WO2009119196A1 - Platinum powder for magnetic material target, method for producing the powder, method for producing magnetic material target composed of platinum sintered compact, and the sintered magnetic material target - Google Patents

Platinum powder for magnetic material target, method for producing the powder, method for producing magnetic material target composed of platinum sintered compact, and the sintered magnetic material target Download PDF

Info

Publication number
WO2009119196A1
WO2009119196A1 PCT/JP2009/052844 JP2009052844W WO2009119196A1 WO 2009119196 A1 WO2009119196 A1 WO 2009119196A1 JP 2009052844 W JP2009052844 W JP 2009052844W WO 2009119196 A1 WO2009119196 A1 WO 2009119196A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
platinum
wtppm
magnetic material
impurities
Prior art date
Application number
PCT/JP2009/052844
Other languages
French (fr)
Japanese (ja)
Inventor
仁 佐藤
Original Assignee
日鉱金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉱金属株式会社 filed Critical 日鉱金属株式会社
Priority to JP2010505452A priority Critical patent/JP5301530B2/en
Publication of WO2009119196A1 publication Critical patent/WO2009119196A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/09Mixtures of metallic powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/20Electrolytic production, recovery or refining of metals by electrolysis of solutions of noble metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C5/00Electrolytic production, recovery or refining of metal powders or porous metal masses
    • C25C5/02Electrolytic production, recovery or refining of metal powders or porous metal masses from solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/086Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing

Definitions

  • the present invention relates to a platinum powder used for a target material for a platinum-oxide type perpendicular magnetic recording medium, a method for producing the same, a method for producing a magnetic material target comprising a platinum sintered body, and the same sintered magnetic material target Is.
  • platinum is used as one of the recording surface materials of the magnetic recording medium.
  • the magnetic recording method has also changed from the planar direction to the vertical direction, and the sputtering target material on the recording surface has also shifted from a conventional melted product to a mixed sintered product of metal powder and oxide.
  • the platinum powder required as a metal powder has a particle size distribution of about 0.1 to 5 ⁇ m, but other required elements are required to contain almost no sodium, potassium or calcium as impurities.
  • Patent Document 1 This involves a step of wet mixing platinum black and a salt selected from an alkali salt or an alkaline earth metal salt, drying, pulverizing, further firing the pulverized product to remove gas, and further using a dilute acid.
  • the present invention relates to a technique for dissolving platinum, washing away with water, and drying to obtain platinum powder.
  • the present invention aims to obtain platinum powder with less impurities, reduces costs, and uses a high-purity sputtering target obtained thereby, a material suitable for manufacturing a magnetic recording medium It is an issue to provide.
  • the present inventors have conducted intensive research. As a result, the platinum ion-containing aqueous solution can be obtained by performing electrolytic reduction at a high current density to obtain a high-purity platinum powder. Obtained knowledge.
  • a sintered magnetic material target comprising a platinum sintered body characterized in that 8.
  • a sintered magnetic material target comprising the platinum sintered body according to 7 above, wherein the density is 95% to 100%.
  • the high-purity platinum powder obtained by electrolytic reduction of an aqueous solution containing platinum ions according to the present invention having a low impurity concentration with overvoltage has very little impurities and has the effect of greatly enhancing the durability of the perpendicular magnetic recording medium.
  • the impurities mixed in the manufacturing process are extremely small, the process is simple, and an excellent effect can be achieved at low cost.
  • the present invention is a wet reduction method in which a relatively uniform particle size powder can be obtained without using physical pulverization as a means for obtaining platinum powder with few impurities, and at the same time, the amount of impurities from the liquid component is relatively small.
  • the reduction method was examined. As a result, it was possible to obtain platinum powder with less impurities by electrolyzing platinum while generating hydrogen gas at a high current density. Thus, platinum powder with few impurities was obtained by using platinum aqueous solution with few impurities, and limiting only the component of aqueous solution as a contamination source of an impurity.
  • the platinum powder for a magnetic material target of the present invention is a platinum powder having a particle size distribution of 0.1 to 5 ⁇ m, and the contents of impurities such as sodium, potassium and calcium are all less than 20 wtppm, and hydrogen and chlorine are contained.
  • impurities such as sodium, potassium and calcium are all less than 20 wtppm, and hydrogen and chlorine are contained.
  • Each can be less than 500 wtppm, carbon, nitrogen, and oxygen can each be less than 1000 wtppm, and other impurities can be individually less than 10 ppm, and less than 100 ppm in total.
  • Such high-purity platinum cannot be found in the prior art.
  • the platinum powder for a magnetic material target of the present invention can be produced by electrolytic reduction of a platinum ion-containing aqueous solution.
  • a platinum chloride aqueous solution can be used, but in addition, an ammonium chloroplatinate aqueous solution can be used.
  • one or more components selected from 0.1 to 1 ml of hydrazine, formalin, formic acid, and ascorbic acid can be added as a reducing agent. However, since these may become a source of impurities, it is necessary to add a trace amount as described above.
  • this electrolysis condition shows efficient manufacturing conditions, and manufacturing on conditions exceeding this range does not become a problem in particular, and includes all these.
  • the contents of sodium, potassium and calcium as impurities are all less than 20 wtppm, hydrogen and chlorine are each less than 500 wtppm, carbon, nitrogen and oxygen are each less than 1000 wtppm, and other impurities are each independently less than 10 ppm, in total
  • a magnetic powder composed of a platinum sintered body is hot-pressed with platinum powder having a particle size distribution of less than 100 ppm and a particle size distribution of 0.1 to 5 ⁇ m at 1000 to 1200 ° C. and a press pressure of 300 to 600 kg / cm 2. It is possible to produce a material target.
  • the target thus produced can achieve high purity as described above, and can have a density of 95% to 100%.
  • the hot press conditions indicate suitable conditions for achieving high density, and the target can be manufactured even outside these conditions. Setting the press conditions arbitrarily according to the target manufacturing purpose is not particularly problematic.
  • the present invention includes these.
  • Example 1 1 L of 10 g / L chloroplatinic acid aqueous solution was put into an electrolytic cell, and parallel plate electrolysis was carried out using a plate-like DSE anode plate and Ti cathode plate while stirring with a magnetic stirrer.
  • the electrode voltage during electrolysis was set to 25 ⁇ and the electrode distance was set to 5 cm.
  • the liquid temperature was maintained at 35 ° C. in a thermostatic bath.
  • platinum powder precipitated on the bottom of the tank was obtained.
  • the particle size distribution measurement was performed on this platinum, the minimum diameter was 0.259 ⁇ m, and the maximum diameter was 4.472 ⁇ m.
  • the obtained particle size distribution is shown in Table 1. Further, impurity analysis and gas component analysis by GD-MS were performed on this powder, and impurity analysis values as shown in Table 2 were obtained.
  • Example 2 About 1 g of 10 g of chloroplatinic acid aqueous solution, 0.1 ml of 98% hydrazine monohydrate was added in advance to an electrolytic cell, and while stirring with a magnetic stirrer, plate-like DSE anode plate and Ti cathode plate were In parallel plate electrolysis was performed. The electrode voltage during electrolysis was set to 25 ⁇ and the electrode distance was set to 5 cm. The liquid temperature was maintained at 35 ° C. in a thermostatic bath. When the particle size distribution measurement was performed on the platinum powder precipitated on the tank bottom by this electrolytic operation, the minimum diameter was 0.259 ⁇ m and the maximum diameter was 1.981 ⁇ m. The obtained particle size distribution is shown in Table 3. Further, the powder obtained in Example 2 was subjected to impurity analysis and gas component analysis by GD-MS, and the impurity analysis values shown in Table 4 were obtained.
  • Table 4 shows impurity elements that can be analyzed, but all impurity elements not shown are 1 wtppm or less. Similarly, these impurities also satisfied the conditions of the present invention, that is, the contents of sodium, potassium and calcium were all less than 20 wtppm, and the other impurities were individually less than 10 ppm, and less than 100 ppm in total. In the prior art, sodium, potassium, and calcium, which are easily mixed, are in a small amount to the extent that even analysis is difficult.
  • a magnetic material target made of a platinum sintered body can be manufactured by hot pressing at 1000 to 1200 ° C. and a pressing pressure of 300 to 600 kg / cm 2 using these high purity powders. .
  • the density is 95% to 100%
  • the contents of impurities such as sodium, potassium and calcium are all less than 20 wtppm
  • hydrogen and chlorine are each less than 500 wtppm
  • carbon, nitrogen and oxygen are each less than 1000 wtppm
  • other impurities it is possible to obtain a sintered magnetic material target composed of a platinum sintered body that is less than 10 ppm each and less than 100 ppm in total.
  • the high-purity platinum target shown in this example is extremely useful as a target material for a platinum-oxide type perpendicular magnetic recording medium.
  • a platinum target is shown, but it is also useful as an alloy target with other elements or a composite target of platinum and oxide. It is easily understood that the characteristics as the high-purity platinum can be utilized as they are even in such an alloy or composite material.
  • the platinum powder obtained by the present invention is of a purity not found in the prior art, and the durability of the target material and magnetic recording medium produced using this is more reliable as the target material for the magnetic recording medium. become. Further, the efficiency can be significantly improved, and a great advantage can be obtained from the viewpoint of manufacturing cost, which is useful for extending the life of resources. From the above, it is extremely useful as a material for magnetic recording media.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

Disclosed is a platinum powder for magnetic material targets, which has a particle size distribution of 0.1-5 µm. The impurities contained in the platinum powder for magnetic material targets are limited as follows: sodium, potassium and calcium contents are all less than 20 wt ppm; hydrogen and chlorine contents are respectively less than 500 wt ppm; carbon, nitrogen and oxygen contents are respectively less than 1000 wt ppm; and the other impurities are respectively less than 10 ppm, and less than 100 ppm in total. The platinum powder contains little impurities and can be obtained at low cost. A material suitable for production of a magnetic recording medium can be obtained by using a high-purity sputtering target produced from the platinum powder.

Description

磁性材ターゲット用白金粉末、同粉末の製造方法、白金焼結体からなる磁性材ターゲットの製造方法及び同焼結磁性材ターゲットPlatinum powder for magnetic material target, method for producing the same, method for producing magnetic material target comprising a platinum sintered body, and the same sintered magnetic material target
 本発明は、白金-酸化物系の垂直磁気記録媒体用ターゲット材に使用される白金粉末、同粉末の製造方法、白金焼結体からなる磁性材ターゲットの製造方法及び同焼結磁性材ターゲットに関するものである。 The present invention relates to a platinum powder used for a target material for a platinum-oxide type perpendicular magnetic recording medium, a method for producing the same, a method for producing a magnetic material target comprising a platinum sintered body, and the same sintered magnetic material target Is.
 磁気記録媒体の記録面素材の一つとして、一般に白金が用いられる。近年磁気記録方式も平面方向から垂直方向へと移り変わっており、記録面へのスパッタリングターゲット材も従来の溶解品から金属粉末と酸化物の混合焼結品へとシフトしてきた。
 金属粉末として必要とされる白金粉末は0.1~5μm程度の粒径分布を持つが、他に要求される要素として不純物としてナトリウム、カリウム、カルシウムがほとんど含まれないことが要求される。
Generally, platinum is used as one of the recording surface materials of the magnetic recording medium. In recent years, the magnetic recording method has also changed from the planar direction to the vertical direction, and the sputtering target material on the recording surface has also shifted from a conventional melted product to a mixed sintered product of metal powder and oxide.
The platinum powder required as a metal powder has a particle size distribution of about 0.1 to 5 μm, but other required elements are required to contain almost no sodium, potassium or calcium as impurities.
 これは、成膜操作中又は成膜後にこれらの不純物が酸化し易いために記録面に読み書きできないスポットを形成したり、成膜後にこれら不純物が酸化又は潮解して膜を浮き上がらせたりなど、膜の耐久性に問題を生じやすくなるためである。
 また、他の不純物については成膜材質の磁気特性を保つためにもできる限り低いことが要求される。こういった課題を解決するために、前述の不純物が含まれない白金粉末が必要となる。
This is because these impurities easily oxidize during or after the film formation operation, so that a spot that cannot be read or written on the recording surface is formed, or after film formation, these impurities oxidize or deliquesce to lift the film. This is because a problem is likely to occur in the durability of the resin.
Further, other impurities are required to be as low as possible in order to maintain the magnetic properties of the film forming material. In order to solve these problems, platinum powder that does not contain the aforementioned impurities is required.
 従来の白金粉末の製造には、一般的には塩化白金酸アンモニウムの焙焼による方法や、白金イオンを含む水溶液をヒドラジンで還元する方法が取られてきた。
 前者では、白金の粒径が粗い為に粉砕の必要があり、粉砕機からの不純物混入や粉砕・篩別といった工程によるコスト高につながるという問題があった。
Conventional production of platinum powder has generally employed a method of baking ammonium chloroplatinate and a method of reducing an aqueous solution containing platinum ions with hydrazine.
In the former, since the particle size of platinum is coarse, it is necessary to pulverize, and there is a problem that the cost is increased due to mixing of impurities from the pulverizer, pulverization and sieving.
 また、後者では、塩素や窒素といった成分が残留しやすいため更にCa化合物と混合しての高温焙焼で除去する必要があり、結局Caが残留し、また焙焼による熔結を改善するために粉砕や篩別といった工程をはさむ必要があり、不純物による耐久性悪化の問題は解決できていなかった。前述の課題点を解決するためには従来の技術では難しく、新たな方法を用いて不純物の低減を図る必要があった。 In the latter case, components such as chlorine and nitrogen are likely to remain, so it is necessary to remove them by high-temperature roasting with further mixing with a Ca compound. In order to improve the welding due to roasting, Ca remains after all. Processes such as pulverization and sieving must be sandwiched, and the problem of deterioration in durability due to impurities has not been solved. In order to solve the above-described problems, it is difficult with the conventional technique, and it has been necessary to reduce impurities by using a new method.
 具体的な従来技術としては、例えば特許文献1がある。これは白金ブラックとアルカリ塩またはアルカリ土類金属塩から選んだ塩とを、湿式混合し、乾燥後、粉砕する工程を伴い、さらにその粉砕体を焼成してガス除去を行い、さらに希酸によって塩を溶解し、水洗除去した後、乾燥して白金粉末を得る技術に関する。 As a specific conventional technique, there is, for example, Patent Document 1. This involves a step of wet mixing platinum black and a salt selected from an alkali salt or an alkaline earth metal salt, drying, pulverizing, further firing the pulverized product to remove gas, and further using a dilute acid. The present invention relates to a technique for dissolving platinum, washing away with water, and drying to obtain platinum powder.
 また、下記特許文献2については、白金の水溶性化合物をpH4以下に調整する工程、この溶液に、水酸化カルシウム、水酸化マグネシウム、水酸化バリウム等を混合して、反応させる工程、反応させた後、不溶解固体を分別、乾燥する分別工程、これをさらに800°C以上で加熱処理する工程、これによって得た固体を、酸処理し、酸処理後の金属粒子を分別する工程からなっている。 Moreover, about the following patent document 2, the process which adjusts the water-soluble compound of platinum to pH 4 or less, the process which mixes calcium hydroxide, magnesium hydroxide, barium hydroxide, etc. with this solution, was made to react. Thereafter, a separation step of separating and drying the insoluble solid, a step of further heat-treating it at 800 ° C. or higher, a step of acid-treating the solid obtained thereby, and separating the metal particles after the acid treatment. Yes.
 これらの特許文献は、上記の問題点を含む技術の流れにあり、処理工程中に不純物が混入するという大きな問題を有している。さらに、工程も複雑なので、コストも高くなり、基本的な解決手段とは言えない。
特開平10-102103号公報 特開2006-199982公報
These patent documents are in the technical flow including the above-mentioned problems, and have a big problem that impurities are mixed during the processing steps. Furthermore, since the process is complicated, the cost is high and it cannot be said to be a basic solution.
JP-A-10-102103 JP 2006-199982 A
 本発明は、上記の問題点に鑑み、不純物の少ない白金粉末を得ることを目的とし、コストを低減し、これによって得られた高純度スパッタリングターゲットを用いて、磁気記録媒体の製造に好適な材料を提供することを課題とする。 In view of the above-mentioned problems, the present invention aims to obtain platinum powder with less impurities, reduces costs, and uses a high-purity sputtering target obtained thereby, a material suitable for manufacturing a magnetic recording medium It is an issue to provide.
 上記の課題を解決するために、本発明者らは鋭意研究を行った結果、白金イオン含有水溶液について、高電流密度で電解還元を行うことにより、高純度の白金粉末を得ることができるとの知見を得た。 In order to solve the above-mentioned problems, the present inventors have conducted intensive research. As a result, the platinum ion-containing aqueous solution can be obtained by performing electrolytic reduction at a high current density to obtain a high-purity platinum powder. Obtained knowledge.
 この知見に基づき、次の発明を提供するものである。
1.0.1~5μmの粒径分布を持つ白金の粉末であって、不純物であるナトリウム、カリウム、カルシウム含有量が全て20wtppm未満、水素、塩素がそれぞれ500wtppm未満、炭素、窒素、酸素がそれぞれ1000wtppm未満、その他の不純物が、それぞれ単独で10ppm未満、合計で100ppm未満であることを特徴とする磁性材ターゲット用白金粉末
Based on this knowledge, the following invention is provided.
1. Platinum powder having a particle size distribution of 0.1 to 5 μm, and the contents of impurities such as sodium, potassium and calcium are all less than 20 wtppm, hydrogen and chlorine are each less than 500 wtppm, carbon, nitrogen and oxygen are each Platinum powder for a magnetic material target, characterized by less than 1000 wtppm and other impurities, each independently less than 10 ppm, and less than 100 ppm in total.
2.白金イオン含有水溶液の電解還元により、0.1~5μmの粒径分布を持つ白金の粉末であって、不純物であるナトリウム、カリウム、カルシウム含有量が全て20wtppm未満、水素、塩素がそれぞれ500wtppm未満、炭素、窒素、酸素がそれぞれ1000wtppm未満、その他の不純物が、それぞれ単独で10ppm未満、合計で100ppm未満であることを特徴とする磁性材ターゲット用白金粉末の製造方法。
3.白金イオン含有水溶液として、塩化白金水溶液を使用することを特徴とする上記1記載の磁性材ターゲット用白金粉末の製造方法
4.白金粉の微細化のために、0.1~1mlのヒドラジン、ホルマリン、ギ酸、アスコルビン酸から選択した1成分又は2成分以上を還元剤として添加することを特徴とする上記2又は3記載の磁性材ターゲット用白金粉末の製造方法
2. By electrolytic reduction of a platinum ion-containing aqueous solution, platinum powder having a particle size distribution of 0.1 to 5 μm, the contents of impurities such as sodium, potassium and calcium are all less than 20 wtppm, hydrogen and chlorine are each less than 500 wtppm, A method for producing platinum powder for a magnetic material target, wherein carbon, nitrogen and oxygen are each less than 1000 wtppm, and other impurities are each independently less than 10 ppm, and less than 100 ppm in total.
3. 3. The method for producing platinum powder for a magnetic material target according to 1 above, wherein a platinum chloride aqueous solution is used as the platinum ion-containing aqueous solution. 4. The magnetic material according to 2 or 3 above, wherein one or more components selected from 0.1 to 1 ml of hydrazine, formalin, formic acid, and ascorbic acid are added as a reducing agent in order to refine the platinum powder. For producing platinum powder for metal target
5.電流密度を1~5A/dm、電解電圧を5~30Vとして、電解することを特徴とする上記2~4のいずれか一項に記載の磁性材ターゲット用白金粉末の製造方法
6.不純物であるナトリウム、カリウム、カルシウム含有量が全て20wtppm未満、水素、塩素がそれぞれ500wtppm未満、炭素、窒素、酸素がそれぞれ1000wtppm未満、その他の不純物が、それぞれ単独で10ppm未満、合計で100ppm未満であり、0.1~5μmの粒径分布を持つ白金の粉末を、1000~1200°C、プレス圧力300~600kg/cmで、でホットプレスすることを特徴とする白金焼結体からなる磁性材ターゲットの製造方法
7.不純物であるナトリウム、カリウム、カルシウム含有量が全て20wtppm未満、水素、塩素がそれぞれ500wtppm未満、炭素、窒素、酸素がそれぞれ1000wtppm未満、その他の不純物が、それぞれ単独で10ppm未満、合計で100ppm未満であることを特徴とする白金焼結体からなる焼結磁性材ターゲット
8.密度が95%~100%であることを特徴とする上記7記載の白金焼結体からなる焼結磁性材ターゲット
5). 5. The method for producing a platinum powder for a magnetic material target according to any one of 2 to 4 above, wherein electrolysis is performed with a current density of 1 to 5 A / dm 2 and an electrolysis voltage of 5 to 30 V. Impurities such as sodium, potassium, and calcium are all less than 20 wtppm, hydrogen and chlorine are each less than 500 wtppm, carbon, nitrogen, and oxygen are each less than 1000 wtppm, and other impurities are each less than 10 ppm, and less than 100 ppm in total. A magnetic material comprising a platinum sintered body, characterized in that platinum powder having a particle size distribution of 0.1 to 5 μm is hot pressed at 1000 to 1200 ° C. and a pressing pressure of 300 to 600 kg / cm 2. 6. Target manufacturing method Impurities such as sodium, potassium, and calcium are all less than 20 wtppm, hydrogen and chlorine are each less than 500 wtppm, carbon, nitrogen, and oxygen are each less than 1000 wtppm, and other impurities are each less than 10 ppm, and less than 100 ppm in total. 7. A sintered magnetic material target comprising a platinum sintered body characterized in that 8. A sintered magnetic material target comprising the platinum sintered body according to 7 above, wherein the density is 95% to 100%.
 以上の本願発明の白金イオンを含む不純物濃度の低い水溶液を過電圧で電解還元することで得られる高純度の白金粉末は、不純物が極めて少なく、垂直磁気記録媒体の耐久性を大きく高める効果を有する。また、製造工程で混入する不純物が極めて少なく、かつ工程が簡単で、低コストで製造できる優れた効果を有する。 The high-purity platinum powder obtained by electrolytic reduction of an aqueous solution containing platinum ions according to the present invention having a low impurity concentration with overvoltage has very little impurities and has the effect of greatly enhancing the durability of the perpendicular magnetic recording medium. In addition, the impurities mixed in the manufacturing process are extremely small, the process is simple, and an excellent effect can be achieved at low cost.
 本発明は、不純物の少ない白金粉末を得る手段としては物理的な粉砕を用いずに比較的均一な粒径粉末が得られる湿式還元法で、同時に液成分からの不純物も比較的少なくてすむ電解還元法について検討を行った。
 その結果、高電流密度で水素ガスを発生させながら白金の電解を行うことにより、不純物の少ない白金粉末を得ることが可能となった。このように、不純物の少ない白金の水溶液を用い、不純物の混入源として水溶液の成分のみに限定することで、不純物の少ない白金粉末が得られた。
The present invention is a wet reduction method in which a relatively uniform particle size powder can be obtained without using physical pulverization as a means for obtaining platinum powder with few impurities, and at the same time, the amount of impurities from the liquid component is relatively small. The reduction method was examined.
As a result, it was possible to obtain platinum powder with less impurities by electrolyzing platinum while generating hydrogen gas at a high current density. Thus, platinum powder with few impurities was obtained by using platinum aqueous solution with few impurities, and limiting only the component of aqueous solution as a contamination source of an impurity.
 すなわち、本発明の磁性材ターゲット用白金粉末は、0.1~5μmの粒径分布を持つ白金の粉末であり、不純物のナトリウム、カリウム、カルシウム含有量を、全て20wtppm未満とし、水素、塩素がそれぞれ500wtppm未満、炭素、窒素、酸素がそれぞれ1000wtppm未満、その他の不純物が、それぞれ単独で10ppm未満、合計で100ppm未満とすることが可能となった。このような高純度の白金は、従来技術に見ることはできない。 That is, the platinum powder for a magnetic material target of the present invention is a platinum powder having a particle size distribution of 0.1 to 5 μm, and the contents of impurities such as sodium, potassium and calcium are all less than 20 wtppm, and hydrogen and chlorine are contained. Each can be less than 500 wtppm, carbon, nitrogen, and oxygen can each be less than 1000 wtppm, and other impurities can be individually less than 10 ppm, and less than 100 ppm in total. Such high-purity platinum cannot be found in the prior art.
 本発明の磁性材ターゲット用白金粉末を製造するには、白金イオン含有水溶液の電解還元により行うことができる。白金イオン含有水溶液としては、塩化白金水溶液を使用することができるが、他に、塩化白金酸アンモニウム水溶液を使用することができる。
 さらに、白金粉の微細化のために、0.1~1mlのヒドラジン、ホルマリン、ギ酸、アスコルビン酸から選択した1成分又は2成分以上を還元剤として添加することができる。しかし、これらは不純物の発生源となる可能性があるので、上記のように微量添加とすることが必要である。
 電解による製造に際しては、電流密度を1~5A/dm、溶解電圧を5~30Vとして、比較的高電流密度で電解することが好適である。なお、この電解条件は、効率的な製造条件を示すもので、この範囲を超える条件で製造することは、特に問題となるものではなく、本願これらを全て包含するものである。
The platinum powder for a magnetic material target of the present invention can be produced by electrolytic reduction of a platinum ion-containing aqueous solution. As the platinum ion-containing aqueous solution, a platinum chloride aqueous solution can be used, but in addition, an ammonium chloroplatinate aqueous solution can be used.
Furthermore, in order to refine the platinum powder, one or more components selected from 0.1 to 1 ml of hydrazine, formalin, formic acid, and ascorbic acid can be added as a reducing agent. However, since these may become a source of impurities, it is necessary to add a trace amount as described above.
In the production by electrolysis, it is preferable to perform electrolysis at a relatively high current density with a current density of 1 to 5 A / dm 2 and a melting voltage of 5 to 30 V. In addition, this electrolysis condition shows efficient manufacturing conditions, and manufacturing on conditions exceeding this range does not become a problem in particular, and includes all these.
 このように、不純物であるナトリウム、カリウム、カルシウム含有量が全て20wtppm未満、水素、塩素がそれぞれ500wtppm未満、炭素、窒素、酸素がそれぞれ1000wtppm未満、その他の不純物が、それぞれ単独で10ppm未満、合計で100ppm未満であり、0.1~5μmの粒径分布を持つ白金の粉末を、1000~1200°C、プレス圧力300~600kg/cmで、ホットプレスすることにより、白金焼結体からなる磁性材ターゲットを製造することが可能である。
 このようにして製造したターゲットは、上記の通り高純度を達成できると共に、密度を95%~100%とすることが可能となる。上記ホットプレスの条件は、高密度を達成するための好適な条件を示すものであって、これらの条件の範囲外でも、ターゲットを製造することは可能である。ターゲットの製造目的に合わせて、プレス条件を任意に設定することは、特に問題となるものではない。本願発明は、これらを包含する。
In this way, the contents of sodium, potassium and calcium as impurities are all less than 20 wtppm, hydrogen and chlorine are each less than 500 wtppm, carbon, nitrogen and oxygen are each less than 1000 wtppm, and other impurities are each independently less than 10 ppm, in total A magnetic powder composed of a platinum sintered body is hot-pressed with platinum powder having a particle size distribution of less than 100 ppm and a particle size distribution of 0.1 to 5 μm at 1000 to 1200 ° C. and a press pressure of 300 to 600 kg / cm 2. It is possible to produce a material target.
The target thus produced can achieve high purity as described above, and can have a density of 95% to 100%. The hot press conditions indicate suitable conditions for achieving high density, and the target can be manufactured even outside these conditions. Setting the press conditions arbitrarily according to the target manufacturing purpose is not particularly problematic. The present invention includes these.
 以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで好適な例を示すものであり、この例によって本願発明が制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。 Hereinafter, description will be made based on examples and comparative examples. In addition, a present Example shows a suitable example to the last, and this invention is not restrict | limited by this example. In other words, the present invention is limited only by the scope of the claims, and includes various modifications other than the examples included in the present invention.
(実施例1)
 10g/Lの塩化白金酸水溶液1Lを電解槽に入れ、マグネチックスターラーで攪拌しながら、板状のDSE陽極板、Ti陰極板を用いて、並行板電解を実施した。
 電解時の極間電圧は25■、極間距離は5cmに設定した。液温は恒温槽で35°Cを保持した。この電解操作により槽底に沈殿した白金の粉末を得た。この白金について粒度分布測定を実施したところ、最小径が0.259μm、最大径が4.472μmであった。得られた粒度分布を表1に示す。また、本粉末についてGD-MSによる不純物分析、ガス成分分析を実施し、表2に示されるような不純物分析値を得た。
Example 1
1 L of 10 g / L chloroplatinic acid aqueous solution was put into an electrolytic cell, and parallel plate electrolysis was carried out using a plate-like DSE anode plate and Ti cathode plate while stirring with a magnetic stirrer.
The electrode voltage during electrolysis was set to 25 ■ and the electrode distance was set to 5 cm. The liquid temperature was maintained at 35 ° C. in a thermostatic bath. By this electrolytic operation, platinum powder precipitated on the bottom of the tank was obtained. When the particle size distribution measurement was performed on this platinum, the minimum diameter was 0.259 μm, and the maximum diameter was 4.472 μm. The obtained particle size distribution is shown in Table 1. Further, impurity analysis and gas component analysis by GD-MS were performed on this powder, and impurity analysis values as shown in Table 2 were obtained.
 表1に示すように、粉末の殆どは0.5~2.5μmの範囲に存在していることが分かる。本発明においては、0.1~5μmの粒径分布を持つ粉末を使用するが、いずれも適合する粉末であった。製造条件によっては、稀に少量の規格外の粉末が混入することもあるが、それら極めて少量のため、無視することすら可能である。上記から、極めて微細な、白金粉末を製造することが可能であることが分かった。 As shown in Table 1, it can be seen that most of the powder exists in the range of 0.5 to 2.5 μm. In the present invention, powder having a particle size distribution of 0.1 to 5 μm is used. Depending on the manufacturing conditions, a small amount of non-standard powder may be mixed in rarely, but these are so small that they can even be ignored. From the above, it was found that it is possible to produce a very fine platinum powder.
 また、表2から明らかなように、不純物としての水素が300wtppm、塩素が290wtppm、炭素が850wtppm、酸素が980wtppmであった。これらは、いずれも本願発明の、水素、塩素がそれぞれ500wtppm未満、炭素、窒素、酸素がそれぞれ1000wtppm未満の条件を満たしていた。
 表2では、分析が可能である不純物元素を示しているが、表示していない不純物元素は、いずれも1wtppm以下である。これらの不純物も、同様に本願発明の条件、すなわちナトリウム、カリウム、カルシウム含有量が全て20wtppm未満、その他の不純物が、それぞれ単独で10ppm未満、合計で100ppm未満の条件を満たしていた。従来技術において、混入され易いナトリウム、カリウム、カルシウムについては、分析すら困難である程度に、少量であった。
As is clear from Table 2, hydrogen as impurities was 300 wtppm, chlorine was 290 wtppm, carbon was 850 wtppm, and oxygen was 980 wtppm. All of these satisfied the conditions of the present invention in which hydrogen and chlorine were each less than 500 wtppm and carbon, nitrogen and oxygen were each less than 1000 wtppm.
Table 2 shows impurity elements that can be analyzed, but all impurity elements not shown are 1 wtppm or less. Similarly, these impurities also satisfied the conditions of the present invention, that is, the contents of sodium, potassium and calcium were all less than 20 wtppm, and the other impurities were individually less than 10 ppm, and less than 100 ppm in total. In the prior art, sodium, potassium, and calcium, which are easily mixed, are in a small amount to the extent that even analysis is difficult.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(実施例2)
 10gの塩化白金酸水溶液1Lについて、あらかじめ0.1mlの98%ヒドラジン1水和物を添加したものを電解槽に入れ、マグネチックスターラーで攪拌しながら、板状のDSE陽極板、Ti陰極板を用いて、並行板電解を実施した。
 電解時の極間電圧は25■、極間距離は5cmに設定した。液温は恒温槽で35°Cを保持した。この電解操作により槽底に沈殿した白金の粉末について粒度分布測定を実施したところ最小径0.259μm、最大径1.981μmであった。
 得られた粒度分布を表3に示す。また、実施例2で得た粉末について、GD-MSによる不純物分析、ガス成分分析を実施し、表4に示す不純物分析値を得た。
(Example 2)
About 1 g of 10 g of chloroplatinic acid aqueous solution, 0.1 ml of 98% hydrazine monohydrate was added in advance to an electrolytic cell, and while stirring with a magnetic stirrer, plate-like DSE anode plate and Ti cathode plate were In parallel plate electrolysis was performed.
The electrode voltage during electrolysis was set to 25 ■ and the electrode distance was set to 5 cm. The liquid temperature was maintained at 35 ° C. in a thermostatic bath. When the particle size distribution measurement was performed on the platinum powder precipitated on the tank bottom by this electrolytic operation, the minimum diameter was 0.259 μm and the maximum diameter was 1.981 μm.
The obtained particle size distribution is shown in Table 3. Further, the powder obtained in Example 2 was subjected to impurity analysis and gas component analysis by GD-MS, and the impurity analysis values shown in Table 4 were obtained.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3に示すように、粉末の殆どは0.5未満と1.0~2.5μmの範囲に存在していることが分かる。このような微細化は、少量のヒドラジンの添加によるものであるが、ホルマリン、ギ酸、アスコルビン酸を添加しても同様の微細化を達成することができる。
 本発明においては、0.1~5μmの粒径分布を持つ粉末を使用するが、いずれも適合する粉末であった。製造条件によっては、稀に少量の規格外の粉末が混入することもあるが、それら極めて少量のため、無視することすら可能である。上記から、極めて微細な、白金粉末を製造することが可能であることが分かった。
As shown in Table 3, it can be seen that most of the powder is present in the range of less than 0.5 and 1.0 to 2.5 μm. Such refinement is due to the addition of a small amount of hydrazine, but the same refinement can be achieved by adding formalin, formic acid, and ascorbic acid.
In the present invention, powder having a particle size distribution of 0.1 to 5 μm is used. Depending on the manufacturing conditions, a small amount of non-standard powder may be mixed in rarely, but these are so small that they can even be ignored. From the above, it was found that it is possible to produce a very fine platinum powder.
 また、表4から明らかなように、不純物としての水素が320wtppm、塩素が270wtppm、炭素が840wtppm、窒素が790wtppm、酸素が890wtppmであった。これらは、いずれも本願発明の、水素、塩素がそれぞれ500wtppm未満、炭素、窒素、酸素がそれぞれ1000wtppm未満の条件を満たしていた。
 この中で、窒素が790wtppmというのは、実施例1に比べて増加している。これはヒドラジンの添加によるものである。しかし、少量の添加であるため、基準値以下であり、特に問題となるレベルであることは、容易に理解できる。
As is clear from Table 4, hydrogen as an impurity was 320 wtppm, chlorine was 270 wtppm, carbon was 840 wtppm, nitrogen was 790 wtppm, and oxygen was 890 wtppm. All of these satisfied the conditions of the present invention in which hydrogen and chlorine were each less than 500 wtppm and carbon, nitrogen and oxygen were each less than 1000 wtppm.
Among them, the nitrogen content of 790 wtppm is increased compared to Example 1. This is due to the addition of hydrazine. However, since it is a small amount of addition, it can be easily understood that it is below the reference value and is a particularly problematic level.
 表4では、分析が可能である不純物元素を示しているが、表示していない不純物元素は、いずれも1wtppm以下である。これらの不純物も、同様に本願発明の条件、すなわちナトリウム、カリウム、カルシウム含有量が全て20wtppm未満、その他の不純物が、それぞれ単独で10ppm未満、合計で100ppm未満の条件を満たしていた。従来技術において、混入され易いナトリウム、カリウム、カルシウムについては、分析すら困難である程度に、少量であった。 Table 4 shows impurity elements that can be analyzed, but all impurity elements not shown are 1 wtppm or less. Similarly, these impurities also satisfied the conditions of the present invention, that is, the contents of sodium, potassium and calcium were all less than 20 wtppm, and the other impurities were individually less than 10 ppm, and less than 100 ppm in total. In the prior art, sodium, potassium, and calcium, which are easily mixed, are in a small amount to the extent that even analysis is difficult.
 本願発明において、これらの高純度粉末を使用して、1000~1200°C、プレス圧力300~600kg/cmで、ホットプレスすることにより白金焼結体からなる磁性材ターゲットを製造することができる。そして、これにより密度が95%~100%であり、不純物であるナトリウム、カリウム、カルシウム含有量が全て20wtppm未満、水素、塩素がそれぞれ500wtppm未満、炭素、窒素、酸素がそれぞれ1000wtppm未満、その他の不純物が、それぞれ単独で10ppm未満、合計で100ppm未満である白金焼結体からなる焼結磁性材ターゲットを得ることができる。 In the present invention, a magnetic material target made of a platinum sintered body can be manufactured by hot pressing at 1000 to 1200 ° C. and a pressing pressure of 300 to 600 kg / cm 2 using these high purity powders. . Thus, the density is 95% to 100%, the contents of impurities such as sodium, potassium and calcium are all less than 20 wtppm, hydrogen and chlorine are each less than 500 wtppm, carbon, nitrogen and oxygen are each less than 1000 wtppm, and other impurities However, it is possible to obtain a sintered magnetic material target composed of a platinum sintered body that is less than 10 ppm each and less than 100 ppm in total.
 この例に示す高純度白金ターゲットは、白金-酸化物系の垂直磁気記録媒体用ターゲット材として極めて有用である。この例では、白金ターゲットとしての例を示したが、他の元素との合金ターゲット又は白金と酸化物との複合ターゲットとしても有用である。
 このような合金又は複合材においても、前記高純度白金としての特性は、そのまま活用することが可能であることは、容易に理解されるものである。
The high-purity platinum target shown in this example is extremely useful as a target material for a platinum-oxide type perpendicular magnetic recording medium. In this example, an example of a platinum target is shown, but it is also useful as an alloy target with other elements or a composite target of platinum and oxide.
It is easily understood that the characteristics as the high-purity platinum can be utilized as they are even in such an alloy or composite material.
 本発明によって得られる白金粉末は、従来技術にない純度のものであり、これを用いて製造されるターゲット材および磁気記録媒体の耐久性が、磁気記録媒体用ターゲット材として、より信頼のおけるものになる。また、著しい効率化が可能となり、製造コストの面からも大きな利点を得ることが可能であり、資源の長寿命化に役立つものである。以上から、磁気記録媒体用材料として極めて有用である。 The platinum powder obtained by the present invention is of a purity not found in the prior art, and the durability of the target material and magnetic recording medium produced using this is more reliable as the target material for the magnetic recording medium. become. Further, the efficiency can be significantly improved, and a great advantage can be obtained from the viewpoint of manufacturing cost, which is useful for extending the life of resources. From the above, it is extremely useful as a material for magnetic recording media.

Claims (8)

  1.  0.1~5μmの粒径分布を持つ白金の粉末であって、不純物であるナトリウム、カリウム、カルシウム含有量が全て20wtppm未満、水素、塩素がそれぞれ500wtppm未満、炭素、窒素、酸素がそれぞれ1000wtppm未満、その他の不純物が、それぞれ単独で10ppm未満、合計で100ppm未満であることを特徴とする磁性材ターゲット用白金粉末。 Platinum powder with a particle size distribution of 0.1 to 5 μm, all containing less than 20 wtppm of impurities such as sodium, potassium and calcium, less than 500 wtppm of hydrogen and chlorine, and less than 1000 wtppm of carbon, nitrogen and oxygen, respectively A platinum powder for a magnetic material target, wherein the other impurities are each independently less than 10 ppm and the total is less than 100 ppm.
  2.  白金イオン含有水溶液の電解還元により、0.1~5μmの粒径分布を持つ白金の粉末であって、不純物であるナトリウム、カリウム、カルシウム含有量が全て20wtppm未満、水素、塩素がそれぞれ500wtppm未満、炭素、窒素、酸素がそれぞれ1000wtppm未満、その他の不純物が、それぞれ単独で10ppm未満、合計で100ppm未満であることを特徴とする磁性材ターゲット用白金粉末の製造方法。 By electrolytic reduction of a platinum ion-containing aqueous solution, platinum powder having a particle size distribution of 0.1 to 5 μm, the contents of impurities such as sodium, potassium, and calcium are all less than 20 wtppm, hydrogen and chlorine are each less than 500 wtppm, A method for producing platinum powder for a magnetic material target, wherein carbon, nitrogen and oxygen are each less than 1000 wtppm, and other impurities are each independently less than 10 ppm, and less than 100 ppm in total.
  3.  白金イオン含有水溶液として、塩化白金水溶液を使用することを特徴とする請求項1記載の磁性材ターゲット用白金粉末の製造方法。 The method for producing platinum powder for a magnetic material target according to claim 1, wherein a platinum chloride aqueous solution is used as the platinum ion-containing aqueous solution.
  4.  白金粉の微細化のために、0.1~1mlのヒドラジン、ホルマリン、ギ酸、アスコルビン酸から選択した1成分又は2成分以上を還元剤として添加することを特徴とする請求項2又は3記載の磁性材ターゲット用白金粉末の製造方法。 4. One or more components selected from 0.1 to 1 ml of hydrazine, formalin, formic acid, and ascorbic acid are added as a reducing agent for refining platinum powder. Manufacturing method of platinum powder for magnetic material target.
  5.  電流密度を1~5A/dm、溶解電圧を5~30Vとして、電解することを特徴とする請求項2~4のいずれか一項に記載の磁性材ターゲット用白金粉末の製造方法。 The method for producing platinum powder for a magnetic material target according to any one of claims 2 to 4, wherein electrolysis is carried out at a current density of 1 to 5 A / dm 2 and a dissolution voltage of 5 to 30 V.
  6.  不純物であるナトリウム、カリウム、カルシウム含有量が全て20wtppm未満、水素、塩素がそれぞれ500wtppm未満、炭素、窒素、酸素がそれぞれ1000wtppm未満、その他の不純物が、それぞれ単独で10ppm未満、合計で100ppm未満であり、0.1~5μmの粒径分布を持つ白金の粉末を、1000~1200°C、プレス圧力300~600kg/cmで、ホットプレスすることを特徴とする白金焼結体からなる磁性材ターゲットの製造方法。 Impurities such as sodium, potassium, and calcium are all less than 20 wtppm, hydrogen and chlorine are each less than 500 wtppm, carbon, nitrogen, and oxygen are each less than 1000 wtppm, and other impurities are each less than 10 ppm, and less than 100 ppm in total. A magnetic material target comprising a platinum sintered body, characterized by hot-pressing platinum powder having a particle size distribution of 0.1 to 5 μm at 1000 to 1200 ° C. and a pressing pressure of 300 to 600 kg / cm 2 Manufacturing method.
  7.  不純物であるナトリウム、カリウム、カルシウム含有量が全て20wtppm未満、水素、塩素がそれぞれ500wtppm未満、炭素、窒素、酸素がそれぞれ1000wtppm未満、その他の不純物が、それぞれ単独で10ppm未満、合計で100ppm未満であることを特徴とする白金焼結体からなる焼結磁性材ターゲット。 Impurities such as sodium, potassium, and calcium are all less than 20 wtppm, hydrogen and chlorine are each less than 500 wtppm, carbon, nitrogen, and oxygen are each less than 1000 wtppm, and other impurities are each less than 10 ppm, and less than 100 ppm in total. A sintered magnetic material target comprising a platinum sintered body.
  8.  密度が95%~100%であることを特徴とする請求項7記載の白金焼結体からなる焼結磁性材ターゲット。 The sintered magnetic material target comprising a platinum sintered body according to claim 7, wherein the density is 95% to 100%.
PCT/JP2009/052844 2008-03-28 2009-02-19 Platinum powder for magnetic material target, method for producing the powder, method for producing magnetic material target composed of platinum sintered compact, and the sintered magnetic material target WO2009119196A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010505452A JP5301530B2 (en) 2008-03-28 2009-02-19 Platinum powder for magnetic material target, method for producing the same, method for producing magnetic material target comprising a platinum sintered body, and the same sintered magnetic material target

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008085520 2008-03-28
JP2008-085520 2008-03-28

Publications (1)

Publication Number Publication Date
WO2009119196A1 true WO2009119196A1 (en) 2009-10-01

Family

ID=41113404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052844 WO2009119196A1 (en) 2008-03-28 2009-02-19 Platinum powder for magnetic material target, method for producing the powder, method for producing magnetic material target composed of platinum sintered compact, and the sintered magnetic material target

Country Status (2)

Country Link
JP (1) JP5301530B2 (en)
WO (1) WO2009119196A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014159638A (en) * 2008-08-28 2014-09-04 Jx Nippon Mining & Metals Corp Method of manufacturing mixed powder containing noble metal powder and oxide powder and mixed powder containing noble metal powder and oxide powder
CN111918735A (en) * 2018-03-30 2020-11-10 田中贵金属工业株式会社 Metal powder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01180961A (en) * 1988-01-08 1989-07-18 Tanaka Kikinzoku Kogyo Kk Metallic pt for vacuum deposition
JPH0867974A (en) * 1994-08-26 1996-03-12 Mitsubishi Materials Corp Sputtering target for forming thin platinum film
JP2003313659A (en) * 2002-04-22 2003-11-06 Toshiba Corp Sputtering target for recording medium and magnetic recording medium
JP2005154814A (en) * 2003-11-21 2005-06-16 Tosoh Corp Sputtering target, manufacturing method therefor, and thin film produced with the use of the method
WO2005083138A1 (en) * 2004-03-01 2005-09-09 Nippon Mining & Metals Co., Ltd. Ni-Pt ALLOY AND TARGET COMPRISING THE ALLOY

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2913869B2 (en) * 1991-03-12 1999-06-28 三菱マテリアル株式会社 Sputtering target, manufacturing method thereof, and temperature sensor
JPH06128743A (en) * 1992-09-04 1994-05-10 Mitsubishi Materials Corp Transparent electrically conductive film, production and target used therefor
JP4042095B2 (en) * 2002-03-08 2008-02-06 日立金属株式会社 High purity metal powder manufacturing method and high purity metal powder manufacturing apparatus
JP2004162109A (en) * 2002-11-12 2004-06-10 Nikko Materials Co Ltd Sputtering target and powder for producing the same
US20060201589A1 (en) * 2005-03-11 2006-09-14 Honeywell International Inc. Components comprising metallic material, physical vapor deposition targets, thin films, and methods of forming metallic components

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01180961A (en) * 1988-01-08 1989-07-18 Tanaka Kikinzoku Kogyo Kk Metallic pt for vacuum deposition
JPH0867974A (en) * 1994-08-26 1996-03-12 Mitsubishi Materials Corp Sputtering target for forming thin platinum film
JP2003313659A (en) * 2002-04-22 2003-11-06 Toshiba Corp Sputtering target for recording medium and magnetic recording medium
JP2005154814A (en) * 2003-11-21 2005-06-16 Tosoh Corp Sputtering target, manufacturing method therefor, and thin film produced with the use of the method
WO2005083138A1 (en) * 2004-03-01 2005-09-09 Nippon Mining & Metals Co., Ltd. Ni-Pt ALLOY AND TARGET COMPRISING THE ALLOY

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014159638A (en) * 2008-08-28 2014-09-04 Jx Nippon Mining & Metals Corp Method of manufacturing mixed powder containing noble metal powder and oxide powder and mixed powder containing noble metal powder and oxide powder
CN111918735A (en) * 2018-03-30 2020-11-10 田中贵金属工业株式会社 Metal powder
EP3778070A4 (en) * 2018-03-30 2021-02-17 Tanaka Kikinzoku Kogyo K.K. Metal powder
US12031196B2 (en) 2018-03-30 2024-07-09 Tanaka Kikinzoku Kogyo K.K. Metal powder

Also Published As

Publication number Publication date
JPWO2009119196A1 (en) 2011-07-21
JP5301530B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
US5623725A (en) Process for producing very pure platinum materials, semi-finished parts and foils dispersion-reinforced with Y203
TWI601854B (en) A process for producing indium-hydroxide powder, a process for producing indium oxide powder, and a sputtering target
US20100084279A1 (en) Method for Collection of Valuable Metal from ITO Scrap
TW201730114A (en) Anhydrous nickel chloride and method for producing same
WO2014112198A1 (en) Method for recovering indium-tin alloy from ito target scrap and methods for producing indium oxide-tin oxide powder and ito target
JP4149364B2 (en) Dendritic fine silver powder and method for producing the same
JP5301530B2 (en) Platinum powder for magnetic material target, method for producing the same, method for producing magnetic material target comprising a platinum sintered body, and the same sintered magnetic material target
JP2006069882A (en) Fine tin oxide powder, and its production method and application
WO2013103034A1 (en) Method for producing gallium hydroxide, method for producing gallium oxide powder, gallium oxide powder, gallium oxide sintered compact and sputtering target formed from sintered compact
US3849265A (en) Electro-oxidative method for the recovery of molybdenum from sulfide ores
KR101396918B1 (en) Cobalt laeching solution for cobalt containing wastes and recycling method for cobalt using the same
EP3845687A1 (en) Electrolytic manganese dioxide, method for producing same, and use of same
CN107305945B (en) A method of height ratio capacity negative electrode material is prepared by acid etching waste liquid
US10718058B2 (en) Reduced iron production method using electrowinning method, and reduced iron produced thereby
JP3101267B2 (en) Method for improving adhesion of metal particles to carbon substrate
CN106191920B (en) A kind of method that silver tungsten waste recovery recycles
JP3173440B2 (en) Method for producing tin oxide powder
CN111200150B (en) All-vanadium redox flow battery electrolyte formula and process for maintaining high performance of electrolyte
EP3842387A1 (en) Method for producing refined lithium compound and method for producing lithium transition metal complex oxide
JP2005060220A (en) Minute tin oxide powder, its manufacture method, and its use
JP4474925B2 (en) Method for producing an aqueous solution containing indium ions and divalent tin ions
KR20240081568A (en) Method for preparing sulfate solution from secondary battery waste
JP2005200735A (en) Method of producing indium-containing aqueous solution
JPH09256182A (en) Easily pulverizable electrolytic nickel
TWI607970B (en) Metal polyacid and metal polyacid production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09724395

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010505452

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09724395

Country of ref document: EP

Kind code of ref document: A1