WO2009123181A1 - 停電検出回路および電気機器 - Google Patents

停電検出回路および電気機器 Download PDF

Info

Publication number
WO2009123181A1
WO2009123181A1 PCT/JP2009/056629 JP2009056629W WO2009123181A1 WO 2009123181 A1 WO2009123181 A1 WO 2009123181A1 JP 2009056629 W JP2009056629 W JP 2009056629W WO 2009123181 A1 WO2009123181 A1 WO 2009123181A1
Authority
WO
WIPO (PCT)
Prior art keywords
power failure
failure detection
detection circuit
power
circuit
Prior art date
Application number
PCT/JP2009/056629
Other languages
English (en)
French (fr)
Inventor
和昭 中山
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Publication of WO2009123181A1 publication Critical patent/WO2009123181A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/145Indicating the presence of current or voltage

Definitions

  • the present invention relates to a power failure detection circuit that detects a power failure of an AC power source using a photocoupler, and an electrical device.
  • the device described in Patent Document 1 has a configuration in which a photocoupler connected to a commercial AC power supply via a resistor is connected, and a pulse voltage synchronized with the commercial AC power supply voltage is output to a microcomputer.
  • a series circuit of a resistor, a first light emitting diode, a second light emitting diode, and a Zener diode is connected between terminals of a diode bridge connected to an AC power supply. While the current flows through the first light emitting diode, the capacitor connected to the output terminal is charged with the DC power supply connected to the input terminal of the first phototransistor.
  • the voltage comparator compares the charging voltage of the capacitor with a preset threshold voltage to detect a power failure of the AC power supply.
  • a series circuit of a resistor and a bidirectional photocoupler is connected between AC power supply terminals to detect the presence or absence of a power failure of the AC power supply.
  • a configuration is adopted in which the photocoupler changes the reference voltage input to the comparator for power failure detection signal generation upon detection of the power failure.
  • a commercial input voltage is full-wave rectified and applied to a photocoupler via a resistor. The photocoupler is turned on when the commercial AC voltage is normal, and discharges the capacitor connected to the photocoupler.
  • Patent Document 5 describes a power failure of an AC power supply that supplies power to the load through an input filter that includes at least an inductance connected in series with the load and a capacitor connected in parallel with the load. To detect.
  • a configuration includes a charging / discharging circuit that discharges through a resistor, and a detection unit that detects a power failure when the terminal voltage of the capacitor of the charging / discharging circuit rises above a reference voltage.
  • an object of the present invention is to provide a power failure detection circuit and an electric device that suppress power loss, and to further shorten the time required for power failure detection.
  • the power failure detection circuit is a power failure detection circuit for detecting a power failure of an AC power supply using a photocoupler, wherein a capacitor provided between input terminals to which the AC power supply is supplied and a light emitting diode of the photocoupler A series circuit connected in series, and a power failure determination means for determining that the supply of the AC power supply is cut off based on a pulse signal output from a phototransistor of the photocoupler and outputting a signal indicating that a power failure has occurred.
  • the pulse signal is synchronized with the peak of the voltage waveform of the AC power supply.
  • the electrical equipment described in the present invention includes a power failure detection circuit according to the present invention and a process for protecting electrical processing at the time when the power failure detection signal is input from the power failure detection circuit. And an electric processing unit for performing the above.
  • (A) is a voltage waveform of the AC power supply
  • (B) is a voltage waveform of the AC clock signal AC_CLK
  • (C) is a photo Current waveform of coupler diode PC1 LED
  • 4 is a waveform diagram at each part in the circuit configuration of Example 2 for explaining the present invention
  • (A) is a voltage waveform of an AC power supply
  • (B) is a voltage waveform of an AC clock signal AC_CLK
  • (C) is a photo. Current waveform of coupler diode PC1 LED .
  • (A) is a voltage waveform of AC power supply
  • (B) is an output pressure waveform of AC clock signal AC_CLK
  • (C) is Photocoupler diode PC1 LED current waveform.
  • (A) is a voltage waveform of AC power supply
  • (B) is a voltage waveform of AC clock signal AC_CLK
  • (C) is photo Current waveform of coupler diode PC1 LED .
  • FIG. 1 It is a wave form diagram in each part in the circuit composition of comparative example 3 for explaining the present invention
  • A is a voltage waveform of AC power supply
  • B is a voltage waveform of AC clock signal AC_CLK
  • C is photo Current waveform of coupler diode PC1 LED .
  • the graph which shows the relationship between the ratio of the capacitive reactance for demonstrating this invention, and the resistance seen from the input terminal side, and the phase difference (degree) of the zero cross of the voltage waveform of AC power supply, and a power failure detection timing.
  • FIG. 1 is a circuit diagram showing a power failure detection circuit.
  • reference numeral 100 denotes a power failure detection circuit.
  • This power failure detection circuit 100 detects the presence or absence of supply of AC power using a photocoupler, and outputs it to the secondary side as a discrimination signal.
  • the power failure detection circuit 100 is used in an electrical device such as a television or a recording / reproducing apparatus that is equipped with a microcomputer that operates with a commercial AC power supply, and detects a power failure and outputs a determination signal. Execute the process to retain the setting contents and operation contents immediately before the power failure.
  • the power failure detection circuit 100 has a pair of input terminals A 1 and A 2 to which commercial AC power is supplied, and a line cross capacitor C x is connected between the input terminals A 1 and A 2 .
  • a main power switch SW 1 and a reactor L x are connected between one input terminal A 1 and the line cross capacitor C x, and between the other input terminal A 2 and the line cross capacitor C x.
  • Reactor L x is connected.
  • Four rectifier bridge diodes D 1 to D 4 are connected in parallel to the line cross capacitor C x, and the anodes of the rectifier bridge diodes D 3 and D 4 are each grounded (PG) on the primary side.
  • One input end 111 of the SW power supply circuit 110 is connected to a connection point between the rectifying bridge diode D 1 and the rectifying bridge diode D 2 .
  • a smoothing capacitor C p is connected between the input terminals 111 and 112 of the SW power supply circuit 110.
  • a connection point between the other input terminal 112 of the SW power supply circuit 110 and the smoothing capacitor C p is connected to the primary side ground PG.
  • one output end 113 of the SW power supply circuit 110 outputs a DC output V dc supplied to the electric processing unit 101, and the other output end 114 is grounded (SG) to the secondary side.
  • the capacitance C pq as a sum of stray capacitance and noise absorbing capacitor between the primary-side ground PG and the secondary side ground SG is present, for convenience of explanation, the capacitance C pq in Figure 1 Show.
  • the line cross capacitor C x is connected to two input terminals of a detection bridge diode circuit 120 constituted by four diodes D 5 , D 6 , D 7 and D 8 through capacitors C 1 and C 2.
  • the photocoupler diode PC1 LED constituting the photocoupler PC1 is connected between the two output terminals of the detection bridge diode circuit 120. That is, the capacitors C 1 and C 2 and the detection bridge diode circuit 120 constitute a series circuit 150.
  • the emitter of the photocoupler transistor PC1 TR is grounded on the secondary side, the collector is connected through a resistor R 1 to the one output end 113 of the SW power supply circuit 110.
  • connection point between the collector of the photocoupler transistor PC1 TR and the resistor R 1 and the connection point between the resistor R 1 and one output terminal 113 of the SW power supply circuit 110 serve as a power failure discrimination means grounded on the secondary side.
  • the timer circuit 130 is connected.
  • the timer circuit 130 outputs an inverted signal AC_DET based on a signal derived to the collector of the photocoupler transistor PC1 TR , that is, an AC clock signal AC_CLK.
  • the timer circuit 130 can use any circuit configuration that can output a signal indicating that a predetermined alternating current is cut off, in addition to various circuits that output the inverted signal AC_DET.
  • the capacitors C 1 and C 2 function as peak voltage detection of the AC power supply, that is, the capacitor C 1 satisfies the condition that the peak of the AC power supply voltage waveform corresponds to the voltage waveform of the AC clock signal AC_CLK in the photocoupler transistor PC1 TR .
  • C 2 capacity is set.
  • the capacitive reactance X C (imaginary part of impedance) of the capacitors C 1 and C 2 is relative to the resistance value including the operating resistance of the photocoupler diode PC 1 LED between the input terminals A and B of the series circuit 150. Set it very large.
  • the capacitance reactance X C of the capacitors C 1 and C 2 is not less than 3 times, more preferably not less than 6 times the entire resistance value R between the input terminals A and B of the series circuit 150, that is, the following relational expression (1): It is preferable to set to satisfying conditions.
  • X C 1 / (2 ⁇ fC) ⁇ (3R or 6R) (1)
  • f Frequency of AC power supply
  • C Total capacity between input terminals A and B of series circuit 150 (series combined capacity of capacitors C 1 and C 2 )
  • R resistance value between the input terminals A and B of the series circuit 150 (the operational resistance of the photocoupler diode PC1 LED and the operational resistances of the diodes D 5 and D 7 or the diodes D 6 and D 8 of the detection bridge diode circuit 120) Series in total)
  • the timer circuit 130 counts the output cycle of the AC clock signal AC_CLK, determines whether or not commercial AC power is supplied, and the output cycle of the AC clock signal AC_CLK is longer than a certain time. At this time, the inverted signal AC_DET is output. On the secondary side, processing associated with a power failure is performed by the inverted signal AC_DET, for example, the memory in the electric device enters the backup mode to protect the memory contents.
  • the pulse signal is output with the differential value of the voltage waveform of the AC power supply by the capacitors C 1 and C 2 connected in series to the photocoupler diode PC1 LED. Is the capacitor current, there is no power loss in the capacitors C 1 and C 2 . For this reason, power consumption for power failure detection can be suppressed, standby power can be reduced, and energy-saving electrical equipment can be provided. That is, the capacitors C 1 and C 2 output pulse signals with differential values, that is, the AC clock signal AC_CLK of the photocoupler diode PC1 LED is set to a relatively small capacity under the condition corresponding to the peak of the voltage waveform of the AC power supply. Yes.
  • the smoothing capacitor C p is filled and the rectification bridge diodes D 1 and D having a bridge structure are filled.
  • the common mode leakage current from the AC power supply line is the total capacitance C pq of the stray capacitance present between the primary side ground PG and the secondary side ground SG and the noise absorbing capacitor. Since a potential difference occurs between the primary side ground PG and the secondary side ground SG, the capacitors C 1 and C 2 are connected between the input terminals A 1 and A 2 , and the potential difference therebetween is zero. The malfunction of the photocoupler PC1 can be prevented without being affected by the leakage current.
  • the main power switch SW 1 when the main power switch SW 1 is opened at the timing when the line cross capacitor C x is charged, or when the commercial AC power outlet is disconnected, the discharge current of the line cross capacitor C x is caused by the capacitors C 1 and C 2 . Since it is blocked, it can be prevented that it flows into the photocoupler diode PC1 LED and malfunctions.
  • FIG. 2 is a circuit diagram showing a power failure detection circuit.
  • reference numeral 200 denotes a power failure detection circuit.
  • the power failure detection circuit 200 has input terminals A 1 and A 2 to which commercial AC power is supplied, and a line crossing is provided between these input terminals A 1 and A 2.
  • a capacitor Cx is connected.
  • a main power switch SW 1 and a reactor L x are connected between one input terminal A 1 and the line cross capacitor C x, and between the other input terminal A 2 and the line cross capacitor C x.
  • Reactor L x is connected.
  • a relay power switch SW 2 such as a relay and four rectifier bridge diodes D 1 to D 4 are connected to the line cross capacitor C x , and the anodes of the rectifier bridge diodes D 3 and D 4 are grounded to the primary side ( PG).
  • One input end 111 of the SW power supply circuit 110 is connected to a connection point between the rectifying bridge diode D 1 and the rectifying bridge diode D 2 .
  • a smoothing capacitor C p is connected between the input terminals 111 and 112 of the SW power supply circuit 110.
  • a connection point between the other input terminal 112 of the SW power supply circuit 110 and the smoothing capacitor C p is connected to the primary side ground PG.
  • one output end 113 of the SW power supply circuit 110 outputs a DC output V dc supplied to the electric processing unit 101, and the other output end 114 is grounded (SG) to the secondary side.
  • the capacitance C pq as a sum of stray capacitance and noise absorbing capacitor between the primary-side ground PG and the secondary side ground SG is present, for convenience of explanation, the capacitance C pq in FIG Show.
  • a series circuit 250 in which a resistor R 2 , a capacitor C 1 , a detection bridge diode circuit 120, a capacitor C 2 and a resistor R 3 are connected in series is connected in parallel to the line cross capacitor C x .
  • parallel circuit capacitor C 3 and resistor R 4 is connected in parallel is connected.
  • the capacitances of the capacitors C 1 and C 2 are set to a condition in which the peak of the voltage waveform of the AC power supply corresponds to the AC clock signal AC_CLK in the photocoupler transistor PC1 TR . Has been.
  • a capacitor C 1, C 2 of the capacitive reactance X C is the input terminal A of the series circuit 250, the resistance value including the operation resistance of the photo-coupler PC1 LED between B It is preferably set to 3 times or more, more preferably 6 times or more with respect to R.
  • the resistance value R between the input terminals A and B of the series circuit 250 is the operating resistance of the photocoupler diode PC1 LED and the diodes D 5 and D 7 or the diode D of the detection bridge diode circuit 120.
  • 6 and D 8 are the total series resistance values of the operating resistance, the resistance R 2, and the resistance R 3 .
  • a diode D 9 the collector of the transistor Q 1, connecting a capacitor C 4 emitter of the transistor Q 1, and details of determining the pulse widths of the additional pulse to be described later in series Has been.
  • the base of the transistor Q 1 and the base of the transistor Q 2 are connected to form a bidirectional circuit of transistors Q 1 and Q 2 having different polarities.
  • the transistors Q 1 and Q 2 constitute a bidirectional ON / OFF circuit. Further, a noise absorbing capacitor C 5 and a resistor R 5 are connected between a connection point between the emitter of the transistor Q 1 and the emitter of the transistor Q 2 and a connection point between the base of the transistor Q 1 and the base of the transistor Q 2. Are connected in parallel.
  • a resistor R 6 a capacitor C 6 as a bridge capacitor, a capacitor C 7 as a bridge capacitor, and a resistor R 7 are connected in series to the series circuit of the rectifier bridge diode D 1 and the rectifier bridge diode D 2 having a bridge configuration. A series circuit is connected in parallel.
  • a pair of Zener diodes ZD 1 and ZD 2 are connected in series in the opposite direction between the connection point of the capacitors C 6 and C 7 and the connection point of the base of the transistor Q 1 and the base of the transistor Q 2.
  • a series circuit for ensuring on / off of the transistors Q 1 and Q 2 is connected.
  • the resistors R 2 , R 3 , R 6 , and R 7 are for circuit protection from lightning surges and noise absorption. If the resistance value is too large, the power loss increases, so a low setting, for example, a comparison of 10 k ⁇ or less. It is preferable to use one having a very small resistance value.
  • These resistors R 2 , R 3 , R 6 , and R 7 may not be provided as long as other configurations for circuit protection from lightning surge and noise absorption are provided.
  • the emitter of the photocoupler transistor PC1 TR is grounded on the secondary side, the collector is connected through a resistor R 1 to the one output end 113 of the SW power supply circuit 110. Further, the connection point between the collector of the photocoupler transistor PC1 TR and the resistor R 1 and the connection point between the resistor R 1 and one output terminal 113 of the SW power supply circuit 110 are connected to the timer circuit 130 grounded on the secondary side.
  • a parallel circuit is connected in which a frequency selection circuit 140 serving as an open / close detection means grounded on the secondary side is connected in parallel.
  • Frequency selection circuit 140 based on alternating clock signal AC_CLK a signal to derive the collector of the photocoupler transistor PC1 TR, and outputs a detection signal RELAY_Check with the opening and closing of the relay power switch SW 2. Note that various circuits can be used for the frequency selection circuit 140, and a microcomputer integrated with the timer circuit 130 may be used.
  • the timer circuit 130 counts the output cycle of the AC clock signal AC_CLK, determines whether or not commercial AC power is supplied, and the output cycle of the AC clock signal AC_CLK is longer than a certain time. At this time, the inverted signal AC_DET is output. On the secondary side, processing associated with a power failure is performed by the inverted signal AC_DET, for example, the memory in the electric device enters the backup mode to protect the memory contents.
  • the repetition frequency of the AC clock signal AC_CLK pulse is doubled. That is, the AC clock signal AC_CLK is output with four pulses that are doubled in one cycle of the commercial AC power supply with the addition of the cut pulse (FIG. 3C).
  • the relay power switch SW 2 is closed, as shown in FIG. 3 (B)
  • no cut pulse is applied to the current flowing through the photocoupler diode PC1 LED .
  • the photocoupler The AC clock signal AC_CLK derived to the collector of the transistor PC1 TR is output as two pulses in one cycle of the commercial AC power supply.
  • the frequency selection circuit 140 detects the change in the number of pulses of the AC clock signal AC_CLK derived to the collector of the photocoupler transistor PC1 TR , thereby detecting the open / closed state of the relay power switch SW 2.
  • the detection signal RELAY_Check is output to the side.
  • the capacitors C 6 and C 2 for detection that form a bridge with the capacitors C 1 and C 2 on the secondary side of the relay power switch SW 2 are provided.
  • C 7 is provided, and a bridge configuration of transistors Q 1 and Q 2 that are turned on and off by the detection current of the bridge is provided.
  • the open / closed state of the relay power switch SW 2 can be detected in real time. Therefore, a structure for detecting the open or closed state of the relay power supply switch SW 2 in conjunction with the power failure detection circuit configuration which includes a relay power switch SW 2, can be detected by a single photo coupler PC1, the configuration can be simplified. Further, since the detection signal RELAY_Check is output from the frequency selection circuit 140, welding of the relay can also be detected by comparing with the ON / OFF signal of the relay separately by this detection signal. Furthermore, regardless of the open or closed state of the relay power supply switch SW 2, it can be the power failure detection by the full-wave of the AC power waveform.
  • the configuration applied to an electrical device in which the commercial AC power is supplied and the electric processing unit 101 operates is illustrated.
  • the configuration is not limited to the commercial AC power and is not limited to a commercial AC power source.
  • the present invention can be applied not only to equipment but also to various electric equipment for home use and business use such as various manufacturing apparatuses and control apparatuses.
  • the power failure is detected by both waves of the AC power supply waveform using the detection bridge diode circuit 120.
  • the detection bridge diode circuit 120 is not used, for example, as shown in FIG.
  • a bidirectional photocoupler PC may be used.
  • a power failure can be detected by both waves without using the detection bridge diode circuit 120, and the circuit configuration can be simplified.
  • the configuration using the bidirectional photocoupler PC in the power failure detection circuit 300 shown in FIG. 4 can be applied in place of the detection bridge diode circuit 120 in the power failure detection circuit 200 of the second embodiment shown in FIG.
  • the power failure detection circuit 400 shown in FIG. 5 includes the capacitor C 1 , the input terminal of the detection bridge diode circuit 120, the output terminal of the detection bridge diode circuit 120, the photocoupler diode PC1 LED , and the detection bridge diode circuit 120 in the first embodiment. the output end, and, connected in place of the series circuit of the capacitor C 2, provided with a series circuit of a capacitor C 1 and the photo-coupler PC1 LED, the reverse direction of the diode D 11 in parallel with the photo-coupler PC1 LED is doing.
  • the circuit configuration can be further simplified. Then, further the simplification of the circuit configuration, to share the line cross capacitors C x and the capacitor C 1 in the power failure detecting circuit 400 in FIG. 5, it may be configured of a power failure detection circuit 500 shown in FIG.
  • only the frequency selection circuit 140 may be provided without providing the timer circuit 130.
  • the pulse signal is output with the differential value of the AC power supply waveform by the capacitors C 1 and C 2 connected in series to the photocoupler diode PC 1 LED , the current for power failure detection is the capacitor current. Therefore, there is no power loss in the capacitors C 1 and C 2 , and power consumption for power failure detection can be suppressed. Furthermore, by using the power failure detection circuit 100, standby power can be reduced and energy-saving electrical equipment can be provided.
  • a resistor R 2 is connected in series between the input terminal A of the series circuit 150 and the capacitor C 1
  • a resistor R 3 is connected in series between the input terminal A and the capacitor C 2.
  • a resistor R 104 to the coupler diode PC1 LED was used connected in series.
  • the resistors R 2 and R 3 are each 10 K ⁇ , the resistor R 104 is 0 ⁇ , the capacities of the capacitors C 1 and C 2 are 0.047 uF, and the diodes D 5 , D 6 , D 7 , D 8 and operating resistance of the photo-coupler PC1 LED was used as the 26 ⁇ at 1 mA.
  • the resistors R 2 and R 3 are measures against lightning surge.
  • FIG. 8A shows the voltage waveform of the AC power supply
  • FIG. 8B shows the voltage waveform of the AC clock signal AC_CLK
  • FIG. 8C shows the current waveform of the photocoupler diode PC1 LED .
  • the resistance R (the real part of the AC impedance) of the power failure detection circuit viewed from the input terminals A and B is obtained by the following equation (2).
  • the resistor R includes the operating resistances of the diodes D 5 , D 6 , D 7 , D 8 and the photocoupler diode PC 1 LED , but is ignored because it is sufficiently small with respect to the resistors R 2 , R 3 .
  • the capacitive reactance X C (imaginary part of AC impedance) of the power failure detection circuit viewed from the input terminals A and B is obtained by the following equation (3).
  • FIG. 8 is a waveform diagram obtained by circuit simulation, which almost coincides with the results in Table 1.
  • Example 1 is a desirable example of the power failure detection circuit of the present application.
  • Example 2 Comparative Examples 1 to 3
  • Example 2 was the same as Example 1 except that the capacitances of the capacitors C 1 and C 2 were each 0.47 uF. The result is shown in FIG.
  • each waveform in FIG. 9 is the same as FIG.
  • the ratio of the capacitive reactance X C and the resistance R in this case is determined by the following equation (5).
  • X C /R 0.68 (5)
  • the peak of the voltage of the AC power supply and the pulse timing of the voltage waveform of the AC clock signal AC_CLK for power failure detection are greatly shifted.
  • Comparative Example 1 was the same as Example 1 except that the capacitances of capacitors C 1 and C 2 were each 2 uF. The result is shown in FIG. In addition, each waveform in FIG. 10 is the same as FIG.
  • the ratio of the capacitive reactance X C and the resistance R in this case is determined by the following equation (6).
  • X C /R 0.16 (6)
  • the phase difference between the peak of the voltage of the AC power supply and the timing of the voltage waveform pulse of the AC clock signal AC_CLK for power failure detection is approximately 80 degrees. That is, the pulse timing of the voltage waveform of the AC clock signal AC_CLK is close to the zero cross of the AC power supply voltage.
  • Comparative Example 2 was the same as Example 1 except that the resistors R 2 and R 3 were 0 ⁇ , the resistor R 104 was 47 K ⁇ , and the capacities of the capacitors C 1 and C 2 were 2 uF, respectively.
  • the result is shown in FIG.
  • Each waveform in FIG. 11 is the same as FIG.
  • the resistance R of the power failure detection circuit viewed from the input terminals A and B is obtained by the following equation (7).
  • the resistor R includes the operating resistances of the diodes D 5 , D 6 , D 7 , D 8 and the photocoupler diode PC1 LED , but is ignored because it is small enough for R 2 and R 3 .
  • the capacitive reactance X C (imaginary part of the AC impedance) of the power failure detection circuit viewed from the input terminals A and B is obtained by the following equation (8).
  • the ratio of the capacitive reactance X C and the resistance R is determined by the following equation (9).
  • X C /R 0.068 (9)
  • the phase difference between the peak of the voltage of the AC power supply and the voltage waveform pulse of the AC clock signal AC_CLK for detecting a power failure is 86 degrees.
  • Comparative Example 3 was the same as Example 1 except that the resistors R 2 and R 3 were 0 ⁇ , the resistor R 104 was 47 K ⁇ , the capacitor C 2 was removed, and the capacitance of the capacitor C 1 was 0.015 uF.
  • the result is shown in FIG.
  • Each waveform in FIG. 12 is the same as FIG.
  • the ratio of the capacitive reactance X C and the resistance R is obtained by the following equation (10).
  • X C /R 4.5 (10) That is, the phase difference between the pulse timing of the voltage waveform of the AC clock signal AC_CLK for detecting a power failure and the peak timing of the voltage of the AC power supply is a little over 10 degrees.
  • the capacitances of the capacitors C 1 and C 2 are reduced in this way, the LED current becomes insufficient, causing a malfunction of the power failure detection, resulting in a decrease in power failure detection accuracy.
  • the peak of the current waveform of the photocoupler diode PC1 LED is 0.5 V or less, and the voltage waveform of the AC clock signal AC_CLK shown in FIG. Therefore, in the invention described in Comparative Example 2 and Patent Document 5, it is difficult to match the timing of the voltage waveform pulse of the AC clock signal AC_CLK for power failure detection to the timing of the peak of the AC power supply voltage.
  • Table 1 shows the ratio of the capacitive reactance (1 / 2 ⁇ fC) seen from the input terminal side to the resistance R seen from the input terminal side, and the phase difference (degree) between the zero crossing of the AC power supply voltage waveform and the power failure detection timing.
  • this phase difference is 90 degrees
  • the power failure detection timing coincides with the peak timing of the voltage waveform of the AC power supply. Since the power supply rectification timing is generally centered on this peak timing, the timing with a phase difference of 90 degrees is ideal. It is possible to promptly detect a power failure or return after an instantaneous interruption of the AC power supply.
  • the present invention can be used in a power failure detection circuit that is used in electrical equipment and detects a power failure of a supplied AC power source using a photocoupler.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

 商用交流電源の供給により、商用交流電源波形の微分値がゼロとなる波形のピーク時で、コンデンサC1,C2に流れる電流はゼロとなり、フォトカプラトランジスタPC1TRのコレクタにHighパルス信号の交流クロック信号AC_CLKを導出させる。タイマー回路130は、交流クロック信号AC_CLKの出力周期をカウントし、商用交流電源が供給されているか否かを判別し、交流クロック信号AC_CLKの出力周期が一定時間以上長くなった時、停電した旨の反転信号AC_DETを出力する。停電検出がコンデンサ電流のため、コンデンサC1,C2における電力損失はなく、待機電力を抑制できる。

Description

停電検出回路および電気機器
 本発明は、フォトカプラを用い交流電源の停電を検出する停電検出回路および電気機器に関する。
 従来、例えばテレビジョンや記録再生装置など、交流電源の供給により動作する各種電気機器において、1次側の交流電源の供給の有無を、フォトカプラを用いて検出し、判別信号として2次側へ出力する停電検出回路が知られている(例えば、特許文献1ないし特許文献4参照)。
 特許文献1に記載のものは、商用交流電源に抵抗を介して接続されたフォトカプラを接続し、商用交流電源電圧に同期したパルス電圧を、マイコンへ出力させる構成が採られている。
 特許文献2に記載のものは、交流電源に接続したダイオードブリッジの端子間に、抵抗、第1の発光ダイオード、第2の発光ダイオード、ツェナーダイオードの直列回路を接続している。第1の発光ダイオードに電流が流れている間、第1のフォトトランジスタの入力端に接続した直流電源で出力端に接続したコンデンサを充電する。そして、電圧比較器にて、コンデンサの充電電圧と、予め設定した閾値電圧とを比較し、交流電源の停電を検出する構成が採られている。
 特許文献3に記載のものは、交流電源端子間に抵抗および双方向フォトカプラの直列回路を接続し、交流電源の停電の有無を検出する。停電の検出により、フォトカプラが停電検出信号発生用のコンパレータに入力される基準電圧を変更させる構成が採られている。
 特許文献4に記載のものは、商用入力電圧を全波整流して抵抗を介してフォトカプラに印加する。フォトカプラは商用交流電圧が正常な場合にオンし、フォトカプラに接続するコンデンサの電荷を放電させる。商用交流電圧が低下しフォトカプラがオンしなくなると、コンデンサは放電せず、コンパレータの出力がHレベルからLレベルとなり、トランジスタから停電信号を出力する構成が採られている。
 特許文献5に記載のものは、負荷と直列に接続されるインダクタンスと、前記負荷と並列に接続されるコンデンサとを少なくとも含む入力フィルタを介して、前記負荷に電力を供給する交流電源の停電を検出する。この入力フィルタに直流遮断用のコンデンサを介して接続した全波整流回路と、該全波整流回路の脈流出力電圧を基準電圧と比較する比較回路と、該比較回路の出力信号に従ってコンデンサの充放電を抵抗を介して行なわせる充放電回路と、該充放電回路の前記コンデンサの端子電圧が基準電圧以上に上昇した時に停電を検出する検出部とを備えた構成が採られている。
特開平10-10164号公報 特開2000-171497号公報 特開2001-45756号公報 特開2001-165967号公報 特許公報第2592346号
 しかしながら、上記特許文献1ないし特許文献4に記載のような抵抗と直列に接続するフォトカプラを用いる従来の構成では、抵抗を介して交流電源の電圧検出をしているので、抵抗で電力損失を生じてしまう。
 上記特許文献5に記載の停電検出回路は、交流電源の電圧波形のゼロクロスタイミングに同期して停電検出を行う。整流は一般に交流電源の電圧波形のピーク電圧に同期して行なわれるため、ピーク電圧とは位相が90度ずれたゼロクロスタイミングに同期して停電検出を行うと、その位置では電源装置の整流直流供給電圧は低下しており、その低下を抑え正常な電源装置動作を行なわせるために大きな容量の整流コンデンサが必要になる。すなわち上記特許文献5に記載の停電検出回路は停電検出に要する時間が長くなるため、大きな容量の整流コンデンサが必要になる。
 本発明は、上記問題点などに鑑みて、電力損失を抑えた停電検出回路および電気機器を、さらに停電検出に要する時間を短く提供することを1つの目的とする。
 本発明に記載の停電検出回路は、フォトカプラを用い交流電源の停電を検出する停電検出回路であって、前記交流電源が供給される入力端子間に設けられコンデンサおよび前記フォトカプラの発光ダイオードが直列に接続された直列回路と、前記フォトカプラのフォトトランジスタから出力されるパルス信号に基づいて前記交流電源の供給が遮断されたことを判別して停電した旨の信号を出力する停電判別手段と、を具備し、前記パルス信号は前記交流電源の電圧波形のピークに同期することを特徴とする。
 本発明に記載の電気機器は、本発明に記載の停電検出回路と、この停電検出回路からの前記停電した旨の信号が入力されるとこの信号が入力された時点の電気処理を保護する処理をする電気処理部と、を具備したことを特徴とする。
本発明の一実施形態に係る停電検出回路を示す回路図である。 他の実施形態における停電検出回路を示す回路図である。 図2に示す実施形態の回路図における各部位での波形図であり、(A)は交流電源波形、(B)はフォトカプラの電流波形、(C)は交流クロック波形。 さらに他の実施形態における停電検出回路の一部を示す回路図である。 さらに他の実施形態における停電検出回路の一部を示す回路図である。 さらに他の実施形態における停電検出回路の一部を示す回路図である。 さらに他の実施形態における停電検出回路を示す回路図である。 本発明を説明するための実施例1の回路構成における各部位での波形図であり、(A)は交流電源の電圧波形、(B)は交流クロック信号AC_CLKの電圧波形、(C)はフォトカプラダイオードPC1LEDの電流波形。 本発明を説明するための実施例2の回路構成における各部位での波形図であり、(A)は交流電源の電圧波形、(B)は交流クロック信号AC_CLKの電圧波形、(C)はフォトカプラダイオードPC1LEDの電流波形。 本発明を説明するための比較例1の回路構成における各部位での波形図であり、(A)は交流電源の電圧波形、(B)は交流クロック信号AC_CLKの出圧波形、(C)はフォトカプラダイオードPC1LEDの電流波形。 本発明を説明するための比較例2の回路構成における各部位での波形図であり、(A)は交流電源の電圧波形、(B)は交流クロック信号AC_CLKの電圧波形、(C)はフォトカプラダイオードPC1LEDの電流波形。 本発明を説明するための比較例3の回路構成における各部位での波形図であり、(A)は交流電源の電圧波形、(B)は交流クロック信号AC_CLKの電圧波形、(C)はフォトカプラダイオードPC1LEDの電流波形。 本発明を説明するための容量リアクタンスと入力端子側から見た抵抗との比と、交流電源の電圧波形のゼロクロスと停電検出タイミングとの位相差(度)の関係を示すグラフ。
符号の説明
 100,200,300,400,500,600…停電検出回路
 101…電気処理部
 120…検出ブリッジダイオード回路
 130…停電判別手段としてのタイマー回路
 140…開閉検出手段としての周波数選別回路
 150,250…直列回路
 A1,A2…入力端子
 C1,C2…直列回路を構成するコンデンサ
 C6,C7…ブリッジコンデンサとしてのコンデンサ
 PC1…フォトカプラ
 PC1LED…発光ダイオードとしてのフォトカプラダイオード
 PC1TR…フォトトランジスタとしてのフォトカプラトランジスタ
 Q1,Q2…双方向ON/OFF回路を構成するトランジスタ
 SW1…主電源スイッチ
 SW2…リレー電源スイッチ
 ZD1,ZD2…ツェナーダイオード
<第一実施形態>
 [停電検出回路の構成]
 以下に、本発明の停電検出回路の第一実施形態の構成を図1に基づいて説明する。
 図1は、停電検出回路を示す回路図である。
 図1において、100は停電検出回路で、この停電検出回路100は、交流電源の供給の有無を、フォトカプラを用いて検出し、判別信号として2次側へ出力する。
 例えば、停電検出回路100は、テレビジョンや記録再生装置など、商用交流電源が供給されて動作するマイクロコンピュータを搭載した電気機器に用いられ、停電を検出して判別信号を出力して、電気機器における停電直前の設定内容や動作内容を保持させる処理などを実施させる。
 停電検出回路100は、商用交流電源が供給される対をなす入力端子A1,A2を有し、これら入力端子A1,A2間には、ラインクロスコンデンサCxが接続されている。
 そして、一方の入力端子A1とラインクロスコンデンサCxとの間には、主電源スイッチSW1およびリアクトルLxが接続され、他方の入力端子A2とラインクロスコンデンサCxとの間にはリアクトルLxが接続されている。ラインクロスコンデンサCxには、並列状に4つの整流ブリッジダイオードD1~D4が接続され、整流ブリッジダイオードD3,D4のアノードは、それぞれ一次側に接地(PG)されている。
 また、整流ブリッジダイオードD1および整流ブリッジダイオードD2の接続点には、SW電源回路110の一方の入力端111が接続されている。このSW電源回路110の入力端111,112間には、平滑コンデンサCpが接続されている。そして、SW電源回路110の他方の入力端112と平滑コンデンサCpとの接続点は、1次側グラウンドPGに接続されている。
 さらに、SW電源回路110の一方の出力端113は電気処理部101へ供給する直流出力Vdcを出力し、他方の出力端114は2次側に接地(SG)されている。なお、1次側グラウンドPGと2次側グラウンドSGとの間には浮遊容量とノイズ吸収コンデンサとの総和となる容量Cpqが存在するので、説明の都合上、図1には容量Cpqを示す。
 そして、ラインクロスコンデンサCxには、コンデンサC1,C2を通して、4つのダイオードD5,D6,D7,D8にて構成された検出ブリッジダイオード回路120の2つの入力端が接続され、検出ブリッジダイオード回路120の2つの出力端間にはフォトカプラPC1を構成するフォトカプラダイオードPC1LEDが接続されている。すなわち、コンデンサC1,C2および検出ブリッジダイオード回路120が直列回路150を構成する。
 また、フォトカプラトランジスタPC1TRのエミッタは2次側に接地され、コレクタは抵抗R1を介してSW電源回路110の一方の出力端113に接続されている。
 さらに、フォトカプラトランジスタPC1TRのコレクタおよび抵抗R1の接続点と、抵抗R1およびSW電源回路110の一方の出力端113の接続点とには、2次側に接地された停電判別手段としてのタイマー回路130が接続されている。このタイマー回路130は、フォトカプラトランジスタPC1TRのコレクタに導出する信号、すなわち交流クロック信号AC_CLKに基づいて反転信号AC_DETを出力する。なお、タイマー回路130は、反転信号AC_DETを出力する各種回路の他、所定の交流が遮断した旨の信号を出力可能ないずれの回路構成が利用できる。
 ここで、コンデンサC1,C2が交流電源のピーク電圧検知として機能、すなわち交流電源の電圧波形のピークとフォトカプラトランジスタPC1TRにおける交流クロック信号AC_CLKの電圧波形とが対応する条件にコンデンサC1,C2の容量が設定されている。
 具体的には、コンデンサC1,C2の容量リアクタンスX(インピーダンスの虚数部分)は、直列回路150の入力端A,B間におけるフォトカプラダイオードPC1LEDの動作抵抗を含む抵抗値に対して極めて大きく設定する。例えば、コンデンサC1,C2の容量リアクタンスXが直列回路150の入力端A,B間全体の抵抗値Rの3倍以上、より望ましくは6倍以上、すなわち以下の関係式(1)を満足する条件に設定することが好ましい。
  X=1/(2πfC)≧(3Rまたは6R)  …(1)
    f:交流電源の周波数
    C:直列回路150の入力端A,B間全体の容量(コンデンサC1,C2の直列合成容量)
    R:直列回路150の入力端A,B間全体の抵抗値(フォトカプラダイオードPC1LEDの動作抵抗と、検出ブリッジダイオード回路120のダイオードD5,D7またはダイオードD6,D8の動作抵抗との直列合計)
 [停電検出回路の動作]
 次に、上記停電検出回路の動作について、説明する。
 商用交流電源が入力端子A1,A2間に供給され主電源スイッチSW1が閉成された状態では、供給される商用交流電源が検出ブリッジダイオード回路120を介してフォトカプラダイオードPC1LEDに供給される。
 この状態では、商用交流電源の電圧波形の微分値がゼロとなる電圧波形のピーク時で、コンデンサC1,C2に流れる電流はゼロとなるので、フォトカプラトランジスタPC1TRのコレクタには、H(High)パルス信号である交流クロック信号AC_CLKが供給される。この交流クロック信号AC_CLKにより、タイマー回路130は交流クロック信号AC_CLKの出力周期をカウントし、商用交流電源が供給されているか否かを判別し、交流クロック信号AC_CLKの出力周期が一定時間以上長くなった時、反転信号AC_DETを出力する。
 そして、二次側では、反転信号AC_DETにより、例えば電気機器内のメモリがバックアップモードに入ってメモリ内容を保護するなど、停電に伴う処理を実施する。
 [停電検出回路の作用効果]
 上記第一実施形態の回路構成によれば、フォトカプラダイオードPC1LEDに直列状に接続するコンデンサC1,C2により交流電源の電圧波形の微分値でパルス信号を出力させるので、停電検出のための電流は、コンデンサ電流であることから、コンデンサC1,C2における電力損失はない。
 このため、停電検出のための消費電力を抑制でき、待機電力が削減されて省エネルギーの電気機器を提供できる。
 すなわち、コンデンサC1,C2は微分値でパルス信号を出力させる、つまりフォトカプラダイオードPC1LEDの交流クロック信号AC_CLKが交流電源の電圧波形のピークに対応する条件に比較的小さい容量に設定されている。この比較的小さい容量にコンデンサC1,C2を設定するためには、直列回路150の入力端A,B間での抵抗値を小さくする必要があるが、検出ブリッジダイオード回路120に直列状に回路などが接続しない簡単な構成に構築しており、比較的に大きな抵抗値の抵抗を設ける必要もないことから、コンデンサC1,C2の容量を小さくできる。したがって、構成が簡略化し消費電力を抑制できる。
 そして、主電源スイッチSW1が開放され、他方の入力端子A2から交流電源波形の片波が供給される状態においては、平滑コンデンサCpが充填されてブリッジ構造の整流ブリッジダイオードD1,D2がOFFしている時、交流電源ラインからのコモンモードの漏れ電流が、1次側グラウンドPGと2次側グラウンドSGとの間に存在する浮遊容量とノイズ吸収コンデンサとの総和の容量Cpqに流れ、1次側グラウンドPGおよび2次側グラウンドSG間に電位差が生ずるが、コンデンサC1,C2が入力端子A1,A2間に接続されており、この間の電位差がゼロであるので、前記漏れ電流の影響を受けず、これによるフォトカプラPC1の誤動作を防止できる。
 さらに、ラインクロスコンデンサCxに充電されるタイミングで主電源スイッチSW1が開成された場合、あるいは商用交流電源コンセントが抜かれた場合、ラインクロスコンデンサCxの放電電流がコンデンサC1,C2で阻止されるので、これがフォトカプラダイオードPC1LEDに流れて誤作動することも防止できる。
 また、入力端子A1,A2間に、コンデンサC1、検出ブリッジダイオード回路120の入力端、検出ブリッジダイオード回路120の出力端、フォトカプラダイオードPC1LED、検出ブリッジダイオード回路120の出力端、および、コンデンサC2を直列に接続したため、交流電源の電圧波形の両波のタイミングで停電を検出できる。
<第二実施形態>
 [停電検出回路の構成]
 以下に、本発明の停電検出回路の第二実施形態の構成を図2に基づいて説明する。
 なお、第二実施形態において、第一実施形態と同一の構成については、同一の符号を付し、説明を簡略化あるいは省略する。
 図2は、停電検出回路を示す回路図である。
 図2において、200は停電検出回路で、この停電検出回路200は、商用交流電源が供給される入力端子A1,A2を有し、これら入力端子A1,A2間には、ラインクロスコンデンサCxが接続されている。
 そして、一方の入力端子A1とラインクロスコンデンサCxとの間には、主電源スイッチSW1およびリアクトルLxが接続され、他方の入力端子A2とラインクロスコンデンサCxとの間にはリアクトルLxが接続されている。ラインクロスコンデンサCxには、リレーなどのリレー電源スイッチSW2と、4つの整流ブリッジダイオードD1~D4が接続され、整流ブリッジダイオードD3,D4のアノードは、それぞれ一次側に接地(PG)されている。
 また、整流ブリッジダイオードD1および整流ブリッジダイオードD2の接続点には、SW電源回路110の一方の入力端111が接続されている。このSW電源回路110の入力端111,112間には、平滑コンデンサCpが接続されている。そして、SW電源回路110の他方の入力端112と平滑コンデンサCpとの接続点は、1次側グラウンドPGに接続されている。
 さらに、SW電源回路110の一方の出力端113は電気処理部101へ供給する直流出力Vdcを出力し、他方の出力端114は2次側に接地(SG)されている。なお、1次側グラウンドPGと2次側グラウンドSGとの間には浮遊容量とノイズ吸収コンデンサとの総和となる容量Cpqが存在するので、説明の都合上、図2には容量Cpqを示す。
 また、ラインクロスコンデンサCxには、抵抗R2、コンデンサC1、検出ブリッジダイオード回路120、コンデンサC2および抵抗R3が直列に接続する直列回路250が、並列に接続されている。そして、検出ブリッジダイオード回路120の出力端間には、フォトカプラPC1を構成するフォトカプラダイオードPC1LEDと、コンデンサC3および抵抗R4が並列に接続する並列回路が接続されている。
 この直列回路250についても、第一実施形態と同様に、コンデンサC1,C2の容量が、交流電源の電圧波形のピークとフォトカプラトランジスタPC1TRにおける交流クロック信号AC_CLKとが対応する条件に設定されている。すなわち、上述した関係式(1)に示すように、コンデンサC1,C2の容量リアクタンスXが、直列回路250の入力端A,B間におけるフォトカプラダイオードPC1LEDの動作抵抗を含む抵抗値Rに対して3倍以上、より望ましくは6倍以上に設定されていることが好ましい。
 なお、関係式(1)における直列回路250の入力端A,B間全体の抵抗値Rは、フォトカプラダイオードPC1LEDの動作抵抗と、検出ブリッジダイオード回路120のダイオードD5,D7またはダイオードD6,D8の動作抵抗と、抵抗R2と、抵抗R3と、の合計の直列抵抗値である。
 さらに、検出ブリッジダイオード回路120の入力端間には、ダイオードD9、トランジスタQ1のコレクタ、トランジスタQ1のエミッタ、および詳細は後述する付加パルスのパルス幅を決定するコンデンサC4が直列に接続されている。さらに、検出ブリッジダイオード回路120の入力端およびダイオードD9の接続点と、トランジスタQ1のエミッタおよびコンデンサC4の接続点との間には、トランジスタQ2のエミッタ、トランジスタQ2のコレクタおよびダイオードD10が直列に接続されている。
 そして、トランジスタQ1のベースとトランジスタQ2のベースとが接続されて、極性の異なるトランジスタQ1,Q2の双方向回路が構成されている。すなわち、トランジスタQ1,Q2は、双方向ON/OFF回路を構成する。
 さらに、トランジスタQ1のエミッタとトランジスタQ2のエミッタとの接続点と、トランジスタQ1のベースとトランジスタQ2のベースとの接続点との間には、ノイズ吸収コンデンサC5と抵抗R5とが並列に接続された並列回路が接続されている。
 また、ブリッジ構成の整流ブリッジダイオードD1および整流ブリッジダイオードD2の直列回路には、抵抗R6、ブリッジコンデンサとしてのコンデンサC6、ブリッジコンデンサとしてのコンデンサC7および抵抗R7が直列に接続する直列回路が、並列に接続されている。これらコンデンサC6およびコンデンサC7は、リレー電源スイッチSW2が閉成している状態で、C1:C2=C6:C7としてブリッジバランスして、トランジスタQ1,Q2のベースおよびエミッタ間に電流が流れないように設定されている。
 そして、コンデンサC6およびコンデンサC7の接続点と、トランジスタQ1のベースおよびトランジスタQ2のベースの接続点との間には、一対のツェナーダイオードZD1,ZD2が逆方向で直列に接続しトランジスタQ1,Q2のオンオフを確実にするための直列回路が接続されている。
 なお、抵抗R2,R3,R6,R7は、雷サージからの回路保護およびノイズ吸収用であり、抵抗値が大きすぎると電力損失が増大するので、低く設定、例えば10kΩ以下の比較的に小さい抵抗値のものを用いることが好ましい。なお、これら抵抗R2,R3,R6,R7は、雷サージからの回路保護およびノイズ吸収用のための他の構成が設けられていれば設けなくてもよい。
 また、フォトカプラトランジスタPC1TRのエミッタは2次側に接地され、コレクタは抵抗R1を介してSW電源回路110の一方の出力端113に接続されている。
 さらに、フォトカプラトランジスタPC1TRのコレクタおよび抵抗R1の接続点と、抵抗R1およびSW電源回路110の一方の出力端113の接続点とには、2次側に接地されたタイマー回路130と、2次側に接地された開閉検出手段としての周波数選別回路140とが並列に接続された並列回路が接続されている。周波数選別回路140は、フォトカプラトランジスタPC1TRのコレクタに導出する信号である交流クロック信号AC_CLKに基づいて、リレー電源スイッチSW2の開閉に伴う検出信号RELAY_Checkを出力する。なお、周波数選別回路140は、各種回路を用いることができ、タイマー回路130との一体構成のマイコンを用いてもよい。
 [停電検出回路の動作]
 次に、上記停電検出回路の動作について、説明する。
 商用交流電源が入力端子A1,A2間に供給され主電源スイッチSW1が閉成された状態では、供給される商用交流電源が検出ブリッジダイオード回路120を介してフォトカプラダイオードPC1LEDに供給される。
 この状態では、商用交流電源の電圧波形の微分値がゼロとなる電圧波形のピーク時で、コンデンサC1,C2に流れる電流はゼロとなるので、フォトカプラトランジスタPC1TRのコレクタには、H(High)パルス信号である交流クロック信号AC_CLKが供給される。この交流クロック信号AC_CLKにより、タイマー回路130は交流クロック信号AC_CLKの出力周期をカウントし、商用交流電源が供給されているか否かを判別し、交流クロック信号AC_CLKの出力周期が一定時間以上長くなった時、反転信号AC_DETを出力する。
 そして、二次側では、反転信号AC_DETにより、例えば電気機器内のメモリがバックアップモードに入ってメモリ内容を保護するなど、停電に伴う処理を実施する。
 一方、主電源スイッチSW1が閉成されている状態でリレー電源スイッチSW2が開成している場合、コンデンサC1,C2,C6,C7のブリッジバランスが崩れ、商用交流電源電圧のゼロクロス付近で、トランジスタQ1,Q2が一瞬オンとなる。これらトランジスタQ1,Q2の一瞬のオンにより、フォトカプラダイオードPC1LEDに流れる電流もゼロとなる。このことにより、フォトカプラトランジスタPC1TRのコレクタ側(エミッタ出力の場合はLowレベル)がHighレベルになり、交流クロック信号AC_CLKパルス間に、全体的に切り込みパルスのような新たなパルスが付加される(図3(B)参照)。
 この新たに付加される付加パルスにより、交流クロック信号AC_CLKパルスの繰り返し周波数は、倍となる。すなわち、交流クロック信号AC_CLKは、切り込みパルスが加わって商用交流電源1周期で倍の4パルス出力されることとなる(図3(C))。
 そして、リレー電源スイッチSW2が閉成すると、図3(B)に示すように、フォトカプラダイオードPC1LEDに流れる電流には切り込みパルスが入らなくなり、図3(C)に示すように、フォトカプラトランジスタPC1TRのコレクタに導出される交流クロック信号AC_CLKが商用交流電源1周期で2パルス出力されることとなる。
 このように、周波数選別回路140は、フォトカプラトランジスタPC1TRのコレクタに導出される交流クロック信号AC_CLKのパルス数の変化を検出することで、リレー電源スイッチSW2の開閉状態が検出され、二次側へ検出信号RELAY_Checkを出力する。
 [停電検出回路の作用効果]
 上記第二実施形態の回路構成によれば、上記第一実施形態の構成に加え、リレー電源スイッチSW2の2次側にコンデンサC1,C2とブリッジを構成する検出用のコンデンサC6,C7を設け、このブリッジの検出電流によりオンオフするトランジスタQ1,Q2のブリッジ構成を設けている。
 このことにより、リレー電源スイッチSW2が開成している時、フォトカプラダイオードPC1LEDに流れる電流流通角の一部をカットオフし、フォトカプラトランジスタPC1TRの出力である交流クロック信号AC_CLKに切り込みパルスを加え、交流クロック信号AC_CLKがリレー電源スイッチSW2が閉成している時の周波数に対して倍の繰り返し周波数となる。このため、この周波数の変化を検出(選別)することで、リレー電源スイッチSW2の開閉状態をリアルタイムで検出できる。したがって、リレー電源スイッチSW2を備えた回路構成で停電検出と併せてリレー電源スイッチSW2の開閉状態を検出する構成として、1つのフォトカプラPC1で検出でき、構成を簡略化できる。
 また、周波数選別回路140から検出信号RELAY_Checkを出力させているので、この検出信号により、別途リレーのオンオフ信号と比較することで、リレーの溶着も検出できる。
 さらに、リレー電源スイッチSW2の開閉状態に拘わらず、交流電源波形の両波で停電検出できる。
 〔実施形態の変形〕
 なお、本発明は、上述した各実施形態に限定されるものではなく、本発明の目的を達成できる範囲で以下に示される変形をも含むものである。
 すなわち、上記各実施形態では、商用交流電源が供給されて電気処理部101が動作する電気機器に適用する構成を例示したが、商用交流電源に限らず、またテレビジョンや記録再生装置などの電気機器に限らず、各種の製造装置や制御装置など、家庭用、業務用などの各種電気機器に適用できる。
 そして、上記第一実施形態では、検出ブリッジダイオード回路120を用いて交流電源波形の両波で停電を検出する構成を例示したが、検出ブリッジダイオード回路120を用いず、例えば図4に示すように、双方向のフォトカプラPCを用いてもよい。
 この図4に示す停電検出回路300の構成によれば、検出ブリッジダイオード回路120を用いなくても両波で停電を検出でき、回路構成を簡略化できる。
 また、図4に示す停電検出回路300における双方向のフォトカプラPCを用いる構成は、上記図2に示す第二実施形態の停電検出回路200における検出ブリッジダイオード回路120に代えて適用できる。
 さらには、上記第一実施形態において、検出ブリッジダイオード回路120を用いて交流電源波形の両波で停電を検出する構成を例示したが、例えば図5に示すように、片波で停電検出する構成としてもよい。
 すなわち、図5に示す停電検出回路400は、第一実施形態におけるコンデンサC1、検出ブリッジダイオード回路120の入力端、検出ブリッジダイオード回路120の出力端、フォトカプラダイオードPC1LED、検出ブリッジダイオード回路120の出力端、および、コンデンサC2の直列回路に代えて、コンデンサC1およびフォトカプラダイオードPC1LEDの直列回路を設けるとともに、フォトカプラダイオードPC1LEDに対して並列に逆方向のダイオードD11を接続している。
 この図5の停電検出回路400では、さらに回路構成を簡略化できる。
 そして、さらに回路構成の簡略化として、図5の停電検出回路400におけるラインクロスコンデンサCxおよびコンデンサC1を共有化させ、図6に示す停電検出回路500の構成としてもよい。
 また、上記第二実施形態において、例えば図7に示すように、タイマー回路130を設けずに周波数選別回路140のみとしてもよい。
 その他、本発明の実施の際の具体的な構造および手順は、本発明の目的を達成できる範囲で他の構造などに適宜変更できる。
 〔実施形態の効果〕
 上記一実施形態によれば、フォトカプラダイオードPC1LEDに直列状に接続するコンデンサC1,C2により交流電源波形の微分値でパルス信号を出力させるので、停電検出のための電流は、コンデンサ電流であることから、コンデンサC1,C2における電力損失はなく、停電検出のための消費電力を抑制できる。
 さらに、停電検出回路100を用いることで待機電力が削減されて省エネルギーの電気機器を提供できる。
 〔容量リアクタンスXと抵抗Rの関係〕
 以下、本発明の停電検出回路における容量リアクタンスXと抵抗Rの関係について具体的に説明する。なお、本発明は、以下の例に限定されるものではない。
 (例1)
 第一実施形態における直列回路150の入力端AとコンデンサC1との間に抵抗R2を直列に接続し、入力端AとコンデンサC2との間に抵抗R3を直列に接続し、フォトカプラダイオードPC1LEDに抵抗R104を直列に接続したものを用いた。
 そして、抵抗R2,R3はそれぞれ10KΩ、抵抗R104は0Ω、コンデンサC1,C2の容量はそれぞれで0.047uF、検出ブリッジダイオード回路120の各ダイオードD5,D6,D7,D8およびフォトカプラダイオードPC1LEDの動作抵抗は1mAで26Ωのものを用いた。この抵抗R2、抵抗R3は雷サージ対策である。
 この直列回路150の入力端A,B間に100Vで50Hzの交流電流を流し、フォトカプラトランジスタPC1TRのコレクタに生じる交流クロック信号AC_CLKの電圧波形を検出した。そして、交流電源の電圧波形と交流クロック信号AC_CLKの電圧波形との関係を比較検討した。その結果を図8に示す。図8中、(A)は交流電源の電圧波形、(B)は交流クロック信号AC_CLKの電圧波形、(C)はフォトカプラダイオードPC1LEDの電流波形を示す。
 このとき、入力端A,Bから見た停電検出回路の抵抗R(交流のインピーダンスの実数部分)は、以下の式(2)で求められる。
  R=R2+R=20000(Ω)  …(2)
 抵抗Rには各ダイオードD5,D6,D7,D8およびフォトカプラダイオードPC1LEDの動作抵抗も含まれるが、抵抗R2,Rに対して充分小さいため無視した。
 一方、入力端A,Bから見た停電検出回路の容量リアクタンスX(交流のインピーダンスの虚数部分)は、以下の式(3)で求められる。
  X=1/(2πfC)
        =1/(2×3.14×50×(0.047/2)×10―6
       =136000   …(3)
 従って、容量リアクタンスXと抵抗Rの比は、以下の式(4)で求められる。
  X/R=6.8  …(4)
 後述する表1から、容量リアクタンス1/CとインピーダンスRの比が6.8のとき、交流電源の電圧のピークと停電検出のための交流クロック信号AC_CLKの電圧波形のパルスのタイミングの位相差は約10度。図8は回路シミュレーションによって求めた波形図だが、表1の結果とほぼ一致する。
 例1は本願の停電検出回路の望ましい例である。
 (例2,比較例1~3)
 例2は、コンデンサC1,C2の容量をそれぞれ0.47uFとした以外は、例1と同様とした。その結果を図9に示す。なお、図9中の各波形は、図8と同じである。
 このときの容量リアクタンスXと抵抗Rの比は、以下の式(5)で求められる。
  X/R=0.68  …(5)
 図9に示すように交流電源の電圧のピークと停電検出のための交流クロック信号AC_CLKの電圧波形のパルスのタイミングは大きくずれる。
 比較例1は、コンデンサC1,C2の容量をそれぞれ2uFとした以外は、例1と同様とした。その結果を図10に示す。なお、図10中の各波形は、図8と同じである。
 このときの容量リアクタンスXと抵抗Rの比は、以下の式(6)で求められる。
  X/R=0.16  …(6)
 図10に示すように交流電源の電圧のピークと停電検出のための交流クロック信号AC_CLKの電圧波形のパルスのタイミングの位相差はほぼ80度。すなわち交流クロック信号AC_CLKの電圧波形のパルスのタイミングは交流電源の電圧のゼロクロスに近い。
 比較例2は、抵抗R2,R3はそれぞれ0Ω、抵抗R104は47KΩ、コンデンサC1,C2の容量をそれぞれ2uFとした以外は、実施例1と同様とした。その結果を図11に示す。なお、図11中の各波形は、図8と同じである。
 このとき入力端A,Bから見た停電検出回路の抵抗Rは、以下の式(7)で求められる。
  R=R104=47000(Ω)  …(7)
 抵抗Rには各ダイオードD5,D6,D7,D8およびフォトカプラダイオードPC1LEDの動作抵抗も含まれるが、R2、に対して充分ちいさいため無視した。
 一方、入力端A,Bから見た停電検出回路の容量リアクタンスX(交流のインピーダンスの虚数部分)は、以下の式(8)で求められる。
  X=1/(2πfC)
        =1/(2×3.14×50×(2/2)×10―6
       =3180  …(8)
 したがって、容量性リアクタンスXと抵抗Rの比は、以下の式(9)で求められる。
  X/R=0.068  …(9)
 図11に示すように交流電源の電圧のピークと停電検出のための交流クロック信号AC_CLKの電圧波形のパルスのタイミングの位相差は86度。すなわち交流クロック信号AC_CLKの電圧波形のパルスのタイミングはほぼ交流電源の電圧のゼロクロスと一致する。これは特許文献5に記載の発明と同様のタイミングである。特許文献5では比較電圧を得るために、カプラLED回路にある程度大きな電圧が必要であり、LEDに大電流が流れないように抵抗R104に相当するLED保護の電流制限抵抗が必要になる。この電流制限抵抗で電力損失が発生する。
 比較例2の状態において、停電検出のための交流クロック信号AC_CLKの電圧波形のパルスのタイミングを交流電源の電圧のピークのタイミングに合せようとして、コンデンサC1,C2の容量を小さくした例が比較例3である。
 比較例3は、抵抗R2,R3はそれぞれ0Ω、抵抗R104は47KΩ、コンデンサC2は外してコンデンサC1の容量を0.015uFとした以外は、実施例1と同様とした。その結果を図12に示す。なお、図12中の各波形は、図8と同じである。
 容量リアクタンスXと抵抗Rの比は、以下の式(10)で求められる。
  X/R=4.5  …(10)
 すなわち、停電検出のための交流クロック信号AC_CLKの電圧波形のパルスのタイミングと交流電源の電圧のピークのタイミングの位相差は10度強となる。しかし、このようにコンデンサC1,C2の容量を小さくするとLED電流が不足し、停電検出の誤動作を生じ、停電検出精度の低下を招く。図12の(C)に示すように、フォトカプラダイオードPC1LEDの電流波形のピークは0.5V以下となり、(B)に示す交流クロック信号AC_CLKの電圧波形もパルス状ではなくなる。
 従って、比較例2、および特許文献5に記載の発明において、停電検出のための交流クロック信号AC_CLKの電圧波形のパルスのタイミングを交流電源の電圧のピークのタイミングに合せることは困難である。
 入力端子側から見た容量性リアクタンス(1/2πfC)と入力端子側から見た抵抗Rの比と、交流電源の電圧波形のゼロクロスと停電検出タイミングの位相差(度)を表1に示す。この位相差が90度のとき、停電検出タイミングは交流電源の電圧波形のピークタイミングと一致する。電源の整流タイミングは一般にこのピークタイミングが中心のため、位相差90度のタミングが理想である。停電検出、あるいは交流電源の瞬断後の復帰の検出を速やかに行うことができる。このような停電検出を速やかに行うことができるということは、電源装置の整流直流供給電圧の低下を抑え、正常な電源装置動作を行なわせるために必要な整流コンデンサの容量も小さくて済むことになる。
 また、表1から分るように、容量リアクタンスと抵抗の比、すなわち電源装置の入力端子側から見たインピーダンスの虚数部分と実数部分の比が3以上になると位相差の変化は緩やかになる。さらに容量性リアクタンスと抵抗の比が6以上になると位相差の変化はきわめて緩やかになる。すなわち電源の電圧波形のピークタイミングからの位相ずれが20度以内、望ましくは10度以内の範囲で停電検出を行うことにより、停電検出を速やかに行うことができる。
Figure JPOXMLDOC01-appb-T000001
 本発明は、電気機器に用いられ、供給される交流電源の停電をフォトカプラを用いて検出する停電検出回路に利用できる。

Claims (9)

  1.  フォトカプラを用い交流電源の停電を検出する停電検出回路であって、
     前記交流電源が供給される入力端子間に設けられコンデンサおよび前記フォトカプラの発光ダイオードが直列に接続された直列回路と、
     前記フォトカプラのフォトトランジスタから出力されるパルス信号に基づいて前記交流電源の供給が遮断されたことを判別して停電した旨の信号を出力する停電判別手段と、を具備し、
     前記パルス信号は前記交流電源の電圧波形のピークに同期する
     ことを特徴とした停電検出回路。
  2.  請求項1に記載の停電検出回路であって、
     前記入力端子側から見た容量リアクタンスは前記入力端子側から見た抵抗の3倍以上となる条件に設定された
     ことを特徴とした停電検出回路。
  3.  請求項2に記載の停電検出回路であって、
     前記入力端子側から見た容量リアクタンスは前記入力端子側から見た抵抗の6倍以上となる条件に設定された
     ことを特徴とした停電検出回路。
  4.  請求項1から請求項3までのいずれか一項に記載の停電検出回路であって、
     前記コンデンサおよび前記フォトカプラの発光ダイオード間には、ブリッジダイオードが設けられた
     ことを特徴とした停電検出回路。
  5.  請求項1から請求項3までのいずれか一項に記載の停電検出回路であって、
     前記フォトカプラは、前記発光ダイオードが双方向の並列回路である
     ことを特徴とした停電検出回路。
  6.  請求項4または請求項5に記載の停電検出回路であって、
     前記発光ダイオードは、前記コンデンサを介して前記入力端子に接続された
     ことを特徴とした停電検出回路。
  7.  請求項1から請求項3までのいずれか一項に記載の停電検出回路であって、
     前記入力端子に接続されたリレー電源スイッチと、
     前記入力側に前記リレー電源スイッチが位置する状態に前記発光ダイオードに直列に接続するコンデンサとブリッジバランスに設定されたブリッジコンデンサと、
     前記ブリッジコンデンサを介して交流電源の電圧がベースに供給される対をなすトランジスタの双方向ON/OFF回路と、
     前記フォトカプラのフォトトランジスタから出力されるパルス信号に基づいて前記リレー電源スイッチの開閉状態を判別して開閉状態に関する信号を出力する開閉検出手段と、を備えた
     ことを特徴とした停電検出回路。
  8.  請求項7に記載の停電検出回路であって、
     前記ブリッジコンデンサと前記双方向ON/OFF回路との間には、逆方向のツェナーダイオードの直列回路が接続された
     ことを特徴とした停電検出回路。
  9.  請求項1から請求項8までのいずれか一項に記載の停電検出回路と、
     この停電検出回路からの前記停電した旨の信号が入力されるとこの信号が入力された時点の電気処理を保護する処理をする電気処理部と、
     を具備したことを特徴とした電気機器。
     
PCT/JP2009/056629 2008-03-31 2009-03-31 停電検出回路および電気機器 WO2009123181A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2008/056313 WO2009122490A1 (ja) 2008-03-31 2008-03-31 停電検出回路および電気機器
JPPCT/JP2008/056313 2008-03-31

Publications (1)

Publication Number Publication Date
WO2009123181A1 true WO2009123181A1 (ja) 2009-10-08

Family

ID=41134911

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2008/056313 WO2009122490A1 (ja) 2008-03-31 2008-03-31 停電検出回路および電気機器
PCT/JP2009/056629 WO2009123181A1 (ja) 2008-03-31 2009-03-31 停電検出回路および電気機器

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/056313 WO2009122490A1 (ja) 2008-03-31 2008-03-31 停電検出回路および電気機器

Country Status (1)

Country Link
WO (2) WO2009122490A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105738677A (zh) * 2014-12-07 2016-07-06 中国石油化工股份有限公司 一种电力网对地电容电流检测方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108535553B (zh) * 2018-06-25 2024-05-31 海南电网有限责任公司信息通信分公司 基于gis的电网停电可视化装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60120259A (ja) * 1983-12-05 1985-06-27 Sanken Electric Co Ltd 停電検出回路
JPH0454460A (ja) * 1990-06-25 1992-02-21 Fujitsu Denso Ltd 停電検出回路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60120259A (ja) * 1983-12-05 1985-06-27 Sanken Electric Co Ltd 停電検出回路
JPH0454460A (ja) * 1990-06-25 1992-02-21 Fujitsu Denso Ltd 停電検出回路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105738677A (zh) * 2014-12-07 2016-07-06 中国石油化工股份有限公司 一种电力网对地电容电流检测方法
CN105738677B (zh) * 2014-12-07 2018-12-21 中国石油化工股份有限公司 一种电力网对地电容电流检测方法

Also Published As

Publication number Publication date
WO2009122490A1 (ja) 2009-10-08

Similar Documents

Publication Publication Date Title
JP5579378B2 (ja) 電源装置内のバルク・キャパシタンスに必要な容量を抑えるための方法及び装置
CN106505861A (zh) 功率转换器中的输入与输出过电压保护
CN203661377U (zh) 双绕组单级原边反馈的led灯驱动电路
CN106129968A (zh) 谐振变换器及其过流保护电路和过流保护方法
CN106208759B (zh) 一种带有源功率因数校正的开关电源
US8976548B2 (en) Method and apparatus for AC-to-DC power conversion
US9112418B2 (en) Controller for a switched mode power supply having an integrated circuit with multifunction pin
CN104602390A (zh) 双绕组单级原边反馈的led灯驱动电路
KR102374725B1 (ko) 인버터 회로 및 이를 이용한 공기조화기 및 냉장고
CN201331555Y (zh) 高压变频器功率单元输入缺相检测器
CA2340473C (en) Ground fault interrupter
WO2009123181A1 (ja) 停電検出回路および電気機器
KR101984313B1 (ko) 과부하 및 쇼트 감지회로, 컨버터 보호 회로 및 방법
US6570334B2 (en) Gas-discharge lamp including a fault protection circuit
CN101958533B (zh) 用于隔离式电源供应器的电流感测电阻短路保护装置及方法
JPH0956152A (ja) スイッチングコンバータおよびその過負荷保護方法
US9913346B1 (en) Surge protection system and method for an LED driver
US20160013733A1 (en) Rectifier with indicator switch
CN103731049B (zh) 电流过零点检测电路和方法,驱动电路和方法,开关电源
US20170264186A1 (en) Inverter circuit, and air conditioner and refrigerator using the same
CN206743110U (zh) 反激式开关电源
TWI489758B (zh) 可偵測掉電與復電之電源控制器、電源供應器以及相關之控制方法
TWI625017B (zh) 低功率消耗之保護電路
CN107317489A (zh) 一种三相开关电源及其过压防护电路与过压防护方法
CN101674003B (zh) 检测零电位区间的装置及其方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09728759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09728759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP