WO2009119570A1 - ラインパイプ用uoe鋼管及びその製造方法 - Google Patents

ラインパイプ用uoe鋼管及びその製造方法 Download PDF

Info

Publication number
WO2009119570A1
WO2009119570A1 PCT/JP2009/055803 JP2009055803W WO2009119570A1 WO 2009119570 A1 WO2009119570 A1 WO 2009119570A1 JP 2009055803 W JP2009055803 W JP 2009055803W WO 2009119570 A1 WO2009119570 A1 WO 2009119570A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
uoe steel
steel pipe
uoe
stress
Prior art date
Application number
PCT/JP2009/055803
Other languages
English (en)
French (fr)
Inventor
出 湊
伸彰 高橋
昭夫 山本
Original Assignee
住友金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属工業株式会社 filed Critical 住友金属工業株式会社
Publication of WO2009119570A1 publication Critical patent/WO2009119570A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • B21C37/0815Making tubes with welded or soldered seams without continuous longitudinal movement of the sheet during the bending operation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/10Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars
    • C21D7/12Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars by expanding tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • This invention relates to the UOE steel pipe for line pipes, and its manufacturing method.
  • the present invention is a line pipe of X70 grade or more (pipe axis direction strength of 485 MPa or more) excellent in earthquake resistance, which is designed by a strain-based design and is used in cold regions such as Canada.
  • the present invention relates to a UOE steel pipe for use and a manufacturing method thereof.
  • UOE steel pipes composing line pipes laid in cold regions such as Canada are deformed by tensile stress acting in the axial direction as frozen soil (ground) repeatedly expands and contracts due to seasonal temperature fluctuations. There is concern. In particular, it is absolutely necessary to prevent major accidents from occurring due to the destruction of long-distance pipelines that transport natural gas and oil. For this reason, in order to apply a high-strength UOE steel pipe to a pipeline, the high-strength UOE steel pipe needs to have higher fracture safety than a conventional strength UOE steel pipe.
  • the high-strength UOE steel pipe that constitutes a line pipe used particularly in cold regions is excellent not only in strength but also in earthquake resistance evaluated by deformability (for example, yield ratio and uniform elongation) against fracture deformation. Is required.
  • a high-strength UOE steel pipe for a line pipe used in a cold region is designed based on stress design that emphasizes not only strength but also yield ratio and uniform elongation, for example.
  • Patent Document 1 and Patent Document 2 as a steel pipe excellent in earthquake resistance
  • Patent Document 3 as a method of manufacturing a line pipe having high strength, high toughness and excellent earthquake resistance
  • both UOE steel pipes are used. It is disclosed that having a round-shaped stress-strain curve with no yield point improves seismic resistance.
  • Patent Document 4 discloses that a steel pipe excellent in earthquake resistance is manufactured on a trial basis by cooling after rolling. JP-A-9-196243 Japanese Patent Laid-Open No. 11-80900 Japanese Patent Laid-Open No. 9-202922 JP 2004-131810 A
  • all pipeline UOE steel pipes are typically 150 ° C or higher and 250 ° C or lower by high-frequency heating, for example, at the site where they are laid, in order to prevent damage during construction and external corrosion during operation.
  • An external coating is applied with a heat treatment that is held at temperature for about 5 minutes (referred to herein as “pre-coating heat-treatment”).
  • the shape of the stress-strain curve of a UOE steel pipe after pipe making is always Round House type because many cold strains are imparted to the UOE steel pipe. Therefore, in order to improve the earthquake resistance of the UOE steel pipe, the stress-strain curve after the pre-coating heat treatment can maintain the Round House type stress-strain curve without changing to the Yield Point type having the upper yield point. At the same time, a low yield ratio can be achieved.
  • the inventors of the present invention among various factors that affect the earthquake resistance of high-strength UOE steel pipes (UOE steel pipe dimensions, yield ratio, uniform elongation, and stress-strain curve shape, etc.)
  • the present inventors have intensively studied means for maintaining the Round House type in which the shape of the stress-strain curve after the heat treatment does not have an upper yield point.
  • the inventors have (A) Controlling the content ratio (Ti / N) of each of Ti and N in the UOE steel pipe to an appropriate value, and (b) accelerating after rolling is completed in the production stage of the rolled steel sheet as the base material By reducing the free N that fixes dislocations by cooling, and manufacturing the UOE steel pipe by the UOE pipe manufacturing method using this rolled steel sheet as a raw material, the stress of the Round House type shape even after the pre-coating heat treatment is performed. -The inventors have found that high strength UOE steel pipes with strain curves can be produced and have completed the present invention.
  • C 0.03% or more and 0.10% or less (unless otherwise specified, “%” in terms of composition means “mass%”), Si: 0.05% or more and 0 50% or less, Mn: 1.50% or more and 2.2% or less, P: 0.025% or less, S: 0.002% or less, Cu: 1.0% or less, Cr: 1.0% or less, Ni: 2.0% or less, Mo: 1.0% or less, Nb: 0.1% or less, V: 0.1% or less, Ti: 0.025% or less, Al: 0.06% or less, N: 0.0050% or less, Ca: 0.0050% or less, and ratio of Ti and N content (Ti / N): 4.0 or more, having a steel composition composed of the balance Fe and impurities. More desirably, the circumferential strength is 550 MPa or more, X70 grade or more (pipe axis direction strength 485MPa or more) UOE steel pipe for line pipe.
  • the present invention provides C: 0.03% to 0.10%, Si: 0.05% to 0.50%, Mn: 1.50% to 2.2%, P : 0.025% or less, S: 0.002% or less, Cu: 1.0% or less, Cr: 1.0% or less, Ni: 2.0% or less, Mo: 1.0% or less, Nb: 0 0.1% or less, V: 0.1% or less, Ti: 0.025% or less, Al: 0.06% or less, N: 0.0050% or less, Ca: 0.0050% or less, and Ti The ratio of Ti and N content (Ti / N): 4.0 or more, and immediately after rolling at a finishing temperature of 700 ° C. or higher and 850 ° C.
  • the content ratio (Ti / N) of each of Ti and N in the UOE steel pipe is set to an appropriate range, and accelerated cooling is performed after the hot rolling of the rolled steel sheet that is the material of the UOE steel pipe is finished.
  • free N for fixing dislocations can be reduced, and a metal structure composed of ferrite and bainite or a metal structure composed of ferrite, bainite, and martensite can be desirably formed.
  • the stress-strain curve of the Round House type shape can be maintained even after the pre-coating heat treatment while reducing the yield ratio of the UOE steel pipe. It is possible to provide a high-strength UOE steel pipe for line pipe.
  • C 0.03% to 0.10%
  • C is an element effective for increasing the strength, and is contained in an amount of 0.03% or more in order to have strength of X70 grade or higher, particularly X100 grade.
  • C content if the C content exceeds 0.10%, the toughness is significantly lowered, which adversely affects the mechanical properties of the base material and promotes the occurrence of surface scratches on the slab. For this reason, C content shall be 0.03% or more and 0.10% or less.
  • Si 0.05% to 0.50%
  • Si acts as a deoxidizer and as a component for strengthening steel.
  • the Si content is limited to 0.05% or more and 0.50% or less.
  • the Si content is preferably determined in consideration of the balance with the plate thickness. (Mn: 1.50% or more and 2.2% or less) By containing 1.50% or more, Mn strengthens and strengthens steel. However, if the Mn content exceeds 2.2%, the toughness of the welded portion deteriorates. Therefore, the Mn content is 1.50% or more and 2.2% or less.
  • P 0.025% or less
  • P is an impurity contained in steel, and its content is preferably low. However, extreme reduction is accompanied by a corresponding increase in manufacturing costs. Therefore, the P content is 0.025% or less.
  • S 0.002% or less
  • S exceeds 0.002%, the target toughness of the base material cannot be secured. Therefore, the S content is set to 0.002% or less.
  • Cu 1.0% or less
  • Cu is desirably contained in an amount of 0.01% or more, it exerts an effect of strengthening without greatly impairing toughness due to solid solution strengthening and structural change due to the effect of increasing hardenability.
  • the Cu content exceeds 1.0%, Cu checking that is harmful to the surface defects of the slab occurs, which necessitates low-temperature heating of the slab, and increases the restrictions on the manufacturing conditions. Therefore, the Cu content is 1.0% or less.
  • Cr 1.0% or less
  • Cr like Cu and Ni, desirably contains 0.01% or more, thereby exerting an effect of strengthening without greatly impairing toughness due to solid solution strengthening and structural change due to the effect of increasing hardenability.
  • the Cr content exceeds 1.0%, the toughness of the heat-affected zone is lowered. Therefore, the Cr content is 1.0% or less.
  • Ni like Cu, desirably contains 0.01% or more, thereby exerting an effect of strengthening without greatly impairing toughness due to solid solution strengthening and structural change due to the effect of increasing hardenability. At the same time, it exerts an effect of suppressing deterioration of the toughness of the base material and the heat-affected zone after hot bending.
  • the Ni content is set to 2.0% or less.
  • Mo 1.0% or less
  • Mo is desirably contained in an amount of 0.01% or more, it is effective for increasing the strength of the base material and the welded portion.
  • the Mo content exceeds 1.0%, the circumferential weldability at the construction site and the toughness of the heat affected zone are deteriorated. Therefore, the Mo content is 1.0% or less.
  • Nb and Ti both have a great effect on the increase in strength due to precipitation strengthening and hardenability increasing effects, or on the improvement of toughness accompanying crystal grain refinement.
  • the Nb content exceeds 0.1% or the V content exceeds 0.1%, the toughness of the welded portion decreases. Therefore, the Nb content is 0.1% or less, and the V content is 0.1% or less.
  • Ti 0.025% or less
  • Al 0.06% or less
  • Al has an effect as a deoxidizing material, but is preferably contained in an amount of 0.010% or more for complete grain sizing.
  • Al content is set to 0.06% or less.
  • N 0.0050% or less
  • N forms nitrides with V, Ti, etc., and brings about an effect of improving high temperature strength.
  • N content exceeds 0.0050%, Nb, V, Ti and carbonitride are formed, and the toughness of the base material and the heat-affected zone is lowered.
  • the N content is 0.0050% or less.
  • the N content is preferably 0.0035% or less.
  • Ca is effective in controlling the form of inclusions, specifically in spheroidization, and prevents hydrogen-induced cracking and lamellar tear.
  • the Ca content is set to 0.0050% or less.
  • the Ca content is closely related to the S content, and when the S content is 0.0010% or more, it is 0.0005% or more due to the spheroidization of MnS inclusions. Is desirable.
  • the lower limit of the Ca content is not particularly required to be set. For these reasons, the Ca content is set to 0.0050% or less.
  • FIG. 1 is a graph showing changes in the stress-strain curve before and after the pre-coating heat treatment. Case 1 in FIG.
  • Case 1 is based on the conditions that the finishing temperature is 800 ° C. and the cooling rate after rolling is 20 ° C./sec.
  • 2 shows a stress-strain curve after heat treatment before coating at 200 ° C. for a UOE steel pipe made of the produced rolled steel sheet.
  • Case 2 is a rolled product manufactured under the conditions of a finishing temperature of 800 ° C. and a cooling rate of 20 ° C./sec after rolling. 2 shows a stress-strain curve of a UOE steel pipe made of a steel plate after heat treatment before coating at 270 ° C.
  • both cases 1 and 2 have Round House type stress-strain curves.
  • heat treatment before coating is performed.
  • the shape of the stress-strain curve after the heat treatment before coating in the case 2 that satisfies the conditions specified in the present invention is maintained in the Round House type while the shape of the stress-strain curve after that changes to the Yield Point type.
  • the stress after the pre-coating heat treatment is performed with particular attention to the shape of the stress-strain curve.
  • C or N which is an element that fixes dislocations, and among these, attention was focused on the ratio of Ti and N content (Ti / N).
  • FIG. 2 is a graph showing the influence of (Ti / N) on the relationship between stress and strain in a tensile test in the L direction of a test piece.
  • the slab having the steel composition described above is rolled at a cooling rate of 3 ° C./sec to 30 ° C./sec immediately after rolling at a finishing temperature of 700 ° C. or more and 850 ° C. or less according to a conventional method.
  • a rolled steel sheet is obtained.
  • the rolled steel sheet has a metal structure composed of ferrite and bainite or a metal structure composed of ferrite, bainite and martensite.
  • a UOE steel pipe is manufactured using the rolled steel plate manufactured in this way as a raw material using the well-known UOE pipe manufacturing method.
  • a rolled steel sheet which is a material, is U-pressed and formed into a U shape, further O-pressed into an O shape and formed into a cylindrical shape, and then a seam at the end. Butt and weld.
  • this is the surrounding pipe making method, and further explanation regarding the UOE pipe making method is omitted.
  • C 0.03% to 0.10%
  • Si 0.05% to 0.50%
  • Mn 1.50% to 2.2%
  • P 0.025% or less
  • S 0.002% or less
  • Cu 1.0% or less
  • Cr 1.0% or less
  • Ni 2.0% or less
  • Mo 1.0% or less
  • Nb 0.0.
  • Ti 0.025% or less
  • Al 0.06% or less
  • N 0.0050% or less
  • Ca 0.0050% or less
  • the ratio (Ti / N) is limited to an appropriate range, and accelerated cooling is performed after hot rolling of the rolled steel sheet that is the material of the UOE steel pipe, thereby reducing free N and desirably
  • a metal structure consisting of ferrite and bainite or a metal structure consisting of ferrite, bainite and martensite the shape of the stress-strain curve of the UOE steel pipe can be maintained in the Round House type even after heat treatment before coating.
  • the yield ratio YR of the UOE steel pipe can be suppressed to 90% or less, desirably 85% or less. In this way, it is possible to provide a UOE steel pipe for line pipes of X70 grade or higher that is excellent in earthquake resistance.
  • the UOE steel pipe constituting the laid line pipe may be deformed by the tensile stress acting in the axial direction due to repeated expansion and contraction of frozen soil (ground) due to seasonal temperature fluctuations.
  • the earthquake resistance which is a deformability against fracture deformation, is extremely desirable.
  • the tensile test pieces 1 to 7 cut out from these UOE steel pipes were subjected to a heat treatment simulating a pre-coating heat treatment held at 250 ° C. for 5 minutes, and then subjected to a tensile test.
  • the chemical compositions and metal structures of the tensile test pieces 1 to 7 are shown in Table 1, and the rolling finishing temperature and cooling rate of the rolled steel sheet as the material, the mechanical properties of the tensile test pieces 1 to 7 (tensile strength TS, yield strength YS). , Yield ratio YR) and toughness (Charpy impact test absorbed energy vE-10 (° C.)) are shown in Table 2.
  • the shape of the stress-strain curve in the tensile test is shown in graphs in FIGS. 3 (a) to 3 (g).
  • the shape of the stress-strain curve is classified into two types (I) and (II) as shown below, and is important for evaluating the quality of earthquake resistance.
  • (I) Round House type This is the shape of the stress-strain curve that appears in normal UOE steel pipes that are not heat-treated before coating, and shows excellent earthquake resistance.
  • (II) Yield Point type The shape of the stress-strain curve often appears in the UOE steel pipe after the pre-coating heat treatment, which is inferior to the round type in buckling resistance and unsuitable for use in the strain based design.
  • the ratio of Ti and N in the UOE steel pipe (Ti / N) is within an appropriate range, and rolling is the material of the UOE steel pipe. Accelerated cooling is performed after hot rolling of the steel sheet is completed.
  • it can be set as the metal structure which consists of a ferrite and a bainite, or the metal structure which consists of a ferrite, a bainite, and a martensite, and low yield ratio reduction of a UOE steel pipe
  • it has a Round House type stress-strain curve. For this reason, it turns out that the UOE steel pipe for line pipes excellent in earthquake resistance can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Metal Rolling (AREA)

Abstract

 耐震性に優れた高強度UOE鋼管を提供する。  C:0.03%以上0.10%以下、Si:0.05%以上0.50%以下、Mn:1.50%以上2.2%以下、P:0.025%以下、S:0.002%以下、Cu:1.0%以下、Cr:1.0%以下、Ni:2.0%以下、Mo:1.0%以下、Nb:0.1%以下、V:0.1%以下、Ti:0.025%以下、Al:0.06%以下、N:0.0050%以下、Ca:0.0050%以下を含有するとともに(Ti/N):4.0以上であり、残部Fe及び不純物からなる鋼組成を有し、フェライト及びベイナイトからなる金属組織、または、フェライト、ベイナイト及びマルテンサイトからなる金属組織を有するラインパイプ用高強度UOE鋼管である。

Description

ラインパイプ用UOE鋼管及びその製造方法
 本発明は、ラインパイプ用UOE鋼管及びその製造方法に関する。本発明は、具体的には、歪む設計(Strain-Based Design)により設計され、カナダ等の寒冷地で使用される、耐震性に優れたX70グレード以上(管軸方向強度485MPa以上)のラインパイプ用UOE鋼管及びその製造方法に関する。
 近年、パイプラインに対するコストダウンの要望は極めて大きい。このため、パイプライン用のUOE鋼管は高強度化される傾向にある。ラインパイプ用の高強度UOE鋼管は、これまで、(a)十分な強度(TS:最高強度)を有すること、及び(b)使用時の内圧に耐え得ることを重視する応力設計(Stress-Based Design)に基づいて、設計されてきた。
 近年、カナダ等の寒冷地に敷設されたラインパイプを構成するUOE鋼管が、季節毎の気温変動により凍土(大地)が膨張や収縮等を繰り返すことによって、軸方向へ作用する引張応力により変形することが懸念される。特に天然ガスやオイルを輸送する長距離パイプラインの破壊に起因して大事故が発生することは、絶対に防止しなければならない。このため、高強度のUOE鋼管をパイプラインに適用するためには、高強度のUOE鋼管が従来の強度のUOE鋼管に比較して、さらに高い破壊安全性を有する必要がある。このため、特に寒冷地で使用されるラインパイプを構成する高強度のUOE鋼管には、強度のみならず、破壊変形に対する変形能(例えば降伏比や一様伸び)により評価される耐震性も優れることが要求される。
 鋼管の耐震性には、その寸法のみならず、降伏比や一様伸びの大小、さらには応力-ひずみ曲線の形状等といった様々な要素が影響することが、一般的に知られる。そこで、寒冷地で使用されるラインパイプ用の高強度のUOE鋼管は、強度のみならず、例えば降伏比や一様伸びをも重視する応力設計に基づいて、設計される。
 特許文献1や特許文献2には、耐震性に優れた鋼管として、特許文献3には、高強度、高靭性でかつ耐震性に優れたラインパイプの製造方法として、いずれも、UOE鋼管が、降伏点を有さないラウンド型の形状の応力-ひずみ曲線を有することによって、耐震性が向上することが開示される。さらに、特許文献4には、圧延後に放冷することによって耐震性に優れた鋼管を試験的に製造したことが開示される。
特開平9-196243号公報 特開平11-80900号公報 特開平9-202922号公報 特開2004-131810号公報
 一般的に、全てのパイプライン用UOE鋼管は、施工時の損傷、及び操業時の外面腐食をいずれも防止するために、敷設される現地において、例えば高周波加熱により通常150℃以上250℃以下の温度に5分間程度保持する熱処理(本明細書では「コーティング前熱処理(pre-coating heat-treatment)」という)を伴う外面コーティングが施工される。
 上述した特許文献1~4により開示された従来の技術により得られる鋼管は、いずれも、このコーティング前熱処理を行われた後の応力-ひずみ曲線の形状が、上降伏点を有するYield Point型となるため、耐震性が芳しくない。
 通常、製管後のUOE鋼管の応力-ひずみ曲線の形状は、UOE鋼管には多くの冷間歪が付与されるため、常にRound House型である。このため、UOE鋼管の耐震性を向上するためには、コーティング前熱処理後の応力-ひずみ曲線が、上降伏点を有するYield Point型に変化せずにRound House型の応力-ひずみ曲線を維持できるとともに低降伏比化を図ることができるようにすればよい。
 そこで、本発明者らは、高強度UOE鋼管の耐震性に影響する様々な因子(UOE鋼管の寸法、降伏比、一様伸び、さらには応力-ひずみ曲線の形状等)のうちで、コーティング前熱処理を行われた後の応力-ひずみ曲線の形状が、上降伏点を有さないRound House型を維持できる手段を鋭意検討した。
 その結果、本発明者らは、
(a)UOE鋼管のTi及びNそれぞれの含有量の比(Ti/N)を適正な値に制御すること、および
(b)母材となる圧延鋼板の製造段階において、圧延を終了した後に加速冷却することによって転位を固着するフリーNを低減し、この圧延鋼板を素材としてUOE製管法によりUOE鋼管を製造すること
によって、コーティング前熱処理を行われた後においてもRound House型の形状の応力-ひずみ曲線を有する高強度UOE鋼管を製造できることを知見し、本発明を完成した。
 本発明は、C:0.03%以上0.10%以下(本明細書では特に断りがない限り、組成に関する「%」は「質量%」を意味する)、Si:0.05%以上0.50%以下、Mn:1.50%以上2.2%以下、P:0.025%以下、S:0.002%以下、Cu:1.0%以下、Cr:1.0%以下、Ni:2.0%以下、Mo:1.0%以下、Nb:0.1%以下、V:0.1%以下、Ti:0.025%以下、Al:0.06%以下、N:0.0050%以下、Ca:0.0050%以下を含有するとともに、Ti及びNそれぞれの含有量の比(Ti/N):4.0以上であり、残部Fe及び不純物からなる鋼組成を有し、さらに望ましくは周方向強度が550MPa以上であることを特徴とするX70グレード以上(管軸方向強度485MPa以上)のラインパイプ用UOE鋼管である。
 別の観点からは、本発明は、C:0.03%以上0.10%以下、Si:0.05%以上0.50%以下、Mn:1.50%以上2.2%以下、P:0.025%以下、S:0.002%以下、Cu:1.0%以下、Cr:1.0%以下、Ni:2.0%以下、Mo:1.0%以下、Nb:0.1%以下、V:0.1%以下、Ti:0.025%以下、Al:0.06%以下、N:0.0050%以下、Ca:0.0050%以下を含有するとともに、Ti及びNそれぞれの含有量の比(Ti/N):4.0以上であり、残部Fe及び不純物からなる鋼組成を有するスラブに、700℃以上850℃以下の仕上温度で圧延を行った後に直ちに3℃/sec以上30℃/sec以下の冷却速度で冷却することにより得られる圧延鋼板を素材としてUOE製管法によりUOE鋼管を製造することを特徴とする、望ましくは周方向強度が550MPa以上であるX70グレード以上のラインパイプ用UOE鋼管の製造方法である。
 本発明では、UOE鋼管のTi及びNそれぞれの含有量の比(Ti/N)を適正な範囲とするとともに、UOE鋼管の素材である圧延鋼板の熱間圧延を終了した後に加速冷却を行う。このため、本発明によれば、転位を固着するフリーNを低減するとともに、望ましくは、フェライト及びベイナイトからなる金属組織、もしくはフェライト、ベイナイト及びマルテンサイトからなる金属組織とすることができる。これにより、本発明によれば、UOE鋼管の低降伏比化を図りながら、コーティング前熱処理を行われた後においてもRound House型の形状の応力-ひずみ曲線を維持することができるため、耐震性に優れた高強度のラインパイプ用UOE鋼管を提供できる。
コーティング前熱処理の前後における応力-ひずみ曲線の変化を示すグラフである。 試験片のL方向の引張試験における応力とひずみとの関係に及ぼす(Ti/N)の影響を示すグラフである。 図3(a)~図3(g)は、実施例1の引張試験における応力-ひずみ曲線の形状を示すグラフである。
発明を実施するための形態
 以下、本発明に係るラインパイプ用UOE鋼管及びその製造方法を実施するための最良の形態を、添付図面も参照しながら詳細に説明する。
 本発明において用いるスラブの組成を限定する理由を説明する。
(C:0.03%以上0.10%以下)
 Cは、強度の上昇に有効な元素であり、X70グレード以上、特にX100グレードの強度を有するために0.03%以上含有する。一方、C含有量が0.10%を超えると靭性の低下が著しくなり、母材の機械的特性に悪影響を及ぼすとともにスラブの表面傷の発生を助長する。このため、C含有量は0.03%以上0.10%以下とする。
(Si:0.05%以上0.50%以下)
 Siは、0.05%以上含有することにより脱酸剤として、また鋼を強化する成分として作用する。しかし、Si含有量が0.50%を越えると、溶接熱影響部に縞状マルテンサイトが多く生成して靭性が極度に劣化し、UOE鋼管の機械的性質が低下する。そこで、Si含有量は0.05%以上0.50%以下と限定する。Si含有量は、板厚とのバランスを考慮して決定することが望ましい。
(Mn:1.50%以上2.2%以下)
 Mnは、1.50%以上含有することにより鋼を強化するとともに強靭化する。しかし、Mn含有量が2.2%を超えると溶接部の靭性が劣化する。そこで、Mn含有量は1.50%以上2.2%以下とする。
(P:0.025%以下)
 Pは、鋼中に含まれる不純物であり、その含有量が低いほうが望ましい。しかし、極端な低減には相応の製造コストの上昇を伴う。そこで、P含有量は0.025%以下とする。
(S:0.002%以下)
 Sは、0.002%を超えて含有すると母材の目標の靭性を確保できなくなる。そこで、S含有量は0.002%以下とする。
(Cu:1.0%以下)
 Cuは、望ましくは0.01%以上含有することにより、固溶強化と焼入れ性増大効果による組織変化とにより、靭性を大きく損なうことなく強化を図る作用を奏する。しかし、Cu含有量が1.0%を超えるとスラブの表面疵に有害なCuチェッキングが発生するためにスラブを低温加熱する必要が生じ、製造条件に対する制限が増加する。そこで、Cu含有量は1.0%以下とする。
(Cr:1.0%以下)
 Crは、CuやNiと同様に、望ましくは0.01%以上含有することにより、固溶強化と焼入れ性増大効果による組織変化とにより、靭性を大きく損なうことなく、強化を図る作用を奏する。しかし、Cr含有量が1.0%を超えると熱影響部の靭性を低下させる。そこで、Cr含有量は1.0%以下とする。
(Ni:2.0%以下)
 Niは、Cuと同様に、望ましくは0.01%以上含有することにより、固溶強化と焼入れ性増大効果による組織変化とにより、靭性を大きく損なうことなく、強化を図ることができる作用を奏するとともに、熱間曲げ加工後の母材及び熱影響部の靭性の劣化を抑制する作用を奏する。しかし、Ni含有量が2.0%を超えると製造コストが上昇し過ぎて実用性を損なう。そこで、Ni含有量は2.0%以下とする。
(Mo:1.0%以下)
 Moは、望ましくは0.01%以上含有することにより、母材及び溶接部の強度上昇に有効である。しかし、Mo含有量が1.0%を超えると、施工現場での周溶接性や溶接熱影響部の靭性が劣化する。そこで、Mo含有量は1.0%以下とする。
(Nb:0.1%以下、V:0.1%以下)
 Nb、Tiは、いずれも、析出強化や焼入れ性増大効果による強度上昇、あるいは結晶粒微細化に伴う靭性の改善に大きな効果をもたらす。しかし、Nb含有量が0.1%を超え、またはV含有量が0.1%を超えると、溶接部の靭性が低下する。そこで、Nb含有量は0.1%以下とし、V含有量は0.1%以下とする。
(Ti:0.025%以下)
 Tiは、望ましくは0.005%以上含有することにより、TiNを生成し、熱影響部における結晶粒の成長を抑制し、靭性を向上する作用を奏する。しかし、Ti含有量が0.025%を超えると溶存N量が増加して熱影響部の靭性が劣化する。そこで、Ti含有量は0.025%以下とする。
(Al:0.06%以下)
 Alは、Siと同様に、脱酸材としての作用があるが、結晶完全整粒化のために0.010%以上含有することが望ましい。一方、溶接部の低温靭性を確保することを目的として溶接金属の(Al/O)を適正に制御するために、Al含有量は0.06%以下とする。
(N:0.0050%以下)
 Nは、VやTi等と窒化物を形成して高温強度の向上に効果をもたらす。しかし、N含有量が0.0050%を超えるとNb、V、Tiと炭窒化物を形成し、母材及び熱影響部の靭性を低下させる。そこで、N含有量は0.0050%以下とする。ただし、溶接熱影響部についての靱性の要求レベルが高い場合には、N含有量を0.0035%以下とすることが望ましい。
(Ca:0.0050%以下)
 Caは、介在物の形態制御、具体的には球状化に効果があり、水素誘起割れやラメラーティアーを防止する。しかし、Ca含有量が0.0050%を超えると、Ca系介在物の発生量が過多になるため、Ca含有量は0.0050%以下とする。一方、Ca含有量は、S含有量と密接な関係があり、S含有量が0.0010%以上である場合にはMnS系介在物の球状化のために、0.0005%以上であることが望ましい。なお、S含有量が0.0010%以下である極めて清浄性の高い鋼では、Ca含有量の下限は特に設定する必要はない。以上の理由により、Ca含有量は0.0050%以下とする。
 上述した以外は、Fe及び不純物である。
(Ti及びNそれぞれの含有量の比(Ti/N):4.0以上)
 X80グレードの高強度UOE鋼管を例にとって、外径Dと肉厚Tとの比(D/T)と耐震性との関係を調べた。その結果、比(D/T)が小さくなるほど座屈ひずみが大きくなり、耐震性が向上することが確認された。このため、高強度UOE鋼管の耐震性を向上するには、まず最初にUOE鋼管の比(D/T)を30以下にすることが望ましい。しかしながら、輸送圧力、輸送効率さらには輸送必要量によっては、比(D/T)を30超に設定せざるを得ない場合もある。本発明では、このような場合にも耐震性の改善及び向上を図ることができるようにするために、材料の特性を改善する。
 X80グレードのUOE鋼管を例にとって、(i)降伏比YR(YS/TS)、(ii)一様伸び、及び(iii)応力-ひずみ曲線の形状の3項目が、耐震性(耐座屈性)に及ぼす影響を調査した。
 この調査により、
(A)降伏比YRは、85、88、91%の順に、座屈発生時の曲げ角度が、13.9°、14.5°、15.3°となり、降伏比YRの値が大きいほど耐震性に優れること。
(B)一様伸びは、5.88%、7.38%、8.88%である場合、座屈発生時の曲げ角度はそれぞれ14.1°、14.5°、15.1°となり、一様伸びが大きいほど耐震性に優れること。及び
(C)図1は、コーティング前熱処理の前後における応力-ひずみ曲線の変化を示すグラフである、図1におけるケース1は、仕上温度800℃、圧延後冷却速度20℃/secである条件により製造された圧延鋼板を素材とするUOE鋼管の200℃コーティング前熱処理後における応力-ひずみ曲線を示し、ケース2は仕上温度800℃、圧延後冷却速度20℃/secである条件により製造された圧延鋼板を素材とするUOE鋼管の270℃コーティング前熱処理後における応力-ひずみ曲線を示す。
 図1のグラフに示すように、コーティング前熱処理前においてはケース1、2のいずれもRound House型の応力-ひずみ曲線を有するものの、本発明で規定する条件を満足しないケース1では、コーティング前熱処理後の応力-ひずみ曲線の形状が、Yield Point型に変化するのに対し、本発明で規定する条件を満足するケース2では、コーティング前熱処理後の応力-ひずみ曲線の形状がRound House型を維持することがわかる。
 本発明では、降伏比YR及び一様伸びそれぞれの大小と、応力-ひずみ曲線の形状の3項目のうちで、特に応力-ひずみ曲線の形状に注目し、コーティング前熱処理を行われた後における応力-ひずみ曲線の形状が、Yield Point型であるUOE鋼管よりも、Round House型であるUOE鋼管のほうが、耐震性が良好であることを利用する。このために、転位を固着する元素であるC又はNに注目し、その中でも、Ti及びNそれぞれの含有量の比(Ti/N)に注目した。
 そして、試験片を用いて比(Ti/N)を変化させる確認試験を行い、応力-ひずみ曲線の形状の変化を調べた。
 図2は、試験片のL方向の引張試験における応力とひずみとの関係に及ぼす(Ti/N)の影響を示すグラフである。
 同図のグラフに示すように、(Ti/N)が2.9である場合には応力-ひずみ曲線はYield Point型の形状となり、(Ti/N)の値が4.1、5.6と大きくなるにつれて、上降伏点を有さないなだらかなRound House型の形状となる。
 このように、コーティング前熱処理を行われた後におけるUOE鋼管の応力-ひずみ曲線の形状を、Round House型に維持するには、転位を固着する作用を奏するフリーNを低減することが有効である。このためには、(Ti/N)の値を4.0以上とすることが有効である。さらにこのような作用効果を安定して得るためには(Ti/N)を5.0以上とすることが望ましい。
 本発明では、上述した鋼組成を有するスラブに、常法にしたがって、700℃以上850℃以下の仕上温度で圧延を行った後に直ちに3℃/sec以上30℃/sec以下の冷却速度で冷却する加速冷却を行うことによって、圧延鋼板とする。
 この加速冷却を行うことにより、圧延鋼板は、フェライト及びベイナイトからなる金属組織、もしくはフェライト、ベイナイト及びマルテンサイトからなる金属組織を有する。
 そして、本発明では、このようにして製造した圧延鋼板を素材として、公知のUOE製管法を用いてUOE鋼管を製造する。このUOE製管法は、素材である圧延鋼板にUプレスを行ってU形に成形し、さらにOプレスを行ってO形に成形して円筒状に成形し、その後に端部である継目を突き合わせて溶接するものである。これは当業者にとっては周囲の製管法であるので、UOE製管法に関するこれ以上の説明は省略する。
 本発明では、このようにして、C:0.03%以上0.10%以下、Si:0.05%以上0.50%以下、Mn:1.50%以上2.2%以下、P:0.025%以下、S:0.002%以下、Cu:1.0%以下、Cr:1.0%以下、Ni:2.0%以下、Mo:1.0%以下、Nb:0.1%以下、V:0.1%以下、Ti:0.025%以下、Al:0.06%以下、N:0.0050%以下、Ca:0.0050%以下を含有するとともに、Ti及びNそれぞれの含有量の比(Ti/N):4.0以上であり、残部Fe及び不純物からなる鋼組成を有し、望ましくは、フェライト及びベイナイトからなる金属組織、もしくはフェライト、ベイナイト及びマルテンサイトからなる金属組織を有する、本発明のX70グレード以上のラインパイプ用UOE鋼管が提供される。
 本発明によれば、比(Ti/N)を適正な範囲に制限するとともに、UOE鋼管の素材である圧延鋼板の熱間圧延後に加速冷却を行うことにより、フリーNを低減するとともに、望ましくは、フェライト及びベイナイトからなる金属組織、もしくはフェライト、ベイナイト及びマルテンサイトからなる金属組織とすることによって、UOE鋼管の応力-ひずみ曲線の形状を、コーティング前熱処理後においてもRound House型に維持することができるようになるとともに、UOE鋼管の降伏比YRを90%以下、望ましくは85%以下に抑制することができる。このようにして、耐震性に優れたX70グレード以上のラインパイプ用UOE鋼管を提供することができる。
 したがって、敷設されたラインパイプを構成するUOE鋼管が、季節毎の気温変動により凍土(大地)が膨張や収縮等を繰り返すことによってその軸方向へ作用する引張応力により、変形することが懸念されている、カナダ等の寒冷地において使用されるラインパイプを構成する高強度UOE鋼管として、強度のみならず、破壊変形に対する変形能である耐震性も優れるので、極めて望ましい。
 本発明を、実施例を参照しながらより具体的に説明する。
 表1に示す鋼組成(表1に示す以外はFe及び不純物)を有するスラブに、表2に示す仕上温度で圧延を行い、その後直ちに表2に示す冷却速度で冷却することにより得られる圧延鋼板を素材とし、UOE製管法により、X80グレードで肉厚が16.2mmであるUOE鋼管を製造した。
 そして、これらのUOE鋼管から切り出した引張試験片1~7に、250℃に5分間保持するコーティング前熱処理を模擬した熱処理を行ってから、引張試験を行った。
 この引張試験片1~7の化学組成及び金属組織を表1に示すとともに、素材である圧延鋼板の圧延仕上温度及び冷却速度、引張試験片1~7の機械特性(引張強度TS、降伏強度YS、降伏比YR)および靭性(シャルピー衝撃試験の吸収エネルギーvE-10(℃))の測定値を表2に示す。また、引張試験における応力-ひずみ曲線の形状を図3(a)~図3(g)にグラフで示す。
 特に、応力-ひずみ曲線の形状は、下記に示す通り2種類(I)、(II)に分類され、耐震性の良否を評価するためには重要である。
(I)Round House型:
 コーティング前熱処理を行われない通常のUOE鋼管に現れる応力-ひずみ曲線の形状であり、耐震性に優れることを示す。
(II)Yield Point型:
 コーティング前熱処理を行われた後のUOE鋼管に表れることが多い応力-ひずみ曲線の形状であり、Round型に比べると耐座屈性に劣り、Strain Based Designに用いるには不適である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1、2及び図3(a)~図3(g)より、UOE鋼管のTi及びNそれぞれの含有量の比(Ti/N)を適正な範囲とするとともに、UOE鋼管の素材である圧延鋼板の熱間圧延を終了した後に加速冷却を行う。これにより、転位を固着するフリーNを低減するとともに、望ましくは、フェライト及びベイナイトからなる金属組織、もしくはフェライト、ベイナイト及びマルテンサイトからなる金属組織とすることができ、UOE鋼管の低降伏比化を図りながら、コーティング前熱処理を行われた後においてもRound House型の形状の応力-ひずみ曲線を有するようになる。このため、耐震性に優れた高強度のラインパイプ用UOE鋼管を提供できるることがわかる。

Claims (2)

  1.  質量%で、C:0.03%以上0.10%以下、Si:0.05%以上0.50%以下、Mn:1.50%以上2.2%以下、P:0.025%以下、S:0.002%以下、Cu:1.0%以下、Cr:1.0%以下、Ni:2.0%以下、Mo:1.0%以下、Nb:0.1%以下、V:0.1%以下、Ti:0.025%以下、Al:0.06%以下、N:0.0050%以下、Ca:0.0050%以下を含有するとともに(Ti/N):4.0以上であり、残部Fe及び不純物からなる鋼組成を有することを特徴とするX70グレード以上のラインパイプ用UOE鋼管。
  2.  質量%で、C:0.03%以上0.10%以下、Si:0.05%以上0.50%以下、Mn:1.50%以上2.2%以下、P:0.025%以下、S:0.002%以下、Cu:1.0%以下、Cr:1.0%以下、Ni:2.0%以下、Mo:1.0%以下、Nb:0.1%以下、V:0.1%以下、Ti:0.025%以下、Al:0.06%以下、N:0.0050%以下、Ca:0.0050%以下を含有するとともに(Ti/N):4.0以上であり、残部Fe及び不純物からなる鋼組成を有するスラブに、700℃以上850℃以下の仕上温度で圧延を行った後に直ちに3℃/sec以上30℃/sec以下の冷却速度で冷却することにより得られる圧延鋼板を素材としてUOE製管法によりUOE鋼管を製造することを特徴とする、X70グレード以上のラインパイプ用UOE鋼管の製造方法。
PCT/JP2009/055803 2008-03-25 2009-03-24 ラインパイプ用uoe鋼管及びその製造方法 WO2009119570A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-077985 2008-03-25
JP2008077985A JP2009228099A (ja) 2008-03-25 2008-03-25 ラインパイプ用uoe鋼管及びその製造方法

Publications (1)

Publication Number Publication Date
WO2009119570A1 true WO2009119570A1 (ja) 2009-10-01

Family

ID=41113762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055803 WO2009119570A1 (ja) 2008-03-25 2009-03-24 ラインパイプ用uoe鋼管及びその製造方法

Country Status (2)

Country Link
JP (1) JP2009228099A (ja)
WO (1) WO2009119570A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102220547A (zh) * 2011-06-10 2011-10-19 马鞍山钢铁股份有限公司 Ct80级连续油管用钢带及其制备方法
EP3026140A4 (en) * 2013-07-25 2017-03-08 Nippon Steel & Sumitomo Metal Corporation Steel plate for line pipe, and line pipe
CN107130173A (zh) * 2017-05-27 2017-09-05 内蒙古包钢钢联股份有限公司 钢结构用q235kz抗震热轧h型钢及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2612946B1 (en) * 2010-09-03 2015-04-08 Nippon Steel & Sumitomo Metal Corporation High-strength steel sheet having excellent fracture resistance performance and hic resistance performance
JP5835625B2 (ja) * 2012-08-28 2015-12-24 新日鐵住金株式会社 ポリオレフィン被覆uoe鋼管及びその製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201535A (ja) * 2001-10-22 2003-07-18 Jfe Steel Kk 電子ビーム溶接用鋼板、鋼管および溶接金属部の低温靱性に優れたパイプライン
JP2003293089A (ja) * 2002-04-09 2003-10-15 Nippon Steel Corp 変形性能に優れた高強度鋼板、高強度鋼管および製造方法
JP2005015823A (ja) * 2003-06-24 2005-01-20 Nippon Steel Corp 変形性能に優れたパイプライン用高強度鋼管及びその製造方法
JP2006283147A (ja) * 2005-04-01 2006-10-19 Nippon Steel Corp 時効後の変形特性に優れたパイプライン用高強度鋼管およびその製造方法
JP2006299398A (ja) * 2005-03-22 2006-11-02 Nippon Steel Corp 歪み時効特性に優れた引張強さ760MPa級以上の高強度鋼板の製造方法およびそれを用いた高強度鋼管の製造方法
JP2007146230A (ja) * 2005-11-28 2007-06-14 Nippon Steel Corp 耐水素誘起割れ性および延性破壊特性に優れた引張強さ760MPa級以上の高強度鋼板の製造方法およびその鋼板を用いた高強度鋼管の製造方法
JP2008101242A (ja) * 2006-10-19 2008-05-01 Jfe Steel Kk 耐hic特性に優れたラインパイプ用高強度鋼板およびその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4280222B2 (ja) * 2004-10-28 2009-06-17 新日本製鐵株式会社 パイプライン変形特性および低温靭性に優れた超高強度鋼板及び超高強度鋼管並びにそれらの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201535A (ja) * 2001-10-22 2003-07-18 Jfe Steel Kk 電子ビーム溶接用鋼板、鋼管および溶接金属部の低温靱性に優れたパイプライン
JP2003293089A (ja) * 2002-04-09 2003-10-15 Nippon Steel Corp 変形性能に優れた高強度鋼板、高強度鋼管および製造方法
JP2005015823A (ja) * 2003-06-24 2005-01-20 Nippon Steel Corp 変形性能に優れたパイプライン用高強度鋼管及びその製造方法
JP2006299398A (ja) * 2005-03-22 2006-11-02 Nippon Steel Corp 歪み時効特性に優れた引張強さ760MPa級以上の高強度鋼板の製造方法およびそれを用いた高強度鋼管の製造方法
JP2006283147A (ja) * 2005-04-01 2006-10-19 Nippon Steel Corp 時効後の変形特性に優れたパイプライン用高強度鋼管およびその製造方法
JP2007146230A (ja) * 2005-11-28 2007-06-14 Nippon Steel Corp 耐水素誘起割れ性および延性破壊特性に優れた引張強さ760MPa級以上の高強度鋼板の製造方法およびその鋼板を用いた高強度鋼管の製造方法
JP2008101242A (ja) * 2006-10-19 2008-05-01 Jfe Steel Kk 耐hic特性に優れたラインパイプ用高強度鋼板およびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102220547A (zh) * 2011-06-10 2011-10-19 马鞍山钢铁股份有限公司 Ct80级连续油管用钢带及其制备方法
EP3026140A4 (en) * 2013-07-25 2017-03-08 Nippon Steel & Sumitomo Metal Corporation Steel plate for line pipe, and line pipe
CN107130173A (zh) * 2017-05-27 2017-09-05 内蒙古包钢钢联股份有限公司 钢结构用q235kz抗震热轧h型钢及其制备方法

Also Published As

Publication number Publication date
JP2009228099A (ja) 2009-10-08

Similar Documents

Publication Publication Date Title
JP5776860B1 (ja) 耐サワー性、耐圧潰特性及び低温靭性に優れた厚肉高強度ラインパイプ用鋼板とラインパイプ
JP5857400B2 (ja) 高圧縮強度ラインパイプ用溶接鋼管及びその製造方法
JP4671959B2 (ja) 低温靱性に優れた超高強度ラインパイプ用鋼板及び鋼管並びにそれらの製造方法
JP5561119B2 (ja) 高圧縮強度耐サワーラインパイプ用溶接鋼管及びその製造方法
KR101603461B1 (ko) 변형 성능과 저온 인성이 우수한 고강도 강관, 고강도 강판 및 상기 강판의 제조 방법
JP6226062B2 (ja) 耐歪時効特性及び耐hic特性に優れた高変形能ラインパイプ用鋼材およびその製造方法ならびに溶接鋼管
WO2011065578A1 (ja) 高い圧縮強度および高い靭性に優れたラインパイプ用溶接鋼管及びその製造方法
JP5782827B2 (ja) 高圧縮強度耐サワーラインパイプ用鋼管及びその製造方法
JP4510680B2 (ja) 時効後の変形特性に優れたパイプライン用高強度鋼管およびその製造方法
KR101531361B1 (ko) 변형 성능 및 저온 인성이 우수한 고강도 강판 및 고강도 강관 및 이들의 제조 방법
JP5472071B2 (ja) ラインパイプ用鋼材
JP2009091633A (ja) 変形性能に優れた高強度鋼およびその製造方法
WO2011042936A1 (ja) 高強度鋼管、高強度鋼管用鋼板、及び、それらの製造方法
WO2015151468A1 (ja) 耐歪時効特性及び耐hic特性に優れた高変形能ラインパイプ用鋼材およびその製造方法ならびに溶接鋼管
CA2566425A1 (en) Ultrahigh strength uoe steel pipe and a process for its manufacture
WO2016157235A1 (ja) 高強度鋼及びその製造方法、並びに鋼管及びその製造方法
WO2009119570A1 (ja) ラインパイプ用uoe鋼管及びその製造方法
JP5245921B2 (ja) ラインパイプ用鋼材の製造方法
JP5786351B2 (ja) 耐コラプス性能の優れたラインパイプ用鋼管
JP3846246B2 (ja) 鋼管の製造方法
JP2004143500A (ja) 耐座屈特性に優れた高強度鋼管およびその製造方法
JP4741715B2 (ja) 高強度鋼管及びその製造方法
JP4336294B2 (ja) 時効後の変形特性に優れたパイプライン用高強度鋼管の製造方法
WO2019151045A1 (ja) ラインパイプ用鋼材およびその製造方法ならびにラインパイプの製造方法
JP5353760B2 (ja) 変形特性に優れる電縫鋼管およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09725851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09725851

Country of ref document: EP

Kind code of ref document: A1