown in FIGS. 4 to 6, the light emitted from the object N arranged on the other side of the light control panel C of the optical imaging device 21 (the non-contact side with the light control panel D) is reflected by the light control panel C. Is incident obliquely on the other side surface, the incident light enters the light control panel C and is reflected at the point c of the planar light reflecting portion 22. Then, the reflected light reflected by the planar light reflecting portion 22 passes through the surface on one side of the light control panel D (the contact side with the light control panel C) from the surface on one side of the light control panel C, and the light. Enter the control panel D. Here, of the light that has entered the light control panel D, a part of the light is reflected at the point d of the planar light reflecting portion 23 of the light control panel D and further travels through the light control panel D to control the light. The light is discharged from the other side of the panel D to the outside. Further, a part of the remaining light travels in the light control panel D and is emitted to the outside from the other surface of the light control panel D.
ここで、平面光反射部22、23は、直交させて向かい合わせた状態で配置されているため、光制御パネルD内を進行して光制御パネルDの他方側の面から外部に放出される光のなかで、平面光反射部22に入射した入射光が平面光反射部22のc点で1回目の反射をしてその反射光が平面光反射部23のd点で2回目の反射を起こすと、2回目の反射光は平面光反射部22に入射した入射光と平面視して平行になる(図4参照)。このため、物体Nから光学結像装置21に入射した光のなかで、平面光反射部22、23で連続して反射した反射光は、光学結像装置21を挟んで物体Nと対称位置に収束し、光学結像装置21を挟んで物体Nと対称位置に物体像N´が生成する。 Here, since the planar light reflecting portions 22 and 23 are arranged in a state of being orthogonally opposed to each other, they travel in the light control panel D and are emitted to the outside from the other surface of the light control panel D. Of the light, incident light incident on the planar light reflecting portion 22 is reflected at the point c of the planar light reflecting portion 22 for the first time, and the reflected light is reflected at the point d of the planar light reflecting portion 23 for the second time. When this happens, the second reflected light becomes parallel to the incident light incident on the planar light reflecting portion 22 in plan view (see FIG. 4). For this reason, among the light incident on the optical imaging device 21 from the object N, the reflected light continuously reflected by the planar light reflecting portions 22 and 23 is in a symmetrical position with the object N across the optical imaging device 21. It converges and an object image N ′ is generated at a symmetrical position with respect to the object N across the optical imaging device 21.
一方、光制御パネルCの平面光反射部22で反射されて光制御パネルD内に進入し、光制御パネルD内を進行して他方側の面から外部に放出される光、光制御パネルCに進入し光制御パネルC内を進行して光制御パネルD内に進入し、光制御パネルD内を進行して他方側の面から外部に放出された光は、いずれも光制御パネルCに入射する入射光とは平面視して平行でない。このため、光制御パネルDの他方側の面から外部に放出される光は交わることがなく、像は形成されない。
なお、光学結像装置21では、平面光反射部22、23が金属反射面なので、平面光反射部22、23で反射する光の入射角度に制限がなく光の反射角が任意となる。このため、「物質の全反射」の原理を用いた反射面より広範囲の角度で結像できる。
On the other hand, light that is reflected by the planar light reflecting portion 22 of the light control panel C, enters the light control panel D, travels through the light control panel D, and is emitted to the outside from the other surface, the light control panel C. The light that enters the light control panel C, enters the light control panel D, enters the light control panel D, and travels through the light control panel D and is emitted from the other side to the light control panel C. The incident light is not parallel to the incident light in plan view. For this reason, the light emitted to the outside from the other surface of the light control panel D does not intersect and an image is not formed.
In the optical imaging device 21, since the planar light reflecting portions 22 and 23 are metal reflecting surfaces, the incident angle of light reflected by the planar light reflecting portions 22 and 23 is not limited, and the light reflection angle is arbitrary. For this reason, an image can be formed at a wider range of angles than the reflecting surface using the principle of “total reflection of matter”.
図7には本発明の第3の実施例に係る光学結像装置26を示すが、図に示すように、第1の光制御パネルE(以下、単に「光制御パネルE」という)と、これに当接する第2の光制御パネルF(以下、単に光制御パネルF」という)とを有する。光制御パネルEには、両面反射板からなる長尺の平面光反射部27が多数平行に設けられ、光制御パネルFは両面反射板からなる多数の長尺の平面光反射部28が平行に設けられている。そして、平面光反射部27、28は立設されている向きは同じである。従って、光制御パネルEと光制御パネルFとの当接面29に対して、各平面光反射部27、28は垂直に配置されている。 FIG. 7 shows an optical imaging apparatus 26 according to a third embodiment of the present invention. As shown in FIG. 7, a first light control panel E (hereinafter simply referred to as “light control panel E”), There is a second light control panel F (hereinafter simply referred to as a light control panel F) in contact therewith. The light control panel E is provided with a number of long planar light reflecting portions 27 made of double-sided reflectors in parallel, and the light control panel F has a number of long planar light reflecting portions 28 made of double-sided reflectors in parallel. Is provided. The plane light reflecting portions 27 and 28 are erected in the same direction. Accordingly, the planar light reflecting portions 27 and 28 are arranged perpendicular to the contact surface 29 between the light control panel E and the light control panel F.
そして、平面光反射部27の長手方向と、平面光反射部28の長手方向は直交している。これらの平面光反射部27、28は、第2の実施例に係る光学結像装置21と同様、透明樹脂(例えば、アクリル)又はガラス等の中に所定ピッチで埋設されている。
そして、この実施例では、光制御パネルE、Fにおける平面光反射部27、28は、高さ(幅)が、中央部から周辺部に向けて徐々に高くなって、各光制御パネルE、Fの片側断面は、円弧状となっている。
The longitudinal direction of the planar light reflecting portion 27 and the longitudinal direction of the planar light reflecting portion 28 are orthogonal to each other. These planar light reflecting portions 27 and 28 are embedded at a predetermined pitch in a transparent resin (for example, acrylic) or glass as in the optical imaging apparatus 21 according to the second embodiment.
In this embodiment, the planar light reflecting portions 27 and 28 in the light control panels E and F are gradually increased in height (width) from the central portion toward the peripheral portion. One side cross section of F has an arc shape.
従って、この実施例においては、光源Pから出た光(入射光)は、光制御パネルEの中央にある平面光反射部27では、一回反射で光制御パネルFの平面光反射部28に入り、結像点P’に収束する。また、光制御パネルFの周辺部で、高さの高い部分の平面光反射部27に入射した光は、内部で奇数回反射して光制御パネルFに入り、光制御パネルFで奇数回(一回)反射し、結像点P’又はその近傍に収束する。一方、光制御パネルE又は光制御パネルFで偶数回反射した光は、結像点P’には収束しない。
従って、光学結像装置10、21では、光制御パネルの周辺部の光を集めることは難しいが、この光学結像装置26によって、光制御パネルの周辺部に当たる光の一部を集めることができる。
Therefore, in this embodiment, the light (incident light) emitted from the light source P is reflected once by the planar light reflecting unit 27 in the center of the light control panel E to the planar light reflecting unit 28 of the light control panel F. And converges to the image point P ′. In addition, the light incident on the planar light reflecting portion 27 of the high portion in the peripheral portion of the light control panel F is internally reflected an odd number of times and enters the light control panel F, and the light control panel F has an odd number of times ( Once), the light is reflected and converges at or near the image point P ′. On the other hand, the light reflected by the light control panel E or the light control panel F an even number of times does not converge at the imaging point P ′.
Therefore, although it is difficult for the optical imaging devices 10 and 21 to collect the light at the peripheral portion of the light control panel, the optical imaging device 26 can collect a part of the light hitting the peripheral portion of the light control panel. .
以上、本発明を、実施例を参照して説明してきたが、本発明は何ら上記した実施例に記載した構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施例や変形例も含むものである。
例えば、第1の実施例で、平面光反射部が形成された第1及び第2の光制御パネルのそれぞれの一面側を平面光反射部が直交するように向かい合わせ密着して光学結像装置を構成したが、第1及び第2の光制御パネルの間にギャップが形成されてもよい。ここで、ギャップの幅は、例えば、帯状の平面光反射部の幅の100倍以下とすることができる。
The present invention has been described with reference to the embodiments. However, the present invention is not limited to the configurations described in the above-described embodiments, and is within the scope of the matters described in the claims. It includes other embodiments and modifications that can be considered.
For example, in the first embodiment, the optical imaging apparatus is configured such that one surface side of each of the first and second light control panels on which the planar light reflecting portions are formed faces each other so that the planar light reflecting portions are orthogonal to each other. However, a gap may be formed between the first and second light control panels. Here, the width of the gap can be, for example, 100 times or less the width of the band-shaped planar light reflecting portion.
また、第2の実施例で、透明合成樹脂板の一面側に金属反射面を形成したが、透明合成樹脂板又はガラス板の両側面に金属反射面を形成してもよい。そして、両側面に金属反射面が形成された透明合成樹脂板又はガラス板を多数枚積層して積層体を作製し、この積層体から各金属反射面に対して垂直な切出し面が形成されるように切出して第1及び第2の光制御パネルを形成することもできる。
更に、第1~第3の実施例で、第1の光制御パネルの平面光反射部のピッチと、第2の光制御パネルBの平面光反射部のピッチを同一としたが、第1の光制御パネルの平面光反射部のピッチと第2の光制御パネルの平面光反射部のピッチは異なっていてもよい。
更に、各実施例においては、光制御パネル内の平面光反射部の間隔(ピッチ)は必ずしも同一である必要はない。
また、光制御パネルに形成される溝の斜面に遮光処理を施すこともできる。
In the second embodiment, the metal reflection surface is formed on one side of the transparent synthetic resin plate. However, the metal reflection surface may be formed on both sides of the transparent synthetic resin plate or the glass plate. And a laminated body is produced by laminating a large number of transparent synthetic resin plates or glass plates having metal reflecting surfaces formed on both side surfaces, and cut-out surfaces perpendicular to the respective metal reflecting surfaces are formed from this laminated body. Thus, the first and second light control panels can be formed by cutting out.
Furthermore, in the first to third embodiments, the pitch of the planar light reflecting portion of the first light control panel and the pitch of the planar light reflecting portion of the second light control panel B are the same. The pitch of the planar light reflecting portions of the light control panel may be different from the pitch of the planar light reflecting portions of the second light control panel.
Further, in each embodiment, the interval (pitch) between the planar light reflecting portions in the light control panel is not necessarily the same.
Further, a light shielding process can be applied to the slope of the groove formed in the light control panel.
本発明に係る光学結像装置及びそれを用いた光学結像方法においては、透明平板の内部に、一方側の面に垂直に多数かつ帯状の平面光反射部を一定のピッチで並べて形成した第1及び第2の光制御パネルのそれぞれの一面側を、それぞれの平面光反射部を直交させて向かい合わせているので、この光学結像装置の一側に配置された物体から放射される光は、光学結像装置の他側に収束して結像する。従って、空間内に立体像を映し出すことができ、立体表示機器、ゲーム機、遊戯機器、広告塔等に応用できる。
更に、構造も簡単であるので、安価な光学結像装置を提供できる。

 
In the optical imaging device and the optical imaging method using the optical imaging device according to the present invention, a plurality of strip-shaped planar light reflecting portions are formed in a transparent flat plate so as to be arranged perpendicularly to one surface at a constant pitch. Since one surface side of each of the first and second light control panels faces each other with the respective planar light reflecting portions orthogonal to each other, the light emitted from the object disposed on one side of the optical imaging device is Then, it converges on the other side of the optical imaging device and forms an image. Therefore, a stereoscopic image can be projected in the space, and can be applied to a stereoscopic display device, a game machine, a game machine, an advertising tower, and the like.
Furthermore, since the structure is simple, an inexpensive optical imaging apparatus can be provided.

Claims (10)

  1. 透明平板の内部に、該透明平板の一方側の面に垂直に多数かつ帯状の平面光反射部を一定のピッチで並べて形成した第1及び第2の光制御パネルを用い、該第1及び第2の光制御パネルのそれぞれの一面側を、前記平面光反射部を直交させて向かい合わせたことを特徴とする光学結像装置。 Using the first and second light control panels, in which a large number of strip-like planar light reflecting portions are arranged at a constant pitch perpendicularly to one surface of the transparent flat plate inside the transparent flat plate. An optical imaging apparatus, wherein one surface side of each of the two light control panels is opposed to each other with the planar light reflecting portions orthogonal to each other.
  2. 請求項1記載の光学結像装置において、前記第1及び第2の光制御パネルの前記平面光反射部が金属反射面であることを特徴とする光学結像装置。 2. The optical imaging apparatus according to claim 1, wherein the planar light reflecting portions of the first and second light control panels are metal reflecting surfaces.
  3. 請求項1記載の光学結像装置において、前記第1及び第2の光制御パネルは、それぞれ一方側の面から厚み方向に伸びる垂直面を有する溝が前記一定のピッチで形成された透明合成樹脂板を用いて形成され、かつ前記垂直面は該透明合成樹脂板内に斜めに入射する光を反射する前記平面光反射部となって、前記溝間に該平面光反射部から反射された反射光を通過させる光通過面が形成されていることを特徴とする光学結像装置。 2. The optical imaging apparatus according to claim 1, wherein each of the first and second light control panels includes a transparent synthetic resin in which grooves having vertical surfaces extending in a thickness direction from one surface are formed at the constant pitch. The vertical surface is formed using a plate, and the vertical surface serves as the planar light reflecting portion that reflects light incident obliquely into the transparent synthetic resin plate, and is reflected from the planar light reflecting portion between the grooves. An optical imaging apparatus, wherein a light passage surface through which light passes is formed.
  4. 請求項3記載の光学結像装置において、前記溝は断面直角三角形となって、該直角三角形の斜辺を形成する面には遮光処理又は散乱光処理が施されていることを特徴とする光学結像装置。 4. The optical imaging device according to claim 3, wherein the groove has a right-angled triangle cross section, and a surface forming the hypotenuse of the right-angled triangle is subjected to a light shielding process or a scattered light process. Image device.
  5. 請求項3及び4のいずれか1記載の光学結像装置において、前記第1及び第2の光制御パネルは、該第1及び第2の光制御パネルの平面光反射部を直交させた状態で、密着又は一定のギャップを介して配置されていることを特徴とする光学結像装置。 5. The optical imaging apparatus according to claim 3, wherein the first and second light control panels are in a state in which the planar light reflecting portions of the first and second light control panels are orthogonal to each other. An optical imaging device, wherein the optical imaging device is disposed through close contact or a constant gap.
  6. 請求項1~5のいずれか1記載の光学結像装置において、前記平面光反射部が両面反射板であって、前記第1及び第2の光制御パネル内にそれぞれ配置されている複数の前記平面光反射部の幅が、中央部から周辺部にかけて徐々に大きくなっていることを特徴とする光学結像装置。 The optical imaging apparatus according to any one of claims 1 to 5, wherein the planar light reflecting portion is a double-sided reflecting plate, and the plurality of the light-emitting panels are disposed in the first and second light control panels, respectively. An optical imaging device, wherein the width of the planar light reflecting portion gradually increases from the central portion to the peripheral portion.
  7. 透明平板の内部に、該透明平板の一方側の面に垂直に多数かつ帯状の平面光反射部を並べて形成した第1及び第2の光制御パネルを用い、該第1及び第2の光制御パネルのそれぞれの一面側を、前記平面光反射部を直交させて向かい合わせた光学結像装置を用いる光学結像方法であって、
    前記第1の光制御パネルの平面光反射部に物体からの光を入射させ、該平面光反射部で反射した反射光を前記第2の光制御パネルの平面光反射部で再度反射させ、前記物体の像を該光学結像装置の反対側に結像させることを特徴とする光学結像方法。
    The first and second light control panels are formed using a first and second light control panel in which a large number of strip-shaped planar light reflecting portions are arranged in a vertical direction on one surface of the transparent flat plate. An optical imaging method using an optical imaging device in which one surface side of each panel faces each other with the planar light reflecting portions orthogonal to each other,
    The light from the object is incident on the planar light reflecting portion of the first light control panel, the reflected light reflected by the planar light reflecting portion is reflected again by the planar light reflecting portion of the second light control panel, and An optical imaging method, wherein an image of an object is formed on the opposite side of the optical imaging device.
  8. 請求項7記載の光学結像方法において、前記平面光反射部は一定のピッチで設けられていることを特徴とする光学結像方法。 8. The optical imaging method according to claim 7, wherein the planar light reflecting portions are provided at a constant pitch.
  9. 請求項7及び8のいずれか1記載の光学結像方法において、前記平面光反射部は、両面反射板からなることを特徴とする光学結像方法。 9. The optical imaging method according to claim 7, wherein the planar light reflecting portion is formed of a double-sided reflection plate.
  10. 請求項9記載の光学結像方法において、前記物体からの光は、前記第1及び第2の光制御パネルのいずれか一方又は双方の対向する前記両面反射板を奇数回反射して、前記物体の像を結像することを特徴とする光学結像方法。
     
    10. The optical imaging method according to claim 9, wherein light from the object is reflected an odd number of times by the double-sided reflecting plate facing either one or both of the first and second light control panels. An optical imaging method characterized by forming an image of
PCT/JP2009/057934 2008-04-22 2009-04-21 Optical imaging device and optical imaging method using the same WO2009131128A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010509189A JP4865088B2 (en) 2008-04-22 2009-04-21 Optical imaging method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-111672 2008-04-22
JP2008111672 2008-04-22

Publications (1)

Publication Number Publication Date
WO2009131128A1 true WO2009131128A1 (en) 2009-10-29

Family

ID=41216860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057934 WO2009131128A1 (en) 2008-04-22 2009-04-21 Optical imaging device and optical imaging method using the same

Country Status (2)

Country Link
JP (5) JP4865088B2 (en)
WO (1) WO2009131128A1 (en)

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276699A (en) * 2008-05-16 2009-11-26 National Institute Of Information & Communication Technology Dihedral corner reflector array
JP2011081309A (en) * 2009-10-09 2011-04-21 Pioneer Electronic Corp Spatial video display device
JP2011081300A (en) * 2009-10-09 2011-04-21 Pioneer Electronic Corp Method for manufacturing reflection type plane-symmetric imaging element
JP2011175297A (en) * 2008-04-22 2011-09-08 Askanet:Kk Method of manufacturing light control panel for use in optical imaging device
JPWO2009136578A1 (en) * 2008-05-09 2011-09-08 パイオニア株式会社 Spatial image display device
JP2012128456A (en) * 2012-03-22 2012-07-05 Pioneer Electronic Corp Method of manufacturing reflective plane-symmetric imaging element
JP2012150502A (en) * 2012-03-22 2012-08-09 Pioneer Electronic Corp Method for manufacturing reflective plane-symmetric imaging element
JP2012247459A (en) * 2011-05-25 2012-12-13 National Institute Of Information & Communication Technology Reflector array optical device and display unit using the same
WO2013061619A1 (en) 2011-10-24 2013-05-02 株式会社アスカネット Optical image forming device
JP2013109211A (en) * 2011-11-22 2013-06-06 Pioneer Electronic Corp Spatial image display
WO2013122085A1 (en) * 2012-02-14 2013-08-22 シャープ株式会社 Reflective imaging element and optical system
US8540371B2 (en) 2010-05-21 2013-09-24 Stanley Electric Co., Ltd. Display device
JP2013210502A (en) * 2012-03-30 2013-10-10 Dainippon Printing Co Ltd Optical panel and display device
JP2013242850A (en) * 2012-04-27 2013-12-05 Nitto Denko Corp Display input device
WO2013183454A1 (en) * 2012-06-07 2013-12-12 株式会社アスカネット Optical image forming device and optical image forming method
WO2014024677A1 (en) * 2012-08-10 2014-02-13 株式会社アスカネット Size-altering optical image forming device and manufacturing method therefor
WO2014038303A1 (en) * 2012-09-10 2014-03-13 株式会社アスカネット Floating touch panel
US8702252B2 (en) 2012-01-30 2014-04-22 Asukanet Company, Ltd. Optical imaging apparatus and optical imaging method using the same
JP2014081617A (en) * 2012-09-28 2014-05-08 Nlt Technologies Ltd Spatial imaging element and method for manufacturing the same, display device and terminal equipment
WO2014073650A1 (en) 2012-11-08 2014-05-15 株式会社アスカネット Light control panel fabrication method
WO2014129454A1 (en) * 2013-02-19 2014-08-28 日本電気硝子株式会社 Glass laminate, optical imaging member, method for manufacturing glass laminate, and method for manufacturing optical imaging member
JP2015018038A (en) * 2013-07-09 2015-01-29 株式会社アスカネット Image reproduction method
WO2015033645A1 (en) * 2013-09-06 2015-03-12 株式会社アスカネット Method for fabrication of photo-control panel comprising photo-reflector parts which are positioned in parallel
JP2015079170A (en) * 2013-10-18 2015-04-23 増田 麻言 Scanning projection device, and portable projection device
JP2015125393A (en) * 2013-12-27 2015-07-06 株式会社アスカネット Stereoscopic image formation device, and method of manufacturing the same
JP5820955B1 (en) * 2014-06-27 2015-11-24 株式会社アスカネット Retroreflector and stereoscopic image display device using the same
WO2015198499A1 (en) * 2014-06-27 2015-12-30 株式会社アスカネット Retroreflector, and stereoscopic image display device and method using same
KR101619638B1 (en) * 2014-11-11 2016-05-10 현대자동차일본기술연구소 Mirrorless monitor for vehicle using spatial imaging optical device
WO2016088580A1 (en) * 2014-12-05 2016-06-09 昭和電工株式会社 Light control panel and optical imaging device
JP2016180785A (en) * 2015-03-23 2016-10-13 コニカミノルタ株式会社 Reflection type aerial image formation element and manufacturing method thereof
US9517109B2 (en) 2014-09-24 2016-12-13 Olympus Corporation Medical system
US9523859B2 (en) 2012-02-28 2016-12-20 Asukanet Company, Ltd. Volumetric-image forming system and method thereof
KR20160148707A (en) 2014-06-05 2016-12-26 가부시키가이샤 아스카넷토 Image display device and image display method
US9618757B2 (en) 2013-04-24 2017-04-11 Asukanet Company, Ltd. Stereoscopic image display device and stereoscopic image display method
CN106560734A (en) * 2016-06-01 2017-04-12 杭州飞像科技有限公司 Application of aerial imaging element in prompter, and prompter
JP2017126032A (en) * 2016-01-15 2017-07-20 大日本印刷株式会社 Optical sheet and optical panel
JP2017167224A (en) * 2016-03-14 2017-09-21 大日本印刷株式会社 Space floating video display device
JP6203978B1 (en) * 2017-04-17 2017-09-27 株式会社アスカネット Method for manufacturing stereoscopic image forming apparatus
JP6203989B1 (en) * 2017-01-27 2017-09-27 株式会社アスカネット Method for manufacturing stereoscopic image forming apparatus
JP2017219558A (en) * 2016-06-02 2017-12-14 コニカミノルタ株式会社 Method of manufacturing optical element and method of manufacturing reflective aerial image forming element
CN107533361A (en) * 2015-05-08 2018-01-02 京瓷办公信息***株式会社 Image processing system
WO2018138932A1 (en) * 2017-01-27 2018-08-02 株式会社アスカネット Production method for stereoscopic-image-forming device, and stereoscopic-image-forming device
WO2018139141A1 (en) * 2017-01-30 2018-08-02 株式会社パリティ・イノベーションズ Optical element and image display device using same
WO2018220876A1 (en) 2017-06-01 2018-12-06 株式会社アスカネット Method for manufacturing stereoscopic image forming device, and stereoscopic image forming device
DE112017000008B4 (en) 2016-03-10 2018-12-20 Omron Corporation STEREOSCOPIC DISPLAY DEVICE
WO2019003730A1 (en) 2017-06-29 2019-01-03 株式会社アスカネット Stereoscopic image forming device and method for manufacturing stereoscopic image forming device
WO2019021497A1 (en) * 2017-07-24 2019-01-31 株式会社アスカネット Stereoscopic image forming device and method for manufacturing same
JP2019045562A (en) * 2017-08-30 2019-03-22 株式会社アスカネット Method for manufacturing stereoscopic image forming device
CN110264916A (en) * 2019-06-21 2019-09-20 京东方科技集团股份有限公司 A kind of projection arrangement and air-borne imagery equipment
JP6616554B1 (en) * 2018-07-18 2019-12-04 株式会社アスカネット Method for manufacturing stereoscopic image forming apparatus
WO2020017071A1 (en) 2018-07-18 2020-01-23 株式会社アスカネット Method for manufacturing stereoscopic image formation device and stereoscopic image formation device
JPWO2018139444A1 (en) * 2017-01-27 2020-03-26 株式会社アスカネット Manufacturing method of stereoscopic image forming apparatus and stereoscopic image forming apparatus
CN111886567A (en) * 2018-03-07 2020-11-03 日本电气方案创新株式会社 Operation input device, operation input method, and computer-readable recording medium
JP2021026093A (en) * 2019-08-02 2021-02-22 本田技研工業株式会社 Video display apparatus
WO2021070400A1 (en) 2019-10-11 2021-04-15 株式会社アスカネット Optical image forming device and method for manufacturing same
WO2022080082A1 (en) 2020-10-15 2022-04-21 株式会社アスカネット Aerial image forming element and aerial image forming device
KR20220136479A (en) 2020-03-10 2022-10-07 가부시키가이샤 아스카넷토 Manufacturing method of light control panel used in optical imaging device
WO2022224613A1 (en) 2021-04-21 2022-10-27 株式会社アスカネット Reflection-type aerial image formation device and reflection-type aerial image formation method
US11537240B2 (en) 2018-05-22 2022-12-27 Murakami Corporation Virtual image display device
WO2023007816A1 (en) 2021-07-26 2023-02-02 株式会社アスカネット Method for manufacturing aerial image formation device, and aerial image formation device
US11662860B2 (en) 2019-04-10 2023-05-30 Murakami Corporation Reference position setting method and operation detection device for displaying an operation surface as a virtual image
KR20230077751A (en) 2021-04-21 2023-06-01 가부시키가이샤 아스카넷토 Reflective aerial imaging apparatus and method for reflective aerial imaging

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5904436B2 (en) * 2011-11-09 2016-04-13 パイオニア株式会社 Method for manufacturing a large reflective plane-symmetric imaging element
JP5995131B2 (en) * 2011-11-25 2016-09-21 大日本印刷株式会社 Optical panel and display device
WO2013145983A1 (en) * 2012-03-27 2013-10-03 株式会社アスカネット Method for manufacturing optical control panel
JP2014032394A (en) * 2012-07-13 2014-02-20 Nitto Denko Corp Micromirror array, micromirror array manufacturing method and optical element for use in micromirror array
JP2014066825A (en) * 2012-09-25 2014-04-17 Nitto Denko Corp Method of manufacturing micromirror array
WO2014167904A1 (en) * 2013-04-12 2014-10-16 シャープ株式会社 Reflective type image forming element and method for manufacturing reflective type image forming element
JP5509391B1 (en) * 2013-06-07 2014-06-04 株式会社アスカネット Method and apparatus for detecting a designated position of a reproduced image in a non-contact manner
CN105264470B (en) 2013-06-07 2018-06-22 亚斯卡奈特股份有限公司 Non-contactly detection reproduces the method and device of the indicating positions of image
JP5723928B2 (en) * 2013-07-09 2015-05-27 株式会社アスカネット Manufacturing method of mold
WO2016051480A1 (en) * 2014-09-29 2016-04-07 日立マクセル株式会社 Display device and apparatus incorporating same
JP6674683B2 (en) * 2014-12-19 2020-04-01 国立大学法人 鹿児島大学 Authentication processing apparatus and authentication processing method
CN107408372B (en) 2015-03-26 2019-10-25 京瓷办公信息***株式会社 It can video formation device and image forming apparatus
JP6365767B2 (en) 2015-03-30 2018-08-01 京セラドキュメントソリューションズ株式会社 Visible image forming apparatus and image forming apparatus
JP6281520B2 (en) 2015-03-31 2018-02-21 京セラドキュメントソリューションズ株式会社 Image forming apparatus
WO2017047527A1 (en) * 2015-09-15 2017-03-23 コニカミノルタ株式会社 Fitness device and fitness system
EP3355088B1 (en) 2015-09-25 2021-09-01 Asukanet Company, Ltd. Retroreflector
JP6645371B2 (en) 2016-07-15 2020-02-14 オムロン株式会社 Optical device and stereoscopic display method
KR20190041884A (en) 2016-08-31 2019-04-23 에스씨아이브이에이엑스 가부시키가이샤 Optical imaging device
JP6756281B2 (en) 2017-03-14 2020-09-16 オムロン株式会社 Display method and display device
JP6716027B2 (en) 2017-04-17 2020-07-01 富士フイルム株式会社 Optical film, laminated optical film, and aerial imaging apparatus including the laminated optical film
CN107193125A (en) * 2017-07-26 2017-09-22 安徽省东超科技有限公司 A kind of optical flat structure for realizing air imaging
JP7134181B2 (en) 2017-11-01 2022-09-09 株式会社村上開明堂 image display system
CN112180478B (en) * 2020-09-03 2022-03-18 核桃智能科技(常州)有限公司 Air imaging lens
JP7184220B1 (en) 2021-07-12 2022-12-06 凸版印刷株式会社 aerial display

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821702A (en) * 1981-07-31 1983-02-08 Ricoh Co Ltd Image-forming element using both side reflection band of minute width
JPS6125104A (en) * 1984-07-13 1986-02-04 Hitachi Ltd Compound lens
JPS63191182A (en) * 1987-02-04 1988-08-08 キヤノン株式会社 Image display member
JPH095503A (en) * 1995-06-23 1997-01-10 Nittetsu Elex Co Ltd Optical imaging device
WO2008041616A1 (en) * 2006-10-02 2008-04-10 National Institute Of Information And Communications Technology Two-point image formation optical device
JP2008158114A (en) * 2006-12-21 2008-07-10 National Institute Of Information & Communication Technology Optical system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284740A (en) * 1986-06-03 1987-12-10 信越ポリマ−株式会社 Fine roller screen-shaped glare-shielding sheet
JP4865088B2 (en) * 2008-04-22 2012-02-01 株式会社アスカネット Optical imaging method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821702A (en) * 1981-07-31 1983-02-08 Ricoh Co Ltd Image-forming element using both side reflection band of minute width
JPS6125104A (en) * 1984-07-13 1986-02-04 Hitachi Ltd Compound lens
JPS63191182A (en) * 1987-02-04 1988-08-08 キヤノン株式会社 Image display member
JPH095503A (en) * 1995-06-23 1997-01-10 Nittetsu Elex Co Ltd Optical imaging device
WO2008041616A1 (en) * 2006-10-02 2008-04-10 National Institute Of Information And Communications Technology Two-point image formation optical device
JP2008158114A (en) * 2006-12-21 2008-07-10 National Institute Of Information & Communication Technology Optical system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAEKAWA S. ET AL.: "Advances in Passive Imaging Elements with Micromirror Array", PROCEEDINGS OF SPIE, vol. 6803, no. 28-30, January 2008 (2008-01-01), pages 68030B-1 - 68030B-1 *

Cited By (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011175297A (en) * 2008-04-22 2011-09-08 Askanet:Kk Method of manufacturing light control panel for use in optical imaging device
JP2012014194A (en) * 2008-04-22 2012-01-19 Askanet:Kk Optical imaging device
JP2012177922A (en) * 2008-05-09 2012-09-13 Pioneer Electronic Corp Spatial video display apparatus
JPWO2009136578A1 (en) * 2008-05-09 2011-09-08 パイオニア株式会社 Spatial image display device
JP2012128454A (en) * 2008-05-09 2012-07-05 Pioneer Electronic Corp Spatial image display device
JP2012137779A (en) * 2008-05-09 2012-07-19 Pioneer Electronic Corp Spatial video display device
US8867136B2 (en) 2008-05-09 2014-10-21 Pioneer Corporation Floating image display device
JP5143898B2 (en) * 2008-05-09 2013-02-13 パイオニア株式会社 Spatial image display device
JP2009276699A (en) * 2008-05-16 2009-11-26 National Institute Of Information & Communication Technology Dihedral corner reflector array
JP2011081309A (en) * 2009-10-09 2011-04-21 Pioneer Electronic Corp Spatial video display device
JP2011081300A (en) * 2009-10-09 2011-04-21 Pioneer Electronic Corp Method for manufacturing reflection type plane-symmetric imaging element
US8540371B2 (en) 2010-05-21 2013-09-24 Stanley Electric Co., Ltd. Display device
JP2012247459A (en) * 2011-05-25 2012-12-13 National Institute Of Information & Communication Technology Reflector array optical device and display unit using the same
US9513486B2 (en) 2011-10-24 2016-12-06 Asukanet Company, Ltd. Optical imaging apparatus
WO2013061619A1 (en) 2011-10-24 2013-05-02 株式会社アスカネット Optical image forming device
JP2013109211A (en) * 2011-11-22 2013-06-06 Pioneer Electronic Corp Spatial image display
US8702252B2 (en) 2012-01-30 2014-04-22 Asukanet Company, Ltd. Optical imaging apparatus and optical imaging method using the same
WO2013122085A1 (en) * 2012-02-14 2013-08-22 シャープ株式会社 Reflective imaging element and optical system
JP2013167667A (en) * 2012-02-14 2013-08-29 Sharp Corp Reflection type imaging element and optical system
US9645403B2 (en) 2012-02-14 2017-05-09 Sharp Kabushiki Kaisha Reflective imaging element and optical system
US9523859B2 (en) 2012-02-28 2016-12-20 Asukanet Company, Ltd. Volumetric-image forming system and method thereof
JP2012150502A (en) * 2012-03-22 2012-08-09 Pioneer Electronic Corp Method for manufacturing reflective plane-symmetric imaging element
JP2012128456A (en) * 2012-03-22 2012-07-05 Pioneer Electronic Corp Method of manufacturing reflective plane-symmetric imaging element
JP2013210502A (en) * 2012-03-30 2013-10-10 Dainippon Printing Co Ltd Optical panel and display device
JP2013242850A (en) * 2012-04-27 2013-12-05 Nitto Denko Corp Display input device
JPWO2013183454A1 (en) * 2012-06-07 2016-01-28 株式会社アスカネット Optical imaging device
JP5667729B2 (en) * 2012-06-07 2015-02-12 株式会社アスカネット Optical imaging device
WO2013183454A1 (en) * 2012-06-07 2013-12-12 株式会社アスカネット Optical image forming device and optical image forming method
JPWO2014024677A1 (en) * 2012-08-10 2016-07-25 株式会社アスカネット Magnification change type optical imaging apparatus and method for manufacturing the same
WO2014024677A1 (en) * 2012-08-10 2014-02-13 株式会社アスカネット Size-altering optical image forming device and manufacturing method therefor
WO2014038303A1 (en) * 2012-09-10 2014-03-13 株式会社アスカネット Floating touch panel
JP2014067071A (en) * 2012-09-10 2014-04-17 Askanet:Kk Floating touch panel
JP2014081617A (en) * 2012-09-28 2014-05-08 Nlt Technologies Ltd Spatial imaging element and method for manufacturing the same, display device and terminal equipment
WO2014073650A1 (en) 2012-11-08 2014-05-15 株式会社アスカネット Light control panel fabrication method
JP2015172782A (en) * 2012-11-08 2015-10-01 株式会社アスカネット Manufacturing method for optical control panels
JPWO2014073650A1 (en) * 2012-11-08 2016-09-08 株式会社アスカネット Manufacturing method of light control panel
CN104718468A (en) * 2012-11-08 2015-06-17 亚斯卡奈特股份有限公司 Light control panel fabrication method
US20150234099A1 (en) * 2012-11-08 2015-08-20 Asukanet Company, Ltd. Method for producing light control panel
JP2015083527A (en) * 2013-02-19 2015-04-30 日本電気硝子株式会社 Glass laminate, optical imaging member, method for manufacturing glass laminate, and method for manufacturing optical imaging member
WO2014129454A1 (en) * 2013-02-19 2014-08-28 日本電気硝子株式会社 Glass laminate, optical imaging member, method for manufacturing glass laminate, and method for manufacturing optical imaging member
JP2018065746A (en) * 2013-02-19 2018-04-26 日本電気硝子株式会社 Glass laminate, and optical imaging member
US9618757B2 (en) 2013-04-24 2017-04-11 Asukanet Company, Ltd. Stereoscopic image display device and stereoscopic image display method
JP2015018038A (en) * 2013-07-09 2015-01-29 株式会社アスカネット Image reproduction method
JP5696264B1 (en) * 2013-09-06 2015-04-08 株式会社アスカネット Manufacturing method of light control panel provided with light reflecting portions arranged in parallel
WO2015033645A1 (en) * 2013-09-06 2015-03-12 株式会社アスカネット Method for fabrication of photo-control panel comprising photo-reflector parts which are positioned in parallel
JP2015079170A (en) * 2013-10-18 2015-04-23 増田 麻言 Scanning projection device, and portable projection device
JP2015125393A (en) * 2013-12-27 2015-07-06 株式会社アスカネット Stereoscopic image formation device, and method of manufacturing the same
KR20160148707A (en) 2014-06-05 2016-12-26 가부시키가이샤 아스카넷토 Image display device and image display method
US9869876B2 (en) 2014-06-05 2018-01-16 Asukanet Company, Ltd. Image display apparatus and image display method
EP3153908A4 (en) * 2014-06-05 2018-03-21 Asukanet Company, Ltd. Image display device and image display method
JP5820955B1 (en) * 2014-06-27 2015-11-24 株式会社アスカネット Retroreflector and stereoscopic image display device using the same
KR101918135B1 (en) * 2014-06-27 2018-11-13 가부시키가이샤 아스카넷토 Retroreflector, and stereoscopic image display device and method using same
US20170146705A1 (en) * 2014-06-27 2017-05-25 Asukanet Company, Ltd. Retroreflective body, and volumetric image display apparatus and volumetric image display method using the same
WO2015198499A1 (en) * 2014-06-27 2015-12-30 株式会社アスカネット Retroreflector, and stereoscopic image display device and method using same
US9517109B2 (en) 2014-09-24 2016-12-13 Olympus Corporation Medical system
KR101619638B1 (en) * 2014-11-11 2016-05-10 현대자동차일본기술연구소 Mirrorless monitor for vehicle using spatial imaging optical device
EP3229046A4 (en) * 2014-12-05 2018-07-25 Showa Denko K.K. Light control panel and optical imaging device
JPWO2016088580A1 (en) * 2014-12-05 2017-09-14 昭和電工株式会社 Light control panel and light imaging apparatus
CN107003440A (en) * 2014-12-05 2017-08-01 昭和电工株式会社 Photocontrol panel and photoimaging equipment
WO2016088580A1 (en) * 2014-12-05 2016-06-09 昭和電工株式会社 Light control panel and optical imaging device
TWI655459B (en) * 2014-12-05 2019-04-01 日商昭和電工股份有限公司 Light control panel and light imaging device
US20170341342A1 (en) * 2014-12-05 2017-11-30 Showa Denko K.K. Light control panel and optical imaging device
JP2016180785A (en) * 2015-03-23 2016-10-13 コニカミノルタ株式会社 Reflection type aerial image formation element and manufacturing method thereof
CN107533361A (en) * 2015-05-08 2018-01-02 京瓷办公信息***株式会社 Image processing system
CN107533361B (en) * 2015-05-08 2020-08-04 京瓷办公信息***株式会社 Image forming apparatus with a toner supply device
JP2017126032A (en) * 2016-01-15 2017-07-20 大日本印刷株式会社 Optical sheet and optical panel
US10451886B2 (en) 2016-03-10 2019-10-22 Omron Corporation Stereoscopic display device
DE112017000008B4 (en) 2016-03-10 2018-12-20 Omron Corporation STEREOSCOPIC DISPLAY DEVICE
JP2017167224A (en) * 2016-03-14 2017-09-21 大日本印刷株式会社 Space floating video display device
CN106560734A (en) * 2016-06-01 2017-04-12 杭州飞像科技有限公司 Application of aerial imaging element in prompter, and prompter
JP2017219558A (en) * 2016-06-02 2017-12-14 コニカミノルタ株式会社 Method of manufacturing optical element and method of manufacturing reflective aerial image forming element
JP6203989B1 (en) * 2017-01-27 2017-09-27 株式会社アスカネット Method for manufacturing stereoscopic image forming apparatus
KR102219748B1 (en) 2017-01-27 2021-02-23 가부시키가이샤 아스카넷토 Manufacturing method of three-dimensional image forming apparatus and three-dimensional image forming apparatus
JP2018124534A (en) * 2017-01-27 2018-08-09 株式会社アスカネット Three-dimensional image formation device
JPWO2018138932A1 (en) * 2017-01-27 2020-03-19 株式会社アスカネット Method for manufacturing stereoscopic image forming apparatus
CN109997068B (en) * 2017-01-27 2021-08-10 亚斯卡奈特股份有限公司 Method for manufacturing stereoscopic image imaging device and stereoscopic image imaging device
JPWO2018139444A1 (en) * 2017-01-27 2020-03-26 株式会社アスカネット Manufacturing method of stereoscopic image forming apparatus and stereoscopic image forming apparatus
KR102219750B1 (en) 2017-01-27 2021-02-23 가부시키가이샤 아스카넷토 Production method for stereoscopic-image-forming device, and stereoscopic-image-forming device
WO2018138932A1 (en) * 2017-01-27 2018-08-02 株式会社アスカネット Production method for stereoscopic-image-forming device, and stereoscopic-image-forming device
KR20210002769A (en) 2017-01-27 2021-01-08 가부시키가이샤 아스카넷토 Production method for stereoscopic-image-forming device, and stereoscopic-image-forming device
WO2018138940A1 (en) 2017-01-27 2018-08-02 株式会社アスカネット Production method for stereoscopic-image-forming device, and stereoscopic-image-forming device
CN109997068A (en) * 2017-01-27 2019-07-09 亚斯卡奈特股份有限公司 The manufacturing method and space image imaging device of space image imaging device
KR20190103311A (en) 2017-01-27 2019-09-04 가부시키가이샤 아스카넷토 Method of manufacturing three-dimensional imaging device and three-dimensional imaging device
JP2020074028A (en) * 2017-01-27 2020-05-14 株式会社アスカネット Stereoscopic image forming device manufacturing method and stereoscopic image forming device
JPWO2018139141A1 (en) * 2017-01-30 2020-02-06 株式会社パリティ・イノベーションズ Optical element and image display device using the same
WO2018139141A1 (en) * 2017-01-30 2018-08-02 株式会社パリティ・イノベーションズ Optical element and image display device using same
JP7152019B2 (en) 2017-01-30 2022-10-12 株式会社パリティ・イノベーションズ Optical element and image display device using the same
JP6203978B1 (en) * 2017-04-17 2017-09-27 株式会社アスカネット Method for manufacturing stereoscopic image forming apparatus
JP2018180369A (en) * 2017-04-17 2018-11-15 株式会社アスカネット Production method of stereoscopic image formation device
WO2018193846A1 (en) * 2017-04-17 2018-10-25 株式会社アスカネット Method for manufacturing stereoscopic image forming device
US11402654B2 (en) 2017-06-01 2022-08-02 Asukanet Company, Ltd. Method for manufacturing stereoscopic image forming device, and stereoscopic image forming device
EP3633436A4 (en) * 2017-06-01 2021-03-10 Asukanet Company, Ltd. Method for manufacturing stereoscopic image forming device, and stereoscopic image forming device
KR20200004406A (en) 2017-06-01 2020-01-13 가부시키가이샤 아스카넷토 Method of manufacturing three-dimensional imaging device and three-dimensional imaging device
WO2018220876A1 (en) 2017-06-01 2018-12-06 株式会社アスカネット Method for manufacturing stereoscopic image forming device, and stereoscopic image forming device
KR20200014929A (en) 2017-06-29 2020-02-11 가부시키가이샤 아스카넷토 Method of manufacturing three-dimensional imaging device and three-dimensional imaging device
CN110573935B (en) * 2017-06-29 2022-02-11 亚斯卡奈特股份有限公司 Stereoscopic image imaging device and method for manufacturing stereoscopic image imaging device
JPWO2019003730A1 (en) * 2017-06-29 2019-11-07 株式会社アスカネット Stereoscopic image imaging apparatus and manufacturing method of stereoscopic image imaging apparatus
KR20210142773A (en) 2017-06-29 2021-11-25 가부시키가이샤 아스카넷토 Stereoscopic image forming device and method for manufacturing stereoscopic image forming device
US11714296B2 (en) 2017-06-29 2023-08-01 Asukanet Company, Ltd. Stereoscopic image forming device and method for manufacturing stereoscopic image forming device
WO2019003730A1 (en) 2017-06-29 2019-01-03 株式会社アスカネット Stereoscopic image forming device and method for manufacturing stereoscopic image forming device
CN110573935A (en) * 2017-06-29 2019-12-13 亚斯卡奈特股份有限公司 Stereoscopic image imaging device and method for manufacturing stereoscopic image imaging device
JPWO2019021497A1 (en) * 2017-07-24 2020-03-26 株式会社アスカネット 3D image forming device
WO2019021497A1 (en) * 2017-07-24 2019-01-31 株式会社アスカネット Stereoscopic image forming device and method for manufacturing same
JP2019045562A (en) * 2017-08-30 2019-03-22 株式会社アスカネット Method for manufacturing stereoscopic image forming device
CN111886567A (en) * 2018-03-07 2020-11-03 日本电气方案创新株式会社 Operation input device, operation input method, and computer-readable recording medium
CN111886567B (en) * 2018-03-07 2023-10-20 日本电气方案创新株式会社 Operation input device, operation input method, and computer-readable recording medium
US11537240B2 (en) 2018-05-22 2022-12-27 Murakami Corporation Virtual image display device
KR20210028698A (en) 2018-07-18 2021-03-12 가부시키가이샤 아스카넷토 Manufacturing method of three-dimensional image forming apparatus and three-dimensional image forming apparatus
JP6616554B1 (en) * 2018-07-18 2019-12-04 株式会社アスカネット Method for manufacturing stereoscopic image forming apparatus
WO2020017071A1 (en) 2018-07-18 2020-01-23 株式会社アスカネット Method for manufacturing stereoscopic image formation device and stereoscopic image formation device
US11662860B2 (en) 2019-04-10 2023-05-30 Murakami Corporation Reference position setting method and operation detection device for displaying an operation surface as a virtual image
CN110264916A (en) * 2019-06-21 2019-09-20 京东方科技集团股份有限公司 A kind of projection arrangement and air-borne imagery equipment
JP2021026093A (en) * 2019-08-02 2021-02-22 本田技研工業株式会社 Video display apparatus
WO2021070400A1 (en) 2019-10-11 2021-04-15 株式会社アスカネット Optical image forming device and method for manufacturing same
EP4043945A4 (en) * 2019-10-11 2023-11-01 Asukanet Company, Ltd. Optical image forming device and method for manufacturing same
KR20220136479A (en) 2020-03-10 2022-10-07 가부시키가이샤 아스카넷토 Manufacturing method of light control panel used in optical imaging device
KR20230079446A (en) 2020-10-15 2023-06-07 가부시키가이샤 아스카넷토 Aerial imaging element and aerial imaging device
WO2022080082A1 (en) 2020-10-15 2022-04-21 株式会社アスカネット Aerial image forming element and aerial image forming device
WO2022224613A1 (en) 2021-04-21 2022-10-27 株式会社アスカネット Reflection-type aerial image formation device and reflection-type aerial image formation method
KR20230077751A (en) 2021-04-21 2023-06-01 가부시키가이샤 아스카넷토 Reflective aerial imaging apparatus and method for reflective aerial imaging
WO2023007816A1 (en) 2021-07-26 2023-02-02 株式会社アスカネット Method for manufacturing aerial image formation device, and aerial image formation device

Also Published As

Publication number Publication date
JP5420774B2 (en) 2014-02-19
JP5437436B2 (en) 2014-03-12
JP2012155345A (en) 2012-08-16
JP5036898B2 (en) 2012-09-26
JP5085767B2 (en) 2012-11-28
JP2012014194A (en) 2012-01-19
JP2013127625A (en) 2013-06-27
JP4865088B2 (en) 2012-02-01
JP2011175297A (en) 2011-09-08
JPWO2009131128A1 (en) 2011-08-18

Similar Documents

Publication Publication Date Title
JP5437436B2 (en) Optical imaging device
JP2012155345A5 (en)
JP5085631B2 (en) Optical imaging apparatus and optical imaging method using the same
KR102395414B1 (en) Display systems and light guides
KR101067941B1 (en) Optical system
JP5024712B2 (en) Multi-viewpoint aerial image display device
TWI564591B (en) Microreplicated film for autostereoscopic displays
KR102060161B1 (en) Recursive reflector
CN107238926B (en) Optical element, display device, and method for manufacturing optical element
JP6376065B2 (en) Aerial video display
WO2014122912A1 (en) Head-up display device
WO2014122913A1 (en) Head-up display device
JP2006337944A (en) Semi-transmission type reflection screen
JP5921243B2 (en) Reflective imaging element and optical system
JP2016206316A (en) Screen and display
JP6357361B2 (en) Retroreflector and stereoscopic image display device using the same
WO2020110961A1 (en) Reflection-type transparent screen, and image display system
JP2015102796A (en) Optical branching device
JP5667729B2 (en) Optical imaging device
CN111742256B (en) Optical imaging device
JP2014139596A (en) Directional reflection screen and image display device
US11409157B2 (en) Image source unit and display device
JP2016218137A (en) Microlens array and liquid crystal panel
JP2012174665A (en) Surface light source device and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09734568

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010509189

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09734568

Country of ref document: EP

Kind code of ref document: A1