WO2009131095A1 - リチウムイオン電池用正極活物質の製造方法、該製造方法で得られたリチウムイオン電池用正極活物質、リチウムイオン電池用電極、及びリチウムイオン電池 - Google Patents

リチウムイオン電池用正極活物質の製造方法、該製造方法で得られたリチウムイオン電池用正極活物質、リチウムイオン電池用電極、及びリチウムイオン電池 Download PDF

Info

Publication number
WO2009131095A1
WO2009131095A1 PCT/JP2009/057853 JP2009057853W WO2009131095A1 WO 2009131095 A1 WO2009131095 A1 WO 2009131095A1 JP 2009057853 W JP2009057853 W JP 2009057853W WO 2009131095 A1 WO2009131095 A1 WO 2009131095A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
ion battery
active material
salt
positive electrode
Prior art date
Application number
PCT/JP2009/057853
Other languages
English (en)
French (fr)
Inventor
雅継 中野
斉藤 光正
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Priority to CN2009801129233A priority Critical patent/CN101999187A/zh
Priority to EP09735215.7A priority patent/EP2270903A4/en
Priority to US12/988,958 priority patent/US8460573B2/en
Priority to JP2010509170A priority patent/JP5472099B2/ja
Priority to CA2722547A priority patent/CA2722547A1/en
Publication of WO2009131095A1 publication Critical patent/WO2009131095A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49107Fuse making

Definitions

  • the present invention relates to a method for producing a positive electrode active material for a lithium ion battery, a positive electrode active material for a lithium ion battery produced thereby, an electrode for a lithium ion battery, and a lithium ion battery. More specifically, the average primary particle system can be controlled.
  • the present invention relates to a method for producing a positive electrode active material for a lithium ion battery, a positive electrode active material for a lithium ion battery having a uniform average primary particle size, a lithium ion battery electrode with improved discharge capacity, and a lithium ion battery Is.
  • the non-aqueous lithium ion battery has a high energy density and can be easily reduced in size as compared with conventional aqueous batteries such as Ni—Cd and Ni—H batteries. For this reason, it is widely used in mobile devices such as mobile phones and personal computers.
  • LiCoO 2 is generally used as a positive electrode material for lithium ion batteries that are currently in practical use.
  • several problems occur when LiCoO 2 is applied as it is to a hybrid battery, an electric vehicle, a large battery used in an uninterruptible power supply, etc., which are expected in the future. For example, resource and cost problems have been pointed out.
  • LiCoO 2 uses cobalt (Co), which is a rare metal, if it is used in a large amount, resource and cost problems will occur. There is also a danger of explosion. Since LiCoO 2 releases oxygen at a high temperature, there is a risk of explosion when abnormal heat is generated or when the battery is short-circuited. Therefore, there is a great risk in applying LiCoO 2 to a large battery.
  • Co cobalt
  • LiFePO 4 having an olivine structure as shown in Patent Document 1 and Non-Patent Document 1 has attracted attention worldwide as a material that satisfies resource, cost, and safety aspects.
  • the olivine-based positive electrode material represented by a composition formula such as LiFePO 4 uses iron (Fe) as apparent from its composition, and even in comparison with cobalt-based and manganese-based positive electrode materials in terms of resources. Abundant in nature and inexpensive. From the covalent bond between phosphorus and oxygen, the olivine-based positive electrode material does not release oxygen at a high temperature unlike the cobalt-based positive electrode material, and can be said to be an excellent safety material.
  • LiFePO 4 has such advantages, problems in characteristics have been pointed out.
  • One problem is low conductivity.
  • Another problem is the low diffusibility of lithium ions during charging and discharging.
  • a compound having a layered structure such as LiCoO 2 and a spinel structure such as LiMnO 2 the diffusion direction of lithium during charge / discharge is two directions or three directions.
  • the olivine structure of LiFePO 4 there is only one direction of lithium diffusion.
  • the electrode reaction during charging / discharging is a two-phase reaction in which conversion between LiFePO 4 and FePO 4 is repeated, LiFePO 4 is considered disadvantageous for high-speed charging / discharging.
  • the most effective countermeasure is to reduce the LiFePO 4 particle size. Even if the diffusion direction is one direction, if the diffusion distance is shortened by reducing the particle size, it is considered that fast charge / discharge can be handled.
  • a simple method for synthesizing LiFePO 4 is a method called a solid phase method.
  • the Li source, Fe source, and P source are mixed in a stoichiometric ratio and fired in an inert atmosphere.
  • This method has a problem that the composition of the product is not as intended unless the firing conditions are properly selected, and it is difficult to control the particle size.
  • Patent Document 2 the reaction is performed by simultaneously adding an organic acid or ion such as CH 3 COO ⁇ , SO 4 2 ⁇ , or Cl 2 ⁇ to a solvent, and excessive Li is added to the reaction.
  • an organic acid or ion such as CH 3 COO ⁇ , SO 4 2 ⁇ , or Cl 2 ⁇
  • Patent Document 3 describes an attempt to obtain LiFePO 4 having a small particle diameter by mechanically grinding a reaction intermediate.
  • Japanese Patent No. 3484003 JP 2008-66019 A Special table 2007-511458 gazette AKPadhi et al., J. Electrochem. Soc., 144, 4, 1188 (1997) Keisuke Shiraishi et al. Journal of the Ceramic Society of Japan, 112, 1305, S58 (2004)
  • Patent Document 3 does not describe in detail the relationship between the primary particle size and battery performance.
  • the present invention was made in view of the above circumstances, to provide a method of manufacturing a small particle diameter, and the positive electrode active material for convenient control Lithium-ion batteries of the particle size of LiFePO 4 of LiFePO 4 With the goal.
  • the present inventors clarified the formation mechanism of LiFePO 4 in the hydrothermal reaction system and attempted to reduce the particle size of LiFePO 4 .
  • the Li element in the raw material Li salt and the Fe element in the Fe salt are added in excess of the theoretical amount required for the hydrothermal reaction, thereby reducing the crystal grain size. It was thought that the crystal grain size could be controlled.
  • the particle size affects the charge / discharge characteristics as described above.
  • the present inventors have reduced the crystal grain size of LiFePO 4 obtained by adjusting the addition amounts of the Li source and the Fe source with respect to the P source, and It has been found that the crystal grain size can be controlled, and the present invention has been completed.
  • the Li element in the raw Li salt and the Fe element in the Fe salt are converted into the hydrothermal reaction. It has at least a step of synthesizing LiFePO 4 with an average primary particle size in the range of 30 nm or more and 100 nm or less by adding and reacting in excess of the required theoretical amount.
  • lithium hydroxide is included as the Li salt.
  • the present invention can be rephrased as follows.
  • the present invention includes a step of synthesizing LiFePO 4 by performing a hydrothermal reaction using a Li salt, an Fe salt, and a phosphoric acid source as raw materials, Li element in the Li salt and Fe element in the Fe salt are added to the reaction system in excess of the theoretical amount required for the hydrothermal reaction,
  • This is a method for producing a positive electrode active material for a lithium ion battery in which the average primary particle diameter of synthesized LiFePO 4 is in the range of 30 nm to 100 nm.
  • the Fe salt is added so that the Fe element is 1.01 mol or more with respect to 1 mol of the P element, and the Li salt is 3.1 mol or more with respect to 1 mol of the P element. It is preferable to add such that.
  • the Li salt is preferably one or more selected from the group consisting of chloride, sulfate, formate, acetate, citrate and oxalate.
  • the Fe salt is preferably one or more selected from the group consisting of chloride, sulfate, formate, acetate, citrate and oxalate.
  • the positive electrode active material for lithium ion batteries of the present invention is obtained by the method for producing a positive electrode active material for lithium ion batteries of the present invention.
  • the electrode for a lithium ion battery of the present invention is formed by carbon coating the positive electrode active material for a lithium ion battery of the present invention.
  • the lithium ion battery of this invention is equipped with the electrode for lithium ion batteries of this invention as a positive electrode.
  • the method for producing a positive electrode active material for a lithium ion battery of the present invention there is no shortage of Li and Fe in each reaction in the synthesis of LiFePO 4 . Therefore, the reaction rate is reduced, and the epitaxial growth on the microcrystalline particles generated in the initial stage of the reaction is suppressed. Therefore, it is possible to reduce the average primary particle size and to synthesize LiFePO 4 having a uniform particle size with a small particle size distribution. Furthermore, the particle diameter of LiFePO 4 can be controlled by changing the ratio of adding the raw material Li salt and Fe salt.
  • FIG. 3 is a SEM image of a positive electrode active material for a lithium ion battery in Experimental Example 1.
  • 10 is a SEM image of a positive electrode active material for a lithium ion battery in Experimental Example 5.
  • 10 is a SEM image of a positive electrode active material for a lithium ion battery in Experimental Example 6.
  • the manufacturing method of the positive electrode active material for lithium ion batteries of this invention has a 1st process thru
  • First step (SP1) the solvent is reacted by introducing a Li source and a phosphoric acid source, in generating a lithium phosphate (Li 3 PO 4), lithium phosphate (Li 3 PO 4) to obtain a slurry process is there.
  • the second step (SP2) is a step of mixing the Fe source and the reducing agent with the Li 3 PO 4 slurry to obtain a mixture.
  • the third step (SP3) is a step of obtaining a reactant containing LiFePO 4 by reacting (hydrothermal synthesis) the mixture obtained in the second step under high temperature and high pressure conditions.
  • the fourth step (SP4-1) is a step of washing and filtering the reaction product containing LiFePO 4 obtained in the third step and separating it into LiFePO 4 and Li-containing waste liquid (solution containing unreacted Li). is there.
  • the fourth step (SP4-2) is a step of obtaining LiFePO 4 particles having an average primary particle size of 30 nm or more and 100 nm or less by drying and grinding the LiFePO 4 separated in the fourth step (SP4-1). It is.
  • Fifth step (SP5) is a fourth step (SP4-1) in and from the separated Li-containing waste solution to remove impurities such as Fe component and PO 4 components to obtain a Li-containing solution.
  • the sixth step (SP6) is a step in which phosphoric acid is added to the Li-containing solution obtained in the fifth step to obtain a Li and PO 4 containing solution.
  • the seventh step (SP7) is a step of generating a solution containing lithium phosphate (Li 3 PO 4 ) from the Li and PO 4 containing solution obtained in the sixth step.
  • the eighth step (SP8) is a step of washing and separating lithium phosphate (Li 3 PO 4 ) from the solution containing lithium phosphate (Li 3 PO 4 ) obtained in the seventh step.
  • the ninth step (SP9) is a step of obtaining a lithium phosphate slurry from the solution containing lithium phosphate (Li 3 PO 4 ) generated in the eighth step.
  • LiFePO 4 when the general formula LiFePO 4 is produced by a hydrothermal reaction, the Li element in the raw material Li salt and the Fe element in the Fe salt are required for the hydrothermal reaction in the first step and the second step.
  • LiFePO 4 is synthesized with an average primary particle size in the range of 30 nm or more and 100 nm or less.
  • LiFePO 4 When LiFePO 4 is synthesized by a hydrothermal reaction, Li salt, Fe (II) salt, PO 4 salt is used as a synthesis raw material, or Li 3 PO 4 in which a Li source or a Fe source and a P source are combined is used. There is a method using Fe 3 (PO 4 ) 2 . However, since Fe 3 (PO 4 ) 2 is vulnerable to oxidation and difficult to handle, it is desirable to use Li 3 PO 4 and a Fe (II) salt as raw materials. Moreover, even if Li salt and PO 4 salt are added as separate salts, Li 3 PO 4 is produced at the initial stage of the reaction, which is equivalent to the case of using Li 3 PO 4 as a raw material. Therefore, it is desirable to use Li 3 PO 4 as a raw material from the beginning.
  • the reaction shown in the chemical formula 1 is roughly divided into two stages. In the first stage reaction, the formation of Fe 3 (PO 4 ) 2 shown in the following chemical formula 2 is generated. In the second stage reaction, the LiFePO 4 shown in the following chemical formula 3 is shown. It turns out that it becomes the production of.
  • a Li source and a phosphoric acid source are added to a solvent containing water as a main component, and the Li source and the phosphoric acid source are reacted to generate lithium phosphate (Li 3 PO 4 ), and lithium phosphate (Li 3 PO 4 ) slurry (SP1 in FIG. 1).
  • Li salt is preferable, for example, lithium hydroxide (LiOH); lithium carbonate (Li 2 CO 3 ), lithium chloride (LiCl), lithium sulfate (Li 2 SO 4 ), lithium phosphate (Li 3 PO 4 ).
  • Lithium inorganic acid salts such as lithium formate (HCOOLi), lithium acetate (CH 3 COOLi), lithium citrate (Li 3 (C 6 H 5 O 7 )), lithium organic acids such as lithium oxalate ((COOLi) 2 ) Salts, and one or more selected from the group consisting of hydrates of these lithium inorganic acid salts and lithium organic acid salts are preferably used.
  • lithium hydroxide is also described as a Li salt.
  • the Li salt is preferably added in an amount of 3.1 molar equivalents or more with respect to the P element in terms of the Li element ratio.
  • the Li salt reacts with phosphoric acid to produce Li 3 PO 4 , so that 3 molar equivalents are consumed. Therefore, an excessive amount of Li is required to promote the second-stage reaction shown in the above chemical formula (3).
  • the upper limit can be appropriately adjusted depending on the reaction concentration and the target particle size, but no change is observed in the generated LiFePO 4 particle size at 4.0 molar equivalents or more. This is presumably because the reaction rate has reached saturation. Therefore, the addition amount of the Li salt is preferably 3.1 molar equivalents or more and 4.0 molar equivalents or less, more preferably 3.2 molar equivalents or more and 3.7 molar equivalents or less with respect to the P element.
  • Phosphoric acid sources include phosphoric acid such as orthophosphoric acid (H 3 PO 4 ) and metaphosphoric acid (HPO 3 ); ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ), diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ), ammonium phosphate ((NH 4 ) 3 PO 4 ) and one or more selected from the group consisting of these hydrates are preferably used.
  • phosphoric acid, ammonium dihydrogen phosphate, and diammonium hydrogen phosphate are preferable because of their relatively high purity and easy composition control.
  • Examples of the solvent containing water as a main component include pure water, a water-alcohol solution, a water-ketone solution, and a water-ether solution. Among these, pure water is preferable. The reason is that water is inexpensive and the physical properties of the solvent such as solubility in each substance can be easily controlled by the operation of temperature and pressure.
  • the Fe source is preferably an Fe salt.
  • iron chloride (II) FeCl 2
  • iron sulfate (II) FeSO 4
  • iron formate II
  • (HCOO) 2 Fe iron acetate
  • III) Fe (CH 3 COO) 2
  • iron (II) citrate Fe (C 6 H 5 O 7 ) 1 ⁇
  • iron (II) oxalate ((COO) 2 Fe 2 )
  • hydrates thereof One or more selected from the group consisting of are preferably used.
  • the Fe salt reacts with Li 3 PO 4 to produce Fe 3 (PO 4 ) 2 , so that an excess Fe content is required.
  • the upper limit can be appropriately adjusted depending on the reaction concentration and the target particle size, but no change is observed in the generated LiFePO 4 particle size in the 1.5 molar equivalent region. This is presumably because the reaction rate has reached saturation. Therefore, the addition amount of the Fe salt is preferably 1.01 molar equivalent or more and 1.50 molar equivalent or less, more preferably 1.10 molar equivalent or more and 1.30 molar equivalent or less with respect to the P element.
  • the mixing ratio of these Li source and Fe source is not limited as long as impurities are not generated during hydrothermal synthesis, which will be described later, but the Li ion of Li source is 1.5 mol or more to 1 mol of Fe ion of Fe source. 0.5 mol or less is preferable, and 2.0 mol or more and 4.0 mol or less is more preferable.
  • the amount of Li ions is less than 1.5 mol, the probability that Li involved in the reaction forms a counter ion with the anion contained in the Fe source is increased, resulting in a longer reaction time and the generation of impurities. And problems such as coarsening of particles occur.
  • the preferable number of moles of Li ions per mole of Fe ions is limited to the above range.
  • the Fe salt is added in an amount equivalent to the theoretical composition of each element of LiFePO 4 , and a cationic species is further added.
  • This method can be divided into two types depending on the cationic species to be added.
  • a cationic species for example, alkali metal salts such as Na and K salts, alkaline earth metal salts such as Ca and Mg salts, rare earth element salts, Al salts, ammonium salts, or a combination of two or more of these This is a method of adding the food.
  • the rare earth elements referred to here are 15 elements of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, which are lanthanum series.
  • the salt formed by the cationic species consumes the P-containing compound in the reaction represented by the chemical formula (2) described above, and as a result, an Fe-excess state of the reaction system can be created.
  • the other is a method of replacing the excess Fe salt with a transition metal salt such as Mn, Ni, Cu, or Zn. That is, even when the excess amount of the Fe salt is replaced with these transition metal salts, the same effect as when the Fe salt is excessively added can be obtained.
  • These methods are effective means when introducing different kinds of cationic species as dopants and obtaining LiFePO 4 with a small particle size.
  • the final product it may include the above elements in the LiFePO 4.
  • Examples of the reducing agent include sulfur dioxide (SO 2 ), sulfurous acid (H 2 SO 3 ), sodium sulfite (Na 2 SO 3 ), sodium hydrogen sulfite (NaHSO 3 ), ammonium sulfite ((NH 4 ) 2 SO 3 ), sulfur
  • One or more selected from the group of phosphoric acid (H 2 PHO 3 ) is preferably used.
  • the mixture obtained in the second step is reacted (hydrothermal synthesis) under high-temperature and high-pressure conditions to obtain a reaction product containing LiFePO 4 (SP3 in FIG. 1).
  • the high temperature and high pressure conditions are not particularly limited as long as the temperature, pressure and time for producing LiFePO 4 are within the range.
  • the reaction temperature is preferably 120 ° C. or higher and 250 ° C. or lower, and 150 ° C. or higher and 220 ° C. The following is more desirable.
  • the pressure during the reaction is desirably 0.2 MPa or more, and more desirably 0.4 MPa or more.
  • the reaction time is preferably, for example, 1 hour or more and 24 hours or less, more preferably 3 hours or more and 12 hours or less.
  • the reaction product containing LiFePO 4 obtained in the third step is subjected to LiFePO 4 and Li-containing waste liquid (solution containing unreacted Li) by a generally known simple washing method such as decantation, centrifugation, and filter filtration.
  • a generally known simple washing method such as decantation, centrifugation, and filter filtration.
  • the separated LiFePO 4 is dried at 40 ° C. or more for 3 hours or more using a dryer or the like, and becomes LiFePO 4 particles having an average primary particle size of 30 nm to 100 nm (SP4-2 in FIG. 1).
  • the first alkali is added to the Li-containing waste liquid separated in the fourth step, and impurities such as Fe component and PO 4 component contained in the waste liquid are removed (SP5 in FIG. 1). Impurities such as the removed Fe component and PO 4 component are discarded.
  • the first alkali include 1 selected from the group consisting of calcium oxide (CaO), calcium hydroxide (Ca (OH) 2 ), ammonia (NH 3 ), aqueous ammonia (NH 4 OH), and amines. Species or two or more are preferably used.
  • amines methylamine, ethylamine, dimethylamine, diethylamine, trimethylamine, ethylenediamine, tetramethylenediamine, hexamethylenediamine, trimethylammonium, tetramethylammonium hydroxide and the like are preferably used.
  • This Li-containing waste liquid is refined by removing impurities such as the Fe component and the PO 4 component to become a Li-containing solution (solution from which impurities have been removed).
  • phosphoric acid is added to the Li-containing solution to form a Li and PO 4 -containing solution (SP6 in FIG. 1).
  • addition amount of this phosphoric acid it is preferable to add phosphoric acid of equimolar amount with the phosphoric acid source of a 1st process.
  • LiFePO 4 is obtained by adding an equimolar amount of phosphoric acid.
  • a Li source is added to the Li and PO 4 -containing solution so that the Li element is 3.1 molar equivalents or more with respect to the P element, as in the first step, and a second alkali is further added.
  • a solution containing lithium phosphate Li 3 PO 4
  • a by-product is difficult to be generated during neutralization, that is, all the by-products are readily soluble in water and can be easily separated from lithium phosphate when washed with water.
  • NaOH sodium hydroxide
  • KOH potassium hydroxide
  • ammonia NH 3
  • aqueous ammonia NH 4 OH
  • Li 3 PO 4 is dispersed in pure water to obtain a lithium phosphate (Li 3 PO 4 ) slurry (SP9 in FIG. 1).
  • the Li element in the Li salt of the raw material and the Fe element in the Fe salt are added in excess of the theoretical amount required for the hydrothermal reaction. Therefore, there is no shortage of Li and Fe in each reaction in the synthesis reaction of LiFePO 4 . Therefore, the reaction rate is reduced, and the epitaxial growth on the microcrystalline particles generated in the initial stage of the reaction is suppressed. Therefore, it is possible to reduce the average primary particle size and to synthesize LiFePO 4 having a uniform particle size with a small particle size distribution. Furthermore, the particle diameter of LiFePO 4 can be controlled by changing the ratio of adding the raw material Li salt and Fe salt.
  • the average primary particle diameter of this LiFePO 4 is 30 nm or more and 100 nm.
  • LiFePO 4 having such a small particle diameter as the positive electrode active material for a lithium ion battery, the diffusion distance of Li is shortened. Further, in the lithium ion battery electrode and lithium ion battery provided with the positive electrode active material for lithium ion battery, high-speed charge / discharge characteristics can be improved.
  • the average primary particle diameter is less than 30 nm, there is a possibility that the particles are destroyed due to a structural change accompanying the insertion / desorption of Li. Moreover, since the specific surface area becomes remarkably large, a large amount of bonding agent is required.
  • the positive electrode active material for lithium ion batteries obtained by the production method of the present invention is suitably used as a positive electrode active material for positive electrodes in lithium ion batteries, particularly lithium ion secondary batteries.
  • a positive electrode active material of a lithium ion secondary battery By using it as a positive electrode active material of a lithium ion secondary battery, the diffusion distance of Li is shortened as described above, and the discharge capacity can be increased.
  • the carbon coating As a suitable example of the carbon coating, first, LiFePO 4 particles and a water-soluble monosaccharide, polysaccharide, or water-soluble polymer compound are mixed, followed by evaporation to dryness, vacuum drying, spray drying, Using a drying method such as freeze drying, organic particles are uniformly coated on the particle surface (composite). Subsequently, firing is performed in an inert atmosphere at a firing temperature of 500 ° C. to 1000 ° C., which is a temperature for decomposition of organic matter and carbon formation. The firing temperature depends on the organic substance of the carbon source selected, but is preferably in the range of 700 ° C to 800 ° C. At a low temperature of 500 ° C.
  • the organic matter is not sufficiently decomposed and the composition of the conductive carbon becomes insufficient, which causes a resistance factor in the battery and has an adverse effect.
  • the high temperature range of 1000 ° C. or higher the sintering of the primary particles of LiFePO 4 is promoted and the particles become coarse. As a result, the high-speed charge / discharge characteristics depending on the Li diffusion rate are significantly deteriorated.
  • Experimental Examples 1 to 14 are comparative examples
  • Experimental Examples 4 to 14 are examples of the present invention.
  • this slurry was sprayed into an air atmosphere at 180 ° C. and dried to obtain a granulated body having an average particle size of about 6 ⁇ m.
  • the obtained granulated body was fired at 750 ° C. for 1 hour under an inert atmosphere to obtain a positive electrode active material for a lithium ion battery of Experimental Example 1.
  • Example 2 The positive electrode active material of Experimental Example 2 was produced according to the procedure of Experimental Example 1, except that FeCl 2 was added in an excess of 0.01 mol with respect to the P element during the autoclave reaction.
  • Example 9 According to the procedure of Experimental Example 1, except that 3.25 mol of Li 2 SO 4 was added to the P element and FeCl 2 was added in an excess of 0.01 mol with respect to the P element when the autoclave reaction was charged. A positive electrode active material was prepared.
  • Example 10 The positive electrode of Experimental Example 10 was prepared according to the procedure of Experimental Example 1 except that 3.25 mol of CH 3 COOLi was added to P element and FeCl 2 was added in an excess of 0.01 mol with respect to P element when the autoclave reaction was charged. An active material was prepared.
  • this positive electrode was punched into a 2 cm 2 disk shape, dried under reduced pressure, and then a lithium ion secondary battery was produced using a stainless steel 2016 coin cell in a dry argon atmosphere.
  • metallic lithium is used for the negative electrode
  • a porous polypropylene film is used for the separator
  • a 1M solution in which ethylene carbonate (EC) and ethylmethyl carbonate (EMC) of LiPF 6 are mixed 1: 1 is used for the electrolyte. It was.
  • the average primary particle size of the positive electrode active material can be increased by carrying out the reaction by adding more Li salt and Fe salt than the theoretical composition of LiFePO 4 shown in Experimental Example 1. It was confirmed that control was possible within the range of 30 nm to 100 nm. Further, from Table 1, the lithium ion batteries having the positive electrode active material for lithium ion batteries of Experimental Examples 4 to 14 were compared with the lithium ion batteries having the positive electrode active material for lithium ion batteries of Experimental Examples 1 to 3, respectively. Although the surface area increased, when the battery was charged at 0.2C and discharged at 1C, 3C, and 5C, an increase in discharge capacity was observed, and an improvement in the charge / discharge characteristics was observed.
  • the discharge capacity can be improved. It becomes possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明のリチウムイオン電池用正極活物質の製造方法は、原料としてLi塩、Fe塩、及びリン酸源を用いて水熱反応を行い、LiFePOを合成する工程を有し、Li塩中のLi元素及びFe塩中のFe元素が前記水熱反応に必要とされる理論量よりも過剰に反応系に添加され、合成されたLiFePOの平均一次粒子径が30nm以上かつ100nm以下の範囲である。

Description

リチウムイオン電池用正極活物質の製造方法、該製造方法で得られたリチウムイオン電池用正極活物質、リチウムイオン電池用電極、及びリチウムイオン電池
 本発明はリチウムイオン電池用正極活物質の製造方法、それにより製造されたリチウムイオン電池用正極活物質、リチウムイオン電池用電極、及びリチウムイオン電池に関し、さらに詳しくは平均一次粒子系の制御を可能としたリチウムイオン電池用正極活物質の製造方法、それにより均一な平均一次粒径を有したリチウムイオン電池用正極活物質、放電容量の向上を図ったリチウムイオン電池用電極、及びリチウムイオン電池に関するものである。
 本願は、2008年4月25日に、日本に出願された特願2008-115982号に基づき優先権を主張し、その内容をここに援用する。
 非水系リチウムイオン電池は、従来のNi-Cd、Ni-H電池などの水溶液系の電池と比較して高エネルギー密度を有し、小型化が容易である。そのため、携帯電話、パソコンなどの携帯機器に広く用いられている。また現在実用化されているリチウムイオン電池の正極材料としてはLiCoOが一般的に用いられている。
 しかし、今後期待されるハイブリット自動車、電気自動車、無停電装置に用いられる大型電池などにLiCoOをそのまま適用すると、いくつかの問題が発生することが指摘されている。
 例えば、資源的、コスト的な問題が指摘されている。LiCoOはレアメタルであるコバルト(Co)を用いているため、これを大量に使用すると資源的、コスト的な問題が発生する。
 また、爆発の危険性も指摘されている。LiCoOは高温で酸素を放出するため、異常発熱時や電池が短絡した場合には爆発が起きる危険性がある。そのため、LiCoOを大型電池に適用するにはリスクが大きい。
 そこで近年、LiCoOを用いた正極材料に代わって、安価で危険性の低いリン酸骨格を持つ正極材料が提案されている。その中でも、特許文献1や非特許文献1に示されているような、オリビン構造を持つLiFePOが、資源面、コスト面、安全面を満たす材料として世界的に注目されている。
 LiFePOなどの組成式で表されるオリビン系正極材料は、その組成から明らかなように鉄(Fe)を利用するものであり、資源的にはコバルト系、マンガン系正極材料と比較しても豊富に自然界に存在し、安価である。そして、リンと酸素の共有結合性から、オリビン系正極材料はコバルト系正極材料のように高温時に酸素を放出することもなく、安全性にも優れた材料といえる。
 しかしながら、LiFePOはこういった利点を持つ反面、特性面での問題点も指摘されている。一つの問題点は導電性の低さである。しかしこれは近年の改良、特にカーボンを複合化、もしくは表面をカーボン被覆することにより導電性を改良している報告が数々なされている。
 もう一つの問題点は充放電時におけるリチウムイオンの拡散性の低さである。LiCoOのような層状構造、LiMnOのようなスピネル構造を持つ化合物では、充放電時のリチウムの拡散方向が2方向若しくは3方向である。これ対して、LiFePOのオリビン構造では、リチウムの拡散方向が1方向しかない。加えて、充放電時の電極反応は、LiFePOとFePOの間の変換を繰り返す2相反応であることから、LiFePOは高速の充放電には不利だとされている。
 この対策として最も有効だとされるのは、LiFePO粒子の小粒径化である。
 拡散方向が1方向でも、小粒径化により拡散距離が短くなれば、速い充放電にも対応できると考えられる。
 LiFePOの合成法として簡便なのは、固相法と呼ばれる方法である。概略を説明すると、Li源、Fe源、P源を化学量論比で混合して不活性雰囲気で焼成処理するという方法である。この方法は、焼成条件を上手く選ばないと生成物の組成が目的通りにならず、かつ粒子径の制御が難しいという問題点を有する。
 また、水熱反応を利用した液相合成も研究されている。
 水熱反応の利点は、固相反応にくらべてはるかに低温で、純度が高い生成物が得られることである。しかしながら、こちらも粒径の制御は反応温度、時間などの調製条件に頼るところが大きい。また、これらの調製条件で制御した場合には、製造装置自体の性能に左右される部分が多く、再現性には難がある。
 LiFePO系材料の水熱合成において、反応制御により粒子を小粒径化する手段が、例えば特許文献2や非特許文献2に記載されている。特許文献2や非特許文献2には、CHCOO、SO 2-、Cl等の有機酸やイオンを、溶媒に同時に添加して反応を行うとともに、この反応に過剰のLiを添加することによって、LiFePO単相の微粒子を得る方法が提案されている。
 また、特許文献3には、反応中間体を機械的に粉砕することによって、小粒径のLiFePOを得ようという試みが記載されている。
特許第3484003号公報 特開2008-66019号公報 特表2007-511458号公報 A.K.Padhi et al., J.Electrochem.Soc., 144, 4, 1188 (1997) 白石圭介他 日本セラミックス協会学術論文誌、112、1305、S58(2004)
 しかしながら特許文献2や非特許文献2に記載のLiFePOを小粒径化する手法では、原料系以外の成分を添加しなければならず、反応後の不純物の分離操作が複雑となる。よって、これらの手法は、大量生産における工業化には不向きである。
 また、特許文献3には1次粒子の粒径と電池性能の関連が詳細に記載されていない。
 本発明は上記事情に鑑みてなされたものであって、LiFePOの小粒径化、及びLiFePOの粒径の簡便な制御が可能なリチウムイオン電池用正極活物質の製造方法を提供することを目的とする。
 本発明者等は、水熱反応系内におけるLiFePOの生成機構を明らかにし、LiFePOの小粒径化を試みた。
 LiFePOを合成する際に、原料のLi塩中のLi元素およびFe塩中のFe元素を水熱反応に必要とされる理論量よりも過剰に添加することで、結晶粒径の小型化、結晶粒径の制御が可能であると考えた。
 LiFePOをリチウムイオン電池用正極活物質に用いた場合、上述のように粒子径が充放電特性に影響を与える。
 本発明者等は、これらの考えに基づいて鋭意検討を行った結果、P源に対してLi源及びFe源の添加量を調節することで、得られるLiFePOの結晶粒径の小型化及び結晶粒径の制御が可能であることを見出し、本発明を完成させるに至った。
 すなわち、本発明のリチウムイオン電池用正極活物質の製造方法は、水熱反応でLiFePOを製造する際に、原料のLi塩中のLi元素およびFe塩中のFe元素を前記水熱反応に必要とされる理論量よりも過剰に添加して反応させ、平均一次粒子径が30nm以上かつ100nm以下の範囲でLiFePOを合成する工程を少なくとも有する。
 なお、本明細書中、Li塩として水酸化リチウムを含むものとする。
 また、本発明は以下のように言い換えることができる。
 すなわち、本発明は、原料としてLi塩、Fe塩、及びリン酸源を用いて水熱反応を行い、LiFePOを合成する工程を有し、
 Li塩中のLi元素及びFe塩中のFe元素が前記水熱反応に必要とされる理論量よりも過剰に反応系に添加され、
 合成されたLiFePOの平均一次粒子径が30nm以上かつ100nm以下の範囲であるリチウムイオン電池用正極活物質の製造方法である。
 前記Fe塩を、P元素1モルに対してFe元素が1.01モル以上となるように添加し、かつ、前記Li塩をP元素1モルに対してLi元素が3.1モル以上となるように添加することが好ましい。
 前記Li塩は、塩化物、硫酸塩、ギ酸塩、酢酸塩、クエン酸塩及びシュウ酸塩からなる群から選択される1種または2種以上であることが好ましい。
 前記Fe塩は、塩化物、硫酸塩、ギ酸塩、酢酸塩、クエン酸塩及びシュウ酸塩からなる群から選択される1種または2種以上であることが好ましい。
 本発明のリチウムイオン電池用正極活物質は、本発明のリチウムイオン電池用正極活物質の製造方法により得られる。
 本発明のリチウムイオン電池用電極は、本発明のリチウムイオン電池用正極活物質が炭素被覆されてなる。
 本発明のリチウムイオン電池は、本発明のリチウムイオン電池用電極を正極として備える。
 本発明のリチウムイオン電池用正極活物質の製造方法によれば、LiFePOの合成における各反応において、Li及びFeが不足することがなくなる。
 ゆえに、反応速度の低下、及び反応初期に生成された微結晶粒子上へのエピタキシャル成長が抑制される。したがって、平均一次粒子径を小さくできると共に、粒径分布の少ない均一な粒径のLiFePOを合成することができる。さらに、原料のLi塩、Fe塩を添加する比率を変えることで、LiFePOの粒径を制御することが可能となる。
本発明のリチウムイオン電池用正極活物質の製造方法を示す流れ図である。 実験例1におけるリチウムイオン電池用正極活物質のSEM画像である。 実験例5におけるリチウムイオン電池用正極活物質のSEM画像である。 実験例6におけるリチウムイオン電池用正極活物質のSEM画像である。
 本発明のリチウムイオン電池用正極活物質の製造方法、リチウムイオン電池用正極活物質、リチウムイオン電池用電極及びリチウムイオン電池の最良の形態について説明する。
 なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
「リチウムイオン電池用正極活物質の製造方法」
 本発明のリチウムイオン電池用正極活物質の製造方法は、第一工程ないし第九工程を有する。
 第一工程(SP1)は、溶媒にLi源及びリン酸源を投入して反応させ、リン酸リチウム(LiPO)を生成し、リン酸リチウム(LiPO)スラリーを得る工程である。
 第二工程(SP2)は、LiPOスラリーにFe源と還元剤とを混合し、混合物を得る工程である。
 第三工程(SP3)は、第二工程で得られた混合物を高温高圧の条件下にて反応(水熱合成)させ、LiFePOを含む反応物を得る工程である。
 第四工程(SP4-1)は、第三工程で得られたLiFePOを含む反応物を洗浄、濾過して、LiFePOとLi含有廃液(未反応のLiを含む溶液)に分離する工程である。
 第四工程(SP4-2)は、第四工程(SP4-1)で分離されたLiFePOを乾燥させ、粉砕等を施すことにより平均一次粒径が30nm以上100nm以下のLiFePO粒子を得る工程である。
 第五工程(SP5)は、第四工程(SP4-1)で分離されたLi含有廃液からFe成分やPO成分等の不純物を除去してLi含有溶液を得る工程である。
 第六工程(SP6)は、第五工程で得られたLi含有溶液にリン酸を添加し、Li及びPO含有溶液を得る工程である。
 第七工程(SP7)は、第六工程で得られたLi及びPO含有溶液から、リン酸リチウム(LiPO)を含む溶液を生成する工程である。
 第八工程(SP8)は、第七工程で得られたリン酸リチウム(LiPO)を含む溶液からリン酸リチウム(LiPO)を洗浄および分離する工程。
 第九工程(SP9)は、第八工程で生成されたリン酸リチウム(LiPO)を含む溶液からリン酸リチウムスラリーを得る工程である。
 本発明では、水熱反応で一般式LiFePOを製造する際に、第一工程及び第二工程で原料のLi塩中のLi元素およびFe塩中のFe元素を、水熱反応に必要とされる理論量よりも過剰に添加して反応させ、平均一次粒径が30nm以上100nm以下の範囲でLiFePOを合成する。
 水熱反応でLiFePOを合成する場合には、Li塩、Fe(II)塩、PO塩を合成原料に用いるか、Li源またはFe源とP源とを複合させたLiPOやFe(POを用いる方法がある。
 ただしFe(POは酸化に弱く取り扱いが難しいのでLiPOとFe(II)塩を原料とするのが望ましい。
 またLi塩、PO塩を別々の塩で添加しても反応初期でLiPOを生成するので、LiPOを原料とする場合と同等となる。よって、最初からLiPOを原料として用いるのが望ましい。
 この水熱反応系の反応経路を発明者らが調べた結果、下記化学式1に示すような反応経路であることを明らかにした。
Figure JPOXMLDOC01-appb-C000001
 この化学式1に示す反応は大まかに2段階に分けられ、1段階目の反応では下記化学式2に示すFe(POの生成、2段階目の反応では、下記化学式3に示すLiFePOの生成となることが分かった。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 つまり、水熱合成においては原料比を理論組成値に設定すると、この反応の反応率は100%にはならず、加えて反応速度が遅くなるために反応初期に生成した微結晶粒子上へのエピタキシャル成長を促し、結果として粗大粒子が生成してしまうと考えられる。
 反応を速やかに進行させるためには、上記化学式2で示した1段階目の反応の促進のためにFe塩を過剰に添加すること、及び上記化学式3で示した2段階目の反応の促進のためにLi塩を過剰に添加することが必要である。
 また、過剰に加えるFe塩とLi塩の働きが違うために、それぞれの好適な添加量も異なることが明らかになった。
 本発明は、以上のような考えに基づいてなされたものである。以下、それぞれの工程について図1を参照して詳細に説明する。
<第一工程>
 まず、水を主成分とする溶媒にLi源及びリン酸源を投入し、これらLi源及びリン酸源を反応させてリン酸リチウム(LiPO)を生成させ、リン酸リチウム(LiPO)スラリーとする(図1中、SP1)。
 Li源としては、Li塩が好ましく、例えば、水酸化リチウム(LiOH);炭酸リチウム(LiCO)塩化リチウム(LiCl)、硫酸リチウム(LiSO)リン酸リチウム(LiPO)等のリチウム無機酸塩;ギ酸リチウム(HCOOLi)、酢酸リチウム(CHCOOLi)、クエン酸リチウム(Li(C))、蓚酸リチウム((COOLi))等のリチウム有機酸塩;並びにこれらのリチウム無機酸塩及びリチウム有機酸塩の水和物からなる群から選択された1種または2種以上が好適に用いられる。なお、本明細書中では、水酸化リチウムもLi塩として記載する。
 Li塩はLi元素比でP元素に対して3.1モル当量以上添加するのが望ましい。最初にLi塩はリン酸と反応してLiPOを生成するため3モル当量は消費してしまう。そのため、上記した化学式(3)に示した2段階目の反応促進のためには、過剰のLi分が必要となる。上限については、反応濃度や目的とする粒径により適宜調整できるが、4.0モル当量以上では生成したLiFePO粒子径に変化が見られない。これは、反応速度が飽和に達しているためと推測される。よって、Li塩の添加量は、P元素に対して好ましくは3.1モル当量以上4.0モル当量以下であり、より好ましくは3.2モル当量以上3.7モル当量以下である。
 リン酸源としては、オルトリン酸(HPO)、メタリン酸(HPO)等のリン酸;並びにリン酸二水素アンモニウム(NHPO)、リン酸水素二アンモニウム((NHHPO)、リン酸アンモニウム((NHPO)及びこれらの水和物からなる群から選択された1種または2種以上が好適に用いられる。中でも、比較的純度が高く組成制御が行い易いことから、オルトリン酸、リン酸二水素アンモニウム、リン酸水素二アンモニウムが好適である。
 また、水を主成分とする溶媒としては、純水、水-アルコール溶液、水-ケトン溶液、水-エーテル溶液等が挙げられ、中でも純水が好ましい。
 その理由は、水は安価であり、しかも、温度、圧力の操作により容易に各物質に対する溶解度等の溶媒物性を制御することができるからである。
<第二工程>
 次いで、第一工程で得られたLiPOスラリーに、Fe源、及び還元剤を混合し、混合物とする(図1中、SP2)。
 Fe源としては、Fe塩が好ましく、例えば、塩化鉄(II)(FeCl)、硫酸鉄(II)(FeSO)、ギ酸鉄(II)((HCOO)Fe)、酢酸鉄(II)(Fe(CHCOO))、クエン酸鉄(II)(Fe(C1-)、蓚酸鉄(II)((COO)Fe)、及びこれらの水和物からなる群から選択された1種または2種以上が好適に用いられる。
 Fe塩の添加量としては、P元素に対して1.01モル当量以上が望ましい。最初にFe塩はLiPOと反応してFe(POを生成するために、過剰のFe分が必要となる。上限については反応の濃度や目的とする粒径により適宜調整できるが、1.5モル当量の領域では生成したLiFePO粒子径に変化が見られなくなる。これは、反応速度が飽和に達しているためと推測される。よって、Fe塩の添加量は、P元素に対して好ましくは1.01モル当量以上1.50モル当量以下であり、より好ましくは1.10モル当量以上 1.30モル当量以下である。
 これらLi源とFe源との混合比は、後述する水熱合成時に不純物が生成しない限り制限されないが、Li源のLiイオンは、Fe源のFeイオン1モルに対して1.5モル以上4.5モル以下が好ましく、より好ましくは2.0モル以上4.0モル以下である。
 ここで、Liイオンが1.5モルより少ないと、反応に関与するLiがFe源に含まれる陰イオンと対イオンを形成する確率が高くなり、その結果、反応時間が長くなる、不純物が生成する、粒子が粗大化する等の不具合が生じる。一方、Liイオンが4.5モルより多いと、反応液のアルカリ性が強くなるため不純物が生成し易くなる等の問題が生じる虞がある。よって、Feイオン1モルに対するLiイオンの好ましいモル数を、上記の範囲に限定した。
 第二工程にあっては、過剰量のFe塩を添加することに代わって、リン酸と水に対して難溶性の塩を形成するカチオン種を添加する方法も可能である。すなわち、Fe塩を、LiFePOの各元素の理論組成と同等量添加し、更にカチオン種を添加する方法である。この方法には添加するカチオン種により2種類に分けられる。
 一つ目は、カチオン種として、例えばNa、K塩等のアルカリ金属塩、Ca、Mg塩等のアルカリ土類金属塩、希土類元素の塩、Al塩、アンモニウム塩、もしくはこれら2種以上を組み合わせたものを添加する方法である。ここにいう希土類元素とは、ランタン系列であるLa、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luの15元素のことである。
 これによりカチオン種により形成される塩が、上記した化学式(2)で示される反応においてP含有化合物を消費し、結果的に反応系のFe過剰の状態を作り出すことができる。
 もう一つは過剰分のFe塩をMn、Ni、Cu、Zn等の遷移金属塩と置き換える方法がある。つまりFe塩の過剰分をこれら遷移金属塩に置き換えた場合にもFe塩を過剰に添加した場合と同等の効果を得ることができる。
 これらの方法は異種のカチオン種をドーパントとして導入し、且つ小粒径のLiFePOを得たい場合には有効な手段となる。なお、最終生成物としては、LiFePO中に上述した元素が含まれることがある。
 還元剤としては、二酸化イオウ(SO)、亜硫酸(HSO)、亜硫酸ナトリウム(NaSO)、亜硫酸水素ナトリウム(NaHSO)、亜硫酸アンモニウム((NHSO)、亜リン酸(HPHO)の群から選択された1種または2種以上が好適に用いられる。
<第三工程>
 次いで、第二工程で得られた混合物を高温高圧の条件下にて反応(水熱合成)させ、LiFePOを含む反応物を得る(図1中、SP3)。
 この高温高圧の条件は、LiFePOを生成する温度、圧力及び時間の範囲であれば特に限定されるものではなく、反応温度は例えば120℃以上かつ250℃以下が望ましく、150℃以上かつ220℃以下がより望ましい。反応時の圧力は例えば0.2MPa以上が望ましく、0.4MPa以上がより望ましい。反応時間は、反応温度にもよるが、例えば1時間以上かつ24時間以下が望ましく、3時間以上かつ12時間以下がより望ましい。
<第四工程>
 次いで、第三工程で得られたLiFePOを含む反応物を、デカンテーション、遠心分離、フィルター濾過等の一般に知られる簡便な洗浄方法により、LiFePOとLi含有廃液(未反応のLiを含む溶液)とに分離する(図1中、SP4-1)。
 分離されたLiFePOは、乾燥器等を用いて40℃以上にて3時間以上乾燥し、平均一次粒径が30nm以上100nm以下のLiFePO粒子となる(図1中、SP4-2)。
<第五工程>
 第四工程で分離されたLi含有廃液に第1のアルカリを添加し、この廃液に含まれるFe成分やPO成分等の不純物を除去する(図1中、SP5)。この除去されたFe成分やPO成分等の不純物は、廃棄処分される。
 第1のアルカリとしては、例えば、酸化カルシウム(CaO)、水酸化カルシウム(Ca(OH))、アンモニア(NH)、アンモニア水(NHOH)及びアミン類からなる群から選択された1種または2種以上が好適に用いられる。
 アミン類としては、メチルアミン、エチルアミン、ジメチルアミン、ジエチルアミン、トリメチルアミン、エチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、トリメチルアンモニウム、水酸化テトラメチルアンモニウム等が好適に用いられる。
 このLi含有廃液は、Fe成分やPO成分等の不純物を除去することにより精製されてLi含有溶液(不純物が除去された溶液)となる。
<第六工程>
 次いで、このLi含有溶液にリン酸を添加し、Li及びPO含有溶液とする(図1中、SP6)。
 このリン酸の添加量としては、第一工程のリン酸源と等モル量のリン酸を添加することが好ましい。等モル量のリン酸を添加することで、LiFePOが得られる。
<第七工程>
 次いで、このLi及びPO含有溶液に、第一工程と同様にLi元素がP元素に対して3.1モル当量以上となるようにLi源を添加し、さらに第2のアルカリを添加する。これにより、リン酸リチウム(LiPO)を含む溶液が生成される(図1中、SP7)。
 第2のアルカリとしては、中和時に副生成物が生成し難い、すなわち、副生成物がすべて水に易溶であり、水で洗浄する際に容易にリン酸リチウムと分離することができるものが好ましく、例えば、水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)、アンモニア(NH)及びアンモニア水(NHOH)からなる群から選択された1種または2種以上が好適である。
<第八工程>
 次いで、このLiPOを含む溶液を静置させてLiPOを沈降させ、その後、純水を用いてこの溶液を洗浄し、濾過等を用いてLiPOと廃液に分離する(図1中、SP8)。
<第九工程>
 次いで、このLiPOを純水に分散させてリン酸リチウム(LiPO)スラリーとする(図1中、SP9)。
 このように、第一工程~第九工程を繰り返し行うことにより、廃液として排出される余剰のLiを廃棄することなく、LiPOとして回収、再利用することができる。また、Liにかかるコストを削減し、安価にLiFePOを得ることが可能になる。
 本発明のリチウムイオン電池用正極活物質の製造方法は、原料のLi塩中のLi元素およびFe塩中のFe元素を前記水熱反応に必要とされる理論量よりも過剰に添加して反応を行うので、LiFePOの合成反応における各反応において、Li及びFeが不足することがなくなる。ゆえに、反応速度の低下、及び反応初期に生成された微結晶粒子上へのエピタキシャル成長が抑制される。したがって、平均一次粒子径を小さくできると共に、粒径分布の少ない均一な粒径のLiFePOを合成することができる。さらに、原料のLi塩、Fe塩を添加する比率を変えることで、LiFePOの粒径を制御することが可能となる。
 このLiFePOの平均一次粒子径は、30nm以上100nmである。このように粒子径が小さいLiFePOをリチウムイオン電池用正極活物質として用いることで、Liの拡散距離が短くなる。また、該リチウムイオン電池用正極活物質を備えたリチウムイオン電池用電極及びリチウムイオン電池において、高速充放電特性の向上が図れる。
 ここで、平均一次粒子径が30nm未満であると、Liの挿入・脱離に伴う構造変化により粒子が破壊する虞がある。また、比表面積が著しく大きくなることから接合剤を多く必要とする。その結果、正極の充填密度が著しく低下し、導電率が大きく低下する等の問題が生じる虞がある。一方、平均一次粒子径が100nmを越えると、正極活物質の内部抵抗が高くなり、Liイオンの移動も遅延する。そのため、放電容量が低下する等の問題が生じる虞がある。
 より高出力を可能にするためには、正極活物質の内部抵抗への影響が小さい80nm以下の粒子が好ましい。
「リチウムイオン電池用正極活物質、リチウムイオン電池用及びリチウムイオン電池」
 本発明の製造方法で得られたリチウムイオン電池用正極活物質は、リチウムイオン電池、特にリチウムイオン2次電池に、正電極の正極活物質として好適に用いられる。リチウムイオン2次電池の正極活物質として用いることで、上述したようにLiの拡散距離が短くなり、放電容量の増加が図れる。
 正極活物質として用いる場合には、LiFePOの表面にカーボン成分をコーティングする方法によって導電性を高めることが望ましい。この処理をしないと、先に述べたLiFePOの問題点である導電性が改善されず、電池特性として良好な結果が得られない。
 カーボンコーティングの好適な例としては、先ず、LiFePO粒子と、水溶性の単糖類、多糖類、若しくは水溶性の高分子化合物とを混合し、蒸発乾固法、真空乾燥法、スプレードライ法、フリーズドライ法等の乾燥方法を用いて粒子表面に有機物を均質にコーティングする(複合化)。続いて有機物の分解・カーボン生成の温度である500℃~1000℃の焼成温度で不活性雰囲気内において焼成する。
 焼成温度は、選択されるカーボン源の有機物にも依存するが、700℃~800℃の範囲であることが好ましい。500℃以下の低い温度では、有機物の分解が不十分且つ導電性カーボンの組成が不十分となり、電池内での抵抗要因となり、悪影響を及ぼす。一方、1000℃以上の高い温度域では、LiFePOの1次粒子の焼結が促進されてしまい、粒子が粗大化する。その結果、Li拡散速度に依存する高速充放電特性が著しく悪化する。
 以下、実験例として本発明の具体例を説明するが、これにより本発明が制限されるものではない。なお実験例1~14のうち、実験例1~3が比較例であり、実験例4~14が本発明の実施例である。
<実験例1>
 純水1Lに3molの塩化リチウム(LiCl)と、1molのリン酸(HPO)を加えて攪拌し、リン酸リチウム(LiPO)のスラリーを得た。そしてこのスラリーと1molの塩化鉄(II)FeClを添加し、水を加えて総量2Lの原料液とした。なお、この原料液をLiFePOに換算すると0.5mol/Lとなる。
 次に、得られた原料液をオートクレーブに投入し、不活性ガスを導入後、200℃にて6時間加熱反応させた。その後、濾過し固液分離した。その後、分離した固形物重量と同量の水を添加して懸濁させ、濾過により固液分離をする操作を3回行い、洗浄した。
 固液分離したLiFePOを乾燥して、FE―SEMでLiFePO粒子径を測定したところ、平均一次粒子径が30nm以上100nm以下であった。
 次に、固液分離で得られたケーキ状のLiFePO(固形分換算で150g)に対し、ポリエチレングリコール5g、純水150gを加えて、5mmΦのジルコニアビーズボールミルにて12時間粉砕・分散処理を行い、均一なスラリーを調製した。
 次いで、このスラリーを180℃の大気雰囲気中に噴霧し、乾燥して、平均粒径が約6μmの造粒体を得た。得られた造粒体を不活性雰囲気下で750℃にて1時間焼成し、実験例1のリチウムイオン電池用正極活物質を得た。
<実験例2>
 オートクレーブ反応仕込み時に、FeClをP元素に対して0.01mol過剰に添加したこと以外は実験例1の手順に従って、実験例2の正極活物質を作製した。
<実験例3>
 オートクレーブ反応仕込み時に、LiClをP元素に対して3.50mol添加したこと以外は実験例1の手順に従って、実験例3の正極活物質を作製した。
<実験例4>
 オートクレーブ反応仕込み時に、LiClをP元素に対して3.10mol添加し、FeClをP元素に対して0.01mol過剰に添加したこと以外は実験例1の手順に従って、実験例4の正極活物質を作製した。
<実験例5>
 オートクレーブ反応仕込み時に、LiClをP元素に対して3.25mol添加し、FeClをP元素に対して0.01mol過剰に添加したこと以外は実験例1の手順に従って、実験例5の正極活物質を作製した。
<実験例6>
 オートクレーブ反応仕込み時に、LiClをP元素に対して3.50mol添加し、FeClをP元素に対して0.01mol過剰に添加したこと以外は実験例1の手順に従って、実験例6の正極活物質を作製した。
<実験例7>
 オートクレーブ反応仕込み時に、LiClをP元素に対して4.00mol添加し、FeClをP元素に対して0.01mol過剰に添加したこと以外は実験例1の手順に従って、実験例7の正極活物質を作製した。
<実験例8>
 オートクレーブ反応仕込み時に、LiClをP元素に対して4.50mol添加し、FeClをP元素に対して0.01mol過剰に添加したこと以外は実験例1の手順に従って、実験例8の正極活物質を作製した。
<実験例9>
 オートクレーブ反応仕込み時に、LiSOをP元素に対して3.25mol添加し、FeClをP元素に対して0.01mol過剰に添加したこと以外は実験例1の手順に従って、実験例9の正極活物質を作製した。
<実験例10>
 オートクレーブ反応仕込み時に、CHCOOLiをP元素に対して3.25mol添加し、FeClをP元素に対して0.01mol過剰に添加したこと以外は実験例1の手順に従って、実験例10の正極活物質を作製した。
<実験例11>
 オートクレーブ反応仕込み時に、LiClをP元素に対して3.10mol添加し、FeClをP元素に対して0.10mol過剰に添加したこと以外は実験例1の手順に従って、実験例11の正極活物質を作製した。
<実験例12>
 オートクレーブ反応仕込み時に、LiClをP元素に対して3.10mol添加し、FeClをP元素に対して0.25mol過剰に添加したこと以外は実験例1の手順に従って、実験例12の正極活物質を作製した。
<実験例13>
 オートクレーブ反応仕込み時に、LiClをP元素に対して3.10mol添加し、FeClをP元素に対して0.50mol過剰に添加したこと以外は実験例1の手順に従って、実験例13の正極活物質を作製した。
<実験例14>
 オートクレーブ反応仕込み時に、LiClをP元素に対して3.10mol添加し、FeClをP元素に対して1.00mol過剰に添加したこと以外は実験例1の手順に従って、実験例14の正極活物質を作製した。
(リチウムイオン2次電池の作製)
 上記で作製した実験例1~14の正極活物質を90wt%、導電助剤としてアセチレンブラックを5wt%、バインダーとしてポリフッ化ビニリデン(PVDF)を5wt%、及び溶媒としてN-メチル-2-ピロリジノン(NMP)を混合した。その後、3本ロールミルを用いてこれらを混練し、実験例1~14の各々からなる14種の正極活物質ペーストを得た。
 次いで得られたそれぞれの正極活物質ペーストを、厚み30μmのアルミニウム集電体箔上に各々塗布し、100℃にて減圧乾燥を行い、厚みが50μmの正極を得た。
 次いで、この正極を2cmの円板状に打ち抜き、減圧乾燥後、乾燥アルゴン雰囲気下でステンレススチール製2016型コイン型セルを用いてリチウムイオン2次電池の作製を行った。
 ここで負極には金属リチウム、セパレーターには多孔質ポリプロピレン膜、電解液にはLiPFの炭酸エチレン(EC)と炭酸エチルメチル(EMC)とが1:1で混合された、1Mの溶液を用いた。
(電池充放電試験)
 上記で作製した実験例1~14の正極活物質を有するリチウムイオン電池を用いて、充放電試験を行った。
 充放電試験はカットオフ電圧を2.0Vから4.0Vの範囲とした。初期容量の測定では、Cレートで0.1Cで充電を行い、0.1Cで放電した。その他のレート特性評価では、0.2Cで充電し、任意のレート(1C,3C,5C)で放電し、放電容量を測定した。その結果を表1に示す。
(一次粒子径の評価)
 5万倍のFE-SEM像より不作為に抽出した20点の平均を示した。その結果を表1に示す。また、実験例1,5,6のリチウムイオン電池用正極活物質のSEM画像を図2~図4に示す。
Figure JPOXMLDOC01-appb-T000004
 表1、および図2~4の結果から、Li塩およびFe塩を実験例1で示したLiFePOの理論組成よりも多く添加して反応を行うことで、正極活物質の平均一次粒径を30nm~100nmの範囲で制御できることが確認された。
 また、表1から、実験例4~14のリチウムイオン電池用正極活物質を有するリチウムイオン電池においては、実験例1~3のリチウムイオン電池用正極活物質を有するリチウムイオン電池と比較し、比表面積が増加していたが、0.2Cで充電を行い、1C,3C,5Cでそれぞれ放電した際では、放電容量の増加が見られ、放充電特性の向上が観測された。
 本発明のリチウムイオン電池用正極活物質の製造方法で得られたリチウムイオン電池用正極活物質を、リチウムイオン2次電池などの電極の材料に適用することで、放電容量の向上を図ることが可能となる。

Claims (7)

  1.  水熱反応でLiFePOを製造する際に、原料のLi塩中のLi元素およびFe塩中のFe元素を前記水熱反応に必要とされる理論量よりも過剰に添加して反応させ、平均一次粒子径が30nm以上かつ100nm以下の範囲でLiFePOを合成する工程を少なくとも有するリチウムイオン電池用正極活物質の製造方法。
  2.  前記Fe塩を、P元素1モルに対してFe元素が1.01モル以上となるように添加し、かつ、前記Li塩をP元素1モルに対してLi元素が3.1モル以上となるように添加する請求項1に記載のリチウムイオン電池用正極活物質の製造方法。
  3.  前記Li塩は、塩化物、硫酸塩、ギ酸塩、酢酸塩、クエン酸塩及びシュウ酸塩からなる群から選択される1種または2種以上である請求項1に記載のリチウムイオン電池用正極活物質の製造方法。
  4.  前記Fe塩は、塩化物、硫酸塩、ギ酸塩、酢酸塩、クエン酸塩及びシュウ酸塩からなる群から選択される1種または2種以上である請求項1に記載のリチウムイオン電池用正極活物質の製造方法。
  5.  請求項1ないし4のいずれか1項記載のリチウムイオン電池用正極活物質の製造方法により得られたリチウムイオン電池用正極活物質。
  6.  請求項5に記載のリチウムイオン電池用正極活物質が炭素被覆されてなるリチウムイオン電池用電極。
  7.  請求項6に記載のリチウムイオン電池用電極を正極として備えたリチウムイオン電池。
PCT/JP2009/057853 2008-04-25 2009-04-20 リチウムイオン電池用正極活物質の製造方法、該製造方法で得られたリチウムイオン電池用正極活物質、リチウムイオン電池用電極、及びリチウムイオン電池 WO2009131095A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2009801129233A CN101999187A (zh) 2008-04-25 2009-04-20 锂离子电池用正极活性物质的制造方法、由该制造方法获得的锂离子电池用正极活性物质、锂离子电池用电极、及锂离子电池
EP09735215.7A EP2270903A4 (en) 2008-04-25 2009-04-20 METHOD FOR PRODUCING AN ACTIVE CATHODE MATERIAL FOR A LITHIUM ION BATTERY, ACTIVE CATHODE MATERIAL MANUFACTURED IN THIS METHOD FOR A LITHIUM ION BATTERY, ELECTRODE FOR A LITHIUM ION BATTERY AND LITHIUM ION BATTERY
US12/988,958 US8460573B2 (en) 2008-04-25 2009-04-20 Method for producing cathode active material for lithium ion batteries, cathode active material for lithium ion batteries obtained by the production method, lithium ion battery electrode, and lithium ion battery
JP2010509170A JP5472099B2 (ja) 2008-04-25 2009-04-20 リチウムイオン電池用正極活物質の製造方法、該製造方法で得られたリチウムイオン電池用正極活物質、リチウムイオン電池用電極、及びリチウムイオン電池
CA2722547A CA2722547A1 (en) 2008-04-25 2009-04-20 Method for producing cathode active material for lithium ion batteries, cathode active material for lithium ion batteries obtained by the production method, lithium ion battery electrode, and lithium ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008115982 2008-04-25
JP2008-115982 2008-04-25

Publications (1)

Publication Number Publication Date
WO2009131095A1 true WO2009131095A1 (ja) 2009-10-29

Family

ID=41216828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057853 WO2009131095A1 (ja) 2008-04-25 2009-04-20 リチウムイオン電池用正極活物質の製造方法、該製造方法で得られたリチウムイオン電池用正極活物質、リチウムイオン電池用電極、及びリチウムイオン電池

Country Status (7)

Country Link
US (1) US8460573B2 (ja)
EP (1) EP2270903A4 (ja)
JP (1) JP5472099B2 (ja)
KR (1) KR20110005809A (ja)
CN (1) CN101999187A (ja)
CA (1) CA2722547A1 (ja)
WO (1) WO2009131095A1 (ja)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011181452A (ja) * 2010-03-03 2011-09-15 Sumitomo Osaka Cement Co Ltd リチウムイオン電池用正極活物質の製造方法及びリチウムイオン電池用電極並びにリチウムイオン電池
JP2011210376A (ja) * 2010-03-28 2011-10-20 Niigata Univ Liイオン電池用正極活物質およびその製造方法
JP2012012262A (ja) * 2010-07-02 2012-01-19 Nichia Corp オリビン型リチウム遷移金属複合酸化物及びその製造方法
WO2012081383A1 (ja) * 2010-12-17 2012-06-21 住友大阪セメント株式会社 電極材料及びその製造方法
JP2012133888A (ja) * 2010-12-17 2012-07-12 Sumitomo Osaka Cement Co Ltd 電極材料及びその製造方法
JP2012211072A (ja) * 2011-03-18 2012-11-01 Semiconductor Energy Lab Co Ltd リチウム含有複合酸化物の作製方法
JP2012221716A (ja) * 2011-04-08 2012-11-12 Semiconductor Energy Lab Co Ltd 二次電池用の正極活物質およびその作製方法、ならびに二次電池
JP2012256592A (ja) * 2011-05-13 2012-12-27 Shin Etsu Chem Co Ltd リチウムイオン電池用正極材粒子の製造方法
JP2013054922A (ja) * 2011-09-05 2013-03-21 Taiheiyo Cement Corp 二次電池用正極活物質
JP2013058452A (ja) * 2011-09-09 2013-03-28 Mitsubishi Chemicals Corp 非水系二次電池用複合炭素材及びその製造方法、負極並びに非水系二次電池
WO2013047495A1 (ja) * 2011-09-30 2013-04-04 昭和電工株式会社 リチウム二次電池用正極活物質の製造方法
JP2013063899A (ja) * 2011-08-31 2013-04-11 Semiconductor Energy Lab Co Ltd 複合酸化物の作製方法及び蓄電装置の作製方法
JP2013063898A (ja) * 2011-08-31 2013-04-11 Semiconductor Energy Lab Co Ltd 複合酸化物の作製方法及び蓄電装置の作製方法
JP2013069565A (ja) * 2011-09-22 2013-04-18 Sumitomo Osaka Cement Co Ltd 電極材料及びその製造方法
CN103119763A (zh) * 2010-08-12 2013-05-22 浦项产业科学研究院 制备用于锂二次电池的橄榄石阴极材料的方法
US20130143122A1 (en) * 2011-12-02 2013-06-06 Golden Crown New Energy (Hk) Limited Carbon-treated cathode material usable for batteries and method of making same
JP2013127897A (ja) * 2011-12-19 2013-06-27 Taiheiyo Cement Corp 二次電池バッテリ正極活物質の製造方法
WO2013099409A1 (ja) * 2011-12-26 2013-07-04 株式会社村田製作所 リン酸鉄の製造方法、リン酸鉄リチウム、電極活物質、及び二次電池
JP2013533837A (ja) * 2010-05-21 2013-08-29 ビーエーエスエフ ソシエタス・ヨーロピア 電気化学セル製造用の化合物とその利用
JP2013193927A (ja) * 2012-03-21 2013-09-30 Furukawa Electric Co Ltd:The 微粒子混合物の製造方法、微粒子混合物、リチウムイオン二次電池正極活物質、リチウムイオン二次電池および微粒子混合物の製造方法に用いられる水溶液
CN104282904A (zh) * 2013-07-03 2015-01-14 河南科隆新能源有限公司 一种改善磷酸铁锂正极材料加工性能和循环性能的方法
KR20150042807A (ko) 2012-11-14 2015-04-21 후루카와 덴키 고교 가부시키가이샤 정극활물질 및 그 제조방법, 그리고, 비수전해질 이차전지용 정극, 비수전해질 이차전지
JP2015145335A (ja) * 2009-10-16 2015-08-13 ジュート−ヘミー イーペー ゲーエムベーハー ウント コー カーゲーSued−Chemie Ip Gmbh & Co. Kg 純粋相リン酸リチウムアルミニウムチタンおよびその製造方法ならびにその使用
JP2015530344A (ja) * 2013-01-10 2015-10-15 エルジー・ケム・リミテッド 炭素コーティングリチウムリン酸鉄ナノ粉末の製造方法
US9172087B2 (en) 2013-03-15 2015-10-27 Sumitomo Osaka Cement Co., Ltd. Electrode material, electrode and lithium ion battery
JP5820521B1 (ja) * 2014-09-29 2015-11-24 太平洋セメント株式会社 リチウム二次電池用正極材料及びその製造方法
US9543582B2 (en) 2013-01-10 2017-01-10 Lg Chem, Ltd. Method for preparing lithium iron phosphate nanopowder
KR20170016851A (ko) 2014-06-11 2017-02-14 도레이 카부시키가이샤 리튬 이온 전지용 활물질 입자의 제조 방법
US9627685B2 (en) 2013-01-10 2017-04-18 Lg Chem, Ltd. Method for preparing lithium iron phosphate nanopowder
JP6156537B1 (ja) * 2016-03-28 2017-07-05 住友大阪セメント株式会社 リチウムイオン二次電池用電極材料、リチウムイオン二次電池用電極およびリチウムイオン二次電池
JP2019050105A (ja) * 2017-09-08 2019-03-28 太平洋セメント株式会社 リチウムイオン二次電池用正極活物質複合体の製造方法
JP2021036539A (ja) * 2011-08-29 2021-03-04 株式会社半導体エネルギー研究所 リン酸鉄リチウム、及びリチウムイオン電池
WO2021153110A1 (ja) * 2020-01-30 2021-08-05 東レ株式会社 リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120231341A1 (en) * 2011-03-09 2012-09-13 Jun-Sik Kim Positive active material, and electrode and lithium battery containing the positive active material
CN102176518B (zh) * 2011-03-16 2013-03-20 哈尔滨工业大学 锂离子电池正极材料LiFePO4/C粉体的液相合成方法
JP5673275B2 (ja) * 2011-03-23 2015-02-18 住友大阪セメント株式会社 リチウムイオン電池用正極活物質とその製造方法及びリチウムイオン電池用電極並びにリチウムイオン電池
KR101352793B1 (ko) * 2011-11-30 2014-02-13 전자부품연구원 이차전지용 양극재료 및 이의 제조방법
KR101457575B1 (ko) * 2012-07-25 2014-11-03 한화케미칼 주식회사 수열합성법을 이용한 전극재료의 제조방법
KR101498971B1 (ko) * 2012-10-17 2015-03-04 한화케미칼 주식회사 포름산 유도체를 이용한 새로운 올리빈계 전극재료의 제조방법
WO2014098934A1 (en) * 2012-12-21 2014-06-26 Dow Global Technologies Llc Co-solvent assisted microwave-solvothermal process for making olivine lithium transition metal phosphate electrode materials
US10086351B2 (en) * 2013-05-06 2018-10-02 Llang-Yuh Chen Multi-stage process for producing a material of a battery cell
CN104051731B (zh) * 2014-04-10 2016-09-28 南阳逢源锂电池材料研究所 一种无污染零排放制备磷酸铁锂的方法
CN107170964A (zh) * 2017-05-02 2017-09-15 江苏银基烯碳能源科技有限公司 双碳层包覆的磷酸铁锂复合材料的制备方法
US11376559B2 (en) 2019-06-28 2022-07-05 eJoule, Inc. Processing system and method for producing a particulate material
US11673112B2 (en) 2020-06-28 2023-06-13 eJoule, Inc. System and process with assisted gas flow inside a reaction chamber
US11121354B2 (en) 2019-06-28 2021-09-14 eJoule, Inc. System with power jet modules and method thereof
CN114506835B (zh) * 2022-02-21 2023-04-07 山东大学 废磷酸铁锂缺陷修复并构筑三维多孔碳网的方法和应用
WO2024096701A1 (ko) * 2022-11-04 2024-05-10 주식회사 엘지에너지솔루션 리튬 이차전지

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3484003B2 (ja) 1995-11-07 2004-01-06 日本電信電話株式会社 非水電解質二次電池
JP2007103298A (ja) * 2005-10-07 2007-04-19 Toyota Central Res & Dev Lab Inc 正極活物質及びその製造方法、並びに水系リチウム二次電池
JP2007511458A (ja) 2003-11-14 2007-05-10 ジュート−ヒェミー アクチェンゲゼルシャフト リン酸鉄リチウム、その製造方法及び電極剤としてのそれの使用
JP2008066019A (ja) 2006-09-05 2008-03-21 Sumitomo Osaka Cement Co Ltd 電極材料の製造方法、リチウムの回収方法、正極材料及び電極並びに電池
JP2008115982A (ja) 2006-11-07 2008-05-22 Nsk Ltd シール構造及びその製造方法
JP2008117749A (ja) * 2006-10-13 2008-05-22 Gs Yuasa Corporation:Kk リチウムリン酸遷移金属化合物とカーボンとの混合体、それを備えた電極、その電極を備えた電池、その混合体の製造方法、及び電池の製造方法
JP2008130526A (ja) * 2006-11-27 2008-06-05 Hitachi Maxell Ltd 電気化学素子用活物質、その製造方法、および電気化学素子

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4710136B2 (ja) * 1999-04-06 2011-06-29 ソニー株式会社 正極活物質の製造方法及び非水電解質二次電池の製造方法
JP3826746B2 (ja) * 2000-08-18 2006-09-27 ソニー株式会社 非水電解液二次電池
CA2320661A1 (fr) 2000-09-26 2002-03-26 Hydro-Quebec Nouveau procede de synthese de materiaux limpo4 a structure olivine
US7390472B1 (en) * 2002-10-29 2008-06-24 Nei Corp. Method of making nanostructured lithium iron phosphate—based powders with an olivine type structure
US7700236B2 (en) * 2005-09-09 2010-04-20 Aquire Energy Co., Ltd. Cathode material for manufacturing a rechargeable battery
US9954227B2 (en) * 2005-06-29 2018-04-24 Umicore Crystalline nanometric LiFePO4
US7524529B2 (en) * 2005-09-09 2009-04-28 Aquire Energy Co., Ltd. Method for making a lithium mixed metal compound having an olivine structure
US7988879B2 (en) * 2006-08-21 2011-08-02 Lg Chem, Ltd. Method for preparing lithium metal phosphate
CN100480178C (zh) * 2007-01-16 2009-04-22 北大先行科技产业有限公司 一种可调控其颗粒形貌的磷酸铁锂制备方法
CN100450921C (zh) * 2007-02-08 2009-01-14 上海交通大学 锂离子电池纳米正极材料的连续水热合成方法
CN100540465C (zh) * 2007-07-23 2009-09-16 河北工业大学 锂离子电池正极材料磷酸铁锂的水热合成制备方法
US20090155689A1 (en) * 2007-12-14 2009-06-18 Karim Zaghib Lithium iron phosphate cathode materials with enhanced energy density and power performance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3484003B2 (ja) 1995-11-07 2004-01-06 日本電信電話株式会社 非水電解質二次電池
JP2007511458A (ja) 2003-11-14 2007-05-10 ジュート−ヒェミー アクチェンゲゼルシャフト リン酸鉄リチウム、その製造方法及び電極剤としてのそれの使用
JP2007103298A (ja) * 2005-10-07 2007-04-19 Toyota Central Res & Dev Lab Inc 正極活物質及びその製造方法、並びに水系リチウム二次電池
JP2008066019A (ja) 2006-09-05 2008-03-21 Sumitomo Osaka Cement Co Ltd 電極材料の製造方法、リチウムの回収方法、正極材料及び電極並びに電池
JP2008117749A (ja) * 2006-10-13 2008-05-22 Gs Yuasa Corporation:Kk リチウムリン酸遷移金属化合物とカーボンとの混合体、それを備えた電極、その電極を備えた電池、その混合体の製造方法、及び電池の製造方法
JP2008115982A (ja) 2006-11-07 2008-05-22 Nsk Ltd シール構造及びその製造方法
JP2008130526A (ja) * 2006-11-27 2008-06-05 Hitachi Maxell Ltd 電気化学素子用活物質、その製造方法、および電気化学素子

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A. K. PADHI ET AL., J. ELECTROCHEM. SOC., vol. 144, no. 4, 1997, pages 1188
KEISUKE SHIRAISHI ET AL., JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, vol. 112, no. 1305, 2004, pages S58
See also references of EP2270903A4 *

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015145335A (ja) * 2009-10-16 2015-08-13 ジュート−ヘミー イーペー ゲーエムベーハー ウント コー カーゲーSued−Chemie Ip Gmbh & Co. Kg 純粋相リン酸リチウムアルミニウムチタンおよびその製造方法ならびにその使用
JP2011181452A (ja) * 2010-03-03 2011-09-15 Sumitomo Osaka Cement Co Ltd リチウムイオン電池用正極活物質の製造方法及びリチウムイオン電池用電極並びにリチウムイオン電池
JP2011210376A (ja) * 2010-03-28 2011-10-20 Niigata Univ Liイオン電池用正極活物質およびその製造方法
JP2013533837A (ja) * 2010-05-21 2013-08-29 ビーエーエスエフ ソシエタス・ヨーロピア 電気化学セル製造用の化合物とその利用
JP2012012262A (ja) * 2010-07-02 2012-01-19 Nichia Corp オリビン型リチウム遷移金属複合酸化物及びその製造方法
CN103119763A (zh) * 2010-08-12 2013-05-22 浦项产业科学研究院 制备用于锂二次电池的橄榄石阴极材料的方法
WO2012081383A1 (ja) * 2010-12-17 2012-06-21 住友大阪セメント株式会社 電極材料及びその製造方法
JP2012133888A (ja) * 2010-12-17 2012-07-12 Sumitomo Osaka Cement Co Ltd 電極材料及びその製造方法
US9698425B2 (en) 2010-12-17 2017-07-04 Sumitomo Osaka Cement Co., Ltd. Electrode material and method for producing the same
JP2012211072A (ja) * 2011-03-18 2012-11-01 Semiconductor Energy Lab Co Ltd リチウム含有複合酸化物の作製方法
US9627686B2 (en) 2011-03-18 2017-04-18 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing lithium-containing composite oxide
JP2012221716A (ja) * 2011-04-08 2012-11-12 Semiconductor Energy Lab Co Ltd 二次電池用の正極活物質およびその作製方法、ならびに二次電池
JP2012256592A (ja) * 2011-05-13 2012-12-27 Shin Etsu Chem Co Ltd リチウムイオン電池用正極材粒子の製造方法
JP2021036539A (ja) * 2011-08-29 2021-03-04 株式会社半導体エネルギー研究所 リン酸鉄リチウム、及びリチウムイオン電池
US11283075B2 (en) 2011-08-31 2022-03-22 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of composite oxide and manufacturing method of power storage device
JP2013063899A (ja) * 2011-08-31 2013-04-11 Semiconductor Energy Lab Co Ltd 複合酸化物の作製方法及び蓄電装置の作製方法
US9249524B2 (en) 2011-08-31 2016-02-02 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of composite oxide and manufacturing method of power storage device
US10270097B2 (en) 2011-08-31 2019-04-23 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of composite oxide and manufacturing method of power storage device
JP2013063898A (ja) * 2011-08-31 2013-04-11 Semiconductor Energy Lab Co Ltd 複合酸化物の作製方法及び蓄電装置の作製方法
US11799084B2 (en) 2011-08-31 2023-10-24 Semiconductor Energy Laboratory Co., Ltd. Method for making LiFePO4 by hydrothermal method
JP2013054922A (ja) * 2011-09-05 2013-03-21 Taiheiyo Cement Corp 二次電池用正極活物質
JP2013058452A (ja) * 2011-09-09 2013-03-28 Mitsubishi Chemicals Corp 非水系二次電池用複合炭素材及びその製造方法、負極並びに非水系二次電池
JP2013069565A (ja) * 2011-09-22 2013-04-18 Sumitomo Osaka Cement Co Ltd 電極材料及びその製造方法
WO2013047495A1 (ja) * 2011-09-30 2013-04-04 昭和電工株式会社 リチウム二次電池用正極活物質の製造方法
JP5364865B2 (ja) * 2011-09-30 2013-12-11 昭和電工株式会社 リチウム二次電池用正極活物質の製造方法
US8968594B2 (en) 2011-09-30 2015-03-03 Showa Denko K.K. Production method of positive electrode active material for lithium secondary battery
US20130143122A1 (en) * 2011-12-02 2013-06-06 Golden Crown New Energy (Hk) Limited Carbon-treated cathode material usable for batteries and method of making same
JP2013127897A (ja) * 2011-12-19 2013-06-27 Taiheiyo Cement Corp 二次電池バッテリ正極活物質の製造方法
WO2013099409A1 (ja) * 2011-12-26 2013-07-04 株式会社村田製作所 リン酸鉄の製造方法、リン酸鉄リチウム、電極活物質、及び二次電池
JP2013193927A (ja) * 2012-03-21 2013-09-30 Furukawa Electric Co Ltd:The 微粒子混合物の製造方法、微粒子混合物、リチウムイオン二次電池正極活物質、リチウムイオン二次電池および微粒子混合物の製造方法に用いられる水溶液
KR20150042807A (ko) 2012-11-14 2015-04-21 후루카와 덴키 고교 가부시키가이샤 정극활물질 및 그 제조방법, 그리고, 비수전해질 이차전지용 정극, 비수전해질 이차전지
JP2015530965A (ja) * 2013-01-10 2015-10-29 エルジー・ケム・リミテッド 炭素コーティングリチウムリン酸鉄ナノ粉末の製造方法
US9742006B2 (en) 2013-01-10 2017-08-22 Lg Chem, Ltd. Method for preparing lithium iron phosphate nanopowder coated with carbon
US9620776B2 (en) 2013-01-10 2017-04-11 Lg Chem, Ltd. Method for preparing lithium iron phosphate nanopowder coated with carbon
US10020499B2 (en) 2013-01-10 2018-07-10 Lg Chem, Ltd. Method for preparing lithium iron phosphate nanopowder coated with carbon
US9627685B2 (en) 2013-01-10 2017-04-18 Lg Chem, Ltd. Method for preparing lithium iron phosphate nanopowder
US9543582B2 (en) 2013-01-10 2017-01-10 Lg Chem, Ltd. Method for preparing lithium iron phosphate nanopowder
US9608270B2 (en) 2013-01-10 2017-03-28 Lg Chem, Ltd. Method for preparing lithium iron phosphate nanopowder
US10581076B2 (en) 2013-01-10 2020-03-03 Lg Chem, Ltd. Method for preparing lithium iron phosphate nanopowder
US9755234B2 (en) 2013-01-10 2017-09-05 Lg Chem, Ltd. Method for preparing lithium iron phosphate nanopowder
JP2015530344A (ja) * 2013-01-10 2015-10-15 エルジー・ケム・リミテッド 炭素コーティングリチウムリン酸鉄ナノ粉末の製造方法
US9865875B2 (en) 2013-01-10 2018-01-09 Lg Chem, Ltd. Method for preparing lithium iron phosphate nanopowder
US9172087B2 (en) 2013-03-15 2015-10-27 Sumitomo Osaka Cement Co., Ltd. Electrode material, electrode and lithium ion battery
CN104282904A (zh) * 2013-07-03 2015-01-14 河南科隆新能源有限公司 一种改善磷酸铁锂正极材料加工性能和循环性能的方法
KR20170016851A (ko) 2014-06-11 2017-02-14 도레이 카부시키가이샤 리튬 이온 전지용 활물질 입자의 제조 방법
US10454110B2 (en) 2014-06-11 2019-10-22 Toray Industries, Inc. Method for producing lithium ion cell active material particles
JP5820521B1 (ja) * 2014-09-29 2015-11-24 太平洋セメント株式会社 リチウム二次電池用正極材料及びその製造方法
JP6156537B1 (ja) * 2016-03-28 2017-07-05 住友大阪セメント株式会社 リチウムイオン二次電池用電極材料、リチウムイオン二次電池用電極およびリチウムイオン二次電池
US9966595B2 (en) 2016-03-28 2018-05-08 Sumitomo Osaka Cement Co., Ltd. Electrode material for lithium-ion secondary battery, electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2017182906A (ja) * 2016-03-28 2017-10-05 住友大阪セメント株式会社 リチウムイオン二次電池用電極材料、リチウムイオン二次電池用電極およびリチウムイオン二次電池
JP2019050105A (ja) * 2017-09-08 2019-03-28 太平洋セメント株式会社 リチウムイオン二次電池用正極活物質複合体の製造方法
WO2021153110A1 (ja) * 2020-01-30 2021-08-05 東レ株式会社 リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池

Also Published As

Publication number Publication date
JP5472099B2 (ja) 2014-04-16
JPWO2009131095A1 (ja) 2011-08-18
US20110037019A1 (en) 2011-02-17
EP2270903A4 (en) 2013-12-25
CN101999187A (zh) 2011-03-30
EP2270903A1 (en) 2011-01-05
KR20110005809A (ko) 2011-01-19
US8460573B2 (en) 2013-06-11
CA2722547A1 (en) 2009-10-29

Similar Documents

Publication Publication Date Title
JP5472099B2 (ja) リチウムイオン電池用正極活物質の製造方法、該製造方法で得られたリチウムイオン電池用正極活物質、リチウムイオン電池用電極、及びリチウムイオン電池
JP5509918B2 (ja) リチウムイオン電池用正極活物質の製造方法とリチウムイオン電池用正極活物質及びリチウムイオン電池用電極並びにリチウムイオン電池
JP4767798B2 (ja) 電極材料の製造方法、リチウムの回収方法、正極材料及び電極並びに電池
JP5544934B2 (ja) リチウムイオン電池用正極活物質の製造方法
US8313863B2 (en) Synthesis of nanoparticles of lithium metal phosphate positive material for lithium secondary battery
JP4926607B2 (ja) 電極材料の製造方法及び正極材料並びに電池
JP5165515B2 (ja) リチウムイオン二次電池
JP5531532B2 (ja) リチウムイオン電池正極活物質の製造方法
JP5835334B2 (ja) リン酸アンモニウムマンガン鉄とその製造方法、および該リン酸アンモニウムマンガン鉄を用いたリチウム二次電池用正極活物質の製造方法
US20170040596A1 (en) Methods for making lithium manganese phosphate and lithium manganese phosphate/carbon composite material
JP2009532323A5 (ja)
JP2011213587A (ja) リン酸マンガン鉄リチウム粒子粉末の製造方法、リン酸マンガン鉄リチウム粒子粉末、及び該粒子粉末を用いた非水電解質二次電池
JP5636688B2 (ja) 電極材料の製造方法及びリン酸リチウムの回収方法
US20160130145A1 (en) Method for making cathode material of lithium ion battery
JP2009218205A (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池、並びに、その製造方法
JP2011071019A (ja) リチウムイオン電池正極活物質の製造方法及びリチウムイオン電池用正極活物質
JP5120523B1 (ja) リン酸アンモニウムマンガン鉄マグネシウムとその製造方法、および該リン酸アンモニウムマンガン鉄マグネシウムを用いたリチウム二次電池用正極活物質とその製造方法、ならびに該正極活物質を用いたリチウム二次電池
JP2012059594A (ja) 二次電池用電極活物質の製造方法、二次電池用電極活物質、二次電池、および、二次電池用電極活物質の前駆体
JP2010232091A (ja) リチウムイオン電池用正極活物質の製造方法とリチウムイオン電池用正極活物質及びリチウムイオン電池用電極並びにリチウムイオン電池
JP5901492B2 (ja) リチウムシリケート化合物の製造方法、リチウムシリケート化合物凝集体の製造方法及びリチウムイオン電池の製造方法
JP2014071968A (ja) リチウム二次電池用正極活物質の前駆体とその製造方法、および該前駆体を用いたリチウム二次電池用正極活物質とその製造方法、並びに該正極活物質を用いたリチウム二次電池
Tung et al. Electrochemical properties of LiNi0. 8Co0. 1Mn0. 1O2 synthesized by sol-gel and co-precipitation methods
KR101764474B1 (ko) 리튬 망간인산화물 합성 방법 및 이로부터 제조된 다공성 리튬 망간인산화물

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980112923.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09735215

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010509170

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107022790

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12988958

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2722547

Country of ref document: CA

Ref document number: 2009735215

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE