WO2009113530A1 - 充電状態均等化装置及びこれを具えた組電池システム - Google Patents

充電状態均等化装置及びこれを具えた組電池システム Download PDF

Info

Publication number
WO2009113530A1
WO2009113530A1 PCT/JP2009/054528 JP2009054528W WO2009113530A1 WO 2009113530 A1 WO2009113530 A1 WO 2009113530A1 JP 2009054528 W JP2009054528 W JP 2009054528W WO 2009113530 A1 WO2009113530 A1 WO 2009113530A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
charge state
voltage
evaluation value
equalization
Prior art date
Application number
PCT/JP2009/054528
Other languages
English (en)
French (fr)
Inventor
美香 桐本
浩也 村尾
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to CN2009801084069A priority Critical patent/CN101971455A/zh
Priority to US12/922,080 priority patent/US20110006734A1/en
Priority to EP09720820A priority patent/EP2254219A4/en
Priority to JP2010502827A priority patent/JPWO2009113530A1/ja
Publication of WO2009113530A1 publication Critical patent/WO2009113530A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0053Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • H02J7/007184Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage in response to battery voltage gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a device for equalizing the state of charge of a plurality of cells constituting an assembled battery, and an assembled battery system including the device.
  • battery packs such as battery packs in which a plurality of lithium ion secondary batteries (cells) are connected in series in a hybrid vehicle. Since the discharge output of the assembled battery is limited by the cell having the lowest state of charge (SOC) among the plurality of cells constituting the assembled battery, the discharge output of the assembled battery depends on the variation in the SOC of the plurality of cells constituting the assembled battery. The performance as an assembled battery will fall. Accordingly, an equalization process (for example, Japanese Laid-Open Patent Publication No. 2001-218376 and Japanese Laid-Open Patent Publication No. 2001-231178) for keeping variation in SOC of a plurality of cells constituting the assembled battery within a certain range is performed. Necessary.
  • FIG. 8 shows a battery system of a conventional hybrid vehicle.
  • the battery system includes an assembled battery in which a plurality of cells (1) are connected in series and a charged state that equalizes the charged state of the assembled battery. It is comprised from the equalization apparatus (4), and electric power can be supplied from the assembled battery to the load (3).
  • a motor for driving the wheels of the hybrid vehicle, a control circuit for controlling the entire vehicle, and the like are connected as the load (3).
  • An open / close switch (31) is interposed in the power supply path from the assembled battery to the load (3), and when the ignition switch (not shown) is turned on by the user, the open / close switch (31) is closed and the load from the assembled battery is loaded.
  • the open / close switch (31) is opened and the power supply from the assembled battery to the load (3) is stopped.
  • a discharge circuit (41) in which a resistor R and a switch SW are connected in series with each other is connected in parallel to each cell (1) at both ends of each cell (1) constituting the assembled battery.
  • a voltage measurement circuit (42) for measuring the voltage across both cells (open voltage).
  • the measurement result by each voltage measurement circuit (42) is supplied to the control circuit (40).
  • the control circuit (40) calculates the equalization target voltage based on the measurement result by each voltage measurement circuit (42), and then based on the calculated equalization target voltage and the measurement result by each voltage measurement circuit (42).
  • the switching operation of the switch SW of each discharge circuit (41) is controlled.
  • the control circuit (40) receives the power supply from the assembled battery and performs the control operation.
  • the lowest voltage is specified from the voltages across the cells (1) constituting the assembled battery, and a value obtained by adding a predetermined value to the lowest voltage is equalized. Is calculated as a target voltage. Then, the discharge by the discharge circuit (41) is started for the cells whose both-end voltages exceed the equalization target voltage, and then the discharge by the discharge circuit (41) is started when the both-end voltages reach the equalization target voltage. Stopped. Thereby, the SOCs of a plurality of cells constituting the assembled battery are equalized.
  • the assembled battery equalization process generally needs to be performed in a state where the load is small.
  • the assembled battery equalization process is performed in a stopped state (the ignition switch is off).
  • the assembled battery is also used as the power source of the load (3) and the power source of the control circuit (40) constituting the charge state equalization device (4), and the hybrid vehicle is stopped. Since the power is supplied from the assembled battery to the control circuit (40) even when the battery is in a state of being present, the voltage across the cell gradually decreases even when the discharge circuit (41) is not being discharged. It will be.
  • the discharge by the discharge circuit (41) is not performed as will be described later. That is, the voltage across the cell where the discharge by the discharged cell or the discharge circuit (41) has been finished first falls below the equalization target voltage.
  • the equalization process ends when the voltage across the cell L1 having the highest voltage across the voltage reaches the equalization target voltage.
  • the voltage across the cell L1 reaches the equalization target voltage and is discharged.
  • the both-end voltage gradually decreases, and the end-to-end voltage falls below the equalization target voltage at the end of the equalization process.
  • the both-end voltage gradually decreases, and the both-end voltage falls below the equalization target voltage at the end of the equalization process.
  • An object of the present invention is to provide a state-of-charge equalization apparatus capable of performing equalization processing with higher accuracy than before, and an assembled battery system including the apparatus.
  • the state-of-charge equalization apparatus targets a battery pack in which a plurality of cells are connected in series, and the state of charge evaluation value representing a state of charge or a value corresponding to the state of charge is different from the equalization target value.
  • a discharge control value deriving means for deriving a discharge end value to be terminated;
  • the discharge by the discharge means is started for the one or a plurality of discharge target cells, and then each discharge time derived by the discharge control value deriving means for the discharge by the discharge means for each discharge target cell has elapsed.
  • equalization processing means for executing an equalization process that ends when the state of charge evaluation value reaches each discharge end value derived by the discharge control value deriving means.
  • the discharge control value deriving unit is configured to perform a discharge state evaluation value of a discharge target cell and a charge state evaluation value of a non-discharge target cell before discharge by the discharge unit, and discharge by the discharge unit.
  • the state of charge evaluation value is a voltage across the cell, and further comprises voltage measuring means for measuring the voltage across the cells constituting the assembled battery, the discharge control value deriving means, The both-end voltage of the discharge target cell and the both-end voltage of the discharge non-target cell measured by the voltage measuring means before the discharge by the discharge means is started, and both ends of the cell when the discharge by the discharge means is being performed Based on the discharge voltage drop rate representing the voltage drop rate and the non-discharge voltage drop rate representing the voltage drop rate across the cell when the discharge by the discharge means is not performed, the discharge time or discharge end Deriving a value.
  • FIG. 3 shows a change in the voltage between both ends of the discharge target cell Li that is discharged by the discharging means during the equalization process and the voltage between both ends of the discharge non-target cell L0 that is not discharged by the discharging means.
  • Vd0 represents the equalization target voltage.
  • the voltage across both cells of the discharge target cell Li and the discharge non-target cell L0 decreases substantially linearly, and the voltage decrease rate of the discharge target cell Li is higher than the voltage decrease rate of the discharge non-target cell L0.
  • the time Tr and the voltage Vr at this point P are the voltages V1 and V0 of the discharge target cell before the discharge by the discharge means is started, and when the discharge by the discharge means is performed. It can be calculated from the voltage drop rate at the time of discharge of the cell and the difference between the voltage drop rate at the time of non-discharge of the cell when discharge by the discharge means is not performed.
  • the discharge time or the discharge end value is determined as follows: the voltage across the discharge target cell and the voltage across the discharge non-target cell before the discharge by the discharge means is started; It is derived based on the hourly voltage drop speed.
  • discharge by the discharge means is started on the discharge target cell, and thereafter The discharge by the discharge means for each discharge target cell is stopped when each derived discharge time elapses or when each discharge end voltage reaches the derived discharge end voltage.
  • the voltage across the discharge target cell at which the discharge by the discharge means ends last becomes equal to the voltage across the discharge non-target cell when the discharge ends and the equalization process ends.
  • the voltage across the discharge target cell where the discharge by the discharge means has ended first becomes equal to the voltage across the discharge non-target cell when the discharge ends, and then gradually at the same rate as the discharge non-target cell.
  • the voltage across the discharge target cell matches the voltage across the discharge non-target cell, and the discharge by the discharge non-target cell or the discharge circuit is finished first.
  • the conventional charge state equalization apparatus in which the cells are below the equalization target voltage, higher accuracy can be obtained for the equalization process.
  • the equalization target value calculation means calculates an equalization target value based on the lowest voltage across the plurality of cells constituting the assembled battery.
  • one or more discharge non-target cells whose voltage at both ends is equal to or less than the equalization target value can be suppressed to a small number, and when there is one discharge non-target cell, Since the voltage across the discharge target cell matches the voltage across the one discharge non-target cell, the voltage across all the cells constituting the assembled battery can be made uniform. Even when there are a plurality of discharge non-target cells, the number of the cells is small, so the variation in the voltage between both ends of the non-discharge target cells is small. The variation in the voltage at both ends can be kept small.
  • the discharge control value deriving means includes a voltage across the discharge target cell V1 before the discharge by the discharge means is started, a voltage across the discharge non-target cell V0, and a voltage drop during discharge.
  • the discharge time for each discharge target cell can be calculated with high accuracy by the above equation 1.
  • Discharge control means for performing discharge by the discharge means for a certain period of time on one or a plurality of cells of the plurality of cells constituting the assembled battery; After the discharge for a certain period of time, the charge state evaluation value before the discharge of one or a plurality of discharge target cells in which the discharge has been performed, and the charge state evaluation value at the time when the discharge has ended, Based on the fixed time, the charge state evaluation value change rate at the time of discharge is calculated, and the charge state before the discharge of one or a plurality of discharge non-target cells that have not been discharged for the fixed time Based on the evaluation value, the charge state evaluation value at the time when the discharge is completed, and the predetermined time, a charge state evaluation value change rate calculating means for calculating the charge state evaluation value change rate at the time of non-discharge is provided,
  • the discharge control value deriving unit uses the charge state evaluation value change rate during discharge and the charge state evaluation value change rate during non-discharge calculated by the charge state evaluation value change rate calculation unit, and discharge
  • the charge state evaluation value change rate during discharge and the charge state evaluation value during non-discharge are different for each battery pack system. Although it is necessary to obtain the change rate, it is troublesome to obtain the charge state evaluation value change rate by experiments or the like. Therefore, in the above specific configuration, for example, before the equalization process is performed, a discharge for a certain period of time is performed on one or a plurality of cells of a plurality of cells constituting the assembled battery.
  • Charge state evaluation value change rate and non-discharge charge state evaluation value change rate are calculated, and then each discharge target is calculated using the calculated discharge charge state evaluation value change rate and non-discharge charge state evaluation value change rate.
  • the discharge time or discharge end value for the cell is derived.
  • Charge state evaluation value change rate storage means in which the charge state evaluation value change rate during discharge and the charge state evaluation value change rate during non-discharge are stored; After the equalization process is completed, the charge state evaluation value before the equalization process is started for one or a plurality of discharge target cells discharged by the discharge unit in the equalization process and the discharge unit Based on the charge state evaluation value at the time when the discharge is completed and the discharge time derived by the discharge control value deriving means, the charge state evaluation value change rate during discharge is calculated, and the discharge is performed in the equalization process.
  • the charge state evaluation value change rate during discharge and the charge state evaluation value change rate during non-discharge stored in the charge state evaluation value change rate storage unit are calculated by the second charge state evaluation value change rate calculation unit, respectively.
  • the discharge time in the subsequent equalization process is derived using the charge state evaluation value change rate during discharge.
  • the discharge time for each discharge target cell is derived using the updated charge state evaluation value change rate during discharge and the charge state evaluation value change rate during non-discharge. According to the above specific configuration, since the discharge time is always calculated using values close to the actual charge state evaluation value change rate during discharge and the charge state evaluation value change rate during non-discharge, the equalization process is always performed with high accuracy. Can be done.
  • An assembled battery system comprises an assembled battery formed by connecting a plurality of cells in series, and a charge state equalizing device for equalizing the state of charge of each cell constituting the assembled battery, and the state of charge
  • the charge state equalization apparatus of the present invention is adopted as the equalization apparatus.
  • FIG. 1 is a block diagram showing a configuration of a battery system according to the present invention.
  • FIG. 2 is a flowchart showing the equalization processing procedure executed in the battery system of the first embodiment.
  • FIG. 3 is a graph for explaining the equalization processing of the present invention.
  • FIG. 4 is a graph showing a change in the voltage across each cell in the equalization processing of the present invention.
  • FIG. 5 is a flowchart showing the first half of the equalization processing procedure executed when the ignition switch is first turned off in the battery system of the second embodiment.
  • FIG. 6 is a flowchart showing the latter half of the above procedure.
  • FIG. 7 is a flowchart showing an equalization processing procedure executed when the ignition switch is turned off after the second time in the battery system.
  • FIG. 8 is a block diagram showing a configuration of a conventional battery system.
  • FIG. 9 is a graph for explaining a conventional problem.
  • the battery system of the present embodiment includes an assembled battery formed by connecting a plurality of (three in the illustrated example) cells (1) composed of lithium ion secondary batteries in series, It is comprised from the charge condition equalization apparatus (2) which equalizes the charge condition of this assembled battery, and electric power can be supplied from the assembled battery to the load (3).
  • the load (3) a motor for driving wheels, a control circuit for controlling the entire automobile, and the like are connected.
  • An open / close switch (31) is interposed in the power supply path from the assembled battery to the load (3), and when the ignition switch (not shown) is turned on by the user, the open / close switch (31) is closed and the load from the assembled battery is loaded.
  • the open / close switch (31) is opened and the power supply from the assembled battery to the load (3) is stopped.
  • Discharge circuits (21) formed by connecting resistors R and switches SW in series with each other are connected in parallel to each cell (1) at both ends of each cell (1) constituting the assembled battery.
  • a voltage measurement circuit (22) for measuring the voltage across both cells (open voltage).
  • the measurement result by each voltage measurement circuit (22) is supplied to the control circuit (20).
  • the control circuit (20) calculates the equalization target voltage based on the measurement results, and discharges to be performed by the discharge circuit (21) as will be described later for each discharge target cell exceeding the equalization target voltage.
  • the time is calculated, and the switching operation of the switch SW of each discharge circuit (21) is controlled based on the calculated discharge time and the time measurement result by a built-in timer (not shown).
  • the control circuit (20) receives the power from the assembled battery and performs the control operation.
  • FIG. 3 shows changes in the voltage across the discharge target cell Li that is discharged by the discharge circuit during the equalization process and the voltage across the discharge non-target cell L0 that is not discharged by the discharge circuit.
  • Vd0 represents the equalization target voltage.
  • the voltage between both ends of the discharge target cell Li and the discharge non-target cell L0 decreases substantially linearly, and the voltage decrease rate of the discharge target cell Li is higher than the voltage decrease rate of the discharge non-target cell L0. Therefore, there is a point P at which the voltage across the discharge target cell Li becomes equal to the voltage across the discharge non-target cell L0.
  • this point P coincides with the point where the state of charge of the discharge target cell becomes equal to the state of charge of the non-discharge target cell.
  • the time at the above point is calculated as the discharge time for one or a plurality of discharge target cells whose both-end voltages exceed the equalization target voltage, and the one or a plurality of discharge target cells.
  • the discharge by the discharge circuit for each discharge target cell is stopped at the time when each calculated discharge time has elapsed.
  • the discharge time for each discharge target cell can be determined as follows.
  • V1 the voltage drop rate during discharge of the cell when the discharge by the discharge circuit is performed
  • Tr the discharge time by the discharge circuit
  • FIG. 2 shows a procedure of equalization processing executed by the control circuit (20) in a state where the hybrid vehicle is stopped.
  • the ignition switch is set to OFF, first, in step S1, open voltages V1 [0] to V1 [N-1] of a plurality (N) of cells constituting the assembled battery are measured, and then step S2 Then, the minimum voltage Vmin is specified from the plurality of open-circuit voltages obtained as a result of the measurement, and the equalization target voltage Vd0 is calculated.
  • step S3 after the cell number i is initialized to 0, in step S4, it is determined whether or not the open circuit voltage V1 [i] of the cell with the cell number i exceeds the equalization target voltage Vd0. If it is determined, the process proceeds to step S5, where the cell open-circuit voltage V1 [i] and the minimum voltage Vmin specified in step S2 are used for the cell using the following formula 5 stored in the built-in memory.
  • the discharge time Tr [i] is calculated.
  • the non-discharge voltage drop rate Ds0 and the discharge voltage drop rate Ds1 are constants obtained experimentally in advance.
  • step S6 the discharge circuit connected to the cell is turned on to start discharging.
  • step S7 the cell number i is incremented by one.
  • step S8 it is determined whether or not the cell number i matches the number N of cells constituting the assembled battery. If NO is determined, the process returns to step S4 and the above procedure is repeated. If the open circuit voltage V1 [i] of the cell is equal to or lower than the equalization target voltage Vd0 and it is determined NO in step S4 in the process of repeating the above procedure, the process bypasses steps S5 and S6. The process proceeds to step S7.
  • step S8 it is determined whether or not the open circuit voltage V1 [i] exceeds the equalization target voltage Vd0 for all cells constituting the assembled battery, and all the open circuit voltage V1 [i] exceeds the equalization target voltage Vd0.
  • step S10 the discharge circuit is set to OFF at the time when the discharge time calculated in step S5 has elapsed for each discharge target cell in which discharge by the discharge circuit has been started, and the discharge ends.
  • the open voltage of the cell L0 is specified as the lowest voltage Vmin, and the both-ends voltage equalizes the equalized target voltage Vd0.
  • Discharge times Tr [m] and Tr [n] for the cells Lm and Ln that exceed the above are calculated using Equation 5 above. Then, after the discharge by the discharge circuit is started for the cells Lm and Ln, the discharge by the discharge circuit for the cell Ln is stopped when the calculated discharge time Tr [n] has elapsed, and the discharge time Tr [m] When the time elapses, the discharge by the discharge circuit to the cell Lm is stopped.
  • the voltage across the cell Lm becomes equal to the voltage across the cell L0 when the discharge by the discharge circuit is finished and the equalization process is finished.
  • the voltage across the cell Ln becomes equal to the voltage across the cell L0 when the discharge by the discharge circuit is completed, and then gradually decreases at the same rate as the cell L0.
  • the voltage across the cells Lm and Ln which are discharge target cells, coincides with the voltage across the cell L0, which is a discharge non-target cell.
  • the voltage across the discharge target cell at the time when the equalization process is completed is a plurality of non-discharge target cells. Therefore, it corresponds to the voltage across the discharge non-target cell having the lowest open circuit voltage.
  • the discharge time during which the voltage across the discharge target cell is equal to the voltage across the discharge non-target cell having the lowest open circuit voltage among the plurality of discharge non-target cells is calculated. It is also possible to employ a configuration that calculates a discharge time that is equal to the voltage across the non-discharge target cell.
  • the equalization process ends by performing discharge by the discharge circuit for the discharge time in which the voltage across the discharge target cells is equal to the voltage across the discharge non-target cells. Occasionally, the voltage across all discharge target cells can be made to match the voltage across discharge non-target cells, and the equalization process can be more accurate than before.
  • the non-discharge voltage drop rate Ds0 and the discharge voltage drop rate Ds1 are constants obtained experimentally in advance, whereas in the battery system of this embodiment, Each time the equalization process ends, the non-discharge voltage drop rate Ds0 and the discharge voltage drop rate Ds1 are updated. Since the configuration of the battery system of this embodiment is the same as that of the battery system of the first embodiment shown in FIG. 1 except for the control circuit, the description thereof is omitted.
  • FIG. 5 shows an equalization processing procedure executed by the control circuit of this embodiment when the ignition switch is turned off for the first time after the hybrid vehicle has traveled for the first time.
  • the calculation method of the primary equalization target voltage is the same as the equalization target voltage calculation method of the first embodiment.
  • step S13 after the cell number i is initialized to 0, in step S14, it is determined whether or not the open circuit voltage V1 [i] of the cell with the cell number i exceeds the primary equalization target voltage Vd0 ′. If yes, the process proceeds to step S15, the discharge circuit connected to the cell is turned on and discharge is started. In step S16, the cell number i is set to 1 only. Count up. Next, in step S17, it is determined whether or not the cell number i matches the number N of cells constituting the assembled battery. If NO is determined, the process returns to step S14 and the above procedure is repeated.
  • step S14 If the open circuit voltage V1 [i] of the cell is equal to or lower than the primary equalization target voltage Vd0 ′ and it is determined NO in step S14 in the process of repeating the above procedure, the process bypasses step S15. Then, the process proceeds to step S16.
  • step S17 the determination is YES in step S17, the process proceeds to step S18, the built-in timer is reset, and the timing operation is performed. Let it begin. Subsequently, in step S19, when a certain time (about 2 hours) has elapsed since the start of the timing operation, all the discharge circuits connected to all the discharge target cells are set to OFF.
  • step S20 At the end of discharge, open voltages V1 [0] to V1 [N-1] of a plurality of cells constituting the assembled battery are measured.
  • step S20 a non-discharge voltage drop rate Ds0 and a discharge voltage drop rate Ds1 are calculated.
  • the calculation method of the secondary equalization target voltage is the same as the calculation method of the equalization target voltage of the first embodiment.
  • the discharge starts for each of the non-discharge target cells that have not been discharged for a certain period of time among the plurality of cells constituting the assembled battery.
  • the average value of the differences was calculated and calculated. The average value is divided by the predetermined time.
  • a non-discharge voltage drop rate Ds0 is obtained.
  • the open circuit voltage measured in step S11 and the discharge are measured for each discharge target cell that has been discharged for a certain period of time.
  • the difference from the open circuit voltage measured in step S19 is calculated, and then the average value of these differences is calculated, and the calculated average value is divided by the predetermined time. Thereby, the voltage drop rate Ds1 during discharge is obtained.
  • the difference between the open circuit voltage before the start of discharge for a certain time and the open circuit voltage at the end of the discharge is calculated for each of the plurality of discharge non-target cells. It is also possible to divide by the predetermined time and calculate the average value of the division results as the non-discharge voltage drop rate Ds0.
  • the difference between the open circuit voltage before the start of discharge for a predetermined time and the open circuit voltage at the end of the discharge for each of the plurality of discharge target cells is calculated as the fixed voltage. It is also possible to divide by time and calculate the average value of those division results as the discharge voltage drop rate Ds1.
  • step S22 the open circuit voltage V1 [i] measured in step S19 for the cell of cell number i is determined in step S20. It is determined whether or not the calculated secondary equalization target voltage Vd0 is exceeded. If the determination is YES, the process proceeds to step S23, and the open circuit voltage V1 [i] of the cell and the above step S20. From the identified minimum voltage Vmin, the non-discharge voltage drop rate Ds0 and the discharge voltage drop rate Ds1 calculated in step S20, the discharge time Tr [i] for the cell is calculated using Equation 5 above.
  • step S24 the discharge circuit connected to the cell is turned on to start discharging, and in step S25, the cell number i is incremented by one.
  • step S26 it is determined whether or not the cell number i matches the number N of cells constituting the assembled battery. If NO is determined, the process returns to step S22 and the above procedure is repeated. If the open circuit voltage V1 [i] of the cell is equal to or lower than the second equalization target voltage Vd0 and it is determined NO in step S22 in the process in which the above procedure is repeated, step S23 and step S24 are performed. Detour and go to step S25.
  • step S26 the discharge time for all discharge target cells exceeding the target voltage Vd0 is calculated and discharge by the discharge circuit is started, it is determined as YES in step S26, the process proceeds to step S27, and the built-in timer is reset. Start timing operation. Subsequently, in step S28, for each discharge target cell for which discharge by the discharge circuit has been started, when the discharge time calculated in step S23 has elapsed, the switch of the discharge circuit is set to OFF and the discharge ends.
  • step S23 open-circuit voltages V1 [0] to V1 [N-1] of a plurality of cells constituting the assembled battery are measured.
  • step S29 the non-discharge voltage drop rate Ds0 and the discharge time are discharged.
  • the voltage drop rate Ds1 is calculated and stored in the built-in memory, and the above procedure is terminated.
  • step S29 the step before the equalization process is started for each discharge non-target cell that has not been discharged by the discharge circuit in the equalization process. After calculating the difference between the open circuit voltage measured in S19 and the open circuit voltage measured at the time when the equalization process is completed in step S28, the average value of these differences is calculated, and the calculated average value Is divided by the time from the start to the end of the equalization process, that is, the longest discharge time calculated in step S23. As a result, a non-discharge voltage drop rate Ds0 is obtained.
  • step S19 is performed before the equalization process is started for each discharge target cell that has been discharged by the discharge circuit in the equalization process.
  • the difference between the open-circuit voltage measured in step S28 and the open-circuit voltage measured at the time when each discharge time has elapsed in step S28 and the discharge by the discharge circuit is completed, and the calculated difference is divided by each discharge time. After that, the average value of the division results is calculated as the voltage drop rate Ds1 during discharge.
  • the discharge target cell exceeding the primary equalization target voltage Vd0 ′ is discharged for a fixed time, and the discharge for the fixed time is started.
  • the voltage drop rate Ds0 during non-discharge and the voltage drop rate Ds1 during discharge are calculated from the open-circuit voltage before discharge and the open-circuit voltage when the discharge for the fixed time is completed and the fixed time.
  • the discharge time for each discharge target cell exceeding the secondary equalization target voltage Vd0 is calculated using both voltage drop rates Ds0 and Ds1, and discharge is performed for the calculated discharge time for each discharge target cell. An equalization process is performed.
  • the non-discharge voltage drop rate Ds0 is calculated from the open circuit voltage before the equalization process is started, the open circuit voltage when the equalization process is completed, and the equalization process time required for the equalization process.
  • the voltage drop during discharge is calculated from the open circuit voltage before the start of the equalization process and the open voltage at the time when the discharge by each discharge circuit is completed in the equalization process and the calculated discharge time.
  • the speed Ds1 is calculated, and the calculated both voltage drop speeds Ds0 and Ds1 are stored in the built-in memory of the control circuit.
  • FIG. 7 shows the equalization processing procedure executed by the control circuit of this embodiment when the ignition switch is set to OFF after the second time.
  • step S31 open voltages V1 [0] to V1 [N-1] of a plurality of (N) cells constituting the assembled battery are measured, and then in step S32, a plurality of obtained results are obtained.
  • the equalization target voltage calculation method is the same as the equalization target voltage calculation method of the first embodiment.
  • step S33 after the cell number i is initialized to 0, in step S34, it is determined whether or not the open circuit voltage V1 [i] of the cell with the cell number i exceeds the equalization target voltage Vd0. If it is determined, the process proceeds to step S35, the switch of the discharge circuit connected to the cell is set to ON, and discharge is started.
  • step S36 the open circuit voltage V1 [i] of the cell, the minimum voltage Vmin specified in step S32, the non-discharge voltage drop rate Ds0 and the discharge voltage drop rate Ds1 stored in the built-in memory. From the above, after calculating the discharge time Tr [i] for the cell using Equation 5, the cell number i is incremented by 1 in step S37. Next, in step S38, it is determined whether or not the cell number i matches the number N of cells constituting the assembled battery. If it is determined no, the process returns to step S34 and the above procedure is repeated.
  • step S34 If the open circuit voltage V1 [i] of the cell is equal to or lower than the equalization target voltage Vd0 and it is determined NO in step S34 in the process of repeating the above procedure, the process bypasses steps S35 and S36. Control goes to step S37.
  • step S38 When discharge by the discharge circuit is started for the discharge target cells and the discharge time for all of the discharge target cells is calculated, it is determined as YES in step S38, and the process proceeds to step S39. Reset to start timing operation. Subsequently, in step S40, for each discharge target cell for which discharge by the discharge circuit has started, when the discharge time calculated in step S36 has elapsed, the switch of the discharge circuit is set to OFF and the discharge is terminated.
  • step S36 open-circuit voltages V1 [0] to V1 [N-1] of a plurality of cells constituting the assembled battery are measured.
  • step S41 the non-discharge voltage drop rate Ds0 and the discharge time are discharged.
  • the voltage drop rate Ds1 is calculated and overwritten in the voltage drop rate storage area of the built-in memory, and the above procedure is terminated.
  • the non-discharge voltage drop rate and the discharge voltage drop rate stored in the built-in memory at that time are updated to the calculated non-discharge voltage drop rate and discharge voltage drop rate.
  • the calculation method of the non-discharge voltage drop rate Ds0 and the discharge voltage drop rate Ds0 is the same as that in step S29.
  • the ignition switch when the ignition switch is set to OFF after the second time, the equalized target voltage Vd0 using the non-discharge voltage drop rate Ds0 and the discharge voltage drop rate Ds1 stored in the built-in memory.
  • the discharge time for each discharge target cell exceeding the above is calculated, and an equalization process is performed in which discharge is performed for each discharge time calculated for each discharge target cell.
  • the non-discharge voltage drop rate Ds0 is calculated from the open circuit voltage before the equalization process is started, the open circuit voltage when the equalization process is completed, and the equalization process time required for the equalization process.
  • the voltage drop during discharge is calculated from the open circuit voltage before the start of the equalization process and the open voltage at the time when the discharge by each discharge circuit is completed in the equalization process and the calculated discharge time.
  • the speed Ds1 is calculated, and the non-discharge voltage drop speed and the discharge voltage drop speed stored in the internal memory at that time are updated to the calculated non-discharge voltage drop speed and discharge voltage drop speed.
  • the non-discharge voltage drop rate Ds0 and the discharge voltage drop rate Ds1 are automatically calculated. There is no need for troublesome work such as that. Also, every time the equalization process is completed, the non-discharge voltage drop rate Ds0 and the discharge voltage drop rate Ds1 are updated, and the discharge is always performed using values close to the actual non-discharge voltage drop rate and the discharge voltage drop rate. Since the discharge time for the target cell is calculated, the equalization process can always be performed with high accuracy.
  • each part structure of this invention is not restricted to the said embodiment, A various deformation
  • the discharge time is calculated for each discharge target cell, and the discharge by the discharge circuit is terminated when the calculated discharge time has elapsed. It is also possible to employ a configuration in which the discharge end voltage at which the voltage across the target cell becomes equal is calculated and the discharge by the discharge circuit is terminated when the voltage across the discharge target cell reaches the calculated discharge end voltage. It is also possible to adopt a configuration in which the discharge by the discharge circuit is controlled based on the discharge time and the discharge end voltage.
  • the discharge time is calculated based on the both-end voltage of the discharge target cell, the both-end voltage of the discharge non-target cell, and the voltage drop rates Ds0 and Ds1, but the charge state evaluation value is the charge Other values depending on the state (SOC [%] or remaining capacity [Ah]) and the state of charge, for example, an integrated value of the current flowing through the cell may be employed.
  • the charge state evaluation value change rate is the rate at which the current integrated value increases when the direction in which the current flows during discharge is a positive direction. Will be expressed.
  • the discharge time or the discharge end value is derived according to a table representing the relationship between the open voltage of the discharge target cell and the open voltage of the non-discharge target cell and the discharge time or discharge end value.
  • a method of calculating the equalization target voltage a method of calculating the equalization target voltage based on the lowest open circuit voltage among the open circuit voltages of a plurality of cells constituting the assembled battery is adopted.
  • the present invention is not limited to this, and various known methods such as a method of calculating the equalization target voltage based on the average value of the open-circuit voltages can be employed.
  • the charge state evaluation value change rate during discharge and the charge state evaluation value change rate during non-discharge may vary from cell to cell
  • the charge state evaluation value change rate during discharge and the non-discharge charge state evaluation value for each cell It is also possible to adopt a configuration for calculating the change rate.
  • the discharge voltage drop rate and the non-discharge voltage drop rate are stored in the memory for each SOC range, and the discharge time is calculated using the discharge voltage drop rate and the non-discharge voltage drop rate according to the SOC at that time. It is also possible to calculate.
  • discharge voltage drop rate and the non-discharge voltage drop rate calculated after the equalization process and the discharge voltage drop rate and the non-discharge voltage drop rate calculated after the end of the previous equalization process stored in the memory.
  • Discharge voltage drop rate during discharge and non-discharge voltage drop rate) the average value of each voltage drop rate after weighting is calculated, and the voltage drop during discharge stored in the memory It is also possible to update the speed and the voltage drop speed during non-discharge to the calculated average values.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

 複数のセル1を直列に接続してなる組電池を対象として各セル1の充電状態を均等化する装置であって、各セル1の放電を行なう放電回路21と制御回路20とを具えている。制御回路20は、充電状態評価値が均等化目標値と異なる放電対象セルについて夫々、放電回路21による放電が開始される前の放電対象セルの充電状態評価値及び放電非対象セルの充電状態評価値と、セルの放電時充電状態評価値変化速度と、セルの非放電時充電状態評価値変化速度とに基づいて、前記放電対象セルの充電状態が前記放電非対象セルの充電状態と等しくなる放電時間或いは放電終了値を導出する手段と、放電対象セルに対して放電回路21による放電を開始した後、各放電対象セルに対する放電回路21による放電を、導出された各放電時間が経過したときに或いは充電状態評価値が導出された各放電終了値に達したときに終了する手段とを具えている。

Description

充電状態均等化装置及びこれを具えた組電池システム
 本発明は、組電池を構成する複数のセルの充電状態を均等化する装置、及び該装置を具えた組電池システムに関するものである。
 近年、ハイブリッド自動車において複数のリチウムイオン二次電池(セル)を直列に接続してなる組電池が電源として利用される等、組電池の利用が拡がっている。組電池の放電出力は、組電池を構成する複数のセルの中で充電状態(SOC:State Of Charge)の最も低いセルによって制限されるため、組電池を構成する複数のセルのSOCのばらつきによって組電池としての性能が低下してしまう。
 そこで、組電池を構成する複数のセルのSOCのばらつきを一定範囲内に収めるための均等化処理(例えば日本国公開特許公報第2001-218376号及び日本国公開特許公報第2001-231178号)が必要となる。
 図8は、従来のハイブリッド自動車のバッテリシステムを表わしており、該バッテリシステムは、複数のセル(1)を直列に接続してなる組電池と、該組電池の充電状態を均等化する充電状態均等化装置(4)とから構成され、該組電池から負荷(3)への電力の供給が可能となっている。尚、負荷(3)としては、ハイブリッド自動車の車輪を駆動するモータや自動車全体を制御する制御回路等が接続されている。
 組電池から負荷(3)への電力供給経路には開閉スイッチ(31)が介在し、図示省略するイグニッションスイッチをユーザがオン操作することによって、開閉スイッチ(31)が閉じて、組電池から負荷(3)への電力供給が開始され、或いは該イグニッションスイッチをユーザがオフ操作することによって、開閉スイッチ(31)が開いて、組電池から負荷(3)への電力供給が停止される。
 組電池を構成する各セル(1)の両端には、抵抗器R及びスイッチSWを互いに直列に接続してなる放電回路(41)が各セル(1)に対して並列に接続されており、各放電回路(41)の両端には、各セルの両端電圧(開放電圧)を測定する電圧測定回路(42)が接続されている。
 各電圧測定回路(42)による測定結果は、制御回路(40)に供給される。制御回路(40)は、各電圧測定回路(42)による測定結果に基づいて均等化目標電圧を算出した後、算出した均等化目標電圧と各電圧測定回路(42)による測定結果とに基づいて各放電回路(41)のスイッチSWのスイッチング動作を制御する。尚、該制御回路(40)は、組電池から電力の供給を受けて該制御動作を行なう。
 上記制御回路(40)による均等化処理においては、例えば、組電池を構成する複数のセル(1)の両端電圧の中から最低電圧が特定され、該最低電圧に所定値を加算した値が均等化目標電圧として算出される。そして、両端電圧が該均等化目標電圧を超えるセルに対して、放電回路(41)による放電が開始された後、両端電圧が均等化目標電圧に達した時点で放電回路(41)による放電が停止される。これによって、組電池を構成する複数のセルのSOCが均等化される。
 尚、組電池に対する長時間の電圧均等化動作による残存エネルギー(SOC)の減少を抑制すべく、複数の蓄電デバイスの端子電圧の内、最大端子電圧と最小端子電圧との電圧差に応じた時間だけ電圧平衡回路(充電状態均等化装置)による電圧均等化動作を行なう電圧均等化制御システム(日本国公開特許公報第2006-166615号)が提案されている。
 ところで、組電池の均等化処理は、一般に、負荷の小さい状態で実施する必要があり、ハイブリッド自動車においては、停車状態(イグニッションスイッチがオフの状態)で組電池の均等化処理が行なわれる。
 しかしながら、ハイブリッド自動車のバッテリシステムにおいては、組電池が負荷(3)の電源及び充電状態均等化装置(4)を構成する制御回路(40)の電源として兼用されており、ハイブリッド自動車が停車している状態であっても組電池から該制御回路(40)に対し電力が供給されるため、セルの両端電圧は放電回路(41)による放電が行なわれていない状態であっても徐々に低下することになる。従って、均等化処理の開始時に両端電圧の最も高かったセルの両端電圧が均等化目標電圧に達して均等化処理が終了する時点では、後述の如く、放電回路(41)による放電が実施されなかったセルや放電回路(41)による放電が先に終了したセルの両端電圧が均等化目標電圧を下回ることになる。
 例えば、図9に示す如く、3つのセルL1、L2、L3によって組電池が構成されており、両端電圧が均等化目標電圧を上回るセルL1、L2に対して放電回路による放電が実施された場合には、両端電圧の最も高いセルL1の両端電圧が均等化目標電圧に達した時点で均等化処理が終了することになるが、セルL2については、両端電圧が均等化目標電圧に達して放電回路による放電が終了した後においても両端電圧が徐々に低下し、均等化処理の終了時点では両端電圧が均等化目標電圧を下回ることになる。又、セルL3については、放電回路による放電が実施されないにも拘わらず、両端電圧が徐々に低下し、均等化処理の終了時点では両端電圧が均等化目標電圧を下回ることになる。
 従来の均等化処理においては、上述の如く、均等化処理の終了時点で放電回路による放電が実施されなかったセルや放電回路による放電が先に終了したセルの両端電圧が均等化目標電圧を下回ることとなって、複数のセル間で両端電圧に大きなばらつきが残ることとなり、均等化処理について高い精度が得られない問題があった。特に、停車状態での消費電力が大きい場合や、複数のセル間で両端電圧のばらつきが大きく均等化処理に長い時間がかかる場合に、上記問題は顕著となる。
 本発明の目的は、従来よりも高い精度で均等化処理を行なうことが出来る充電状態均等化装置、及び該装置を具えた組電池システムを提供することである。
 本発明に係る充電状態均等化装置は、複数のセルを直列に接続してなる組電池を対象として、充電状態或いは充電状態に応じた値を表わす充電状態評価値が均等化目標値と異なるセルを放電させることにより各セルの充電状態を均等化する装置であって、
 各セルの放電を行なう放電手段と、
 均等化目標値を算出する均等化目標値算出手段と、
 充電状態評価値が前記均等化目標値算出手段によって算出された均等化目標値と異なる1或いは複数の放電対象セルについて夫々、前記放電手段による放電を実施すべき放電時間或いは前記放電手段による放電を終了すべき放電終了値を導出する放電制御値導出手段と、
 前記1或いは複数の放電対象セルに対して前記放電手段による放電を開始し、その後、各放電対象セルに対する前記放電手段による放電を、前記放電制御値導出手段によって導出された各放電時間が経過したときに、或いは充電状態評価値が前記放電制御値導出手段によって導出された各放電終了値に達したときに終了する均等化処理を実行する均等化処理手段
とを具えている。そして、前記放電制御値導出手段は、前記放電手段による放電が開始される前の放電対象セルの充電状態評価値及び放電非対象セルの充電状態評価値と、前記放電手段による放電が実施されているときのセルの充電状態評価値の変化速度を表わす放電時充電状態評価値変化速度と、前記放電手段による放電が実施されていないときのセルの充電状態評価値の変化速度を表わす非放電時充電状態評価値変化速度とに基づいて、前記放電対象セルの充電状態が前記放電非対象セルの充電状態と等しくなる放電時間或いは放電終了値を導出する。
 具体的構成において、前記充電状態評価値はセルの両端電圧であって、更に、組電池を構成する各セルの両端電圧を測定する電圧測定手段を具えており、前記放電制御値導出手段は、前記放電手段による放電が開始される前に前記電圧測定手段によって測定された放電対象セルの両端電圧及び放電非対象セルの両端電圧と、前記放電手段による放電が実施されているときのセルの両端電圧の低下速度を表わす放電時電圧低下速度と、前記放電手段による放電が実施されていないときのセルの両端電圧の低下速度を表わす非放電時電圧低下速度とに基づいて、放電時間或いは放電終了値を導出する。
 上記充電状態均等化装置による均等化処理においては、両端電圧が均等化目標値を超えるセルに対して放電手段による放電が実施される。
 図3は、均等化処理中に放電手段による放電が実施されている放電対象セルLiの両端電圧と放電手段による放電が実施されていない放電非対象セルL0の両端電圧の変化を表わしている。尚、図中のVd0は均等化目標電圧を表わしている。図示の如く、放電対象セルLi及び放電非対象セルL0の何れのセルの両端電圧も略線形的に低下し、放電対象セルLiの電圧低下速度は放電非対象セルL0の電圧低下速度に比べて高いため、放電対象セルLiの両端電圧が放電非対象セルL0の両端電圧と等しくなる点Pが存在する。ここで、セルの両端電圧は充電状態に応じて変化するため、この点Pは放電対象セルの充電状態が放電非対象セルの充電状態と等しくなる点と一致する。この点Pの時間Tr及び電圧Vrは、放電手段による放電が開始される前の放電対象セルの両端電圧V1及び放電非対象セルの両端電圧V0と、放電手段による放電が実施されているときのセルの放電時電圧低下速度と放電手段による放電が実施されていないときのセルの非放電時電圧低下速度の差とから算出することが出来る。
 そこで、本発明の均等化処理においては、両端電圧が均等化目標値を超える1或いは複数の放電対象セルについて夫々、充電状態が放電非対象セルの充電状態と等しくなる上記点の時間或いは電圧が放電時間或いは放電終了値として導出される。ここで、該放電時間或いは該放電終了値は、上述の如く放電手段による放電が開始される前の放電対象セルの両端電圧及び放電非対象セルの両端電圧と、放電時電圧低下速度と非放電時電圧低下速度とに基づいて導出される。
 この様にして、両端電圧が均等化目標値を超える1或いは複数の放電対象セルについてそれぞれ放電時間或いは放電終了値が導出された後、放電対象セルに対して放電手段による放電が開始され、その後、各放電対象セルに対する放電手段による放電が、導出された各放電時間が経過したときに、或いは両端電圧が導出された各放電終了電圧に達したときに停止される。これによって、放電手段による放電が最後に終了する放電対象セルの両端電圧は、その放電が終了して均等化処理が終了する時点で前記放電非対象セルの両端電圧と等しくなる。又、放電手段による放電が先に終了した放電対象セルの両端電圧は、その放電が終了した時点で該放電非対象セルの両端電圧と等しくなり、その後、該放電非対象セルと同じ速度で徐々に低下することなる。この様にして、均等化処理が終了する時点では、放電対象セルの両端電圧が放電非対象セルの両端電圧に一致することとなって、放電非対象セルや放電回路による放電が先に終了したセルが均等化目標電圧を下回る従来の充電状態均等化装置に比べて均等化処理について高い精度を得ることが出来る。
 具体的構成において、前記均等化目標値算出手段は、組電池を構成する前記複数のセルの両端電圧の内、最低の両端電圧に基づいて均等化目標値を算出する。
 上記具体的構成によれば、両端電圧が均等化目標値以下である放電非対象セルを1つ、或いは複数であっても少数に抑えることが出来、放電非対象セルが1つの場合には、放電対象セルの両端電圧が該1つの放電非対象セルの両端電圧に一致することになるので、組電池を構成する全てのセルの両端電圧を揃えることが出来る。又、放電非対象セルが複数の場合であっても、その数は少数であるので、それら複数の放電非対象セル間での両端電圧のばらつきは小さく、組電池を構成する複数のセル間での両端電圧のばらつきを小さく抑えることが出来る。
 又、具体的構成において、前記放電制御値導出手段には、前記放電手段による放電が開始される前の放電対象セルの両端電圧をV1、放電非対象セルの両端電圧をV0、放電時電圧低下速度をDs1、非放電時電圧低下速度をDs0、前記放電対象セルに対する放電時間をTrとして、下記数式1に示す関数式が規定されている。
(数式1)
   Tr=(V0-V1)/(Ds0-Ds1)
 上述の如く、放電対象セル及び放電非対象セルの何れのセルの両端電圧も略線形的に低下するので、上記数式1によって各放電対象セルについての放電時間を精度良く算出することが出来る。
 更に具体的構成において、
 組電池を構成する前記複数のセルの内、一部の1或いは複数のセルに対して、前記放電手段による放電を一定時間だけ実施する放電制御手段と、
 前記一定時間の放電が終了した後に、該放電が実施された1或いは複数の放電対象セルの該放電が開始される前の充電状態評価値と該放電が終了した時点での充電状態評価値と前記一定時間とに基づいて、放電時充電状態評価値変化速度を算出すると共に、前記一定時間の放電が実施されなかった1或いは複数の放電非対象セルの該放電が開始される前の充電状態評価値と該放電が終了した時点での充電状態評価値と前記一定時間とに基づいて、非放電時充電状態評価値変化速度を算出する充電状態評価値変化速度算出手段
とを具えており、前記放電制御値導出手段は、前記充電状態評価値変化速度算出手段によって算出された放電時充電状態評価値変化速度及び非放電時充電状態評価値変化速度を用いて、その後の均等化処理における放電時間或いは放電終了値を導出する。
 セルの放電時充電状態評価値変化速度及び非放電時充電状態評価値変化速度は組電池システム毎に異なるため、組電池システム毎に放電時充電状態評価値変化速度及び非放電時充電状態評価値変化速度を求めなければならないのであるが、これらの充電状態評価値変化速度を実験等によって求める作業は面倒である。そこで、上記具体的構成においては、例えば均等化処理が行なわれる前に、組電池を構成する複数のセルの内、一部の1或いは複数のセルに対して一定時間の放電が実施されて放電時充電状態評価値変化速度及び非放電時充電状態評価値変化速度が算出され、その後、算出された放電時充電状態評価値変化速度及び非放電時充電状態評価値変化速度を用いて各放電対象セルに対する放電時間或いは放電終了値が導出される。
 上記具体的構成によれば、放電時充電状態評価値変化速度及び非放電時充電状態評価値変化速度が自動的に算出されるので、これらの充電状態評価値変化速度を実験等によって求める面倒な作業は不要となる。
 更に又、具体的構成において、
 放電時充電状態評価値変化速度及び非放電時充電状態評価値変化速度が格納されている充電状態評価値変化速度格納手段と、
 均等化処理が終了した後に、該均等化処理にて前記放電手段による放電が実施された1或いは複数の放電対象セルの該均等化処理が開始される前の充電状態評価値と前記放電手段による放電が終了した時点での充電状態評価値と前記放電制御値導出手段によって導出された放電時間とに基づいて、放電時充電状態評価値変化速度を算出すると共に、前記均等化処理にて前記放電手段による放電が実施されなかった1或いは複数の放電非対象セルの該均等化処理が開始される前の充電状態評価値と該均等化処理が終了した時点での充電状態評価値と該均等化処理が開始されてから終了するまでの時間とに基づいて、非放電時充電状態評価値変化速度を算出する第2充電状態評価値変化速度算出手段と、
 前記充電状態評価値変化速度格納手段に格納されている放電時充電状態評価値変化速度及び非放電時充電状態評価値変化速度を夫々、前記第2充電状態評価値変化速度算出手段によって算出された放電時充電状態評価値変化速度及び非放電時充電状態評価値変化速度に更新する更新手段
とを具えており、前記放電制御値導出手段は、更新された放電時充電状態評価値変化速度及び非放電時充電状態評価値変化速度を用いて、その後の均等化処理における放電時間を導出する。
 放電時充電状態評価値変化速度及び非放電時充電状態評価値変化速度は、組電池の使用が繰り返されて組電池が劣化するにつれて変化する。そこで、上記具体的構成においては、均等化処理が終了した後に、放電時充電状態評価値変化速度及び非放電時充電状態評価値変化速度が算出され、充電状態評価値変化速度格納手段に格納されている放電時充電状態評価値変化速度及び非放電時充電状態評価値変化速度がそれぞれ算出された放電時充電状態評価値変化速度及び非放電時充電状態評価値変化速度に更新される。その後、均等化処理が行なわれる際には、更新後の放電時充電状態評価値変化速度及び非放電時充電状態評価値変化速度を用いて各放電対象セルに対する放電時間が導出される。
 上記具体的構成によれば、常に実際の放電時充電状態評価値変化速度及び非放電時充電状態評価値変化速度に近い値を用いて放電時間が算出されるので、常に高い精度で均等化処理を行なうことが出来る。
 本発明に係る組電池システムは、複数のセルを直列に接続してなる組電池と、該組電池を構成する各セルの充電状態を均等化する充電状態均等化装置とを具え、該充電状態均等化装置として、上記本発明の充電状態均等化装置を採用したものである。
 本発明に係る充電状態均等化装置及びこれを具えた組電池システムによれば、均等化処理について従来よりも高い精度を得ることが出来る。
図1は本発明に係るバッテリシステムの構成を表わすブロック図である。 図2は第1実施例のバッテリシステムにおいて実行される均等化処理手続きを表わすフローチャートである。 図3は本発明の均等化処理を説明するためのグラフである。 図4は本発明の均等化処理における各セルの両端電圧の変化を表わすグラフである。 図5は第2実施例のバッテリシステムにおいてイグニッションスイッチが初めてオフに設定されたときに実行される均等化処理手続きの前半を表わすフローチャートである。 図6は上記手続きの後半を表わすフローチャートである。 図7は上記バッテリシステムにおいてイグニッションスイッチが第2回目以降にオフに設定されたときに実行される均等化処理手続きを表わすフローチャートである。 図8は従来のバッテリシステムの構成を表わすブロック図である。 図9は従来の問題点を説明するためのグラフである。
符号の説明
(1) セル
(2) 充電状態均等化装置
(21) 放電回路
(22) 電圧測定回路
(3) 負荷
(31) 開閉スイッチ
 以下、本発明をハイブリッド自動車のバッテリシステムに実施した形態につき、2つの実施例に基づいて具体的に説明する。
第1実施例
 図1に示す如く、本実施例のバッテリシステムは、リチウムイオン二次電池からなる複数(図示する例では3つ)のセル(1)を直列に接続してなる組電池と、該組電池の充電状態を均等化する充電状態均等化装置(2)とから構成され、該組電池から負荷(3)へ電力の供給が可能となっている。尚、負荷(3)としては、車輪を駆動するモータや自動車全体を制御する制御回路等が接続されている。
 組電池から負荷(3)への電力供給経路には開閉スイッチ(31)が介在し、図示省略するイグニッションスイッチをユーザがオン操作することによって、開閉スイッチ(31)が閉じて、組電池から負荷(3)への電力供給が開始され、或いは該イグニッションスイッチをユーザがオフ操作することによって、開閉スイッチ(31)が開いて、組電池から負荷(3)への電力供給が停止される。
 組電池を構成する各セル(1)の両端には、抵抗器R及びスイッチSWを互いに直列に接続してなる放電回路(21)が各セル(1)に対して並列に接続されており、各放電回路(21)の両端には、各セルの両端電圧(開放電圧)を測定する電圧測定回路(22)が接続されている。
 各電圧測定回路(22)による測定結果は、制御回路(20)に供給される。制御回路(20)は、それらの測定結果に基づいて均等化目標電圧を算出すると共に、均等化目標電圧を超える放電対象セルについて夫々、後述の如く放電回路(21)による放電を実施すべき放電時間を算出し、算出した放電時間と内蔵するタイマ(図示省略)による計時結果とに基づいて各放電回路(21)のスイッチSWのスイッチング動作を制御する。尚、該制御回路(20)は、組電池から電力の供給を受けて該制御動作を行なう。
 図3は、均等化処理中に放電回路による放電が実施されている放電対象セルLiの両端電圧と放電回路による放電が実施されていない放電非対象セルL0の両端電圧の変化を表わしている。尚、図中のVd0は均等化目標電圧を表わしている。図示の如く、放電対象セルLi及び放電非対象セルL0の何れのセルの両端電圧も略線形的に低下し、放電対象セルLiの電圧低下速度は放電非対象セルL0の電圧低下速度よりも高いため、放電対象セルLiの両端電圧が放電非対象セルL0の両端電圧と等しくなる点Pが存在する。ここで、セルの両端電圧は充電状態に応じて変化するため、この点Pは放電対象セルの充電状態が放電非対象セルの充電状態と等しくなる点と一致する。
 上記本発明に係る充電状態均等化装置においては、両端電圧が均等化目標電圧を超える1或いは複数の放電対象セルについてそれぞれ上記点の時間が放電時間として算出され、それら1或いは複数の放電対象セルに対して放電回路による放電が開始された後、各放電対象セルに対する放電回路による放電が、算出された各放電時間の経過時点で停止される。
 各放電対象セルに対する放電時間は、次のようにして求めることが出来る。
 均等化開始前の放電対象セルLiの両端電圧をV1、放電回路による放電が実施されているときのセルの放電時電圧低下速度をDs1、放電回路による放電時間をTrとすると、放電回路による放電が終了する時点での放電対象セルLiの両端電圧Vrは、下記数式2によって表わされる。
(数式2)
   Vr=V1-Ds1・Tr
 一方、均等化開始前の放電非対象セルL0の両端電圧をV0、放電回路による放電が実施されていないときのセルの非放電時電圧低下速度をDs0とすると、均等化開始後、前記放電時間Trが経過した時点、即ち放電対象セルLiに対する放電回路による放電が終了する時点での放電非対象セルL0の両端電圧Vr0は、下記数式3によって表わされる。
(数式3)
   Vr0=V0-Ds0・Tr
 従って、放電対象セルLiの両端電圧Vrが放電非対象セルL0の両端電圧Vr0と等しくなる放電時間Trは、上記の数式2及び数式3から、Vr=Vr0として求めることが出来、下記数式4によって表わされる。
(数式4)
   Tr=(V0-V1)/(Ds0-Ds1)
 図2は、ハイブリッド自動車が停車している状態で上記制御回路(20)によって実行される均等化処理の手続きを表わしている。イグニッションスイッチがオフに設定されると、先ずステップS1にて、組電池を構成する複数(N個)のセルの開放電圧V1[0]~V1[N-1]を測定し、次にステップS2では、測定の結果得られた複数の開放電圧の中から最低電圧Vminを特定すると共に、均等化目標電圧Vd0を算出する。均等化目標電圧の算出処理においては、特定した最低電圧Vminに所定値αを加算することにより均等化目標電圧Vd0(=Vmin+α)を算出する。ここで、所定値αは、電圧測定回路自体の測定誤差と同程度の値に設定される。尚、特定される最低電圧Vminは、均等化目標電圧Vd0(=Vmin+α)を下回る値であるので放電非対象セルの開放電圧となる。
 続いてステップS3では、セル番号iを0に初期化した後、ステップS4では、セル番号iのセルの開放電圧V1[i]が前記均等化目標電圧Vd0を上回るか否かを判断し、イエスと判断された場合はステップS5に移行して、該セルの開放電圧V1[i]及びステップS2にて特定した最低電圧Vminから、内蔵メモリに格納されている下記数式5を用いて前記セルに対する放電時間Tr[i]を算出する。ここで、非放電時電圧低下速度Ds0及び放電時電圧低下速度Ds1は、予め実験的に求められた定数である。尚、非放電時電圧低下速度Ds0と放電時電圧低下速度Ds1との差を、定数Dsとして設定しておくことも可能である。
(数式5)
   Tr[i]=(Vmin-V1[i])/(Ds0-Ds1)
 次にステップS6にて、前記セルに接続されている放電回路のスイッチをオンに設定して放電を開始した後、ステップS7では、セル番号iを1だけカウントアップする。次にステップS8では、セル番号iが組電池を構成するセル数Nと一致するか否かを判断し、ノーと判断された場合はステップS4に戻って上記手続きを繰り返す。尚、上記手続きが繰り返される過程で、セルの開放電圧V1[i]が前記均等化目標電圧Vd0以下であってステップS4にてノーと判断された場合は、ステップS5及びステップS6を迂回してステップS7に移行する。
 その後、組電池を構成する全てのセルについて開放電圧V1[i]が前記均等化目標電圧Vd0を上回るか否かが判断されて、開放電圧V1[i]が前記均等化目標電圧Vd0を上回る全ての放電対象セルに対する放電時間が算出されると共に放電回路による放電が開始されると、ステップS8にてイエスと判断されてステップS9に移行し、内蔵するタイマをリセットして計時動作を開始させる。続いてステップS10では、放電回路による放電が開始された放電対象セルについて夫々、ステップS5にて算出された放電時間が経過した時点で放電回路のスイッチをオフに設定して放電を終了する。放電回路による放電が開始されてから上記ステップS5にて算出された最長の放電時間が経過した時点で、上記の均等化処理手続きが終了する。
 例えば、図4に示す如く、3つのセルLm、Ln、L0によって組電池が構成されている場合、セルL0の開放電圧が最低電圧Vminとして特定されると共に、両端電圧が均等化目標電圧Vd0を超えるセルLm、Lnに対する放電時間Tr[m]、Tr[n]が上記数式5を用いて算出される。そして、セルLm、Lnに対して放電回路による放電が開始された後、算出された放電時間Tr[n]が経過した時点でセルLnに対する放電回路による放電が停止され、放電時間Tr[m]が経過した時点でセルLmに対する放電回路による放電が停止されることになる。これによって、セルLmの両端電圧は、放電回路による放電が終了して均等化処理が終了する時点で、セルL0の両端電圧と等しくなる。又、セルLnの両端電圧は、放電回路による放電が終了した時点でセルL0の両端電圧と等しくなり、その後、セルL0と同じ速度で徐々に低下することになる。この結果、均等化処理が終了する時点では、放電対象セルであるセルLm、Lnの両端電圧が放電非対象セルであるセルL0の両端電圧と一致することになる。
 尚、放電非対象セルが1つの場合について説明したが、放電非対象セルが複数である場合には、均等化処理が終了する時点で放電対象セルの両端電圧が複数の放電非対象セルの中で開放電圧の最も低い放電非対象セルの両端電圧に一致することになる。又、本実施例においては、放電対象セルの両端電圧が複数の放電非対象セルの中で開放電圧の最も低い放電非対象セルの両端電圧と等しくなる放電時間を算出しているが、他の放電非対象セルの両端電圧と等しくなる放電時間を算出する構成を採用することも可能である。
 本発明に係るバッテリシステムにおいては、上述の如く、各放電対象セルに対して両端電圧が放電非対象セルの両端電圧と等しくなる放電時間だけ放電回路による放電を実施することによって、均等化処理終了時に全ての放電対象セルの両端電圧を放電非対象セルの両端電圧に一致させることが出来、均等化処理について従来よりも高い精度を得ることが出来る。
第2実施例
 第1実施例のバッテリシステムにおいては、非放電時電圧低下速度Ds0及び放電時電圧低下速度Ds1が予め実験的に求められた定数であるのに対し、本実施例のバッテリシステムにおいては、均等化処理が終了する度に非放電時電圧低下速度Ds0及び放電時電圧低下速度Ds1が更新される。
 本実施例のバッテリシステムの構成は、制御回路を除いて、図1に示す第1実施例のバッテリシステムと同一であるので、その説明は省略する。
 図5は、ハイブリッド自動車が初めて走行を行なった後、初めてイグニッションスイッチがオフに設定されたときに本実施例の制御回路によって実行される均等化処理手続きを表わしている。先ずステップS11にて、組電池を構成する複数(N個)のセルの開放電圧V1[0]~V1[N-1]を測定し、次にステップS12では、第1次均等化目標電圧Vd0´(=Vmin+α)を算出する。尚、第1次均等化目標電圧の算出方法は、第1実施例の均等化目標電圧算出方法と同一である。
 続いてステップS13では、セル番号iを0に初期化した後、ステップS14では、セル番号iのセルの開放電圧V1[i]が前記第1次均等化目標電圧Vd0´を上回るか否かを判断し、イエスと判断された場合はステップS15に移行して、前記セルに接続されている放電回路のスイッチをオンに設定して放電を開始した後、ステップS16では、セル番号iを1だけカウントアップする。次にステップS17では、セル番号iが組電池を構成するセル数Nと一致するか否かを判断し、ノーと判断された場合はステップS14に戻って上記手続きを繰り返す。尚、上記手続きが繰り返される過程で、セルの開放電圧V1[i]が前記第1次均等化目標電圧Vd0´以下であってステップS14にてノーと判断された場合は、ステップS15を迂回してステップS16に移行する。
 その後、組電池を構成する全てのセルについて開放電圧V1[i]が前記第1次均等化目標電圧Vd0´を上回るか否かが判断されて、開放電圧V1[i]が前記第1次均等化目標電圧Vd0´を上回る全ての放電対象セルに対して放電回路による放電が開始されると、ステップS17にてイエスと判断されてステップS18に移行し、内蔵するタイマをリセットして計時動作を開始させる。続いてステップS19では、前記計時動作が開始してから一定時間(2時間程度)が経過した時点で、前記全ての放電対象セルに接続されている全ての放電回路のスイッチをオフに設定して放電を終了すると共に、組電池を構成する複数のセルの開放電圧V1[0]~V1[N-1]を測定する。次にステップS20では、非放電時電圧低下速度Ds0及び放電時電圧低下速度Ds1を算出する。又、ステップS19にて測定された複数の開放電圧の中から最低電圧Vminを特定すると共に、第2次均等化目標電圧Vd0(=Vmin+α)を算出する。尚、第2次均等化目標電圧の算出方法は、第1実施例の均等化目標電圧の算出方法と同一である。
 上記ステップS20の非放電時電圧低下速度Ds0の算出処理においては、組電池を構成する前記複数のセルの内、前記一定時間の放電が実施されなかった放電非対象セルについて夫々、該放電が開始される前にステップS11にて測定された開放電圧と該放電が終了した時点でステップS19にて測定された開放電圧との差を算出した後、それらの差の平均値を算出し、算出した平均値を前記一定時間で除算する。これによって、非放電時電圧低下速度Ds0が得られる。
 又、放電時電圧低下速度Ds1の算出処理においては、前記一定時間の放電が実施された放電対象セルについて夫々、該放電が開始される前にステップS11にて測定された開放電圧と該放電が終了した時点でステップS19にて測定された開放電圧との差を算出した後、それらの差の平均値を算出し、算出した平均値を前記一定時間で除算する。これによって、放電時電圧低下速度Ds1が得られる。
 尚、非放電時電圧低下速度の算出処理においては、複数の放電非対象セルについて夫々、一定時間の放電が開始される前の開放電圧と該放電が終了した時点での開放電圧との差を該一定時間で除算し、それらの除算結果の平均値を非放電時電圧低下速度Ds0として算出することも可能である。又、放電時電圧低下速度の算出処理においても、複数の放電対象セルについて夫々、一定時間の放電が開始される前の開放電圧と該放電が終了した時点での開放電圧との差を該一定時間で除算し、それらの除算結果の平均値を放電時電圧低下速度Ds1として算出することも可能である。
 その後、図6のステップS21にてセル番号iを0に初期化した後、ステップS22では、セル番号iのセルについて上記ステップS19にて測定された開放電圧V1[i]が上記ステップS20にて算出された第2次均等化目標電圧Vd0を上回るか否かを判断し、イエスと判断された場合はステップS23に移行して、前記セルの開放電圧V1[i]と、上記ステップS20にて特定した最低電圧Vminと、上記ステップS20にて算出した非放電時電圧低下速度Ds0及び放電時電圧低下速度Ds1とから、上記数式5を用いて前記セルに対する放電時間Tr[i]を算出する。
 次にステップS24にて、前記セルに接続されている放電回路のスイッチをオンに設定して放電を開始した後、ステップS25では、セル番号iを1だけカウントアップする。次にステップS26では、セル番号iが組電池を構成するセル数Nと一致するか否かを判断し、ノーと判断された場合はステップS22に戻って上記手続きを繰り返す。尚、上記手続きが繰り返される過程で、セルの開放電圧V1[i]が前記第2次均等化目標電圧Vd0以下であってステップS22にてノーと判断された場合は、ステップS23及びステップS24を迂回してステップS25に移行する。
 その後、組電池を構成する全てのセルについて開放電圧V1[i]が前記第2次均等化目標電圧Vd0を上回るか否かが判断されて、開放電圧V1[i]が前記第2次均等化目標電圧Vd0を上回る全ての放電対象セルに対する放電時間が算出されると共に放電回路による放電が開始されると、ステップS26にてイエスと判断されてステップS27に移行し、内蔵するタイマをリセットして計時動作を開始させる。続いてステップS28では、放電回路による放電が開始された放電対象セルについて夫々、ステップS23にて算出された放電時間が経過した時点で放電回路のスイッチをオフに設定して放電を終了すると共に、各時点で組電池を構成する複数のセルの開放電圧V1[0]~V1[N-1]を測定する。放電回路による放電が開始されてから上記ステップS23にて算出された最長の放電時間が経過した時点で均等化処理が終了すると、ステップS29に移行して、非放電時電圧低下速度Ds0及び放電時電圧低下速度Ds1を算出して内蔵メモリに格納し、上記手続きを終了する。
 上記ステップS29の非放電時電圧低下速度Ds0の算出処理においては、均等化処理にて放電回路による放電が実施されなかった放電非対象セルについて夫々、該均等化処理が開始される前に上記ステップS19にて測定された開放電圧と上記ステップS28にて上記均等化処理が終了した時点で測定された開放電圧との差を算出した後、それらの差の平均値を算出し、算出した平均値を上記均等化処理の開始から終了までの時間、即ち上記ステップS23にて算出された最長の放電時間で除算する。これによって、非放電時電圧低下速度Ds0が得られる。
 尚、複数の放電非対象セルについて夫々、均等化処理が開始される前の開放電圧と均等化処理が終了した時点での開放電圧との差を均等化処理の開始から終了までの時間で除算し、それらの除算結果の平均値を非放電時電圧低下速度Ds0として算出することも可能である。
 又、均等化処理が終了した時点での開放電圧Vendは、上記ステップS20にて特定された最低電圧Vmin及び算出された非放電時電圧低下速度Ds0と、上記ステップS23にて算出した最長の放電時間Tr[i]とから、下記数式6を用いて算出することも可能である。
(数式6)
 Vend=Vmin-Ds0・Tr[i]
 一方、上記ステップS29の放電時電圧低下速度Ds1の算出処理においては、均等化処理にて放電回路による放電が実施された放電対象セルについて夫々、該均等化処理が開始される前に上記ステップS19にて測定された開放電圧と上記ステップS28にて各放電時間が経過して放電回路による放電が終了した時点で測定された開放電圧との差を算出し、算出した差を各放電時間で除算した後、それらの除算結果の平均値を放電時電圧低下速度Ds1として算出する。
 尚、放電回路による放電が終了した時点での放電対象セルiの開放電圧Vend[i]は夫々、上記ステップS19にて測定された開放電圧V1[i]と、上記ステップS20にて算出された放電時電圧低下速度Ds1と、上記ステップS23にて算出された放電時間Tr[i]とから、下記数式7を用いて算出することも可能である。
(数式7)
   Vend[i]=V1[i]-Ds1・Tr[i]
 上記手続きによれば、イグニッションスイッチが初めてオフに設定されると、第1次均等化目標電圧Vd0´を上回る放電対象セルに対して一定時間の放電が実施され、該一定時間の放電が開始される前の開放電圧と該一定時間の放電が終了した時点の開放電圧と該一定時間とから非放電時電圧低下速度Ds0及び放電時電圧低下速度Ds1が算出される。その後、両電圧低下速度Ds0、Ds1を用いて第2次均等化目標電圧Vd0を上回る各放電対象セルに対する放電時間が算出され、各放電対象セルに対して算出された放電時間だけ放電を実施する均等化処理が行なわれる。最後に、該均等化処理が開始される前の開放電圧と該均等化処理が終了した時点での開放電圧と該均等化処理にかかった均等化処理時間とから非放電時電圧低下速度Ds0が算出されると共に、該均等化処理が開始される前の開放電圧と該均等化処理にて各放電回路による放電が終了した時点での開放電圧と算出された各放電時間とから放電時電圧低下速度Ds1が算出され、算出された両電圧低下速度Ds0、Ds1が制御回路の内蔵メモリに格納される。
 図7は、第2回目以降にイグニッションスイッチがオフに設定されたときに本実施例の制御回路によって実行される均等化処理手続きを表わしている。先ずステップS31にて、組電池を構成する複数(N個)のセルの開放電圧V1[0]~V1[N-1]を測定し、次にステップS32では、測定の結果得られた複数の開放電圧の中から最低電圧Vminを特定すると共に、均等化目標電圧Vd0(=Vmin+α)を算出する。尚、均等化目標電圧の算出方法は、第1実施例の均等化目標電圧の算出方法と同一である。
 続いてステップS33では、セル番号iを0に初期化した後、ステップS34では、セル番号iのセルの開放電圧V1[i]が前記均等化目標電圧Vd0を上回るか否かを判断し、イエスと判断された場合はステップS35に移行して、該セルに接続されている放電回路のスイッチをオンに設定して放電を開始する。
 次にステップS36にて、前記セルの開放電圧V1[i]と、ステップS32にて特定した最低電圧Vminと、内蔵メモリに格納されている非放電時電圧低下速度Ds0及び放電時電圧低下速度Ds1とから、上記数式5を用いて前記セルに対する放電時間Tr[i]を算出した後、ステップS37では、セル番号iを1だけカウントアップする。次にステップS38では、セル番号iが組電池を構成するセル数Nと一致するか否かを判断し、ノーと判断された場合はステップS34に戻って上記手続きを繰り返す。尚、上記手続きが繰り返される過程で、セルの開放電圧V1[i]が前記均等化目標電圧Vd0以下であってステップS34にてノーと判断された場合は、ステップS35及びステップS36を迂回してステップS37に移行する。
 その後、組電池を構成する全てのセルについて開放電圧V1[i]が前記均等化目標電圧Vd0を上回るか否かが判断されて、開放電圧V1[i]が前記均等化目標電圧Vd0を上回る全ての放電対象セルに対して放電回路による放電が開始されると共にそれら全ての放電対象セルに対する放電時間が算出されると、ステップS38にてイエスと判断されてステップS39に移行し、内蔵するタイマをリセットして計時動作を開始させる。続いてステップS40では、放電回路による放電が開始された放電対象セルについて夫々、ステップS36にて算出された放電時間が経過した時点で放電回路のスイッチをオフに設定して放電を終了すると共に、各時点で組電池を構成する複数のセルの開放電圧V1[0]~V1[N-1]を測定する。放電回路による放電が開始されてから上記ステップS36にて算出された最長の放電時間が経過した時点で均等化処理が終了すると、ステップS41に移行して、非放電時電圧低下速度Ds0及び放電時電圧低下速度Ds1を算出して内蔵メモリの電圧低下速度格納領域に上書きし、上記手続きを終了する。これによって、その時点で内蔵メモリに格納されている非放電時電圧低下速度及放電時電圧低下速度が、算出された非放電時電圧低下速度及び放電時電圧低下速度に更新されることになる。尚、非放電時電圧低下速度Ds0及び放電時電圧低下速度Ds0の算出方法は、上記ステップS29と同一である。
 上記手続きによれば、イグニッションスイッチが第2回目以降にオフに設定されると、内蔵メモリに格納されている非放電時電圧低下速度Ds0及び放電時電圧低下速度Ds1を用いて均等化目標電圧Vd0を上回る各放電対象セルに対する放電時間が算出され、各放電対象セルに対して算出された各放電時間だけ放電を実施する均等化処理が行なわれる。最後に、該均等化処理が開始される前の開放電圧と該均等化処理が終了した時点での開放電圧と該均等化処理にかかった均等化処理時間とから非放電時電圧低下速度Ds0が算出されると共に、該均等化処理が開始される前の開放電圧と該均等化処理にて各放電回路による放電が終了した時点での開放電圧と算出された各放電時間とから放電時電圧低下速度Ds1が算出され、その時点で内蔵メモリに格納されている非放電時電圧低下速度及放電時電圧低下速度が、算出された非放電時電圧低下速度及び放電時電圧低下速度に更新される。
 本実施例のバッテリシステムにおいては、初めてイグニッションスイッチがオフに設定されたとき、自動的に非放電時電圧低下速度Ds0及び放電時電圧低下速度Ds1が算出されるので、これらの電圧低下速度を実験等によって求める面倒な作業は不要である。
 又、均等化処理が終了する度に非放電時電圧低下速度Ds0及び放電時電圧低下速度Ds1が更新され、常に実際の非放電時電圧低下速度及び放電時電圧低下速度に近い値を用いて放電対象セルに対する放電時間が算出されるので、常に高い精度で均等化処理を行なうことが出来る。
 尚、本発明の各部構成は上記実施の形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。
 例えば、上記実施の形態においては、放電対象セルについてそれぞれ放電時間を算出し、算出された放電時間が経過したときに放電回路による放電を終了しているが、放電対象セルの両端電圧と放電非対象セルの両端電圧が等しくなる放電終了電圧を算出し、放電対象セルの両端電圧が算出された放電終了電圧に達したときに放電回路による放電を終了する構成を採用することも可能である。又、放電時間と放電終了電圧とに基づいて放電回路による放電を制御する構成の採用も可能である。尚、放電終了電圧に基づいて放電の終了を制御する構成によれば、充電状態に応じて変化するセル電圧を監視して放電を終了するので、充電状態の変化に対して両端電圧の変化が大きいセルからなる組電池を均等化したときに、放電時間に基づき放電の終了を制御する構成に比べて高い精度が得られる。一方、放電時間に基づいて放電の終了を制御する構成によれば、充電状態の変化に対して両端電圧の変化が小さいセルからなる組電池に対しても、十分に高い精度で均等化を行なうことが出来る。
 又、上記実施の形態においては、放電対象セルの両端電圧と放電非対象セルの両端電圧と電圧低下速度Ds0、Ds1とに基づいて放電時間を算出しているが、充電状態評価値として、充電状態(SOC[%]或いは残存容量[Ah])や充電状態に応じた他の値、例えばセルを流れる電流の積算値を採用することも可能である。尚、充電状態評価値としてセルを流れる電流の積算値を採用した構成においては、放電時に電流が流れる方向を正の方向とした場合、充電状態評価値変化速度は、電流積算値が増大する速度を表わすことになる。
 又、放電対象セルの開放電圧及び放電非対象セルの開放電圧と放電時間或いは放電終了値との関係を表わすテーブルに従って、放電時間或いは放電終了値を導出する構成を採用することも可能である。
 又、上記実施の形態においては、均等化目標電圧を算出する方法として、組電池を構成する複数のセルの開放電圧の内、最低の開放電圧に基づいて均等化目標電圧を算出する方法を採用しているが、これに限らず、それらの開放電圧の平均値に基づいて均等化目標電圧を算出する方法等、種々の公知の方法を採用することが可能である。
 又、イグニッションスイッチがオフに設定される度に、組電池を構成する一部のセルに対し一定時間だけ放電を実施して電圧低下速度Ds0、Ds1を算出した後に均等化処理を実行する構成を採用することも可能である。
 又、セル毎に放電時充電状態評価値変化速度及び非放電時充電状態評価値変化速度が異なる可能性があるので、セル毎に放電時充電状態評価値変化速度及び非放電時充電状態評価値変化速度を算出する構成の採用も可能である。
 更に、SOCの範囲毎に放電時電圧低下速度及び非放電時電圧低下速度をメモリに格納し、そのときのSOCに応じた放電時電圧低下速度及び非放電時電圧低下速度を用いて放電時間を算出することも可能である。
 更に又、均等化処理後に算出された放電時電圧低下速度及び非放電時電圧低下速度と前回の均等化処理の終了後に算出された放電時電圧低下速度及び非放電時電圧低下速度(メモリに格納されている放電時電圧低下速度及び非放電時電圧低下速度)とにそれぞれ重み付けを行ない、重み付けを行なった後の各電圧低下速度の平均値を算出し、メモリに格納されている放電時電圧低下速度及び非放電時電圧低下速度をそれぞれ算出した平均値に更新することも可能である。

Claims (8)

  1.  複数のセルを直列に接続してなる組電池を対象として、充電状態或いは充電状態に応じた値を表わす充電状態評価値が均等化目標値と異なるセルを放電させることにより各セルの充電状態を均等化する装置において、
     各セルの放電を行なう放電手段と、
     均等化目標値を算出する均等化目標値算出手段と、
     充電状態評価値が前記均等化目標値算出手段によって算出された均等化目標値と異なる1或いは複数の放電対象セルについて夫々、前記放電手段による放電を実施すべき放電時間或いは前記放電手段による放電を終了すべき放電終了値を導出する放電制御値導出手段と、
     前記1或いは複数の放電対象セルに対して前記放電手段による放電を開始し、その後、各放電対象セルに対する前記放電手段による放電を、前記放電制御値導出手段によって導出された各放電時間が経過したときに、或いは充電状態評価値が前記放電制御値導出手段によって導出された各放電終了値に達したときに終了する均等化処理を実行する均等化処理手段
    とを具えており、前記放電制御値導出手段は、前記放電手段による放電が開始される前の放電対象セルの充電状態評価値及び放電非対象セルの充電状態評価値と、前記放電手段による放電が実施されているときのセルの充電状態評価値の変化速度を表わす放電時充電状態評価値変化速度と、前記放電手段による放電が実施されていないときのセルの充電状態評価値の変化速度を表わす非放電時充電状態評価値変化速度とに基づいて、前記放電対象セルの充電状態が前記放電非対象セルの充電状態と等しくなる放電時間或いは放電終了値を導出することを特徴とする充電状態均等化装置。
  2.  前記充電状態評価値はセルの両端電圧であって、更に、組電池を構成する各セルの両端電圧を測定する電圧測定手段を具えており、前記放電制御値導出手段は、前記放電手段による放電が開始される前に前記電圧測定手段によって測定された放電対象セルの両端電圧及び放電非対象セルの両端電圧と、前記放電手段による放電が実施されているときのセルの両端電圧の低下速度を表わす放電時電圧低下速度と、前記放電手段による放電が実施されていないときのセルの両端電圧の低下速度を表わす非放電時電圧低下速度とに基づいて、放電時間或いは放電終了値を導出する請求項1に記載の充電状態均等化装置。
  3.  前記均等化目標値算出手段は、組電池を構成する前記複数のセルの両端電圧の内、最低の両端電圧に基づいて均等化目標値を算出する請求項2に記載の充電状態均等化装置。
  4.  前記放電制御値導出手段には、前記放電手段による放電が開始される前の放電対象セルの両端電圧をV1、放電非対象セルの両端電圧をV0、放電時電圧低下速度をDs1、非放電時電圧低下速度をDs0、前記放電対象セルに対する放電時間をTrとして、下記数式8に示す関数式が規定されている請求項2又は請求項3に記載の充電状態均等化装置。
    (数式8)
       Tr=(V0-V1)/(Ds0-Ds1)
  5.  前記放電時電圧低下速度Ds1及び前記非放電時電圧低下速度Ds0がそれぞれ定数として設定され、或いは、前記非放電時電圧低下速度Ds0から前記放電時電圧低下速度Ds1を減算した結果が定数として設定されている請求項4に記載の充電状態均等化装置。
  6.  組電池を構成する前記複数のセルの内、一部の1或いは複数のセルに対して、前記放電手段による放電を一定時間だけ実施する放電制御手段と、
     前記一定時間の放電が終了した後に、該放電が実施された1或いは複数の放電対象セルの該放電が開始される前の充電状態評価値と該放電が終了した時点での充電状態評価値と前記一定時間とに基づいて、放電時充電状態評価値変化速度を算出すると共に、前記一定時間の放電が実施されなかった1或いは複数の放電非対象セルの該放電が開始される前の充電状態評価値と該放電が終了した時点での充電状態評価値と前記一定時間とに基づいて、非放電時充電状態評価値変化速度を算出する充電状態評価値変化速度算出手段
    とを具えており、前記放電制御値導出手段は、前記充電状態評価値変化速度算出手段によって算出された放電時充電状態評価値変化速度及び非放電時充電状態評価値変化速度を用いて、その後の均等化処理における放電時間或いは放電終了値を導出する請求項1乃至請求項4の何れかに記載の充電状態均等化装置。
  7.  放電時充電状態評価値変化速度及び非放電時充電状態評価値変化速度が格納されている充電状態評価値変化速度格納手段と、
     均等化処理が終了した後に、該均等化処理にて前記放電手段による放電が実施された1或いは複数の放電対象セルの該均等化処理が開始される前の充電状態評価値と前記放電手段による放電が終了した時点での充電状態評価値と前記放電制御値導出手段によって導出された放電時間とに基づいて、放電時充電状態評価値変化速度を算出すると共に、前記均等化処理にて前記放電手段による放電が実施されなかった1或いは複数の放電非対象セルの該均等化処理が開始される前の充電状態評価値と該均等化処理が終了した時点での充電状態評価値と該均等化処理が開始されてから終了するまでの時間とに基づいて、非放電時充電状態評価値変化速度を算出する第2充電状態評価値変化速度算出手段と、
     前記充電状態評価値変化速度格納手段に格納されている放電時充電状態評価値変化速度及び非放電時充電状態評価値変化速度を夫々、前記第2充電状態評価値変化速度算出手段によって算出された放電時充電状態評価値変化速度及び非放電時充電状態評価値変化速度に更新する更新手段
    とを具えており、前記放電制御値導出手段は、更新された放電時充電状態評価値変化速度及び非放電時充電状態評価値変化速度を用いて、その後の均等化処理における放電時間を導出する請求項1乃至請求項4、及び請求項6の何れかに記載の充電状態均等化装置。
  8.  複数のセルを直列に接続してなる組電池と、請求項1乃至請求項7の何れかに記載の充電状態均等化装置とを具えている組電池システム。
PCT/JP2009/054528 2008-03-11 2009-03-10 充電状態均等化装置及びこれを具えた組電池システム WO2009113530A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801084069A CN101971455A (zh) 2008-03-11 2009-03-10 充电状态均等化装置及具有该装置的组电池***
US12/922,080 US20110006734A1 (en) 2008-03-11 2009-03-10 Charge State Equalizing Device And Assembled Battery System Provided With Same
EP09720820A EP2254219A4 (en) 2008-03-11 2009-03-10 DEVICE FOR COMPARING THE CHARGING STATE AND COMPOSITE BATTERY SYSTEM CONTAINING THIS DEVICE
JP2010502827A JPWO2009113530A1 (ja) 2008-03-11 2009-03-10 充電状態均等化装置及びこれを具えた組電池システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-060938 2008-03-11
JP2008060938 2008-03-11

Publications (1)

Publication Number Publication Date
WO2009113530A1 true WO2009113530A1 (ja) 2009-09-17

Family

ID=41065197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054528 WO2009113530A1 (ja) 2008-03-11 2009-03-10 充電状態均等化装置及びこれを具えた組電池システム

Country Status (5)

Country Link
US (1) US20110006734A1 (ja)
EP (1) EP2254219A4 (ja)
JP (1) JPWO2009113530A1 (ja)
CN (1) CN101971455A (ja)
WO (1) WO2009113530A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010124582A (ja) * 2008-11-19 2010-06-03 Panasonic Corp 蓄電装置
CN102082453A (zh) * 2009-11-30 2011-06-01 三洋电机株式会社 均衡装置、有它的蓄电池***、电动车辆及均衡处理程序
US8497661B2 (en) 2009-11-30 2013-07-30 Sanyo Electric Co., Ltd. Equalization device, equalization processing program, battery system, electric vehicle and equalization processing method
WO2014061421A1 (ja) * 2012-10-18 2014-04-24 矢崎総業株式会社 均等化装置
JP2017017949A (ja) * 2015-07-06 2017-01-19 住友電気工業株式会社 充電状態均等化装置
JPWO2021117560A1 (ja) * 2019-12-13 2021-06-17

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008053089A1 (de) 2008-10-24 2010-04-29 Li-Tec Battery Gmbh Akkumulator mit mehreren galvanischen Zellen
JP5143185B2 (ja) * 2010-02-08 2013-02-13 三洋電機株式会社 電源装置
KR101211756B1 (ko) * 2010-02-11 2012-12-12 삼성에스디아이 주식회사 배터리 팩
DE102010063971A1 (de) * 2010-12-22 2012-06-28 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zum Betreiben eines Energiespeichers
US8897940B2 (en) * 2011-07-28 2014-11-25 Ford Global Technologies, Llc Battery cell voltage balancing system and method
KR101326813B1 (ko) * 2011-07-28 2013-11-07 기아자동차 주식회사 하이브리드 자동차의 잔류 고전압 방전 시스템 및 그 방법
JP5621818B2 (ja) * 2012-08-08 2014-11-12 トヨタ自動車株式会社 蓄電システムおよび均等化方法
CN103884992A (zh) * 2014-02-11 2014-06-25 南京军理智能科技股份有限公司 一种防空警报蓄电池在线检测装置及其检测方法
CN105914819B (zh) * 2016-05-04 2019-01-18 广东金莱特电器股份有限公司 锂电池均衡放电算法
KR102123048B1 (ko) * 2017-01-10 2020-06-15 주식회사 엘지화학 에너지 절약 및 빠른 셀 밸런싱이 가능한 충전 제어 장치 및 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282159A (ja) * 2002-03-26 2003-10-03 Shin Kobe Electric Mach Co Ltd 電池制御システム
JP2007143373A (ja) * 2005-11-22 2007-06-07 Toyota Motor Corp 電池の充電装置、放電装置、放充電装置、充電方法、及び、放電方法
JP2007244142A (ja) * 2006-03-10 2007-09-20 Hitachi Vehicle Energy Ltd 電池群制御装置及び電池電源システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5952815A (en) * 1997-07-25 1999-09-14 Minnesota Mining & Manufacturing Co. Equalizer system and method for series connected energy storing devices
JP3539424B2 (ja) * 2002-07-24 2004-07-07 日産自動車株式会社 電気自動車の制御装置
US7193392B2 (en) * 2002-11-25 2007-03-20 Tiax Llc System and method for determining and balancing state of charge among series connected electrical energy storage units
DE102004013351A1 (de) * 2004-03-17 2005-10-06 Effekta Regeltechnik Gmbh Vorrichtung zur Ladeverteilung und Überwachung von mehreren Akkumulatoren
EP1641099A1 (en) * 2004-09-24 2006-03-29 Conception et Développement Michelin S.A. Detachable charge control circuit for balancing the voltage of supercapacitors connected in series
CN2901662Y (zh) * 2005-12-26 2007-05-16 华美电子股份有限公司 智能型均等化充电电路的电池均充器
US7769455B2 (en) * 2006-01-27 2010-08-03 Cyberonics, Inc. Power supply monitoring for an implantable device
JP4560501B2 (ja) * 2006-08-11 2010-10-13 矢崎総業株式会社 充電状態調整装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282159A (ja) * 2002-03-26 2003-10-03 Shin Kobe Electric Mach Co Ltd 電池制御システム
JP2007143373A (ja) * 2005-11-22 2007-06-07 Toyota Motor Corp 電池の充電装置、放電装置、放充電装置、充電方法、及び、放電方法
JP2007244142A (ja) * 2006-03-10 2007-09-20 Hitachi Vehicle Energy Ltd 電池群制御装置及び電池電源システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2254219A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010124582A (ja) * 2008-11-19 2010-06-03 Panasonic Corp 蓄電装置
CN102082453A (zh) * 2009-11-30 2011-06-01 三洋电机株式会社 均衡装置、有它的蓄电池***、电动车辆及均衡处理程序
JP2011115015A (ja) * 2009-11-30 2011-06-09 Sanyo Electric Co Ltd 均等化装置、それを備えたバッテリシステムおよび電動車両ならびに均等化処理プログラム
US8493031B2 (en) 2009-11-30 2013-07-23 Sanyo Electric Co., Ltd. Equalization device, battery system and electric vehicle including the same, equalization processing program, and equalization processing method
US8497661B2 (en) 2009-11-30 2013-07-30 Sanyo Electric Co., Ltd. Equalization device, equalization processing program, battery system, electric vehicle and equalization processing method
WO2014061421A1 (ja) * 2012-10-18 2014-04-24 矢崎総業株式会社 均等化装置
JP2014082900A (ja) * 2012-10-18 2014-05-08 Yazaki Corp 均等化装置
CN104769808A (zh) * 2012-10-18 2015-07-08 矢崎总业株式会社 均等化装置
JP2017017949A (ja) * 2015-07-06 2017-01-19 住友電気工業株式会社 充電状態均等化装置
JPWO2021117560A1 (ja) * 2019-12-13 2021-06-17
WO2021117560A1 (ja) * 2019-12-13 2021-06-17 京セラ株式会社 蓄電装置および蓄電方法
JP7350087B2 (ja) 2019-12-13 2023-09-25 京セラ株式会社 蓄電装置および蓄電方法

Also Published As

Publication number Publication date
EP2254219A1 (en) 2010-11-24
US20110006734A1 (en) 2011-01-13
CN101971455A (zh) 2011-02-09
EP2254219A4 (en) 2012-08-22
JPWO2009113530A1 (ja) 2011-07-21

Similar Documents

Publication Publication Date Title
WO2009113530A1 (ja) 充電状態均等化装置及びこれを具えた組電池システム
JP4767220B2 (ja) 充電状態均等化装置及びこれを具えた電動車輌
US9438059B2 (en) Battery control apparatus and battery control method
US8493031B2 (en) Equalization device, battery system and electric vehicle including the same, equalization processing program, and equalization processing method
CN103548233B (zh) 蓄电器控制电路
US20130311119A1 (en) Method of detecting battery full-charge capacity
JP7211420B2 (ja) パラメータ推定装置、パラメータ推定方法及びコンピュータプログラム
JP5349567B2 (ja) バッテリ・パックの入出力可能電力推定装置およびその方法
JP2009159794A (ja) 充電状態均等化装置及びこれを具えた組電池システム
WO2017170621A1 (ja) 二次電池劣化推定装置および二次電池劣化推定方法
KR100341754B1 (ko) 전기 자동차의 배터리 충전 제어 방법
JP6449609B2 (ja) 二次電池の充電率推定方法及び充電率推定装置
JP2009081981A (ja) 充電状態最適化装置及びこれを具えた組電池システム
JP6648709B2 (ja) 電池モジュールの制御装置
CN107452998B (zh) 基于电池荷电状态的车载动力电池均衡方法
CN105008945A (zh) 充电状态估计装置和充电状态估计方法
JP2018129958A (ja) 充電率均等化装置
CN115166528A (zh) 一种动力电池的实时soc估算方法、***及电动汽车
JP2013255320A (ja) 電池均等化装置および方法
WO2013084663A1 (ja) 電池充電量制御装置および方法
JP6011265B2 (ja) 電池システム
JP2016152704A (ja) リチウムイオン電池の充放電制御装置および制御方法
JP2016181991A (ja) 充電装置および充電装置の制御方法
JP3921826B2 (ja) 組電池セル容量調整方法
JP2002354703A (ja) 車両用二次電池制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980108406.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09720820

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010502827

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009720820

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12922080

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE