JP6226062B2 - 耐歪時効特性及び耐hic特性に優れた高変形能ラインパイプ用鋼材およびその製造方法ならびに溶接鋼管 - Google Patents

耐歪時効特性及び耐hic特性に優れた高変形能ラインパイプ用鋼材およびその製造方法ならびに溶接鋼管 Download PDF

Info

Publication number
JP6226062B2
JP6226062B2 JP2016511375A JP2016511375A JP6226062B2 JP 6226062 B2 JP6226062 B2 JP 6226062B2 JP 2016511375 A JP2016511375 A JP 2016511375A JP 2016511375 A JP2016511375 A JP 2016511375A JP 6226062 B2 JP6226062 B2 JP 6226062B2
Authority
JP
Japan
Prior art keywords
less
ferrite
bainite
steel
strain aging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016511375A
Other languages
English (en)
Other versions
JPWO2015151469A1 (ja
Inventor
恭野 安田
恭野 安田
水野 大輔
大輔 水野
仲道 治郎
治郎 仲道
石川 信行
信行 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2015151469A1 publication Critical patent/JPWO2015151469A1/ja
Application granted granted Critical
Publication of JP6226062B2 publication Critical patent/JP6226062B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • B23K31/027Making tubes with soldering or welding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/02Rigid pipes of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/17Rigid pipes obtained by bending a sheet longitudinally and connecting the edges
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、300℃以下のコーティング処理後の材質劣化の小さなラインパイプ用鋼材およびその製造方法ならびに溶接鋼管に関し、pH5以上の湿潤硫化水素環境において優れた耐HIC特性を有し、API 5L X60〜X70グレードのラインパイプ用鋼材に関する。
近年、天然ガスや原油の輸送用として使用されるラインパイプは、高圧操業による輸送効率の向上のため、高強度化が求められる。アイスガウジング(ice−gouging)や地盤変動により大変形が生じても、亀裂の発生防止が可能な高変形能が要求される。たとえば、アイスガウジングが生じる寒冷の海底や地震地帯に敷設されるパイプラインでは、高一様伸びに加え、90%以下の低降伏比を有するラインパイプが要求される。
ラインパイプに用いられるUOE鋼管やERW鋼管のような溶接鋼管は、鋼板を冷間で管状に成形して、突き合わせ部を溶接後、通常防食の観点から鋼管外面にコーティング処理が施される。しかしながら、製管時の加工歪みとコーティング処理時の加熱により歪時効硬化現象が生じ、降伏応力が上昇し、鋼管における降伏比は鋼板における降伏比よりも大きくなってしまうという問題がある。
また、硫化水素を含む天然ガスや原油の輸送に用いられるラインパイプは、鋼と硫化水素の反応により生じた水素が鋼中に侵入し、割れが生じることがある。このため、強度、高一様伸び化、低降伏比化、耐歪時効特性の他に、耐水素誘起割れ性(耐HIC性)が要求される。
低降伏比化、高一様伸び化の方法として、鋼材の金属組織を、フェライトの様な軟質相中にベイナイトやマルテンサイトなどの硬質相が適度に分散した組織とすることが有効であることが知られている。また、水素誘起割れを防止する方法として、偏析傾向の高いPなどを低減することが有効であることが知られている。一方で、ガス田開発の拡大に伴い、サワー環境(pH、硫化水素分圧)も拡大しており、マイルドサワー環境(湿潤硫化水素環境)が着目されている。pH5以上の比較的酸性度の低い環境、いわゆるマイルドサワー環境下では、鋼中にCuを添加して、鋼材に保護皮膜を形成することによって、鋼中への水素の侵入を抑制することが有効であることが知られている。
軟質相の中に硬質相が適度に分散した組織を得る製造方法として、特許文献1には、焼入れと焼戻しの中間に、フェライトとオーステナイトとの2相域からの焼入れを施す熱処理方法が開示されている。
また、特許文献1に開示される複雑な熱処理を行わずに低降伏比化を達成する技術として、特許文献2には、Ar点以上で鋼材の圧延を終了し、その後の加速冷却速度と冷却停止温度を制御することで、針状フェライトとマルテンサイトの2相組織とし、低降伏比化を達成する方法が開示されている。
耐歪時効特性に対しては、たとえば、特許文献3および4には、TiとMoを含有する複合炭化物の微細析出物、あるいは、Ti、Nb、Vのいずれか2種類以上を含有する複合炭化物の微細析出物を活用した、耐歪時効特性に優れた低降伏比高強度高靭性鋼管およびその製造方法が開示されている。
また、特許文献5には、鋼材の合金元素の添加量を大きく増加させることなく、API 5L X70以下の耐歪時効特性に優れた低降伏比高強度高一様伸びを達成する方法として、加速冷却後、直ちに再加熱を行うことで、ベイナイトとポリゴナルフェライトと島状マルテンサイト(MA)の3相組織とする方法が開示されている。
また、特許文献6には、API 5L X65以上のフェライトとベイナイトの2相組織からなる鋼材の耐HIC特性を得る方法として、フェライトとベイナイトの硬度差を小さくする方法が開示されている。
特開昭55−97425号公報 特開平1−176027号公報 特開2005−60839号公報 特開2005−60840号公報 特開2011−74443号公報 特開2003−301236号公報
特許文献1に記載の熱処理方法では、二相域焼入れ温度を適当に選択することにより、低降伏比化が達成可能である。しかしながら、熱処理工程数が増加するため、生産性の低下や製造コストの増加を招くという問題がある。
また、特許文献2に記載の技術では、その実施例が示すように、引張強さで490N/mm(50kg/mm)以上の鋼材とするために、鋼材の炭素含有量を高めるか、あるいはその他の合金元素の添加量を増やした成分組成とする必要がある。このため、素材コストの上昇を招くだけでなく、溶接熱影響部靭性の劣化が問題となる。さらに、UOE鋼管やERW鋼管のような溶接鋼管は、上述したように、鋼板を冷間で管状へ成形して、突合せ部を溶接後、通常防食等の観点から鋼管外面にコーティングが施されるため、製管時の加工歪とコーティング処理時の加熱により歪時効硬化が生じ、降伏応力が上昇する。そのため、特許文献2の技術では、素材の鋼板の低降伏比化を達成しても、コーティング処理後における低降伏比化を達成することは困難である。
特許文献3または4に記載の技術では、耐歪時効特性は改善されたものの、その実施例が示すように、板厚26mm以上の厚肉での強度の確保については、検討されていない。板厚26mm以上の厚肉では、厚肉に伴う冷却速度低下により高強度化が困難で、API 5L X65〜X70、厚肉、高変形能、耐歪時効特性、耐マイルドサワー性能を併せ持つ複合仕様材は未開発である。
さらに、特許文献5に記載の技術では、その実施例が示すように、歪時効処理後に85%以下の低降伏比化を達成しているものの、湿潤硫化水素環境下における水素誘起割れが懸念される。
特許文献6に記載の技術では、pH3.3以上の湿潤硫化水素環境において優れた耐HICを有している。しかしながら、フェライトとベイナイトとの硬度差を低くする必要があるため、低降伏比化の未達成が懸念される。また、マイルドサワー環境下で使用される溶接鋼管については、厳しいサワー環境下に適応される鋼成分の清浄化などの材料設計は過剰であり、製造コストの上昇が問題である。
そこで、本発明は、pH5以上の湿潤硫化水素環境において優れた耐HIC特性を示し、300℃以下のコーティング処理後であっても降伏比が低いAPI 5L X60〜X70グレードの高変形能ラインパイプ用鋼材およびその製造方法ならびに溶接鋼管を提供することを目的とする。
本発明者らは上記課題を解決するために、適正な成分組成と鋼材の製造方法、特に制御圧延および制御圧延後の加速冷却という製造プロセスについて鋭意検討した結果、以下の知見を得た。
(a)Cuを適量添加し、Moを含有しない、あるいは、含有しても0.01%以下にすることにより、耐HIC特性を向上させることが可能である。
(b)加速冷却開始温度と加速冷却停止温度を適正な温度とすることで、鋼板の金属組織が、フェライトおよびベイナイトの2相組織又はこれらを主体とした組織となり、フェライトとベイナイトとの硬度差がビッカース硬さで70以上となるため、歪時効処理前および歪時効処理後(以下、「歪時効処理前後」と称することもある。)の低降伏比化が可能である。
(c)加速冷却における冷却開始温度と冷却停止温度を適正な温度とすることで、固溶Cを低減することができるため、歪時効処理後の降伏比の上昇が抑制できる。
本発明は上記の知見に更に検討を加えてなされたものであり、以下のとおりである。
[1]成分組成として、質量%で、C:0.030〜0.100%、Si:0.01〜0.50%、Mn:0.5〜2.5%、P:0.015%以下、S:0.002%以下、Cu:0.20〜1.00%、Mo:0.01%以下、Nb:0.005〜0.05%、Ti:0.005〜0.040%、Al:0.10%以下、N:0.007%以下を含有し、残部がFeおよび不可避的不純物からなり、金属組織はフェライトおよびベイナイトを主体とし、前記フェライトおよびベイナイトの面積分率は合計で90%以上であり、前記フェライトと前記ベイナイトとの硬度差がビッカース硬さで70以上であり、300℃以下の温度の歪時効処理前および歪時効処理後における一様伸びが9%以上および降伏比が90%以下である耐歪時効特性及び耐HIC特性に優れた高変形能ラインパイプ用鋼材。
[2]前記成分組成に、さらに、質量%で、Ni:0.02〜0.50%、Cr:1.00%以下、V:0.10%以下、Ca:0.0050%以下、B:0.0050%以下のうちから選ばれる1種または2種以上を含有する[1]に記載の耐歪時効特性及び耐HIC特性に優れた高変形能ラインパイプ用鋼材。
[3][1]または[2]に記載の成分組成を有する鋼を、1000〜1300℃の温度に加熱し、Ar点以上の圧延終了温度で熱間圧延した後、(Ar−50)〜(Ar+30)℃から5℃/s以上の冷却速度で500〜650℃の冷却停止温度まで加速冷却を行う、金属組織がフェライトおよびベイナイト主体であり、前記フェライト及びベイナイトの面積分率は合計で90%以上であり、前記フェライトと前記ベイナイトとの硬度差がビッカース硬さで70以上であり、300℃以下の温度の歪時効処理前および歪時効処理後における一様伸びが9%以上、降伏比が90%以下である耐歪時効特性及び耐HIC特性に優れた高変形能ラインパイプ用鋼材の製造方法。
[4][1]または[2]に記載の耐歪時効特性及び耐HIC特性に優れた高変形能ラインパイプ用鋼材を素材とする溶接鋼管。
本発明によれば、pH5以上の湿潤硫化水素環境において優れた耐HIC特性を示し、300℃以下のコーティング処理後であっても降伏比が低いAPI 5L X60〜X70グレードの高変形能ラインパイプ用鋼材を得られる。
なお、本発明における耐歪時効特性とは、300℃以下の温度の熱処理を施しても降伏比の過度な上昇を抑制できる特性をいう。また、本発明における耐HIC特性とは、pH5以上の湿潤硫化水素環境において水素誘起割れが発生しない特性をいう。また、高変形能とは、一様伸びが9%以上および降伏比が90%以下を満たす特性をいう。
以下、本発明について具体的に説明する。
1.成分組成
以下に、本発明に係る鋼材の成分組成の限定理由を説明する。なお、成分組成を示す単位の%は、全て質量%を意味する。
C:0.030〜0.100%
Cは、炭化物として析出強化に寄与する元素である。Cが0.030%未満では、十分な強度が確保できない。Cが0.100%を超えると、靭性や溶接性の劣化、歪時効による降伏比の上昇を招く。このため、C含有量を0.030〜0.100%に規定する。好ましくは、C含有量は0.05%以上である。また、好ましくは、C含有量は0.09%以下である。
Si:0.01〜0.50%
Siは、脱酸のため添加する。Siが0.01%未満では脱酸効果が十分ではない。Siが0.50%を超えると靭性や溶接性の劣化を招く。このため、Si含有量を0.01〜0.50%に規定する。さらに好ましくは、0.01〜0.3%である。
Mn:0.5〜2.5%
Mnは、強度、靭性のため添加する。Mnが0.5%未満ではその効果が十分ではない。このため、Mn含有量は0.5%以上とし、MA生成による低降伏比化の観点から好ましくは、1.2%以上であり、より好ましくは、1.5%以上である。Mnが2.5%を超えると靭性と溶接性が劣化する。このため、Mn含有量を2.5%以下に規定し、好ましくは、2.2%以下である。
P:0.015%以下
Pは、溶接性と耐HIC特性を劣化させる不可避的不純物元素である。このため、P含有量の上限を0.015%以下に規定する。さらに好ましくは、0.010%以下である。
S:0.002%以下
Sは、一般的には、鋼中においてMnS介在物となり耐HIC特性を劣化させる。このため、Sは少ないほどよい。Sが0.002%以下であれば問題ないため、S含有量の上限を0.002%に規定する。さらに好ましくは、0.0015%以下である。
Cu:0.20〜1.00%
Cuは本発明において重要な元素であり、鋼中への水素の侵入を抑制し、耐HIC特性向上に寄与する。しかし、Cuが0.20%未満ではその効果が十分ではなく、1.00%を超えると溶接性が劣化する。このため、Cu含有量を0.20〜1.00%に規定する。
好ましくは、Cu含有量は0.25%以上である。また、好ましくは、Cu含有量は0.5%以下である。
Mo:0.01%以下(0を含む)
Moは歪時効による降伏比の上昇、および、耐HIC特性の劣化を招く。このため、Moは含有しないか、あるいは含有しても0.01%以下に規定する。さらに好ましくは、0.005%以下である。
Nb:0.005〜0.05%
Nbは組織の微細化により靭性を向上させ、さらに炭化物を形成し、強度上昇に寄与する。しかし、Nbが0.005%未満ではその効果が十分ではなく、0.05%を超えると溶接熱影響部の靭性が劣化する。このため、Nb含有量を0.005〜0.05%に規定する。好ましくは、Nb含有量は0.01%以上である。また、好ましくは、Nb含有量は0.05%以下である。
Ti:0.005〜0.040%
TiはTiNのピニング効果により、スラブ加熱時のオーステナイト粗大化を抑制し、母材靭性を向上させ、さらに固溶Nを低減し歪時効による降伏比上昇を抑制する。しかし、Tiが0.005%未満ではその効果が十分ではなく、0.040%を超えると溶接熱影響部の靭性が劣化する。このため、Ti含有量は0.005〜0.040%に規定する。さらに好ましくは、0.005〜0.02%である。
Al:0.10%以下
Alは脱酸剤として添加される。Alが0.10%を超えると鋼の清浄度が低下し、靭性が劣化する。このため、Al含有量は0.10%以下に規定する。好ましくは、Al含有量は0.08%以下とする。また、好ましくは、Al含有量は0.01%以上である。
N:0.007%以下
Nは歪時効による降伏比の上昇、および、溶接熱影響部の靭性の劣化を招く不可避的不純物元素である。このため、N含有量の上限を0.007%に規定する。さらに好ましくは、0.006%以下である。
以上が、本発明の基本成分である。なお、鋼材の強度および靭性をさらに改善し、且つ耐HIC特性を向上する目的で、Ni、Cr、V、Ca、Bの1種または2種以上を含有してもよい。
Ni:0.02〜0.50%
Niは耐HIC特性向上に寄与し、靭性の改善と強度の上昇に有効な元素である。Niが0.02%未満ではその効果が十分ではなく、0.50%を超えると効果が飽和し、むしろコスト的に不利になる。このため、含有する場合はNi含有量を0.02〜0.50%に規定する。好ましくは、Ni含有量は0.20%以上である。また、好ましくは、Ni含有量は0.4%以下である。
Cr:1.00%以下
Crは低Cでも十分な強度を得るために有効な元素である。Crが1.00%を超えると溶接性が劣化する。このため、含有する場合はCr含有量の上限を1.00%に規定する。好ましくは、Cr含有量は0.5%以下である。また、好ましくは、Cr含有量は0.1%以上である。
V:0.10%以下
Vは組織の微細化により靭性を向上させ、さらに炭化物を形成し、強度の向上に寄与する。Vが0.10%を超えると溶接熱影響部の靭性が劣化する。このため、含有する場合はV含有量を0.10%以下に規定する。好ましくは、V含有量は0.05%以下である。また、好ましくは、V含有量は0.005%以上である。
Ca:0.0050%以下
Caは硫化物系介在物の形態制御による靭性改善に有効な元素である。Caが0.0050%を超えると効果が飽和し、むしろ、鋼の清浄度の低下により靭性を劣化させる。このため、含有する場合はCa含有量を0.0050%以下に規定する。好ましくは、Ca含有量は0.004%以下である。また、好ましくは、Ca含有量は0.001%以上である。
B:0.0050%以下
Bは強度上昇、溶接熱影響部の靭性改善に有効な元素である。Bが0.0050%を超えると溶接性を劣化させる。このため、含有する場合は、B含有量を0.0050%以下に規定する。さらに好ましくは、0.003%以下である。また、好ましくは、B含有量は0.0003%以上である。
本発明の鋼材における上記成分以外の残部は、Feおよび不可避的不純物である。ただし、本発明の作用効果を害さない範囲であれば、上記以外の元素の含有を問題としない。
2.金属組織
本発明の鋼材の金属組織は、フェライトおよびベイナイトを主体とする複相組織とする。フェライトおよびベイナイトを主体とする複相組織とは、フェライトおよびベイナイトの面積分率が合計で90%以上の複相組織であり、残部としては、マルテンサイトやパーライト、島状マルテンサイト、残留オーステナイト等から選ばれる1種または2種以上の合計の面積分率が10%以下の組織である。
なお、フェライトとベイナイトの面積分率は特に限定する必要はないが、フェライトの面積分率が10%未満では、硬度の高いベイナイトを得ることができない場合があるため、フェライトとベイナイトとの硬度差を大きくして低降伏比化を図るという観点からは、フェライトの面積率を10%以上とすることが好ましい。また、フェライトの面積分率が50%を超えると強度の劣化を招く場合があるため、強度確保の観点から、フェライトの面積分率は50%以下であることが好ましい。また、低降伏比および強度確保の観点から、ベイナイトの面積分率は10%以上であることが好ましい。
さらに、フェライトとベイナイトとの硬度差は、ビッカース硬さ(HV)で70以上とする。硬度差を70以上にすることにより、歪時効硬化処理前後の降伏比90%以下を満足することができる。低降伏比化の観点からは、該硬度差がHVで75以上であることが好ましい。硬度差がHVで70未満の場合、フェライトあるいはベイナイトの単相組織と挙動が変わらず、降伏比が高くなり、所望の降伏比を達成することが困難となる。一方、フェライトとベイナイトとの硬度差がHVで180より大きい場合、耐HIC特性を劣化させるとともに歪時効後の降伏比を上昇させる場合があるので、硬度差はHVで180以下とすることが好ましく、さらに好ましくは150以下である。
なお、各金属組織は、例えば、光学顕微鏡あるいは走査型電子顕微鏡で観察し、得られた少なくとも3視野以上のミクロ組織写真を画像処理することにより、組織の種類および各相の面積分率を求めることができる。
また、硬度はビッカース硬度計によって測定した値とし、それぞれの相の内部で最適な大きさの圧痕を得るため任意の荷重を選択することができる。フェライトとベイナイトとで同一の荷重で硬度測定をすることが望ましい。また、ミクロ組織の局所的な成分または測定誤差によるばらつきを考慮して、それぞれの組織について少なくとも15点以上の異なる位置で硬度測定を行い、フェライトとベイナイトの硬度として、それぞれの組織の平均硬度を用いることが好ましい。平均硬度を用いる場合の硬度差は、フェライトの硬度の平均値と、ベイナイトの硬度の平均値との差の絶対値を用いるものとする。
3.歪時効処理前後の引張特性
300℃以下の温度の歪時効処理前および歪時効処理後における一様伸びが9%以上および降伏比が90%以下
地震地帯に適用されるラインパイプ用鋼材は、地盤変動のような大きな変形を受ける場合でも破壊しないように高変形能であることが要求されており、さらに防食のためのコーティングで最大300℃に加熱される歪時効処理後でも高変形能を維持することが必要である。300℃以下の温度の歪時効処理前および歪時効処理後における一様伸びが9%以上および降伏比が90%以下である場合は、十分な高変形能が得られ、地震などの大変形により破壊に至る虞はない。高変形能の観点から、300℃以下の温度の歪時効処理前および歪時効処理後における一様伸びは10%以上および降伏比が88%以下であることが好ましい。
4.製造条件
上述した成分組成を有する鋼素材を用い、加熱温度:1000〜1300℃、圧延終了温度:Ar点以上で熱間圧延を行った後、(Ar−50)〜(Ar+30)℃から5℃/s以上の冷却速度で冷却停止温度500〜650℃まで加速冷却を行うことで、所望の金属組織とすることができる。なお、温度は鋼材の中央部の温度とする。なお、Ar点は、以下の式より計算される。
Ar(℃)=910−310C−80Mn−20Cu−15Cr−55Ni−80Mo
上記式において、元素記号は各元素の含有量(質量%)を示し、含有しない場合は0とする。
次に、各製造条件の限定理由について説明する。
加熱温度:1000〜1300℃
加熱温度が1000℃未満では炭化物の固溶が不十分で必要な強度が得られず、1300℃を超えると母材靭性が劣化する。このため、加熱温度を1000〜1300℃に規定する。
圧延終了温度:Ar点以上
圧延終了温度がAr点未満であると、その後のフェライト変態速度が低下し、圧延による塑性歪がフェライト中に残存してフェライト強度が高くなり、フェライトとベイナイトとの硬度差が低下し、所望の降伏比が達成できなくなる。このため、圧延終了温度をAr点以上に規定する。さらに、900℃以下の温度域における累積圧下率を50%以上とすることが好ましい。900℃以下の温度域における累積圧下率を50%以上とすることにより、オーステナイト粒を微細化することができる。
加速冷却の冷却開始温度:(Ar−50)〜(Ar+30)℃
冷却開始温度が(Ar−50)℃未満の温度ではフェライトの面積分率が増加し、母材強度が劣化する。さらに、フェライトとベイナイトの硬度差が大きくなり、耐HIC特性が劣化する。よって、冷却開始温度は(Ar−50)℃以上とし、好ましくは、(Ar−30)℃以上である。また、冷却開始温度が(Ar+30)℃を超えるとフェライトの面積分率が減少するとともに低降伏比化を達成するには不十分となる。よって、冷却開始温度は(Ar+30)℃以下とし、好ましくは、(Ar+25)℃以下である。
加速冷却の冷却速度:5℃/s以上
冷却速度が5℃/s未満では冷却時にパーライトを生成し、十分な強度や低降伏比が得られない。このため、冷却速度を5℃/s以上に規定する。好ましくは、冷却速度は8℃/s以上、より好ましくは10℃/s以上である。また、好ましくは、冷却速度は100℃/s以下、より好ましくは60℃/s以下である。
冷却停止温度:500〜650℃
本発明において、加速冷却の冷却停止温度は重要な製造条件である。冷却停止温度が500未満では、変態によって生じた転位と固溶Cが多く存在し、歪時効処理後の降伏比が上昇し、低降伏比化が達成できない。650℃を超えるとベイナイトが軟化し、フェライトとベイナイトとの硬度差がHVで70未満となり、低降伏比化が達成できない。このため、加速冷却の冷却停止温度を500〜650℃に規定する。好ましくは、冷却停止温度は515℃以上、より好ましくは530℃以上である。また、好ましくは、冷却停止温度は635℃以下、より好ましくは620℃以下である。
以上の製造プロセスにより、300℃以下の温度の歪時効処理前後における一様伸びが9%以上および降伏比が90%以下である耐歪時効特性及び耐HIC性に優れた高変形能ラインパイプ用鋼材を得ることが可能となる。本発明においては、一般的な鋼管のコーティング工程における300℃以下の温度域への熱履歴を経ても、歪時効により降伏比上昇や一様伸びの低下を抑制することができ、一様伸び9%以上および降伏比90%以下を確保することができる。なお、コーティング処理時の熱処理においては、歪時効硬化現象が生じるため、歪時効処理前と歪時効処理後の低降伏比化を達成することにより、溶接鋼管製造においてコーティング処理を行っても低降伏比化を達成することができる。
5.溶接鋼管の製造方法
さらに、溶接鋼管の製造方法について説明する。
本発明は上述の鋼材を用いて鋼管となす。鋼管の成形方法としては、UOEプロセスやプレスベンド(ベンディングプレスとも称する)等の冷間成形によって鋼管形状に成形する方法が挙げられる。
UOEプロセスでは、素材となる厚鋼板の幅方向端部に開先加工を施したのち、プレス機を用いて鋼板の幅方向端部の端曲げを行い、続いて、プレス機を用いて鋼板をU字状にそしてO字状に成形することにより、鋼板の幅方向端部同士が対向するように鋼板を円筒形状に成形する。次いで、鋼板の対向する幅方向端部をつき合わせて溶接する。この溶接をシーム溶接と呼ぶ。このシーム溶接においては、円筒形状の鋼板を拘束し、対向する鋼板の幅方向端部同士を突き合わせて仮付溶接する仮付溶接工程と、サブマージアーク溶接法によって鋼板の突き合わせ部の内外面に溶接を施す本溶接工程との、二段階の工程を有する方法が好ましい。シーム溶接を行った後に、溶接残留応力の除去と鋼管真円度の向上のため、拡管を行う。拡管工程において拡管率(拡管前の管の外径に対する拡管前後の外径変化量の比)は、通常、0.3%〜1.5%の範囲で実施される。真円度改善効果と拡管装置に要求される能力とのバランスの観点から、拡管率は0.5%〜1.2%の範囲であることが好ましい。その後、防食を目的としてコーティング処理を実施することができる。コーティング処理としては、外面に、たとえば、200〜300℃の温度域に加熱した後、たとえば公知の樹脂を塗布すればよい。
プレスベンドの場合には、鋼板に三点曲げを繰り返すことにより逐次成形し、ほぼ円形の断面形状を有する鋼管を製造する。その後は、上述のUOEプロセスと同様に、シーム溶接を実施する。プレスベンドの場合にも、シーム溶接の後、拡管を実施してもよく、また、コーティングを実施することもできる。
表1に示す成分組成(残部はFeおよび不可避的不純物)の鋼(鋼種A〜K)を、表2に示す条件で板厚30mm、33mmの鋼材を製造した。なお、加熱温度、圧延終了温度、冷却停止(終了)温度等の温度は鋼材の中央部温度とした。中央部温度は、スラブもしくは鋼材の中央部に熱電対を挿入し、直接測定、あるいは、スラブもしくは鋼材の表面温度より、板厚、熱伝導率等のパラメータを用いて算出した。また、冷却速度は、熱間圧延終了後、冷却停止(終了)温度まで冷却に必要な温度差をその冷却を行うのに要した時間で割った平均冷却速度である。
Figure 0006226062
Figure 0006226062
上記のように製造した鋼材について、組織観察を行うとともに、引張特性、硬度差、耐HIC特性を評価した。評価方法は以下のとおりである。
(1)組織観察
得られた厚鋼板から組織観察用試験片を採取し、L方向断面を研磨、ナイタール腐食して、板厚中央位置から±2mmの領域である板厚中央部について、光学顕微鏡(倍率:400倍)または走査型電子顕微鏡(倍率:2000倍)を用いて、ミクロ組織を各3視野以上観察し、撮像して画像解析により、組織の種類および各相の面積分率を求めた。
(2)引張特性
歪時効処理前の引張特性については、圧延垂直方向のJIS Z 2201に規定される4号試験片を2本採取し、引張試験を行い、その平均値で評価した。引張強度517MPa以上(API 5L X60以上)を本発明に必要な強度とした。降伏比、一様伸びは、圧延方向のJIS Z 2201に規定される4号試験片を2本採取し、引張試験を行い、その平均値で評価した。降伏比90%以下、一様伸び9%以上を本発明に必要な降伏比とした。
また、歪時効処理後の引張特性については、圧延方向のJIS Z 2201に規定される4号試験片を2本採取し、2.0%の引張歪を付与した後、250℃にて5分間保持して、歪時効処理した後、引張試験を実施し、その平均値で評価した。なお、歪時効処理後の評価基準は、上述した歪時効処理前の評価基準と同一の基準で判定した。
(3)硬度差
得られた厚鋼板から硬さ測定用試験片を採取し、フェライトとベイナイトの硬度を、測定荷重5gのビッカース硬度計により測定し、10点以上の測定結果の平均値を用いて、フェライトとベイナイトとの硬度差を求めた。なお、表3No.10はフェライトを含まないため試験しなかった。
(4)耐HIC特性
100%硫化水素を飽和させたpH約5.0の5%NaClを含む1mol/l酢酸+酢酸ナトリウム緩衝溶液中に96時間浸漬する条件でHIC試験を行い、割れが認められない場合を耐HIC特性良好と判断して○印で示し、割れが発生した場合を×印で示した。
測定結果を表3に示す。
Figure 0006226062
表3において、本発明例であるNo.1〜7はいずれも、成分組成及び製造方法が本発明の範囲内であり、2.0%の引張歪を付与し、250℃にて5分間の歪時効処理前後で、引張強度517MPa以上の高強度で降伏比90%以下、一様伸び9%以上となり、低降伏比、高一様伸びで、かつ優れた耐HIC特性を示した。
また、鋼材の金属組織はフェライトとベイナイト主体であり、フェライトとベイナイトとの硬度差がビッカース硬さで70以上であった。
一方、比較例であるNo.8〜11は、成分組成は本発明の範囲内であるが、製造方法が本発明の範囲外であるため、金属組織、強度、歪時効処理前後いずれかにおける降伏比、一様伸びのいずれかが不十分であった。No.12〜16は成分組成が本発明の範囲外、場合により製造方法も本発明の範囲外であるので、十分な強度が得られないか、降伏比が高いか、一様伸びが低いか、HIC試験で割れが生じていた。

Claims (4)

  1. 成分組成として、質量%で、C:0.030〜0.100%、Si:0.01〜0.50%、Mn:0.5〜2.5%、P:0.015%以下、S:0.002%以下、Cu:0.20〜1.00%、Mo:0.01%以下、Nb:0.005〜0.05%、Ti:0.005〜0.040%、Al:0.10%以下、N:0.007%以下を含有し、残部がFeおよび不可避的不純物からなり、金属組織はフェライトおよびベイナイトを主体とし、前記フェライトおよびベイナイトの面積分率は合計で90%以上であり、前記フェライトと前記ベイナイトとの硬度差がビッカース硬さで70以上であり、300℃以下の温度の歪時効処理前および歪時効処理後における一様伸びが9%以上および降伏比が90%以下である耐歪時効特性及び耐HIC特性に優れた高変形能ラインパイプ用鋼材。
  2. 成分組成として、質量%で、C:0.030〜0.100%、Si:0.01〜0.50%、Mn:0.5〜2.5%、P:0.015%以下、S:0.002%以下、Cu:0.20〜1.00%、Mo:0.01%以下、Nb:0.005〜0.05%、Ti:0.010〜0.040%、Al:0.10%以下、N:0.006%以下を含有し、さらに、質量%で、Ni:0.02〜0.50%、Cr:1.00%以下、V:0.10%以下、Ca:0.0050%以下、B:0.0050%以下のうちから選ばれる1種または2種以上を含有し、残部がFeおよび不可避的不純物からなり、金属組織はフェライトおよびベイナイトを主体とし、前記フェライトおよびベイナイトの面積分率は合計で90%以上であり、前記フェライトと前記ベイナイトとの硬度差がビッカース硬さで70以上であり、300℃以下の温度の歪時効処理前および歪時効処理後における一様伸びが9%以上および降伏比が90%以下である耐歪時効特性及び耐HIC特性に優れた高変形能ラインパイプ用鋼材。
  3. 請求項1または請求項2に記載の成分組成を有する鋼を、1000〜1300℃の温度に加熱し、Ar点以上の圧延終了温度で熱間圧延した後、(Ar−50)〜(Ar+30)℃から5℃/s以上の冷却速度で冷却停止温度500〜650℃まで加速冷却を行う、金属組織がフェライトおよびベイナイト主体であり、前記フェライト及びベイナイトの面積分率は合計で90%以上であり、前記フェライトと前記ベイナイトとの硬度差がビッカース硬さで70以上であり、300℃以下の温度の歪時効処理前および歪時効処理後における一様伸びが9%以上、降伏比が90%以下である耐歪時効特性及び耐HIC特性に優れた高変形能ラインパイプ用鋼材の製造方法。
  4. 請求項1または請求項2に記載の耐歪時効特性及び耐HIC特性に優れた高変形能ラインパイプ用鋼材を素材とする溶接鋼管。
JP2016511375A 2014-03-31 2015-03-26 耐歪時効特性及び耐hic特性に優れた高変形能ラインパイプ用鋼材およびその製造方法ならびに溶接鋼管 Active JP6226062B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014070824 2014-03-31
JP2014070824 2014-03-31
PCT/JP2015/001726 WO2015151469A1 (ja) 2014-03-31 2015-03-26 耐歪時効特性及び耐hic特性に優れた高変形能ラインパイプ用鋼材およびその製造方法ならびに溶接鋼管

Publications (2)

Publication Number Publication Date
JPWO2015151469A1 JPWO2015151469A1 (ja) 2017-04-13
JP6226062B2 true JP6226062B2 (ja) 2017-11-08

Family

ID=54239815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016511375A Active JP6226062B2 (ja) 2014-03-31 2015-03-26 耐歪時効特性及び耐hic特性に優れた高変形能ラインパイプ用鋼材およびその製造方法ならびに溶接鋼管

Country Status (7)

Country Link
US (1) US10344362B2 (ja)
EP (1) EP3128029B1 (ja)
JP (1) JP6226062B2 (ja)
KR (1) KR101893845B1 (ja)
CN (1) CN106133175B (ja)
RU (1) RU2653031C2 (ja)
WO (1) WO2015151469A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110643884A (zh) * 2019-10-10 2020-01-03 南京钢铁股份有限公司 一种一钢多级用管线钢坯料生产方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2653031C2 (ru) * 2014-03-31 2018-05-04 ДжФЕ СТИЛ КОРПОРЕЙШН Сталь для высокодеформируемых труб магистральных трубопроводов с высокой стойкостью к деформационному старению и водородному охрупчиванию, способ их изготовления и сварная стальная труба
US10465261B2 (en) * 2014-03-31 2019-11-05 Jfe Steel Corporation Steel material for highly deformable line pipes having superior strain aging resistance and superior HIC resistance, method for manufacturing same, and welded steel pipe
CN108350540A (zh) * 2015-12-04 2018-07-31 株式会社神户制钢所 抑制了焊接热影响部的低温韧性劣化和焊接热影响部的硬度的具有高屈服强度的非调质钢板
KR20180077259A (ko) * 2016-03-22 2018-07-06 신닛테츠스미킨 카부시키카이샤 라인 파이프용 전봉 강관
CN105886915A (zh) * 2016-05-12 2016-08-24 宝鸡石油钢管有限责任公司 一种抗h2s腐蚀的空芯钢制连续抽油杆
CN106011666A (zh) * 2016-06-03 2016-10-12 深圳市樊溪电子有限公司 一种低合金钢、钢管及其制造方法
CN106498287B (zh) * 2016-12-15 2018-11-06 武汉钢铁有限公司 一种ct90级连续管用热轧钢带及其生产方法
KR101899689B1 (ko) 2016-12-23 2018-09-17 주식회사 포스코 길이방향 균일 연신율이 우수한 용접강관용 강재, 이의 제조방법 및 이를 이용한 강관
CN111051555B (zh) * 2017-09-08 2022-01-21 杰富意钢铁株式会社 钢板及其制造方法
KR101949036B1 (ko) * 2017-10-11 2019-05-08 주식회사 포스코 저온 변형시효 충격특성이 우수한 후강판 및 그 제조방법
JP7155703B2 (ja) * 2018-07-19 2022-10-19 日本製鉄株式会社 ラインパイプ用厚鋼板およびその製造方法
CN109536838B (zh) * 2018-12-20 2020-12-01 张家港宏昌钢板有限公司 针状铁素体型耐低温n80级石油套管用钢及制备方法
JP7163777B2 (ja) * 2019-01-09 2022-11-01 日本製鉄株式会社 ラインパイプ用鋼板
CN113646455B (zh) * 2019-03-28 2023-06-27 杰富意钢铁株式会社 管线管用钢材及其制造方法以及管线管及其制造方法
JP6693610B1 (ja) * 2019-08-23 2020-05-13 日本製鉄株式会社 ラインパイプ用電縫鋼管
CN111286672B (zh) * 2020-03-25 2022-03-29 江苏省沙钢钢铁研究院有限公司 一种针状铁素体型x60级抗hic管线钢及其轧制方法

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597425A (en) 1979-01-19 1980-07-24 Nippon Kokan Kk <Nkk> Preparation of high-tensile steel with low yield ratio, low carbon and low alloy
JPS62290847A (ja) * 1986-06-11 1987-12-17 Nippon Kokan Kk <Nkk> 硫化水素を含む湿潤環境で使用される母材鋼の製造方法
JPH01176027A (ja) 1987-12-29 1989-07-12 Nippon Steel Corp 低降伏比高張力溶接構造用鋼板の製造方法
JPH08209241A (ja) * 1995-02-02 1996-08-13 Nippon Steel Corp 耐co2 腐食性および低温靱性の優れたラインパイプ用鋼板の製造方法
JP4089455B2 (ja) 2002-02-07 2008-05-28 Jfeスチール株式会社 耐hic特性に優れた高強度鋼材
JP3869747B2 (ja) 2002-04-09 2007-01-17 新日本製鐵株式会社 変形性能に優れた高強度鋼板、高強度鋼管および製造方法
CA2527594C (en) 2003-06-12 2010-11-02 Jfe Steel Corporation Low yield ratio, high strength, high toughness, thick steel plate and welded steel pipe, and method for manufacturing the same
JP4507746B2 (ja) 2003-07-31 2010-07-21 Jfeスチール株式会社 耐歪時効特性に優れた低降伏比高強度高靱性鋼管及びその製造方法
JP4412098B2 (ja) 2003-07-31 2010-02-10 Jfeスチール株式会社 溶接熱影響部靭性に優れた低降伏比高強度鋼板及びその製造方法
JP4066905B2 (ja) 2003-07-31 2008-03-26 Jfeスチール株式会社 溶接熱影響部靱性に優れた低降伏比高強度高靱性鋼板の製造方法
JP4507747B2 (ja) 2003-07-31 2010-07-21 Jfeスチール株式会社 耐歪時効特性に優れた低降伏比高強度高靱性鋼管及びその製造方法
JP4305216B2 (ja) 2004-02-24 2009-07-29 Jfeスチール株式会社 溶接部の靭性に優れる耐サワー高強度電縫鋼管用熱延鋼板およびその製造方法
RU2427662C2 (ru) * 2006-11-30 2011-08-27 Ниппон Стил Корпорейшн Высокопрочная сварная стальная труба для трубопровода, обладающая превосходной низкотемпературной вязкостью, и способ ее изготовления
JP5251089B2 (ja) * 2006-12-04 2013-07-31 新日鐵住金株式会社 低温靱性に優れた高強度厚肉ラインパイプ用溶接鋼管及びその製造方法
KR101257547B1 (ko) 2007-07-23 2013-04-23 신닛테츠스미킨 카부시키카이샤 변형 특성이 우수한 강관 및 그 제조 방법
US8778096B2 (en) 2009-09-30 2014-07-15 Jfe Steel Corporation Low yield ratio, high strength and high toughness steel plate and method for manufacturing the same
JP5532800B2 (ja) * 2009-09-30 2014-06-25 Jfeスチール株式会社 耐歪時効特性に優れた低降伏比高強度高一様伸び鋼板及びその製造方法
KR101450977B1 (ko) * 2009-09-30 2014-10-15 제이에프이 스틸 가부시키가이샤 저항복비, 고강도 및 고일정 연신을 가진 강판 및 그 제조 방법
WO2011065582A1 (ja) 2009-11-25 2011-06-03 Jfeスチール株式会社 高い圧縮強度および耐サワー性に優れたラインパイプ用溶接鋼管及びその製造方法
WO2011065578A1 (ja) 2009-11-25 2011-06-03 Jfeスチール株式会社 高い圧縮強度および高い靭性に優れたラインパイプ用溶接鋼管及びその製造方法
JP5857400B2 (ja) 2009-11-25 2016-02-10 Jfeスチール株式会社 高圧縮強度ラインパイプ用溶接鋼管及びその製造方法
JP5640899B2 (ja) 2010-06-08 2014-12-17 新日鐵住金株式会社 ラインパイプ用鋼材
JP5742123B2 (ja) * 2010-07-16 2015-07-01 Jfeスチール株式会社 ラインパイプ用高強度溶接鋼管向け高張力熱延鋼板およびその製造方法
JP5796351B2 (ja) 2011-05-24 2015-10-21 Jfeスチール株式会社 耐圧潰性に優れた高強度耐サワーラインパイプおよびその製造方法
JP5782827B2 (ja) 2011-05-24 2015-09-24 Jfeスチール株式会社 高圧縮強度耐サワーラインパイプ用鋼管及びその製造方法
JP6047947B2 (ja) * 2011-06-30 2016-12-21 Jfeスチール株式会社 耐サワー性に優れたラインパイプ用厚肉高強度継目無鋼管およびその製造方法
RU2496906C2 (ru) * 2011-09-02 2013-10-27 Открытое акционерное общество "ОМК-Сталь" (ОАО "ОМК-Сталь") Низкоуглеродистая сталь и прокат из низкоуглеродистой стали повышенной стойкости к водородному растрескиванию и повышенной хладостойкости
JP5903880B2 (ja) 2011-12-26 2016-04-13 Jfeスチール株式会社 耐サワー特性と溶接熱影響部靭性に優れたラインパイプ用高強度鋼板及びその製造方法
CN104011245B (zh) 2011-12-27 2017-03-01 杰富意钢铁株式会社 高张力热轧钢板及其制造方法
JP5516785B2 (ja) 2012-03-29 2014-06-11 Jfeスチール株式会社 低降伏比高強度鋼板およびその製造方法並びにそれを用いた高強度溶接鋼管
JP5516784B2 (ja) 2012-03-29 2014-06-11 Jfeスチール株式会社 低降伏比高強度鋼板およびその製造方法並びにそれを用いた高強度溶接鋼管
JP6008042B2 (ja) 2013-03-29 2016-10-19 Jfeスチール株式会社 厚肉鋼管用鋼板、その製造方法、および厚肉高強度鋼管
RU2653031C2 (ru) * 2014-03-31 2018-05-04 ДжФЕ СТИЛ КОРПОРЕЙШН Сталь для высокодеформируемых труб магистральных трубопроводов с высокой стойкостью к деформационному старению и водородному охрупчиванию, способ их изготовления и сварная стальная труба
US10465261B2 (en) * 2014-03-31 2019-11-05 Jfe Steel Corporation Steel material for highly deformable line pipes having superior strain aging resistance and superior HIC resistance, method for manufacturing same, and welded steel pipe
JP6048621B1 (ja) * 2015-05-20 2016-12-21 新日鐵住金株式会社 高強度電縫鋼管、高強度電縫鋼管用の鋼板の製造方法、及び高強度電縫鋼管の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110643884A (zh) * 2019-10-10 2020-01-03 南京钢铁股份有限公司 一种一钢多级用管线钢坯料生产方法

Also Published As

Publication number Publication date
CN106133175B (zh) 2018-09-07
US10344362B2 (en) 2019-07-09
JPWO2015151469A1 (ja) 2017-04-13
WO2015151469A1 (ja) 2015-10-08
RU2016138675A3 (ja) 2018-04-02
RU2016138675A (ru) 2018-04-02
KR20160129875A (ko) 2016-11-09
RU2653031C2 (ru) 2018-05-04
EP3128029A1 (en) 2017-02-08
CN106133175A (zh) 2016-11-16
EP3128029A4 (en) 2017-09-20
US20170022590A1 (en) 2017-01-26
KR101893845B1 (ko) 2018-08-31
EP3128029B1 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
JP6226062B2 (ja) 耐歪時効特性及び耐hic特性に優れた高変形能ラインパイプ用鋼材およびその製造方法ならびに溶接鋼管
JP6048615B2 (ja) 耐歪時効特性及び耐hic特性に優れた高変形能ラインパイプ用鋼材およびその製造方法ならびに溶接鋼管
US10767250B2 (en) Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes
JP6521197B2 (ja) 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管
RU2677554C1 (ru) Толстолистовая сталь для конструкционных труб или трубок, способ производства толстолистовой стали для конструкционных труб или трубок и конструкционные трубы или трубки
JP5782827B2 (ja) 高圧縮強度耐サワーラインパイプ用鋼管及びその製造方法
RU2679499C1 (ru) Листовая сталь для конструкционных труб или трубок, способ производства листовой стали для конструкционных труб или трубок и конструкционные трубы и трубки
WO2020067209A1 (ja) 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管
KR20190129097A (ko) 내사우어 라인 파이프용 고강도 강판 및 그의 제조 방법 그리고 내사우어 라인 파이프용 고강도 강판을 이용한 고강도 강관
JP6665822B2 (ja) 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管
WO2020067210A1 (ja) 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管
JP5786351B2 (ja) 耐コラプス性能の優れたラインパイプ用鋼管
JP6241434B2 (ja) ラインパイプ用鋼板、ラインパイプ用鋼管、およびその製造方法
JP6521196B1 (ja) 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170925

R150 Certificate of patent or registration of utility model

Ref document number: 6226062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250