WO2009121823A1 - Pumpenanordnung zur förderung eines fluids - Google Patents

Pumpenanordnung zur förderung eines fluids Download PDF

Info

Publication number
WO2009121823A1
WO2009121823A1 PCT/EP2009/053706 EP2009053706W WO2009121823A1 WO 2009121823 A1 WO2009121823 A1 WO 2009121823A1 EP 2009053706 W EP2009053706 W EP 2009053706W WO 2009121823 A1 WO2009121823 A1 WO 2009121823A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
fluid
crank
bearing
pressure
Prior art date
Application number
PCT/EP2009/053706
Other languages
English (en)
French (fr)
Inventor
Uwe Nigrin
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Publication of WO2009121823A1 publication Critical patent/WO2009121823A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/0265Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/04Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by special arrangement of cylinders with respect to piston-driving shaft, e.g. arranged parallel to that shaft or swash-plate type pumps
    • F02M59/06Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by special arrangement of cylinders with respect to piston-driving shaft, e.g. arranged parallel to that shaft or swash-plate type pumps with cylinders arranged radially to driving shaft, e.g. in V or star arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/10Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive
    • F02M59/102Mechanical drive, e.g. tappets or cams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0001Fuel-injection apparatus with specially arranged lubricating system, e.g. by fuel oil

Definitions

  • the invention relates to a pump arrangement for conveying a fluid.
  • Fuel injection systems of internal combustion engines have a near-engine high-pressure accumulator or a storage line from which or from the individual
  • Fuel injection valves are fed. These high-pressure accumulators are often referred to as common rail.
  • the injection systems for internal combustion engines usually have various pumps through which fuel is conveyed to be introduced into combustion chambers of the internal combustion engine.
  • the pumps should be able to provide the necessary volume flow and the required fluid pressure precisely and are exposed to mechanical loads.
  • a pump assembly for delivering a fluid includes a pump configured to deliver fluid from a fluid tank.
  • the pump arrangement comprises a further pump which is hydraulically arranged downstream of the first pump.
  • the further pump has a housing with a crank chamber.
  • a drive shaft is arranged in the crankcase.
  • the drive shaft is mounted in the crankcase by a crank bearing and another crank bearing.
  • the output side of the pump is hydraulically coupled to the crankcase to lubricate the bearing and the other bearing with the fluid.
  • the suction side of the pump is hydraulically coupled to the bearing and the further bearing in order to be able to remove the fluid from the bearing and the further bearing.
  • the crank chamber comprises an eccentric space.
  • the crank bearing and the further crank bearing can each be arranged axially adjacent to the eccentric chamber. This allows a relatively good storage of the drive shaft can be achieved in the crankcase.
  • the pressure on the fluid may be greater in the eccentric space than the pressure on the fluid on the crank bearing and the further crank bearing.
  • the pressure difference between the eccentric and the crank bearings can be brought about by the pump. This allows a relatively good lubrication of both crank bearings.
  • the pump assembly may include a throttle disposed downstream of the pump.
  • the pump assembly may further include a valve disposed downstream of the pump. With the throttle and the valve in each case the pressure differences between the eccentric and the crank bearings can be controlled. Thus, a relatively large volume flow of the fluid can be adjusted at the crank bearings and the bearing of the drive shaft can be improved.
  • the drive shaft of the further pump may have a connecting line.
  • One end of the connection line may be hydraulically coupled to the crank bearing and another end to the suction side of the pump.
  • the connection line may have an area aligned along the longitudinal direction of the drive shaft and another area that is transverse to the area. Thus, the fluid can be guided relatively easily from the crank bearing.
  • FIG. 1 shows a block diagram of a pump arrangement according to a first embodiment
  • FIG. 2 shows a schematic illustration of a pump arrangement according to a further embodiment
  • FIG. 3 shows a schematic representation of a pump arrangement according to a further embodiment.
  • FIG. 1 shows a pump 101, which is hydraulically coupled to a fluid tank 102. Downstream of the pump 101, a further pump 110 for conveying the fluid is arranged in a pressure accumulator 103.
  • the pump 101 is hydraulically coupled on the output side with a valve 105. Between the pump 101 and the further pump 110, a further valve 106 is arranged.
  • the further valve 106 is, for example, a volume flow control valve with which the fluid flow from the pump 101 into the further pump 110 is adjustable. Downstream of the pump 101 and upstream of the further valve 106, a purge line 109 branches off.
  • the pump 101 is configured to deliver fluid from the fluid tank.
  • the pump 101 and the further pump 110 may be mechanically driven by a drive shaft, which may be coupled to a motor shaft, for example an internal combustion engine.
  • a drive shaft which may be coupled to a motor shaft, for example an internal combustion engine.
  • an electrically operated pump 101 it is also possible to use an electrically operated pump 101 and thereby make the control of the delivery rate of the pump 101 independent of other components, for example, the delivery rate of the pump 101 in one embodiment is independent of the delivery rate of the other pump 110th
  • the valve 105 is, for example, a pre-pressure control valve, by which, when a predetermined fluid pressure at the outlet side of the pump 101 is exceeded, part of the fluid delivered by the pump 101 is returned to the suction side of the pump. can be led. Thereby, the pressure on the output side of the pump 101 can be limited.
  • the purge line 109 opens on the output side into the housing of the further pump 110.
  • a throttle 104 and hydraulically in series thereto a purge line valve 108 is arranged in the purge line 109.
  • the throttle 104 may limit the flow of fluid through the purge line 109.
  • the fluid flow via the purge line 109 can be released via the purge line valve 108 when a predetermined fluid pressure at the outlet side of the pump 101 is exceeded. It is necessary that fluid is not diverted via the purge line 109, as long as the pressure build-up on the suction side of the other pump 110 is not completed in order not to delay the pressure build-up on the Ansaugsei- te the other pump 110.
  • the fluid conducted via the flushing line 109 for cooling and lubricating the further pump 110 into the pump housing of the further pump 110 can be removed from the housing of the further pump 110 via a return line 111 and a further return line 112.
  • the return line 111 and the further return line 112 are hydraulically coupled to the suction side of the pump 101.
  • the further pump 110 is coupled to the fluid tank 102 by means of a further line, which in turn comprises a further valve 107.
  • the turn further valve 107 is, for example, a pressure control valve, which can be controlled depending on a predetermined fluid pressure. When a predetermined fluid pressure in the pressure accumulator 103 is exceeded, the valve can open and return a portion of the fluid delivered by the further pump 110 to the fluid tank 102.
  • the pump arrangement may comprise further elements, for example further valves or sensors.
  • To protect the pumps and the valves may be arranged at appropriate locations filter.
  • hydraulic A filter may be provided between the fluid tank 102 and the pump 101.
  • the pump 101 delivers fluid from the fluid tank 102.
  • the fluid is, for example, a fuel and the fluid tank is accordingly a fuel tank.
  • the pressure at the outlet of the pump 101 is adjusted by the valve 105.
  • the fluid passes via the volume flow control valve 106 to the other pump 110.
  • the volume flow control valve 106 provides the further pump 110 with as much fluid as is required by the pressure accumulator 103.
  • the fluid is supplied via a supply line to the pressure accumulator 103.
  • the fluid or the fuel is guided, for example, to injectors and injected by these into combustion chambers of an internal combustion engine.
  • the fluid pressure required for the accumulator 103 is set by the pressure control valve 107. If the pressure in the pressure accumulator 103 increases too much or if the pressure in the pressure accumulator is to be deliberately reduced, fluid can be discharged into the fluid tank 102 via the line by means of the pressure control valve 107.
  • pump 101 pumps fluid into the housing of the further pump 110.
  • Fluids can be determined via the throttle 104 and is also controlled via the valve 105.
  • the fluid lubricates at least two bearings of the drive shaft. One of these bearings is connected via the return line 111 to the suction side of the pump 101, the second of these bearings is connected to the further return line 112 to the suction side of the pump 101.
  • the pump 101 draws the fluid from the crank bearings of the further pump 110 via the return lines 111 and 112.
  • the flushing of the crank bearings with fluid can be controlled by the pump 101, the valve 105 and the throttle 104.
  • the lubrication of the spa or the volume flow of the fluid for lubrication of the crank bearings is therefore independent of other variables in the fluid circuit, for example, the pressure at the valve 107th
  • FIG. 2 shows a pump 201, a fluid tank 202, a valve 205 and another valve 206. Hydraulically between the other valve 206 and the pump 201 branches a purge line
  • FIG. 1 There is shown another pump 210 having a housing 211, a crank chamber 212, a drive shaft 213, a crank bearing 214, another crank bearing 215, and an eccentric 216.
  • a return line 217 and another return line 218 are hydraulically coupled to the crank chamber 212 and the pump 201.
  • the pump 201 is configured to deliver fluid from the fluid tank 202 to deliver the fluid via the valve 206 to the further pump 210.
  • the valve 206 is, for example, a volume pressure control valve for controlling the amount of fluid supplied to the other pump 210. From the other pump
  • the fluid can be led into a pressure accumulator (not shown), for example into an accumulator of a pressure accumulator
  • the further pump 210 is driven by the drive shaft 213.
  • the drive shaft is disposed in the housing 211 within the crank chamber 212. Between the housing 211 and the drive shaft 213, the crank bearings 214 and 215 are arranged. These are intended to reduce the friction between the drive shaft and the housing.
  • the crank bearings reduce heat build-up and mechanical wear.
  • the bearings 214 and 215 are arranged in the longitudinal direction of the drive shaft in each case adjacent to the eccentric space 216. In the eccentric a portion of the drive shaft is arranged, which can cause a movement of a pump piston.
  • the section of the drive wave in the eccentric has an eccentric shape. If the drive shaft is a camshaft, the cams can be arranged in the eccentric space. In the axial direction, the sequence entlag the drive shaft: Kurbellager 214, cam chamber 216, another crank bearing 215th
  • the pump 201 pumps fluid via the line 209 into the eccentric space 216.
  • the amount of fluid can be controlled via the throttle 204 as well as via the valve 205.
  • a portion of the fluid which has been pumped into the eccentric chamber 216 is sucked out of the bearing 214 via the return line 217.
  • Another part of the fluid that has been pumped into the eccentric space 216 is sucked out of the further bearing 215 via the return line 218.
  • the fluid is sucked out of the eccentric space 216 via the bearings 214 and 215 by the pump 201.
  • the return line 217 is hydraulically coupled to the bearing 214
  • the bearing 215 is hydraulically coupled to the further return line 218.
  • Both the bearing 214 and the further crank bearing 215 may be lubricated by the fluid being pumped from the pump 201 into the crank chamber 212.
  • the fluid for lubrication is extracted from the crank chamber 212 by the pump 201 via two return lines which are hydraulically coupled to the crank chamber 212 adjacent to the crank bearings 214 and 215.
  • the pump 201 causes the pressure applied to the fluid to be higher in the eccentric space 216 than at the crank bearing 214 and the further crank bearing 215.
  • the resulting pressure difference between the eccentric space 216 and the crank bearing 214 and the eccentric space 216 and the other crank bearing 215 can be controlled via the throttle 204 and the valve 205.
  • FIG. 3 shows a pump 301 and further pump 310.
  • the pump 310 comprises a housing 311, a crank space 312, a drive shaft 313, a crank bearing 314, a further crank bearing 315, an eccentric space 316 and a connecting line 317 having a first region 318 and a second region 319.
  • the pump 301 is configured to deliver fluid, for example fuel, from a tank.
  • the pump 301 provides the fluid to the further pump 310 at a certain pressure.
  • the pump 310 can apply a higher pressure to the fluid, for example for a pressure tank of a fuel injection system of an internal combustion engine.
  • the pump 301 and the further pump 310 are driven by the drive shaft 313.
  • the drive shaft is disposed within the pump housing 311 in the crank chamber 312.
  • the crank chamber 312 has the eccentric space 316, in which a protruding region of the drive shaft is arranged to drive a pump piston.
  • the drive shaft 313 is from the housing 311 via the bearings
  • the bearings are plain bearings and reduce the friction between the housing 311 and the drive shaft 313.
  • the bearing 314 is disposed in a first direction adjacent the cam chamber 316, the other bearings
  • fluid can be pumped into the eccentric space 316.
  • the fluid can be pumped out of the eccentric chamber 316 via the bearing 315 by the pump 301 from the crank chamber 312.
  • the fluid flows in the bearing 315 between the drive shaft and the housing 311.
  • the pressure in the area of the further crank bearing 315 must be lower than the pressure in the eccentric space 316. This is achieved by the pump 301, which pumps fluid into the eccentric space and sucks it out of the area of the crank bearings ,
  • the pressure at the area of the bearing 314 must be lower As the pressure in the eccentric chamber 316.
  • the fluid is sucked off via the connecting line 317 from the crank chamber 312 in the region of the bearing 314 of the pump 301.
  • One end of the connecting line 317 is hydraulically coupled to the pump 301, another end of the connecting line 317 is hydraulically coupled to the crank chamber 312 in the region of the crank bearing 314.
  • the connecting line 317 is coupled to the bearing 314 or the crank space 312 via the region 319, which is oriented transversely to the axial direction of the drive shaft 313.
  • the region 319 of the connecting line 317 is hydraulically coupled on one side of the bearing 314 to the crank chamber 312, which is opposite to the eccentric chamber 316.
  • the connecting line 317 has the region 318, which extends substantially in the axial direction within the drive shaft 313.
  • the connection line 317 is bored, for example, in the drive shaft.
  • One end of the region 318 is hydraulically coupled to the suction side of the pump 301, the other end to the region 319.
  • the connecting line 317 also has the effect of a throttle, which protects the spa bearing 314 against pressure peaks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Abstract

Eine Pumpenanordnung zur Förderung eines Fluids umfasst eine Pumpe (201) und eine hydraulisch der Pumpe (201) nachgeordnete weitere Pumpe (210). Ein Kurbellager (214) und ein weiteres Kurbellager (215) sind ausgebildet, eine Antriebswelle (213) der weiteren Pumpe (210) zu lagern. Die Ausgangsseite der Pumpe (201) ist mit der weiteren Pumpe (210) hydraulisch gekoppelt, um das Kurbellager (214) und das weitere Kurbellager (215) mit dem Fluid zu schmieren. Die Ansaugseite der Pumpe ist (201) mit dem Kurbellager (214) und dem weiteren Kurbellager (215) hydraulisch gekoppelt, um das Fluid aus dem Kurbellager (214) und dem weiteren Kurbellager (215) pumpen zu können.

Description

Beschreibung
Pumpenanordnung zur Förderung eines Fluids
Die Erfindung betrifft eine Pumpenanordnung zur Förderung eines Fluids.
Kraftstoffeinspritzsysteme von Verbrennungskraftmaschinen weisen einen motornahen Hochdruckspeicher oder eine Speicher- leitung auf, aus dem beziehungsweise aus der die einzelnen
Kraftstoffeinspritzventile gespeist werden. Diese Hochdruckspeicher werden oftmals als Common-Rail bezeichnet. Die Einspritzsysteme für Brennkraftmaschinen weisen üblicherweise verschiedene Pumpen auf, durch die Kraftstoff gefördert wird, um in Brennräume der Brennkraftmaschine eingebracht zu werden. Die Pumpen sollen den notwendigen Volumenstrom und den erforderlichen Fluiddruck präzise bereitstellen können und sind dabei mechanischen Belastungen ausgesetzt.
Es ist eine Aufgabe der Erfindung, eine Pumpenanordnung anzugeben, die einem geringen Verschleiß unterliegt.
Diese Aufgabe wird gelöst durch eine Pumpenanordnung mit den Merkmalen des Anspruchs 1.
Eine Pumpenanordnung zur Förderung eines Fluids umfasst eine Pumpe, die eingerichtet ist, Fluid aus einem Fluidtank zu fördern. Die Pumpenanordnung umfasst eine weitere Pumpe, die der ersten Pumpe hydraulisch nachgeordnet ist. Die weitere Pumpe weist ein Gehäuse mit einem Kurbelraum auf. In dem Kurbelraum ist eine Antriebswelle angeordnet. Die Antriebswelle ist in dem Kurbelraum durch ein Kurbellager und ein weiteres Kurbellager gelagert. Die Ausgangsseite der Pumpe ist mit dem Kurbelraum hydraulisch gekoppelt, um das Lager und das weite- re Lager mit dem Fluid zu schmieren. Die Ansaugseite der Pumpe ist mit dem Lager und dem weiteren Lager hydraulisch gekoppelt, um das Fluid aus dem Lager und dem weiteren Lager abführen zu können. Der Kurbelraum umfasst einen Exzenterraum. Das Kurbellager und das weitere Kurbellager können jeweils axial neben dem Exzenterraum angeordnet sein. Dadurch kann eine relativ gute Lagerung der Antriebswelle im Kurbelraum erreicht werden.
Der Druck auf das Fluid kann in dem Exzenterraum größer sein, als der Druck auf das Fluid an dem Kurbellager und dem weiteren Kurbellager. Die Druckdifferenz zwischen dem Exzenterraum und den Kurbellagern kann durch die Pumpe herbeigeführt werden. So wird eine relativ gute Schmierung beider Kurbellager ermöglicht .
Die Pumpenanordnung kann eine Drossel umfassen, die stromab- wärts der Pumpe angeordnet ist. Die Pumpenanordnung kann weiterhin ein Ventil umfassen, das stromabwärts der Pumpe angeordnet ist. Mit der Drossel und dem Ventil können jeweils die Druckdifferenzen zwischen dem Exzenterraum und den Kurbellagern gesteuert werden. So kann ein relativ großer Volumen- ström des Fluids an den Kurbellagern eingestellt werden und die Lagerung der Antriebswelle verbessert werden.
Die Antriebswelle der weiteren Pumpe kann eine Verbindungsleitung aufweisen. Ein Ende der Verbindungsleitung kann mit dem Kurbellager hydraulisch gekoppelt sein und ein weiteres Ende mit der Ansaugseite der Pumpe. Die Verbindungsleitung kann einen Bereich aufweisen, der entlang der Längsrichtung der Antriebswelle ausgerichtet ist und einen weiteren Bereich, der quer zu dem Bereich ist. So kann das Fluid relativ einfach aus dem Kurbellager geführt werden.
Weitere Merkmale, Vorteile und Weiterbildungen ergeben sich aus den nachfolgenden in Verbindung mit den Figuren 1 bis 3 erläuterten Beispielen.
Es zeigen: Figur 1 ein Blockschaltbild einer Pumpenanordnung gemäß einer ersten Ausführungsform,
Figur 2 eine schematische Darstellung einer Pumpenanordnung gemäß einer weiteren Ausführungsform,
Figur 3 eine schematische Darstellung einer Pumpenanordnung gemäß einer weiteren Ausführungsform.
Figur 1 zeigt eine Pumpe 101, die mit einem Fluidtank 102 hydraulisch gekoppelt ist. Stromabwärts der Pumpe 101 ist eine weitere Pumpe 110 zur Förderung des Fluids in einen Druckspeicher 103 angeordnet.
Die Pumpe 101 ist ausgangsseitig mit einem Ventil 105 hydraulisch gekoppelt. Zwischen der Pumpe 101 und der weiteren Pumpe 110 ist ein weiteres Ventil 106 angeordnet. Das weitere Ventil 106 ist beispielsweise ein Volumenstromsteuerventil, mit dem der Fluidfluß von der Pumpe 101 in die weitere Pumpe 110 einstellbar ist. Stromabwärts der Pumpe 101 und stromaufwärts des weiteren Ventils 106 zweigt eine Spülleitung 109 ab .
Die Pumpe 101 ist eingerichtet, Fluid aus dem Fluidtank zu fördern. Die Pumpe 101 und die weitere Pumpe 110 können mit einer Antriebswelle, die mit einer Motorwelle beispielsweise einer Brennkraftmaschine gekoppelt sein kann, mechanisch angetrieben werden. Es ist jedoch auch möglich, eine elektrisch betriebene Pumpe 101 einzusetzen und dadurch die Steuerung der Förderleistung der Pumpe 101 unabhängig von anderen Bauelementen zu machen, beispielsweise ist die Förderleistung der Pumpe 101 in einem Ausführungsbeispiel unabhängig von der Förderleistung der weiteren Pumpe 110.
Das Ventil 105 ist beispielsweise ein Vordrucksteuerventil, durch das bei Überschreiten eines vorgegebenen Fluiddrucks an der Ausgangsseite der Pumpe 101 ein Teil des von der Pumpe 101 geförderten Fluids zur Ansaugseite der Pumpe zurückge- führt werden kann. Dadurch kann der Druck an der Ausgangsseite der Pumpe 101 begrenzt werden.
Die Spülleitung 109 mündet ausgangsseitig in das Gehäuse der weiteren Pumpe 110. In der Spülleitung 109 ist eine Drossel 104 und hydraulisch in Serie hierzu ein Spülleitungsventil 108 angeordnet. Die Drossel 104 kann den Fluidstrom durch die Spülleitung 109 begrenzen. Über das Spülleitungsventil 108 kann der Fluidstrom über die Spülleitung 109 freigegeben wer- den, wenn ein vorgegebener Fluiddruck an der Ausgangsseite der Pumpe 101 überschritten wird. Es ist erforderlich, dass Fluid nicht über die Spülleitung 109 abgezweigt wird, so lange der Druckaufbau an der Ansaugseite der weiteren Pumpe 110 nicht abgeschlossen ist, um den Druckaufbau an der Ansaugsei- te der weiteren Pumpe 110 nicht zu verzögern.
Das über die Spülleitung 109 zur Kühlung und Schmierung der weiteren Pumpe 110 in das Pumpengehäuse der weiteren Pumpe 110 geführte Fluid kann über eine Rückführleitung 111 und ei- ne weitere Rückführleitung 112 aus dem Gehäuse der weiteren Pumpe 110 abgeführt werden. Die Rückführleitung 111 und die weitere Rückführleitung 112 sind hydraulisch mit der Ansaugseite der Pumpe 101 gekoppelt.
Die weitere Pumpe 110 ist mittels einer weiteren Leitung, die ein wiederum weiteres Ventil 107 umfasst, mit dem Fluidtank 102 gekoppelt. Das wiederum weitere Ventil 107 ist beispielsweise ein Drucksteuerventil, das abhängig von einem vorgegebenen Fluiddruck gesteuert werden kann. Bei Überschreiten ei- nes vorgegebenen Fluiddrucks in dem Druckspeicher 103 kann das Ventil öffnen und einen Teil des von der weiteren Pumpe 110 geförderten Fluids in den Fluidtank 102 zurückführen.
Die Pumpenanordung kann weitere Elemente umfassen, beispiels- weise weitere Ventile oder Sensoren. Zum Schutz der Pumpen und der Ventile können an geeigneten Stellen Filter angeordnet sein. Zum Beispiel kann zum Schutz der Pumpe 101 hydrau- lisch zwischen dem Fluidtank 102 und der Pumpe 101 ein Filter vorgesehen sein.
Die Pumpe 101 fördert Fluid aus dem Fluidtank 102. Das Fluid ist beispielsweise ein Kraftstoff und der Fluidtank dementsprechend ein Kraftstofftank. Der Druck am Ausgang der Pumpe 101 wird durch das Ventil 105 eingestellt. Das Fluid gelangt über das Volumenstromsteuerventil 106 zur weiteren Pumpe 110. Durch das Volumenstromsteuerventil 106 wird der weiteren Pum- pe 110 so viel Fluid zur Verfügung gestellt, wie vom Druckspeicher 103 benötigt wird. Durch die weitere Pumpe 110 wird das Fluid über eine Zuleitung an den Druckspeicher 103 geliefert. Von dem Druckspeicher wird das Fluid beziehungsweise der Kraftstoff beispielsweise an Injektoren geführt und von diesen in Brennräume einer Brennkraftmaschine eingespritzt. Der für den Druckspeicher 103 erforderliche Fluiddruck wird durch das Drucksteuerventil 107 festgelegt. Steigt der Druck im Druckspeicher 103 zu stark an oder soll der Druck im Druckspeicher gezielt verringert werden, kann mittels des Drucksteuerventils 107 über die Leitung Fluid in den Fluidtank 102 abgelassen werden.
Über die Spülleitung 109 wird von der Pumpe 101 Fluid in das Gehäuse der weiteren Pumpe 110 gepumpt. Die Menge beziehungs- wiese der Volumenstrom und/oder der Druck des zugeführten
Fluids kann über die Drossel 104 bestimmt werden und wird zudem über das Ventil 105 gesteuert. Das Fluid, das über die Spülleitung 109 in die weitere Pumpe geführt wurde, schmiert in der weiteren Pumpe 110 Kurbellager einer Antriebswelle der weiteren Pumpe. Das Fluid schmiert mindestens zwei Lager der Antriebswelle. Eines dieser Lager ist über die Rückführleitung 111 mit der Ansaugseite der Pumpe 101 verbunden, das zweite dieser Lager ist mit der weiteren Rückführleitung 112 mit der Ansaugseite der Pumpe 101 verbunden. Die Pumpe 101 saugt über die Rückführleitungen 111 und 112 das Fluid aus den Kurbellagern der weiteren Pumpe 110. Die Spülung der Kurbellager mit Fluid kann durch die Pumpe 101, dem Ventil 105 und der Drossel 104 gesteuert werden. Die Schmierung der Kur- beilager beziehungsweise der Volumenstrom des Fluids zur Schmierung der Kurbellager ist daher unabhängig von anderen Größen im Fluidkreislauf, beispielsweise dem Druck am Ventil 107.
Figur 2 zeigt eine Pumpe 201, einen Fluidtank 202, ein Ventil 205 und ein weiteres Ventil 206. Hydraulisch zwischen dem weiteren Ventil 206 und der Pumpe 201 zweigt eine Spülleitung
209 ab. Diese weist eine Drossel 205 und ein Spülleitungsven- til 208 auf.
Es ist eine weitere Pumpe 210 gezeigt, die ein Gehäuse 211, einen Kurbelraum 212, eine Antriebswelle 213, ein Kurbellager 214, ein weiteres Kurbellager 215 und einen Exzenterraum 216 aufweist. Eine Rückführleitung 217 und eine weitere Rückführleitung 218 sind mit dem Kurbelraum 212 und der Pumpe 201 hydraulisch gekoppelt.
Die Pumpe 201 ist eingerichtet, Fluid aus dem Fluidtank 202 zu fördern, um das Fluid über das Ventil 206 an die weitere Pumpe 210 zu fördern. Das Ventil 206 ist beispielsweise ein Volumendrucksteuerventil zur Steuerung der Fluidmenge, die an die weitere Pumpe 210 geliefert wird. Von der weiteren Pumpe
210 kann das Fluid in einen nicht gezeigten Druckspeicher ge- führt werden, beispielsweise in einen Druckspeicher einer
Einspritzanlage einer Brennkraftmaschine.
Die weitere Pumpe 210 wird von der Antriebswelle 213 angetrieben. Die Antriebswelle ist in dem Gehäuse 211 innerhalb des Kurbelraums 212 angeordnet. Zwischen dem Gehäuse 211 und der Antriebswelle 213 sind die Kurbellager 214 und 215 angeordnet. Diese sollen die Reibung zwischen der Antriebswelle und dem Gehäuse verringern. Die Kurbellager verringern eine Wärmebildung und den mechanische Verschleiß. Die Lager 214 und 215 sind in Längsrichtung der Antriebswelle jeweils neben dem Exzenterraum 216 angeordnet. In dem Exzenterraum ist ein Abschnitt der Antriebswelle angeordnet, der eine Bewegung eines Pumpenkolbens bewirken kann. Der Abschnitt der Antriebs- welle in dem Exzenterraum weist eine exzenterförmige Ausformung auf. Wenn die Antriebswelle eine Nockenwelle ist, können die Nocken in dem Exzenterraum angeordnet sein. In axialer Richtung ist die Reihenfolge entlag der Antriebswelle: Kur- bellager 214, Exzenterraum 216, weiteres Kurbellager 215.
Von der Pumpe 201 wird Fluid über die Leitung 209 in den Exzenterraum 216 gepumpt. Die Menge des Fluids kann über die Drossel 204 sowie über das Ventil 205 gesteuert werden. Ein Teil des Fluid, das in den Exzenterraum 216 gepumpt wurde, wird über die Rückführleitung 217 aus dem Lager 214 abgesaugt. Ein weiterer Teil des Fluids, das in den Exzenterraum 216 gepumpt wurde, wird aus dem weiteren Lager 215 über die Rückführleitung 218 abgesaugt. Das Fluid wird aus dem Exzen- terraum 216 über die Lager 214 und 215 von der Pumpe 201 abgesaugt. Die Rückführleitung 217 ist mit dem Lager 214 hydraulisch gekoppelt, das Lager 215 ist mit der weiteren Rückführleitung 218 hydraulisch gekoppelt. Sowohl das Lager 214 als auch das weitere Kurbellager 215 können von dem Fluid, das von der Pumpe 201 in den Kurbelraum 212 gepumpt wird, geschmiert werden. Das Fluid zur Schmierung wird über zwei Rückführleitungen, die benachbart zu den Kurbellagern 214 und 215 hydraulisch mit dem Kurbelraum 212 gekoppelt sind, von der Pumpe 201 aus dem Kurbelraum 212 abgesaugt.
Durch die Pumpe 201 wird erwirkt, dass der Druck, mit dem das Fluid beaufschlagt ist, in dem Exzenterraum 216 höher ist als als an dem Kurbellager 214 und dem weiteren Kurbellager 215. Die resultierende Druckdifferenz zwischen dem Exzenterraum 216 und dem Kurbellager 214 sowie dem Exzenterraum 216 und dem weiteren Kurbellager 215 kann über die Drossel 204 und über das Ventil 205 gesteuert werden.
Figur 3 zeigt eine Pumpe 301 und weitere Pumpe 310. Die Pumpe 310 umfasst ein Gehäuse 311, einen Kurbelraum 312, eine Antriebswelle 313, ein Kurbellager 314, ein weiteres Kurbellager 315, einen Exzenterraum 316 und eine Verbindungsleitung 317, die einen ersten Bereich 318 sowie einen zweiten Bereich 319 aufweist.
Die Pumpe 301 ist eingerichtet, Fluid, beispielsweise Kraft- Stoff, aus einem Tank zu fördern. Die Pumpe 301 stellt das Fluid der weiteren Pumpe 310 mit einem bestimmten Druck zu Verfügung. Die Pumpe 310 kann das Fluid mit einem höheren Druck beaufschlagen, beispielsweise für einen Drucktank einer Kraftstoffeinspritzanlage einer Brennkraftmaschine. Im ge- zeigten Ausführungsbeispiel werden die Pumpe 301 und die weitere Pumpe 310 von der Antriebswelle 313 angetrieben.
Die Antriebswelle ist innerhalb des Pumpengehäuses 311 in dem Kurbelraum 312 angeordnet. Der Kurbelraum 312 weist den Ex- zenterraum 316 auf, in dem ein vorspringender Bereich der Antriebswelle zum Antrieb eines Pumpenkolbens angeordnet ist. Die Antriebswelle 313 ist von dem Gehäuse 311 über die Lager
314 und 315 entkoppelt. Die Lager sind beispielsweise Gleitlager und reduzieren die Reibung zwischen dem Gehäuse 311 und der Antriebswelle 313. Das Lager 314 ist in eine erste Richtung neben dem Exzenterraum 316 angeordnet, das weitere Lager
315 ist in einer zweiten Richtung, die der ersten Richtung entgegen gerichtet ist, neben dem Exzenterraum 316 angeordnet .
Von der Pumpe 301 kann Fluid in den Exzenterraum 316 gepumpt werden. Das Fluid kann aus dem Exzenterraum 316 über das Lager 315 von der Pumpe 301 aus dem Kurbelraum 312 abgepumpt werden. Das Fluid fließt dabei in dem Lager 315 zwischen der Antriebswelle und dem Gehäuse 311. Um aus dem Exzenterraum
316 Fluid an das Lager 315 zu führen, muss der Druck im Bereich des weiteren Kurbellagers 315 niedriger sein als der Druck im Exzenterraum 316. Dies wird durch die Pumpe 301 erreicht, die Fluid in den Exzentrraum pumpt und aus dem Be- reich der Kurbellager absaugt.
Um aus dem Exzenterraum 316 Fluid an das Lager 314 zu führen, muss der Druck an dem Bereich des Lagers 314 niedriger sein als der Druck im Exzenterraum 316. Das Fluid wird über die Verbindungsleitung 317 aus dem Kurbelraum 312 im Bereich des Lagers 314 von der Pumpe 301 abgesaugt. Ein Ende der Verbindungsleitung 317 ist mit der Pumpe 301 hydraulisch gekoppelt, ein weiteres Ende der Verbindungsleitung 317 ist mit dem Kurbelraum 312 im Bereich des Kurbellagers 314 hydraulisch gekoppelt .
Die Verbindungsleitung 317 ist über den Bereich 319, der quer zur axialen Richtung der Antriebswelle 313 ausgerichtet ist, mit dem Lager 314 beziehungsweise dem Kurbelraum 312 gekoppelt. Der Bereich 319 der Verbindungsleitung 317 ist an einer Seite des Lagers 314 mit dem Kurbelraum 312 hydraulisch gekoppelt, die dem Exzenterraum 316 entgegengesetzt ist. Da- durch wird das Fluid aus dem Exzenterraum 316 durch das Lager 314 geführt. Die Verbindungsleitung 317 weist den Bereich 318 auf, der im Wesentlichen in axialer Richtung innerhalb der Antriebswelle 313 verläuft. Die Verbindungsleitung 317 ist beispielsweise in die Antriebswelle gebohrt. Ein Ende des Be- reichs 318 ist mit der Ansaugseite der Pumpe 301 hydraulisch gekoppelt, das andere Ende mit dem Bereich 319. So kann die Pumpe 301 über die Verbindungsleitung 317 Fluid aus dem Exzenterraum 316 durch das Lager 314 pumpen. Die Verbindungsleitung 317 hat zudem die Wirkung einer Drossel, die das Kur- beilager 314 gegenüber Druckspitzen schützt.
Bezugszeichen
101 Pumpe
102 Fluidtank 103 Druckspeicher
104 Drossel
105 Ventil
106 Ventil II
107 Ventil III 108 Spülleitungsventil
109 Spülleitung
110 weitere Pumpe
111 Rückführleitung I
112 Rückführleitung II
201 Pumpe
202 Fluidtank
204 Drossel
205 Ventil 206 Ventil II
208 Spülleitungsventil
209 Spülleitung
210 weitere Pumpe
211 Gehäuse 212 Kurbelraum
213 Antriebswelle
214 Kurbellager
215 weiteres Kurbellager
216 Exzenterraum 217 Rückführleitung I
218 Rückführleitung II
301 Pumpe
310 weitere Pumpe 311 Gehäuse
312 Kurbelraum
313 Antriebswelle
314 Kurbellager
315 weiteres Kurbellager
316 Exzenterraum
317 Verbindungsleitung
318 Bereich I
31 9 Bereich I I

Claims

Patentansprüche
1. Pumpenanordnung zur Förderung eines Fluids, umfassend:
- eine Pumpe (101; 201) zur Förderung des Fluids aus ei- nem Fluidtank (102),
- eine hydraulisch der Pumpe (101) nachgeordnete weitere Pumpe (110; 210), die aufweist:
- ein Gehäuse (211) mit einem Kurbelraum (212),
- eine in dem Kurbelraum (212) angeordnete Antriebs- welle (213),
- ein Kurbellager (214), das zur Lagerung der Antriebswelle (113) im Kurbelraum (212) ausgebildet ist,
- ein weiteres Kurbellager (215) , das zur Lagerung der Antriebswelle (213) im Kurbelraum (212) ausgebildet ist, wobei die Ausgangsseite der Pumpe (201) mit dem Kurbelraum (212) hydraulisch gekoppelt ist, um das Kurbellager (214) und das weitere Kurbellager (215) mit dem Fluid zu schmieren, und die Ansaugseite der Pumpe (201) mit dem Kurbellager (214) und dem weiteren Kurbellager (215) hydraulisch gekoppelt ist, um das Fluid aus dem Kurbellager (214) und dem weiteren Kurbellager (215) abzuführen.
2. Pumpenanordnung nach Anspruch 1, bei der der Kurbelraum einen Exzenterraum (216) umfasst und das Kurbellager
(214) und das weitere Kurbellager (215) jeweils axial neben dem Exzenterraum (216) angeordnet sind.
3. Pumpenanordnung nach Anspruch 2, bei der in Betrieb der Druck auf das Fluid im Exzenterraum (216) größer ist als der Druck auf das Fluid an dem Kurbellager (214) und der Druck auf das Fluid an dem weiteren Kurbellager (215) .
4. Pumpenanordnung nach Anspruch 3, bei der die Druckdiffe- renzen zwischen dem Exzenterraum (216) und den Kurbellagern (214; 215) durch die Pumpe (201) herbeigeführt sind.
5. Pumpenanordnung nach Anspruch 3 oder 4, umfassend eine Drossel (104), die stromabwärts der Pumpe (101) angeordnet ist und mit der die Druckdifferenzen zwischen dem Exzenterraum (216) und den Kurbellagern (214; 215) steuer- bar sind.
6. Pumpenanordnung nach einem der Ansprüche 3 bis 5, umfassend ein Ventil (105), das stromabwärts der Pumpe (101) angeordnet ist und mit dem die Druckdifferenzen zwischen dem Exzenterraum (216) und den Kurbellagern (214; 215) steuerbar sind.
7. Pumpenanordnung nach einem der Ansprüche 1 bis 6, bei der die Antriebswelle (313) der weiteren Pumpe (310) eine Verbindungsleitung (317) aufweist und ein Ende der Verbindungsleitung mit dem Kurbellager (314) hydraulisch gekoppelt ist und ein weiteres Ende mit der Ansaugseite der Pumpe (301) hydraulisch gekoppelt ist.
8. Pumpenanordnung nach Anspruch 7, bei der die Verbindungsleitung (317) einen Bereich (318) aufweist, der entlang der Längsrichtung der Antriebswelle ausgerichtet ist, und einen weiteren Bereich (319), der quer zu dem Bereich (318) ist.
9. Pumpenanordnung nach einem der Ansprüche 1 bis 8, bei der die weitere Pumpe (110) eingerichtet ist, das Fluid in einen Druckspeicher (103) zu fördern.
PCT/EP2009/053706 2008-04-04 2009-03-30 Pumpenanordnung zur förderung eines fluids WO2009121823A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008017222.7 2008-04-04
DE200810017222 DE102008017222A1 (de) 2008-04-04 2008-04-04 Pumpenanordnung zur Förderung eines Fluids

Publications (1)

Publication Number Publication Date
WO2009121823A1 true WO2009121823A1 (de) 2009-10-08

Family

ID=40863401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/053706 WO2009121823A1 (de) 2008-04-04 2009-03-30 Pumpenanordnung zur förderung eines fluids

Country Status (2)

Country Link
DE (1) DE102008017222A1 (de)
WO (1) WO2009121823A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9133804B2 (en) 2009-12-22 2015-09-15 Robert Bosch Gmbh System for feeding fuel from a tank to an internal combustion engine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012212153A1 (de) * 2012-07-11 2014-01-16 Robert Bosch Gmbh Hochdruckpumpe
ITUA20162000A1 (it) * 2016-03-24 2017-09-24 Bosch Gmbh Robert Gruppo di pompaggio per alimentare combustibile, preferibilmente gasolio, ad un motore a combustione interna

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992016738A1 (de) * 1991-03-22 1992-10-01 Robert Bosch Gmbh Kraftstoffeinspritzpumpe
DE19933569A1 (de) * 1999-07-16 2001-01-25 Siemens Ag Einspritzsystem für eine Brennkraftmaschine
EP1519031A1 (de) * 2000-10-03 2005-03-30 C.R.F. Società Consortile per Azioni Vorrichtung zur Regelung des Durchflusses einer Hochdruckpumpe in einem Common-rail Kraftstoffeinspritzsystem einer Brennkraftmaschine
DE102005050613A1 (de) * 2004-10-22 2006-04-27 Denso Corp., Kariya Kraftstoffeinspritzpumpe mit einer Öldichtung
EP1767771A1 (de) * 2005-09-22 2007-03-28 Denso Corporation Hochdruck-Kraftstoffförderpumpe
EP1767772A1 (de) * 2005-09-27 2007-03-28 Delphi Technologies, Inc. Kraftstoffeinspritzpumpevorrichtung
DE102006018702A1 (de) * 2006-04-21 2007-10-25 Robert Bosch Gmbh Kraftstoff-Hochdruck-Fördereinrichtung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992016738A1 (de) * 1991-03-22 1992-10-01 Robert Bosch Gmbh Kraftstoffeinspritzpumpe
DE19933569A1 (de) * 1999-07-16 2001-01-25 Siemens Ag Einspritzsystem für eine Brennkraftmaschine
EP1519031A1 (de) * 2000-10-03 2005-03-30 C.R.F. Società Consortile per Azioni Vorrichtung zur Regelung des Durchflusses einer Hochdruckpumpe in einem Common-rail Kraftstoffeinspritzsystem einer Brennkraftmaschine
DE102005050613A1 (de) * 2004-10-22 2006-04-27 Denso Corp., Kariya Kraftstoffeinspritzpumpe mit einer Öldichtung
EP1767771A1 (de) * 2005-09-22 2007-03-28 Denso Corporation Hochdruck-Kraftstoffförderpumpe
EP1767772A1 (de) * 2005-09-27 2007-03-28 Delphi Technologies, Inc. Kraftstoffeinspritzpumpevorrichtung
DE102006018702A1 (de) * 2006-04-21 2007-10-25 Robert Bosch Gmbh Kraftstoff-Hochdruck-Fördereinrichtung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9133804B2 (en) 2009-12-22 2015-09-15 Robert Bosch Gmbh System for feeding fuel from a tank to an internal combustion engine

Also Published As

Publication number Publication date
DE102008017222A1 (de) 2009-10-08

Similar Documents

Publication Publication Date Title
DE102007000855B4 (de) Kraftstofffördergerät und Speicherkraftstoffeinspritzsystem, das dieses aufweist
EP1306548B1 (de) Kraftstoffeinspritzanlage mit verbesserter Fördermengenregelung
DE602004003628T2 (de) Druckspeichereinspritzsystem
EP2591225B1 (de) Kraftstoffsystem für eine brennkraftmaschine
DE102005027851A1 (de) Kraftstoffeinspritzsystem für eine Brennkraftmaschine
EP2449245B1 (de) Kraftstoffsystem für eine brennkraftmaschine
EP1296060B1 (de) Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
DE102006027486A1 (de) Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
EP2640958B1 (de) Niederdruckkreislauf für ein kraftstoffeinspritzsystem sowie kraftstoffeinspritzsystem
WO2013037545A1 (de) Kraftstoffhochdruckpumpe für ein kraftstoffeinspritzsystem sowie pumpenanordnung
EP1911964B1 (de) Kraftstoffhochdruckpumpe und Kraftstoffeinspritzsystem für eine Brennkraftmaschine
DE102006013165A1 (de) Kraftstoffhochdruckpumpe und Kraftstoffeinspritzsystem für eine Brennkraftmaschine
WO2010012525A1 (de) Kraftstoff-fördereinrichtung für eine brennkraftmaschine
WO2009121823A1 (de) Pumpenanordnung zur förderung eines fluids
WO2013037538A1 (de) Niederdruckkreislauf für ein kraftstoffeinspritzsystem sowie kraftstoffeinspritzsystem
DE10261780A1 (de) Niederdruckkreislauf für ein Speichereinspritzsystem
DE102009037407A1 (de) Hochdruckpumpe und Einspritzanlage für eine Brennkraftmaschine
WO2014009056A1 (de) Niederdruckkreislauf für ein kraftstoffeinspritzsystem, kraftstoffeinspritzsystem sowie verfahren zum betreiben eines kraftstoffeinspritzsystems
DE102008058288A1 (de) Druckbegrenzungsventil und Hochdruckpumpe mit einem Druckbegrenzungsventil
DE102006060754A1 (de) Einspritzanlage für eine Brennkraftmaschine
DE102014201597A1 (de) Kraftstoffleitung für einen Niederdruckkreis eines Kraftstoffeinspritzsystems, Niederdruckkreis sowie Kraftstoffeinspritzsystem
DE102005059830B3 (de) Einspritzanlage für eine Brennkraftmaschine
DE102011008362A1 (de) Zweistufige Druckregelung
DE102009009837B4 (de) Einspritzanlage
DE102008051931A1 (de) Einspritzanlage für eine Brennkraftmaschine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09727841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09727841

Country of ref document: EP

Kind code of ref document: A1