WO2009119375A1 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
WO2009119375A1
WO2009119375A1 PCT/JP2009/055100 JP2009055100W WO2009119375A1 WO 2009119375 A1 WO2009119375 A1 WO 2009119375A1 JP 2009055100 W JP2009055100 W JP 2009055100W WO 2009119375 A1 WO2009119375 A1 WO 2009119375A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
drain
compression
pressure
Prior art date
Application number
PCT/JP2009/055100
Other languages
English (en)
French (fr)
Inventor
敦史 吉見
修二 藤本
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2009119375A1 publication Critical patent/WO2009119375A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/072Intercoolers therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Definitions

  • the present invention relates to a refrigeration apparatus, and more particularly, to a refrigeration apparatus including a refrigerant circuit having a compression mechanism, a radiator, and an evaporator, and a drain pan that receives drain water generated in the evaporator.
  • a compressor As a kind of refrigeration apparatus, a compressor, a water refrigerant heat exchanger as a radiator that performs heat exchange between hot water and refrigerant, an expansion valve, and air heat as an evaporator that evaporates the refrigerant
  • a heat pump unit of a heat pump type water heater that includes a refrigerant circuit having an exchanger and a drain pan that receives drain water generated in the air heat exchanger.
  • the drain water generated in the air heat exchanger is discharged from a compressor or a configuration that heats the drain water generated by the high-pressure side pipe from the water refrigerant heat exchanger to the expansion valve.
  • the antifreezing refrigerant pipe as a drain heater when used in low temperature conditions such as winter and cold regions. Since the refrigerant flowing through the pipe is a high-pressure refrigerant in the refrigeration cycle, the power consumed to compress the refrigerant flowing through the anti-freezing refrigerant pipe to the high pressure in the refrigeration cycle by the compressor causes energy loss, and the refrigeration cycle This may cause the operating efficiency of the vehicle to deteriorate.
  • An object of the present invention is to provide a drain capable of suppressing an increase in energy loss in a refrigeration apparatus including a refrigerant circuit having a compression mechanism, a radiator, and an evaporator, and a drain pan that receives drain water generated in the evaporator. It is to provide a heater.
  • a refrigeration apparatus is generated in a compression mechanism, a radiator that radiates the refrigerant compressed by the compression mechanism, an evaporator that evaporates the refrigerant radiated by the radiator using air as a heat source, and the evaporator A drain pan for receiving drain water and a drain heater.
  • the compression mechanism has a plurality of compression elements, and is configured to sequentially compress the refrigerant discharged from the front-stage compression elements of the plurality of compression elements with the rear-stage compression elements
  • the drain heater is a heat exchanger that heats drain water using a refrigerant that is discharged from the compression element on the front stage side and sucked into the compression element on the rear stage side.
  • compression mechanism refers to a compressor in which a plurality of compression elements are integrally incorporated, a compressor in which a single compression element is incorporated, and / or a compressor in which a plurality of compression elements are incorporated. This means a configuration that includes a unit connected.
  • compression element on the front stage and “compression element on the rear stage” It is not only meant to include two compression elements connected in series, but a plurality of compression elements are connected in series, and the relationship between the compression elements is the above-mentioned “previous-side compression element” ”And“ compression element on the rear stage side ”.
  • a multistage compression type compression mechanism is employed, and drain water generated in the evaporator is heated by a refrigerant (that is, an intermediate pressure refrigerant in a refrigeration cycle) sucked into a compression element on the rear stage side of the compression mechanism. Since the drain heater is used, the drain water is heated to suppress freezing and growth of the drain water in the evaporator and drain pan, and the temperature of the intermediate pressure refrigerant in the refrigeration cycle is reduced to reduce the temperature in the refrigeration cycle. Increase in energy loss can be suppressed. Thereby, in this refrigeration apparatus, an increase in energy loss can be suppressed as compared with a case where a drain heater that heats drain water with a high-pressure refrigerant in the refrigeration cycle is used.
  • a refrigeration apparatus is the refrigeration apparatus according to the first aspect of the present invention, wherein the drain heater is disposed at the lower part of the evaporator.
  • the drain heater is disposed at the lower part of the evaporator, the drain water is less likely to freeze at the lower part of the evaporator where the amount of attached drain water is the largest due to the flow of the drain water. Freezing and growth of drain water in the evaporator can be effectively suppressed.
  • a refrigeration apparatus is the refrigeration apparatus according to the first aspect, wherein the drain heater is disposed in the drain pan.
  • the drain heater since the drain heater is disposed in the drain pan, the drain water that flows down from the evaporator and accumulates in the drain pan becomes difficult to freeze, thereby effectively freezing and growing the drain water in the drain pan. Can be suppressed.
  • a refrigeration apparatus is the refrigeration apparatus according to the first aspect of the present invention, wherein the drain heater is a first drain heater disposed at the lower portion of the evaporator and a second drain heater disposed at the drain pan. And have.
  • the drain heater since the drain heater has the first drain heater disposed in the lower part of the evaporator and the second drain heater disposed in the drain pan, the drain water flows most by the flow of the drain water.
  • the drain water is less likely to freeze in the lower part of the evaporator where the amount of adhesion increases, and the drain water that flows down from the evaporator and accumulates in the drain pan is less likely to freeze, thereby freezing and growing the drain water in the evaporator, And both freezing and growth of drain water in a drain pan can be suppressed effectively.
  • the refrigeration apparatus is the refrigeration apparatus according to the fourth aspect of the invention, wherein the refrigerant discharged from the front-stage compression element and sucked into the rear-stage compression element is heated by the first drain heater and the second drain heater.
  • a drain heater switching mechanism is further provided for switching so as to allow flow to only one of the units.
  • a drain heater switching mechanism that enables switching between the first drain heater and the second drain heater is further provided, either the first drain heater or the second drain heater is provided. Only one can be used as needed.
  • a refrigeration apparatus is a compression mechanism, a heat exchanger that uses air as a heat source and functions as a heat radiator or evaporator for a refrigerant, and a refrigerant evaporator or radiator for a refrigerant.
  • a switching mechanism that switches between a heating operation state in which the refrigerant is circulated in the order of a use side heat exchanger that functions as a refrigerant radiator and a heat source side heat exchanger that functions as a refrigerant evaporator, and is generated in the heat source side heat exchanger
  • a drain pan for receiving drain water, an intermediate heat exchanger, and a drain heater are provided.
  • the compression mechanism has a plurality of compression elements, and is configured to sequentially compress the refrigerant discharged from the front-stage compression elements of the plurality of compression elements with the rear-stage compression elements
  • the intermediate heat exchanger is a heat exchanger that functions as a refrigerant cooler that is discharged from the front-stage compression element and sucked into the rear-stage compression element when the switching mechanism is in the cooling operation state.
  • the heater is a heat exchanger capable of heating the drain water with the refrigerant discharged from the front-stage compression element and sucked into the rear-stage compression element when the switching mechanism is in the heating operation state. .
  • compression mechanism refers to a compressor in which a plurality of compression elements are integrally incorporated, a compressor in which a single compression element is incorporated, and / or a compressor in which a plurality of compression elements are incorporated. This means a configuration that includes a unit connected.
  • compression element on the front stage and “compression element on the rear stage” It is not only meant to include two compression elements connected in series, but a plurality of compression elements are connected in series, and the relationship between the compression elements is the above-mentioned “previous-side compression element” ”And“ compression element on the rear stage side ”.
  • a multistage compression type compression mechanism is adopted, and when the switching mechanism is in the cooling operation state, An intermediate heat exchanger that functions as a cooler for refrigerant sucked into the compression element on the rear stage side (that is, refrigerant of intermediate pressure in the refrigeration cycle), and a heat source side heat exchanger when the switching mechanism is in a heating operation state Because the drain heater that heats the drain water generated in the refrigeration cycle is used, the intermediate heat exchanger lowers the temperature of the intermediate pressure refrigerant in the refrigeration cycle during the cooling operation.
  • the intermediate heat exchanger is used to cool the intermediate pressure refrigerant in the refrigeration cycle with the air as the heat source, so that the heat source side heat exchanger that functions as a refrigerant radiator is used.
  • the heat dissipation loss can be reduced, and during heating operation, the drain heater is used to suppress freezing and growth of drain water, and the intermediate pressure refrigerant in the refrigeration cycle is cooled by the drain water as the heat source. Compared to the case of using a drain heater that heats drain water with a high-pressure refrigerant, an increase in energy loss during heating operation can be suppressed.
  • a refrigeration apparatus is the refrigeration apparatus according to the sixth aspect of the invention, wherein the drain heater is disposed at the lower part of the heat source side heat exchanger.
  • the drain heater since the drain heater is disposed at the lower part of the heat source side heat exchanger, the drain water is frozen at the lower part of the heat source side heat exchanger where the amount of drain water adhering to the greatest amount due to the flow of drain water. As a result, it is possible to effectively suppress freezing and growth of drain water in the heat source side heat exchanger.
  • a refrigeration apparatus is the refrigeration apparatus according to the sixth aspect, wherein the drain heater is disposed in the drain pan.
  • the drain heater since the drain heater is arranged in the drain pan, the drain water that flows down from the heat source side heat exchanger and accumulates in the drain pan becomes difficult to freeze, thereby freezing and growing the drain water in the drain pan. It can be effectively suppressed.
  • a refrigeration apparatus is the refrigeration apparatus according to the sixth aspect, wherein the drain heater is a first drain heater disposed at a lower portion of the heat source side heat exchanger and a second drain disposed in the drain pan. And a drain heater.
  • the drain heater has the first drain heater arranged at the lower part of the heat source side heat exchanger and the second drain heater arranged in the drain pan, so that the drain water flows most In the lower part of the heat source side heat exchanger where the amount of drain water increases, the drain water is less likely to freeze, and the drain water that flows down from the heat source side heat exchanger and accumulates in the drain pan is less likely to freeze. Both freezing and growth of drain water in the heat exchanger and freezing and growth of drain water in the drain pan can be effectively suppressed.
  • the refrigeration apparatus is the refrigeration apparatus according to the ninth aspect of the invention, wherein the refrigerant discharged from the front-stage compression element and sucked into the rear-stage compression element is heated by the first drain heater and the second drain heater.
  • a drain heater switching mechanism is further provided for switching so as to allow flow to only one of the units.
  • a drain heater switching mechanism that enables switching between the first drain heater and the second drain heater is further provided, either the first drain heater or the second drain heater is provided. One can be used as needed.
  • the refrigeration apparatus is the refrigeration apparatus according to the sixth to tenth aspects of the invention, wherein the intermediate heat exchanger is a refrigerant that dissipates heat in the use side heat exchanger when the switching mechanism is in a heating operation state. It functions as an evaporator.
  • the intermediate heat exchanger when the switching mechanism is in the heating operation state, it functions as an evaporator for the refrigerant that has dissipated heat in the use-side heat exchanger. While increasing the size, the intermediate heat exchanger can be effectively used during the heating operation.
  • a refrigeration apparatus is the refrigeration apparatus according to the eleventh aspect of the present invention, wherein the intermediate heat exchanger is disposed on the heat source side heat exchanger.
  • drain water is also generated from the intermediate heat exchanger during the heating operation, but is generated in the intermediate heat exchanger because the intermediate heat exchanger is disposed above the heat source side heat exchanger.
  • the drain water flows down through the heat source side heat exchanger, and not only the drain water generated in the heat source side heat exchanger but also the drain water generated in the intermediate heat exchanger can be heated by the drain heater.
  • a refrigeration apparatus is the refrigeration apparatus according to any of the sixth to twelfth inventions, wherein the intermediate heat exchanger has a larger heat transfer area than the drain heater.
  • the intermediate heat exchanger has a larger heat transfer area than the drain heater, so that during the cooling operation, the intermediate pressure refrigerant in the refrigeration cycle can be significantly cooled.
  • the heat dissipation loss in the heat source side heat exchanger that sometimes functions as a radiator can be greatly reduced.
  • FIG. 1 is a pressure-enthalpy diagram illustrating a refrigeration cycle.
  • FIG. 3 is a temperature-entropy diagram illustrating a refrigeration cycle.
  • FIG. 3 is a pressure-enthalpy diagram illustrating a refrigeration cycle during cooling operation.
  • FIG. 3 is a temperature-entropy diagram illustrating a refrigeration cycle during cooling operation.
  • FIG. 3 is a pressure-enthalpy diagram illustrating a refrigeration cycle during heating operation.
  • FIG. 3 is a temperature-entropy diagram illustrating a refrigeration cycle during heating operation. The characteristics of the heat transfer coefficient when carbon dioxide with an intermediate pressure lower than the critical pressure flows into the heat transfer channel and the heat transfer coefficient with high pressure carbon dioxide exceeding the critical pressure flowing in the heat transfer channel.
  • FIG. It is a schematic block diagram of the air conditioning apparatus concerning the modification 1 of 2nd Embodiment. It is a side view of the heat source unit in the state which removed the right board of the heat source unit in the modification 1 of 2nd Embodiment.
  • FIG. 10 is a pressure-enthalpy diagram illustrating a refrigeration cycle during cooling operation according to Modification 4 of the second embodiment.
  • FIG. 3 is a temperature-entropy diagram illustrating a refrigeration cycle during cooling operation. It is a figure which shows the flow of the refrigerant
  • FIG. 10 is a pressure-enthalpy diagram illustrating a refrigeration cycle during a heating operation according to Modification 4 of the second embodiment.
  • FIG. 10 is a pressure-enthalpy diagram illustrating a refrigeration cycle during a cooling operation according to Modification 5 of the second embodiment.
  • FIG. 3 is a temperature-entropy diagram illustrating a refrigeration cycle during cooling operation.
  • FIG. 10 is a pressure-enthalpy diagram illustrating a refrigeration cycle during a heating operation according to Modification 5 of the second embodiment.
  • FIG. 10 is a temperature-entropy diagram illustrating a refrigeration cycle during a heating operation according to Modification 5 of the second embodiment.
  • It is a schematic block diagram of the air conditioning apparatus concerning the modification 6 of 2nd Embodiment.
  • It is a figure which shows the flow of the refrigerant
  • FIG. 10 is a pressure-enthalpy diagram illustrating a refrigeration cycle during cooling operation according to Modification 6 of the second embodiment.
  • FIG. 3 is a temperature-entropy diagram illustrating a refrigeration cycle during cooling operation. It is a figure which shows the flow of the refrigerant
  • FIG. 10 is a temperature-entropy diagram illustrating a refrigeration cycle during a heating operation according to Modification 6 of the second embodiment. It is a schematic block diagram of the air conditioning apparatus concerning the modification 7 of 2nd Embodiment.
  • Air conditioning equipment (refrigeration equipment) 2, 102, 702 Compression mechanism 3 Switching mechanism 4 Heat source side heat exchanger (heat radiator, evaporator) 6 Use side heat exchanger (evaporator, radiator) 7 Intermediate heat exchanger 77, 777 Drain pan 97, 797 Drain heater 97a, 797a First drain heater 97b, 797b Second drain heater 98, 798 Drain heater switching mechanism 701 Heat pump unit (refrigeration apparatus) 704 Water refrigerant heat exchanger (heat radiator) 706 Evaporator
  • FIG. 1 is a schematic configuration diagram of a heat pump unit 701 constituting a heat pump type hot water heater as a first embodiment of a refrigeration apparatus according to the present invention.
  • the heat pump unit 701 has a refrigerant circuit 710 for heating water (water supply) supplied from a hot water storage unit (not shown), and a unit for returning the heated water (hot water) to the hot water storage unit. It is.
  • the refrigerant circuit 710 of the heat pump unit 701 mainly includes a compression mechanism 702, a water refrigerant heat exchanger 704, an expansion mechanism 705, an evaporator 706, and a drain heater 797, and operates in the supercritical region.
  • the refrigerant to be charged here, carbon dioxide
  • the refrigerant to be charged here, carbon dioxide
  • the compression mechanism 702 includes a compressor 721 that compresses the refrigerant in two stages with two compression elements.
  • the compressor 721 has a sealed structure in which a compressor drive motor 721b, a drive shaft 721c, and compression elements 702c and 702d are accommodated in a casing 721a.
  • the compressor drive motor 721b is connected to the drive shaft 721c.
  • the drive shaft 721c is connected to the two compression elements 702c and 702d. That is, in the compressor 721, two compression elements 702c and 702d are connected to a single drive shaft 721c, and the two compression elements 702c and 702d are both rotationally driven by the compressor drive motor 721b. It has a stage compression structure.
  • the compression elements 702c and 702d are volumetric compression elements such as a rotary type and a scroll type.
  • the compressor 721 sucks the refrigerant from the suction pipe 702a, compresses the sucked refrigerant by the compression element 702c, discharges the refrigerant to the intermediate refrigerant pipe 708, and discharges the refrigerant discharged to the intermediate refrigerant pipe 708 to the compression element 702d. And the refrigerant is further compressed and then discharged to the discharge pipe 702b.
  • the intermediate refrigerant pipe 708 sucks the intermediate-pressure refrigerant in the refrigeration cycle discharged from the compression element 702c connected to the upstream side of the compression element 702d into the compression element 702d connected to the downstream side of the compression element 702c. It is a refrigerant pipe for making it.
  • the discharge pipe 702b is a refrigerant pipe for sending high-pressure refrigerant in the refrigeration cycle discharged from the compression mechanism 702 to the water-refrigerant heat exchanger 704.
  • the discharge pipe 702b includes an oil separation mechanism 741 and a check mechanism. 742.
  • the oil separation mechanism 741 is a mechanism for separating the refrigeration oil accompanying the refrigerant discharged from the compression mechanism 702 from the refrigerant and returning it to the suction side of the compression mechanism 702, and mainly accompanying the refrigerant discharged from the compression mechanism 702.
  • An oil separator 741a that separates the refrigerating machine oil from the refrigerant, and an oil return pipe 741b that is connected to the oil separator 741a and returns the refrigerating machine oil separated from the refrigerant to the suction pipe 702a of the compression mechanism 702 are provided.
  • the oil return pipe 741b is provided with a pressure reducing mechanism 741c for reducing the pressure of the refrigerating machine oil flowing through the oil return pipe 741b.
  • the decompression mechanism 741c uses a capillary tube in this embodiment.
  • the check mechanism 742 allows the flow of refrigerant from the discharge side of the compression mechanism 702 to the water refrigerant heat exchanger 704 as a radiator, and discharges the compression mechanism 702 from the water refrigerant heat exchanger 704 as a radiator. This is a mechanism for blocking the flow of refrigerant to the side, and a check valve is used in this embodiment.
  • the compression mechanism 702 has the two compression elements 702c and 702d, and the refrigerant discharged from the compression element on the front stage of the compression elements 702c and 702d is on the rear stage side.
  • the compression elements are sequentially compressed by the compression elements.
  • the water refrigerant heat exchanger 704 is a heat exchanger that functions as a radiator for the refrigerant compressed by the compression mechanism 702.
  • One end of the water-refrigerant heat exchanger 704 is connected to the compression mechanism 702, and the other end is connected to the expansion mechanism 5.
  • the water-refrigerant heat exchanger 704 is configured such that water (water supply) is supplied from a hot water storage unit (not shown) through the water circulation pump 779, and can exchange heat with the refrigerant.
  • the water circulation pump 779 is rotationally driven by a pump drive motor 779a.
  • the expansion mechanism 705 is a mechanism that depressurizes the refrigerant, and an electric expansion valve is used in the present embodiment. Further, in the present embodiment, the expansion mechanism 705 reduces the pressure of the high-pressure refrigerant radiated in the water-refrigerant heat exchanger 704 until it reaches a low pressure in the refrigeration cycle before being sent to the evaporator 706.
  • the evaporator 706 is a heat exchanger that evaporates the refrigerant radiated by the water refrigerant heat exchanger 704 as a radiator using air as a heat source, one end of which is connected to the expansion mechanism 705 and the other end is a compression mechanism. 702 is connected. Air as a heat source of the evaporator 706 is supplied by a blower fan 740. The blower fan 740 is rotationally driven by a fan drive motor 740a.
  • the drain heater 797 is a heat exchanger that heats the drain water generated in the evaporator 706 by the refrigerant discharged from the front-stage compression element 702c and sucked into the rear-stage compression element 702d.
  • the intermediate refrigerant pipe 708 is provided.
  • FIG. 2 is a perspective view showing a schematic internal structure of the heat pump unit 701
  • FIG. 3 is a view of the evaporator 706, the drain heater 797, and the bottom plate 777 as a drain pan from the front side of the heat pump unit 701.
  • “left” and “right” are based on the case where the heat pump unit 701 is viewed from the front plate 775 side.
  • the heat pump unit 701 is a so-called side-blowing type that sucks air from the back and side surfaces and blows air forward, and mainly includes a casing 771 and water disposed in the casing 771.
  • Refrigerant heat exchanger 704 (not shown in FIG. 2), water circulation pump 779 (not shown in FIG. 2), expansion mechanism 5 (not shown in FIG. 2), evaporator 706, drain heater 797, And a device such as a blower fan 740.
  • the casing 771 is a substantially rectangular parallelepiped box, and mainly includes a top plate 772 (illustrated by a two-dot chain line in FIG.
  • the top plate 772 is a horizontally long and substantially rectangular plate-like member that constitutes the top surface of the heat pump unit 701.
  • the left plate 773 is a plate-like member having a substantially rectangular shape in a side view extending downward from the left edge of the top plate 772, and a suction opening (not shown) is formed almost entirely.
  • the right plate 774 is a plate-like member having a substantially rectangular shape in a side view extending downward from the right edge of the top plate 772.
  • the rear plate 776 is a plate-like member having a substantially rectangular shape in front view that constitutes the front surface of the casing 771, and a suction opening (not shown) is formed almost entirely.
  • the front plate 775 is a plate-like member that forms a front surface of the casing 771 and has a substantially rectangular shape when viewed from the front. The air taken into the casing 771 through the suction openings formed on the rear surface and the left side surface of the casing 771 to the outside. A blowout opening 775a for blowing out is formed.
  • the bottom plate 777 is a plate-like member having a substantially rectangular shape in plan view constituting the bottom surface of the casing 771, and also has a function as a drain pan that receives drain water generated in the evaporator 706 and drains it out of the casing 771. .
  • the evaporator 706 consists of the heat exchanger panel formed in the planar view L shape along the left side surface and rear surface of the casing 771 in this embodiment, and was comprised by the heat exchanger tube and many heat-transfer fins. A cross fin type fin-and-tube heat exchanger is used.
  • the drain heater 797 is disposed below the evaporator 706 and is integrated with the evaporator 706 on the bottom plate 777. More specifically, the drain heater 797 is integrated with the evaporator 706 by sharing the heat transfer fins, and the lowermost path (here, the heat in the heat exchanger panel in which both are integrated).
  • the blower fan 740 is disposed on the front side of the heat exchanger panel in which the evaporator 706 and the drain heater 797 are integrated, facing the blowout opening 775a of the top plate 772.
  • the blower fan 740 is an axial fan, sucks air as a heat source from the blowout opening 775a of the front plate 775 into the casing 771, and passes through the evaporator 706 and the drain heater 797. The air can be blown forward from the blowout opening 775a.
  • blower fan 740 supplies air as a heat source to the heat exchanger panel including the evaporator 706.
  • the external shape of the heat pump unit 701 and the type of the heat exchanger panel in which the evaporator 706 and the drain heater 797 are integrated are not limited to those described above.
  • the two-stage compression type compression mechanism 702 is adopted, and the refrigerant (that is, the refrigeration) sucked into the compression element 702d on the rear stage side of the compression mechanism 702.
  • a drain heater 797 that heats drain water generated in the evaporator 706 by an intermediate pressure refrigerant in the cycle is used.
  • the heat pump unit 701 has a control unit that controls the operation of each part constituting the heat pump unit 701 such as the compression mechanism 702, the water circulation pump 779, the expansion mechanism 5, and the blower fan 740, although not shown here.
  • FIG. 4 is a diagram showing the refrigerant flow in the heat pump unit 701
  • FIG. 5 is a pressure-enthalpy diagram illustrating the refrigeration cycle
  • FIG. 6 is a temperature diagram illustrating the refrigeration cycle. -Entropy diagram.
  • the operation control described below is performed by the above-described control unit (not shown).
  • “high pressure” means high pressure in the refrigeration cycle (that is, pressure at points D, D ′, and E in FIGS. 5 and 6)
  • low pressure means low pressure in the refrigeration cycle ( That is, it means a pressure at points A and F in FIGS. 5 and 6, and “intermediate pressure” means an intermediate pressure in the refrigeration cycle (that is, pressure at points B and C2 in FIGS. 5 and 6).
  • the opening degree of the expansion mechanism 5 is adjusted, and the water circulation pump 779 and the blower fan 740 are rotationally driven.
  • the low-pressure refrigerant (see point A in FIGS. 1, 4, 5, and 6) is sucked into the compression mechanism 2 from the suction pipe 2a, and first reaches the intermediate pressure by the compression element 2c. After being compressed, the refrigerant is discharged into the intermediate refrigerant pipe 8 (see point B in FIGS. 1, 4, 5, and 6).
  • the intermediate-pressure refrigerant discharged from the preceding-stage compression element 702c is cooled by exchanging heat with drain water generated in the evaporator 706 and flowing down the evaporator 706 in the drain heater 797 (FIG. 1, point C2 in FIGS. 4, 5, and 6).
  • the refrigerant cooled in the drain heater 797 is sucked into the compression element 702d connected to the downstream side of the compression element 702c, further compressed, and discharged from the compression mechanism 702 to the discharge pipe 702b (FIGS. 1 and 2). 4, see point D in FIGS.
  • the high-pressure refrigerant discharged from the compression mechanism 702 is compressed to a pressure exceeding the critical pressure (that is, the critical pressure Pcp at the critical point CP shown in FIG. 5) by the two-stage compression operation by the compression elements 702c and 702d.
  • the high-pressure refrigerant discharged from the compression mechanism 702 flows into the oil separator 741a constituting the oil separation mechanism 741, and the accompanying refrigeration oil is separated.
  • the refrigerating machine oil separated from the high-pressure refrigerant in the oil separator 741a flows into the oil return pipe 741b constituting the oil separation mechanism 741, and is compressed after being reduced in pressure by the pressure reduction mechanism 741c provided in the oil return pipe 741b.
  • the air is returned to the suction pipe 702a of the mechanism 702 and sucked into the compression mechanism 702 again.
  • the high-pressure refrigerant after the refrigerating machine oil is separated in the oil separation mechanism 741 is sent to the water refrigerant heat exchanger 704 that functions as a refrigerant radiator through the check mechanism 742.
  • the high-pressure refrigerant sent to the water refrigerant heat exchanger 704 exchanges heat with water (feed water) supplied from a hot water storage unit (not shown) by the water circulation pump 779 in the water refrigerant heat exchanger 704. It is cooled (see point E in FIGS. 1, 4, 5 and 6).
  • the high-pressure refrigerant cooled in the water-refrigerant heat exchanger 704 is decompressed by the expansion mechanism 5 to become a low-pressure gas-liquid two-phase refrigerant and sent to the evaporator 706 (FIGS. 1, 4, and 5). , See point F in FIG. 6).
  • the low-pressure gas-liquid two-phase refrigerant sent to the evaporator 706 is heated and exchanged with air as a heating source supplied by the blower fan 740 to evaporate (FIG. 1). FIG. 4, FIG. 5, and FIG. 6 (see point A).
  • moisture in the air cooled by the heat exchanger with the refrigerant in the evaporator 706 is condensed to become drain water, and adheres to the surfaces of the heat transfer tubes and heat transfer fins of the evaporator 706.
  • This drain water flows down the surface of the heat transfer tubes and heat transfer fins of the evaporator 706, passes through the drain heater 797, and is received by the bottom plate 777 functioning as a drain pan. Then, the low-pressure refrigerant heated in the evaporator 706 is again sucked into the compression mechanism 702. In this way, the operation of the heat pump unit 701 is performed.
  • the two-stage compression type compression mechanism 702 is adopted and the refrigerant sucked into the compression element 702d on the rear stage side of the compression mechanism 702. Since the drain heater 797 that heats the drain water generated in the evaporator 706 by the refrigerant (that is, the intermediate pressure refrigerant in the refrigeration cycle) is used, the bottom plate that functions as the evaporator 706 or the drain pan by heating the drain water. By suppressing the freezing and growth of the drain water in 777 and lowering the temperature of the intermediate-pressure refrigerant in the refrigeration cycle (see points B and C2 in FIG.
  • the drain water is reduced by the high-pressure refrigerant in the conventional refrigeration cycle.
  • a drain heater for heating in this case, in FIGS. 5 and 6, Compared with A ⁇ Point B ⁇ Point D ′ ⁇ Point E ⁇ Point F), the area corresponding to the area surrounded by connecting points B, D ′, D and C2 in FIG. Energy loss can be reduced.
  • the heat pump unit 701 not only suppresses freezing and growth of drain water in the evaporator 706 and the bottom plate 777 functioning as a drain pan by heating the drain water generated in the evaporator 706, but also a conventional refrigeration.
  • An increase in energy loss can be suppressed as compared with the case of using a drain heater that heats drain water using a high-pressure refrigerant in the cycle.
  • the drain heater 797 is disposed at the lower part of the evaporator 706, the drain water is hardly frozen at the lower part of the evaporator 706 where the amount of attached drain water is the largest due to the flow of the drain water. Thus, freezing and growth of drain water in the evaporator 706 can be effectively suppressed.
  • the drain heater 797 is disposed at the lower portion of the evaporator 706 (more specifically, the drain heater 797 is disposed at the lower portion and integrated with the evaporator 706 on the bottom plate 777).
  • the present invention is not limited to this, and the drain heater 797 may be disposed on the bottom plate 777 that functions as a drain pan.
  • the drain heater 797 has a structure composed of a heat transfer tube that does not share heat transfer fins with the evaporator 706, and is disposed so as to contact a bottom plate 777 that functions as a drain pan. it can.
  • the heat pump unit 701 (refrigeration apparatus) of the heat pump water heater of this modification also employs the two-stage compression type compression mechanism 702 and the refrigerant sucked into the compression element 702d on the rear stage side of the compression mechanism 702 ( That is, the point that the drain heater 797 that heats the drain water generated in the evaporator 706 by the intermediate pressure refrigerant in the refrigeration cycle is the same as that in the above-described embodiment, and thus occurs in the evaporator 706.
  • a drain heater that not only suppresses freezing and growth of the drain water in the evaporator 706 and the bottom plate 777 functioning as a drain pan but also heats the drain water with a high-pressure refrigerant in a conventional refrigeration cycle is provided.
  • the increase in energy loss can be suppressed compared with the case of using.
  • the drain heater 797 is disposed on the bottom plate 777 that functions as a drain pan, so that the drain water that flows down from the evaporator 706 and accumulates on the bottom plate 777 that functions as a drain pan is difficult to freeze.
  • the freezing and growth of drain water in the bottom plate 777 functioning as a drain pan can be effectively suppressed.
  • the drain heater 797 is either disposed at the bottom of the evaporator 706 or is disposed on the bottom plate 777 that functions as a drain pan.
  • the bottom plate 777 and the bottom plate 777 functioning as a drain pan may be disposed.
  • the drain heater 797 includes a first drain heater 797 a disposed at the lower part of the evaporator 706 and a second drain heater disposed on a bottom plate 777 as a drain pan. 797b, and the first drain heater 797a and the second drain heater 797b are connected in parallel (see FIG. 9), or the first drain heater 797a and the second drain heater 797b are connected in series. Can be connected (see FIG. 10).
  • the second drain heater 797b is connected downstream of the first drain heater 797a, but the first drain heater 797a is connected downstream of the second drain heater 797b. Also good.
  • the two-stage compression type compression mechanism 702 is adopted and the refrigerant (702) that is sucked into the compression element 702d on the rear side of the compression mechanism 702 ( That is, the drain heater 797 (here, the first drain heater 797a and the second drain heater 797b) that heats the drain water generated in the evaporator 706 by the intermediate pressure refrigerant in the refrigeration cycle is used.
  • the drain heater 797 here, the first drain heater 797a and the second drain heater 797b
  • drain water generated in the evaporator 706 is heated to suppress freezing and growth of the drain water in the evaporator 706 and the bottom plate 777 functioning as a drain pan.
  • the drain water is heated by the high-pressure refrigerant in the conventional refrigeration cycle. Compared to using emissions heater, it is possible to suppress an increase in energy loss.
  • the drain heater 797 includes a first drain heater 797a disposed at the lower portion of the evaporator 706 and a second drain heater 797b disposed on the bottom plate 777 functioning as a drain pan. Therefore, the drain water is hard to freeze in the lower part of the evaporator 797 where the drain water adheres most when the drain water flows, and the drain water that flows down from the evaporator 706 and collects in the bottom plate 777 that functions as a drain pan This makes it difficult to freeze, thereby effectively suppressing both freezing and growth of drain water in the evaporator 706 and freezing and growth of drain water in the bottom plate 777 functioning as a drain pan.
  • the drain heater 797 (more specifically, the first drain heater 797a and the second drain heater 797b) is provided below the evaporator 706 and the bottom plate 777 that functions as a drain pan.
  • the first drain that restricts the flow of refrigerant to the first drain heater 797a.
  • a drain heater switching mechanism 798 including a heater on / off valve 798a and a second drain heater on / off valve 798b that restricts the flow of refrigerant to the second drain heater 797b can be provided.
  • the first drain heater bypass for bypassing the first drain heater 797a.
  • a drain heater switching mechanism 798 including a second drain heater opening / closing valve 798b that restricts the flow of refrigerant to the two-drain heater 797b can be provided.
  • the first drain heater bypass on / off valve 799c and the second drain heater bypass on / off valve 799d are provided in the first drain heater bypass pipe 799a and the second drain heater bypass pipe 799b, respectively.
  • the on-off valves 798a, 798b, 799c, and 799d are electromagnetic valves.
  • FIG. 14 is a schematic configuration diagram of an air conditioner 1 as a second embodiment of the refrigeration apparatus according to the present invention.
  • the air conditioner 1 has a refrigerant circuit 10 configured to be capable of switching between a cooling operation and a heating operation, and uses a refrigerant (here, carbon dioxide) that operates in a supercritical region to perform a two-stage compression refrigeration cycle. It is a device to perform.
  • a refrigerant here, carbon dioxide
  • the refrigerant circuit 10 of the air conditioner 1 mainly includes a compression mechanism 2, a switching mechanism 3, a heat source side heat exchanger 4, a bridge circuit 17, a receiver 18, a first expansion mechanism 5a, and a second expansion mechanism. 5b, a use side heat exchanger 6, an intermediate heat exchanger 7, and a drain heater 97.
  • the compression mechanism 2 includes a compressor 21 that compresses a refrigerant in two stages with two compression elements.
  • the compressor 21 has a sealed structure in which a compressor drive motor 21b, a drive shaft 21c, and compression elements 2c and 2d are accommodated in a casing 21a.
  • the compressor drive motor 21b is connected to the drive shaft 21c.
  • the drive shaft 21c is connected to the two compression elements 2c and 2d.
  • two compression elements 2c and 2d are connected to a single drive shaft 21c, and the two compression elements 2c and 2d are both rotationally driven by the compressor drive motor 21b. It has a stage compression structure.
  • the compression elements 2c and 2d are positive displacement compression elements such as a rotary type and a scroll type in the present embodiment.
  • the compressor 21 sucks the refrigerant from the suction pipe 2a, compresses the sucked refrigerant by the compression element 2c, discharges the refrigerant to the intermediate refrigerant pipe 8, and discharges the refrigerant discharged to the intermediate refrigerant pipe 8 to the compression element 2d. And the refrigerant is further compressed and then discharged to the discharge pipe 2b.
  • the intermediate refrigerant pipe 8 sucks the intermediate-pressure refrigerant in the refrigeration cycle discharged from the compression element 2c connected to the front stage side of the compression element 2d into the compression element 2d connected to the rear stage side of the compression element 2c. It is a refrigerant pipe for making it.
  • the discharge pipe 2b is a refrigerant pipe for sending the refrigerant discharged from the compression mechanism 2 to the switching mechanism 3.
  • the discharge pipe 2b is provided with an oil separation mechanism 41 and a check mechanism 42.
  • the oil separation mechanism 41 is a mechanism that separates the refrigeration oil accompanying the refrigerant discharged from the compression mechanism 2 from the refrigerant and returns it to the suction side of the compression mechanism 2, and is mainly accompanied by the refrigerant discharged from the compression mechanism 2.
  • An oil separator 41 a that separates the refrigeration oil from the refrigerant
  • an oil return pipe 41 b that is connected to the oil separator 41 a and returns the refrigeration oil separated from the refrigerant to the suction pipe 2 a of the compression mechanism 2.
  • the oil return pipe 41b is provided with a pressure reducing mechanism 41c for reducing the pressure of the refrigerating machine oil flowing through the oil return pipe 41b.
  • a capillary tube is used as the decompression mechanism 41c.
  • the check mechanism 42 is a mechanism for allowing the refrigerant flow from the discharge side of the compression mechanism 2 to the switching mechanism 3 and blocking the refrigerant flow from the switching mechanism 3 to the discharge side of the compression mechanism 2.
  • a check valve is used.
  • the compression mechanism 2 has the two compression elements 2c and 2d, and the refrigerant discharged from the compression element on the front stage of these compression elements 2c and 2d is returned to the rear stage side.
  • the compression elements are sequentially compressed by the compression elements.
  • the switching mechanism 3 is a mechanism for switching the flow direction of the refrigerant in the refrigerant circuit 10, and is used as a radiator for the refrigerant compressed by the compression mechanism 2 and used in the cooling operation during the cooling operation.
  • the discharge side of the compression mechanism 2 and one end of the heat source side heat exchanger 4 are connected and the compressor 21
  • the suction side and the use side heat exchanger 6 are connected (refer to the solid line of the switching mechanism 3 in FIG. 14; hereinafter, the state of the switching mechanism 3 is referred to as “cooling operation state”).
  • the switching mechanism 3 is a four-way switching valve connected to the suction side of the compression mechanism 2, the discharge side of the compression mechanism 2, the heat source side heat exchanger 4, and the use side heat exchanger 6.
  • the switching mechanism 3 is not limited to a four-way switching valve, and is configured to have a function of switching the refrigerant flow direction as described above, for example, by combining a plurality of electromagnetic valves. There may be.
  • the compression mechanism 2 the heat source side heat exchanger 4 and the use side heat exchanger 6 constituting the refrigerant circuit 10
  • the compression mechanism 2 the heat source side that functions as a refrigerant radiator.
  • the heat source-side heat exchanger 4 is a heat exchanger that functions as a refrigerant radiator or evaporator using air as a heat source.
  • One end of the heat source side heat exchanger 4 is connected to the switching mechanism 3, and the other end is connected to the first expansion mechanism 5 a via the bridge circuit 17.
  • the air as the heat source of the heat source side heat exchanger 4 is supplied by the heat source side fan 40.
  • the heat source side fan 40 is rotationally driven by a fan drive motor 740a.
  • the bridge circuit 17 is provided between the heat source side heat exchanger 4 and the use side heat exchanger 6, and is connected to a receiver inlet pipe 18 a connected to the inlet of the receiver 18 and an outlet of the receiver 18. It is connected to the receiver outlet pipe 18b.
  • the bridge circuit 17 has four check valves 17a, 17b, 17c, and 17d.
  • the inlet check valve 17a is a check valve that only allows the refrigerant to flow from the heat source side heat exchanger 4 to the receiver inlet pipe 18a.
  • the inlet check valve 17b is a check valve that allows only the refrigerant to flow from the use side heat exchanger 6 to the receiver inlet pipe 18a.
  • the inlet check valves 17a and 17b have a function of circulating the refrigerant from one of the heat source side heat exchanger 4 and the use side heat exchanger 6 to the receiver inlet pipe 18a.
  • the outlet check valve 17 c is a check valve that allows only the refrigerant to flow from the receiver outlet pipe 18 b to the use side heat exchanger 6.
  • the outlet check valve 17d is a check valve that allows only the refrigerant to flow from the receiver outlet pipe 18b to the heat source side heat exchanger 4. That is, the outlet check valves 17c and 17d have a function of circulating the refrigerant from the receiver outlet pipe 18b to the other of the heat source side heat exchanger 4 and the use side heat exchanger 6.
  • the first expansion mechanism 5a is a mechanism that depressurizes the refrigerant provided in the receiver inlet pipe 18a, and an electric expansion valve is used in the present embodiment.
  • the first expansion mechanism 5a saturates the refrigerant before sending the high-pressure refrigerant cooled in the heat source side heat exchanger 4 to the use side heat exchanger 6 via the receiver 18.
  • the pressure is reduced to near the pressure, and during the heating operation, the high-pressure refrigerant cooled in the use side heat exchanger 6 is reduced to near the saturation pressure of the refrigerant before being sent to the heat source side heat exchanger 4 via the receiver 18.
  • the receiver 18 is depressurized by the first expansion mechanism 5a so as to be able to store surplus refrigerant generated according to the operating state such as the refrigerant circulation amount in the refrigerant circuit 10 is different between the cooling operation and the heating operation.
  • the inlet is connected to the receiver inlet pipe 18a, and the outlet thereof is connected to the receiver outlet pipe 18b.
  • the receiver 18 also has a first suction return pipe that can extract the refrigerant from the receiver 18 and return it to the suction pipe 2a of the compression mechanism 2 (that is, the suction side of the compression element 2c on the front stage side of the compression mechanism 2).
  • 18f is connected.
  • the first suction return pipe 18f is provided with a first suction return on / off valve 18g.
  • the first suction return on / off valve 18g is an electromagnetic valve in the present embodiment.
  • the second expansion mechanism 5b is a mechanism that depressurizes the refrigerant provided in the receiver outlet pipe 18b, and an electric expansion valve is used in the present embodiment.
  • the second expansion mechanism 5b is at a low pressure in the refrigeration cycle before the refrigerant decompressed by the first expansion mechanism 5a is sent to the use-side heat exchanger 6 via the receiver 18 during the cooling operation.
  • the refrigerant decompressed by the first expansion mechanism 5a is further depressurized until it reaches a low pressure in the refrigeration cycle before being sent to the heat source side heat exchanger 4 via the receiver 18.
  • the use side heat exchanger 6 is a heat exchanger that functions as a refrigerant evaporator or a radiator.
  • One end of the use side heat exchanger 6 is connected to the first expansion mechanism 5 a via a bridge circuit, and the other end is connected to the switching mechanism 3.
  • the use side heat exchanger 6 is supplied with water and air as a heat source for exchanging heat with the refrigerant flowing through the use side heat exchanger 6.
  • the heat source side heat exchanger 4 when the switching mechanism 3 is in the cooling operation state by the bridge circuit 17, the receiver 18, the receiver inlet pipe 18a, and the receiver outlet pipe 18b, the heat source side heat exchanger 4 is cooled.
  • the high-pressure refrigerant is supplied to the inlet check valve 17a of the bridge circuit 17, the first expansion mechanism 5a of the receiver inlet pipe 18a, the second expansion mechanism 5b of the receiver 18, the receiver outlet pipe 18b, and the outlet check valve 17c of the bridge circuit 17. It can be sent to the use side heat exchanger 6 through.
  • the switching mechanism 3 when the switching mechanism 3 is in the heating operation state, the high-pressure refrigerant cooled in the use-side heat exchanger 6 is converted into the first expansion mechanism of the inlet check valve 17b of the bridge circuit 17 and the receiver inlet pipe 18a. 5a, the receiver 18, the second expansion mechanism 5b of the receiver outlet pipe 18b, and the outlet check valve 17d of the bridge circuit 17 can be sent to the heat source side heat exchanger 4.
  • the intermediate heat exchanger 7 is provided in the intermediate refrigerant pipe 8.
  • the intermediate heat exchanger 7 functions as a refrigerant cooler that is discharged from the preceding compression element 2c and sucked into the compression element 2d during the cooling operation. It is a heat exchanger that can.
  • the intermediate heat exchanger 7 is a heat exchanger that uses air as a heat source (here, a cooling source), and is integrated with the heat source side heat exchanger 4 in this embodiment.
  • the intermediate heat exchanger 7 can be said to be a heat exchanger using an external heat source in the sense that it does not use the refrigerant circulating in the refrigerant circuit 10.
  • An intermediate heat exchanger bypass pipe 9 is connected to the intermediate refrigerant pipe 8 so as to bypass the intermediate heat exchanger 7.
  • the intermediate heat exchanger bypass pipe 9 is a refrigerant pipe that limits the flow rate of the refrigerant flowing through the intermediate heat exchanger 7.
  • the intermediate heat exchanger bypass pipe 9 is provided with an intermediate heat exchanger bypass opening / closing valve 11.
  • the intermediate heat exchanger bypass on-off valve 11 is a solenoid valve in the present embodiment.
  • the intermediate heat exchanger bypass on-off valve 11 is basically closed when the switching mechanism 3 is in the cooling operation state and controlled to be opened when the switching mechanism 3 is in the heating operation state. Made. That is, the intermediate heat exchanger bypass on-off valve 11 is controlled to be closed when performing the cooling operation and to be opened when performing the heating operation.
  • the intermediate refrigerant pipe 8 has an intermediate portion between the connecting portion of the intermediate heat exchanger bypass pipe 9 and the compression element 2c side end on the front stage side to the compression element 2c side end on the front stage side of the intermediate heat exchanger 7.
  • a heat exchanger on / off valve 12 is provided.
  • the intermediate heat exchanger on / off valve 12 is a mechanism that limits the flow rate of the refrigerant flowing through the intermediate heat exchanger 7.
  • the intermediate heat exchanger on / off valve 12 is an electromagnetic valve in the present embodiment.
  • the intermediate heat exchanger on / off valve 12 is basically controlled to be opened when the switching mechanism 3 is in the cooling operation state and closed when the switching mechanism 3 is in the heating operation state.
  • the intermediate heat exchanger on / off valve 12 is controlled to be opened when the cooling operation is performed and closed when the heating operation is performed.
  • the intermediate refrigerant pipe 8 allows the refrigerant to flow from the discharge side of the upstream compression element 2c to the suction side of the downstream compression element 2d, and from the suction side of the downstream compression element 2d to the upstream side.
  • a check mechanism 15 is provided for blocking the flow of the refrigerant to the discharge side of the compression element 2c on the side.
  • the check mechanism 15 is a check valve in the present embodiment.
  • the check mechanism 15 is connected to the compression element 2d side end of the intermediate heat exchanger bypass pipe 9 from the compression element 2d side end of the intermediate heat exchanger 7 on the rear stage side. It is provided in the part to the connection part.
  • the drain heater 97 is a drain that is generated in the heat source side heat exchanger 4 that functions as an evaporator of the refrigerant by the refrigerant discharged from the front-stage compression element 2c and sucked into the rear-stage compression element 2d during the heating operation. It is a heat exchanger capable of heating water, and in this embodiment, the intermediate heat exchanger bypass pipe 9 (more specifically, the compression element 2c side end on the front stage side of the intermediate heat exchanger bypass pipe 9 and To the intermediate heat exchanger bypass opening / closing valve 11). The drain heater 97 is disposed below the heat source side heat exchanger 4.
  • FIG. 15 is an external perspective view of the heat source unit 1a (with the fan grill removed)
  • FIG. 16 is a side view of the heat source unit 1a with the right plate 74 of the heat source unit 1a removed.
  • “left” and “right” are based on the case where the heat source unit 1a is viewed from the front plate 75 side.
  • the air conditioner 1 mainly includes a heat source unit 1a provided with a heat source side fan 40, a heat source side heat exchanger 4, an intermediate heat exchanger 7 and a drain heater 97, and mainly a use side heat exchange. It is comprised by connecting with the utilization unit (not shown) in which the container 6 was provided.
  • the heat source unit 1a is a so-called top-blowing type that sucks air from the side and blows it upward. It has refrigerant circuit components such as the exchanger 4, the intermediate heat exchanger 7 and the drain heater 97, and devices such as the heat source side fan 40.
  • the casing 71 is a substantially rectangular parallelepiped box, and mainly includes a top plate 72 constituting the top surface of the casing 71, a left plate 73, a right plate 74 constituting the outer peripheral surface of the casing 71, and the front.
  • the plate 75 and the rear plate 76 and a bottom plate 77 are included.
  • the top plate 72 is a member mainly constituting the top surface of the casing 71.
  • the top plate 72 is a plate-like member having a substantially rectangular shape in a plan view in which the blowing opening 71a is formed at a substantially center.
  • the top plate 72 is provided with a fan grill 78 so as to cover the blowout opening 71a from above.
  • the left plate 73 is a member that mainly constitutes the left surface of the casing 71.
  • the left plate 73 is a plate-like member that is substantially rectangular in a side view extending downward from the left edge of the top plate 72.
  • the left plate 73 is formed with a suction opening 73a almost entirely except the upper part.
  • the right plate 74 is a member that mainly constitutes the right surface of the casing 71.
  • the right plate 74 is a plate-like member that is substantially rectangular in a side view extending downward from the right edge of the top plate 72.
  • the right plate 74 is formed with a suction opening 74a almost entirely except the upper part.
  • the front plate 75 is a member that mainly constitutes the front surface of the casing 71.
  • the front plate 75 is configured by a plate-like member having a substantially rectangular shape when viewed from the front edge of the top plate 72 in order downward.
  • the rear plate 76 is a member that mainly constitutes the rear surface of the casing 71.
  • the rear plate 76 is configured by a substantially rectangular plate-like member that is disposed in order from the rear edge of the top plate 72 in a downward direction. ing.
  • the rear plate 76 is formed with a suction opening 76a in almost the whole except the upper part.
  • the bottom plate 77 is a member that mainly constitutes the bottom surface of the casing 71.
  • the bottom plate 77 is a plate-like member having a substantially rectangular shape in plan view.
  • the bottom plate 77 also has a function as a drain pan that receives drain water generated in the heat source side heat exchanger 4 and drains it out of the casing 71.
  • the intermediate heat exchanger 7 is integrated with the heat source side heat exchanger 4 in a state of being arranged on the upper side of the heat source side heat exchanger 4, and is arranged on the bottom plate 77. More specifically, the heat source side heat exchanger 4 uses a cross fin type fin-and-tube heat exchanger composed of heat transfer tubes and a large number of heat transfer fins, and is an intermediate heat exchanger. 7 is integrated with the heat source side heat exchanger 4 by sharing heat transfer fins. In addition, in the present embodiment, the heat source side heat exchanger 4 and the intermediate heat exchanger 7 are integrated to form a heat exchanger panel having a substantially U shape in plan view, and suction openings 73a and 74a. , 76a.
  • the heat source side fan 40 is disposed on the upper side of the heat source side heat exchanger 4 and the intermediate heat exchanger 7 that are opposed to the blowout opening 71a of the top plate 72.
  • the heat source side fan 40 is an axial fan, and is rotationally driven by the fan drive motor 40a, thereby sucking air as a heat source into the casing 71 from the suction openings 73a, 74a, and 76a. After passing through the heat exchanger 4 and the intermediate heat exchanger 7, the air can be blown upward from the blowout opening 71 a (see the arrows indicating the air flow in FIG. 16). That is, the heat source side fan 40 supplies air as a heat source to both the heat source side heat exchanger 4 and the intermediate heat exchanger 7.
  • the drain heater 97 is disposed below the heat source side heat exchanger 4 and is integrated with the heat source side heat exchanger 4 by sharing heat transfer fins on the bottom plate 77. Yes.
  • the drain heater 97 is a lowermost path in the heat exchanger panel integrated with the intermediate heat exchanger 7 and the heat source side heat exchanger 4 (that is, the lowermost heat transfer tube in the heat exchanger panel and the heat transfer tube immediately above it). (Refer to FIG. 16).
  • the intermediate heat exchanger 7 has a larger heat transfer area than the drain heater 97.
  • the external shape of the heat source unit 1a and the shape of the heat source side heat exchanger 4, the intermediate heat exchanger 7, and the drain heater 97 integrated with each other are not limited to those described above.
  • the two-stage compression type compression mechanism 2 is mainly employed, and at the time of the cooling operation in which the switching mechanism 3 is in the cooling operation state, An intermediate heat exchanger 7 that functions as a cooler for the refrigerant sucked into the compression element 2d (that is, the intermediate-pressure refrigerant in the refrigeration cycle) is provided, and during the heating operation in which the switching mechanism 3 is in the heating operation state, the refrigerant A drain heater 97 is provided for heating the drain water generated in the heat source side heat exchanger 4 functioning as an evaporator.
  • the air conditioner 1 includes a compression mechanism 2, a switching mechanism 3, expansion mechanisms 5a and 5b, an intermediate heat exchanger bypass opening / closing valve 11, an intermediate heat exchanger opening / closing valve 12, a first suction return opening / closing valve. It has a control part which controls operation of each part which constitutes air harmony device 1 such as valve 18g and heat source side fan 40.
  • FIG. 17 is a diagram showing the flow of the refrigerant in the air conditioner 1 during the cooling operation
  • FIG. 18 is a pressure-enthalpy diagram illustrating the refrigeration cycle during the cooling operation
  • FIG. 20 is a temperature-entropy diagram illustrating a refrigeration cycle during cooling operation
  • FIG. 20 is a diagram illustrating a refrigerant flow in the air conditioner 1 during heating operation
  • FIG. 21 is a diagram during heating operation
  • FIG. 22 is a pressure-enthalpy diagram illustrating the refrigeration cycle
  • FIG. 22 is a temperature-entropy diagram illustrating the refrigeration cycle during the heating operation.
  • high pressure means high pressure in the refrigeration cycle (that is, pressure at points D, D ′, and E in FIGS. 18 and 19 and pressure at points D, D ′, and F in FIGS. 21 and 22).
  • Low pressure means low pressure in the refrigeration cycle (that is, pressure at points A and F in FIGS. 18 and 19 and pressure at points A and E in FIGS. 21 and 22), and “intermediate pressure” Means intermediate pressure in the refrigeration cycle (that is, pressure at points B and C1 in FIGS. 18 and 19 and pressure at points B and C2 in FIGS. 21 and 22).
  • the switching mechanism 3 is in the cooling operation state indicated by the solid lines in FIGS.
  • the opening degree of the first expansion mechanism 5a and the second expansion mechanism 5b is adjusted. Since the switching mechanism 3 is in the cooling operation state, the intermediate heat exchanger on / off valve 12 of the intermediate refrigerant pipe 8 is opened, and the intermediate heat exchanger bypass on / off valve 11 of the intermediate heat exchanger bypass pipe 9 is closed. As a result, the intermediate heat exchanger 7 is brought into a state of functioning as a cooler, and the refrigerant is not allowed to flow into the drain heater 97. In the state of the refrigerant circuit 10, a low-pressure refrigerant (see point A in FIGS.
  • the refrigerant cooled in the intermediate heat exchanger 7 is then sucked into the compression element 2d connected to the rear stage side of the compression element 2c, further compressed, and discharged from the compression mechanism 2 to the discharge pipe 2b ( (Refer to point D in FIGS. 14 and 17-19).
  • the high-pressure refrigerant discharged from the compression mechanism 2 is compressed to a pressure exceeding the critical pressure (that is, the critical pressure Pcp at the critical point CP shown in FIG. 18) by the two-stage compression operation by the compression elements 2c and 2d.
  • the high-pressure refrigerant discharged from the compression mechanism 2 flows into the oil separator 41a constituting the oil separation mechanism 41, and the accompanying refrigeration oil is separated.
  • the refrigerating machine oil separated from the high-pressure refrigerant in the oil separator 41a flows into the oil return pipe 41b constituting the oil separation mechanism 41, and is compressed after being reduced in pressure by the pressure reduction mechanism 41c provided in the oil return pipe 41b. It is returned to the suction pipe 2a of the mechanism 2 and again sucked into the compression mechanism 2.
  • the high-pressure refrigerant after the refrigerating machine oil is separated in the oil separation mechanism 41 is sent to the heat source side heat exchanger 4 functioning as a refrigerant radiator through the check mechanism 42 and the switching mechanism 3.
  • the high-pressure refrigerant sent to the heat source side heat exchanger 4 is cooled by exchanging heat with air as a cooling source supplied by the heat source side fan 40 in the heat source side heat exchanger 4 (FIG. 14).
  • FIG. 17 to FIG. 19 see point E).
  • the high-pressure refrigerant cooled in the heat source side heat exchanger 4 flows into the receiver inlet pipe 18a through the inlet check valve 17a of the bridge circuit 17 and is reduced to near the saturation pressure by the first expansion mechanism 5a. (See point I in FIGS. 14 and 17).
  • the refrigerant stored in the receiver 18 is sent to the receiver outlet pipe 18b and is reduced in pressure by the second expansion mechanism 5b to become a low-pressure gas-liquid two-phase refrigerant, and the outlet check valve 17c of the bridge circuit 17 is used. And is sent to the use side heat exchanger 6 functioning as a refrigerant evaporator (see point F in FIGS. 14 and 17 to 19). Then, the low-pressure gas-liquid two-phase refrigerant sent to the use-side heat exchanger 6 is heated by heat exchange with water or air as a heating source to evaporate (FIG. 14, FIG. 17 to point 19 in FIG. 19). Then, the low-pressure refrigerant heated in the use side heat exchanger 6 is again sucked into the compression mechanism 2 via the switching mechanism 3. In this way, the cooling operation is performed.
  • the intermediate refrigerant pipe that employs the two-stage compression type compression mechanism 702 and sucks the refrigerant discharged from the compression element 2c into the compression element 2d. 8 is provided with an intermediate heat exchanger 7, and in the cooling operation, the intermediate heat exchanger on / off valve 12 is opened and the intermediate heat exchanger bypass on / off valve 11 of the intermediate heat exchanger bypass pipe 9 is closed to Since the exchanger 7 is in a state of functioning as a cooler, the intermediate heat exchanger 7 is not provided (in this case, in FIGS.
  • this air conditioning apparatus 1 compared with the case where the intermediate heat exchanger 7 is not provided in the heat source side heat exchanger 4 that functions as a refrigerant radiator, water or air as a cooling source and the refrigerant The temperature difference can be reduced, and the heat dissipation loss corresponding to the area surrounded by connecting the points B1, D ′, D, and C1 in FIG. 19 can be reduced, so that the operation efficiency can be improved. .
  • the switching mechanism 3 is in the heating operation state indicated by the broken lines in FIGS.
  • the opening degree of the first expansion mechanism 5a and the second expansion mechanism 5b is adjusted. Since the switching mechanism 3 is in a heating operation state, the intermediate heat exchanger on / off valve 12 of the intermediate refrigerant pipe 8 is closed, and the intermediate heat exchanger bypass on / off valve 11 of the intermediate heat exchanger bypass pipe 9 is opened. As a result, the intermediate heat exchanger 7 is brought into a state where it does not function as a cooler, and the refrigerant flows into the drain heater 97. In the state of the refrigerant circuit 10, low-pressure refrigerant (see point A in FIGS.
  • the intermediate-pressure refrigerant discharged from the upstream-side compression element 2c does not pass through the intermediate heat exchanger 7 and is supplied to the drain heater 97 provided in the intermediate heat exchanger bypass pipe 9.
  • the drain heater 97 cooling is performed by exchanging heat with the drain water generated in the heat source side heat exchanger 4 functioning as a refrigerant evaporator and flowing down the heat source side heat exchanger 4 (FIG. 14, see point C2 in FIGS.
  • the refrigerant cooled in the drain heater 97 is sucked into the compression element 2d connected to the rear stage side of the compression element 2c, further compressed, and discharged from the compression mechanism 2 to the discharge pipe 2b (FIG. 14, FIG. 20 to point D in FIG. 22).
  • the high-pressure refrigerant discharged from the compression mechanism 2 is subjected to the critical pressure (that is, the critical pressure Pcp at the critical point CP shown in FIG. 21) by the two-stage compression operation by the compression elements 2c and 2d as in the cooling operation. ) Compressed to a pressure exceeding
  • the high-pressure refrigerant discharged from the compression mechanism 2 flows into the oil separator 41a constituting the oil separation mechanism 41, and the accompanying refrigeration oil is separated.
  • the refrigerating machine oil separated from the high-pressure refrigerant in the oil separator 41a flows into the oil return pipe 41b constituting the oil separation mechanism 41, and is compressed after being reduced in pressure by the pressure reduction mechanism 41c provided in the oil return pipe 41b. It is returned to the suction pipe 2a of the mechanism 2 and again sucked into the compression mechanism 2.
  • the high-pressure refrigerant after the refrigerating machine oil is separated in the oil separation mechanism 41 is sent to the use side heat exchanger 6 functioning as a refrigerant radiator through the check mechanism 42 and the switching mechanism 3 to be cooled. It is cooled by exchanging heat with water or air as a source (see point F in FIGS. 14 and 20 to 22).
  • the high-pressure refrigerant cooled in the use-side heat exchanger 6 flows into the receiver inlet pipe 18a through the inlet check valve 17b of the bridge circuit 17, and is reduced to near the saturation pressure by the first expansion mechanism 5a. (See point I in FIGS. 14 and 20). Then, the refrigerant stored in the receiver 18 is sent to the receiver outlet pipe 18b and is reduced in pressure by the second expansion mechanism 5b to become a low-pressure gas-liquid two-phase refrigerant, and the outlet check valve 17d of the bridge circuit 17 is supplied. And is sent to the heat source side heat exchanger 4 functioning as a refrigerant evaporator (see point E in FIGS. 14, 20 to 22).
  • the low-pressure gas-liquid two-phase refrigerant sent to the heat source side heat exchanger 4 exchanges heat with air as a heating source supplied by the heat source side fan 40 in the heat source side heat exchanger 4. When heated, it evaporates (see point A in FIGS. 14 and 20 to 22). Then, the low-pressure refrigerant heated and evaporated in the heat source side heat exchanger 4 is again sucked into the compression mechanism 2 via the switching mechanism 3. In this way, the heating operation is performed.
  • the intermediate heat exchanger on-off valve 12 is employed in the heating operation in which the two-stage compression type compression mechanism 702 is employed and the switching mechanism 3 is in the heating operation state. Is opened, and the intermediate heat exchanger bypass opening / closing valve 11 is opened to make the intermediate heat exchanger 7 not function as a cooler, and to heat drain water generated in the heat source side heat exchanger 4. Since the apparatus 97 is used, the drain water is heated to suppress freezing and growth of the drain water in the heat source side heat exchanger 4 and the bottom plate 77 functioning as a drain pan, and the temperature of the intermediate pressure refrigerant in the refrigeration cycle is reduced. By lowering (see points B and C2 in FIG.
  • a drain heater that heats drain water with a high-pressure refrigerant in a conventional refrigeration cycle is used.
  • the refrigeration cycle is performed in the order of point A ⁇ point B ⁇ point D ′ ⁇ point F ⁇ point E in FIGS. 21 and 22), points B and D in FIG.
  • the energy loss corresponding to the area surrounded by connecting ', D and C2 can be reduced.
  • the intermediate heat exchanger 7 is used to cool the intermediate pressure refrigerant in the refrigeration cycle with the air as the heat source, so that the heat source side heat that functions as a refrigerant radiator is obtained.
  • the heat dissipation loss in the exchanger 4 can be reduced, and during the heating operation, the intermediate pressure refrigerant in the refrigeration cycle is cooled by the drain water as the heat source, so that the drain water 97 can be frozen and grown.
  • an increase in energy loss during the heating operation can be suppressed as compared to the case of using a drain heater that heats drain water using a high-pressure refrigerant in the refrigeration cycle.
  • the drain heater 97 is disposed at the lower part of the heat source side heat exchanger 4, in the lower part of the heat source side heat exchanger 4, the amount of attached drain water is the largest due to the flow of drain water. It becomes difficult for the drain water to freeze, and thereby, the freezing and growth of the drain water in the heat source side heat exchanger 4 can be effectively suppressed.
  • the intermediate heat exchanger 7 since the intermediate heat exchanger 7 has a larger heat transfer area than the drain heater 97, the intermediate pressure refrigerant in the refrigeration cycle can be significantly cooled during the cooling operation. Thus, the heat radiation loss in the heat source side heat exchanger 4 functioning as a heat radiator during the cooling operation can be greatly reduced.
  • the cooling of the intermediate pressure refrigerant in the refrigeration cycle is compared with the degree of cooling of the intermediate pressure refrigerant in the refrigeration cycle by the intermediate heat exchanger 7 (see points B and C1 in FIG. 19). Since the degree (refer to points B and C2 in FIG. 22) is reduced, the heat transfer area is suitable for the purpose of heating the drain water.
  • a refrigerant in this case, carbon dioxide
  • the intermediate heat exchanger 7 has a critical pressure Pcp (in the case of carbon dioxide).
  • Pcp in the case of carbon dioxide
  • a refrigerant having an intermediate pressure lower than about 7.3 MPa flows, and a refrigeration cycle in which a high-pressure refrigerant exceeding the critical pressure Pcp flows in the heat source side heat exchanger 4 functioning as a refrigerant radiator ( In this case, as shown in FIG. 23, the physical properties of the refrigerant at a pressure lower than the critical pressure Pcp and the physical properties of the refrigerant at a pressure exceeding the critical pressure Pcp (particularly, thermal conductivity and specific heat at constant pressure).
  • FIG. 23 shows the value of the heat transfer coefficient (heat transfer on the refrigerant side of the intermediate heat exchanger 7) when 6 MPa carbon dioxide flows at a predetermined mass flow rate in a heat transfer channel having a predetermined channel cross-sectional area.
  • the value of the heat transfer coefficient of carbon dioxide of 10 MPa (corresponding to the heat transfer coefficient on the refrigerant side of the heat source side heat exchanger 4) under the same heat transfer flow path and mass flow rate conditions as those of 6 MPa carbon dioxide.
  • the intermediate heat exchanger 7 is temporarily When integrated with the heat source side heat exchanger 4 in a state of being arranged below the heat source side heat exchanger 4, it is integrated with the heat source side heat exchanger 4 at the lower part of the heat source unit 1a where the flow velocity of air serving as the heat source is small.
  • the intermediate heat exchanger 7 will be arranged, the influence of the reduction in the heat transfer coefficient on the air side of the intermediate heat exchanger 7 due to the arrangement of the intermediate heat exchanger 7 below the heat source unit 1a, and the intermediate heat exchange
  • the exchanger 7 Since the exchanger 7 is integrated with the heat source side heat exchanger 4 in a state of being disposed above the heat source side heat exchanger 4, an intermediate heat is formed above the heat source unit 1a where the flow rate of air as a heat source is large. As a result, the heat transfer coefficient on the air side of the intermediate heat exchanger 7 is increased, and as a result, a decrease in the overall heat transfer coefficient of the intermediate heat exchanger 7 is suppressed, which is relatively large. It is possible to suppress a decrease in heat transfer performance of the intermediate heat exchanger 7 that requires an exchange heat amount.
  • the drain heater 97 is disposed below the heat source unit 1a where the flow rate of air serving as a heat source is small, and below the heat source side heat exchanger 4 as an evaporator for the purpose of heating the drain water. Both the point that needs to be provided and the point that the amount of exchange heat can be smaller than that of the intermediate heat exchanger 7 can be satisfied.
  • the drain heater 97 is disposed in the lower part of the heat source side heat exchanger 4 (more specifically, the drain heater 97 is disposed in the lower part, and the heat source is formed on the bottom plate 77.
  • the drain heater 97 may be disposed on the bottom plate 77 that functions as a drain pan.
  • the drain heater 97 has a structure composed of a heat transfer tube that does not share heat transfer fins with the heat source side heat exchanger 4, and is arranged so as to contact a bottom plate 77 that functions as a drain pan. can do.
  • the compression mechanism 2 of the two-stage compression type is adopted, and the rear side compression of the compression mechanism 2 is performed during the cooling operation in which the switching mechanism 3 is in the cooling operation state.
  • the intermediate heat exchanger 7 functioning as a cooler for the refrigerant sucked into the element 2d that is, the intermediate-pressure refrigerant in the refrigeration cycle
  • the switching mechanism 3 is in the heating operation state
  • the refrigerant evaporator The point that the drain heater 97 that heats the drain water generated in the heat source side heat exchanger 4 that functions as is the same as in the second embodiment described above, and therefore, as a refrigerant radiator during cooling operation.
  • the heat dissipation loss in the functioning heat source side heat exchanger 4 can be reduced.
  • the drain heater 97 is used not only to suppress the freezing and growth of drain water, but also the high pressure in the refrigeration cycle. Compared to using drain heater for heating the drain water by the refrigerant, it is possible to suppress an increase in energy loss at the time of heating operation.
  • the drain heater 97 is disposed on the bottom plate 77 that functions as a drain pan, so that the drain water that flows down from the heat source side heat exchanger 4 and accumulates on the bottom plate 77 that functions as a drain pan is difficult to freeze. Thus, freezing and growth of drain water in the bottom plate 77 functioning as a drain pan can be effectively suppressed.
  • the drain heater 97 is either disposed at the lower part of the heat source side heat exchanger 4 or is disposed on the bottom plate 77 functioning as a drain pan. However, you may arrange
  • the drain heater 97 includes a first drain heater 97a disposed at the lower portion of the heat source side heat exchanger 4 and a second plate 77 disposed as a drain pan.
  • the first drain heater 97a and the second drain heater 97b are connected in parallel (see FIG. 26), or the first drain heater 97a and the second drain heater 97b. Can be connected in series (see FIG. 27).
  • the second drain heater 97b is connected downstream of the first drain heater 97a, but the first drain heater 97a is connected downstream of the second drain heater 97b. Also good.
  • the compression mechanism 2 of the two-stage compression type is adopted, and the rear side compression of the compression mechanism 2 is performed during the cooling operation in which the switching mechanism 3 is in the cooling operation state.
  • the refrigerant evaporator is used during the heating operation in which the intermediate heat exchanger 7 functioning as a cooler for the refrigerant sucked into the element 2d (that is, the intermediate-pressure refrigerant in the refrigeration cycle) is used to bring the switching mechanism 3 into the heating operation state.
  • the drain heater 97 (here, the first drain heater 97a and the second drain heater 97b) that heats the drain water generated in the heat source side heat exchanger 4 functioning as Since it is the same as 2 embodiment and its modification, the heat dissipation loss in the heat source side heat exchanger 4 which functions as a radiator of the refrigerant can be reduced during the cooling operation, and the drain heating is performed during the heating operation. 97 not only suppresses freezing and growth of drain water, but also suppresses an increase in energy loss during heating operation compared to using a drain heater that heats drain water with a high-pressure refrigerant in the refrigeration cycle. be able to.
  • the drain heater 97 includes a first drain heater 97a disposed at the lower portion of the heat source side heat exchanger 4 and a second drain heater 97b disposed on the bottom plate 77 functioning as a drain pan. Therefore, the drain water is less likely to freeze in the lower part of the heat source side heat exchanger 4 where the amount of attached drain water is the largest due to the flow of drain water, and functions as a drain pan by flowing down from the heat source side heat exchanger 4 The drain water collected on the bottom plate 77 is less likely to freeze, and thereby, both the freezing and growth of drain water in the heat source side heat exchanger 4 and the freezing and growth of drain water on the bottom plate 77 functioning as a drain pan are effective. Can be suppressed.
  • the drain heater 97 (more specifically, the first drain heater 97a and the second drain heater 97b) is provided below the heat source side heat exchanger 4, and
  • the refrigerant is disposed on both of the bottom plates 77 functioning as drain pans, and is configured to flow the refrigerant discharged from the front-stage compression element 2c and sucked into the rear-stage compression element 2d to both the drain heaters 97a and 97b.
  • the first drain that restricts the flow of the refrigerant to the first drain heater 97a.
  • a drain heater switching mechanism 98 including a heater opening / closing valve 98a and a second drain heater opening / closing valve 98b that restricts the flow of refrigerant to the second drain heater 97b can be provided.
  • the first drain heater bypass for bypassing the first drain heater 97a.
  • a drain heater switching mechanism 98 including a second drain heater opening / closing valve 98b that restricts the flow of the refrigerant to the two-drain heater 97b can be provided.
  • a first drain heater bypass opening / closing valve 99c and a second drain heater bypass opening / closing valve 99d are provided in the first drain heater bypass pipe 99a and the second drain heater bypass pipe 99b, respectively.
  • the on-off valves 98a, 98b, 99c, and 99d are electromagnetic valves.
  • the 1st drain heater 97a and the 2nd drain heating Since a drain heater switching mechanism 98 that enables switching to the vessel 97b is further provided, only one of the first drain heater 97a and the second drain heater 97b can be used as necessary. it can.
  • the intermediate heat exchanger 7 is a device that is used only during the cooling operation in which the switching mechanism 3 is in the cooling operation state, and the switching mechanism 3 is in the heating operation state. It is a device that is not used during heating operation.
  • the intermediate heat exchanger 7 is in the cooling operation when the switching mechanism 3 is in the cooling operation state.
  • the utilization side heat exchanger 6 functions as a refrigerant evaporator that has dissipated heat.
  • the refrigerant circuit 110 is provided with an intermediate heat exchanger return pipe 94 for connecting the other end of the refrigerant.
  • the second suction return pipe 92 is connected to one end of the intermediate heat exchanger 7 (here, the end on the upstream side of the compression element 2c), and passes through the intermediate heat exchanger bypass pipe 9 to compress the upstream side of the compression element.
  • the suction pipe 2a the suction pipe 2a
  • the intermediate heat exchanger return pipe 94 is connected to the other end of the intermediate heat exchanger 7 (here, the end on the side of the compression element 2d on the rear stage side) and is compressed on the front stage side through the intermediate heat exchanger bypass pipe 9.
  • the use side heat exchanger 6 and the heat source side heat exchanger 4 In order to connect the intermediate heat exchanger 7 (here, between the second expansion mechanism 5b that decompresses the refrigerant until the low pressure in the refrigeration cycle and the heat source side heat exchanger 4 as an evaporator) and the other end of the intermediate heat exchanger 7 This is a refrigerant pipe.
  • the second suction return pipe 92 has one end thereof connected to the front end of the intermediate heat exchanger bypass pipe 9 of the intermediate refrigerant pipe 8 from the end on the compression element 2c side, and is connected to the front stage of the intermediate heat exchanger 7.
  • the other end of the compression element 2c is connected to the suction side (here, the suction pipe 2a).
  • the intermediate heat exchanger return pipe 94 has one end connected to a portion from the second expansion mechanism 5 b to the heat source side heat exchanger 4, and the other end connected to the intermediate heat exchanger 7 of the intermediate refrigerant pipe 8. Is connected to the portion from the compression element 2c side end of the previous stage side to the check mechanism 15.
  • the second suction return pipe 92 is provided with a second suction return on / off valve 92a
  • the intermediate heat exchanger return pipe 94 is provided with an intermediate heat exchanger return on / off valve 94a.
  • the second suction return on / off valve 92a and the intermediate heat exchanger return on / off valve 94a are electromagnetic valves in this modification.
  • the second suction return on-off valve 92a is basically closed during the cooling operation in which the switching mechanism 3 is in the cooling operation state and controlled to be opened in the heating operation in which the switching mechanism 3 is in the heating operation state.
  • the intermediate heat exchanger return on / off valve 94a is controlled to be closed during the cooling operation in which the switching mechanism 3 is in the cooling operation state, and is opened during the heating operation in which the switching mechanism 3 is in the heating operation state.
  • the intermediate pressure in the refrigeration cycle that flows through the intermediate refrigerant pipe 8 mainly during the cooling operation by the intermediate heat exchanger bypass pipe 9, the second suction return pipe 92, and the intermediate heat exchanger return pipe 94 is provided.
  • the intermediate heat exchanger 7 can cool the refrigerant, and during the heating operation, the intermediate heat exchanger 7 is bypassed by the intermediate heat exchanger bypass pipe 9 for the intermediate pressure refrigerant in the refrigeration cycle flowing through the intermediate refrigerant pipe 8.
  • the drain water generated in the heat source side heat exchanger 4 is heated in the drain heater 97 and further cooled in the use side heat exchanger 6 by the second suction return pipe 92 and the intermediate heat exchanger return pipe 94.
  • FIG. 32 is a diagram showing the flow of the refrigerant in the air conditioner 1 during the cooling operation
  • FIG. 33 is a pressure-enthalpy diagram illustrating the refrigeration cycle during the cooling operation
  • FIG. 35 is a temperature-entropy diagram illustrating a refrigeration cycle during cooling operation
  • FIG. 35 is a diagram illustrating the flow of refrigerant in the air conditioner 1 during heating operation
  • FIG. 36 is during heating operation.
  • FIG. 37 is a pressure-enthalpy diagram illustrating the refrigeration cycle
  • “high pressure” means high pressure in the refrigeration cycle (that is, pressure at points D, D ′, and E in FIGS. 33 and 34 and pressure at points D, D ′, and F in FIGS. 36 and 37).
  • “Low pressure” means low pressure in the refrigeration cycle (that is, pressure at points A and F in FIGS. 33 and 34 and pressure at points A, E and V in FIGS. 36 and 37), and “intermediate pressure”.
  • “Means the intermediate pressure in the refrigeration cycle that is, the pressure at points B and C1 in FIGS. 33 and 34 and the pressure at points B and C2 in FIGS. 36 and 37).
  • the switching mechanism 3 is in the cooling operation state indicated by the solid lines in FIGS. 31 and 32.
  • the opening degree of the first expansion mechanism 5a and the second expansion mechanism 5b is adjusted. Since the switching mechanism 3 is in the cooling operation state, the intermediate heat exchanger on / off valve 12 of the intermediate refrigerant pipe 8 is opened, and the intermediate heat exchanger bypass on / off valve 11 of the intermediate heat exchanger bypass pipe 9 is closed.
  • the intermediate heat exchanger 7 is put into a state of functioning as a cooler, the refrigerant does not flow into the drain heater 97, and the second suction return on / off valve 92a of the second suction return pipe 92 is By being closed, the intermediate heat exchanger 7 is not connected to the suction side of the compression mechanism 2, and the intermediate heat exchanger return on / off valve 94a of the intermediate heat exchanger return pipe 94 is closed.
  • the intermediate side heat exchanger 7 is not connected between the use side heat exchanger 6 and the heat source side heat exchanger 4.
  • a low-pressure refrigerant (see point A in FIGS. 31 to 34) is sucked into the compression mechanism 2 from the suction pipe 2a, and is first compressed to an intermediate pressure by the compression element 2c.
  • the refrigerant is discharged into the refrigerant pipe 8 (see point B in FIGS. 31 to 34).
  • the intermediate pressure refrigerant discharged from the preceding compression element 2c is cooled by exchanging heat with air as a cooling source supplied by the heat source side fan 40 in the intermediate heat exchanger 7 (FIG. 31). (See point C1 in FIG. 34).
  • the refrigerant cooled in the intermediate heat exchanger 7 is then sucked into the compression element 2d connected to the rear stage side of the compression element 2c, further compressed, and discharged from the compression mechanism 2 to the discharge pipe 2b ( (See point D in FIGS. 31 to 34).
  • the high-pressure refrigerant discharged from the compression mechanism 2 is compressed to a pressure exceeding the critical pressure (that is, the critical pressure Pcp at the critical point CP shown in FIG. 33) by the two-stage compression operation by the compression elements 2c and 2d.
  • the high-pressure refrigerant discharged from the compression mechanism 2 flows into the oil separator 41a constituting the oil separation mechanism 41, and the accompanying refrigeration oil is separated.
  • the refrigerating machine oil separated from the high-pressure refrigerant in the oil separator 41a flows into the oil return pipe 41b constituting the oil separation mechanism 41, and is compressed after being reduced in pressure by the pressure reduction mechanism 41c provided in the oil return pipe 41b. It is returned to the suction pipe 2a of the mechanism 2 and again sucked into the compression mechanism 2.
  • the high-pressure refrigerant after the refrigerating machine oil is separated in the oil separation mechanism 41 is sent to the heat source side heat exchanger 4 functioning as a refrigerant radiator through the check mechanism 42 and the switching mechanism 3.
  • the high-pressure refrigerant sent to the heat source side heat exchanger 4 is cooled in the heat source side heat exchanger 4 by exchanging heat with air as a cooling source supplied by the heat source side fan 40 (FIG. 31). (See point E in FIG. 34). Then, the high-pressure refrigerant cooled in the heat source side heat exchanger 4 flows into the receiver inlet pipe 18a through the inlet check valve 17a of the bridge circuit 17, and is reduced to near the saturation pressure by the first expansion mechanism 5a. (See point I in FIGS. 31 and 32).
  • the refrigerant stored in the receiver 18 is sent to the receiver outlet pipe 18b and is decompressed by the second expansion mechanism 5b to become a low-pressure gas-liquid two-phase refrigerant, and the outlet check valve 17c of the bridge circuit 17 is used. And is sent to the use side heat exchanger 6 functioning as a refrigerant evaporator (see FIG. 31 to FIG. 34, point F). Then, the low-pressure gas-liquid two-phase refrigerant sent to the use-side heat exchanger 6 is heated by exchanging heat with water or air as a heating source to evaporate (FIG. 31 to FIG. 31). 34, point A). Then, the low-pressure refrigerant heated in the use side heat exchanger 6 is again sucked into the compression mechanism 2 via the switching mechanism 3. In this way, the cooling operation is performed.
  • the switching mechanism 3 is in the heating operation state indicated by the broken lines in FIG. 31 and FIG.
  • the opening degree of the first expansion mechanism 5a and the second expansion mechanism 5b is adjusted. Since the switching mechanism 3 is in a heating operation state, the intermediate heat exchanger on / off valve 12 of the intermediate refrigerant pipe 8 is closed, and the intermediate heat exchanger bypass on / off valve 11 of the intermediate heat exchanger bypass pipe 9 is opened.
  • the intermediate heat exchanger 7 is brought into a state in which it does not function as a cooler, the refrigerant flows into the drain heater 97, and the second suction return on / off valve 92a of the second suction return pipe 92 is opened.
  • the intermediate heat exchanger 7 and the suction side of the compression mechanism 2 are connected, and the intermediate heat exchanger return on / off valve 94a of the intermediate heat exchanger return pipe 94 is opened.
  • the intermediate heat exchanger 7 is connected.
  • the low-pressure refrigerant (see point A in FIGS. 31 and 35 to 37) is sucked into the compression mechanism 2 from the suction pipe 2a and first compressed to an intermediate pressure by the compression element 2c. Thereafter, the refrigerant is discharged into the intermediate refrigerant pipe 8 (see point B in FIGS. 31 and 35 to 37). Unlike the cooling operation, the intermediate-pressure refrigerant discharged from the upstream-side compression element 2c does not pass through the intermediate heat exchanger 7 and is supplied to the drain heater 97 provided in the intermediate heat exchanger bypass pipe 9.
  • cooling is performed by exchanging heat with the drain water generated in the heat source side heat exchanger 4 functioning as a refrigerant evaporator and flowing down the heat source side heat exchanger 4 (FIG. 31, see point C2 in FIGS.
  • the refrigerant cooled in the drain heater 97 is sucked into the compression element 2d connected to the rear stage side of the compression element 2c, further compressed, and discharged from the compression mechanism 2 to the discharge pipe 2b (FIG. 31, FIG. 35 to point 37 in FIG. 37).
  • the high-pressure refrigerant discharged from the compression mechanism 2 is subjected to the critical pressure (that is, the critical pressure Pcp at the critical point CP shown in FIG.
  • the high-pressure refrigerant after the refrigerating machine oil is separated in the oil separation mechanism 41 is sent to the use side heat exchanger 6 functioning as a refrigerant radiator through the check mechanism 42 and the switching mechanism 3 to be cooled. It is cooled by exchanging heat with water or air as a source (see point F in FIGS. 31 and 35 to 37).
  • the high-pressure refrigerant cooled in the use-side heat exchanger 6 flows into the receiver inlet pipe 18a through the inlet check valve 17b of the bridge circuit 17, and is reduced to near the saturation pressure by the first expansion mechanism 5a. (See point I in FIGS. 31 and 35).
  • the refrigerant stored in the receiver 18 is sent to the receiver outlet pipe 18b and is reduced in pressure by the second expansion mechanism 5b to become a low-pressure gas-liquid two-phase refrigerant, and the outlet check valve 17d of the bridge circuit 17 is supplied.
  • the intermediate heat exchanger return pipe 94 and also to the intermediate heat exchanger 7 functioning as the refrigerant evaporator (FIGS. 31 and 31). 35 to point 37 in FIG. 37).
  • the low-pressure gas-liquid two-phase refrigerant sent to the heat source side heat exchanger 4 is heated and evaporated by exchanging heat with air as a heating source supplied by the heat source side fan 40. (Refer to point A in FIGS. 31 and 35 to 37).
  • the low-pressure gas-liquid two-phase refrigerant sent to the intermediate heat exchanger 7 is also heated and evaporated by exchanging heat with air as a heating source supplied by the heat source side fan 40. (Refer to point V in FIGS. 31 and 35 to 37).
  • the low-pressure refrigerant heated and evaporated in the heat source side heat exchanger 4 is again sucked into the compression mechanism 2 via the switching mechanism 3.
  • the low-pressure refrigerant heated and evaporated in the intermediate heat exchanger 7 is again sucked into the compression mechanism 2 through the second suction return pipe 92. In this way, the heating operation is performed.
  • the intermediate heat exchanger 7 is not simply put into a state of not functioning as a cooler by not using the intermediate heat exchanger 7. It is made to function as an evaporator of the refrigerant that has dissipated heat in the use side heat exchanger 7, and is also used during heating operation, while suppressing heat radiation from the intermediate heat exchanger 7 to the outside, While increasing the evaporation capacity, the intermediate heat exchanger 7 can be used effectively during heating operation. In this modification, drain water is also generated from the intermediate heat exchanger 7 during the heating operation.
  • the intermediate heat exchanger 7 since the intermediate heat exchanger 7 is disposed above the heat source side heat exchanger 4, the intermediate heat exchanger 7 generates intermediate water.
  • the drain water generated in the exchanger 7 flows down through the heat source side heat exchanger 4 and includes not only the drain water generated in the heat source side heat exchanger 4 but also the drain water generated in the intermediate heat exchanger 7. 97 can be heated.
  • the second suction return pipe 92 and the intermediate heat exchanger return pipe 94 are provided in the configuration in which the drain heater 97 is provided below the heat source side heat exchanger 4 in the second embodiment.
  • the drain heater 97 as in the first to third modifications of the second embodiment described above is provided in the bottom plate 77 that functions as a drain pan, the bottom of the heat source side heat exchanger 4, and the bottom plate that functions as a drain pan.
  • a second suction return pipe 92 and an intermediate heat exchanger return pipe 94 may be provided.
  • refrigerant return state The refrigerant is sucked into the second compression element 2d and the intermediate heat exchanger 7 and the suction side of the compression mechanism 2 are connected through the second suction return pipe 92 (hereinafter, this state is referred to as “refrigerant return state”). Is switched according to the open / close state of the on-off valves 11, 12, 92a. However, as shown in FIG. 38, instead of the on-off valves 11, 12, 92a, the refrigerant unreturned state and the refrigerant Return State and may be a refrigerant circuit 110 provided with the intermediate heat exchanger switching valve 93 capable of switching.
  • the intermediate heat exchanger switching valve 93 is a valve that can be switched between a refrigerant non-return state and a refrigerant return state.
  • the intermediate heat exchanger switching valve 93 is connected to the discharge side of the compression element 2c on the upstream side of the intermediate refrigerant pipe 8.
  • the intermediate refrigerant pipe 8 is connected to the inlet side of the intermediate heat exchanger 7
  • the intermediate heat exchanger bypass pipe 9 is connected to the front end side of the compression element 2 c
  • the second suction return pipe 92 is connected to the intermediate heat exchanger 7 side end. This is a four-way switching valve.
  • the intermediate heat exchanger bypass pipe 9 allows the refrigerant to flow from the discharge side of the front-stage compression element 2c to the suction side of the rear-stage compression element 2d, and sucks the rear-stage compression element 2d.
  • a check mechanism 9a for blocking the flow of the refrigerant from the side to the discharge side of the compression element 2c on the upstream side and the suction side of the compression mechanism 2.
  • the check mechanism 9a is a check valve in this modification. In the present modification, detailed description is omitted, but the intermediate heat exchanger switching valve 93 is switched to the refrigerant non-return state (see the solid line of the intermediate heat exchanger switching valve 93 in FIG. 38).
  • the cooling operation similar to the fourth modification of the second embodiment is performed, and the refrigerant discharged from the compression element 2c on the front stage through the intermediate heat exchanger bypass pipe 9 is sucked into the compression element 2d on the rear stage, and the second By switching to the refrigerant return state in which the intermediate heat exchanger 7 and the suction side of the compression mechanism 2 are connected through the suction return pipe 92 (see the broken line of the intermediate heat exchanger switching valve 93 in FIG. 38), the second implementation described above.
  • a heating operation similar to that of the fourth modification of the embodiment can be performed.
  • the intermediate heat exchanger switching valve 93 can be switched between the refrigerant non-return state and the refrigerant return state, so that the plurality of valves 11 as in the fourth modification of the second embodiment described above, 12 and 92a, the number of valves can be reduced as compared with the case of adopting a configuration in which the refrigerant non-return state and the refrigerant return state are switched.
  • the intermediate heat exchanger switching valve 93 and the like are provided in the configuration in which the drain heater 97 is provided below the heat source side heat exchanger 4 in the second embodiment.
  • an intermediate heat exchanger switching valve 93 or the like may be provided.
  • the first second-stage injection pipe 19 and Intermediate pressure injection by the economizer heat exchanger 20 may be performed.
  • the refrigerant circuit 110 (see FIG. 31) of Modification 4 of the second embodiment described above the refrigerant further provided with the first second-stage injection pipe 19 and the economizer heat exchanger 20.
  • Circuit 210 can be used.
  • the first second-stage injection pipe 19 has a function of branching the refrigerant flowing between the heat source-side heat exchanger 4 and the use-side heat exchanger 6 and returning it to the compression element 2d on the rear stage side of the compression mechanism 2. .
  • the first second-stage injection pipe 19 is provided to branch the refrigerant flowing through the receiver inlet pipe 18a and return it to the suction side of the second-stage compression element 2d.
  • the first second-stage injection pipe 19 is positioned on the upstream side of the first expansion mechanism 5a of the receiver inlet pipe 18a (that is, when the switching mechanism 3 is in the cooling operation state, the heat source side heat The refrigerant is branched from the exchanger 4 and the first expansion mechanism 5a) and returned to the downstream position of the intermediate heat exchanger 7 in the intermediate refrigerant pipe 8.
  • the first second-stage injection pipe 19 is provided with a first second-stage injection valve 19a capable of opening degree control.
  • the 1st latter stage side injection valve 19a is an electric expansion valve in this modification.
  • the economizer heat exchanger 20 includes a refrigerant flowing between the heat source side heat exchanger 4 and the use side heat exchanger 6 and a refrigerant flowing through the first second-stage injection pipe 19 (more specifically, a first second-stage injection valve).
  • 19a is a heat exchanger that performs heat exchange with the refrigerant after being reduced in pressure to near the intermediate pressure.
  • the economizer heat exchanger 20 is positioned on the upstream side of the first expansion mechanism 5a of the receiver inlet pipe 18a (that is, when the switching mechanism 3 is in the cooling operation state, the heat source side heat exchanger 4 Between the refrigerant flowing between the refrigerant and the first expansion mechanism 5a) and the refrigerant flowing through the first second-stage injection pipe 19, and a flow path through which the two refrigerants face each other.
  • the economizer heat exchanger 20 is provided on the downstream side of the position where the first second-stage injection pipe 19 is branched from the receiver inlet pipe 18a.
  • the refrigerant flowing between the heat source side heat exchanger 4 and the use side heat exchanger 6 is transferred to the first second-stage injection pipe 19 before heat exchange is performed in the economizer heat exchanger 20 in the receiver inlet pipe 18a.
  • the economizer heat exchanger 20 exchanges heat with the refrigerant flowing through the first second-stage injection pipe 19.
  • the high-pressure refrigerant cooled in the heat source side heat exchanger 4 is exchanged with the inlet check valve 17a of the bridge circuit 17 and the economizer heat exchange.
  • the high-pressure refrigerant cooled in the use side heat exchanger 6 is supplied to the inlet check valve 17b of the bridge circuit 17, the economizer heat exchanger 20, and the receiver inlet pipe 18a.
  • the first expansion mechanism 5a, the receiver 18, the second expansion mechanism 5b of the receiver outlet pipe 18b, and the outlet check valve 17d of the bridge circuit 17 can be sent to the heat source side heat exchanger 4.
  • the intermediate refrigerant pipe 8 or the compression mechanism 2 is provided with an intermediate pressure sensor 54 that detects the pressure of the refrigerant flowing through the intermediate refrigerant pipe 8.
  • An economizer outlet temperature sensor 55 that detects the temperature of the refrigerant at the outlet of the economizer heat exchanger 20 on the first rear-stage injection pipe 19 side is provided at the outlet of the economizer heat exchanger 20 on the first rear-stage injection pipe 19 side.
  • FIG. 41 is a pressure-enthalpy diagram illustrating the refrigeration cycle during the cooling operation.
  • FIG. 43 is a temperature-entropy diagram illustrating the refrigeration cycle during cooling operation,
  • FIG. 43 is a diagram illustrating the flow of refrigerant in the air conditioner 1 during heating operation, and
  • FIG. 44 is during heating operation.
  • FIG. 45 is a pressure-enthalpy diagram illustrating the refrigeration cycle, and
  • FIG. 45 is a temperature-entropy diagram illustrating the refrigeration cycle during the heating operation. Note that operation control in the following cooling operation and heating operation is performed by the above-described control unit (not shown).
  • “high pressure” means high pressure in the refrigeration cycle (that is, pressure at points D, D ′, E, and H in FIGS.
  • Low pressure means low pressure in the refrigeration cycle (that is, pressure at points A and F in FIGS. 41 and 42 and pressure at points A, E and V in FIGS. 44 and 45).
  • intermediate pressure means an intermediate pressure in the refrigeration cycle (that is, the pressure at points B, C1, G, J, and K in FIGS. 41 and 42, and points B, C2, G, and J in FIGS. , Pressure at K).
  • the switching mechanism 3 is in the cooling operation state indicated by the solid lines in FIGS.
  • the opening degree of the first expansion mechanism 5a and the second expansion mechanism 5b is adjusted.
  • the opening degree of the first second-stage injection valve 19a is also adjusted. More specifically, in this modification, the first second-stage injection valve 19a has an opening degree so that the degree of superheat of the refrigerant at the outlet of the economizer heat exchanger 20 on the first second-stage injection pipe 19 side becomes a target value. So-called superheat control is performed.
  • the superheat degree of the refrigerant at the outlet of the economizer heat exchanger 20 on the first second-stage injection pipe 19 side is obtained by converting the intermediate pressure detected by the intermediate pressure sensor 54 into the saturation temperature, and the economizer outlet temperature sensor 55. This is obtained by subtracting the saturation temperature value of the refrigerant from the refrigerant temperature detected by the above.
  • a temperature sensor is provided at the inlet of the economizer heat exchanger 20 on the first second-stage injection pipe 19 side, and the refrigerant temperature detected by this temperature sensor is used as the economizer outlet temperature sensor 55.
  • the degree of superheat of the refrigerant at the outlet of the economizer heat exchanger 20 on the first second-stage injection pipe 19 side may be obtained by subtracting from the refrigerant temperature detected by the above.
  • the adjustment of the opening degree of the first second-stage injection valve 19a is not limited to the superheat degree control, and, for example, is to open a predetermined opening degree according to the refrigerant circulation amount in the refrigerant circuit 10 or the like. Also good. Since the switching mechanism 3 is in the cooling operation state, the intermediate heat exchanger on / off valve 12 of the intermediate refrigerant pipe 8 is opened, and the intermediate heat exchanger bypass on / off valve 11 of the intermediate heat exchanger bypass pipe 9 is closed.
  • the intermediate heat exchanger 7 is put into a state of functioning as a cooler, the refrigerant does not flow into the drain heater 97, and the second suction return on / off valve 92a of the second suction return pipe 92 is By being closed, the intermediate heat exchanger 7 is not connected to the suction side of the compression mechanism 2, and the intermediate heat exchanger return on / off valve 94a of the intermediate heat exchanger return pipe 94 is closed.
  • the intermediate side heat exchanger 7 is not connected between the use side heat exchanger 6 and the heat source side heat exchanger 4.
  • low-pressure refrigerant (see point A in FIGS. 39 to 42) is sucked into the compression mechanism 2 from the suction pipe 2a, and is first compressed to an intermediate pressure by the compression element 2c.
  • the refrigerant is discharged into the refrigerant pipe 8 (see point B1 in FIGS. 39 to 42).
  • the intermediate pressure refrigerant discharged from the preceding compression element 2c is cooled by exchanging heat with air as a cooling source supplied by the heat source side fan 40 in the intermediate heat exchanger 7 (FIG. 39). (See point C1 in FIG. 42).
  • the refrigerant cooled in the intermediate heat exchanger 7 is further cooled by joining with the refrigerant (see point K in FIGS.
  • the high-pressure refrigerant discharged from the compression mechanism 2 flows into the oil separator 41a constituting the oil separation mechanism 41, and the accompanying refrigeration oil is separated.
  • the refrigerating machine oil separated from the high-pressure refrigerant in the oil separator 41a flows into the oil return pipe 41b constituting the oil separation mechanism 41, and is compressed after being reduced in pressure by the pressure reduction mechanism 41c provided in the oil return pipe 41b. It is returned to the suction pipe 2a of the mechanism 2 and again sucked into the compression mechanism 2.
  • the high-pressure refrigerant after the refrigerating machine oil is separated in the oil separation mechanism 41 is sent to the heat source side heat exchanger 4 functioning as a refrigerant radiator through the check mechanism 42 and the switching mechanism 3.
  • the high-pressure refrigerant sent to the heat source side heat exchanger 4 is cooled by exchanging heat with air as a cooling source supplied by the heat source side fan 40 in the heat source side heat exchanger 4 (FIG. 39). (See point E in FIG. 42).
  • the high-pressure refrigerant cooled in the heat source side heat exchanger 4 flows into the receiver inlet pipe 18 a through the inlet check valve 17 a of the bridge circuit 17, and a part thereof is branched to the first second-stage injection pipe 19. .
  • the refrigerant flowing through the first second-stage injection pipe 19 is sent to the economizer heat exchanger 20 after being reduced to near the intermediate pressure at the first second-stage injection valve 19a (see point J in FIGS. 39 to 42). . Further, the refrigerant branched into the first second-stage injection pipe 19 flows into the economizer heat exchanger 20, and is cooled by exchanging heat with the refrigerant flowing through the first second-stage injection pipe 19 (FIG. 39 to FIG. 39). (See point H in FIG. 42). On the other hand, the refrigerant flowing through the first rear-stage injection pipe 19 is heated by exchanging heat with the high-pressure refrigerant cooled in the heat source-side heat exchanger 4 as a radiator (see point K in FIGS.
  • the refrigerant is joined to the intermediate-pressure refrigerant discharged from the preceding compression element 2c. Then, the high-pressure refrigerant cooled in the economizer heat exchanger 20 is decompressed to near the saturation pressure by the first expansion mechanism 5a and temporarily stored in the receiver 18 (see point I in FIGS. 39 and 40). Then, the refrigerant stored in the receiver 18 is sent to the receiver outlet pipe 18b and is decompressed by the second expansion mechanism 5b to become a low-pressure gas-liquid two-phase refrigerant, and the outlet check valve 17c of the bridge circuit 17 is used.
  • the air conditioning apparatus 1 refrigeration apparatus
  • the same effect as the cooling operation in the modification 4 of the second embodiment described above can be obtained.
  • the first rear-stage injection pipe 19 and the economizer heat exchanger 20 are provided to branch the refrigerant sent from the heat source-side heat exchanger 4 to the expansion mechanisms 5a and 5b and to the rear-stage compression element 2d. Therefore, the temperature of the refrigerant sucked into the compression element 2d on the rear stage side can be further reduced without performing heat radiation to the outside like the intermediate heat exchanger 7 (point C1 in FIG. 42). , G).
  • the temperature of the refrigerant discharged from the compression mechanism 2 is further suppressed (see points D and D ′ in FIG. 42), and the point in FIG. 42 is compared with the case where the first second-stage injection pipe 19 is not provided. Since the heat dissipation loss corresponding to the area surrounded by connecting C1, D ′, D, and G can be further reduced, the operating efficiency can be further improved.
  • the switching mechanism 3 is in the heating operation state indicated by the broken lines in FIGS.
  • the opening degree of the first expansion mechanism 5a and the second expansion mechanism 5b is adjusted. Further, the opening degree of the first second-stage injection valve 19a is adjusted in the same manner as in the above-described cooling operation. Since the switching mechanism 3 is in a heating operation state, the intermediate heat exchanger on / off valve 12 of the intermediate refrigerant pipe 8 is closed, and the intermediate heat exchanger bypass on / off valve 11 of the intermediate heat exchanger bypass pipe 9 is opened.
  • the intermediate heat exchanger 7 is brought into a state in which it does not function as a cooler, the refrigerant flows into the drain heater 97, and the second suction return on / off valve 92a of the second suction return pipe 92 is opened.
  • the intermediate heat exchanger 7 and the suction side of the compression mechanism 2 are connected, and the intermediate heat exchanger return on / off valve 94a of the intermediate heat exchanger return pipe 94 is opened.
  • the intermediate heat exchanger 7 is connected.
  • the low-pressure refrigerant (see point A in FIGS. 39 and 43 to 45) is sucked into the compression mechanism 2 from the suction pipe 2a and first compressed to an intermediate pressure by the compression element 2c. Thereafter, the refrigerant is discharged into the intermediate refrigerant pipe 8 (see point B in FIGS. 39 and 43 to 45). Unlike the cooling operation, the intermediate-pressure refrigerant discharged from the upstream-side compression element 2c does not pass through the intermediate heat exchanger 7 and is supplied to the drain heater 97 provided in the intermediate heat exchanger bypass pipe 9.
  • cooling is performed by exchanging heat with the drain water generated in the heat source side heat exchanger 4 functioning as a refrigerant evaporator and flowing down the heat source side heat exchanger 4 (FIG. 39, see point C2 in FIGS.
  • the refrigerant cooled in the drain heater 97 is further merged with the refrigerant (see point K in FIGS. 39 and 43 to 45) returned from the first second-stage injection pipe 19 to the second-stage compression mechanism 2d. Cooling is performed (see point G in FIGS. 39 and 43 to 45).
  • the intermediate pressure refrigerant combined with the refrigerant returning from the first second-stage injection pipe 19 is sucked into the compression element 2d connected to the second-stage side of the compression element 2c and further compressed, and is discharged from the compression mechanism 2 to the discharge pipe. 2b (see point D in FIGS. 39 and 43 to 45).
  • the high-pressure refrigerant discharged from the compression mechanism 2 is subjected to the critical pressure (that is, the critical pressure Pcp at the critical point CP shown in FIG. 44) by the two-stage compression operation by the compression elements 2c and 2d as in the cooling operation.
  • the high-pressure refrigerant discharged from the compression mechanism 2 flows into the oil separator 41a constituting the oil separation mechanism 41, and the accompanying refrigeration oil is separated.
  • the refrigerating machine oil separated from the high-pressure refrigerant in the oil separator 41a flows into the oil return pipe 41b constituting the oil separation mechanism 41, and is compressed after being reduced in pressure by the pressure reduction mechanism 41c provided in the oil return pipe 41b. It is returned to the suction pipe 2a of the mechanism 2 and again sucked into the compression mechanism 2.
  • the high-pressure refrigerant after the refrigerating machine oil is separated in the oil separation mechanism 41 is sent to the use side heat exchanger 6 functioning as a refrigerant radiator through the check mechanism 42 and the switching mechanism 3 to be cooled. It is cooled by exchanging heat with water or air as a source (see point F in FIGS. 39 and 43 to 45). Then, the high-pressure refrigerant cooled in the use side heat exchanger 6 flows into the receiver inlet pipe 18a through the inlet check valve 17b of the bridge circuit 17, and a part thereof is branched to the first second-stage injection pipe 19. .
  • the refrigerant flowing through the first second-stage injection pipe 19 is sent to the economizer heat exchanger 20 after being reduced to the vicinity of the intermediate pressure at the first second-stage injection valve 19a (points in FIGS. 39 and 43 to 45). J). Further, the refrigerant branched to the first second-stage injection pipe 19 flows into the economizer heat exchanger 20, and is cooled by exchanging heat with the refrigerant flowing through the first second-stage injection pipe 19 (FIG. 39, (See point H in FIGS. 43 to 45). On the other hand, the refrigerant flowing through the first rear-stage-side injection pipe 19 is heated by exchanging heat with the high-pressure refrigerant cooled in the heat source-side heat exchanger 4 as a radiator (see FIGS.
  • the refrigerant merges with the intermediate pressure refrigerant discharged from the preceding compression element 2c. Then, the high-pressure refrigerant cooled in the economizer heat exchanger 20 is decompressed to near the saturation pressure by the first expansion mechanism 5a and temporarily stored in the receiver 18 (see point I in FIGS. 39 and 43). Then, the refrigerant stored in the receiver 18 is sent to the receiver outlet pipe 18b and is reduced in pressure by the second expansion mechanism 5b to become a low-pressure gas-liquid two-phase refrigerant, and the outlet check valve 17d of the bridge circuit 17 is supplied.
  • the intermediate heat exchanger return pipe 94 and also to the intermediate heat exchanger 7 functioning as the refrigerant evaporator (FIG. 39, FIG. 39). 43 to point E in FIG. 45). Then, the low-pressure gas-liquid two-phase refrigerant sent to the heat source side heat exchanger 4 is heated and evaporated by exchanging heat with air as a heating source supplied by the heat source side fan 40. (Refer to point A in FIGS. 39 and 43 to 45). Further, the low-pressure gas-liquid two-phase refrigerant sent to the intermediate heat exchanger 7 is also heated and evaporated by exchanging heat with air as a heating source supplied by the heat source side fan 40. (See point V in FIGS. 39 and 43-45).
  • the low-pressure refrigerant heated and evaporated in the heat source side heat exchanger 4 is again sucked into the compression mechanism 2 via the switching mechanism 3.
  • the low-pressure refrigerant heated and evaporated in the intermediate heat exchanger 7 is again sucked into the compression mechanism 2 through the second suction return pipe 92. In this way, the heating operation is performed.
  • the same effect as the cooling operation in the modification 4 of the second embodiment described above can be obtained.
  • the first rear-stage injection pipe 19 and the economizer heat exchanger 20 are provided to branch the refrigerant sent from the heat source-side heat exchanger 4 to the expansion mechanisms 5a and 5b. Since the pressure is returned to the compression element 2d on the rear stage side, the temperature of the refrigerant sucked into the compression element 2d on the rear stage side can be further reduced without performing heat radiation to the outside like the intermediate heat exchanger 7. Yes (see points C1 and G in FIG. 45).
  • the temperature of the refrigerant discharged from the compression mechanism 2 is further suppressed (see points D and D ′ in FIG. 45), and the point in FIG. 45 is compared with the case where the first second-stage injection pipe 19 is not provided. Since the heat dissipation loss corresponding to the area surrounded by connecting C1, D ′, D, and G can be further reduced, the operating efficiency can be further improved.
  • the first post-stage injection pipe 19 and the economizer heat exchanger 20 are provided in the configuration in which the drain heater 97 is provided below the heat source side heat exchanger 4 in the above-described modification 4.
  • the drain heater 97 as in the first to third modifications of the second embodiment described above is provided in the bottom plate 77 that functions as a drain pan, the bottom of the heat source side heat exchanger 4 and the bottom plate 77 that functions as a drain pan.
  • the first second-stage injection pipe 19 and the economizer heat exchanger 20 may be provided.
  • switching between the refrigerant non-return state and the refrigerant return state is performed according to the open / close state of the on-off valves 11, 12, 92a, but as in the above-described fifth modification of the second embodiment.
  • an intermediate heat exchanger switching valve 93 or the like capable of switching between the refrigerant non-return state and the refrigerant return state may be provided.
  • the refrigerant circuit 10 in the second embodiment and the modification thereof, 110 and 210 are considered to be particularly advantageous in the case of using a refrigerant operating in the supercritical region, in a configuration having one usage-side heat exchanger 6. It is done.
  • the configuration includes a plurality of usage-side heat exchangers 6 connected in parallel to each other, and each usage-side heat exchanger
  • each usage-side heat exchanger In order to obtain the refrigeration load required in each use side heat exchanger 6 by controlling the flow rate of the refrigerant flowing through the receiver 6, the receiver 18 as a gas-liquid separator and the use side heat exchanger 6 can be obtained.
  • the use side expansion mechanism 5c may be provided so as to correspond to each use side heat exchanger 6.
  • the refrigerant circuit 210 see FIG.
  • the first expansion mechanism 5a as the heat source side expansion mechanism after being cooled in the heat source side heat exchanger 4 as the radiator like the cooling operation in which the switching mechanism 3 is in the cooling operation state.
  • the intermediate pressure by the economizer heat exchanger 20 is the same as in the above-described modification 6. Injection is advantageous.
  • each use-side expansion mechanism 5c is used as a radiator so that the refrigeration load required in each use-side heat exchanger 6 as a radiator can be obtained.
  • the flow rate of the refrigerant flowing through each usage-side heat exchanger 6 is controlled, and the flow rate of the refrigerant passing through each usage-side heat exchanger 6 as a radiator is the same as that of each usage-side heat exchanger 6 as a radiator.
  • the opening degree control of each use side expansion mechanism 5c is performed.
  • the degree of decompression of the refrigerant varies depending not only on the flow rate of the refrigerant flowing through each use side heat exchanger 6 as a radiator but also on the state of flow distribution among the use side heat exchangers 6 as a plurality of radiators.
  • Multiple use-side swelling Since the degree of decompression may vary greatly between the mechanisms 5c, or the degree of decompression in the use-side expansion mechanism 5c may be relatively large, the refrigerant pressure at the inlet of the economizer heat exchanger 20 becomes low. In such a case, the amount of heat exchanged in the economizer heat exchanger 20 (i.e., the flow rate of the refrigerant flowing through the first second-stage injection pipe 19) may be reduced, making it difficult to use.
  • a heat source unit mainly including the compression mechanism 2, the heat source side heat exchanger 4 and the receiver 18 and a utilization unit mainly including the utilization side heat exchanger 6 are connected by a communication pipe.
  • this connection pipe may be very long depending on the arrangement of the utilization unit and the heat source unit. Therefore, the influence of the pressure loss is also added, and the economizer heat exchanger 20 The refrigerant pressure at the inlet of the refrigerant will further decrease.
  • the configuration includes a plurality of usage-side heat exchangers 6 connected in parallel to each other, In order to control the flow rate of the refrigerant flowing through the use side heat exchanger 6 and obtain the refrigeration load required in each use side heat exchanger 6, the receiver 18 and the use side heat exchanger 6
  • the first expansion mechanism 5a reduces the pressure to near the saturation pressure and the receiver. The refrigerant temporarily stored in 18 (see point L in FIG.
  • each use-side expansion mechanism 5c is distributed to each use-side expansion mechanism 5c, but the refrigerant sent from the receiver 18 to each use-side expansion mechanism 5c is gas-liquid two-phase.
  • Each use is in state Since the time distribution to the expansion mechanisms 5c which may cause uneven flow, it is desirable that the refrigerant fed from the receiver 18 to the usage-side expansion mechanisms 5c as possible supercooled state.
  • the receiver 18 in order to allow the receiver 18 to function as a gas-liquid separator and perform intermediate pressure injection, the receiver 18 is provided with a second second-stage injection pipe 18c.
  • the intermediate pressure injection by the economizer heat exchanger 20 is performed, and in the heating operation, the intermediate pressure injection by the receiver 18 as a gas-liquid separator can be performed, and the receiver 18
  • the refrigerant circuit 310 is provided with a supercooling heat exchanger 96 as a cooler and a third suction return pipe 95 as a return pipe between the expansion side 5c and the use side expansion mechanism 5c.
  • the second second-stage injection pipe 18c is a refrigerant pipe capable of performing intermediate pressure injection by extracting the refrigerant from the receiver 18 and returning it to the second-stage compression element 2d of the compression mechanism 2.
  • the upper part of the receiver 18 is connected to the intermediate refrigerant pipe 8 (that is, the suction side of the compression element 2d on the rear stage side of the compression mechanism 2).
  • the second second-stage injection pipe 18c is provided with a second second-stage injection on-off valve 18d and a second second-stage injection check mechanism 18e.
  • the second second-stage injection on / off valve 18d is a valve that can be opened and closed, and is an electromagnetic valve in this modification.
  • the second second-stage injection check mechanism 18e allows the refrigerant flow from the receiver 18 to the second-stage compression element 2d and blocks the refrigerant flow from the second-stage compression element 2d to the receiver 18.
  • This is a mechanism, and a check valve is used in this modification.
  • the second rear injection pipe 18c and the first suction return pipe 18f are integrated with each other on the receiver 18 side. Further, the second rear-stage injection pipe 18c and the first rear-stage injection pipe 19 are integrally formed on the intermediate refrigerant pipe 8 side.
  • the use side expansion mechanism 5c is an electric expansion valve.
  • the first second-stage injection pipe 19 and the economizer heat exchanger 20 are used during the cooling operation, and the second second-stage injection pipe 18c is used during the heating operation. Therefore, it is not necessary to make the flow direction of the refrigerant to the economizer heat exchanger 20 constant regardless of the cooling operation and the heating operation, so the bridge circuit 17 is omitted and the configuration of the refrigerant circuit 210 is simplified.
  • the third suction return pipe 95 branches the refrigerant sent from the heat source side heat exchanger 4 serving as a radiator to the use side heat exchanger 6 serving as an evaporator, and sucks the compression mechanism 2 (that is, the suction pipe). It is a refrigerant pipe returned to 2a).
  • the third suction return pipe 95 is provided so as to branch the refrigerant sent from the receiver 18 to the use-side expansion mechanism 5c. More specifically, the third suction return pipe 95 branches the refrigerant from the upstream position of the supercooling heat exchanger 96 (that is, between the receiver 18 and the economizer heat exchanger 20) and flows to the suction pipe 2a. It is provided to return.
  • the third suction return pipe 95 is provided with a third suction return valve 95a capable of opening degree control.
  • the third suction return valve 95a is an electric expansion valve in this modification.
  • the supercooling heat exchanger 96 includes a refrigerant sent from the heat source side heat exchanger 4 as a radiator to the use side heat exchanger 6 as an evaporator and a refrigerant flowing through the third suction return pipe 95 (more specifically, Is a heat exchanger that performs heat exchange with the refrigerant after being reduced to near low pressure in the third suction return valve 95a.
  • the supercooling heat exchanger 96 is a refrigerant that flows through a position upstream of the use side expansion mechanism 5c (that is, between the position where the third suction return pipe 95 is branched and the use side expansion mechanism 5c). And the refrigerant flowing through the third suction return pipe 95 are provided for heat exchange.
  • the supercooling heat exchanger 96 is provided on the downstream side of the position where the third suction return pipe 95 is branched. For this reason, the refrigerant cooled in the heat source side heat exchanger 4 as the radiator passes through the economizer heat exchanger 20 as the cooler, and then is branched to the third suction return pipe 95 to be subcooled heat exchanger 96. In this case, heat exchange with the refrigerant flowing through the third suction return pipe 95 is performed.
  • the suction pipe 2 a or the compression mechanism 2 is provided with a suction pressure sensor 60 that detects the pressure of the refrigerant flowing on the suction side of the compression mechanism 2.
  • a supercooling heat exchanger outlet temperature sensor 59 that detects the temperature of the refrigerant at the outlet of the supercooling heat exchanger 96 on the third suction return pipe 95 side is provided at the outlet of the supercooling heat exchanger 96 on the third suction return pipe 95 side. Is provided.
  • FIG. 47 is a diagram showing the refrigerant flow in the air conditioner 1 during the cooling operation
  • FIG. 48 is a pressure-enthalpy diagram illustrating the refrigeration cycle during the cooling operation.
  • FIG. 50 is a temperature-entropy diagram illustrating a refrigeration cycle during cooling operation
  • FIG. 50 is a diagram illustrating the flow of refrigerant in the air conditioner 1 during heating operation
  • FIG. 51 is during heating operation
  • FIG. 52 is a pressure-enthalpy diagram illustrating the refrigeration cycle
  • FIG. 52 is a temperature-entropy diagram illustrating the refrigeration cycle during the heating operation. Note that operation control in the following cooling operation and heating operation is performed by the control unit (not shown) in the above-described embodiment.
  • “high pressure” means high pressure in the refrigeration cycle (that is, pressure at points D, D ′, E, H, I, and R in FIGS. 48 and 49 and point D in FIGS. 51 and 52).
  • low pressure means low pressure in the refrigeration cycle (that is, pressure at points A, F, S in FIGS. 48 and 49, and points A, E, “Intermediate pressure” means an intermediate pressure in the refrigeration cycle (ie, points B, C1, G, J, K in FIGS. 48 and 49, and points B, C2, Pressure in G, I, L, and M).
  • the switching mechanism 3 is in the cooling operation state indicated by the solid lines in FIGS.
  • the opening degree of the first expansion mechanism 5a and the use-side expansion mechanism 5c as the heat source side expansion mechanism is adjusted. Further, when the switching mechanism 3 is in the cooling operation state, it is heated in the economizer heat exchanger 20 through the first second-stage injection pipe 19 without performing intermediate pressure injection by the receiver 18 as a gas-liquid separator.
  • the intermediate pressure injection by the economizer heat exchanger 20 for returning the refrigerant to the compression element 2d on the rear stage side is performed.
  • the second second-stage injection on / off valve 18d is closed, and the opening degree of the first second-stage injection valve 19a is adjusted in the same manner as in Modification 6 of the second embodiment described above.
  • the degree of opening of the third suction return valve 95a is also adjusted because the supercooling heat exchanger 96 is used. More specifically, in this modification, the third suction return valve 95a adjusts the opening so that the degree of superheat of the refrigerant at the outlet of the supercooling heat exchanger 96 on the third suction return pipe 95 side becomes the target value. In other words, so-called superheat control is performed.
  • the superheat degree of the refrigerant at the outlet of the supercooling heat exchanger 96 on the side of the third suction return pipe 95 is calculated by converting the low pressure detected by the suction pressure sensor 60 into a saturation temperature, and the supercooling heat exchange outlet temperature. This is obtained by subtracting the saturation temperature value of the refrigerant from the refrigerant temperature detected by the sensor 59.
  • a temperature sensor is provided at the inlet of the third cooling return pipe 95 side of the supercooling heat exchanger 96, and the refrigerant temperature detected by this temperature sensor is used as the supercooling heat exchange outlet.
  • the degree of superheat of the refrigerant at the outlet on the third suction return pipe 95 side of the supercooling heat exchanger 96 may be obtained.
  • the adjustment of the opening degree of the third suction return valve 95a is not limited to the superheat degree control.
  • the opening degree of the third suction return valve 95a may be opened by a predetermined opening degree according to the refrigerant circulation amount in the refrigerant circuit 310. Good. Since the switching mechanism 3 is in the cooling operation state, the intermediate heat exchanger on / off valve 12 of the intermediate refrigerant pipe 8 is opened, and the intermediate heat exchanger bypass on / off valve 11 of the intermediate heat exchanger bypass pipe 9 is closed.
  • the intermediate heat exchanger 7 is put into a state of functioning as a cooler, the refrigerant does not flow into the drain heater 97, and the second suction return on / off valve 92a of the second suction return pipe 92 is By being closed, the intermediate heat exchanger 7 is not connected to the suction side of the compression mechanism 2, and the intermediate heat exchanger return on / off valve 94a of the intermediate heat exchanger return pipe 94 is closed.
  • the intermediate side heat exchanger 7 is not connected between the use side heat exchanger 6 and the heat source side heat exchanger 4.
  • low-pressure refrigerant (see point A in FIGS. 46 to 49) is sucked into the compression mechanism 2 from the suction pipe 2a, and is first compressed to an intermediate pressure by the compression element 2c, The refrigerant is discharged into the refrigerant pipe 8 (see point B in FIGS. 46 to 49).
  • the intermediate pressure refrigerant discharged from the preceding compression element 2c is cooled by exchanging heat with air as a cooling source supplied by the heat source side fan 40 in the intermediate heat exchanger 7 (FIG. 46). (See point C1 in FIG. 49).
  • the refrigerant cooled in the intermediate heat exchanger 7 is further cooled by joining with the refrigerant (see point K in FIGS.
  • the high-pressure refrigerant discharged from the compression mechanism 2 flows into the oil separator 41a constituting the oil separation mechanism 41, and the accompanying refrigeration oil is separated.
  • the refrigerating machine oil separated from the high-pressure refrigerant in the oil separator 41a flows into the oil return pipe 41b constituting the oil separation mechanism 41, and is compressed after being reduced in pressure by the pressure reduction mechanism 41c provided in the oil return pipe 41b. It is returned to the suction pipe 2a of the mechanism 2 and again sucked into the compression mechanism 2.
  • the high-pressure refrigerant after the refrigerating machine oil is separated in the oil separation mechanism 41 is sent to the heat source side heat exchanger 4 functioning as a refrigerant radiator through the check mechanism 42 and the switching mechanism 3. Then, the high-pressure refrigerant sent to the heat source side heat exchanger 4 is cooled by exchanging heat with air as a cooling source supplied by the heat source side fan 40 in the heat source side heat exchanger 4 (FIG. 46). (See point E in FIG. 49). A part of the high-pressure refrigerant cooled in the heat source side heat exchanger 4 is branched to the first second-stage injection pipe 19.
  • the refrigerant flowing through the first second-stage injection pipe 19 is reduced to near the intermediate pressure at the first second-stage injection valve 19a, and then sent to the economizer heat exchanger 20 (see point J in FIGS. 46 to 49). . Further, the refrigerant branched into the first second-stage injection pipe 19 flows into the economizer heat exchanger 20, and is cooled by exchanging heat with the refrigerant flowing through the first second-stage injection pipe 19 (FIG. 46 to FIG. 46). (See point H in FIG. 49). On the other hand, the refrigerant flowing through the first rear-stage injection pipe 19 is heated by exchanging heat with the high-pressure refrigerant cooled in the heat source-side heat exchanger 4 as a radiator (see point K in FIGS.
  • the refrigerant is joined to the intermediate-pressure refrigerant discharged from the preceding compression element 2c. Then, the high-pressure refrigerant cooled in the economizer heat exchanger 20 is decompressed to near the saturation pressure by the first expansion mechanism 5a and is temporarily stored in the receiver 18 (see point I in FIGS. 46 to 49). A part of the refrigerant stored in the receiver 18 is branched to the third suction return pipe 95. Then, the refrigerant flowing through the third suction return pipe 95 is depressurized to near low pressure in the third suction return valve 95a, and then sent to the supercooling heat exchanger 96 (see point S in FIGS. 46 to 49).
  • the refrigerant branched into the third suction return pipe 95 flows into the supercooling heat exchanger 96 and is further cooled by exchanging heat with the refrigerant flowing through the third suction return pipe 95 (FIG. 46 to FIG. 46). (See point R in FIG. 49).
  • the refrigerant flowing through the third suction return pipe 95 is heated by exchanging heat with the high-pressure refrigerant cooled in the economizer heat exchanger 20 (see point U in FIGS. 46 to 49).
  • the refrigerant flows through the suction side (here, the suction pipe 2a).
  • the refrigerant cooled in the supercooling heat exchanger 96 is sent to the use-side expansion mechanism 5c and decompressed by the use-side expansion mechanism 5c to become a low-pressure gas-liquid two-phase refrigerant, which functions as a refrigerant evaporator.
  • a low-pressure gas-liquid two-phase refrigerant which functions as a refrigerant evaporator.
  • the use side heat exchanger 6 see point F in FIGS. 46 to 49.
  • the low-pressure gas-liquid two-phase refrigerant sent to the use side heat exchanger 6 as an evaporator is heated by exchanging heat with water or air as a heating source to evaporate ( (See point A in FIGS. 46-49).
  • the low-pressure refrigerant heated and evaporated in the use side heat exchanger 6 as the evaporator is again sucked into the compression mechanism 2 via the switching mechanism 3. In this way, the cooling operation is performed.
  • the air conditioning apparatus 1 (refrigeration apparatus) of this modification, the effect similar to the time of the cooling operation in the modification 6 of the above-mentioned 2nd Embodiment can be obtained.
  • the refrigerant (see point I in FIGS. 48 and 49) sent from the receiver 18 to the use-side expansion mechanism 5c can be cooled to a supercooled state by a supercooling heat exchanger 96 as a cooler. Since this can be done (see point R in FIGS. 48 and 49), it is possible to reduce the risk of drift when distributing to each use side expansion mechanism 5c.
  • the switching mechanism 3 is in the heating operation state indicated by the broken lines in FIGS.
  • the opening degree of the first expansion mechanism 5a and the use-side expansion mechanism 5c as the heat source side expansion mechanism is adjusted. Further, when the switching mechanism 3 is in the heating operation state, the intermediate pressure injection by the economizer heat exchanger 20 is not performed, and the refrigerant is supplied from the receiver 18 as the gas-liquid separator through the second rear-stage injection pipe 18c. Intermediate pressure injection is performed by the receiver 18 that returns to the compression element 2d on the rear stage side. More specifically, the second second-stage injection on / off valve 18d is opened, and the first second-stage injection valve 19a is fully closed. Further, when the switching mechanism 3 is in the heating operation state, the supercooling heat exchanger 96 is not used, so that the third suction return valve 95a is also fully closed.
  • the intermediate heat exchanger on / off valve 12 of the intermediate refrigerant pipe 8 is closed, and the intermediate heat exchanger bypass on / off valve 11 of the intermediate heat exchanger bypass pipe 9 is opened.
  • the intermediate heat exchanger 7 does not function as a cooler.
  • the switching mechanism 3 since the switching mechanism 3 is in the heating operation state, the state where the intermediate heat exchanger 7 and the suction side of the compression mechanism 2 are connected by opening the second suction return on / off valve 92a of the second suction return pipe 92.
  • the intermediate heat exchanger return on / off valve 94a of the intermediate heat exchanger return pipe 94 between the use side heat exchanger 6 and the heat source side heat exchanger 4, the intermediate heat exchanger 7 and Is connected.
  • the low-pressure refrigerant (see point A in FIGS. 46 and 50 to 52) is sucked into the compression mechanism 2 from the suction pipe 2a and first compressed to an intermediate pressure by the compression element 2c. Thereafter, the refrigerant is discharged into the intermediate refrigerant pipe 8 (see point B in FIGS. 46 and 50 to 52).
  • the intermediate-pressure refrigerant discharged from the preceding-stage compression element 2c does not pass through the intermediate heat exchanger 7, unlike the cooling operation, in the intermediate-pressure refrigerant discharged from the preceding-stage compression element 2c.
  • a drain heater 97 provided in the intermediate heat exchanger bypass pipe 9 and is generated in the heat source side heat exchanger 4 functioning as an evaporator of the refrigerant in the drain heater 97 and is generated in the heat source side heat exchanger 4.
  • the water is cooled by exchanging heat with the drain water flowing down (see point C2 in FIGS. 46 and 50 to 52).
  • the refrigerant cooled in the drain heater 97 is further cooled by joining with the refrigerant (FIGS. 46 and 50 to 52) returned from the receiver 18 to the second-stage compression mechanism 2d through the second second-stage injection pipe 18c. (Refer to point G in FIGS.
  • the intermediate pressure refrigerant combined with the refrigerant returning from the second second-stage injection pipe 18c is compressed into the compression element connected to the second-stage side of the compression element 2c. 2d and further compressed, and discharged from the compression mechanism 2 to the discharge pipe 2b (see point D in FIGS. 46 and 50 to 52), where the high-pressure refrigerant discharged from the compression mechanism 2 is As in the cooling operation, the pressure is compressed to a pressure exceeding the critical pressure (that is, the critical pressure Pcp at the critical point CP shown in FIG. 51) by the two-stage compression operation by the compression elements 2c and 2d.
  • the critical pressure that is, the critical pressure Pcp at the critical point CP shown in FIG. 51
  • the high-pressure refrigerant discharged from the compression mechanism 2 flows into the oil separator 41a constituting the oil separation mechanism 41, and the accompanying refrigeration oil is separated, and the high-pressure refrigerant in the oil separator 41a.
  • the refrigeration oil separated from the refrigerant flows into the oil return pipe 41b constituting the oil separation mechanism 41, and after being decompressed by the decompression mechanism 41c provided in the oil return pipe 41b, is returned to the suction pipe 2a of the compression mechanism 2. Then, the refrigerant is sucked into the compression mechanism 2.
  • the high-pressure refrigerant after the refrigerating machine oil is separated in the oil separation mechanism 41 is used to function as a refrigerant radiator through the check mechanism 42 and the switching mechanism 3.
  • the liquid refrigerant stored in the receiver 18 is depressurized by the first expansion mechanism 5a to become a low-pressure gas-liquid two-phase refrigerant, and heat source side heat exchange functions as a refrigerant evaporator.
  • the refrigerant is sent to the intermediate heat exchanger 7 that functions as a refrigerant evaporator through the intermediate heat exchanger return pipe 94 (see point E in FIGS. 46 and 50 to 52).
  • the low-pressure gas-liquid two-phase refrigerant sent to the heat source side heat exchanger 4 is heated and evaporated by exchanging heat with air as a heating source supplied by the heat source side fan 40. (See point A in FIGS. 46 and 50 to 52).
  • the low-pressure gas-liquid two-phase refrigerant sent to the intermediate heat exchanger 7 is also heated and evaporated by exchanging heat with air as a heating source supplied by the heat source side fan 40. (See point V in FIGS. 46 and 50-52).
  • the low-pressure refrigerant heated and evaporated in the heat source side heat exchanger 4 is again sucked into the compression mechanism 2 via the switching mechanism 3.
  • the low-pressure refrigerant heated and evaporated in the intermediate heat exchanger 7 is again sucked into the compression mechanism 2 through the second suction return pipe 92. In this way, the heating operation is performed.
  • the 2nd point which performs the intermediate pressure injection by the receiver 18 as a gas-liquid separator instead of the intermediate pressure injection by the economizer heat exchanger 20 at the time of heating operation.
  • the same effects as those of the sixth modification of the second embodiment can be obtained in other respects.
  • the configuration of the modified example 6 of the second embodiment described above is configured to have a plurality of usage-side heat exchangers 6, and the injection and air by the economizer heat exchanger 20 are performed in the cooling operation and the heating operation.
  • a multistage compression mechanism may be employed rather than a two-stage compression type such as a three-stage compression type.
  • a multistage compression mechanism may be configured by connecting in series a plurality of compressors incorporating one compression element and / or a plurality of compressors incorporating a plurality of compression elements.
  • parallel multistage compression in which two or more multistage compression type compression mechanisms are connected in parallel.
  • a compression mechanism of the type may be adopted.
  • a two-stage compression mechanism is used instead of the two-stage compression mechanism 2.
  • a refrigerant circuit 410 may be employed that employs a compression mechanism 102 in which 103 and 104 are connected in parallel.
  • the first compression mechanism 103 includes the compressor 29 that compresses the refrigerant in two stages with the two compression elements 103c and 103d, and is branched from the suction mother pipe 102a of the compression mechanism 102.
  • the first suction branch pipe 103 b and the first discharge branch pipe 103 b that joins the discharge mother pipe 102 b of the compression mechanism 102 are connected.
  • the second compression mechanism 104 includes the compressor 30 that compresses the refrigerant in two stages with the two compression elements 104c and 104d, and the second suction mechanism branched from the suction mother pipe 102a of the compression mechanism 102.
  • the branch pipe 104a and the second discharge branch pipe 104b joined to the discharge mother pipe 102b of the compression mechanism 102 are connected. Since the compressors 29 and 30 have the same configuration as that of the compressor 21 in the above-described embodiment and its modifications, the reference numerals indicating the parts other than the compression elements 103c, 103d, 104c, and 104d are the 29th and 30th, respectively. The description will be omitted here, with a replacement for the base.
  • the compressor 29 sucks the refrigerant from the first suction branch pipe 103a, and after discharging the sucked refrigerant by the compression element 103c, discharges the refrigerant to the first inlet side intermediate branch pipe 81 constituting the intermediate refrigerant pipe 8.
  • the refrigerant discharged to the first inlet-side intermediate branch pipe 81 is sucked into the compression element 103d through the intermediate mother pipe 82 and the first outlet-side intermediate branch pipe 83 constituting the intermediate refrigerant pipe 8, and the refrigerant is further compressed. It is configured to discharge to one discharge branch pipe 103b.
  • the compressor 30 sucks the refrigerant from the second suction branch pipe 104a, compresses the sucked refrigerant by the compression element 104c, and then discharges the refrigerant to the second inlet side intermediate branch pipe 84 constituting the intermediate refrigerant pipe 8.
  • the refrigerant discharged to the two inlet side intermediate branch pipes 84 is sucked into the compression element 104d through the intermediate mother pipe 82 and the second outlet side intermediate branch pipe 85 constituting the intermediate refrigerant pipe 8, and further compressed, so that the second discharge is performed. It is comprised so that it may discharge to the branch pipe 104b.
  • the intermediate refrigerant pipe 8 is configured so that the refrigerant discharged from the compression elements 103c and 104c connected to the upstream side of the compression elements 103d and 104d is compressed by the compression element 103d connected to the downstream side of the compression elements 103c and 104c.
  • 104 d is a refrigerant pipe for inhalation, and mainly a first inlet side intermediate branch pipe 81 connected to the discharge side of the compression element 103 c on the front stage side of the first compression mechanism 103, and a front stage of the second compression mechanism 104.
  • a second inlet side intermediate branch pipe 84 connected to the discharge side of the compression element 104c on the side, an intermediate mother pipe 82 where both the inlet side intermediate branch pipes 81 and 84 merge, and a first branch branched from the intermediate mother pipe 82.
  • a first outlet side intermediate branch pipe 83 connected to the suction side of the compression element 103d on the rear stage side of the compression mechanism 103, and a suction element of the compression element 104d on the rear stage side of the second compression mechanism 104 branched from the intermediate mother pipe 82.
  • a second outlet-side intermediate branch tube 85 connected to the.
  • the discharge mother pipe 102b is a refrigerant pipe for sending the refrigerant discharged from the compression mechanism 102 to the switching mechanism 3.
  • the first discharge branch pipe 103b connected to the discharge mother pipe 102b has a first oil separation.
  • a mechanism 141 and a first check mechanism 142 are provided, and a second oil separation mechanism 143 and a second check mechanism 144 are provided in the second discharge branch pipe 104b connected to the discharge mother pipe 102b.
  • the first oil separation mechanism 141 is a mechanism that separates the refrigeration oil accompanying the refrigerant discharged from the first compression mechanism 103 from the refrigerant and returns it to the suction side of the compression mechanism 102, and is mainly discharged from the first compression mechanism 103.
  • the first oil separator 141a that separates the refrigeration oil accompanying the refrigerant to be cooled from the refrigerant, and the first oil separator that is connected to the first oil separator 141a and returns the refrigeration oil separated from the refrigerant to the suction side of the compression mechanism 102 And an oil return pipe 141b.
  • the second oil separation mechanism 143 is a mechanism that separates the refrigeration oil accompanying the refrigerant discharged from the second compression mechanism 104 from the refrigerant and returns it to the suction side of the compression mechanism 102, and is mainly discharged from the second compression mechanism 104.
  • a second oil separator 143a that separates the refrigeration oil accompanying the refrigerant from the refrigerant, and a second oil separator that is connected to the second oil separator 143a and returns the refrigeration oil separated from the refrigerant to the suction side of the compression mechanism 102.
  • an oil return pipe 143b In this modification, the first oil return pipe 141b is connected to the second suction branch pipe 104a, and the second oil return pipe 143c is connected to the first suction branch pipe 103a. For this reason, the refrigerant discharged from the first compression mechanism 103 is caused by a deviation between the amount of the refrigerating machine oil accumulated in the first compression mechanism 103 and the amount of the refrigerating machine oil accumulated in the second compression mechanism 104.
  • the amount of refrigerating machine oil in the compression mechanisms 103 and 104 is A large amount of refrigeration oil returns to the smaller one, so that the bias between the amount of refrigeration oil accumulated in the first compression mechanism 103 and the amount of refrigeration oil accumulated in the second compression mechanism 104 is eliminated. It has become. Further, in this modification, the first suction branch pipe 103a has a portion between the junction with the second oil return pipe 143b and the junction with the suction mother pipe 102a at the junction with the suction mother pipe 102a.
  • the second suction branch pipe 104a is configured such that the portion between the junction with the first oil return pipe 141b and the junction with the suction mother pipe 102a is the suction mother pipe. It is comprised so that it may become a downward slope toward the confluence
  • the oil return pipes 141b and 143b are provided with pressure reducing mechanisms 141c and 143c for reducing the pressure of the refrigerating machine oil flowing through the oil return pipes 141b and 143b.
  • the check mechanisms 142 and 144 allow the refrigerant flow from the discharge side of the compression mechanisms 103 and 104 to the switching mechanism 3, and block the refrigerant flow from the switching mechanism 3 to the discharge side of the compression mechanisms 103 and 104. It is a mechanism to do.
  • the compression mechanism 102 includes the two compression elements 103c and 103d, and the refrigerant discharged from the compression element on the front stage among the compression elements 103c and 103d is used as the compression element on the rear stage side.
  • the first compression mechanism 103 configured to sequentially compress the first and second compression elements 104c and 104d, and the refrigerant discharged from the compression element on the front stage of the compression elements 104c and 104d
  • the second compression mechanism 104 configured to sequentially compress with the compression element is connected in parallel.
  • the intermediate heat exchanger 7 is provided in the intermediate mother pipe 82 constituting the intermediate refrigerant pipe 8, and is discharged from the compression element 103c on the front stage side of the first compression mechanism 103 during the cooling operation.
  • This is a heat exchanger that cools the mixture of the refrigerant and the refrigerant discharged from the compression element 104c on the upstream side of the second compression mechanism 104. That is, the intermediate heat exchanger 7 functions as a common cooler for the two compression mechanisms 103 and 104 during the cooling operation.
  • first inlet side intermediate branch pipe 81 constituting the intermediate refrigerant pipe 8 allows the refrigerant to flow from the discharge side of the compression element 103c on the front stage side of the first compression mechanism 103 to the intermediate mother pipe 82 side,
  • a non-return mechanism 81 a for blocking the flow of the refrigerant from the intermediate mother pipe 82 side to the discharge side of the preceding compression element 103 c is provided, and the second inlet-side intermediate branch constituting the intermediate refrigerant pipe 8 is provided.
  • the pipe 84 allows the refrigerant to flow from the discharge side of the compression element 104c on the front stage side of the second compression mechanism 103 to the intermediate mother pipe 82 side, and the compression element 104c on the front stage side from the intermediate mother pipe 82 side.
  • a check mechanism 84a is provided for blocking the flow of the refrigerant to the discharge side.
  • check valves are used as the check mechanisms 81a and 84a. For this reason, even if one of the compression mechanisms 103 and 104 is stopped, the refrigerant discharged from the compression element on the front stage side of the operating compression mechanism passes through the intermediate refrigerant pipe 8 to the front stage of the stopped compression mechanism.
  • the refrigerant discharged from the compression element on the upstream side of the operating compression mechanism passes through the compression element on the upstream side of the compression mechanism that is stopped.
  • the refrigerant oil of the stopped compression mechanism does not flow out to the suction side, so that the shortage of the refrigerating machine oil when starting the stopped compression mechanism is less likely to occur.
  • the priority of operation is provided between the compression mechanisms 103 and 104 (for example, when the first compression mechanism 103 is a compression mechanism that operates preferentially), it corresponds to the above-described stopped compression mechanism. Since this is limited to the second compression mechanism 104, only the check mechanism 84a corresponding to the second compression mechanism 104 may be provided in this case.
  • the first compression mechanism 103 is a compression mechanism that operates preferentially
  • the intermediate refrigerant pipe 8 is provided in common to the compression mechanisms 103 and 104
  • the first operating mechanism is in operation.
  • the refrigerant discharged from the upstream compression element 103c corresponding to the compression mechanism 103 is sucked into the downstream compression element 104d of the stopped second compression mechanism 104 through the second outlet side intermediate branch pipe 85 of the intermediate refrigerant pipe 8.
  • the refrigerant discharged from the compression element 103c on the front stage side of the operating first compression mechanism 103 passes through the compression element 104d on the rear stage side of the second compression mechanism 104 that is stopped.
  • an opening / closing valve 85a is provided in the second outlet-side intermediate branch pipe 85, and when the second compression mechanism 104 is stopped, the opening / closing valve 85a causes the second outlet-side intermediate branch pipe 85 to The refrigerant flow is cut off. Thereby, the refrigerant discharged from the compression element 103c on the front stage side of the first compression mechanism 103 in operation passes through the second outlet side intermediate branch pipe 85 of the intermediate refrigerant pipe 8, and the rear stage side of the stopped second compression mechanism 104.
  • the refrigerant discharged from the compression element 103c on the front stage side of the first compression mechanism 103 during operation becomes the compression element on the rear stage side of the second compression mechanism 104 that is stopped.
  • the refrigeration oil of the second compression mechanism 104 that is stopped through the discharge side of the compression mechanism 102 through 104d does not flow out, so that the refrigeration oil when starting the second compression mechanism 104 that is stopped is prevented. The shortage of is even less likely to occur.
  • an electromagnetic valve is used as the on-off valve 85a.
  • the second compression mechanism 104 is started after the first compression mechanism 103 is started. 8 is provided in common to the compression mechanisms 103 and 104, the pressure on the discharge side of the compression element 103c on the front stage side of the second compression mechanism 104 and the pressure on the suction side of the compression element 103d on the rear stage side are Starting from a state where the pressure on the suction side of the compression element 103c and the pressure on the discharge side of the compression element 103d on the rear stage side become higher, it is difficult to start the second compression mechanism 104 stably.
  • an activation bypass pipe 86 is provided to connect the discharge side of the compression element 104c on the front stage side of the second compression mechanism 104 and the suction side of the compression element 104d on the rear stage side.
  • the on-off valve 86a blocks the refrigerant flow in the startup bypass pipe 86, and the on-off valve 85a provides the second outlet-side intermediate branch pipe.
  • the refrigerant flow in 85 is interrupted, and when the second compression mechanism 104 is activated, the on-off valve 86a allows the refrigerant to flow into the activation bypass pipe 86, whereby the second compression mechanism 104
  • the starting bypass pipe 8 does not join the refrigerant discharged from the first-stage compression element 104c with the refrigerant discharged from the first-stage compression element 104c of the first compression mechanism 103.
  • the on-off valve 85a When the operating state of the compression mechanism 102 is stabilized (for example, when the suction pressure, the discharge pressure and the intermediate pressure of the compression mechanism 102 are stabilized), the on-off valve 85a The refrigerant can flow into the second outlet-side intermediate branch pipe 85, and the flow of the refrigerant in the startup bypass pipe 86 is blocked by the on-off valve 86a so that the normal cooling operation can be performed. It has become.
  • one end of the activation bypass pipe 86 is connected between the on-off valve 85a of the second outlet side intermediate branch pipe 85 and the suction side of the compression element 104d on the rear stage side of the second compression mechanism 104.
  • the other end is connected between the discharge side of the compression element 104 c on the front stage side of the second compression mechanism 104 and the check mechanism 84 a of the second inlet side intermediate branch pipe 84 to start the second compression mechanism 104.
  • the first compression mechanism 103 can be hardly affected by the intermediate pressure portion.
  • an electromagnetic valve is used as the on-off valve 86a.
  • the cooling operation and the heating operation of the air conditioner 1 according to this modification are changed because the circuit configuration around the compression mechanism 102 is slightly complicated by the compression mechanism 102 provided in place of the compression mechanism 2. Except for the above, the operation is basically the same as the operation in the modified example 7 of the second embodiment described above (FIGS. 46 to 52 and related descriptions), and thus the description thereof is omitted here. And also in the structure of this modification, the effect similar to the modification 7 of the above-mentioned 2nd Embodiment can be acquired. In this modification, in the configuration in which the drain heater 97 is provided below the heat source side heat exchanger 4 in the modification 7 of the second embodiment described above, the two-stage compression type compression mechanisms 103 and 104 are arranged in parallel.
  • the drain mechanism 97 as in the modified examples 1 to 3 of the second embodiment described above is provided on the bottom plate 77 that functions as a drain pan, or a heat source side heat exchanger.
  • a compression mechanism 102 in which two-stage compression type compression mechanisms 103 and 104 are connected in parallel may be employed.
  • the compression mechanism 102 in which the two-stage compression type compression mechanisms 103 and 104 are connected in parallel is adopted.
  • a multi-stage compression type having more than one stage may be applied.
  • the present invention may be applied to a so-called chiller type air conditioner provided with a secondary heat exchanger for exchanging heat between water or brine subjected to heat exchange and room air.
  • the present invention can be used as long as it performs a multistage compression refrigeration cycle using a refrigerant operating in the supercritical region as a refrigerant. Applicable.
  • the refrigerant operating in the supercritical region is not limited to carbon dioxide, and ethylene, ethane, nitrogen oxide, or the like may be used.
  • a drain heater can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Removal Of Water From Condensation And Defrosting (AREA)

Abstract

 ヒートポンプ式給湯機のヒートポンプユニット(701)は、二段圧縮式の圧縮機構(702)と、水冷媒熱交換器(704)と、空気を熱源とする蒸発器(706)と、蒸発器(706)において発生するドレン水を受けるドレンパンとして機能する底板(777)と、圧縮機構(702)の前段側の圧縮要素(702c)から吐出されて後段側の圧縮要素(702d)に吸入される冷媒によってドレン水を加熱するドレン加熱器(797)とを備えている。

Description

冷凍装置
 本発明は、冷凍装置、特に、圧縮機構と放熱器と蒸発器とを有する冷媒回路と蒸発器において発生するドレン水を受けるドレンパンとを備えた冷凍装置に関する。
 従来より、冷凍装置の一種として、圧縮機と、給湯用の水と冷媒との熱交換を行う放熱器としての水冷媒熱交換器と、膨張弁と、冷媒を蒸発させる蒸発器としての空気熱交換器とを有する冷媒回路と、空気熱交換器において発生するドレン水を受けるドレンパンとを備えたヒートポンプ式給湯機のヒートポンプユニットがある。このようなヒートポンプユニットとして、特許文献1に示されるように、空気熱交換器において発生するドレン水を水冷媒熱交換器から膨張弁までの高圧側配管によって加熱する構成や圧縮機から吐出される高温高圧の冷媒によって加熱する凍結防止用冷媒配管を設けるものがある。
特開2004-218861号公報
 上述のヒートポンプユニットにおいては、冬季や寒冷地等の低温条件で使用する場合に、ドレン加熱器としての凍結防止用冷媒配管によって、ドレン水の凍結や成長を抑えることはできるが、凍結防止用冷媒配管を流れる冷媒が冷凍サイクルにおける高圧の冷媒であることから、圧縮機によって凍結防止用冷媒配管を流れる冷媒を冷凍サイクルにおける高圧まで圧縮するのに消費される動力等がエネルギーのロスとなり、冷凍サイクルの運転効率を悪化させる等の原因となる。
 本発明の課題は、圧縮機構と放熱器と蒸発器とを有する冷媒回路と蒸発器において発生するドレン水を受けるドレンパンとを備えた冷凍装置において、エネルギーのロスの増加を抑えることが可能なドレン加熱器を提供することにある。
 第1の発明にかかる冷凍装置は、圧縮機構と、圧縮機構によって圧縮された冷媒を放熱させる放熱器と、空気を熱源として放熱器によって放熱された冷媒を蒸発させる蒸発器と、蒸発器において発生するドレン水を受けるドレンパンと、ドレン加熱器とを備えている。そして、圧縮機構は、複数の圧縮要素を有しており、複数の圧縮要素のうちの前段側の圧縮要素から吐出された冷媒を後段側の圧縮要素で順次圧縮するように構成されており、ドレン加熱器は、前段側の圧縮要素から吐出されて後段側の圧縮要素に吸入される冷媒によってドレン水を加熱する熱交換器である。ここで、「圧縮機構」とは、複数の圧縮要素が一体に組み込まれた圧縮機や、単一の圧縮要素が組み込まれた圧縮機及び/又は複数の圧縮要素が組み込まれた圧縮機を複数台接続したものを含む構成を意味している。また、「複数の圧縮要素のうちの前段側の圧縮要素から吐出された冷媒を後段側の圧縮要素で順次圧縮する」とは、「前段側の圧縮要素」及び「後段側の圧縮要素」という直列に接続された2つの圧縮要素を含むことだけを意味しているのではなく、複数の圧縮要素が直列に接続されており、各圧縮要素間の関係が、上述の「前段側の圧縮要素」と「後段側の圧縮要素」との関係を有することを意味している。
 この冷凍装置では、多段圧縮式の圧縮機構を採用するとともに、圧縮機構の後段側の圧縮要素に吸入される冷媒(すなわち、冷凍サイクルにおける中間圧の冷媒)によって蒸発器において発生するドレン水を加熱するドレン加熱器を使用しているため、ドレン水を加熱することにより蒸発器やドレンパンにおけるドレン水の凍結や成長を抑えるとともに、冷凍サイクルにおける中間圧の冷媒の温度を下げることにより、冷凍サイクルにおけるエネルギーのロスの増加を抑えることができる。これにより、この冷凍装置では、冷凍サイクルにおける高圧の冷媒によってドレン水を加熱するドレン加熱器を使用する場合に比べて、エネルギーのロスの増加を抑えることができる。
 第2の発明にかかる冷凍装置は、第1の発明にかかる冷凍装置において、ドレン加熱器は、蒸発器の下部に配置されている。
 この冷凍装置では、ドレン加熱器が蒸発器の下部に配置されているため、ドレン水の流下によって最もドレン水の付着量が多くなる蒸発器の下部においてドレン水が凍結しにくくなり、これにより、蒸発器におけるドレン水の凍結や成長を効果的に抑えることができる。
 第3の発明にかかる冷凍装置は、第1の発明にかかる冷凍装置において、ドレン加熱器は、ドレンパンに配置されている。
 この冷凍装置では、ドレン加熱器がドレンパンに配置されているため、蒸発器から流下してドレンパンに溜まったドレン水が凍結しにくくなり、これにより、ドレンパンにおけるドレン水の凍結や成長を効果的に抑えることができる。
 第4の発明にかかる冷凍装置は、第1の発明にかかる冷凍装置において、ドレン加熱器は、蒸発器の下部に配置された第1ドレン加熱器と、ドレンパンに配置された第2ドレン加熱器とを有している。
 この冷凍装置では、ドレン加熱器が蒸発器の下部に配置された第1ドレン加熱器とドレンパンに配置された第2ドレン加熱器とを有しているため、ドレン水の流下によって最もドレン水の付着量が多くなる蒸発器の下部においてドレン水が凍結しにくくなるとともに、蒸発器から流下してドレンパンに溜まったドレン水が凍結しにくくなり、これにより、蒸発器におけるドレン水の凍結や成長、及び、ドレンパンにおけるドレン水の凍結や成長の両方を効果的に抑えることができる。
 第5の発明にかかる冷凍装置は、第4の発明にかかる冷凍装置において、前段側の圧縮要素から吐出されて後段側の圧縮要素に吸入される冷媒を第1ドレン加熱器及び第2ドレン加熱器の一方だけに流すことができるように切り換えるドレン加熱器切換機構をさらに備えている。
 この冷凍装置では、第1ドレン加熱器と第2ドレン加熱器との切り換えを可能にするドレン加熱器切換機構がさらに設けられているため、第1ドレン加熱器及び第2ドレン加熱器のいずれか一方だけを必要に応じて使用することができる。
 第6の発明にかかる冷凍装置は、圧縮機構と、空気を熱源とする熱交換器であって冷媒の放熱器又は蒸発器として機能する熱源側熱交換器と、冷媒の蒸発器又は放熱器として機能する利用側熱交換器と、圧縮機構、冷媒の放熱器として機能する熱源側熱交換器、冷媒の蒸発器として機能する利用側熱交換器の順に冷媒を循環させる冷却運転状態と、圧縮機構、冷媒の放熱器として機能する利用側熱交換器、冷媒の蒸発器として機能する熱源側熱交換器の順に冷媒を循環させる加熱運転状態とを切り換える切換機構と、熱源側熱交換器において発生するドレン水を受けるドレンパンと、中間熱交換器と、ドレン加熱器とを備えている。そして、圧縮機構は、複数の圧縮要素を有しており、複数の圧縮要素のうちの前段側の圧縮要素から吐出された冷媒を後段側の圧縮要素で順次圧縮するように構成されており、中間熱交換器は、切換機構を冷却運転状態にしている際に、前段側の圧縮要素から吐出されて後段側の圧縮要素に吸入される冷媒の冷却器として機能する熱交換器であり、ドレン加熱器は、切換機構を加熱運転状態にしている際に、前段側の圧縮要素から吐出されて後段側の圧縮要素に吸入される冷媒によってドレン水を加熱することが可能な熱交換器である。ここで、「圧縮機構」とは、複数の圧縮要素が一体に組み込まれた圧縮機や、単一の圧縮要素が組み込まれた圧縮機及び/又は複数の圧縮要素が組み込まれた圧縮機を複数台接続したものを含む構成を意味している。また、「複数の圧縮要素のうちの前段側の圧縮要素から吐出された冷媒を後段側の圧縮要素で順次圧縮する」とは、「前段側の圧縮要素」及び「後段側の圧縮要素」という直列に接続された2つの圧縮要素を含むことだけを意味しているのではなく、複数の圧縮要素が直列に接続されており、各圧縮要素間の関係が、上述の「前段側の圧縮要素」と「後段側の圧縮要素」との関係を有することを意味している。
 この冷凍装置では、切換機構によって冷却運転及び加熱運転が切換可能に構成された冷媒回路において、多段圧縮式の圧縮機構を採用するとともに、切換機構を冷却運転状態にしている際に、圧縮機構の後段側の圧縮要素に吸入される冷媒(すなわち、冷凍サイクルにおける中間圧の冷媒)の冷却器として機能する中間熱交換器と、切換機構を加熱運転状態にしている際に、熱源側熱交換器において発生するドレン水を加熱するドレン加熱器を使用しているため、冷却運転時は中間熱交換器によって、冷凍サイクルにおける中間圧の冷媒の温度を下げることにより、放熱器として機能する熱源側熱交換器における放熱ロスの増加を抑えることができ、また、加熱運転時はドレン加熱器によって、ドレン水を加熱することにより熱源側熱交換器やドレンパンにおけるドレン水の凍結や成長を抑えるとともに、冷凍サイクルにおける中間圧の冷媒の温度を下げることにより、冷凍サイクルにおけるエネルギーのロスの増加を抑えることができる。これにより、この冷凍装置では、冷却運転時には、中間熱交換器を用いて冷凍サイクルにおける中間圧の冷媒を熱源としての空気によって冷却することで、冷媒の放熱器として機能する熱源側熱交換器における放熱ロスを小さくすることができ、加熱運転時には、ドレン加熱器を用いてドレン水の凍結や成長を抑えるとともに冷凍サイクルにおける中間圧の冷媒を熱源としてのドレン水によって冷却することで、冷凍サイクルにおける高圧の冷媒によってドレン水を加熱するドレン加熱器を使用する場合に比べて、加熱運転時におけるエネルギーのロスの増加を抑えることができる。
 第7の発明にかかる冷凍装置は、第6の発明にかかる冷凍装置において、ドレン加熱器は、熱源側熱交換器の下部に配置されている。
 この冷凍装置では、ドレン加熱器が熱源側熱交換器の下部に配置されているため、ドレン水の流下によって最もドレン水の付着量が多くなる熱源側熱交換器の下部においてドレン水が凍結しにくくなり、これにより、熱源側熱交換器におけるドレン水の凍結や成長を効果的に抑えることができる。
 第8の発明にかかる冷凍装置は、第6の発明にかかる冷凍装置において、ドレン加熱器は、ドレンパンに配置されている。
 この冷凍装置では、ドレン加熱器がドレンパンに配置されているため、熱源側熱交換器から流下してドレンパンに溜まったドレン水が凍結しにくくなり、これにより、ドレンパンにおけるドレン水の凍結や成長を効果的に抑えることができる。
 第9の発明にかかる冷凍装置は、第6の発明にかかる冷凍装置において、ドレン加熱器は、熱源側熱交換器の下部に配置された第1ドレン加熱器と、ドレンパンに配置された第2ドレン加熱器とを有している。
 この冷凍装置では、ドレン加熱器が熱源側熱交換器の下部に配置された第1ドレン加熱器とドレンパンに配置された第2ドレン加熱器とを有しているため、ドレン水の流下によって最もドレン水の量が多くなる熱源側熱交換器の下部においてドレン水が凍結しにくくなるとともに、熱源側熱交換器から流下してドレンパンに溜まったドレン水が凍結しにくくなり、これにより、熱源側熱交換器におけるドレン水の凍結や成長、及び、ドレンパンにおけるドレン水の凍結や成長の両方を効果的に抑えることができる。
 第10の発明にかかる冷凍装置は、第9の発明にかかる冷凍装置において、前段側の圧縮要素から吐出されて後段側の圧縮要素に吸入される冷媒を第1ドレン加熱器及び第2ドレン加熱器の一方だけに流すことができるように切り換えるドレン加熱器切換機構をさらに備えている。
 この冷凍装置では、第1ドレン加熱器と第2ドレン加熱器との切り換えを可能にするドレン加熱器切換機構がさらに設けられているため、第1ドレン加熱器及び第2ドレン加熱器のいずれか一方を必要に応じて使用することができる。
 第11の発明にかかる冷凍装置は、第6~第10の発明にかかる冷凍装置において、中間熱交換器は、切換機構を加熱運転状態にしている際に、利用側熱交換器において放熱した冷媒の蒸発器として機能する。
 この冷凍装置では、切換機構を加熱運転状態にしている際に、利用側熱交換器において放熱した冷媒の蒸発器として機能させるようにしているため、加熱運転時の冷凍サイクルにおける冷媒の蒸発能力を大きくするとともに、加熱運転時に中間熱交換器を有効利用することができる。
 第12の発明にかかる冷凍装置は、第11の発明にかかる冷凍装置において、中間熱交換器は、熱源側熱交換器の上部に配置されている。
 この冷凍装置では、加熱運転時に中間熱交換器からもドレン水が発生することになるが、中間熱交換器が熱源側熱交換器の上部に配置されているため、中間熱交換器において発生するドレン水が熱源側熱交換器を通じて流下し、熱源側熱交換器において発生するドレン水だけでなく、中間熱交換器において発生するドレン水も含めてドレン加熱器によって加熱することができる。
 第13の発明にかかる冷凍装置は、第6~第12の発明のいずれかにかかる冷凍装置において、中間熱交換器は、ドレン加熱器よりも伝熱面積が大きい。
 この冷凍装置では、中間熱交換器がドレン加熱器よりも伝熱面積が大きいため、冷却運転時に、冷凍サイクルにおける中間圧の冷媒を大幅に冷却することができるようになり、これにより、冷却運転時に放熱器として機能する熱源側熱交換器における放熱ロスを大幅に低減することができる。
本発明にかかる冷凍装置の第1実施形態としてのヒートポンプ式給湯機を構成するヒートポンプユニットの概略構成図である。 ヒートポンプユニットの概略の内部構造を示す斜視図である。 蒸発器、ドレン加熱器及びドレンパンとしての底板をヒートポンプユニットの正面側から見た図である。 ヒートポンプユニット内の冷媒の流れを示す図である。 冷凍サイクルが図示された圧力-エンタルピ線図である。 冷凍サイクルが図示された温度-エントロピ線図である。 第1実施形態の変形例1にかかるヒートポンプユニットの概略構成図である。 第1実施形態の変形例1における蒸発器、ドレン加熱器及びドレンパンとしての底板をヒートポンプユニットの正面側から見た図である。 第1実施形態の変形例2にかかるヒートポンプユニットの概略構成図である。 第1実施形態の変形例2にかかるヒートポンプユニットの概略構成図である。 第1実施形態の変形例2における蒸発器、ドレン加熱器及びドレンパンとしての底板をヒートポンプユニットの正面側から見た図である。 第1実施形態の変形例3にかかるヒートポンプユニットの概略構成図である。 第1実施形態の変形例3にかかるヒートポンプユニットの概略構成図である。 本発明にかかる冷凍装置の第2実施形態としての空気調和装置の概略構成図である。 熱源ユニットの外観斜視図(ファングリルを取り除いた状態)である。 熱源ユニットの右板を取り除いた状態における熱源ユニットの側面図である。 冷房運転時における空気調和装置内の冷媒の流れを示す図である。 冷房運転時の冷凍サイクルが図示された圧力-エンタルピ線図である。 冷房運転時の冷凍サイクルが図示された温度-エントロピ線図である。 暖房運転時における空気調和装置内の冷媒の流れを示す図である。 暖房運転時の冷凍サイクルが図示された圧力-エンタルピ線図である。 暖房運転時の冷凍サイクルが図示された温度-エントロピ線図である。 臨界圧力よりも低い中間圧の二酸化炭素を伝熱流路内に流した場合の熱伝達率、及び、臨界圧力を超える高圧の二酸化炭素を伝熱流路内に流した場合の熱伝達率の特性を示す図である。 第2実施形態の変形例1にかかる空気調和装置の概略構成図である。 第2実施形態の変形例1における熱源ユニットの右板を取り除いた状態における熱源ユニットの側面図である。 第2実施形態の変形例2にかかる空気調和装置の概略構成図である。 第2実施形態の変形例2にかかる空気調和装置の概略構成図である。 第2実施形態の変形例2における熱源ユニットの右板を取り除いた状態における熱源ユニットの側面図である。 第2実施形態の変形例3にかかる空気調和装置の概略構成図である。 第2実施形態の変形例3にかかる空気調和装置の概略構成図である。 第2実施形態の変形例4にかかる空気調和装置の概略構成図である。 第2実施形態の変形例4の冷房運転時における空気調和装置内の冷媒の流れを示す図である。 第2実施形態の変形例4にかかる冷房運転時の冷凍サイクルが図示された圧力-エンタルピ線図である。 冷房運転時の冷凍サイクルが図示された温度-エントロピ線図である。 第2実施形態の変形例4の暖房運転時における空気調和装置内の冷媒の流れを示す図である。 第2実施形態の変形例4にかかる暖房運転時の冷凍サイクルが図示された圧力-エンタルピ線図である。 第2実施形態の変形例4にかかる暖房運転時の冷凍サイクルが図示された温度-エントロピ線図である。 第2実施形態の変形例4にかかる空気調和装置の概略構成図である。 第2実施形態の変形例5にかかる空気調和装置の概略構成図である。 第2実施形態の変形例5の冷房運転時における空気調和装置内の冷媒の流れを示す図である。 第2実施形態の変形例5にかかる冷房運転時の冷凍サイクルが図示された圧力-エンタルピ線図である。 冷房運転時の冷凍サイクルが図示された温度-エントロピ線図である。 第2実施形態の変形例5の暖房運転時における空気調和装置内の冷媒の流れを示す図である。 第2実施形態の変形例5にかかる暖房運転時の冷凍サイクルが図示された圧力-エンタルピ線図である。 第2実施形態の変形例5にかかる暖房運転時の冷凍サイクルが図示された温度-エントロピ線図である。 第2実施形態の変形例6にかかる空気調和装置の概略構成図である。 第2実施形態の変形例6の冷房運転時における空気調和装置内の冷媒の流れを示す図である。 第2実施形態の変形例6にかかる冷房運転時の冷凍サイクルが図示された圧力-エンタルピ線図である。 冷房運転時の冷凍サイクルが図示された温度-エントロピ線図である。 第2実施形態の変形例6の暖房運転時における空気調和装置内の冷媒の流れを示す図である。 第2実施形態の変形例6にかかる暖房運転時の冷凍サイクルが図示された圧力-エンタルピ線図である。 第2実施形態の変形例6にかかる暖房運転時の冷凍サイクルが図示された温度-エントロピ線図である。 第2実施形態の変形例7にかかる空気調和装置の概略構成図である。
符号の説明
   1 空気調和装置(冷凍装置)
   2、102、702 圧縮機構
   3 切換機構
   4 熱源側熱交換器(放熱器、蒸発器)
   6 利用側熱交換器(蒸発器、放熱器)
   7 中間熱交換器
  77、777 ドレンパン
  97、797 ドレン加熱器
  97a、797a 第1ドレン加熱器
  97b、797b 第2ドレン加熱器
  98、798 ドレン加熱器切換機構
 701 ヒートポンプユニット(冷凍装置)
 704 水冷媒熱交換器(放熱器)
 706 蒸発器
 以下、図面に基づいて、本発明にかかる冷凍装置の実施形態について説明する。
 -第1実施形態-
 (1)ヒートポンプ式給湯機のヒートポンプユニットの構成
 図1は、本発明にかかる冷凍装置の第1実施形態としてのヒートポンプ式給湯機を構成するヒートポンプユニット701の概略構成図である。ヒートポンプユニット701は、貯湯ユニット(図示せず)から供給される水(給水)を加熱するための冷媒回路710を有しており、この加熱された水(温水)を貯湯ユニットに戻すためのユニットである。
 ヒートポンプユニット701の冷媒回路710は、主として、圧縮機構702と、水冷媒熱交換器704と、膨張機構705と、蒸発器706と、ドレン加熱器797とを有しており、超臨界域で作動する冷媒(ここでは、二酸化炭素)が充填されている。
 圧縮機構702は、本実施形態において、2つの圧縮要素で冷媒を二段圧縮する圧縮機721から構成されている。圧縮機721は、ケーシング721a内に、圧縮機駆動モータ721bと、駆動軸721cと、圧縮要素702c、702dとが収容された密閉式構造となっている。圧縮機駆動モータ721bは、駆動軸721cに連結されている。そして、この駆動軸721cは、2つの圧縮要素702c、702dに連結されている。すなわち、圧縮機721は、2つの圧縮要素702c、702dが単一の駆動軸721cに連結されており、2つの圧縮要素702c、702dがともに圧縮機駆動モータ721bによって回転駆動される、いわゆる一軸二段圧縮構造となっている。圧縮要素702c、702dは、本実施形態において、ロータリ式やスクロール式等の容積式の圧縮要素である。そして、圧縮機721は、吸入管702aから冷媒を吸入し、この吸入された冷媒を圧縮要素702cによって圧縮した後に中間冷媒管708に吐出し、中間冷媒管708に吐出された冷媒を圧縮要素702dに吸入させて冷媒をさらに圧縮した後に吐出管702bに吐出するように構成されている。ここで、中間冷媒管708は、圧縮要素702dの前段側に接続された圧縮要素702cから吐出された冷凍サイクルにおける中間圧の冷媒を、圧縮要素702cの後段側に接続された圧縮要素702dに吸入させるための冷媒管である。また、吐出管702bは、圧縮機構702から吐出された冷凍サイクルにおける高圧の冷媒を水冷媒熱交換器704に送るための冷媒管であり、吐出管702bには、油分離機構741と逆止機構742とが設けられている。油分離機構741は、圧縮機構702から吐出される冷媒に同伴する冷凍機油を冷媒から分離して圧縮機構702の吸入側へ戻す機構であり、主として、圧縮機構702から吐出される冷媒に同伴する冷凍機油を冷媒から分離する油分離器741aと、油分離器741aに接続されており冷媒から分離された冷凍機油を圧縮機構702の吸入管702aに戻す油戻し管741bとを有している。油戻し管741bには、油戻し管741bを流れる冷凍機油を減圧する減圧機構741cが設けられている。減圧機構741cは、本実施形態において、キャピラリチューブが使用されている。逆止機構742は、圧縮機構702の吐出側から放熱器としての水冷媒熱交換器704への冷媒の流れを許容し、かつ、放熱器としての水冷媒熱交換器704から圧縮機構702の吐出側への冷媒の流れを遮断するための機構であり、本実施形態において、逆止弁が使用されている。
 このように、圧縮機構702は、本実施形態において、2つの圧縮要素702c、702dを有しており、これらの圧縮要素702c、702dのうちの前段側の圧縮要素から吐出された冷媒を後段側の圧縮要素で順次圧縮するように構成されている。
 水冷媒熱交換器704は、圧縮機構702によって圧縮された冷媒の放熱器として機能する熱交換器である。水冷媒熱交換器704は、その一端が圧縮機構702に接続されており、その他端が膨張機構5に接続されている。そして、水冷媒熱交換器704は、水循環ポンプ779を通じて貯湯ユニット(図示せず)から水(給水)が供給されるように構成されており、冷媒との間で熱交換を行うことができる。水循環ポンプ779は、ポンプ駆動モータ779aによって回転駆動される。
 膨張機構705は、冷媒を減圧する機構であり、本実施形態において、電動膨張弁が使用されている。また、本実施形態において、膨張機構705は、水冷媒熱交換器704において放熱した高圧の冷媒を蒸発器706に送る前に冷凍サイクルにおける低圧になるまで減圧する。
 蒸発器706は、空気を熱源として放熱器としての水冷媒熱交換器704によって放熱された冷媒を蒸発させる熱交換器であり、その一端が膨張機構705に接続されており、その他端が圧縮機構702に接続されている。そして、蒸発器706の熱源としての空気は、送風ファン740によって供給されるようになっている。送風ファン740は、ファン駆動モータ740aによって回転駆動される。
 ドレン加熱器797は、前段側の圧縮要素702cから吐出されて後段側の圧縮要素702dに吸入される冷媒によって、蒸発器706において発生するドレン水を加熱する熱交換器であり、本実施形態において、中間冷媒管708に設けられている。そして、ドレン加熱器797は、蒸発器706の下部に配置されている。
 次に、ドレン加熱器797が蒸発器706の下部に配置された構成について、図2及び図3を用いて説明する。ここで、図2は、ヒートポンプユニット701の概略の内部構造を示す斜視図であり、図3は、蒸発器706、ドレン加熱器797及びドレンパンとしての底板777をヒートポンプユニット701の正面側から見た図である。尚、以下の説明における「左」及び「右」とは、前板775側からヒートポンプユニット701を見た場合を基準とする。
 ヒートポンプユニット701は、本実施形態において、背面や側面から空気を吸い込んで前方に向かって空気を吹き出す、いわゆる、横吹きタイプのものであり、主として、ケーシング771と、ケーシング771内に配置される水冷媒熱交換器704(図2には図示せず)、水循環ポンプ779(図2には図示せず)、膨張機構5(図2には図示せず)、蒸発器706、ドレン加熱器797や送風ファン740等の機器とを有している。
 ケーシング771は、本実施形態において、略直方体形状の箱体であり、主として、ケーシング771の天面を構成する天板772(図2には、2点鎖線により図示)と、ケーシング771の外周面を構成する左板773、右板774、前板775及び後板776(図2には、2点鎖線により図示)と、底板777とから構成されている。天板772は、ヒートポンプユニット701の天面を構成する横長の略長方形状の板状部材である。左板773は、天板772の左縁から下方に延びる側面視が略長方形状の板状部材であり、ほぼ全体に吸入開口(図示せず)が形成されている。右板774は、天板772の右縁から下方に延びる側面視が略長方形状の板状部材である。後板776は、ケーシング771の前面を構成する正面視が略長方形状の板状部材であり、ほぼ全体に吸入開口(図示せず)が形成されている。前板775は、ケーシング771の前面を構成する正面視が略長方形状の板状部材であり、ケーシング771の後面及び左側面に形成された吸入開口を通じてケーシング771内に取り込まれた空気を外部に吹き出すための吹出開口775aが形成されている。底板777は、ケーシング771の底面を構成する平面視が略長方形状の板状部材であり、蒸発器706において発生するドレン水を受けてケーシング771外に排水するドレンパンとしての機能も有している。
 そして、蒸発器706は、本実施形態において、ケーシング771の左側面及び後面に沿う平面視L字形状に形成された熱交換器パネルからなり、伝熱管と多数の伝熱フィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器が使用されている。ドレン加熱器797は、本実施形態において、蒸発器706の下部に配置されるとともに、底板777上において蒸発器706と一体化されている。より具体的には、ドレン加熱器797は、伝熱フィンを共有することによって蒸発器706と一体化されており、この両者が一体化された熱交換器パネルにおける最下部パス(ここでは、熱交換器パネルにおける最下部の伝熱管とその直上の伝熱管とからなる伝熱流路)を構成している(図3参照)。また、送風ファン740は、天板772の吹出開口775aに対向し、かつ、蒸発器706及びドレン加熱器797が一体化された熱交換器パネルの前側に配置されている。送風ファン740は、本実施形態において、軸流ファンであり、前板775の吹出開口775aから熱源としての空気をケーシング771内に吸い込んで、蒸発器706及びドレン加熱器797を通過させた後に、吹出開口775aから前方に向けて吹き出すことができるようになっている。すなわち、送風ファン740は、蒸発器706を含む熱交換器パネルに熱源としての空気を供給するようになっている。尚、ヒートポンプユニット701の外観形状や蒸発器706及びドレン加熱器797が一体化された熱交換器パネルの型式等は、上述のものに限定されるものではない。
 このように、本実施形態のヒートポンプユニット701(冷凍装置)では、二段圧縮式の圧縮機構702が採用されるとともに、圧縮機構702の後段側の圧縮要素702dに吸入される冷媒(すなわち、冷凍サイクルにおける中間圧の冷媒)によって蒸発器706において発生するドレン水を加熱するドレン加熱器797が使用されている。
 さらに、ヒートポンプユニット701は、ここでは図示しないが、圧縮機構702、水循環ポンプ779、膨張機構5、送風ファン740等のヒートポンプユニット701を構成する各部の動作を制御する制御部を有している。
 (2)ヒートポンプユニットの動作
 次に、本実施形態のヒートポンプユニット701の動作について、図1、図4~図6を用いて説明する。ここで、図4は、ヒートポンプユニット701内の冷媒の流れを示す図であり、図5は、冷凍サイクルが図示された圧力-エンタルピ線図であり、図6は、冷凍サイクルが図示された温度-エントロピ線図である。尚、以下における運転制御は、上述の制御部(図示せず)によって行われる。また、以下の説明において、「高圧」とは、冷凍サイクルにおける高圧(すなわち、図5、6の点D、D’、Eにおける圧力)を意味し、「低圧」とは、冷凍サイクルにおける低圧(すなわち、図5、6の点A、Fにおける圧力)を意味し、「中間圧」とは、冷凍サイクルにおける中間圧(すなわち、図5、6の点B、C2における圧力)を意味している。
 ヒートポンプユニット701の運転時は、膨張機構5は、開度調節され、また、水循環ポンプ779及び送風ファン740は、回転駆動される。この冷媒回路710の状態において、低圧の冷媒(図1、図4、図5、図6の点A参照)は、吸入管2aから圧縮機構2に吸入され、まず、圧縮要素2cによって中間圧力まで圧縮された後に、中間冷媒管8に吐出される(図1、図4、図5、図6の点B参照)。この前段側の圧縮要素702cから吐出された中間圧の冷媒は、ドレン加熱器797において、蒸発器706において発生して蒸発器706を流下するドレン水と熱交換を行うことで冷却される(図1、図4、図5、図6の点C2参照)。このドレン加熱器797において冷却された冷媒は、圧縮要素702cの後段側に接続された圧縮要素702dに吸入されてさらに圧縮されて、圧縮機構702から吐出管702bに吐出される(図1、図4、図5、図6の点D参照)。ここで、圧縮機構702から吐出された高圧の冷媒は、圧縮要素702c、702dによる二段圧縮動作によって、臨界圧力(すなわち、図5に示される臨界点CPにおける臨界圧力Pcp)を超える圧力まで圧縮されている。そして、この圧縮機構702から吐出された高圧の冷媒は、油分離機構741を構成する油分離器741aに流入し、同伴する冷凍機油が分離される。また、油分離器741aにおいて高圧の冷媒から分離された冷凍機油は、油分離機構741を構成する油戻し管741bに流入し、油戻し管741bに設けられた減圧機構741cで減圧された後に圧縮機構702の吸入管702aに戻されて、再び、圧縮機構702に吸入される。次に、油分離機構741において冷凍機油が分離された後の高圧の冷媒は、逆止機構742を通じて、冷媒の放熱器として機能する水冷媒熱交換器704に送られる。そして、水冷媒熱交換器704に送られた高圧の冷媒は、水冷媒熱交換器704において、水循環ポンプ779によって貯湯ユニット(図示せず)から供給される水(給水)と熱交換を行って冷却される(図1、図4、図5、図6の点E参照)。そして、水冷媒熱交換器704において冷却された高圧の冷媒は、膨張機構5によって減圧されて低圧の気液二相状態の冷媒となり、蒸発器706に送られる(図1、図4、図5、図6の点F参照)。そして、蒸発器706に送られた低圧の気液二相状態の冷媒は、送風ファン740によって供給される加熱源としての空気と熱交換を行って加熱されて、蒸発することになる(図1、図4、図5、図6の点A参照)。また、蒸発器706における冷媒との熱交換器よって冷却された空気中の水分は、凝縮してドレン水となり、蒸発器706の伝熱管や伝熱フィンの表面に付着する。このドレン水は、蒸発器706の伝熱管や伝熱フィンの表面を伝って下方に流下し、ドレン加熱器797を通過した後に、ドレンパンとして機能する底板777に受けられることになる。そして、この蒸発器706において加熱された低圧の冷媒は、再び、圧縮機構702に吸入される。このようにして、ヒートポンプユニット701の運転が行われる。
 このように、本実施形態のヒートポンプ式給湯機のヒートポンプユニット701(冷凍装置)では、二段圧縮式の圧縮機構702を採用するとともに、圧縮機構702の後段側の圧縮要素702dに吸入される冷媒(すなわち、冷凍サイクルにおける中間圧の冷媒)によって蒸発器706において発生するドレン水を加熱するドレン加熱器797を使用しているため、ドレン水を加熱することにより蒸発器706やドレンパンとして機能する底板777におけるドレン水の凍結や成長を抑えるとともに、冷凍サイクルにおける中間圧の冷媒の温度を下げることにより(図6の点B、C2参照)、従来のような冷凍サイクルにおける高圧の冷媒によってドレン水を加熱するドレン加熱器を使用する場合(この場合には、図5、図6において、点A→点B→点D’→点E→点Fの順で冷凍サイクルが行われる)に比べて、図6の点B、D’、D、C2を結ぶことによって囲まれる面積に相当する分のエネルギーのロスを小さくできる。これにより、このヒートポンプユニット701では、蒸発器706において発生するドレン水を加熱することにより蒸発器706やドレンパンとして機能する底板777におけるドレン水の凍結や成長を抑えるだけでなく、従来のような冷凍サイクルにおける高圧の冷媒によってドレン水を加熱するドレン加熱器を使用する場合に比べて、エネルギーのロスの増加を抑えることができる。
 しかも、本実施形態では、ドレン加熱器797が蒸発器706の下部に配置されているため、ドレン水の流下によって最もドレン水の付着量が多くなる蒸発器706の下部においてドレン水が凍結しにくくなり、これにより、蒸発器706におけるドレン水の凍結や成長を効果的に抑えることができる。
 (3)変形例1
 上述の実施形態では、ドレン加熱器797が蒸発器706の下部に配置されている(より具体的には、ドレン加熱器797が下部に配置されるとともに、底板777上において蒸発器706と一体化されている)が、これに限定されるものではなく、ドレン加熱器797がドレンパンとして機能する底板777に配置されていてもよい。
 例えば、図7及び図8に示されるように、ドレン加熱器797を蒸発器706と伝熱フィンを共有しない伝熱管からなる構造とし、ドレンパンとして機能する底板777に接触するように配置することができる。
 そして、本変形例のヒートポンプ式給湯機のヒートポンプユニット701(冷凍装置)においても、二段圧縮式の圧縮機構702を採用するとともに、圧縮機構702の後段側の圧縮要素702dに吸入される冷媒(すなわち、冷凍サイクルにおける中間圧の冷媒)によって蒸発器706において発生するドレン水を加熱するドレン加熱器797を使用している点は、上述の実施形態と同じであるため、蒸発器706において発生するドレン水を加熱することにより蒸発器706やドレンパンとして機能する底板777におけるドレン水の凍結や成長を抑えるだけでなく、従来のような冷凍サイクルにおける高圧の冷媒によってドレン水を加熱するドレン加熱器を使用する場合に比べて、エネルギーのロスの増加を抑えることができる。
 しかも、本変形例では、ドレン加熱器797がドレンパンとして機能する底板777に配置されているため、蒸発器706から流下してドレンパンとして機能する底板777に溜まったドレン水が凍結しにくくなり、これにより、ドレンパンとして機能する底板777におけるドレン水の凍結や成長を効果的に抑えることができる。
 (4)変形例2
 上述の実施形態及びその変形例では、ドレン加熱器797が、蒸発器706の下部に配置されるか、又は、ドレンパンとして機能する底板777に配置されるかのいずれかであるが、蒸発器706の下部、及び、ドレンパンとして機能する底板777の両方に配置されていてもよい。
 例えば、図9~図11に示されるように、ドレン加熱器797を、蒸発器706の下部に配置された第1ドレン加熱器797aと、ドレンパンとしての底板777に配置された第2ドレン加熱器797bとを有する構成とし、第1ドレン加熱器797aと第2ドレン加熱器797bとを並列に接続したり(図9参照)、第1ドレン加熱器797aと第2ドレン加熱器797bとを直列に接続する(図10参照)ことができる。尚、図10においては、第1ドレン加熱器797aの下流に第2ドレン加熱器797bを接続するようにしているが、第2ドレン加熱器797bの下流に第1ドレン加熱器797aを接続してもよい。
 そして、本変形例のヒートポンプ式給湯機のヒートポンプユニット701(冷凍装置)においても、二段圧縮式の圧縮機構702を採用するとともに、圧縮機構702の後段側の圧縮要素702dに吸入される冷媒(すなわち、冷凍サイクルにおける中間圧の冷媒)によって蒸発器706において発生するドレン水を加熱するドレン加熱器797(ここでは、第1ドレン加熱器797a及び第2ドレン加熱器797b)を使用している点は、上述の実施形態及びその変形例と同じであるため、蒸発器706において発生するドレン水を加熱することにより蒸発器706やドレンパンとして機能する底板777におけるドレン水の凍結や成長を抑えるだけでなく、従来のような冷凍サイクルにおける高圧の冷媒によってドレン水を加熱するドレン加熱器を使用する場合に比べて、エネルギーのロスの増加を抑えることができる。
 しかも、本変形例では、ドレン加熱器797が蒸発器706の下部に配置された第1ドレン加熱器797aとドレンパンとして機能する底板777に配置された第2ドレン加熱器797bとを有しているため、ドレン水の流下によって最もドレン水の付着量が多くなる蒸発器797の下部においてドレン水が凍結しにくくなるとともに、蒸発器706から流下してドレンパンとして機能する底板777に溜まったドレン水が凍結しにくくなり、これにより、蒸発器706におけるドレン水の凍結や成長、及び、ドレンパンとして機能する底板777におけるドレン水の凍結や成長の両方を効果的に抑えることができる。
 (5)変形例3
 上述の変形例2では、ドレン加熱器797(より具体的には、第1ドレン加熱器797a、及び、第2ドレン加熱器797b)が蒸発器706の下部、及び、ドレンパンとして機能する底板777の両方に配置されており、前段側の圧縮要素702cから吐出されて後段側の圧縮要素702dに吸入される冷媒を両ドレン加熱器797a、797bに流すように構成されているが、第1ドレン加熱器797a及び第2ドレン加熱器797bのいずれか一方だけに流すことができるように構成されていてもよい。
 例えば、図12に示されるように、第1ドレン加熱器797aと第2ドレン加熱器797bとが並列に接続された構成において、第1ドレン加熱器797aへの冷媒の流れを制限する第1ドレン加熱器開閉弁798aと、第2ドレン加熱器797bへの冷媒の流れを制限する第2ドレン加熱器開閉弁798bとからなるドレン加熱器切換機構798を設けることができる。また、図13に示されるように、第1ドレン加熱器797aと第2ドレン加熱器797bとが直列に接続された構成において、第1ドレン加熱器797aをバイパスするための第1ドレン加熱器バイパス管799aと、第1ドレン加熱器797aへの冷媒の流れを制限する第1ドレン加熱器開閉弁798aと、第2ドレン加熱器797bをバイパスするための第2ドレン加熱器バイパス管799bと、第2ドレン加熱器797bへの冷媒の流れを制限する第2ドレン加熱器開閉弁798bとからなるドレン加熱器切換機構798を設けることができる。ここで、第1ドレン加熱器バイパス管799a及び第2ドレン加熱器バイパス管799bには、それぞれ、第1ドレン加熱器バイパス開閉弁799c及び第2ドレン加熱器バイパス開閉弁799dが設けられている。尚、本変形例において、開閉弁798a、798b、799c、799dは、電磁弁である。また、図12及び図13に示される構成を、電磁弁ではなく三方弁等を使用して構成してもよい。
 そして、本変形例のヒートポンプ式給湯機のヒートポンプユニット701(冷凍装置)においては、上述の変形例2と同様の作用効果を得ることができるとともに、第1ドレン加熱器797aと第2ドレン加熱器797bとの切り換えを可能にするドレン加熱器切換機構798がさらに設けられているため、第1ドレン加熱器797a及び第2ドレン加熱器797bのいずれか一方だけを必要に応じて使用することができる。
 -第2実施形態-
 (1)空気調和装置の構成
 図14は、本発明にかかる冷凍装置の第2実施形態としての空気調和装置1の概略構成図である。空気調和装置1は、冷房運転と暖房運転を切り換え可能に構成された冷媒回路10を有し、超臨界域で作動する冷媒(ここでは、二酸化炭素)を使用して二段圧縮式冷凍サイクルを行う装置である。
 空気調和装置1の冷媒回路10は、主として、圧縮機構2と、切換機構3と、熱源側熱交換器4と、ブリッジ回路17と、レシーバ18と、第1膨張機構5aと、第2膨張機構5bと、利用側熱交換器6と、中間熱交換器7と、ドレン加熱器97とを有している。
 圧縮機構2は、本実施形態において、2つの圧縮要素で冷媒を二段圧縮する圧縮機21から構成されている。圧縮機21は、ケーシング21a内に、圧縮機駆動モータ21bと、駆動軸21cと、圧縮要素2c、2dとが収容された密閉式構造となっている。圧縮機駆動モータ21bは、駆動軸21cに連結されている。そして、この駆動軸21cは、2つの圧縮要素2c、2dに連結されている。すなわち、圧縮機21は、2つの圧縮要素2c、2dが単一の駆動軸21cに連結されており、2つの圧縮要素2c、2dがともに圧縮機駆動モータ21bによって回転駆動される、いわゆる一軸二段圧縮構造となっている。圧縮要素2c、2dは、本実施形態において、ロータリ式やスクロール式等の容積式の圧縮要素である。そして、圧縮機21は、吸入管2aから冷媒を吸入し、この吸入された冷媒を圧縮要素2cによって圧縮した後に中間冷媒管8に吐出し、中間冷媒管8に吐出された冷媒を圧縮要素2dに吸入させて冷媒をさらに圧縮した後に吐出管2bに吐出するように構成されている。ここで、中間冷媒管8は、圧縮要素2dの前段側に接続された圧縮要素2cから吐出された冷凍サイクルにおける中間圧の冷媒を、圧縮要素2cの後段側に接続された圧縮要素2dに吸入させるための冷媒管である。また、吐出管2bは、圧縮機構2から吐出された冷媒を切換機構3に送るための冷媒管であり、吐出管2bには、油分離機構41と逆止機構42とが設けられている。油分離機構41は、圧縮機構2から吐出される冷媒に同伴する冷凍機油を冷媒から分離して圧縮機構2の吸入側へ戻す機構であり、主として、圧縮機構2から吐出される冷媒に同伴する冷凍機油を冷媒から分離する油分離器41aと、油分離器41aに接続されており冷媒から分離された冷凍機油を圧縮機構2の吸入管2aに戻す油戻し管41bとを有している。油戻し管41bには、油戻し管41bを流れる冷凍機油を減圧する減圧機構41cが設けられている。減圧機構41cは、本実施形態において、キャピラリチューブが使用されている。逆止機構42は、圧縮機構2の吐出側から切換機構3への冷媒の流れを許容し、かつ、切換機構3から圧縮機構2の吐出側への冷媒の流れを遮断するための機構であり、本実施形態において、逆止弁が使用されている。
 このように、圧縮機構2は、本実施形態において、2つの圧縮要素2c、2dを有しており、これらの圧縮要素2c、2dのうちの前段側の圧縮要素から吐出された冷媒を後段側の圧縮要素で順次圧縮するように構成されている。
 切換機構3は、冷媒回路10内における冷媒の流れの方向を切り換えるための機構であり、冷房運転時には、熱源側熱交換器4を圧縮機構2によって圧縮される冷媒の放熱器として、かつ、利用側熱交換器6を熱源側熱交換器4において冷却された冷媒の蒸発器として機能させるために、圧縮機構2の吐出側と熱源側熱交換器4の一端とを接続するとともに圧縮機21の吸入側と利用側熱交換器6とを接続し(図14の切換機構3の実線を参照、以下、この切換機構3の状態を「冷却運転状態」とする)、暖房運転時には、利用側熱交換器6を圧縮機構2によって圧縮される冷媒の放熱器として、かつ、熱源側熱交換器4を利用側熱交換器6において冷却された冷媒の蒸発器として機能させるために、圧縮機構2の吐出側と利用側熱交換器6とを接続するとともに圧縮機構2の吸入側と熱源側熱交換器4の一端とを接続することが可能である(図14の切換機構3の破線を参照、以下、この切換機構3の状態を「加熱運転状態」とする)。本実施形態において、切換機構3は、圧縮機構2の吸入側、圧縮機構2の吐出側、熱源側熱交換器4及び利用側熱交換器6に接続された四路切換弁である。尚、切換機構3は、四路切換弁に限定されるものではなく、例えば、複数の電磁弁を組み合わせる等によって、上述と同様の冷媒の流れの方向を切り換える機能を有するように構成したものであってもよい。
 このように、切換機構3は、冷媒回路10を構成する圧縮機構2、熱源側熱交換器4及び利用側熱交換器6だけに着目すると、圧縮機構2、冷媒の放熱器として機能する熱源側熱交換器4、冷媒の蒸発器として機能する利用側熱交換器6の順に冷媒を循環させる冷却運転状態と、圧縮機構2、冷媒の放熱器として機能する利用側熱交換器6、冷媒の蒸発器として機能する熱源側熱交換器4の順に冷媒を循環させる加熱運転状態とを切り換えることができるように構成されている。
 熱源側熱交換器4は、空気を熱源として冷媒の放熱器又は蒸発器として機能する熱交換器である。熱源側熱交換器4は、その一端が切換機構3に接続されており、その他端がブリッジ回路17を介して第1膨張機構5aに接続されている。そして、熱源側熱交換器4の熱源としての空気は、熱源側ファン40によって供給されるようになっている。熱源側ファン40は、ファン駆動モータ740aによって回転駆動される。
 ブリッジ回路17は、熱源側熱交換器4と利用側熱交換器6との間に設けられており、レシーバ18の入口に接続されるレシーバ入口管18a、及び、レシーバ18の出口に接続されるレシーバ出口管18bに接続されている。ブリッジ回路17は、本実施形態において、4つの逆止弁17a、17b、17c、17dを有している。そして、入口逆止弁17aは、熱源側熱交換器4からレシーバ入口管18aへの冷媒の流通のみを許容する逆止弁である。入口逆止弁17bは、利用側熱交換器6からレシーバ入口管18aへの冷媒の流通のみを許容する逆止弁である。すなわち、入口逆止弁17a、17bは、熱源側熱交換器4及び利用側熱交換器6の一方からレシーバ入口管18aに冷媒を流通させる機能を有している。出口逆止弁17cは、レシーバ出口管18bから利用側熱交換器6への冷媒の流通のみを許容する逆止弁である。出口逆止弁17dは、レシーバ出口管18bから熱源側熱交換器4への冷媒の流通のみを許容する逆止弁である。すなわち、出口逆止弁17c、17dは、レシーバ出口管18bから熱源側熱交換器4及び利用側熱交換器6の他方に冷媒を流通させる機能を有している。
 第1膨張機構5aは、レシーバ入口管18aに設けられた冷媒を減圧する機構であり、本実施形態において、電動膨張弁が使用されている。また、本実施形態において、第1膨張機構5aは、冷房運転時には、熱源側熱交換器4において冷却された高圧の冷媒をレシーバ18を介して利用側熱交換器6に送る前に冷媒の飽和圧力付近まで減圧し、暖房運転時には、利用側熱交換器6において冷却された高圧の冷媒をレシーバ18を介して熱源側熱交換器4に送る前に冷媒の飽和圧力付近まで減圧する。
 レシーバ18は、冷房運転と暖房運転との間で冷媒回路10における冷媒の循環量が異なる等の運転状態に応じて発生する余剰冷媒を溜めることができるように、第1膨張機構5aで減圧された後の冷媒を一時的に溜めるために設けられた容器であり、その入口がレシーバ入口管18aに接続されており、その出口がレシーバ出口管18bに接続されている。また、レシーバ18には、レシーバ18内から冷媒を抜き出して圧縮機構2の吸入管2a(すなわち、圧縮機構2の前段側の圧縮要素2cの吸入側)に戻すことが可能な第1吸入戻し管18fが接続されている。この第1吸入戻し管18fには、第1吸入戻し開閉弁18gが設けられている。第1吸入戻し開閉弁18gは、本実施形態において、電磁弁である。
 第2膨張機構5bは、レシーバ出口管18bに設けられた冷媒を減圧する機構であり、本実施形態において、電動膨張弁が使用されている。また、本実施形態において、第2膨張機構5bは、冷房運転時には、第1膨張機構5aによって減圧された冷媒をレシーバ18を介して利用側熱交換器6に送る前に冷凍サイクルにおける低圧になるまでさらに減圧し、暖房運転時には、第1膨張機構5aによって減圧された冷媒をレシーバ18を介して熱源側熱交換器4に送る前に冷凍サイクルにおける低圧になるまでさらに減圧する。
 利用側熱交換器6は、冷媒の蒸発器又は放熱器として機能する熱交換器である。利用側熱交換器6は、その一端がブリッジ回路を介して第1膨張機構5aに接続されており、その他端が切換機構3に接続されている。尚、ここでは図示しないが、利用側熱交換器6には、利用側熱交換器6を流れる冷媒と熱交換を行う加熱源としての水や空気が供給されるようになっている。
 このように、本実施形態では、ブリッジ回路17、レシーバ18、レシーバ入口管18a及びレシーバ出口管18bによって、切換機構3を冷却運転状態にしている際には、熱源側熱交換器4において冷却された高圧の冷媒を、ブリッジ回路17の入口逆止弁17a、レシーバ入口管18aの第1膨張機構5a、レシーバ18、レシーバ出口管18bの第2膨張機構5b及びブリッジ回路17の出口逆止弁17cを通じて、利用側熱交換器6に送ることができるようになっている。また、切換機構3を加熱運転状態にしている際には、利用側熱交換器6において冷却された高圧の冷媒を、ブリッジ回路17の入口逆止弁17b、レシーバ入口管18aの第1膨張機構5a、レシーバ18、レシーバ出口管18bの第2膨張機構5b及びブリッジ回路17の出口逆止弁17dを通じて、熱源側熱交換器4に送ることができるようになっている。
 中間熱交換器7は、中間冷媒管8に設けられており、本実施形態において、冷房運転時に、前段側の圧縮要素2cから吐出されて圧縮要素2dに吸入される冷媒の冷却器として機能させることが可能な熱交換器である。中間熱交換器7は、空気を熱源(ここでは、冷却源)とする熱交換器であり、本実施形態において、熱源側熱交換器4と一体化されている。このように、中間熱交換器7は、冷媒回路10を循環する冷媒を用いたものではないという意味で、外部熱源を用いた熱交換器ということができる。
 また、中間冷媒管8には、中間熱交換器7をバイパスするように、中間熱交換器バイパス管9が接続されている。この中間熱交換器バイパス管9は、中間熱交換器7を流れる冷媒の流量を制限する冷媒管である。そして、中間熱交換器バイパス管9には、中間熱交換器バイパス開閉弁11が設けられている。中間熱交換器バイパス開閉弁11は、本実施形態において、電磁弁である。この中間熱交換器バイパス開閉弁11は、本実施形態において、基本的には、切換機構3を冷却運転状態にしている際に閉め、切換機構3を加熱運転状態にしている際に開ける制御がなされる。すなわち、中間熱交換器バイパス開閉弁11は、冷房運転を行う際に閉め、暖房運転を行う際に開ける制御がなされる。
 また、中間冷媒管8には、中間熱交換器バイパス管9の前段側の圧縮要素2c側端との接続部から中間熱交換器7の前段側の圧縮要素2c側端までの部分に、中間熱交換器開閉弁12が設けられている。この中間熱交換器開閉弁12は、中間熱交換器7を流れる冷媒の流量を制限する機構である。中間熱交換器開閉弁12は、本実施形態において、電磁弁である。この中間熱交換器開閉弁12は、本実施形態において、基本的には、切換機構3を冷却運転状態にしている際に開け、切換機構3を加熱運転状態にしている際に閉める制御がなされる。すなわち、中間熱交換器開閉弁12は、冷房運転を行う際に開け、暖房運転を行う際に閉める制御がなされる。
 また、中間冷媒管8には、前段側の圧縮要素2cの吐出側から後段側の圧縮要素2dの吸入側への冷媒の流れを許容し、かつ、後段側の圧縮要素2dの吸入側から前段側の圧縮要素2cの吐出側への冷媒の流れを遮断するための逆止機構15が設けられている。逆止機構15は、本実施形態において、逆止弁である。尚、逆止機構15は、本実施形態において、中間冷媒管8の中間熱交換器7の後段側の圧縮要素2d側端から中間熱交換器バイパス管9の後段側の圧縮要素2d側端との接続部までの部分に設けられている。
 ドレン加熱器97は、暖房運転時に、前段側の圧縮要素2cから吐出されて後段側の圧縮要素2dに吸入される冷媒によって、冷媒の蒸発器として機能する熱源側熱交換器4において発生するドレン水を加熱することが可能な熱交換器であり、本実施形態において、中間熱交換器バイパス管9(より具体的には、中間熱交換器バイパス管9の前段側の圧縮要素2c側端との接続部から中間熱交換器バイパス開閉弁11までの部分)に設けられている。そして、ドレン加熱器97は、熱源側熱交換器4の下部に配置されている。
 次に、中間熱交換器7が熱源側熱交換器4に一体化された構成、及び、ドレン加熱器97が熱源側熱交換器4の下部に配置された構成について、図15及び図16を用いて説明する。ここで、図15は、熱源ユニット1aの外観斜視図(ファングリルを取り除いた状態)であり、図16は、熱源ユニット1aの右板74を取り除いた状態における熱源ユニット1aの側面図である。尚、以下の説明における「左」及び「右」とは、前板75側から熱源ユニット1aを見た場合を基準とする。
 まず、本実施形態において、空気調和装置1は、主として熱源側ファン40、熱源側熱交換器4、中間熱交換器7及びドレン加熱器97が設けられた熱源ユニット1aと、主として利用側熱交換器6が設けられた利用ユニット(図示せず)とが接続されることによって構成されている。そして、この熱源ユニット1aは、側方から空気を吸い込んで上方に向かって空気を吹き出す、いわゆる、上吹きタイプのものであり、主として、ケーシング71と、ケーシング71の内部に配置される熱源側熱交換器4、中間熱交換器7及びドレン加熱器97等の冷媒回路構成部品や熱源側ファン40等の機器とを有している。
 ケーシング71は、本実施形態において、略直方体形状の箱体であり、主として、ケーシング71の天面を構成する天板72と、ケーシング71の外周面を構成する左板73、右板74、前板75及び後板76と、底板77とから構成されている。天板72は、主として、ケーシング71の天面を構成する部材であり、本実施形態において、略中央に吹出開口71aが形成された平面視が略長方形状の板状部材である。天板72には、吹出開口71aを上方から覆うようにファングリル78が設けられている。左板73は、主として、ケーシング71の左面を構成する部材であり、本実施形態において、天板72の左縁から下方に延びる側面視が略長方形状の板状部材である。左板73には、上部を除くほぼ全体に吸入開口73aが形成されている。右板74は、主として、ケーシング71の右面を構成する部材であり、本実施形態において、天板72の右縁から下方に延びる側面視が略長方形状の板状部材である。右板74には、上部を除くほぼ全体に吸入開口74aが形成されている。前板75は、主として、ケーシング71の前面を構成する部材であり、本実施形態において、天板72の前縁から下方向に順に配置された正面視が略長方形状の板状部材から構成されている。後板76は、主として、ケーシング71の後面を構成する部材であり、本実施形態において、天板72の後縁から下方向に順に配置された正面視が略長方形状の板状部材から構成されている。後板76には、上部を除くほぼ全体に吸入開口76aが形成されている。底板77は、主として、ケーシング71の底面を構成する部材であり、本実施形態において、平面視が略長方形状の板状部材である。また、底板77は、熱源側熱交換器4において発生するドレン水を受けてケーシング71外に排水するドレンパンとしての機能も有している。
 そして、中間熱交換器7は、熱源側熱交換器4の上部に配置された状態で熱源側熱交換器4と一体化されており、底板77上に配置されている。より具体的には、熱源側熱交換器4は、伝熱管と多数の伝熱フィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器が使用されており、中間熱交換器7は、伝熱フィンを共有することによって熱源側熱交換器4と一体化されている。また、熱源側熱交換器4及び中間熱交換器7が一体化されたものは、本実施形態において、平面視が略U字形状の熱交換器パネルを形成しており、吸入開口73a、74a、76aに対向するように配置されている。また、熱源側ファン40は、天板72の吹出開口71aに対向し、かつ、熱源側熱交換器4及び中間熱交換器7が一体化されたものの上側に配置されている。本実施形態において、熱源側ファン40は、軸流ファンであり、ファン駆動モータ40aによって回転駆動することによって、吸入開口73a、74a、76aから熱源としての空気をケーシング71内に吸い込んで、熱源側熱交換器4及び中間熱交換器7を通過させた後に、吹出開口71aから上方に向けて吹き出すことができるようになっている(図16中の空気の流れを示す矢印を参照)。すなわち、熱源側ファン40は、熱源側熱交換器4及び中間熱交換器7の両方に熱源としての空気を供給するようになっている。さらに、ドレン加熱器97は、本実施形態において、熱源側熱交換器4の下部に配置されるとともに、底板77上において伝熱フィンを共有することによって熱源側熱交換器4と一体化されている。ドレン加熱器97は、中間熱交換器7及び熱源側熱交換器4と一体化された熱交換器パネルにおける最下部パス(すなわち、熱交換器パネルにおける最下部の伝熱管とその直上の伝熱管とからなる伝熱流路)を構成している(図16参照)。また、中間熱交換器7は、ドレン加熱器97よりも伝熱面積が大きい。尚、熱源ユニット1aの外観形状や熱源側熱交換器4、中間熱交換器7及びドレン加熱器97が一体化されたものの形状は、上述のものに限定されるものではない。
 このように、本実施形態の空気調和装置1では、主として、二段圧縮式の圧縮機構2が採用されるとともに、切換機構3を冷却運転状態にした冷房運転時に、圧縮機構2の後段側の圧縮要素2dに吸入される冷媒(すなわち、冷凍サイクルにおける中間圧の冷媒)の冷却器として機能する中間熱交換器7が設けられており、切換機構3を加熱運転状態にした暖房運転時に、冷媒の蒸発器として機能する熱源側熱交換器4において発生するドレン水を加熱するドレン加熱器97が設けられている。
 さらに、空気調和装置1は、ここでは図示しないが、圧縮機構2、切換機構3、膨張機構5a、5b、中間熱交換器バイパス開閉弁11、中間熱交換器開閉弁12、第1吸入戻し開閉弁18g、熱源側ファン40等の空気調和装置1を構成する各部の動作を制御する制御部を有している。
 (2)空気調和装置の動作
 次に、本実施形態の空気調和装置1の動作について、図14、図17~図22を用いて説明する。ここで、図17は、冷房運転時における空気調和装置1内の冷媒の流れを示す図であり、図18は、冷房運転時の冷凍サイクルが図示された圧力-エンタルピ線図であり、図19は、冷房運転時の冷凍サイクルが図示された温度-エントロピ線図であり、図20は、暖房運転時における空気調和装置1内の冷媒の流れを示す図であり、図21は、暖房運転時の冷凍サイクルが図示された圧力-エンタルピ線図であり、図22は、暖房運転時の冷凍サイクルが図示された温度-エントロピ線図である。尚、以下の冷房運転や暖房運転における運転制御は、上述の制御部(図示せず)によって行われる。また、以下の説明において、「高圧」とは、冷凍サイクルにおける高圧(すなわち、図18、19の点D、D’、Eにおける圧力や図21、22の点D、D’、Fにおける圧力)を意味し、「低圧」とは、冷凍サイクルにおける低圧(すなわち、図18、19の点A、Fにおける圧力や図21、22の点A、Eにおける圧力)を意味し、「中間圧」とは、冷凍サイクルにおける中間圧(すなわち、図18、19の点B、C1における圧力や図21、22の点B、C2における圧力)を意味している。
 <冷房運転>
 冷房運転時は、切換機構3が図14及び図17の実線で示される冷却運転状態とされる。また、第1膨張機構5a及び第2膨張機構5bは、開度調節される。そして、切換機構3が冷却運転状態となるため、中間冷媒管8の中間熱交換器開閉弁12が開けられ、そして、中間熱交換器バイパス管9の中間熱交換器バイパス開閉弁11が閉められることによって、中間熱交換器7が冷却器として機能する状態にされるとともに、ドレン加熱器97に冷媒が流れない状態とされる。
 この冷媒回路10の状態において、低圧の冷媒(図14、図17~図19の点A参照)は、吸入管2aから圧縮機構2に吸入され、まず、圧縮要素2cによって中間圧力まで圧縮された後に、中間冷媒管8に吐出される(図14、図17~図19の点B参照)。この前段側の圧縮要素2cから吐出された中間圧の冷媒は、中間熱交換器7において、熱源側ファン40によって供給される冷却源としての空気と熱交換を行うことで冷却される(図14、図17~図19の点C1参照)。この中間熱交換器7において冷却された冷媒は、次に、圧縮要素2cの後段側に接続された圧縮要素2dに吸入されてさらに圧縮されて、圧縮機構2から吐出管2bに吐出される(図14、図17~図19の点D参照)。ここで、圧縮機構2から吐出された高圧の冷媒は、圧縮要素2c、2dによる二段圧縮動作によって、臨界圧力(すなわち、図18に示される臨界点CPにおける臨界圧力Pcp)を超える圧力まで圧縮されている。そして、この圧縮機構2から吐出された高圧の冷媒は、油分離機構41を構成する油分離器41aに流入し、同伴する冷凍機油が分離される。また、油分離器41aにおいて高圧の冷媒から分離された冷凍機油は、油分離機構41を構成する油戻し管41bに流入し、油戻し管41bに設けられた減圧機構41cで減圧された後に圧縮機構2の吸入管2aに戻されて、再び、圧縮機構2に吸入される。次に、油分離機構41において冷凍機油が分離された後の高圧の冷媒は、逆止機構42及び切換機構3を通じて、冷媒の放熱器として機能する熱源側熱交換器4に送られる。そして、熱源側熱交換器4に送られた高圧の冷媒は、熱源側熱交換器4において、熱源側ファン40によって供給される冷却源としての空気と熱交換を行って冷却される(図14、図17~図19の点E参照)。そして、熱源側熱交換器4において冷却された高圧の冷媒は、ブリッジ回路17の入口逆止弁17aを通じてレシーバ入口管18aに流入し、第1膨張機構5aによって飽和圧力付近まで減圧されてレシーバ18内に一時的に溜められる(図14及び図17の点I参照)。そして、レシーバ18内に溜められた冷媒は、レシーバ出口管18bに送られて、第2膨張機構5bによって減圧されて低圧の気液二相状態の冷媒となり、ブリッジ回路17の出口逆止弁17cを通じて、冷媒の蒸発器として機能する利用側熱交換器6に送られる(図14、図17~図19の点F参照)。そして、利用側熱交換器6に送られた低圧の気液二相状態の冷媒は、加熱源としての水や空気と熱交換を行って加熱されて、蒸発することになる(図14、図17~図19の点A参照)。そして、この利用側熱交換器6において加熱された低圧の冷媒は、切換機構3を経由して、再び、圧縮機構2に吸入される。このようにして、冷房運転が行われる。
 このように、本実施形態の空気調和装置1(冷凍装置)では、二段圧縮式の圧縮機構702を採用し、圧縮要素2cから吐出された冷媒を圧縮要素2dに吸入させるための中間冷媒管8に中間熱交換器7を設けるとともに、冷房運転において、中間熱交換器開閉弁12を開け、また、中間熱交換器バイパス管9の中間熱交換器バイパス開閉弁11を閉めることによって、中間熱交換器7を冷却器として機能する状態にしているため、中間熱交換器7を設けなかった場合(この場合には、図18、図19において、点A→点B→点D’→点E→点Fの順で冷凍サイクルが行われる)に比べて、圧縮要素2cの後段側の圧縮要素2dに吸入される冷媒の温度が低下し(図19の点B、C1参照)、圧縮要素2dから吐出される冷媒の温度も低下することになる(図19の点D、D’参照)。このため、この空気調和装置1では、冷媒の放熱器として機能する熱源側熱交換器4において、中間熱交換器7を設けなかった場合に比べて、冷却源としての水や空気と冷媒との温度差を小さくすることが可能になり、図19の点B1、D’、D、C1を結ぶことによって囲まれる面積に相当する分の放熱ロスを小さくできることから、運転効率を向上させることができる。
 <暖房運転>
 暖房運転時は、切換機構3が図14及び図20の破線で示される加熱運転状態とされる。また、第1膨張機構5a及び第2膨張機構5bは、開度調節される。そして、切換機構3が加熱運転状態となるため、中間冷媒管8の中間熱交換器開閉弁12が閉められ、そして、中間熱交換器バイパス管9の中間熱交換器バイパス開閉弁11が開けられることによって、中間熱交換器7が冷却器として機能しない状態にされるとともに、ドレン加熱器97に冷媒が流れる状態とされる。
 この冷媒回路10の状態において、低圧の冷媒(図14、図20~図22の点A参照)は、吸入管2aから圧縮機構2に吸入され、まず、圧縮要素2cによって中間圧力まで圧縮された後に、中間冷媒管8に吐出される(図14、図20~図22の点B参照)。この前段側の圧縮要素2cから吐出された中間圧の冷媒は、冷房運転時とは異なり、中間熱交換器7を通過せずに、中間熱交換器バイパス管9に設けられたドレン加熱器97に流入し、ドレン加熱器97において、冷媒の蒸発器として機能する熱源側熱交換器4において発生して熱源側熱交換器4を流下するドレン水と熱交換を行うことで冷却される(図14、図20~図22の点C2参照)。このドレン加熱器97において冷却された冷媒は、圧縮要素2cの後段側に接続された圧縮要素2dに吸入されてさらに圧縮されて、圧縮機構2から吐出管2bに吐出される(図14、図20~図22の点D参照)。ここで、圧縮機構2から吐出された高圧の冷媒は、冷房運転時と同様、圧縮要素2c、2dによる二段圧縮動作によって、臨界圧力(すなわち、図21に示される臨界点CPにおける臨界圧力Pcp)を超える圧力まで圧縮されている。そして、この圧縮機構2から吐出された高圧の冷媒は、油分離機構41を構成する油分離器41aに流入し、同伴する冷凍機油が分離される。また、油分離器41aにおいて高圧の冷媒から分離された冷凍機油は、油分離機構41を構成する油戻し管41bに流入し、油戻し管41bに設けられた減圧機構41cで減圧された後に圧縮機構2の吸入管2aに戻されて、再び、圧縮機構2に吸入される。次に、油分離機構41において冷凍機油が分離された後の高圧の冷媒は、逆止機構42及び切換機構3を通じて、冷媒の放熱器として機能する利用側熱交換器6に送られて、冷却源としての水や空気と熱交換を行って冷却される(図14、図20~図22の点F参照)。そして、利用側熱交換器6において冷却された高圧の冷媒は、ブリッジ回路17の入口逆止弁17bを通じてレシーバ入口管18aに流入し、第1膨張機構5aによって飽和圧力付近まで減圧されてレシーバ18内に一時的に溜められる(図14及び図20の点I参照)。そして、レシーバ18内に溜められた冷媒は、レシーバ出口管18bに送られて、第2膨張機構5bによって減圧されて低圧の気液二相状態の冷媒となり、ブリッジ回路17の出口逆止弁17dを通じて、冷媒の蒸発器として機能する熱源側熱交換器4に送られる(図14、図20~図22の点E参照)。そして、熱源側熱交換器4に送られた低圧の気液二相状態の冷媒は、熱源側熱交換器4において、熱源側ファン40によって供給される加熱源としての空気と熱交換を行って加熱されて、蒸発することになる(図14、図20~図22の点A参照)。そして、この熱源側熱交換器4において加熱されて蒸発した低圧の冷媒は、切換機構3を経由して、再び、圧縮機構2に吸入される。このようにして、暖房運転が行われる。
 このように、本実施形態の空気調和装置1(冷凍装置)では、二段圧縮式の圧縮機構702を採用し、切換機構3を加熱運転状態にした暖房運転において、中間熱交換器開閉弁12を閉め、また、中間熱交換器バイパス開閉弁11を開けることによって、中間熱交換器7を冷却器として機能しない状態にするとともに、熱源側熱交換器4において発生するドレン水を加熱するドレン加熱器97を使用しているため、ドレン水を加熱することにより熱源側熱交換器4やドレンパンとして機能する底板77におけるドレン水の凍結や成長を抑えるとともに、冷凍サイクルにおける中間圧の冷媒の温度を下げることにより(図22の点B、C2参照)、従来のような冷凍サイクルにおける高圧の冷媒によってドレン水を加熱するドレン加熱器を使用する場合(この場合には、図21、図22において、点A→点B→点D’→点F→点Eの順で冷凍サイクルが行われる)に比べて、図22の点B、D’、D、C2を結ぶことによって囲まれる面積に相当する分のエネルギーのロスを小さくできる。これにより、この空気調和装置1では、冷房運転時には、中間熱交換器7を用いて冷凍サイクルにおける中間圧の冷媒を熱源としての空気によって冷却することで、冷媒の放熱器として機能する熱源側熱交換器4における放熱ロスを小さくすることができ、暖房運転時には、冷凍サイクルにおける中間圧の冷媒を熱源としてのドレン水によって冷却することで、ドレン加熱器97を用いてドレン水の凍結や成長を抑えるだけでなく、冷凍サイクルにおける高圧の冷媒によってドレン水を加熱するドレン加熱器を使用する場合に比べて、加熱運転時におけるエネルギーのロスの増加を抑えることができる。
 しかも、本実施形態では、ドレン加熱器97が熱源側熱交換器4の下部に配置されているため、ドレン水の流下によって最もドレン水の付着量が多くなる熱源側熱交換器4の下部においてドレン水が凍結しにくくなり、これにより、熱源側熱交換器4におけるドレン水の凍結や成長を効果的に抑えることができる。
 また、本実施形態では、中間熱交換器7がドレン加熱器97よりも伝熱面積が大きいため、冷房運転時に、冷凍サイクルにおける中間圧の冷媒を大幅に冷却することができるようになり、これにより、冷却運転時に放熱器として機能する熱源側熱交換器4における放熱ロスを大幅に低減することができる。一方、ドレン加熱器97については、中間熱交換器7による冷凍サイクルにおける中間圧の冷媒の冷却の程度(図19の点B、C1参照)に比べて、冷凍サイクルにおける中間圧の冷媒の冷却の程度(図22の点B、C2参照)が小さくなることから、ドレン水を加熱するという目的に適した伝熱面積を有していることになる。
 また、本実施形態では、冷媒として、超臨界域で作動する冷媒(ここでは、二酸化炭素)を使用しているため、冷房運転時には、中間熱交換器7内には臨界圧力Pcp(二酸化炭素では、約7.3MPa)よりも低い中間圧の冷媒が流れ、冷媒の放熱器として機能する熱源側熱交換器4内には臨界圧力Pcpを超える高圧の冷媒が流れる冷凍サイクルが行われており(図18参照)、この場合には、図23に示されるように、臨界圧力Pcpよりも低い圧力における冷媒の物性と臨界圧力Pcpを超える圧力における冷媒の物性(特に、熱伝導率や定圧比熱)との差異に起因して、中間熱交換器7の冷媒側の熱伝達率が冷媒の放熱器として機能する熱源側熱交換器4の冷媒側の熱伝達率に比べて低くなる傾向となる。ここで、図23は、6MPaの二酸化炭素を所定の流路断面積を有する伝熱流路内に所定の質量流速で流す場合における熱伝達率の値(中間熱交換器7の冷媒側の熱伝達率に対応)と、6MPaの二酸化炭素と同一の伝熱流路及び質量流速の条件における10MPaの二酸化炭素の熱伝達率の値(熱源側熱交換器4の冷媒側の熱伝達率に対応)とを示しているが、これを見ると、冷媒の冷却器として機能する熱源側熱交換器4や中間熱交換器7内を流れる冷媒の温度範囲(40~70℃程度)において、6MPaの二酸化炭素の熱伝達率の値が10MPaの二酸化炭素の熱伝達率の値よりも低いことがわかる。
 このため、本実施形態の空気調和装置1の熱源ユニット1a(すなわち、側方から空気を吸い込んで上方に向かって空気を吹き出すように構成された熱源ユニット)において、仮に、中間熱交換器7を熱源側熱交換器4の下方に配置された状態で熱源側熱交換器4と一体化すると、熱源となる空気の流速が小さい熱源ユニット1aの下部に熱源側熱交換器4と一体化された中間熱交換器7が配置されることになり、中間熱交換器7を熱源ユニット1aの下部に配置することによる中間熱交換器7の空気側の熱伝達率の低下の影響と、中間熱交換器7の冷媒側の熱伝達率が熱源側熱交換器4の冷媒側の熱伝達率に比べて低くなる影響とが重なり合って、中間熱交換器7の総括熱伝達率が低くなり、しかも、熱源側熱交換器4と一体化することとの兼ね合いで中間熱交換器7の伝熱面積を大きくする程度にも限界があるため、中間熱交換器7の伝熱性能の低下が生じることになるのであるが、本実施形態では、中間熱交換器7を熱源側熱交換器4の上方に配置された状態で熱源側熱交換器4と一体化するようにしているため、熱源となる空気の流速が大きい熱源ユニット1aの上部に中間熱交換器7が配置されることになり、中間熱交換器7の空気側の熱伝達率が高くなり、その結果、中間熱交換器7の総括熱伝達率の低下が抑えられて、比較的大きな交換熱量が必要となる中間熱交換器7の伝熱性能の低下を抑えることができる。しかも、ドレン加熱器97については、熱源となる空気の流速が小さい熱源ユニット1aの下部に配置されることになり、ドレン水の加熱という目的から蒸発器としての熱源側熱交換器4の下方に設ける必要がある点と、中間熱交換器7よりも交換熱量が小さくて済む点とを両方とも満たすことができる。
 (3)変形例1
 上述の第2実施形態では、ドレン加熱器97が熱源側熱交換器4の下部に配置されている(より具体的には、ドレン加熱器97が下部に配置されるとともに、底板77上において熱源側熱交換器4と一体化されている)が、これに限定されるものではなく、ドレン加熱器97がドレンパンとして機能する底板77に配置されていてもよい。
 例えば、図24及び図25に示されるように、ドレン加熱器97を熱源側熱交換器4と伝熱フィンを共有しない伝熱管からなる構造とし、ドレンパンとして機能する底板77に接触するように配置することができる。
 そして、本変形例の空気調和装置1(冷凍装置)においても、二段圧縮式の圧縮機構2を採用し、切換機構3を冷却運転状態にする冷房運転時に、圧縮機構2の後段側の圧縮要素2dに吸入される冷媒(すなわち、冷凍サイクルにおける中間圧の冷媒)の冷却器として機能する中間熱交換器7を使用し、切換機構3を加熱運転状態にする暖房運転時に、冷媒の蒸発器として機能する熱源側熱交換器4において発生するドレン水を加熱するドレン加熱器97を使用している点は、上述の第2実施形態と同じであるため、冷房運転時には、冷媒の放熱器として機能する熱源側熱交換器4における放熱ロスを小さくすることができ、暖房運転時には、ドレン加熱器97を用いてドレン水の凍結や成長を抑えるだけでなく、冷凍サイクルにおける高圧の冷媒によってドレン水を加熱するドレン加熱器を使用する場合に比べて、加熱運転時におけるエネルギーのロスの増加を抑えることができる。
 しかも、本変形例では、ドレン加熱器97がドレンパンとして機能する底板77に配置されているため、熱源側熱交換器4から流下してドレンパンとして機能する底板77に溜まったドレン水が凍結しにくくなり、これにより、ドレンパンとして機能する底板77におけるドレン水の凍結や成長を効果的に抑えることができる。
 (4)変形例2
 上述の第2実施形態及びその変形例では、ドレン加熱器97が、熱源側熱交換器4の下部に配置されるか、又は、ドレンパンとして機能する底板77に配置されるかのいずれかであるが、熱源側熱交換器4の下部、及び、ドレンパンとして機能する底板77の両方に配置されていてもよい。
 例えば、図26~図28に示されるように、ドレン加熱器97を、熱源側熱交換器4の下部に配置された第1ドレン加熱器97aと、ドレンパンとしての底板77に配置された第2ドレン加熱器97bとを有する構成とし、第1ドレン加熱器97aと第2ドレン加熱器97bとを並列に接続したり(図26参照)、第1ドレン加熱器97aと第2ドレン加熱器97bとを直列に接続する(図27参照)ことができる。尚、図27においては、第1ドレン加熱器97aの下流に第2ドレン加熱器97bを接続するようにしているが、第2ドレン加熱器97bの下流に第1ドレン加熱器97aを接続してもよい。
 そして、本変形例の空気調和装置1(冷凍装置)においても、二段圧縮式の圧縮機構2を採用し、切換機構3を冷却運転状態にする冷房運転時に、圧縮機構2の後段側の圧縮要素2dに吸入される冷媒(すなわち、冷凍サイクルにおける中間圧の冷媒)の冷却器として機能する中間熱交換器7を使用し、切換機構3を加熱運転状態にする暖房運転時に、冷媒の蒸発器として機能する熱源側熱交換器4において発生するドレン水を加熱するドレン加熱器97(ここでは、第1ドレン加熱器97a及び第2ドレン加熱器97b)を使用している点は、上述の第2実施形態及びその変形例と同じであるため、冷房運転時には、冷媒の放熱器として機能する熱源側熱交換器4における放熱ロスを小さくすることができ、暖房運転時には、ドレン加熱器97を用いてドレン水の凍結や成長を抑えるだけでなく、冷凍サイクルにおける高圧の冷媒によってドレン水を加熱するドレン加熱器を使用する場合に比べて、加熱運転時におけるエネルギーのロスの増加を抑えることができる。
 しかも、本変形例では、ドレン加熱器97が熱源側熱交換器4の下部に配置された第1ドレン加熱器97aとドレンパンとして機能する底板77に配置された第2ドレン加熱器97bとを有しているため、ドレン水の流下によって最もドレン水の付着量が多くなる熱源側熱交換器4の下部においてドレン水が凍結しにくくなるとともに、熱源側熱交換器4から流下してドレンパンとして機能する底板77に溜まったドレン水が凍結しにくくなり、これにより、熱源側熱交換器4におけるドレン水の凍結や成長、及び、ドレンパンとして機能する底板77におけるドレン水の凍結や成長の両方を効果的に抑えることができる。
 (5)変形例3
 上述の第2実施形態の変形例2では、ドレン加熱器97(より具体的には、第1ドレン加熱器97a、及び、第2ドレン加熱器97b)が熱源側熱交換器4の下部、及び、ドレンパンとして機能する底板77の両方に配置されており、前段側の圧縮要素2cから吐出されて後段側の圧縮要素2dに吸入される冷媒を両ドレン加熱器97a、97bに流すように構成されているが、第1ドレン加熱器97a及び第2ドレン加熱器97bのいずれか一方だけに流すことができるように構成されていてもよい。
 例えば、図29に示されるように、第1ドレン加熱器97aと第2ドレン加熱器97bとが並列に接続された構成において、第1ドレン加熱器97aへの冷媒の流れを制限する第1ドレン加熱器開閉弁98aと、第2ドレン加熱器97bへの冷媒の流れを制限する第2ドレン加熱器開閉弁98bとからなるドレン加熱器切換機構98を設けることができる。また、図30に示されるように、第1ドレン加熱器97aと第2ドレン加熱器97bとが直列に接続された構成において、第1ドレン加熱器97aをバイパスするための第1ドレン加熱器バイパス管99aと、第1ドレン加熱器97aへの冷媒の流れを制限する第1ドレン加熱器開閉弁98aと、第2ドレン加熱器97bをバイパスするための第2ドレン加熱器バイパス管99bと、第2ドレン加熱器97bへの冷媒の流れを制限する第2ドレン加熱器開閉弁98bとからなるドレン加熱器切換機構98を設けることができる。ここで、第1ドレン加熱器バイパス管99a及び第2ドレン加熱器バイパス管99bには、それぞれ、第1ドレン加熱器バイパス開閉弁99c及び第2ドレン加熱器バイパス開閉弁99dが設けられている。尚、本変形例において、開閉弁98a、98b、99c、99dは、電磁弁である。また、図29及び図30に示される構成を、電磁弁ではなく三方弁等を使用して構成してもよい。
 そして、本変形例の空気調和装置1(冷凍装置)においても、上述の第2実施形態の変形例2と同様の作用効果を得ることができるとともに、第1ドレン加熱器97aと第2ドレン加熱器97bとの切り換えを可能にするドレン加熱器切換機構98がさらに設けられているため、第1ドレン加熱器97a及び第2ドレン加熱器97bのいずれか一方だけを必要に応じて使用することができる。
 (6)変形例4
 上述の第2実施形態及びその変形例では、中間熱交換器7が切換機構3を冷却運転状態にした冷房運転時だけに使用される機器となっており、切換機構3を加熱運転状態にした暖房運転時には利用されない機器となっている。
 そこで、本変形例では、図31に示されるように、上述の第2実施形態の冷媒回路10(図14参照)において、切換機構3を冷却運転状態にした冷房運転時には、中間熱交換器7を冷凍サイクルにおける中間圧の冷媒の冷却器として機能させ、切換機構3を加熱運転状態にした暖房運転時には、利用側熱交換器6において放熱した冷媒の蒸発器として機能させるようにするために、中間熱交換器7の一端と圧縮機構2の吸入側とを接続させるための第2吸入戻し管92と、利用側熱交換器6と熱源側熱交換器4との間と中間熱交換器7の他端とを接続させるための中間熱交換器戻し管94とを設けた冷媒回路110としている。
 ここで、第2吸入戻し管92は、中間熱交換器7の一端(ここでは、前段側の圧縮要素2c側端)に接続されており、中間熱交換器バイパス管9を通じて前段側の圧縮要素2cから吐出された冷媒を後段側の圧縮要素2dに吸入させる状態にしている際に、中間熱交換器7の一端と圧縮機構2の吸入側(ここでは、吸入管2a)とを接続させるための冷媒管である。また、中間熱交換器戻し管94は、中間熱交換器7の他端(ここでは、後段側の圧縮要素2d側端)に接続されており、中間熱交換器バイパス管9を通じて前段側の圧縮要素2cから吐出された冷媒を後段側の圧縮要素2dに吸入させる状態にし、かつ、切換機構3を加熱運転状態にした暖房運転時に、利用側熱交換器6と熱源側熱交換器4との間(ここでは、冷凍サイクルにおける低圧になるまで冷媒を減圧する第2膨張機構5bと蒸発器としての熱源側熱交換器4との間)と中間熱交換器7の他端とを接続させるための冷媒管である。本変形例において、第2吸入戻し管92は、その一端が、中間冷媒管8の中間熱交換器バイパス管9の前段側の圧縮要素2c側端との接続部から中間熱交換器7の前段側の圧縮要素2c側端までの部分に接続されており、他端が、圧縮機構2の吸入側(ここでは、吸入管2a)に接続されている。また、中間熱交換器戻し管94は、その一端が、第2膨張機構5bから熱源側熱交換器4までの部分に接続されており、他端が、中間冷媒管8の中間熱交換器7の前段側の圧縮要素2c側端から逆止機構15までの部分に接続されている。そして、第2吸入戻し管92には、第2吸入戻し開閉弁92aが設けられており、中間熱交換器戻し管94には、中間熱交換器戻し開閉弁94aが設けられている。第2吸入戻し開閉弁92a及び中間熱交換器戻し開閉弁94aは、本変形例において、電磁弁である。この第2吸入戻し開閉弁92aは、本変形例において、基本的には、切換機構3を冷却運転状態にした冷房運転時に閉め、切換機構3を加熱運転状態にした暖房運転時に開ける制御がなされる。また、中間熱交換器戻し開閉弁94aは、切換機構3を冷却運転状態にした冷房運転時に閉め、切換機構3を加熱運転状態にした暖房運転時に開ける制御がなされる。
 このように、本変形例では、主として、中間熱交換器バイパス管9、第2吸入戻し管92及び中間熱交換器戻し管94によって、冷房運転時には、中間冷媒管8を流れる冷凍サイクルにおける中間圧の冷媒を中間熱交換器7によって冷却することができ、暖房運転時には、中間冷媒管8を流れる冷凍サイクルにおける中間圧の冷媒を中間熱交換器バイパス管9によって、中間熱交換器7をバイパスさせるとともに、ドレン加熱器97において熱源側熱交換器4において発生するドレン水を加熱し、さらに、第2吸入戻し管92及び中間熱交換器戻し管94によって、利用側熱交換器6において冷却された冷媒の一部を中間熱交換器7に導いて蒸発させ、圧縮機構2の吸入側に戻すことができるようになっている。
 次に、本変形例の空気調和装置1の動作について、図31~図37を用いて説明する。
ここで、図32は、冷房運転時における空気調和装置1内の冷媒の流れを示す図であり、図33は、冷房運転時の冷凍サイクルが図示された圧力-エンタルピ線図であり、図34は、冷房運転時の冷凍サイクルが図示された温度-エントロピ線図であり、図35は、暖房運転時における空気調和装置1内の冷媒の流れを示す図であり、図36は、暖房運転時の冷凍サイクルが図示された圧力-エンタルピ線図であり、図37は、暖房運転時の冷凍サイクルが図示された温度-エントロピ線図である。尚、以下の冷房運転や暖房運転における運転制御は、上述の制御部(図示せず)によって行われる。また、以下の説明において、「高圧」とは、冷凍サイクルにおける高圧(すなわち、図33、34の点D、D’、Eにおける圧力や図36、37の点D、D’、Fにおける圧力)を意味し、「低圧」とは、冷凍サイクルにおける低圧(すなわち、図33、34の点A、Fにおける圧力や図36、37の点A、E、Vにおける圧力)を意味し、「中間圧」とは、冷凍サイクルにおける中間圧(すなわち、図33、34の点B、C1における圧力や図36、37の点B、C2における圧力)を意味している。
 <冷房運転>
 冷房運転時は、切換機構3が図31及び図32の実線で示される冷却運転状態とされる。また、第1膨張機構5a及び第2膨張機構5bは、開度調節される。そして、切換機構3が冷却運転状態となるため、中間冷媒管8の中間熱交換器開閉弁12が開けられ、そして、中間熱交換器バイパス管9の中間熱交換器バイパス開閉弁11が閉められることによって、中間熱交換器7が冷却器として機能する状態にされるとともに、ドレン加熱器97に冷媒が流れない状態とされ、さらに、第2吸入戻し管92の第2吸入戻し開閉弁92aが閉められることによって、中間熱交換器7と圧縮機構2の吸入側とが接続していない状態にされ、また、中間熱交換器戻し管94の中間熱交換器戻し開閉弁94aが閉められることによって、利用側熱交換器6と熱源側熱交換器4との間と中間熱交換器7とが接続していない状態にされる。
 この冷媒回路110の状態において、低圧の冷媒(図31~図34の点A参照)は、吸入管2aから圧縮機構2に吸入され、まず、圧縮要素2cによって中間圧力まで圧縮された後に、中間冷媒管8に吐出される(図31~図34の点B参照)。この前段側の圧縮要素2cから吐出された中間圧の冷媒は、中間熱交換器7において、熱源側ファン40によって供給される冷却源としての空気と熱交換を行うことで冷却される(図31~図34の点C1参照)。この中間熱交換器7において冷却された冷媒は、次に、圧縮要素2cの後段側に接続された圧縮要素2dに吸入されてさらに圧縮されて、圧縮機構2から吐出管2bに吐出される(図31~図34の点D参照)。ここで、圧縮機構2から吐出された高圧の冷媒は、圧縮要素2c、2dによる二段圧縮動作によって、臨界圧力(すなわち、図33に示される臨界点CPにおける臨界圧力Pcp)を超える圧力まで圧縮されている。そして、この圧縮機構2から吐出された高圧の冷媒は、油分離機構41を構成する油分離器41aに流入し、同伴する冷凍機油が分離される。また、油分離器41aにおいて高圧の冷媒から分離された冷凍機油は、油分離機構41を構成する油戻し管41bに流入し、油戻し管41bに設けられた減圧機構41cで減圧された後に圧縮機構2の吸入管2aに戻されて、再び、圧縮機構2に吸入される。次に、油分離機構41において冷凍機油が分離された後の高圧の冷媒は、逆止機構42及び切換機構3を通じて、冷媒の放熱器として機能する熱源側熱交換器4に送られる。そして、熱源側熱交換器4に送られた高圧の冷媒は、熱源側熱交換器4において、熱源側ファン40によって供給される冷却源としての空気と熱交換を行って冷却される(図31~図34の点E参照)。そして、熱源側熱交換器4において冷却された高圧の冷媒は、ブリッジ回路17の入口逆止弁17aを通じてレシーバ入口管18aに流入し、第1膨張機構5aによって飽和圧力付近まで減圧されてレシーバ18内に一時的に溜められる(図31及び図32の点I参照)。そして、レシーバ18内に溜められた冷媒は、レシーバ出口管18bに送られて、第2膨張機構5bによって減圧されて低圧の気液二相状態の冷媒となり、ブリッジ回路17の出口逆止弁17cを通じて、冷媒の蒸発器として機能する利用側熱交換器6に送られる(図31~図34点F参照)。そして、利用側熱交換器6に送られた低圧の気液二相状態の冷媒は、加熱源としての水や空気と熱交換を行って加熱されて、蒸発することになる(図31~図34の点A参照)。そして、この利用側熱交換器6において加熱された低圧の冷媒は、切換機構3を経由して、再び、圧縮機構2に吸入される。このようにして、冷房運転が行われる。
 そして、本変形例の空気調和装置1(冷凍装置)においても、上述の第2実施形態における冷房運転時と同様の作用効果を得ることができる。
 <暖房運転>
 暖房運転時は、切換機構3が図31及び図35の破線で示される加熱運転状態とされる。また、第1膨張機構5a及び第2膨張機構5bは、開度調節される。そして、切換機構3が加熱運転状態となるため、中間冷媒管8の中間熱交換器開閉弁12が閉められ、そして、中間熱交換器バイパス管9の中間熱交換器バイパス開閉弁11が開けられることによって、中間熱交換器7が冷却器として機能しない状態にされるとともに、ドレン加熱器97に冷媒が流れる状態とされ、さらに、第2吸入戻し管92の第2吸入戻し開閉弁92aが開けられることによって、中間熱交換器7と圧縮機構2の吸入側とが接続されている状態にされ、また、中間熱交換器戻し管94の中間熱交換器戻し開閉弁94aが開けられることによって、利用側熱交換器6と熱源側熱交換器4との間と中間熱交換器7とが接続されている状態にされる。
 この冷媒回路110の状態において、低圧の冷媒(図31、図35~図37の点A参照)は、吸入管2aから圧縮機構2に吸入され、まず、圧縮要素2cによって中間圧力まで圧縮された後に、中間冷媒管8に吐出される(図31、図35~図37の点B参照)。この前段側の圧縮要素2cから吐出された中間圧の冷媒は、冷房運転時とは異なり、中間熱交換器7を通過せずに、中間熱交換器バイパス管9に設けられたドレン加熱器97に流入し、ドレン加熱器97において、冷媒の蒸発器として機能する熱源側熱交換器4において発生して熱源側熱交換器4を流下するドレン水と熱交換を行うことで冷却される(図31、図35~図37の点C2参照)。このドレン加熱器97において冷却された冷媒は、圧縮要素2cの後段側に接続された圧縮要素2dに吸入されてさらに圧縮されて、圧縮機構2から吐出管2bに吐出される(図31、図35~図37の点D参照)。ここで、圧縮機構2から吐出された高圧の冷媒は、冷房運転時と同様、圧縮要素2c、2dによる二段圧縮動作によって、臨界圧力(すなわち、図36に示される臨界点CPにおける臨界圧力Pcp)を超える圧力まで圧縮されている。そして、この圧縮機構2から吐出された高圧の冷媒は、油分離機構41を構成する油分離器41aに流入し、同伴する冷凍機油が分離される。また、油分離器41aにおいて高圧の冷媒から分離された冷凍機油は、油分離機構41を構成する油戻し管41bに流入し、油戻し管41bに設けられた減圧機構41cで減圧された後に圧縮機構2の吸入管2aに戻されて、再び、圧縮機構2に吸入される。次に、油分離機構41において冷凍機油が分離された後の高圧の冷媒は、逆止機構42及び切換機構3を通じて、冷媒の放熱器として機能する利用側熱交換器6に送られて、冷却源としての水や空気と熱交換を行って冷却される(図31、図35~図37の点F参照)。そして、利用側熱交換器6において冷却された高圧の冷媒は、ブリッジ回路17の入口逆止弁17bを通じてレシーバ入口管18aに流入し、第1膨張機構5aによって飽和圧力付近まで減圧されてレシーバ18内に一時的に溜められる(図31及び図35の点I参照)。そして、レシーバ18内に溜められた冷媒は、レシーバ出口管18bに送られて、第2膨張機構5bによって減圧されて低圧の気液二相状態の冷媒となり、ブリッジ回路17の出口逆止弁17dを通じて、冷媒の蒸発器として機能する熱源側熱交換器4に送られるとともに、中間熱交換器戻し管94を通じて、冷媒の蒸発器として機能する中間熱交換器7にも送られる(図31、図35~図37の点E参照)。そして、熱源側熱交換器4に送られた低圧の気液二相状態の冷媒は、熱源側ファン40によって供給される加熱源としての空気と熱交換を行って加熱されて、蒸発することになる(図31、図35~図37の点A参照)。また、中間熱交換器7に送られた低圧の気液二相状態の冷媒も、熱源側ファン40によって供給される加熱源としての空気と熱交換を行って加熱されて、蒸発することになる(図31、図35~図37の点V参照)。そして、この熱源側熱交換器4において加熱されて蒸発した低圧の冷媒は、切換機構3を経由して、再び、圧縮機構2に吸入される。また、この中間熱交換器7において加熱されて蒸発した低圧の冷媒は、第2吸入戻し管92を通じて、再び、圧縮機構2に吸入される。このようにして、暖房運転が行われる。
 このように、本変形例の空気調和装置1(冷凍装置)においても、上述の第2実施形態における暖房運転時と同様の作用効果を得ることができる。しかも、本変形例では、暖房運転時に、単に、中間熱交換器7を使用しないことで冷却器として機能しない状態にしているのではなく、熱源側熱交換器4とともに、中間熱交換器7を利用側熱交換器7において放熱した冷媒の蒸発器として機能させるようにして、暖房運転時にも利用するようにして、中間熱交換器7から外部への放熱を抑えつつ、暖房運転時における冷媒の蒸発能力を大きくするとともに、暖房運転時に中間熱交換器7を有効利用することができる。
 また、本変形例では、暖房運転時に中間熱交換器7からもドレン水が発生することになるが、中間熱交換器7が熱源側熱交換器4の上部に配置されているため、中間熱交換器7において発生するドレン水が熱源側熱交換器4を通じて流下し、熱源側熱交換器4において発生するドレン水だけでなく、中間熱交換器7において発生するドレン水も含めてドレン加熱器97によって加熱することができる。
 尚、本変形例では、上述の第2実施形態における熱源側熱交換器4の下部にドレン加熱器97が設けられた構成において、第2吸入戻し管92及び中間熱交換器戻し管94を設けているが、上述の第2実施形態の変形例1~3のようなドレン加熱器97がドレンパンとして機能する底板77に設けられた構成や熱源側熱交換器4の下部及びドレンパンとして機能する底板77に設けられた構成において、第2吸入戻し管92及び中間熱交換器戻し管94を設けるようにしてもよい。
 (7)変形例5
 上述の第2実施形態の変形例4においては、中間熱交換器7を通じて前段側の圧縮要素2cから吐出された冷媒を後段側の圧縮要素2dに吸入させるとともに、第2吸入戻し管92を通じて中間熱交換器7と圧縮機構2の吸入側とを接続させない状態(以下、この状態を「冷媒不戻し状態」とする)と、中間熱交換器バイパス管9を通じて前段側の圧縮要素2cから吐出された冷媒を後段側の圧縮要素2dに吸入させるとともに、第2吸入戻し管92を通じて中間熱交換器7と圧縮機構2の吸入側とを接続させる状態(以下、この状態を「冷媒戻し状態」とする)との切り換えを、開閉弁11、12、92aの開閉状態によって行うようにしているが、図38に示されるように、開閉弁11、12、92aに代えて、冷媒不戻し状態と冷媒戻し状態とを切り換え可能な中間熱交換器切換弁93を設けた冷媒回路110にしてもよい。
 ここで、中間熱交換器切換弁93は、冷媒不戻し状態と冷媒戻し状態に切り換えることが可能な弁であり、本変形例において、中間冷媒管8の前段側の圧縮要素2cの吐出側と、中間冷媒管8の中間熱交換器7の入口側と、中間熱交換器バイパス管9の前段側の圧縮要素2c側端と、第2吸入戻し管92の中間熱交換器7側端に接続された四路切換弁である。また、中間熱交換器バイパス管9には、前段側の圧縮要素2cの吐出側から後段側の圧縮要素2dの吸入側への冷媒の流れを許容し、かつ、後段側の圧縮要素2dの吸入側から前段側の圧縮要素2cの吐出側や圧縮機構2の吸入側への冷媒の流れを遮断するための逆止機構9aがさらに設けられている。逆止機構9aは、本変形例において、逆止弁である。
 そして、本変形例においては、詳細な説明は省略するが、中間熱交換器切換弁93を冷媒不戻し状態に切り換えることで(図38の中間熱交換器切換弁93の実線を参照)、上述の第2実施形態の変形例4と同様の冷房運転を行い、中間熱交換器バイパス管9を通じて前段側の圧縮要素2cから吐出された冷媒を後段側の圧縮要素2dに吸入させるとともに、第2吸入戻し管92を通じて中間熱交換器7と圧縮機構2の吸入側とを接続させる冷媒戻し状態に切り換えることで(図38の中間熱交換器切換弁93の破線を参照)、上述の第2実施形態の変形例4と同様の暖房運転を行うことができるようになっている。
 そして、本変形例の構成においても、上述の第2実施形態の変形例4と同様の作用効果を得ることができる。しかも、本変形例では、中間熱交換器切換弁93によって、冷媒不戻し状態と冷媒戻し状態とを切り換えることができるため、上述の第2実施形態の変形例4のような複数の弁11、12、92aによって、冷媒不戻し状態と冷媒戻し状態とを切り換える構成を採用する場合に比べて、弁の数を減らすことができる。また、電磁弁を使用する場合に比べて圧力損失も減少するため、冷凍サイクルにおける中間圧の低下を抑えて、運転効率の低下も抑えることができる。
 尚、本変形例では、上述の第2実施形態における熱源側熱交換器4の下部にドレン加熱器97が設けられた構成において、中間熱交換器切換弁93等を設けているが、上述の第2実施形態の変形例1~3のようなドレン加熱器97がドレンパンとして機能する底板77に設けられた構成や熱源側熱交換器4の下部及びドレンパンとして機能する底板77に設けられた構成において、中間熱交換器切換弁93等を設けるようにしてもよい。
 (8)変形例6
 上述の実施形態及びその変形例においては、切換機構3によって冷房運転と暖房運転とを切換可能に構成された二段圧縮式冷凍サイクルを行う空気調和装置1において、前段側の圧縮要素2cから吐出されて後段側の圧縮要素2dに吸入される冷媒の冷却器として機能する中間熱交換器7、中間熱交換器7をバイパスするように中間冷媒管8に接続されている中間熱交換器バイパス管9、冷凍サイクルにおける中間圧の冷媒によって熱源側熱交換器4において発生するドレン水を加熱するドレン加熱器97を設けるようにしているが、この構成に加えて、第1後段側インジェクション管19及びエコノマイザ熱交換器20による中間圧インジェクションを行うようにしてもよい。
 例えば、図39に示されるように、上述の第2実施形態の変形例4の冷媒回路110(図31参照)において、第1後段側インジェクション管19及びエコノマイザ熱交換器20がさらに設けられた冷媒回路210にすることができる。
 第1後段側インジェクション管19は、熱源側熱交換器4と利用側熱交換器6との間を流れる冷媒を分岐して圧縮機構2の後段側の圧縮要素2dに戻す機能を有している。本変形例において、第1後段側インジェクション管19は、レシーバ入口管18aを流れる冷媒を分岐して後段側の圧縮要素2dの吸入側に戻すように設けられている。より具体的には、第1後段側インジェクション管19は、レシーバ入口管18aの第1膨張機構5aの上流側の位置(すなわち、切換機構3を冷却運転状態にしている際には、熱源側熱交換器4と第1膨張機構5aとの間)から冷媒を分岐して中間冷媒管8の中間熱交換器7の下流側の位置に戻すように設けられている。また、この第1後段側インジェクション管19には、開度制御が可能な第1後段側インジェクション弁19aが設けられている。そして、第1後段側インジェクション弁19aは、本変形例において、電動膨張弁である。
 エコノマイザ熱交換器20は、熱源側熱交換器4と利用側熱交換器6との間を流れる冷媒と第1後段側インジェクション管19を流れる冷媒(より具体的には、第1後段側インジェクション弁19aにおいて中間圧付近まで減圧された後の冷媒)との熱交換を行う熱交換器である。本変形例において、エコノマイザ熱交換器20は、レシーバ入口管18aの第1膨張機構5aの上流側の位置(すなわち、切換機構3を冷却運転状態にしている際には、熱源側熱交換器4と第1膨張機構5aとの間)を流れる冷媒と第1後段側インジェクション管19を流れる冷媒との熱交換を行うように設けられており、また、両冷媒が対向するように流れる流路を有している。また、本変形例において、エコノマイザ熱交換器20は、第1後段側インジェクション管19がレシーバ入口管18aから分岐されている位置よりも下流側に設けられている。このため、熱源側熱交換器4と利用側熱交換器6との間を流れる冷媒は、レシーバ入口管18aにおいて、エコノマイザ熱交換器20において熱交換される前に第1後段側インジェクション管19に分岐され、その後に、エコノマイザ熱交換器20において、第1後段側インジェクション管19を流れる冷媒と熱交換を行うことになる。
 このように、本変形例では、切換機構3を冷却運転状態にした冷房運転時には、熱源側熱交換器4において冷却された高圧の冷媒を、ブリッジ回路17の入口逆止弁17a、エコノマイザ熱交換器20、レシーバ入口管18aの第1膨張機構5a、レシーバ18、レシーバ出口管18bの第2膨張機構5b及びブリッジ回路17の出口逆止弁17cを通じて、利用側熱交換器6に送ることができるようになっている。また、切換機構3を加熱運転状態にした暖房運転時には、利用側熱交換器6において冷却された高圧の冷媒を、ブリッジ回路17の入口逆止弁17b、エコノマイザ熱交換器20、レシーバ入口管18aの第1膨張機構5a、レシーバ18、レシーバ出口管18bの第2膨張機構5b及びブリッジ回路17の出口逆止弁17dを通じて、熱源側熱交換器4に送ることができるようになっている。
 さらに、本変形例において、中間冷媒管8又は圧縮機構2には、中間冷媒管8を流れる冷媒の圧力を検出する中間圧力センサ54が設けられている。エコノマイザ熱交換器20の第1後段側インジェクション管19側の出口には、エコノマイザ熱交換器20の第1後段側インジェクション管19側の出口における冷媒の温度を検出するエコノマイザ出口温度センサ55が設けられている。
 次に、本変形例の空気調和装置1の動作について、図39~図45を用いて説明する。ここで、図40は、冷房運転時における空気調和装置1内の冷媒の流れを示す図であり、図41は、冷房運転時の冷凍サイクルが図示された圧力-エンタルピ線図であり、図42は、冷房運転時の冷凍サイクルが図示された温度-エントロピ線図であり、図43は、暖房運転時における空気調和装置1内の冷媒の流れを示す図であり、図44は、暖房運転時の冷凍サイクルが図示された圧力-エンタルピ線図であり、図45は、暖房運転時の冷凍サイクルが図示された温度-エントロピ線図である。尚、以下の冷房運転や暖房運転における運転制御は、上述の制御部(図示せず)によって行われる。また、以下の説明において、「高圧」とは、冷凍サイクルにおける高圧(すなわち、図41、図42の点D、D’、E、Hにおける圧力や図44、図45の点D、D’、F、Hにおける圧力)を意味し、「低圧」とは、冷凍サイクルにおける低圧(すなわち、図41、42の点A、Fにおける圧力や図44、図45の点A、E、Vにおける圧力)を意味し、「中間圧」とは、冷凍サイクルにおける中間圧(すなわち、図41、42の点B、C1、G、J、Kにおける圧力や図44、45の点B、C2、G、J、Kにおける圧力)を意味している。
 <冷房運転>
 冷房運転時は、切換機構3が図39及び図40の実線で示される冷却運転状態とされる。また、第1膨張機構5a及び第2膨張機構5bは、開度調節される。また、第1後段側インジェクション弁19aも、開度調節される。より具体的には、本変形例において、第1後段側インジェクション弁19aは、エコノマイザ熱交換器20の第1後段側インジェクション管19側の出口における冷媒の過熱度が目標値になるように開度調節される、いわゆる過熱度制御がなされるようになっている。本変形例において、エコノマイザ熱交換器20の第1後段側インジェクション管19側の出口における冷媒の過熱度は、中間圧力センサ54により検出される中間圧を飽和温度に換算し、エコノマイザ出口温度センサ55により検出される冷媒温度からこの冷媒の飽和温度値を差し引くことによって得られる。尚、本変形例では採用していないが、エコノマイザ熱交換器20の第1後段側インジェクション管19側の入口に温度センサを設けて、この温度センサにより検出される冷媒温度をエコノマイザ出口温度センサ55により検出される冷媒温度から差し引くことによって、エコノマイザ熱交換器20の第1後段側インジェクション管19側の出口における冷媒の過熱度を得るようにしてもよい。また、第1後段側インジェクション弁19aの開度調節は、過熱度制御に限られるものではなく、例えば、冷媒回路10における冷媒循環量等に応じて所定開度だけ開けるようにするものであってもよい。そして、切換機構3が冷却運転状態となるため、中間冷媒管8の中間熱交換器開閉弁12が開けられ、そして、中間熱交換器バイパス管9の中間熱交換器バイパス開閉弁11が閉められることによって、中間熱交換器7が冷却器として機能する状態にされるとともに、ドレン加熱器97に冷媒が流れない状態とされ、さらに、第2吸入戻し管92の第2吸入戻し開閉弁92aが閉められることによって、中間熱交換器7と圧縮機構2の吸入側とが接続していない状態にされ、また、中間熱交換器戻し管94の中間熱交換器戻し開閉弁94aが閉められることによって、利用側熱交換器6と熱源側熱交換器4との間と中間熱交換器7とが接続していない状態にされる。
 この冷媒回路210の状態において、低圧の冷媒(図39~図42の点A参照)は、吸入管2aから圧縮機構2に吸入され、まず、圧縮要素2cによって中間圧力まで圧縮された後に、中間冷媒管8に吐出される(図39~図42の点B1参照)。この前段側の圧縮要素2cから吐出された中間圧の冷媒は、中間熱交換器7において、熱源側ファン40によって供給される冷却源としての空気と熱交換を行うことで冷却される(図39~図42の点C1参照)。この中間熱交換器7において冷却された冷媒は、第1後段側インジェクション管19から後段側の圧縮機構2dに戻される冷媒(図39~図42の点K参照)と合流することでさらに冷却される(図39~図42の点G参照)。次に、第1後段側インジェクション管19から戻る冷媒と合流した(すなわち、エコノマイザ熱交換器20による中間圧インジェクションが行われた)中間圧の冷媒は、圧縮要素2cの後段側に接続された圧縮要素2dに吸入されてさらに圧縮されて、圧縮機構2から吐出管2bに吐出される(図39~図42の点D参照)。ここで、圧縮機構2から吐出された高圧の冷媒は、圧縮要素2c、2dによる二段圧縮動作によって、臨界圧力(すなわち、図41に示される臨界点CPにおける臨界圧力Pcp)を超える圧力まで圧縮されている。そして、この圧縮機構2から吐出された高圧の冷媒は、油分離機構41を構成する油分離器41aに流入し、同伴する冷凍機油が分離される。また、油分離器41aにおいて高圧の冷媒から分離された冷凍機油は、油分離機構41を構成する油戻し管41bに流入し、油戻し管41bに設けられた減圧機構41cで減圧された後に圧縮機構2の吸入管2aに戻されて、再び、圧縮機構2に吸入される。次に、油分離機構41において冷凍機油が分離された後の高圧の冷媒は、逆止機構42及び切換機構3を通じて、冷媒の放熱器として機能する熱源側熱交換器4に送られる。そして、熱源側熱交換器4に送られた高圧の冷媒は、熱源側熱交換器4において、熱源側ファン40によって供給される冷却源としての空気と熱交換を行って冷却される(図39~図42の点E参照)。そして、熱源側熱交換器4において冷却された高圧の冷媒は、ブリッジ回路17の入口逆止弁17aを通じてレシーバ入口管18aに流入し、その一部が第1後段側インジェクション管19に分岐される。そして、第1後段側インジェクション管19を流れる冷媒は、第1後段側インジェクション弁19aにおいて中間圧付近まで減圧された後に、エコノマイザ熱交換器20に送られる(図39~図42の点J参照)。また、第1後段側インジェクション管19に分岐された後の冷媒は、エコノマイザ熱交換器20に流入し、第1後段側インジェクション管19を流れる冷媒と熱交換を行って冷却される(図39~図42の点H参照)。一方、第1後段側インジェクション管19を流れる冷媒は、放熱器としての熱源側熱交換器4において冷却された高圧の冷媒と熱交換を行って加熱されて(図39~図42の点K参照)、上述のように、前段側の圧縮要素2cから吐出された中間圧の冷媒に合流することになる。そして、エコノマイザ熱交換器20において冷却された高圧の冷媒は、第1膨張機構5aによって飽和圧力付近まで減圧されてレシーバ18内に一時的に溜められる(図39及び図40の点I参照)。そして、レシーバ18内に溜められた冷媒は、レシーバ出口管18bに送られて、第2膨張機構5bによって減圧されて低圧の気液二相状態の冷媒となり、ブリッジ回路17の出口逆止弁17cを通じて、冷媒の蒸発器として機能する利用側熱交換器6に送られる(図39~図42点F参照)。そして、利用側熱交換器6に送られた低圧の気液二相状態の冷媒は、加熱源としての水や空気と熱交換を行って加熱されて、蒸発することになる(図39~図42の点A参照)。そして、この利用側熱交換器6において加熱された低圧の冷媒は、切換機構3を経由して、再び、圧縮機構2に吸入される。このようにして、冷房運転が行われる。
 そして、本変形例の空気調和装置1(冷凍装置)においても、上述の第2実施形態の変形例4における冷房運転時と同様の作用効果を得ることができる。しかも、本変形例では、第1後段側インジェクション管19及びエコノマイザ熱交換器20を設けて熱源側熱交換器4から膨張機構5a、5bに送られる冷媒を分岐して後段側の圧縮要素2dに戻すようにしているため、中間熱交換器7のような外部への放熱を行うことなく、後段側の圧縮要素2dに吸入される冷媒の温度をさらに低く抑えることができる(図42の点C1、G参照)。これにより、圧縮機構2から吐出される冷媒の温度がさらに低く抑えられ(図42の点D、D’参照)、第1後段側インジェクション管19を設けていない場合に比べて、図42の点C1、D’、D、Gを結ぶことによって囲まれる面積に相当する分の放熱ロスをさらに小さくできることから、運転効率をさらに向上させることができる。
 <暖房運転>
 暖房運転時は、切換機構3が図39及び図43の破線で示される加熱運転状態とされる。また、第1膨張機構5a及び第2膨張機構5bは、開度調節される。また、第1後段側インジェクション弁19aは、上述の冷房運転と同様の開度調節がなされる。そして、切換機構3が加熱運転状態となるため、中間冷媒管8の中間熱交換器開閉弁12が閉められ、そして、中間熱交換器バイパス管9の中間熱交換器バイパス開閉弁11が開けられることによって、中間熱交換器7が冷却器として機能しない状態にされるとともに、ドレン加熱器97に冷媒が流れる状態とされ、さらに、第2吸入戻し管92の第2吸入戻し開閉弁92aが開けられることによって、中間熱交換器7と圧縮機構2の吸入側とが接続されている状態にされ、また、中間熱交換器戻し管94の中間熱交換器戻し開閉弁94aが開けられることによって、利用側熱交換器6と熱源側熱交換器4との間と中間熱交換器7とが接続されている状態にされる。
 この冷媒回路210の状態において、低圧の冷媒(図39、図43~図45の点A参照)は、吸入管2aから圧縮機構2に吸入され、まず、圧縮要素2cによって中間圧力まで圧縮された後に、中間冷媒管8に吐出される(図39、図43~図45の点B参照)。この前段側の圧縮要素2cから吐出された中間圧の冷媒は、冷房運転時とは異なり、中間熱交換器7を通過せずに、中間熱交換器バイパス管9に設けられたドレン加熱器97に流入し、ドレン加熱器97において、冷媒の蒸発器として機能する熱源側熱交換器4において発生して熱源側熱交換器4を流下するドレン水と熱交換を行うことで冷却される(図39、図43~図45の点C2参照)。このドレン加熱器97において冷却された冷媒は、第1後段側インジェクション管19から後段側の圧縮機構2dに戻される冷媒(図39、図43~図45の点K参照)と合流することでさらに冷却される(図39、図43~図45の点G参照)。次に、第1後段側インジェクション管19から戻る冷媒と合流した中間圧の冷媒は、圧縮要素2cの後段側に接続された圧縮要素2dに吸入されてさらに圧縮されて、圧縮機構2から吐出管2bに吐出される(図39、図43~図45の点D参照)。ここで、圧縮機構2から吐出された高圧の冷媒は、冷房運転時と同様、圧縮要素2c、2dによる二段圧縮動作によって、臨界圧力(すなわち、図44に示される臨界点CPにおける臨界圧力Pcp)を超える圧力まで圧縮されている。そして、この圧縮機構2から吐出された高圧の冷媒は、油分離機構41を構成する油分離器41aに流入し、同伴する冷凍機油が分離される。また、油分離器41aにおいて高圧の冷媒から分離された冷凍機油は、油分離機構41を構成する油戻し管41bに流入し、油戻し管41bに設けられた減圧機構41cで減圧された後に圧縮機構2の吸入管2aに戻されて、再び、圧縮機構2に吸入される。次に、油分離機構41において冷凍機油が分離された後の高圧の冷媒は、逆止機構42及び切換機構3を通じて、冷媒の放熱器として機能する利用側熱交換器6に送られて、冷却源としての水や空気と熱交換を行って冷却される(図39、図43~図45の点F参照)。そして、利用側熱交換器6において冷却された高圧の冷媒は、ブリッジ回路17の入口逆止弁17bを通じてレシーバ入口管18aに流入し、その一部が第1後段側インジェクション管19に分岐される。そして、第1後段側インジェクション管19を流れる冷媒は、第1後段側インジェクション弁19aにおいて中間圧付近まで減圧された後に、エコノマイザ熱交換器20に送られる(図39、図43~図45の点J参照)。また、第1後段側インジェクション管19に分岐された後の冷媒は、エコノマイザ熱交換器20に流入し、第1後段側インジェクション管19を流れる冷媒と熱交換を行って冷却される(図39、図43~図45の点H参照)。一方、第1後段側インジェクション管19を流れる冷媒は、放熱器としての熱源側熱交換器4において冷却された高圧の冷媒と熱交換を行って加熱されて(図39、図43~図45の点K参照)、上述のように、前段側の圧縮要素2cから吐出された中間圧の冷媒に合流することになる。そして、エコノマイザ熱交換器20において冷却された高圧の冷媒は、第1膨張機構5aによって飽和圧力付近まで減圧されてレシーバ18内に一時的に溜められる(図39及び図43の点I参照)。そして、レシーバ18内に溜められた冷媒は、レシーバ出口管18bに送られて、第2膨張機構5bによって減圧されて低圧の気液二相状態の冷媒となり、ブリッジ回路17の出口逆止弁17dを通じて、冷媒の蒸発器として機能する熱源側熱交換器4に送られるとともに、中間熱交換器戻し管94を通じて、冷媒の蒸発器として機能する中間熱交換器7にも送られる(図39、図43~図45の点E参照)。そして、熱源側熱交換器4に送られた低圧の気液二相状態の冷媒は、熱源側ファン40によって供給される加熱源としての空気と熱交換を行って加熱されて、蒸発することになる(図39、図43~図45の点A参照)。また、中間熱交換器7に送られた低圧の気液二相状態の冷媒も、熱源側ファン40によって供給される加熱源としての空気と熱交換を行って加熱されて、蒸発することになる(図39、図43~図45の点V参照)。そして、この熱源側熱交換器4において加熱されて蒸発した低圧の冷媒は、切換機構3を経由して、再び、圧縮機構2に吸入される。また、この中間熱交換器7において加熱されて蒸発した低圧の冷媒は、第2吸入戻し管92を通じて、再び、圧縮機構2に吸入される。このようにして、暖房運転が行われる。
 そして、本変形例の空気調和装置1(冷凍装置)においても、上述の第2実施形態の変形例4における冷房運転時と同様の作用効果を得ることができる。しかも、本変形例では、冷房運転時と同様に、第1後段側インジェクション管19及びエコノマイザ熱交換器20を設けて熱源側熱交換器4から膨張機構5a、5bに送られる冷媒を分岐して後段側の圧縮要素2dに戻すようにしているため、中間熱交換器7のような外部への放熱を行うことなく、後段側の圧縮要素2dに吸入される冷媒の温度をさらに低く抑えることができる(図45の点C1、G参照)。これにより、圧縮機構2から吐出される冷媒の温度がさらに低く抑えられ(図45の点D、D’参照)、第1後段側インジェクション管19を設けていない場合に比べて、図45の点C1、D’、D、Gを結ぶことによって囲まれる面積に相当する分の放熱ロスをさらに小さくできることから、運転効率をさらに向上させることができる。
 尚、本変形例では、上述の変形例4における熱源側熱交換器4の下部にドレン加熱器97が設けられた構成において、第1後段側インジェクション管19及びエコノマイザ熱交換器20を設けているが、上述の第2実施形態の変形例1~3のようなドレン加熱器97がドレンパンとして機能する底板77に設けられた構成や熱源側熱交換器4の下部及びドレンパンとして機能する底板77に設けられた構成において、第1後段側インジェクション管19及びエコノマイザ熱交換器20を設けるようにしてもよい。
 また、本変形例では、冷媒不戻し状態と冷媒戻し状態との切り換えを、開閉弁11、12、92aの開閉状態によって行うようにしているが、上述の第2実施形態の変形例5のように、開閉弁11、12、92aに代えて、冷媒不戻し状態と冷媒戻し状態とを切り換え可能な中間熱交換器切換弁93等を設けるようにしてもよい。
 (9)変形例7
 上述の第2実施形態の変形例6における冷媒回路210(図39参照)においては、上述のように、切換機構3を冷却運転状態にする冷房運転及び切換機構3を加熱運転状態にする暖房運転のいずれにおいても、エコノマイザ熱交換器20による中間圧インジェクションを行うことで、後段側の圧縮要素2dから吐出される冷媒の温度を低下させるとともに、圧縮機構2の消費動力を減らし、運転効率の向上を図るようにしている。そして、エコノマイザ熱交換器20による中間圧インジェクションは、冷凍サイクルにおける中間圧が臨界圧力付近まで上昇した条件においても使用可能であることから、上述の第2実施形態及びその変形例における冷媒回路10、110、210(図14、31、39参照)のように、1つの利用側熱交換器6を有する構成では、超臨界域で作動する冷媒を使用する場合には、特に、有利であると考えられる。
 しかし、複数の空調空間の空調負荷に応じた冷房や暖房を行うこと等を目的として、互いに並列に接続された複数の利用側熱交換器6を有する構成にするとともに、各利用側熱交換器6を流れる冷媒の流量を制御して各利用側熱交換器6において必要とされる冷凍負荷を得ることができるようにするために、気液分離器としてのレシーバ18と利用側熱交換器6との間において各利用側熱交換器6に対応するように利用側膨張機構5cを設ける場合がある。
 例えば、詳細は図示しないが、上述の第2実施形態の変形例6におけるブリッジ回路17を有する冷媒回路210(図39参照)において、互いが並列に接続された複数(ここでは、2つ)の利用側熱交換器6を設けるとともに、気液分離器としてのレシーバ18(より具体的には、ブリッジ回路17)と利用側熱交換器6との間において各利用側熱交換器6に対応するように利用側膨張機構5cを設け(図46参照)、レシーバ出口管18bに設けられていた第2膨張機構5bを削除し、また、ブリッジ回路17の出口逆止弁17dに代えて、暖房運転時に冷凍サイクルにおける低圧まで冷媒を減圧する第3膨張機構(図示せず)を設けることが考えられる。
 そして、このような構成においても、切換機構3を冷却運転状態にする冷房運転のように、放熱器としての熱源側熱交換器4において冷却された後に熱源側膨張機構としての第1膨張機構5a以外に大幅な減圧操作が行われることなく、冷凍サイクルにおける高圧から冷凍サイクルの中間圧付近までの圧力差を利用できる条件においては、上述の変形例6と同様、エコノマイザ熱交換器20による中間圧インジェクションが有利である。
 しかし、切換機構3を加熱運転状態にする暖房運転のように、各利用側膨張機構5cが放熱器としての各利用側熱交換器6において必要とされる冷凍負荷が得られるように放熱器としての各利用側熱交換器6を流れる冷媒の流量を制御しており、放熱器としての各利用側熱交換器6を通過する冷媒の流量が、放熱器としての各利用側熱交換器6の下流側でかつエコノマイザ熱交換器20の上流側に設けられた利用側膨張機構5cの開度制御による冷媒の減圧操作によって概ね決定される条件においては、各利用側膨張機構5cの開度制御による冷媒の減圧の程度が、放熱器としての各利用側熱交換器6を流れる冷媒の流量だけでなく、複数の放熱器としての利用側熱交換器6間の流量分配の状態によって変動することになり、複数の利用側膨張機構5c間で減圧の程度が大きく異なる状態が生じたり、利用側膨張機構5cにおける減圧の程度が比較的大きくなったりする場合があるため、エコノマイザ熱交換器20の入口における冷媒の圧力が低くなるおそれがあり、このような場合には、エコノマイザ熱交換器20における交換熱量(すなわち、第1後段側インジェクション管19を流れる冷媒の流量)が小さくなってしまい使用が困難になるおそれがある。特に、このような空気調和装置1を、主として圧縮機構2、熱源側熱交換器4及びレシーバ18を含む熱源ユニットと、主として利用側熱交換器6を含む利用ユニットとが連絡配管によって接続されたセパレート型の空気調和装置として構成する場合には、利用ユニット及び熱源ユニットの配置によっては、この連絡配管が非常に長くなることがあり得るため、その圧力損失による影響も加わり、エコノマイザ熱交換器20の入口における冷媒の圧力がさらに低下することになる。そして、エコノマイザ熱交換器20の入口における冷媒の圧力が低下するおそれがある場合には、気液分離器圧力が臨界圧力よりも低い圧力であれば気液分離器圧力と冷凍サイクルにおける中間圧(ここでは、中間冷媒管8を流れる冷媒の圧力)との圧力差が小さい条件であっても使用可能な気液分離器による中間圧インジェクションが有利である。
 また、上述のように、複数の空調空間の空調負荷に応じた冷房や暖房を行うこと等を目的として、互いに並列に接続された複数の利用側熱交換器6を有する構成にするとともに、各利用側熱交換器6を流れる冷媒の流量を制御して各利用側熱交換器6において必要とされる冷凍負荷を得ることができるようにするために、レシーバ18と利用側熱交換器6との間において各利用側熱交換器6に対応するように利用側膨張機構5cを設けた構成を採用した場合には、冷房運転時において、第1膨張機構5aによって飽和圧力付近まで減圧されてレシーバ18内に一時的に溜められた冷媒(図46の点L参照)が、各利用側膨張機構5cに分配されるが、レシーバ18から各利用側膨張機構5cに送られる冷媒が気液二相状態であると、各利用側膨張機構5cへの分配時に偏流を生じるおそれがあるため、レシーバ18から各利用側膨張機構5cに送られる冷媒をできるだけ過冷却状態にすることが望ましい。
 そこで、本変形例では、図46に示されるように、レシーバ18を気液分離器として機能させて中間圧インジェクションを行うことができるようにするために、レシーバ18に第2後段側インジェクション管18cを接続するようにして、冷房運転時には、エコノマイザ熱交換器20による中間圧インジェクションを行い、暖房運転時には、気液分離器としてのレシーバ18による中間圧インジェクションを行うことを可能にするとともに、レシーバ18と利用側膨張機構5cとの間に、冷却器としての過冷却熱交換器96及び戻し管としての第3吸入戻し管95を設けた冷媒回路310としている。
 ここで、第2後段側インジェクション管18cは、レシーバ18から冷媒を抜き出して圧縮機構2の後段側の圧縮要素2dに戻す中間圧インジェクションを行うことが可能な冷媒管であり、本変形例において、レシーバ18の上部と中間冷媒管8(すなわち、圧縮機構2の後段側の圧縮要素2dの吸入側)とを接続するように設けられている。この第2後段側インジェクション管18cには、第2後段側インジェクション開閉弁18dと第2後段側インジェクション逆止機構18eとが設けられている。第2後段側インジェクション開閉弁18dは、開閉動作が可能な弁であり、本変形例において、電磁弁である。第2後段側インジェクション逆止機構18eは、レシーバ18から後段側の圧縮要素2dへの冷媒の流れを許容し、かつ、後段側の圧縮要素2dからレシーバ18への冷媒の流れを遮断するための機構であり、本変形例において、逆止弁が使用されている。尚、第2後段側インジェクション管18cと第1吸入戻し管18fとは、レシーバ18側の部分が一体となっている。また、第2後段側インジェクション管18cと第1後段側インジェクション管19とは、中間冷媒管8側の部分が一体となっている。また、本変形例において、利用側膨張機構5cは、電動膨張弁である。また、本変形例では、上述のように、第1後段側インジェクション管19及びエコノマイザ熱交換器20を冷房運転時に使用し、第2後段側インジェクション管18cを暖房運転時に使用するようにしていることから、エコノマイザ熱交換器20への冷媒の流通方向を冷房運転及び暖房運転を問わず一定にする必要がないため、ブリッジ回路17を省略して、冷媒回路210の構成を簡単化している。
 また、第3吸入戻し管95は、放熱器としての熱源側熱交換器4から蒸発器としての利用側熱交換器6に送られる冷媒を分岐して圧縮機構2の吸入側(すなわち、吸入管2a)に戻す冷媒管である。本変形例において、第3吸入戻し管95は、レシーバ18から利用側膨張機構5cに送られる冷媒を分岐するように設けられている。より具体的には、第3吸入戻し管95は、過冷却熱交換器96の上流側の位置(すなわち、レシーバ18とエコノマイザ熱交換器20との間)から冷媒を分岐して吸入管2aに戻すように設けられている。この第3吸入戻し管95には、開度制御が可能な第3吸入戻し弁95aが設けられている。第3吸入戻し弁95aは、本変形例において、電動膨張弁である。
 また、過冷却熱交換器96は、放熱器としての熱源側熱交換器4から蒸発器としての利用側熱交換器6に送られる冷媒と第3吸入戻し管95を流れる冷媒(より具体的には、第3吸入戻し弁95aにおいて低圧付近まで減圧された後の冷媒)との熱交換を行う熱交換器である。本変形例において、過冷却熱交換器96は、利用側膨張機構5cの上流側の位置(すなわち、第3吸入戻し管95が分岐される位置と利用側膨張機構5cとの間)を流れる冷媒と第3吸入戻し管95を流れる冷媒との熱交換を行うように設けられている。また、本変形例において、過冷却熱交換器96は、第3吸入戻し管95が分岐される位置よりも下流側に設けられている。このため、放熱器としての熱源側熱交換器4において冷却された冷媒は、冷却器としてのエコノマイザ熱交換器20を通過した後に、第3吸入戻し管95に分岐され、過冷却熱交換器96において、第3吸入戻し管95を流れる冷媒と熱交換を行うことになる。
 また、吸入管2a又は圧縮機構2には、圧縮機構2の吸入側を流れる冷媒の圧力を検出する吸入圧力センサ60が設けられている。過冷却熱交換器96の第3吸入戻し管95側の出口には、過冷却熱交換器96の第3吸入戻し管95側の出口における冷媒の温度を検出する過冷却熱交出口温度センサ59が設けられている。
 次に、本変形例の空気調和装置1の動作について、図46~図52を用いて説明する。ここで、図47は、冷房運転時における空気調和装置1内の冷媒の流れを示す図であり、図48は、冷房運転時の冷凍サイクルが図示された圧力-エンタルピ線図であり、図49は、冷房運転時の冷凍サイクルが図示された温度-エントロピ線図であり、図50は、暖房運転時における空気調和装置1内の冷媒の流れを示す図であり、図51は、暖房運転時の冷凍サイクルが図示された圧力-エンタルピ線図であり、図52は、暖房運転時の冷凍サイクルが図示された温度-エントロピ線図である。尚、以下の冷房運転及び暖房運転における運転制御は、上述の実施形態における制御部(図示せず)によって行われる。また、以下の説明において、「高圧」とは、冷凍サイクルにおける高圧(すなわち、図48、図49の点D、D’、E、H、I、Rにおける圧力や図51、図52の点D、D’、Fにおける圧力)を意味し、「低圧」とは、冷凍サイクルにおける低圧(すなわち、図48、49の点A、F、Sにおける圧力や図51、図52の点A、E、Vにおける圧力)を意味し、「中間圧」とは、冷凍サイクルにおける中間圧(すなわち、図48、49の点B、C1、G、J、Kや図51、図52の点B、C2、G、I、L、Mにおける圧力)を意味している。
 <冷房運転>
 冷房運転時は、切換機構3が図46及び図47の実線で示される冷却運転状態とされる。熱源側膨張機構としての第1膨張機構5a及び利用側膨張機構5cは、開度調節される。また、切換機構3を冷却運転状態にしている際には、気液分離器としてのレシーバ18による中間圧インジェクションを行わずに、第1後段側インジェクション管19を通じて、エコノマイザ熱交換器20において加熱された冷媒を後段側の圧縮要素2dに戻すエコノマイザ熱交換器20による中間圧インジェクションを行うようにしている。より具体的には、第2後段側インジェクション開閉弁18dは閉状態にされて、第1後段側インジェクション弁19aは、上述の第2実施形態の変形例6と同様の開度調節がなされる。また、切換機構3を冷却運転状態にしている際には、過冷却熱交換器96を使用するため、第3吸入戻し弁95aについても、開度調節される。より具体的には、本変形例において、第3吸入戻し弁95aは、過冷却熱交換器96の第3吸入戻し管95側の出口における冷媒の過熱度が目標値になるように開度調節される、いわゆる過熱度制御がなされるようになっている。本変形例において、過冷却熱交換器96の第3吸入戻し管95側の出口における冷媒の過熱度は、吸入圧力センサ60により検出される低圧を飽和温度に換算し、過冷却熱交出口温度センサ59により検出される冷媒温度からこの冷媒の飽和温度値を差し引くことによって得られる。尚、本変形例では採用していないが、過冷却熱交換器96の第3吸入戻し管95側の入口に温度センサを設けて、この温度センサにより検出される冷媒温度を過冷却熱交出口温度センサ59により検出される冷媒温度から差し引くことによって、過冷却熱交換器96の第3吸入戻し管95側の出口における冷媒の過熱度を得るようにしてもよい。また、第3吸入戻し弁95aの開度調節は、過熱度制御に限られるものではなく、例えば、冷媒回路310における冷媒循環量等に応じて所定開度だけ開けるようにするものであってもよい。そして、切換機構3が冷却運転状態となるため、中間冷媒管8の中間熱交換器開閉弁12が開けられ、そして、中間熱交換器バイパス管9の中間熱交換器バイパス開閉弁11が閉められることによって、中間熱交換器7が冷却器として機能する状態にされるとともに、ドレン加熱器97に冷媒が流れない状態とされ、さらに、第2吸入戻し管92の第2吸入戻し開閉弁92aが閉められることによって、中間熱交換器7と圧縮機構2の吸入側とが接続していない状態にされ、また、中間熱交換器戻し管94の中間熱交換器戻し開閉弁94aが閉められることによって、利用側熱交換器6と熱源側熱交換器4との間と中間熱交換器7とが接続していない状態にされる。
 この冷媒回路310の状態において、低圧の冷媒(図46~図49の点A参照)は、吸入管2aから圧縮機構2に吸入され、まず、圧縮要素2cによって中間圧力まで圧縮された後に、中間冷媒管8に吐出される(図46~図49の点B参照)。この前段側の圧縮要素2cから吐出された中間圧の冷媒は、中間熱交換器7において、熱源側ファン40によって供給される冷却源としての空気と熱交換を行うことで冷却される(図46~図49の点C1参照)。この中間熱交換器7において冷却された冷媒は、第1後段側インジェクション管19から後段側の圧縮機構2dに戻される冷媒(図46~図49の点K参照)と合流することでさらに冷却される(図46~図49の点G参照)。次に、第1後段側インジェクション管19から戻る冷媒と合流した(すなわち、エコノマイザ熱交換器20による中間圧インジェクションが行われた)中間圧の冷媒は、圧縮要素2cの後段側に接続された圧縮要素2dに吸入されてさらに圧縮されて、圧縮機構2から吐出管2bに吐出される(図46~図49の点D参照)。ここで、圧縮機構2から吐出された高圧の冷媒は、圧縮要素2c、2dによる二段圧縮動作によって、臨界圧力(すなわち、図48に示される臨界点CPにおける臨界圧力Pcp)を超える圧力まで圧縮されている。そして、この圧縮機構2から吐出された高圧の冷媒は、油分離機構41を構成する油分離器41aに流入し、同伴する冷凍機油が分離される。また、油分離器41aにおいて高圧の冷媒から分離された冷凍機油は、油分離機構41を構成する油戻し管41bに流入し、油戻し管41bに設けられた減圧機構41cで減圧された後に圧縮機構2の吸入管2aに戻されて、再び、圧縮機構2に吸入される。次に、油分離機構41において冷凍機油が分離された後の高圧の冷媒は、逆止機構42及び切換機構3を通じて、冷媒の放熱器として機能する熱源側熱交換器4に送られる。そして、熱源側熱交換器4に送られた高圧の冷媒は、熱源側熱交換器4において、熱源側ファン40によって供給される冷却源としての空気と熱交換を行って冷却される(図46~図49の点E参照)。そして、熱源側熱交換器4において冷却された高圧の冷媒は、その一部が第1後段側インジェクション管19に分岐される。そして、第1後段側インジェクション管19を流れる冷媒は、第1後段側インジェクション弁19aにおいて中間圧付近まで減圧された後に、エコノマイザ熱交換器20に送られる(図46~図49の点J参照)。また、第1後段側インジェクション管19に分岐された後の冷媒は、エコノマイザ熱交換器20に流入し、第1後段側インジェクション管19を流れる冷媒と熱交換を行って冷却される(図46~図49の点H参照)。一方、第1後段側インジェクション管19を流れる冷媒は、放熱器としての熱源側熱交換器4において冷却された高圧の冷媒と熱交換を行って加熱されて(図46~図49の点K参照)、上述のように、前段側の圧縮要素2cから吐出された中間圧の冷媒に合流することになる。そして、エコノマイザ熱交換器20において冷却された高圧の冷媒は、第1膨張機構5aによって飽和圧力付近まで減圧されてレシーバ18内に一時的に溜められる(図46~図49の点I参照)。そして、レシーバ18内に溜められた冷媒は、その一部が第3吸入戻し管95に分岐される。そして、第3吸入戻し管95を流れる冷媒は、第3吸入戻し弁95aにおいて低圧付近まで減圧された後に、過冷却熱交換器96に送られる(図46~図49の点S参照)。また、第3吸入戻し管95に分岐された後の冷媒は、過冷却熱交換器96に流入し、第3吸入戻し管95を流れる冷媒と熱交換を行ってさらに冷却される(図46~図49の点R参照)。一方、第3吸入戻し管95を流れる冷媒は、エコノマイザ熱交換器20において冷却された高圧の冷媒と熱交換を行って加熱されて(図46~図49の点U参照)、圧縮機構2の吸入側(ここでは、吸入管2a)を流れる冷媒に合流することになる。この過冷却熱交換器96において冷却された冷媒は、利用側膨張機構5cに送られて、利用側膨張機構5cによって減圧されて低圧の気液二相状態の冷媒となり、冷媒の蒸発器として機能する利用側熱交換器6に送られる(図46~図49の点F参照)。そして、蒸発器としての利用側熱交換器6に送られた低圧の気液二相状態の冷媒は、加熱源としての水や空気と熱交換を行って加熱されて、蒸発することになる(図46~図49の点A参照)。そして、この蒸発器としての利用側熱交換器6において加熱され蒸発した低圧の冷媒は、切換機構3を経由して、再び、圧縮機構2に吸入される。このようにして、冷房運転が行われる。
 そして、本変形例の空気調和装置1(冷凍装置)においても、上述の第2実施形態の変形例6における冷房運転時と同様の作用効果を得ることができる。しかも、本変形例では、レシーバ18から利用側膨張機構5cへ送られる冷媒(図48、図49の点I参照)を冷却器としての過冷却熱交換器96によって過冷却状態まで冷却することができるため(図48、図49の点R参照)、各利用側膨張機構5cへの分配時に偏流を生じるおそれを少なくすることができる。
 <暖房運転>
 暖房運転時は、切換機構3が図46及び図50の破線で示される加熱運転状態とされる。熱源側膨張機構としての第1膨張機構5a及び利用側膨張機構5cは、開度調節される。また、切換機構3を加熱運転状態にしている際には、エコノマイザ熱交換器20による中間圧インジェクションを行わずに、第2後段側インジェクション管18cを通じて、気液分離器としてのレシーバ18から冷媒を後段側の圧縮要素2dに戻すレシーバ18による中間圧インジェクションを行うようにしている。より具体的には、第2後段側インジェクション開閉弁18dが開状態にされて、第1後段側インジェクション弁19aが全閉状態にされる。また、切換機構3を加熱運転状態にしている際には、過冷却熱交換器96を使用しないため、第3吸入戻し弁95aについても全閉状態にされる。そして、切換機構3が加熱運転状態となるため、中間冷媒管8の中間熱交換器開閉弁12が閉められ、そして、中間熱交換器バイパス管9の中間熱交換器バイパス開閉弁11が開けられることによって、中間熱交換器7が冷却器として機能しない状態とされる。さらに、切換機構3が加熱運転状態となるため、第2吸入戻し管92の第2吸入戻し開閉弁92aが開けられることによって、中間熱交換器7と圧縮機構2の吸入側とを接続させる状態とされ、また、中間熱交換器戻し管94の中間熱交換器戻し開閉弁94aが開けられることによって、利用側熱交換器6と熱源側熱交換器4との間と中間熱交換器7とが接続されている状態にされる。
 この冷媒回路310の状態において、低圧の冷媒(図46、図50~図52の点A参照)は、吸入管2aから圧縮機構2に吸入され、まず、圧縮要素2cによって中間圧力まで圧縮された後に、中間冷媒管8に吐出される(図46、図50~図52の点B参照)。この前段側の圧縮要素2cから吐出された中間圧の冷媒は、この前段側の圧縮要素2cから吐出された中間圧の冷媒は、冷房運転時とは異なり、中間熱交換器7を通過せずに、中間熱交換器バイパス管9に設けられたドレン加熱器97に流入し、ドレン加熱器97において、冷媒の蒸発器として機能する熱源側熱交換器4において発生して熱源側熱交換器4を流下するドレン水と熱交換を行うことで冷却される(図46、図50~図52の点C2参照)。このドレン加熱器97において冷却された冷媒は、レシーバ18から第2後段側インジェクション管18cを通じて後段側の圧縮機構2dに戻される冷媒(図46、図50~図52と合流することでさらに冷却される(図46、図50~図52の点G参照)。次に、第2後段側インジェクション管18cから戻る冷媒と合流した中間圧の冷媒は、圧縮要素2cの後段側に接続された圧縮要素2dに吸入されてさらに圧縮されて、圧縮機構2から吐出管2bに吐出される(図46、図50~図52の点D参照)。ここで、圧縮機構2から吐出された高圧の冷媒は、冷房運転時と同様、圧縮要素2c、2dによる二段圧縮動作によって、臨界圧力(すなわち、図51に示される臨界点CPにおける臨界圧力Pcp)を超える圧力まで圧縮されている。そして、この圧縮機構2から吐出された高圧の冷媒は、油分離機構41を構成する油分離器41aに流入し、同伴する冷凍機油が分離される。また、油分離器41aにおいて高圧の冷媒から分離された冷凍機油は、油分離機構41を構成する油戻し管41bに流入し、油戻し管41bに設けられた減圧機構41cで減圧された後に圧縮機構2の吸入管2aに戻されて、再び、圧縮機構2に吸入される。次に、油分離機構41において冷凍機油が分離された後の高圧の冷媒は、逆止機構42及び切換機構3を通じて、冷媒の放熱器として機能する利用側熱交換器6に送られて、冷却源としての水や空気と熱交換を行って冷却される(図46、図50~図52の点F参照)。そして、利用側熱交換器6において冷却された高圧の冷媒は、利用側膨張機構5cによって中間圧付近まで減圧された後に、レシーバ18内に一時的に溜められるとともに気液分離が行われる(図46、図50~図52の点I、L、M参照)。そして、レシーバ18において気液分離されたガス冷媒は、第2後段側インジェクション管18cによってレシーバ18の上部から抜き出されて、上述のように、前段側の圧縮要素2cから吐出された中間圧の冷媒に合流することになる。そして、レシーバ18内に溜められた液冷媒は、第1膨張機構5aによって減圧されて低圧の気液二相状態の冷媒となり、冷媒の蒸発器として機能する熱源側熱交換器4に送られるとともに、中間熱交換器戻し管94を通じて、冷媒の蒸発器として機能する中間熱交換器7にも送られる(図46、図50~図52の点E参照)。そして、熱源側熱交換器4に送られた低圧の気液二相状態の冷媒は、熱源側ファン40によって供給される加熱源としての空気と熱交換を行って加熱されて、蒸発することになる(図46、図50~図52の点A参照)。また、中間熱交換器7に送られた低圧の気液二相状態の冷媒も、熱源側ファン40によって供給される加熱源としての空気と熱交換を行って加熱されて、蒸発することになる(図46、図50~図52の点V参照)。そして、この熱源側熱交換器4において加熱されて蒸発した低圧の冷媒は、切換機構3を経由して、再び、圧縮機構2に吸入される。また、この中間熱交換器7において加熱されて蒸発した低圧の冷媒は、第2吸入戻し管92を通じて、再び、圧縮機構2に吸入される。このようにして、暖房運転が行われる。
 そして、本変形例の空気調和装置1(冷凍装置)においては、暖房運転時にエコノマイザ熱交換器20による中間圧インジェクションに代えて気液分離器としてのレシーバ18による中間圧インジェクションを行う点が第2実施形態の変形例6と異なるが、その他の点については、第2実施形態の変形例6と同様の作用効果を得ることができる。
 尚、本変形例では、上述の第2実施形態の変形例6の構成において、複数の利用側熱交換器6を有する構成にし、冷房運転と暖房運転とでエコノマイザ熱交換器20によるインジェクションと気液分離器としてのレシーバ18によるインジェクションとを使い分ける構成にし、さらに、過冷却熱交換器96を設けるようにしているが、上述の第2実施形態の変形例1~3のようなドレン加熱器97がドレンパンとして機能する底板77に設けられた構成や熱源側熱交換器4の下部及びドレンパンとして機能する底板77に設けられた構成において、第1後段側インジェクション管19及びエコノマイザ熱交換器20を設けるようにしてもよい。
 また、本変形例では、冷媒不戻し状態と冷媒戻し状態との切り換えを、開閉弁11、12、92aの開閉状態によって行うようにしているが、上述の第2実施形態の変形例5のように、開閉弁11、12、92aに代えて、冷媒不戻し状態と冷媒戻し状態とを切り換え可能な中間熱交換器切換弁93等を設けるようにしてもよい。
 (10)変形例8
 上述の第2実施形態及びその変形例では、1台の一軸二段圧縮構造の圧縮機21によって、2つの圧縮要素2c、2dのうちの前段側の圧縮要素から吐出された冷媒を後段側の圧縮要素で順次圧縮する二段圧縮式の圧縮機構2が構成されているが、三段圧縮式等のような二段圧縮式よりも多段の圧縮機構を採用してもよいし、また、単一の圧縮要素が組み込まれた圧縮機及び/又は複数の圧縮要素が組み込まれた圧縮機を複数台直列に接続することで多段の圧縮機構を構成してもよい。また、利用側熱交換器6が多数接続される場合等のように、圧縮機構の能力を大きくする必要がある場合には、多段圧縮式の圧縮機構を2系統以上並列に接続した並列多段圧縮式の圧縮機構を採用してもよい。
 例えば、図53に示されるように、上述の第2実施形態の変形例7における冷媒回路310(図46参照)において、二段圧縮式の圧縮機構2に代えて、二段圧縮式の圧縮機構103、104を並列に接続した圧縮機構102を採用した冷媒回路410にしてもよい。
 ここで、第1圧縮機構103は、本変形例において、2つの圧縮要素103c、103dで冷媒を二段圧縮する圧縮機29から構成されており、圧縮機構102の吸入母管102aから分岐された第1吸入枝管103a、及び、圧縮機構102の吐出母管102bに合流する第1吐出枝管103bに接続されている。第2圧縮機構104は、本変形例において、2つの圧縮要素104c、104dで冷媒を二段圧縮する圧縮機30から構成されており、圧縮機構102の吸入母管102aから分岐された第2吸入枝管104a、及び、圧縮機構102の吐出母管102bに合流する第2吐出枝管104bに接続されている。尚、圧縮機29、30は、上述の実施形態及びその変形例における圧縮機21と同様の構成であるため、圧縮要素103c、103d、104c、104dを除く各部を示す符号をそれぞれ29番台や30番台に置き換えることとし、ここでは、説明を省略する。そして、圧縮機29は、第1吸入枝管103aから冷媒を吸入し、この吸入された冷媒を圧縮要素103cによって圧縮した後に中間冷媒管8を構成する第1入口側中間枝管81に吐出し、第1入口側中間枝管81に吐出された冷媒を中間冷媒管8を構成する中間母管82及び第1出口側中間枝管83を通じて圧縮要素103dに吸入させて冷媒をさらに圧縮した後に第1吐出枝管103bに吐出するように構成されている。圧縮機30は、第2吸入枝管104aから冷媒を吸入し、この吸入された冷媒を圧縮要素104cによって圧縮した後に中間冷媒管8を構成する第2入口側中間枝管84に吐出し、第2入口側中間枝管84に吐出された冷媒を中間冷媒管8を構成する中間母管82及び第2出口側中間枝管85を通じて圧縮要素104dに吸入させて冷媒をさらに圧縮した後に第2吐出枝管104bに吐出するように構成されている。中間冷媒管8は、本変形例において、圧縮要素103d、104dの前段側に接続された圧縮要素103c、104cから吐出された冷媒を、圧縮要素103c、104cの後段側に接続された圧縮要素103d、104dに吸入させるための冷媒管であり、主として、第1圧縮機構103の前段側の圧縮要素103cの吐出側に接続される第1入口側中間枝管81と、第2圧縮機構104の前段側の圧縮要素104cの吐出側に接続される第2入口側中間枝管84と、両入口側中間枝管81、84が合流する中間母管82と、中間母管82から分岐されて第1圧縮機構103の後段側の圧縮要素103dの吸入側に接続される第1出口側中間枝管83と、中間母管82から分岐されて第2圧縮機構104の後段側の圧縮要素104dの吸入側に接続される第2出口側中間枝管85とを有している。また、吐出母管102bは、圧縮機構102から吐出された冷媒を切換機構3に送るための冷媒管であり、吐出母管102bに接続される第1吐出枝管103bには、第1油分離機構141と第1逆止機構142とが設けられており、吐出母管102bに接続される第2吐出枝管104bには、第2油分離機構143と第2逆止機構144とが設けられている。第1油分離機構141は、第1圧縮機構103から吐出される冷媒に同伴する冷凍機油を冷媒から分離して圧縮機構102の吸入側へ戻す機構であり、主として、第1圧縮機構103から吐出される冷媒に同伴する冷凍機油を冷媒から分離する第1油分離器141aと、第1油分離器141aに接続されており冷媒から分離された冷凍機油を圧縮機構102の吸入側に戻す第1油戻し管141bとを有している。第2油分離機構143は、第2圧縮機構104から吐出される冷媒に同伴する冷凍機油を冷媒から分離して圧縮機構102の吸入側へ戻す機構であり、主として、第2圧縮機構104から吐出される冷媒に同伴する冷凍機油を冷媒から分離する第2油分離器143aと、第2油分離器143aに接続されており冷媒から分離された冷凍機油を圧縮機構102の吸入側に戻す第2油戻し管143bとを有している。本変形例において、第1油戻し管141bは、第2吸入枝管104aに接続されており、第2油戻し管143cは、第1吸入枝管103aに接続されている。このため、第1圧縮機構103内に溜まった冷凍機油の量と第2圧縮機構104内に溜まった冷凍機油の量との間に偏りに起因して第1圧縮機構103から吐出される冷媒に同伴する冷凍機油の量と第2圧縮機構104から吐出される冷媒に同伴する冷凍機油の量との間に偏りが生じた場合であっても、圧縮機構103、104のうち冷凍機油の量が少ない方に冷凍機油が多く戻ることになり、第1圧縮機構103内に溜まった冷凍機油の量と第2圧縮機構104内に溜まった冷凍機油の量との間の偏りが解消されるようになっている。また、本変形例において、第1吸入枝管103aは、第2油戻し管143bとの合流部から吸入母管102aとの合流部までの間の部分が、吸入母管102aとの合流部に向かって下り勾配になるように構成されており、第2吸入枝管104aは、第1油戻し管141bとの合流部から吸入母管102aとの合流部までの間の部分が、吸入母管102aとの合流部に向かって下り勾配になるように構成されている。このため、圧縮機構103、104のいずれか一方が停止中であっても、運転中の圧縮機構に対応する油戻し管から停止中の圧縮機構に対応する吸入枝管に戻される冷凍機油は、吸入母管102aに戻ることになり、運転中の圧縮機構の油切れが生じにくくなっている。油戻し管141b、143bには、油戻し管141b、143bを流れる冷凍機油を減圧する減圧機構141c、143cが設けられている。逆止機構142、144は、圧縮機構103、104の吐出側から切換機構3への冷媒の流れを許容し、かつ、切換機構3から圧縮機構103、104の吐出側への冷媒の流れを遮断するための機構である。
 このように、圧縮機構102は、本変形例において、2つの圧縮要素103c、103dを有するとともにこれらの圧縮要素103c、103dのうちの前段側の圧縮要素から吐出された冷媒を後段側の圧縮要素で順次圧縮するように構成された第1圧縮機構103と、2つの圧縮要素104c、104dを有するとともにこれらの圧縮要素104c、104dのうちの前段側の圧縮要素から吐出された冷媒を後段側の圧縮要素で順次圧縮するように構成された第2圧縮機構104とを並列に接続した構成となっている。
 また、中間熱交換器7は、本変形例において、中間冷媒管8を構成する中間母管82に設けられており、冷房運転時には、第1圧縮機構103の前段側の圧縮要素103cから吐出された冷媒と第2圧縮機構104の前段側の圧縮要素104cから吐出された冷媒とが合流したものを冷却する熱交換器である。すなわち、中間熱交換器7は、冷房運転時には、2つの圧縮機構103、104に共通の冷却器として機能するものとなっている。このため、多段圧縮式の圧縮機構103、104を複数系統並列に接続した並列多段圧縮式の圧縮機構102に対して中間熱交換器7を設ける際の圧縮機構102周りの回路構成の簡素化が図られている。
 また、中間冷媒管8を構成する第1入口側中間枝管81には、第1圧縮機構103の前段側の圧縮要素103cの吐出側から中間母管82側への冷媒の流れを許容し、かつ、中間母管82側から前段側の圧縮要素103cの吐出側への冷媒の流れを遮断するための逆止機構81aが設けられており、中間冷媒管8を構成する第2入口側中間枝管84には、第2圧縮機構103の前段側の圧縮要素104cの吐出側から中間母管82側への冷媒の流れを許容し、かつ、中間母管82側から前段側の圧縮要素104cの吐出側への冷媒の流れを遮断するための逆止機構84aが設けられている。本変形例においては、逆止機構81a、84aとして逆止弁が使用されている。このため、圧縮機構103、104のいずれか一方が停止中であっても、運転中の圧縮機構の前段側の圧縮要素から吐出された冷媒が中間冷媒管8を通じて、停止中の圧縮機構の前段側の圧縮要素の吐出側に達するということが生じないため、運転中の圧縮機構の前段側の圧縮要素から吐出された冷媒が、停止中の圧縮機構の前段側の圧縮要素内を通じて圧縮機構102の吸入側に抜けて停止中の圧縮機構の冷凍機油が流出するということが生じなくなり、これにより、停止中の圧縮機構を起動する際の冷凍機油の不足が生じにくくなっている。尚、圧縮機構103、104間に運転の優先順位を設けている場合(例えば、第1圧縮機構103を優先的に運転する圧縮機構とする場合)には、上述の停止中の圧縮機構に該当することがあるのは、第2圧縮機構104に限られることになるため、この場合には、第2圧縮機構104に対応する逆止機構84aだけを設けるようにしてもよい。
 また、上述のように、第1圧縮機構103を優先的に運転する圧縮機構とする場合においては、中間冷媒管8が圧縮機構103、104に共通に設けられているため、運転中の第1圧縮機構103に対応する前段側の圧縮要素103cから吐出された冷媒が中間冷媒管8の第2出口側中間枝管85を通じて、停止中の第2圧縮機構104の後段側の圧縮要素104dの吸入側に達し、これにより、運転中の第1圧縮機構103の前段側の圧縮要素103cから吐出された冷媒が、停止中の第2圧縮機構104の後段側の圧縮要素104d内を通じて圧縮機構102の吐出側に抜けて停止中の第2圧縮機構104の冷凍機油が流出して、停止中の第2圧縮機構104を起動する際の冷凍機油の不足が生じるおそれがある。そこで、本変形例では、第2出口側中間枝管85に開閉弁85aを設け、第2圧縮機構104が停止中の場合には、この開閉弁85aによって第2出口側中間枝管85内の冷媒の流れを遮断するようにしている。これにより、運転中の第1圧縮機構103の前段側の圧縮要素103cから吐出された冷媒が中間冷媒管8の第2出口側中間枝管85を通じて、停止中の第2圧縮機構104の後段側の圧縮要素104dの吸入側に達することがなくなるため、運転中の第1圧縮機構103の前段側の圧縮要素103cから吐出された冷媒が、停止中の第2圧縮機構104の後段側の圧縮要素104d内を通じて圧縮機構102の吐出側に抜けて停止中の第2圧縮機構104の冷凍機油が流出するということが生じなくなり、これにより、停止中の第2圧縮機構104を起動する際の冷凍機油の不足がさらに生じにくくなっている。尚、本変形例においては、開閉弁85aとして電磁弁が使用されている。
 また、第1圧縮機構103を優先的に運転する圧縮機構とする場合においては、第1圧縮機構103の起動に続いて第2圧縮機構104を起動することになるが、この際、中間冷媒管8が圧縮機構103、104に共通に設けられているため、第2圧縮機構104の前段側の圧縮要素103cの吐出側の圧力及び後段側の圧縮要素103dの吸入側の圧力が、前段側の圧縮要素103cの吸入側の圧力及び後段側の圧縮要素103dの吐出側の圧力よりも高くなった状態から起動することになり、安定的に第2圧縮機構104を起動することが難しい。そこで、本変形例では、第2圧縮機構104の前段側の圧縮要素104cの吐出側と後段側の圧縮要素104dの吸入側とを接続する起動バイパス管86を設けるとともに、この起動バイパス管86に開閉弁86aを設け、第2圧縮機構104が停止中の場合には、この開閉弁86aによって起動バイパス管86内の冷媒の流れを遮断し、かつ、開閉弁85aによって第2出口側中間枝管85内の冷媒の流れを遮断するようにし、第2圧縮機構104を起動する際に、開閉弁86aによって起動バイパス管86内に冷媒を流すことができる状態にすることで、第2圧縮機構104の前段側の圧縮要素104cから吐出される冷媒を第1圧縮機構103の前段側の圧縮要素104cから吐出される冷媒に合流させることなく、起動バイパス管86を通じて後段側の圧縮要素104dに吸入させるようにして、圧縮機構102の運転状態が安定した時点(例えば、圧縮機構102の吸入圧力、吐出圧力及び中間圧力が安定した時点)で、開閉弁85aによって第2出口側中間枝管85内に冷媒を流すことができる状態にし、かつ、開閉弁86aによって起動バイパス管86内の冷媒の流れを遮断して、通常の冷房運転に移行することができるようになっている。尚、本変形例において、起動バイパス管86は、その一端が第2出口側中間枝管85の開閉弁85aと第2圧縮機構104の後段側の圧縮要素104dの吸入側との間に接続され、その他端が第2圧縮機構104の前段側の圧縮要素104cの吐出側と第2入口側中間枝管84の逆止機構84aとの間に接続されており、第2圧縮機構104を起動する際に、第1圧縮機構103の中間圧部分の影響を受けにくい状態にできるようになっている。また、本変形例においては、開閉弁86aとして電磁弁が使用されている。
 また、本変形例の空気調和装置1の冷房運転や暖房運転の動作は、圧縮機構2に代えて設けられた圧縮機構102によって、圧縮機構102周りの回路構成がやや複雑化したことによる変更点を除いては、上述の第2実施形態の変形例7における動作(図46~図52及びその関連記載)と基本的に同じであるため、ここでは、説明を省略する。
 そして、本変形例の構成においても、上述の第2実施形態の変形例7と同様の作用効果を得ることができる。
 尚、本変形例では、上述の第2実施形態の変形例7における熱源側熱交換器4の下部にドレン加熱器97が設けられた構成において、二段圧縮式の圧縮機構103、104を並列に接続した圧縮機構102を採用しているが、上述の第2実施形態の変形例1~3のようなドレン加熱器97がドレンパンとして機能する底板77に設けられた構成や熱源側熱交換器4の下部及びドレンパンとして機能する底板77に設けられた構成において、二段圧縮式の圧縮機構103、104を並列に接続した圧縮機構102を採用してもよい。
 また、本変形例では、冷媒不戻し状態と冷媒戻し状態との切り換えを、開閉弁11、12、92aの開閉状態によって行うようにしているが、上述の第2実施形態の変形例5のように、開閉弁11、12、92aに代えて、冷媒不戻し状態と冷媒戻し状態とを切り換え可能な中間熱交換器切換弁93等を設けるようにしてもよい。
 -他の実施形態-
 以上、本発明の実施形態及びその変形例について図面に基づいて説明したが、具体的な構成は、これらの実施形態及びその変形例に限られるものではなく、発明の要旨を逸脱しない範囲で変更可能である。
 例えば、上述の実施形態及びその変形例では、ヒートポンプ式給湯機のヒートポンプユニット701や空気調和装置1に本発明を適用した例を説明したが、他の冷凍装置に適用してもよい。
 また、上述の第1実施形態及びその変形例において、第2実施形態の変形例8と同様に、二段圧縮式の圧縮機構103、104を並列に接続した圧縮機構102を採用したり、三段以上の多段圧縮式を適用してもよい。
 また、上述の第2実施形態及びその変形例において、利用側熱交換器6を流れる冷媒と熱交換を行う加熱源又は冷却源としての水やブラインを使用するとともに、利用側熱交換器6において熱交換された水やブラインと室内空気とを熱交換させる二次熱交換器を設けた、いわゆる、チラー型の空気調和装置に本発明を適用してもよい。
 また、上述のチラータイプの空気調和装置の他の型式の冷凍装置であっても、超臨界域で作動する冷媒を冷媒として使用して多段圧縮式冷凍サイクルを行うものであれば、本発明を適用可能である。
 また、超臨界域で作動する冷媒としては、二酸化炭素に限定されず、エチレン、エタンや酸化窒素等を使用してもよい。
 本発明を利用すれば、圧縮機構と放熱器と蒸発器とを有する冷媒回路と蒸発器において発生するドレン水を受けるドレンパンとを備えた冷凍装置において、エネルギーのロスの増加を抑えることが可能なドレン加熱器を提供することができる。
                                                                                

Claims (13)

  1.  複数の圧縮要素を有しており、前記複数の圧縮要素のうちの前段側の圧縮要素から吐出された冷媒を後段側の圧縮要素で順次圧縮するように構成された圧縮機構(2、102、702)と、
     前記圧縮機構によって圧縮された冷媒を放熱させる放熱器(4、704)と、
     空気を熱源として前記放熱器によって放熱された冷媒を蒸発させる蒸発器(6、706)と、
     前記蒸発器において発生するドレン水を受けるドレンパン(77、777)と、
     前記前段側の圧縮要素から吐出されて前記後段側の圧縮要素に吸入される冷媒によって前記ドレン水を加熱するドレン加熱器(97、97a、97b、797、797a、797b)と、
    を備えた、冷凍装置(1、701)。
  2.  前記ドレン加熱器(97、97a、797、797a)は、前記蒸発器(6、706)の下部に配置されている、請求項1に記載の冷凍装置(1、701)。
  3.  前記ドレン加熱器(97、97b、797、797b)は、前記ドレンパン(77、777)に配置されている、請求項1に記載の冷凍装置(1、701)。
  4.  前記ドレン加熱器(97、797)は、前記蒸発器(6、706)の下部に配置された第1ドレン加熱器(97a、797a)と、前記ドレンパン(77、777)に配置された第2ドレン加熱器(97b、797b)とを有している、請求項1に記載の冷凍装置(1、701)。
  5.  前記前段側の圧縮要素から吐出されて前記後段側の圧縮要素に吸入される冷媒を前記第1ドレン加熱器(97a、797a)及び前記第2ドレン加熱器(97b、797b)の一方だけに流すことができるように切り換えるドレン加熱器切換機構(98、798)をさらに備えている、請求項4に記載の冷凍装置(1、701)。
  6.  複数の圧縮要素を有しており、前記複数の圧縮要素のうちの前段側の圧縮要素から吐出された冷媒を後段側の圧縮要素で順次圧縮するように構成された圧縮機構(2、102)と、
     空気を熱源とする熱交換器であって、冷媒の放熱器又は蒸発器として機能する熱源側熱交換器(4)と、
     冷媒の蒸発器又は放熱器として機能する利用側熱交換器(6)と、
     前記圧縮機構、冷媒の放熱器として機能する前記熱源側熱交換器、冷媒の蒸発器として機能する前記利用側熱交換器の順に冷媒を循環させる冷却運転状態と、前記圧縮機構、冷媒の放熱器として機能する前記利用側熱交換器、冷媒の蒸発器として機能する前記熱源側熱交換器の順に冷媒を循環させる加熱運転状態とを切り換える切換機構(3)と、
     前記切換機構を前記冷却運転状態にしている際に、前記前段側の圧縮要素から吐出されて前記後段側の圧縮要素に吸入される冷媒の冷却器として機能する中間熱交換器(7)と、
     前記熱源側熱交換器において発生するドレン水を受けるドレンパン(77)と、
     前記切換機構を前記加熱運転状態にしている際に、前記前段側の圧縮要素から吐出されて前記後段側の圧縮要素に吸入される冷媒によって前記ドレン水を加熱することが可能なドレン加熱器(97、97a、97b)と、
    を備えた、冷凍装置(1)。
  7.  前記ドレン加熱器(97、97a)は、前記熱源側熱交換器(4)の下部に配置されている、請求項6に記載の冷凍装置(1)。
  8.  前記ドレン加熱器(97、97b)は、前記ドレンパン(77)に配置されている、請求項6に記載の冷凍装置(1)。
  9.  前記ドレン加熱器(97)は、前記熱源側熱交換器(4)の下部に配置された第1ドレン加熱器(97a)と、前記ドレンパン(77)に配置された第2ドレン加熱器(97b)とを有している、請求項6に記載の冷凍装置(1)。
  10.  前記前段側の圧縮要素から吐出されて前記後段側の圧縮要素に吸入される冷媒を前記第1ドレン加熱器(97a)及び前記第2ドレン加熱器(97b)の一方だけに流すことができるように切り換えるドレン加熱器切換機構(98)をさらに備えている、請求項9に記載の冷凍装置(1)。
  11.  前記中間熱交換器(7)は、前記切換機構(3)を前記加熱運転状態にしている際に、前記利用側熱交換器(6)において放熱した冷媒の蒸発器として機能する、請求項6~10のいずれかに記載の冷凍装置(1)。
  12.  前記中間熱交換器(7)は、前記熱源側熱交換器(4)の上部に配置されている、請求項11に記載の冷凍装置(1)。
  13.  前記中間熱交換器(7)は、前記ドレン加熱器(97)よりも伝熱面積が大きい、請求項6~12のいずれかに記載の冷凍装置(1)。
                                                                                    
PCT/JP2009/055100 2008-03-25 2009-03-17 冷凍装置 WO2009119375A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-077196 2008-03-25
JP2008077196A JP2009229021A (ja) 2008-03-25 2008-03-25 冷凍装置

Publications (1)

Publication Number Publication Date
WO2009119375A1 true WO2009119375A1 (ja) 2009-10-01

Family

ID=41113572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055100 WO2009119375A1 (ja) 2008-03-25 2009-03-17 冷凍装置

Country Status (2)

Country Link
JP (1) JP2009229021A (ja)
WO (1) WO2009119375A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011139425A3 (en) * 2010-04-29 2013-02-21 Carrier Corporation Refrigerant vapor compression system with intercooler
EP2863151A3 (en) * 2013-10-18 2015-07-29 Mitsubishi Heavy Industries, Ltd. Two-stage compression cycle
WO2020080129A1 (ja) * 2018-10-16 2020-04-23 株式会社Ihi 冷媒圧縮機

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7473775B2 (ja) * 2019-09-27 2024-04-24 ダイキン工業株式会社 熱源ユニット及び冷凍装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085105A (ja) * 2002-08-27 2004-03-18 Sanyo Electric Co Ltd 冷蔵庫
JP2004218861A (ja) * 2003-01-09 2004-08-05 Denso Corp ヒートポンプ式給湯器におけるドレンパン凍結防止構造

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085105A (ja) * 2002-08-27 2004-03-18 Sanyo Electric Co Ltd 冷蔵庫
JP2004218861A (ja) * 2003-01-09 2004-08-05 Denso Corp ヒートポンプ式給湯器におけるドレンパン凍結防止構造

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011139425A3 (en) * 2010-04-29 2013-02-21 Carrier Corporation Refrigerant vapor compression system with intercooler
CN103124885A (zh) * 2010-04-29 2013-05-29 开利公司 具有中冷器的制冷剂蒸汽压缩***
US9989279B2 (en) 2010-04-29 2018-06-05 Carrier Corporation Refrigerant vapor compression system with intercooler
EP2863151A3 (en) * 2013-10-18 2015-07-29 Mitsubishi Heavy Industries, Ltd. Two-stage compression cycle
WO2020080129A1 (ja) * 2018-10-16 2020-04-23 株式会社Ihi 冷媒圧縮機
JPWO2020080129A1 (ja) * 2018-10-16 2021-09-02 株式会社Ihi 冷媒圧縮機

Also Published As

Publication number Publication date
JP2009229021A (ja) 2009-10-08

Similar Documents

Publication Publication Date Title
JP5239824B2 (ja) 冷凍装置
JP5396831B2 (ja) 冷凍装置
JP6685409B2 (ja) 空気調和装置
JP5585003B2 (ja) 冷凍装置
KR101201062B1 (ko) 냉동 장치
EP2615392B1 (en) Cascade heat pump
WO2009131083A1 (ja) 冷凍装置
JP5357418B2 (ja) ヒートポンプ式空気調和機
JP5332604B2 (ja) 冷暖同時運転型空気調和装置
WO2014020651A1 (ja) 空気調和装置
WO2009131088A1 (ja) 冷凍装置
JP5992088B2 (ja) 空気調和装置
JP2011089736A (ja) 冷凍サイクル装置,空気調和機
JP5277854B2 (ja) 空気調和装置
WO2009119375A1 (ja) 冷凍装置
JP2010112582A (ja) 冷凍装置
JP4608303B2 (ja) 蒸気圧縮式ヒートポンプ
JP5216557B2 (ja) 冷凍サイクル装置
JP2009228972A (ja) 冷凍装置
JP6042037B2 (ja) 冷凍サイクル装置
JP5141364B2 (ja) 冷凍装置
JP2008145002A (ja) 空気調和装置
JP4036231B2 (ja) 冷凍装置
JP2006078014A (ja) 冷凍装置
JP4424162B2 (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09726342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09726342

Country of ref document: EP

Kind code of ref document: A1