WO2009110365A1 - 投写型映像表示装置および照明装置 - Google Patents

投写型映像表示装置および照明装置 Download PDF

Info

Publication number
WO2009110365A1
WO2009110365A1 PCT/JP2009/053488 JP2009053488W WO2009110365A1 WO 2009110365 A1 WO2009110365 A1 WO 2009110365A1 JP 2009053488 W JP2009053488 W JP 2009053488W WO 2009110365 A1 WO2009110365 A1 WO 2009110365A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
light
heat transfer
light sources
transfer system
Prior art date
Application number
PCT/JP2009/053488
Other languages
English (en)
French (fr)
Inventor
慎也 松本
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to CN2009801080814A priority Critical patent/CN101960378A/zh
Publication of WO2009110365A1 publication Critical patent/WO2009110365A1/ja
Priority to US12/876,851 priority patent/US20110001937A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating

Definitions

  • the present invention relates to a projection display apparatus and an illumination device, and is particularly suitable for use in generating illumination light using a laser light source.
  • projection video display devices for enlarging and projecting light modulated by video signals onto a screen have been commercialized and widely spread.
  • This type of projector is equipped with an illuminating device for supplying illumination light to a light modulation element such as a liquid crystal panel, and the light source has so far been an ultra-high pressure mercury lamp, a metal halide lamp, a xenon lamp, etc. A lamp light source was used.
  • a configuration in which a plurality of laser light sources are arranged in a two-dimensional array for example, Patent Document 1
  • laser light emitted from a plurality of laser light sources is converted into a prism mirror.
  • the structure for example, patent document 2 which uses and synthesize
  • the cross-sectional area (light beam area) of the illumination light can be reduced by adjusting the arrangement of the laser light source and the prism mirror as appropriate, and the use efficiency of light can be increased from Etendue theory.
  • the laser light source has a characteristic that the emission intensity varies with a temperature change. For this reason, the illumination device using the laser light source as described above requires a system for appropriately controlling the emission intensity of the laser light source by exhausting the heat generated by the laser light source.
  • the heat is moved from the laser light source by a cooling element such as a Peltier element or a heat pipe, and the moved heat is radiatored rather than the method of blowing cooling air to the laser light source
  • a cooling element such as a Peltier element or a heat pipe
  • the moved heat is radiatored rather than the method of blowing cooling air to the laser light source
  • a pipe for circulating the coolant and a heat pipe for directly moving the heat are used as a heat transfer system for transferring the heat generated by the laser light source to a radiator or a heat sink.
  • the laser light source and the heat transfer system are appropriately arranged so as to further increase the light use efficiency from Etendue theory, taking into consideration that these heat transfer systems do not block the laser light. It will be necessary.
  • the present invention has been made in view of the above problems, and provides a projection display apparatus that can have a compact body shape even when a cooling device such as a radiator or a heat sink is used. With the goal. It is another object of the present invention to provide a projection display apparatus that can improve the light use efficiency while preventing the heat transfer system from blocking the light from the light source.
  • an optical system that generates and outputs image light by modulating light based on an image signal, a plurality of light sources, and an installation surface of the optical system are provided.
  • An illumination device that emits illumination light in a parallel predetermined axial direction and supplies the illumination light to the optical system, a heat transport system that transports heat generated by the light source in a direction substantially perpendicular to the installation surface, and the installation surface
  • a cooling device for removing heat transferred by the heat transfer system.
  • the cooling device is arranged at the upper or lower position of the optical system, the outer shape of the projection display apparatus is made compact compared to the case where the cooling device is arranged parallel to the optical system installation surface. be able to.
  • the cooling device is arranged at a position directly above or directly below the lighting device, the routing of the heat transfer system can be suppressed, and as a result, the configuration of the heat transfer system can be simplified and the cost can be reduced. .
  • At least two of the plurality of light sources may be configured to emit light in the same direction.
  • these two light sources are arranged so as to move back and forth in the light emission direction, and further, the rear light source of these two light sources is in a direction opposite to the heat transport direction with respect to the front light source. It can be arranged to shift by a predetermined distance.
  • the heat transfer system for the front light source is not positioned on the optical path of the light emitted from the rear light source, so that the light emitted from the rear light source is not Is not blocked by the heat transfer system.
  • the two light sources are each equipped with a cooling part that constitutes a part of the heat transfer system, and the projection surfaces of the two light sources in the light emission direction in the state where the cooling parts are attached.
  • these two light sources may be arranged so as to overlap each other in a direction parallel to the heat transfer direction.
  • the distance between the light sources can be reduced, so that the total luminous flux combined with the light from these two light sources can be reduced.
  • the efficiency of use of illumination light can be reduced. Can be increased.
  • At least two of the plurality of light sources may be configured to emit light in the same direction.
  • these two light sources may be arranged side by side in a direction perpendicular to the installation surface, and a common cooling unit constituting a part of the heat transfer system may be attached to these two light sources.
  • the distance between the light sources can be reduced, so that the total luminous flux combined with the light from these two light sources can be further reduced.
  • the use of illumination light can be reduced. Efficiency can be increased.
  • At least two of the plurality of light sources may be configured to emit light in the same direction.
  • these two light sources are arranged to be separated from each other by a predetermined distance in the light emission direction and in a direction parallel to the installation surface and perpendicular to the light emission direction.
  • a cooling unit constituting a part of the heat transfer system is mounted, and the projection plane of the light emission direction of these two light sources in the state where the cooling unit is mounted is parallel to the installation surface and emits the light.
  • These two light sources can be arranged to overlap each other in a direction perpendicular to the direction.
  • the distance between the light sources can be reduced, so that the total luminous flux combined with the light from these two light sources can be reduced.
  • the efficiency of use of illumination light can be reduced. Can be increased.
  • At least two of the plurality of light sources may be configured to emit light in the same direction.
  • these two light sources are arranged side by side in a direction perpendicular to the light emission direction and parallel to the installation surface, and a common cooling that forms part of the heat transfer system with respect to these two light sources.
  • the part can be mounted.
  • the distance between the light sources can be reduced, so that the total luminous flux combined with the light from these two light sources can be further reduced.
  • the use of illumination light can be reduced. Efficiency can be increased.
  • the illumination device may include a plurality of light source blocks having different light emission directions.
  • each light source block may be provided with the plurality of light sources that emit light in the same direction.
  • the illumination device may be configured to include a reflection unit that reflects and synthesizes light emitted from these light source blocks in the same direction.
  • light from a plurality of light source blocks can be aligned in the same direction, and high brightness of the illumination light in the same direction can be realized.
  • the cross-sectional area (light beam area) of the illumination light after being synthesized by the reflecting means can be reduced, and the use efficiency of the illumination light is increased from Etendue theory. be able to.
  • the heat transfer system is configured to include a cooling unit in which the light source is mounted and a flow path through which a refrigerant liquid from the cooling device circulates.
  • the cooling unit may be arranged such that a surface on which the light source is mounted is along the direction of gravity.
  • the cooling unit is formed with the flow path so that the refrigerant liquid flows from the bottom to the top, and the refrigerant liquid flows into the lower part and the upper part of the cooling part so as to be connected to the flow path.
  • an outflow portion may be arranged.
  • the flow path is configured to gradually narrow toward the outflow portion. If it does in this way, it will become still easier for air to gather in an outflow part, and air will become easy to be discharged outside.
  • heat generated by the light sources is generated in the first axial direction.
  • a heat transfer system that transfers in a second axis direction perpendicular to the first axis direction, and a cooling device that is provided in a direction perpendicular to the first axis direction and that removes the heat transferred by the heat transfer system.
  • the illumination device according to this aspect is suitable for use in the projection display apparatus according to the first aspect.
  • the entire illumination device including the cooling device can be compared with the case where the cooling device is arranged side by side in the light source group.
  • the outer shape can be made compact.
  • the cooling device is arranged at a position directly above or immediately below the light source group, the routing of the heat transfer system can be suppressed, and as a result, the structure of the heat transfer system can be simplified and the cost can be reduced. .
  • a lighting device that includes a plurality of light sources and emits light from the plurality of light sources in a first axial direction, and a second axial direction perpendicular to the first axial direction.
  • a first light source that emits light to the first and a first heat that conveys heat generated by the first light source in the first axial direction and a third axial direction perpendicular to the second axial direction
  • a transport system a second light source arranged to emit light in the second axial direction and back and forth in the light emission direction of the first light source, and heat generated by the first light source.
  • a second heat transfer system for transferring in the third axial direction and a heat provided in the third axial direction and transferred by the first heat transfer system and the second heat transfer system are removed.
  • a cooling device that guides light emitted from each of the first light source and the second light source in the first axial direction.
  • the first light source and the second light source are arranged such that the rear light source is shifted in the direction opposite to the heat transfer direction with respect to the front light source.
  • the cooling device is disposed at the upper or lower position of the first and second light sources, as in the second aspect, so that the cooling device is the first and second light sources. If it is arranged at a position immediately above or directly below, it is possible to suppress the routing of the heat transfer system, and as a result, the configuration of the heat transfer system can be simplified and the cost can be reduced.
  • the rear light source of the first and second light sources is arranged to shift by a predetermined distance in the direction opposite to the heat transfer direction with respect to the front light source. Therefore, the heat transfer system for the front light source is not positioned on the optical path of the light emitted from the rear light source. Therefore, the light emitted from the rear light source is smoothly guided to the light guide system without being blocked by the heat transfer system for the front light source.
  • an optical system that generates and outputs image light by modulating light based on an image signal, a light source that supplies the light to the optical system, A heat transfer system for transferring heat generated by the light source; and a cooling device for removing heat transferred by the heat transfer system.
  • the heat transfer system includes a cooling unit in which the light source is mounted and a flow path through which the refrigerant liquid from the cooling device circulates. Furthermore, the cooling unit is disposed such that a surface on which the light source is mounted is along the direction of gravity.
  • the projection display apparatus since air (bubbles) in the flow path hardly stays in the vicinity of the light source mounting surface, heat transfer is reduced (increase in thermal resistance) due to the stay of air (bubbles). And the cooling effect of the light source can be maintained without deterioration.
  • the shape of the main body of the projection display apparatus can be made compact. Moreover, the utilization efficiency of illumination light can be enhanced while preventing the heat transfer system from blocking light from the light source.
  • FIG. 1 is a diagram illustrating a configuration of a projector according to a first embodiment.
  • 2 is a diagram illustrating a configuration of an optical unit according to Embodiment 1.
  • FIG. 2 is a diagram illustrating a configuration of an optical unit according to Embodiment 1.
  • FIG. 5 is a diagram illustrating an arrangement method of the optical unit according to the first embodiment. It is a figure (perspective view) which shows the synthetic
  • FIG. 3 is a diagram (top view / front view) showing how laser light is combined in the first embodiment. It is a figure (perspective view) which shows the synthetic
  • FIG. 3 is a diagram (top view / front view) showing how laser light is combined in the first embodiment. It is a figure (perspective view) which shows the synthetic
  • FIG. 3 is a diagram (top view / front view) showing how laser light is combined in the first embodiment. It is a figure (perspective view) which shows the synthetic
  • FIG. 3 is a diagram (top view / front view) showing how laser light is combined in the first embodiment. It is a figure (perspective view) which shows the synthetic
  • FIG. FIG. 3 is a diagram (top view / front view) showing how laser light is combined in the first embodiment.
  • FIG. 3 is a diagram (top view / front view) showing how laser light is combined in the first embodiment.
  • FIG. 3 is a diagram (top view / front view) showing how laser light is combined in the first embodiment. It is a figure (perspective view) which shows the synthetic
  • FIG. 3 is a diagram (top view / front view) showing how laser light is combined in the first embodiment. It is a figure (perspective view) which shows the synthetic
  • FIG. FIG. 3 is a diagram (top view / front view) showing how laser light is combined in the first embodiment. It is a figure (perspective view) which shows the synthetic
  • FIG. 3 is a diagram (top view / front view) showing how laser light is combined in the first embodiment. It is a figure (perspective view) which shows the synthetic
  • FIG. 3 is a diagram (top view / front view) showing how laser light is combined in the first embodiment. It is a figure which shows the structure of the projector which concerns on Embodiment 2.
  • FIG. It is a figure (top view / front view) which shows the synthetic
  • FIG. It is a figure (top view / front view) which shows the synthetic
  • FIG. 1 It is a figure (top view / front view) which shows the synthetic
  • FIG. 2 It is a figure (top view / front view) which shows the synthetic
  • FIG. 2 It is a figure (top view / front view) which shows the synthetic
  • FIG. It is a figure (top view / front view) which shows the synthetic
  • FIG. 2 It is a figure (top view / front view) which shows the synthetic
  • FIG. 2 It is a figure (top view / front view) which shows the synthetic
  • FIG. 2 It is a figure (top view / front view) which shows the synthetic
  • FIG. It is a figure (top view / front view) which shows the synthetic
  • FIG. It is a figure (top view / front view) which shows the synthetic
  • FIG. It is a figure (top view / front view) which shows the synthetic
  • FIG. It is a figure which shows the other structural example of a light source unit. It is a figure which shows the structure of the liquid cooling jacket which concerns on the other structural example. It is a figure for demonstrating the cooling operation of the laser light source by the cooling part which concerns on the other structural example. It is a figure which shows the example of a change of the liquid cooling jacket which concerns on the other structural example.
  • FIG. 1 shows a configuration of a projector according to the embodiment.
  • FIG. 1A is a perspective view of the projector from the side
  • FIG. 1B is a perspective view of the projector from the upper surface.
  • the interior of the projector 1 is divided into an upper space R1 and a lower space R2 by a partition plate 2.
  • an optical system 20 for modulating light according to a video signal and an illuminating device 10 for supplying illumination light to the optical system 20 are disposed in the space R1.
  • the optical system 20 can be configured by a known optical system such as an LCOS type or a DLP type optical system in addition to an optical system using a liquid crystal panel as an optical modulator.
  • the light (image light) modulated by the optical system 20 is projected onto the projection surface (screen) via the projection lens 21.
  • a cooling device 30 is arranged at a position directly below the lighting device 10.
  • the cooling device 30 includes a radiator 31, a pump 32, a fan 33, and a pipe 34.
  • the pipe 34 connects the radiator 31 and the pump 32, extends from the opening formed in the partition plate 2 to the space R ⁇ b> 1, and is connected to the laser light source 11 in the illumination device 10. 2).
  • the radiator 31, the pump 32, and the laser light source cooling unit are connected in a closed loop, thereby forming a refrigerant flow path.
  • the refrigerant circulates through the pipe 12d, and the heat generated by the laser light source is conveyed to the radiator 31.
  • the heat transferred to the radiator 31 is removed by the wind sent to the radiator 31 by the fan 33.
  • the heat generated in the laser light source is radiated to the outside, and the temperature of the laser light source is adjusted to a predetermined temperature.
  • FIGS. 2A and 2B are diagrams illustrating a configuration example of the light source unit
  • FIGS. 2C and 2D are diagrams illustrating another configuration example of the light source unit.
  • 2A and 2C are side views of the light source unit
  • FIGS. 2B and 2D are front views of the light source unit.
  • the light source unit includes a laser light source 11 and a cooling unit 12.
  • the laser light source 11 includes a wavelength-selective reflection element 11a, a wavelength conversion element 11b, a laser diode 11c, and a housing 11d that accommodates these.
  • the laser diode 11c emits laser light having a wavelength ⁇ 1.
  • the wavelength conversion element 11b generates laser light having a wavelength ⁇ 2 ( ⁇ 2 ⁇ 1) from laser light having a wavelength ⁇ 1.
  • the reflective element 11a transmits the laser beam having the wavelength ⁇ 2 and reflects the laser beam having the wavelength ⁇ 1.
  • the laser light having the wavelength ⁇ 1 is repeatedly reflected between the reflection element 11a and the laser diode 11c, and the laser light having the wavelength ⁇ 2 is generated by the wavelength conversion element 11b during the reflection.
  • the generated laser light having the wavelength ⁇ 2 sequentially passes through the reflection element 11a and is emitted to the outside from the opening on the front surface of the housing 11d.
  • the cooling unit 12 includes a copper plate 12a, a Peltier element 12b, and a liquid cooling jacket 12c.
  • the copper plate 12a is attached to the back surface of the laser diode 11c and diffuses the heat generated in the laser diode 11c.
  • the Peltier element 12b is attached to the copper plate 12a and moves the heat diffused by the copper plate 12a to the liquid cooling jacket 12c.
  • the liquid cooling jacket 12c has a flow path inside, and a pipe 12d is connected to an inlet and an outlet of the flow path. The refrigerant flows in from one of these two pipes 12d, and the refrigerant flows out from the other.
  • the refrigerant circulates in the flow path in the liquid cooling jacket 12, and the heat transferred from the Peltier element 12b to the liquid cooling jacket 12c is transferred to the refrigerant circulating in the liquid cooling jacket 12c. As described above, this heat is transferred to the radiator 31 by the refrigerant, and is removed by the wind passing through the radiator 31.
  • the pipe 12d is arranged to extend downward from the lower surface of the liquid cooling jacket 12. Instead, as shown in the configuration example of FIGS. 2C and 2D, the pipe 12d is protruded from the lower back of the liquid cooling jacket 12 by a predetermined length, and then bent downward to bring the pipe 12d downward. You may make it point to.
  • the light source unit shown in FIG. 2 is used to emit laser light in the green wavelength band and the blue wavelength band.
  • FIGS. 3A and 3B are diagrams showing another configuration example of the light source unit
  • FIGS. 3C and 3D are diagrams showing a modification example thereof.
  • 3A and 3C are side views of the light source unit
  • FIGS. 3B and 3D are front views of the light source unit.
  • the light source unit shown in FIG. 3 is used for emitting laser light in the red wavelength band.
  • the laser light source 11 is composed of a semiconductor laser array.
  • the semiconductor laser array a plurality of laser light emitting portions are formed so as to be arranged in the left-right direction in FIG.
  • a copper plate 12a is attached to the lower surface of the laser light source 11, and a Peltier element 12b and a liquid cooling jacket 12c are sequentially attached.
  • the configurations and operations of the copper plate 12a, the Peltier element 12b, and the liquid cooling jacket 12c are the same as those in the configuration example of FIG.
  • the pipe 12d is arranged to extend downward from the lower surface of the liquid cooling jacket 12. Instead, as shown in the configuration examples of FIGS. 3C and 3D, the pipe 12d is protruded by a predetermined length from the lower back of the liquid cooling jacket 12, and then bent downward to bring the pipe 12d downward. You may make it point to.
  • the copper plate 12a is used for thermal diffusion, but a heat conductive sheet (graphite sheet), a thermal diffusion sheet, thermal grease, or the like can be used instead. Further, depending on the heat generation area of the laser light source 11 and the area of the liquid cooling jacket 12, there are cases where the cooling efficiency can be improved without using the copper plate 12a. In such a case, the copper plate 12a may be omitted. Furthermore, another heat transfer element may be used instead of the Peltier element 12b.
  • FIG. 4 is a diagram showing a method for arranging the light source units. 4 shows the arrangement method when the light source unit of FIG. 2 is used for convenience, but the same arrangement method can also be adopted when the light source unit of FIG. 3 is used.
  • FIG. 4A shows an arrangement method in which two light source units are arranged side by side.
  • FIG. 4B shows an arrangement method in which two light source units are moved back and forth in the light emission direction and overlapped in the left-right direction.
  • the arrangement method of FIG. 4B since the light source units overlap in the left-right direction, the distance L1 between the laser light sources in the left-right direction is smaller than that in the arrangement method of FIG. Therefore, according to the arrangement method of FIG. 4 (b), compared with the arrangement method of FIG. 4 (a), the size of the entire luminous flux combining the laser beams from these two light source units can be reduced. From Etendue theory, the light utilization efficiency can be increased.
  • FIG. 4C shows a configuration example in which two laser light sources 11 are arranged side by side and a common cooling unit 12 is mounted on these laser light sources.
  • a common copper plate 12a and a common Peltier element 12b (not shown in FIG. 4) are mounted on the back surfaces of the two laser light sources 11, and a common liquid cooling jacket 12c is mounted.
  • the two laser light sources 11 can be brought closer to each other than in the case of FIG. 4B, the distance L1 between the laser light sources in the left-right direction is larger than that in the arrangement method of FIG. It becomes even smaller. Therefore, according to the arrangement method shown in FIG. 4C, the size of the entire light beam including the laser beams from these two laser light sources 11 can be further reduced as compared with the arrangement method shown in FIG. Yes, from the Etendue theory, the light utilization efficiency can be further enhanced.
  • FIG. 4D shows an arrangement method in which two light source units are arranged one above the other.
  • FIG. 4E shows an arrangement method in which two light source units are moved back and forth in the light emission direction and overlapped in the vertical direction.
  • the arrangement method of FIG. 4 (e) since the light source units overlap in the vertical direction, the distance L2 between the laser light sources in the vertical direction is smaller than that in the arrangement method of FIG. 4 (d). Therefore, according to the arrangement method of FIG. 4 (e), the size of the entire light flux combining the laser beams from these two light source units can be reduced compared to the arrangement method of FIG. 4 (d). From Etendue theory, the light utilization efficiency can be increased.
  • FIG. 4F shows a configuration example in which two laser light sources 11 are arranged one above the other and a common cooling unit 12 is mounted on these laser light sources.
  • a common copper plate 12a and a common Peltier element 12b (not shown in FIG. 4) are mounted on the back surfaces of the two laser light sources 11, and a common liquid cooling jacket 12c is mounted.
  • the two laser light sources 11 can be brought closer to each other than in the case of FIG. 4E, the distance L2 between the laser light sources in the vertical direction is larger than that in the arrangement method of FIG. It becomes even smaller. Therefore, according to the arrangement method shown in FIG. 4 (f), the size of the entire light beam including the laser beams from these two laser light sources 11 can be further reduced as compared with the arrangement method shown in FIG. 4 (e). Yes, from the Etendue theory, the light utilization efficiency can be further enhanced.
  • any one of the light source units is appropriately assigned to a light source unit that emits laser light in the red wavelength band, green wavelength band, and blue wavelength band, and lasers in each wavelength band emitted from these light source units.
  • Light is combined by a prism mirror.
  • a light source unit that emits yellow wavelength band laser light may be further included.
  • FIG. 5 and FIG. 6 are diagrams showing a combined form in which four light source units 101 to 104 face each other in the X-axis direction and laser light is reflected in the Z-axis direction by two prism mirrors 151 and 152.
  • 6A is a top view of FIG. 5
  • FIG. 6B is a front view of FIG.
  • the light source units 101 and 102 are arranged so as to move back and forth in the light emission direction, and the rear light source unit 101 is arranged so as to shift a predetermined distance upward with respect to the front light source unit 102.
  • the light source units 103 and 104 are arranged so as to move back and forth in the light emission direction, and the rear light source unit 103 is arranged so as to shift downward by a predetermined distance with respect to the front light source unit 104.
  • the polarization directions of the laser beams emitted from the light source units 101 to 104 are the same, and therefore the polarization directions of the laser beams after being reflected by the prism mirrors 151 and 152 are also the same. The point that the polarization directions of the laser beams are the same in this way is the same for all the following combined forms.
  • the optical path lengths from the light source units 101 to 104 to the mirror surfaces of the corresponding prism mirrors 151 and 152 can be made the same. Therefore, the beam shapes of the two laser lights after being reflected by the prism mirror 151 can be made uniform, and similarly, the beam shapes of the two laser lights after being reflected by the prism mirror 152 can be made uniform.
  • the laser light from the light source unit 103 interferes with the pipe 12d for the light source unit 104, so that the laser light from the light source unit 103 is deteriorated. In order to stabilize the illumination light, it is desirable to arrange the light source unit so that interference does not occur between the laser light and the pipe 12d.
  • FIGS. 5 and 6 are diagrams showing a combined form in which the arrangement of the light source units in FIGS. 5 and 6 is adjusted so that interference does not occur between the laser light and the pipe 12d.
  • 8A is a top view of FIG. 7, and
  • FIG. 8B is a front view of FIG.
  • the light source units 103 and 104 are arranged so as to move back and forth in the light emission direction, and the rear light source unit 103 is arranged so as to shift a predetermined distance upward with respect to the front light source unit 104. ing.
  • the laser light from the light source unit 103 is not blocked by the pipe 12d for the light source unit 104, and the laser light from all the light source units 101 to 104 is smoothly applied to the corresponding prism mirrors 151 and 152. It can be made incident. Therefore, the laser light is not deteriorated by the interference with the pipe 12d, and stable illumination light can be supplied to the optical system 20.
  • FIGS. 9 and 10 are diagrams showing a combined form in which six light source units 101 to 106 face each other in the X-axis direction and laser light is reflected in the Z-axis direction by three prism mirrors 151, 152, and 153.
  • 10A is a top view of FIG. 9, and
  • FIG. 10B is a front view of FIG.
  • the light source units 101, 102, and 105 are arranged so as to move back and forth in the light emission direction, and the rear light source units 101 and 102 are stepped by a predetermined distance upward with respect to the front light source unit 105.
  • the light source units 103, 104, and 106 are arranged so as to move back and forth in the light emitting direction, and the rear light source units 103 and 104 are gradually shifted upward by a predetermined distance with respect to the front light source unit 106.
  • the polarization directions of the laser beams emitted from these light source units 101 to 106 are the same. Therefore, the polarization directions of these laser beams after being reflected by the prism mirrors 151, 152, and 153 are also the same. .
  • the laser light from the light source units 101 and 103 is not blocked by the pipe 12d for the light source units 102 and 104 positioned in front of the light source units 101 and 103, and the laser light from the light source units 102 and 104 is not blocked.
  • And is not blocked by the pipe 12d for the light source units 105 and 106 located in front thereof. Therefore, the laser beams from all the light source units 101 to 104 can be smoothly incident on the corresponding prism mirrors 151, 152, and 153. Therefore, in this synthesis mode, the laser light is not deteriorated by the interference with the pipe 12d, and stable illumination light can be supplied to the optical system 20.
  • the arrangement of the light source units 101 and 102, the arrangement of the light source units 102 and 105, the arrangement of the light source units 103 and 104, and the arrangement of the light source units 104 and 106 are as shown in FIG. If adjusted to, as described with reference to FIG. 4 (e), it is possible to reduce the size of the total luminous flux including the laser beams from the two light source units. Can be increased.
  • FIGS. 11 and 12 are diagrams showing a combined form in which the light source units 111 and 112 shown in FIG. 4F are opposed to each other in the X-axis direction and the laser light is reflected by the prism mirror 161 in the Z-axis direction.
  • 12A is a top view of FIG. 11, and
  • FIG. 12B is a front view of FIG.
  • the distance between the laser light sources 111a and 111b and the distance between the laser light sources 112a and 112b can be made even smaller than those in the composite form of FIGS. 7 and 8, so FIG.
  • the configuration can be simplified.
  • cooling is performed with two laser light sources as a set, The temperature of each light source cannot be individually controlled, and the combined form of FIGS. 7 and 8 is superior from the viewpoint of temperature control.
  • FIGS. 13 and 14 are diagrams showing a combined form in which the light source units 101 and 104 and the prism mirror 151 in the combined form of FIGS. 5 and 6 are shifted by a predetermined distance in the Z-axis direction.
  • 14A is a top view of FIG. 13
  • FIG. 14B is a front view of FIG.
  • the light source units 101 and 104 and the prism mirror 151 are arranged by shifting by a predetermined distance in the Z-axis direction, so the problem in the combined form of FIGS. Interference between the laser light and the pipe 12d for the light source unit 104 can be avoided, and therefore deterioration of the illumination light can be suppressed.
  • the optical path lengths from the light source units 101 to 104 to the mirror surfaces of the corresponding prism mirrors 151 and 152 can be made the same. Therefore, the beam shapes of the two laser lights after being reflected by the prism mirror 151 can be made uniform, and similarly, the beam shapes of the two laser lights after being reflected by the prism mirror 152 can be made uniform.
  • the light source units 101 and 102 are arranged so as to overlap in the Z-axis direction, and the light source units 103 and 104 are also arranged so as to overlap in the Z-axis direction.
  • the optical path difference between the laser light from the light source units 101 and 103 and the laser light from the light source units 102 and 104 can be reduced as compared with the case where these light sources are arranged without overlapping.
  • the beam shape of the laser light from the light source units 101 and 103 after being reflected by the prism mirror 151 and the beam shape of the laser light from the light source units 102 and 104 after being reflected by the prism mirror 152 are obtained.
  • the size difference can be reduced, and the uniformity of the illumination light can be improved.
  • the light source units 101 and 102 are further overlapped in the Y-axis direction, and similarly, the light source units 103 and 104 are overlapped in the Y-axis direction, the light flux that combines the laser beams from the two light source units.
  • the overall size can be reduced, and the utilization efficiency of illumination light can be increased from Etendue theory.
  • FIGS. 15 and 16 are diagrams showing a combined form in which eight light source units 121 to 128 are opposed to each other in the X-axis direction, and laser light is reflected by the two prism mirrors 171 and 172 in the Z-axis direction.
  • 16A is a top view of FIG. 15, and
  • FIG. 16B is a front view of FIG.
  • the light source units 121 and 122, the light source units 123 and 124, the light source units 125 and 126, and the light source units 127 and 128 are arranged so as to move back and forth in the X-axis direction.
  • 125, 127 are arranged so as to shift upward by a predetermined distance with respect to the light source units 122, 124, 126, 128 in front.
  • the light source units 121 and 123, the light source units 122 and 124, the light source units 125 and 127, and the light source units 126 and 128 are arranged so as to be aligned in the Z-axis direction.
  • the laser light from the light source units 121, 123, 125, and 127 is not blocked by the pipe 12d for the light source units 122, 124, 126, and 128 located in front of the light sources.
  • Laser light from the units 121 to 128 can be smoothly incident on the corresponding prism mirrors 171 and 172. Therefore, in this synthesis mode, the laser light is not deteriorated by the interference with the pipe 12d, and stable illumination light can be supplied to the optical system 20.
  • the light source units 121 and 122, the light source units 123 and 124, the light source units 125 and 126, and the light source units 127 and 128 are overlapped in the Y-axis direction as shown in FIG. Since it is arranged, as described with reference to FIG. 4 (e), it is possible to reduce the size of the entire light beam including the laser beams from the two light source units. From Etendue theory, the use of illumination light can be reduced. Efficiency can be increased. Further, when the front and rear light source units are overlapped in the Y-axis direction in this way, the sizes of the prism mirrors 171 and 172 in the Y-axis direction can be reduced.
  • the optical units arranged in the Z-axis direction that is, the light source units 121 and 123, the light source units 122 and 124, the light source units 125 and 127, and the light source units 126 and 128 are respectively shown in FIG. )), As described with reference to FIG. 4 (c), the size of the entire light beam including the laser beams from the two light source units can be further reduced. Light utilization efficiency can be further increased.
  • the front and rear light source units are overlapped in the Y-axis direction, but the front and rear light source units can be overlapped in the X-axis direction as shown in FIG.
  • the optical path difference of the laser light from the two light source units moving back and forth in the X-axis direction can be reduced, and the size difference between the beam shapes of these laser lights after being reflected by the prism mirrors 171 and 172 can be reduced. it can.
  • the uniformity of the illumination light can be improved.
  • the light source units 121 and 122, the light source units 123 and 124, the light source units 125 and 126, and the light source units 127 and 128 are arranged so as to move back and forth in the X-axis direction.
  • 125, 127 are arranged so as to shift upward by a predetermined distance with respect to the light source units 122, 124, 126, 128 in front.
  • the light source units 121 and 123, the light source units 122 and 124, the light source units 125 and 127, and the light source units 126 and 128 are arranged so as to be aligned in the Z-axis direction.
  • the laser light from the light source units 121, 123, 125, and 127 is not blocked by the pipe 12d for the light source units 122, 124, 126, and 128 located in front of the light sources.
  • the laser beams from the units 121 to 128 can be smoothly incident on the corresponding prism mirrors 181 to 184. Therefore, in this synthesis mode, the laser light is not deteriorated by the interference with the pipe 12d, and stable illumination light can be supplied to the optical system 20.
  • two light source units 129 and 130 are added as compared with the combined form of FIGS. 15 and 16, it is possible to further increase the luminance of the illumination light.
  • the optical units arranged in the Z-axis direction that is, the light source units 121 and 123, the light source units 122 and 124, the light source units 125 and 127, and the light source unit
  • the size of the entire light beam including the laser beams from the two light source units is further increased. It can be made smaller, and the utilization efficiency of illumination light can be further enhanced from Etendue theory.
  • the use efficiency of the illumination light in the optical system 20 can be improved by arranging the two light source units moving back and forth in the X axis direction so as to overlap in the X axis direction.
  • FIG. 21 are diagrams showing a combined form in which the arrangement of the prism mirrors 181 to 184 is changed in the combined form of FIG. 18 and FIG. 21A is a top view of FIG. 20, and FIG. 21B is a front view of FIG.
  • the arrangement positions of the prism mirrors 182 and 184 on the lower side are different from those in the composite forms of FIGS. That is, laser light from the light source units 122 and 126 is reflected by the prism mirror 184, and laser light from the light source units 124 and 128 is reflected by the prism mirror 182.
  • the use efficiency of illumination light can be increased by replacing the optical units arranged in the Z-axis direction with the configuration example of FIG.
  • the use efficiency of the illumination light in the optical system 20 can be enhanced by arranging two light source units that move back and forth in the X-axis direction so as to overlap in the X-axis direction.
  • FIGS. 22 and 23 are diagrams showing a combined form in which four light source units 101 to 104 are opposed to each other in the X-axis direction and laser light is reflected in the Z-axis direction by two prism mirrors 151 and 152.
  • 23A is a top view of FIG. 22, and
  • FIG. 23B is a front view of FIG.
  • the light source units 101 to 104 and the prism mirror are set so that the optical path lengths from the light source units 101 to 104 to the surface S perpendicular to the optical axis of the laser light reflected by the prism mirrors 151 and 152 are equal.
  • 151 and 152 are arranged. That is, referring to FIG.
  • the distance from the light source units 101 and 103 to the reflecting surface of the prism mirror 151 is P1
  • the distance from the light source units 102 and 104 to the reflecting surface of the prism mirror 152 is P2
  • the optical path lengths from the light source units 101 to 104 to the surface S perpendicular to the optical axis of the laser light after being reflected by the prism mirrors 151 and 152 are equal.
  • the beam shapes of all the laser beams after being reflected by 152 can be made uniform. As a result, the uniformity of the illumination light can be improved.
  • Embodiment 2 The present embodiment relates to a configuration in the case where the cooling device 30 is disposed on the upper stage of the optical system 20.
  • the cooling device 30 since the cooling device 30 is arranged at an upper stage than the optical system 20, an air-cooling cooling device is used as the cooling device 30, and a heat pipe is used as the heat transfer system.
  • a cooling device and a heat transfer system other than liquid cooling problems due to liquid leakage can be avoided.
  • FIG. 24 shows the configuration of the projector according to the present embodiment.
  • FIG. 24A is a view seen through the projector from the side
  • FIG. 24B is a view seen through the projector from the bottom.
  • the interior of projector 1 is divided into upper space R1 and lower space R2 by partition plate 2 in the same manner as described above.
  • the optical system 20 and the illumination device 10 that supplies illumination light to the optical system 20 are disposed in the space R2.
  • a cooling device 30 is arranged at a position directly above the lighting device 10.
  • the cooling device 30 includes a heat pipe 25, a heat sink 36, and a fan 37.
  • the heat pipe 25 is connected to the Peltier element 12b (see FIGS. 2 and 3) on the light source unit side. That is, in the present embodiment, the liquid cooling jacket 12c and the pipe 12d are omitted from the configuration shown in FIGS. 2 and 3, and the heat pipe 35 is attached to the Peltier element 12b.
  • the heat pipe 35 is attached to the Peltier element 12b so as to extend upward from the Peltier element 12b.
  • the heat generated by the laser light source is conveyed to the heat sink 36 by the heat pipe 35.
  • the heat transferred to the heat sink 36 is removed by the wind sent to the heat sink 36 by the fan 37.
  • the heat generated in the laser light source is radiated to the outside, and the temperature of the laser light source is adjusted to a predetermined temperature.
  • the heat transfer direction is upside down compared to the configuration example of the above-described FIG. 1 (Embodiment 1). Therefore, in order to avoid interference between the laser beam and the heat pipe 35, FIG. 23.
  • the positional relationship of the light source units in the combined form of FIG. 23 must be reversed up and down, and the positional relationship of the prism mirror must be reversed up and down accordingly.
  • FIG. 25 is a diagram showing a combined form when the combined form (Embodiment 1) of FIGS. 5 and 6 is applied to the present embodiment.
  • the laser beam from the light source unit 103 interferes with the heat pipe 35 attached to the light source unit 104, so that the laser beam from the light source unit 103 deteriorates, as in the synthesis mode in FIGS. Occurs.
  • FIG. 26 is a diagram showing a combined form when the combined form (Embodiment 1) of FIGS. 7 and 8 is applied to the present embodiment.
  • the laser light from the light source unit 103 is not blocked by the heat pipe 35 attached to the light source unit 104, and all the light source units 101 to 104 are not blocked. Can be incident on the corresponding prism mirrors 151 and 152 smoothly. Therefore, the laser light is not deteriorated by the interference with the heat pipe 35, and stable illumination light can be supplied to the optical system 20.
  • the use of illumination light is adjusted by adjusting the arrangement of the light source units moving back and forth in the X-axis direction as shown in FIG. Efficiency can be increased.
  • FIG. 27 is a diagram showing a combined form when the combined form (Embodiment 1) of FIGS. 9 and 10 is applied to the present embodiment.
  • the laser light from the light source units 101 and 103 is not blocked by the heat pipe 35 of the light source units 102 and 104 located in front thereof, and The laser beams from the light source units 102 and 104 are not blocked by the heat pipes 35 of the light source units 105 and 106 located in front of them. Therefore, the laser light from all the light source units 101 to 104 can be smoothly incident on the corresponding prism mirrors 151, 152, and 153, and stable illumination light can be supplied to the optical system 20.
  • FIG. 28 is a diagram showing a combined form when the combined form (Embodiment 1) of FIGS. 11 and 12 is applied to the present embodiment.
  • the distance between the laser light sources 111a and 111b and the distance between the laser light sources 112a and 112b can be reduced.
  • the overall size of the light beam combined with the laser light can be reduced, and the utilization efficiency of the illumination light can be increased.
  • the configuration can be simplified.
  • cooling since cooling is performed with two laser light sources as a set, Each light source cannot be temperature controlled individually.
  • FIG. 29 is a diagram showing a combined form when the combined form (Embodiment 1) of FIGS. 13 and 14 is applied to the present embodiment.
  • the light source units 101 and 104 and the prism mirror 151 are shifted by a predetermined distance in the Z-axis direction. Between the light source unit 103 and the heat pipe 35 of the light source unit 103 can be avoided, so that deterioration of illumination light can be suppressed.
  • the same effects as in the synthesis mode (Embodiment 1) shown in FIGS. 13 and 14 are obtained. Also, this synthesis form can be changed in the same manner as the synthesis form (Embodiment 1) shown in FIGS.
  • FIG. 30 is a diagram showing a combined form when the combined form (Embodiment 1) of FIGS. 15 and 16 is applied to the present embodiment.
  • the laser light from the light source units 121, 123, 125, 127 is the heat pipe 35 of the light source unit 122, 124, 126, 128 located in front of it. Therefore, the laser beams from all the light source units 121 to 128 can be smoothly incident on the corresponding prism mirrors 171 and 172, and stable illumination light can be supplied to the optical system 20. it can.
  • this synthesis mode the same effects as those in the synthesis mode (Embodiment 1) shown in FIGS. 15 and 16 are obtained. Also, this synthesis form can be changed in the same manner as the synthesis form (Embodiment 1) shown in FIGS.
  • FIG. 31 is a diagram showing a composite form when the composite form (Embodiment 1) of FIG. 17 is adapted to the present embodiment.
  • the optical path difference of the laser light from the two light source units moving back and forth in the X-axis direction can be reduced, and these laser light after being reflected by the prism mirrors 171 and 172
  • the difference in size of the beam shape can be reduced.
  • the utilization efficiency of the illumination light in the optical system 20 can be increased.
  • FIG. 32 is a diagram showing a combined form when the combined form (first embodiment) of FIGS. 18 and 19 is applied to the present embodiment.
  • the laser light from the light source units 121, 123, 125, and 127 is the heat pipe 35 of the light source units 122, 124, 126, and 128 positioned in front thereof. Therefore, the laser beams from all the light source units 121 to 128 can be smoothly incident on the corresponding prism mirrors 181 to 184. Therefore, in this synthesis mode, the laser light is not deteriorated by interference with the heat pipe 35, and stable illumination light can be supplied to the optical system 20.
  • this synthesis form can also be changed in the same manner as the synthesis form (Embodiment 1) shown in FIGS.
  • FIG. 33 is a diagram showing a combined form when the combined form (Embodiment 1) of FIGS. 20 and 21 is applied to the present embodiment.
  • the arrangement of the lower-stage prism mirrors 181 and 183 is different from the composite form of FIG.
  • This synthesis form can be changed in the same manner as the synthesis form (Embodiment 1) shown in FIGS.
  • FIG. 34 is a diagram showing a combined form when the combined form (Embodiment 1) of FIGS. 22 and 23 is applied to the present embodiment.
  • this combined form since the optical path lengths from the light source units 101 to 104 to the surface S perpendicular to the optical axis of the laser light after being reflected by the prism mirrors 151 and 152 are equal, they are reflected by the prism mirrors 151 and 152. After that, the beam shapes of all the laser beams can be made uniform. As a result, the uniformity of the illumination light can be improved.
  • the cooling device 30 is arranged at the lower or upper position of the optical system 20, so that the cooling device 30 is arranged parallel to the installation surface of the optical system 20.
  • the outer shape of the projector 1 can be made compact.
  • the cooling device 30 is disposed at a position directly below or directly above the lighting device 10, the routing of the pipes 14d and 34 and the heat pipe 35 can be suppressed, and the configuration of the heat transfer system is simplified and the cost is reduced. be able to.
  • the laser beam is combined in the illumination device 10 in the combined form of FIGS. 7 to 23 and the combined form of FIGS. 26 to 34, interference between the pipe 14d or the heat pipe 35 and the laser light is avoided. And stable illumination light can be supplied to the optical system 20. Furthermore, if the composite forms of FIGS. 7 to 23 and the composite forms of FIGS. 26 to 34 are used, the use efficiency of illumination light in the optical system 20 can be increased as described individually for each composite form, and projection can be performed. The brightness of the image can be increased.
  • FIG. 35 is a diagram illustrating another configuration example of the light source unit.
  • FIG. 35A is a side view of the light source unit
  • FIG. 35B is a front view of the light source unit.
  • the light source unit includes a laser light source 50 and a cooling unit 60.
  • the configuration of the laser light source 50 is the same as that of the laser light source 11 of the first embodiment, and includes a first wavelength selective reflection element 51, a wavelength conversion element 52, a laser diode 53, and a housing 54 that accommodates these. ing.
  • the cooling unit 60 includes a copper plate 61, a Peltier element 62, and a liquid cooling jacket 63.
  • the copper plate 61 is attached to the back surface of the laser diode 53 and diffuses heat generated by the laser diode 53.
  • the Peltier element 62 is attached to the copper plate 61 and moves the heat diffused by the copper plate 61 to the liquid cooling jacket 63.
  • the copper plate 61 and the Peltier element 62 are attached to the front surface (attachment surface) of the liquid cooling jacket 63 by four screws 64.
  • a graphite sheet or an iridium sheet having high thermal conductivity is disposed on the interface between the laser diode 53 and the copper plate 61, the interface between the copper plate 61 and the Peltier element 62, and the interface between the Peltier element 62 and the cooling jacket 63.
  • thermal grease may be applied to each of these interfaces.
  • the cooling unit 60 can omit the Peltier element 61.
  • the copper plate 61 is directly attached to the liquid cooling jacket 63.
  • FIG. 36 is a diagram showing a configuration of the liquid cooling jacket 63.
  • FIGS. 36A and 36B are a front view and a top view of the liquid cooling jacket 63, respectively.
  • FIG. 36C is a cross-sectional view taken along line AA ′ of FIG. 36A, and
  • FIG. 36D is an internal perspective view of the liquid cooling jacket 63 viewed from the front.
  • the liquid cooling jacket 63 includes a jacket portion 631 and an inflow port 632 and an outflow port 633 that are formed to protrude from the lower surface and the upper surface of the jacket portion 631, respectively.
  • the liquid cooling jacket 63 is made of a material having high thermal conductivity such as aluminum or copper. As shown in FIG. 36 (c), the front jacket F and the rear jacket B are joined at the center by welding or the like, whereby the liquid cooling jacket 63 is completed.
  • a flow path 634 is formed inside the jacket portion 631.
  • An inlet 634 a is formed on the lower surface of the channel 634, and an outlet 634 b is formed on the upper surface of the channel 634.
  • An inflow path 635 formed in the inflow port 632 is connected to the inlet 634a, and an outflow path 636 formed in the outflow port 633 is connected to the outlet 634b.
  • a plurality of straight fins 637 are arranged in the flow path 634 at regular intervals (for example, 1 mm) in the left-right direction.
  • the straight fins 637 are formed so as to protrude rearward from the front surface of the flow path 634 and extend in the vertical direction so as to follow the flow of the refrigerant liquid in the flow path 634.
  • the straight fins 637 are formed so that the laser light source 50 can be accommodated in a region where the straight fins 637 are disposed when viewed from the front.
  • An inclined surface 634c is formed in the lower part of the channel 634 so that the channel 634 gradually expands from the inlet 634a, and the channel 634 inclines so that the channel 634 gradually narrows toward the outlet 634b.
  • a surface 634d is formed.
  • a section S2 having the same width as the straight fin arrangement section S1 is provided between the lower end of the straight fin 637 and the inclined surface 634c, and between the upper end of the straight fin 637 and the inclined surface 634d, A section S3 having the same width as the arrangement section S1 is provided.
  • FIG. 37 is a diagram for explaining the cooling operation of the laser light source 50 by the cooling unit 60.
  • FIG. 37A is a side view, and a portion of the liquid cooling jacket 63 is a cross-sectional view.
  • FIG. 37B is an internal perspective view from the front.
  • the cooling unit 60 is arranged such that the surface on which the laser light source 50 is attached (the front surface of the cooling jacket 63) is along the vertical direction of the projector, that is, the direction of gravity. ing. At this time, the flow path 634 is in a state where the inlet 634a is located on the lower side in the gravity direction and the outlet 634b is located on the upper side in the gravity direction.
  • a pipe (not shown) from the radiator 31 of the cooling device 30 shown in FIG. 1 is connected to the inlet 632 and the outlet 633 of the liquid cooling jacket 63.
  • the refrigerant liquid flows in from the inflow port 632 and flows out from the outflow port 633 through the flow path 634.
  • the refrigerant liquid circulates through the flow path 634 and the radiator 31 in the liquid cooling jacket 63.
  • water or an ethylene glycol-based liquid agent may be used as the refrigerant liquid.
  • the heat generated by the laser light source 50 is transferred to the liquid cooling jacket 63 through the copper plate 61 and the Peltier element 62.
  • the heat transferred to the cooling jacket 63 is heat-exchanged with the refrigerant liquid flowing through the flow path 634 in the front surface of the flow path 634 and the straight fins 637 and transferred to the refrigerant liquid. This heat is conveyed to the radiator 31 by the refrigerant liquid, and is removed by the wind passing through the radiator 31.
  • air may be generated in the flow path 634 of the liquid cooling jacket 63 due to air mixed in the refrigerant liquid or air dissolved in the refrigerant liquid evaporating from the refrigerant liquid.
  • the bubbles stay in the liquid cooling jacket 63, the heat transferred from the laser light source 50 is blocked by the bubbles (due to an increase in thermal resistance) and is not sufficiently transferred to the refrigerant liquid, so that the laser light source 50 is cooled. There is a possibility that the effect cannot be obtained sufficiently, leading to deterioration (life reduction) of the laser light source 50.
  • the cooling jacket 63 to which the laser light source 50 is attached is arranged so that the front surface thereof is along the direction of gravity, and the outlet 634b is provided above the flow path 634. As shown in FIG. 37B, the bubbles generated in the flow path 634 move to the upper part of the flow path 631, and are discharged together with the refrigerant liquid from the outlet 634b through the outflow path 636.
  • the inclined surfaces 634c and 634d are configured such that the width gradually increases in the lower part of the flow path 634 and gradually decreases in the upper part of the flow path 634.
  • the refrigerant liquid flows smoothly in 634.
  • the bubbles are smoothly guided to the outlet 634b and discharged by the inclined surface 634d.
  • sections S2 and S3 are formed in the front and rear stages of the straight fin 637, and the width of the flow path 634 is not narrowed immediately from the end of the straight fin 637. It becomes smaller and the refrigerant liquid flows smoothly. Moreover, in the upper part of the flow path, a sufficient gap (section S3) is secured between the upper end of the straight fin 634 and the upper surface of the flow path 634 at both the left and right corners. Compared to the case where there is no air bubble, the air bubbles passing through the left and right corners can be easily removed from the straight fin 634. Accordingly, the bubbles are smoothly discharged.
  • 38 (a) and 38 (b) are diagrams showing a modification example of the liquid cooling jacket, and are internal perspective views seen from the front.
  • a needle fin 737 is used instead of the straight fin 637 shown in FIG.
  • the modified example in FIG. 38A and the modified example in FIG. 38B are different in the arrangement of the needle fins 737.
  • the liquid cooling jacket 73 includes a jacket portion 731 and an inflow port 732 and an outflow port 733 that are formed so as to protrude from the lower surface of the jacket portion 731.
  • the liquid cooling jacket 73 is made of a material having high thermal conductivity, such as aluminum or copper, like the liquid cooling jacket 63 described above, and the front jacket and the rear jacket are joined together by welding or the like at the center. It ’s done.
  • a flow path 734 is formed inside the jacket portion 631.
  • a lower portion of the flow path 734 is bifurcated, and an inlet 734a is connected to one flow path, and an outlet 734b is connected to the other flow path.
  • An inflow passage 735 formed in the inflow port 732 is connected to the inlet 734a, and an outflow passage 736 formed in the outflow port 733 is connected to the outlet 734b.
  • a plurality of needle fins 737 are arranged in a matrix at regular intervals (for example, 1 mm) in the vertical and horizontal directions.
  • the straight fins 737 are formed so as to protrude rearward from the front surface of the flow path 734.
  • the needle fins 737 are formed so that the laser light source 50 is accommodated in a region where the needle fins 737 are disposed.
  • a space having a predetermined area in which the needle fin 737 is not provided is provided between the uppermost needle fin 737 and the upper surface of the flow path 734.
  • This space becomes a bubble retention part 734c in which bubbles generated in the flow path 734 are accumulated.
  • the inner surface of the flow path 734 has a curved surface so that the coolant liquid can easily flow.
  • the liquid cooling jacket 73 is arranged such that the front surface to which the laser light source 50 is attached is in the vertical direction of the projector, that is, along the direction of gravity.
  • a pipe (not shown) from the radiator 31 of the cooling device 30 shown in FIG. 1 is connected to the inlet 732 and the outlet 733 of the liquid cooling jacket 73. Accordingly, the refrigerant liquid flows in from the inlet 732 and flows out of the outlet 733 through the flow path 634.
  • the refrigerant liquid changes its flow from the upper direction to the lower direction mainly through the gap between the two needle fins 737 arranged in the vertical direction as indicated by the white arrows in the figure. In this way, the refrigerant liquid circulates through the flow path 734 and the radiator 31 in the liquid cooling jacket 73.
  • water or an ethylene glycol-based liquid agent may be used as the refrigerant liquid, as in the liquid cooling jacket 63.
  • the heat transferred from the laser light source 50 to the cooling jacket 73 is heat-exchanged with the refrigerant liquid flowing through the flow path 734 at the front surface of the flow path 734 and the needle fins 737 and transferred to the refrigerant liquid. This heat is conveyed to the radiator 31 by the refrigerant liquid, and is removed by the wind passing through the radiator 31.
  • the liquid cooling jacket 73 is arranged in such a state that the front surface to which the laser light source 50 is attached is along the direction of gravity, and the bubble retention part 734c is provided above the flow path 634. Bubbles generated inside the flow channel 931 move to the air retention part 734c above the flow channel 631, and accumulate there.
  • the arrangement of the needle fins 737 can be changed as shown in FIG. In the configuration of FIG. 38B, the needle fins 37 are formed so that the needle fins 37 in the left and right adjacent rows are shifted by a half pitch in the vertical direction.
  • the refrigerant liquid inflow port 732 and the outflow port 733 are arranged at the lower part of the liquid cooling jacket 73.
  • the straight fins 637 may be replaced with needle fins.
  • 35 to 38 show an example in which one laser light source 50 is attached to one liquid cooling jacket.
  • a plurality of laser light sources 50 are arranged in one liquid cooling jacket.
  • the fin structure may be formed in accordance with the surface with which the corresponding laser light source is in contact, or may be formed so as to uniformly cover all the laser light sources.
  • the cooling unit 60 is arranged such that the mounting surface of the laser light source 50 (the front surfaces of the cooling jackets 63 and 73) is along the vertical direction of the projector, that is, the direction of gravity.
  • the mounting surface does not necessarily have to be strictly parallel to the direction of gravity, and may be slightly inclined from the direction of gravity. Even when the mounting surface is slightly inclined from the direction of gravity, the air (bubbles) in the flow path is retracted to the upper part of the flow path due to buoyancy and is less likely to stay near the mounting portion of the laser light source 50. Therefore, the same effect as described above can be achieved.
  • the cooling unit is disposed so that the surface on which the light source is mounted is along the direction of gravity” described in the claims means that the mounting surface of the laser light source 50 is from the direction of gravity in this way. This includes cases where the device is slightly tilted.
  • illumination light is incident on the optical system 20 from one direction, and light in the red, green, and blue wavelength bands is combined by the prism mirror in the optical system 20 even in the combined form.
  • the present invention it is of course possible to apply the present invention to an optical system in which light of each color is separately incident on the optical system 20 from three directions.
  • when illumination light is incident on the optical system 20 from one direction it is once separated into red, green, and blue wavelength band light within the optical system 20, and the light of each color is modulated by the light modulation element. After that, the light is again synthesized by the dichroic cube and is incident on the projection lens 21.
  • each color light is guided to a light modulation element (liquid crystal panel) by each light guide optical system and modulated, and then synthesized by a dichroic cube and projected into the projection lens 21. Is incident on.
  • the above-described combined illumination devices are individually arranged corresponding to the light guide optical systems of the respective colors. In this case, all the light source units in the composite form are changed so as to emit laser light of the same wavelength band. For example, in a combined form of an illumination device that supplies illumination light to a green light guide optical system, all the light source units emit laser light in the green wavelength band, and the emitted laser light is synthesized by a prism mirror for illumination. It is assumed to be light.
  • the laser beam is synthesized using the prism mirror, but it is also possible to use two mirrors or an edge mirror instead of the prism mirror.
  • the embodiment of the present invention can be appropriately modified in various ways within the scope of the technical idea shown in the claims.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Semiconductor Lasers (AREA)

Abstract

【課題】ラジエータやヒートシンク等の冷却装置を用いる場合にも、本体形状をコンパクトなものとすることができる投写型映像表示装置を提供する。 【解決手段】プロジェクタ1の内部は、仕切り板2によって、上段側の空間R1と下段側の空間R2に区分されている。このうち、空間R1に、光学系20と、この光学系20に照明光を供給する照明装置10が配置されている。空間R2には、照明装置10の直下の位置に冷却装置30が配されている。照明装置30内のレーザ光源にて生じた熱は、配管34を通る冷媒によって直下方向に搬送され、ラジエータ32によって取り除かれる。このように、冷却装置30を照明装置10の直下位置に配することにより、プロジェクタ1の形状がX-Z平面方向に広がるのを抑制でき、プロジェクタ1の形状をコンパクトにできる。

Description

投写型映像表示装置および照明装置
 本発明は、投写型映像表示装置および照明装置に関するものであり、特に、レーザ光源を用いて照明光を生成する際に用いて好適なものである。
 従来、映像信号によって変調された光をスクリーン上に拡大投写する投写型映像表示装置(以下、「プロジェクタ」という)が商品化され、広く普及している。この種のプロジェクタには、液晶パネル等の光変調素子に照明光を供給するために照明装置が搭載されており、その光源には、これまで、超高圧水銀ランプ、メタルハライドランプ、キセノンランプ等のランプ光源が用いられていた。
 これに対し、近年、ランプ光源に替えて、半導体レーザ等の固体光源を用いたプロジェクタの開発が進められている。レーザ光源は、広い色空間を高輝度かつ高精細に表現する能力に優れており、次世代プロジェクタの光源として注目されている。この種のプロジェクタを用いて大型スクリーンに映像を投写する場合、照明光のさらなる高輝度化が必要になる。
 照明光を高輝度化する方法として、複数のレーザ光源を2次元状に配置してアレイ化する構成(たとえば、特許文献1)や、複数のレーザ光源から出射されたレーザ光を、プリズムミラーを用いて光線合成する構成(たとえば、特許文献2)が採られ得る。また、プリズムミラーを用いる構成では、レーザ光源とプリズムミラーの配置を適宜調整することにより、照明光の断面積(光線領域)を小さくすることができ、Etendue理論から、光の利用効率を高めることができる。
WO99/49358号公報(再公表公報) 特開2006-337923号公報
 レーザ光源は、温度変化に伴って出射強度が変動する特性を有している。このため、上記の如くレーザ光源を用いた照明装置では、レーザ光源にて発生した熱を排熱してレーザ光源の出射強度を適正に制御するシステムが必要となる。
 ここで、レーザ光源の温度を円滑に調整するには、レーザ光源に冷却風を吹き付ける方法よりも、ペルチェ素子やヒートパイプ等の冷却素子によってレーザ光源から熱を移動させ、移動させた熱をラジエータやヒートシンクにて除却する方法を用いるのが有利である。しかし、こうすると、冷却システムが大掛かりとなるため、プロジェクタ本体が大型化するとの問題が起こり得る。また、この冷却システムでは、レーザ光源にて発生した熱をラジエータやヒートシンクに搬送する熱搬送系として、冷却液を循環させるためのパイプや、熱を直接移動させるためのヒートパイプが用いられる。このため、この冷却システムにおいては、これらの熱搬送系がレーザ光を遮らないことをも考慮しつつ、Etendue理論から光の利用効率がより高まるよう、レーザ光源と熱搬送系を適正に配置することが必要となる。
 本発明は、このような課題に鑑みてなされたものであり、ラジエータやヒートシンク等の冷却装置を用いる場合にも、本体形状をコンパクトなものとすることができる投写型映像表示装置を提供することを目的とする。また、熱搬送系が光源からの光を遮らないようにしつつ、光の利用効率を高めることができる投写型映像表示装置を提供することを目的とする。
  本発明の第1の態様は、投写型映像表示装置において、映像信号をもとに光を変調して映像光を生成出力する光学系と、複数の光源を有するとともに前記光学系の設置面に平行な所定の軸方向に照明光を出射して前記光学系に供給する照明装置と、前記光源にて発生した熱を前記設置面に略垂直な方向に搬送する熱搬送系と、前記設置面に略垂直な方向に配置され、前記熱搬送系によって搬送された熱を除去する冷却装置とを備えることを特徴とする。
 この態様によれば、冷却装置が光学系の上段または下段の位置に配置されるため、冷却装置を光学系設置面に平行に配置する場合に比べ、投写型映像表示装置の外形をコンパクトにすることができる。また、冷却装置を照明装置の直上または直下の位置に配置すれば、熱搬送系の引き回しを抑制することができ、その結果、熱搬送系の構成の簡素化とコストの低減を図ることができる。
 第1の態様に係る投写型映像表示装置において、前記複数の光源のうち少なくとも2つは同じ方向に光を出射するよう構成され得る。ここで、これら2つの光源は、前記光の出射方向に前後するよう配置され、さらに、これら2つの光源のうち後方の光源は、前方の光源に対し、前記熱の搬送方向と反対の方向に所定距離だけシフトするよう配置され得る。
 このようにすれば、後方の光源から出射された光の光路上に、前方の光源のための熱搬送系が位置づけられることはなく、よって、後方の光源から出射された光が前方の光源のための熱搬送系によって遮られることはない。
 この場合さらに、前記2つの光源には、前記熱搬送系の一部を構成する冷却部がそれぞれ装着され、前記冷却部が装着された状態におけるこれら2つの光源の前記光の出射方向の投影面が、前記熱の搬送方向に平行な方向において、互いに重なり合うように、これら2つの光源が配置され得る。
 このようにすれば、光源間の距離を小さくすることができるので、これら2つの光源からの光を併せた光束全体の大きさを小さくすることができ、Etendue理論から、照明光の利用効率を高めることができる。
 第1の態様に係る投写型映像表示装置において、前記複数の光源のうち少なくとも2つは同じ方向に光を出射するよう構成され得る。ここで、これら2つの光源は、前記設置面に垂直な方向に並べて配置され、これら2つの光源に対して、前記熱搬送系の一部を構成する共通の冷却部が装着され得る。
 このようにすれば、光源間の距離を小さくすることができるので、これら2つの光源からの光を併せた光束全体の大きさをより一層小さくすることができ、Etendue理論から、照明光の利用効率を高めることができる。
 第1の態様に係る投写型映像表示装置において、前記複数の光源のうち少なくとも2つは同じ方向に光を出射するよう構成され得る。ここで、これら2つの光源は、前記光の出射方向と、前記設置面に平行で前記光の出射方向に垂直な方向に、それぞれ所定距離だけ離れるよう配置され、前記2つの光源には、前記熱搬送系の一部を構成する冷却部がそれぞれ装着され、前記冷却部が装着された状態におけるこれら2つの光源の前記光の出射方向の投影面が、前記設置面に平行で前記光の出射方向に垂直な方向において、互いに重なり合うように、これら2つの光源が配置され得る。
 このようにすれば、光源間の距離を小さくすることができるので、これら2つの光源からの光を併せた光束全体の大きさを小さくすることができ、Etendue理論から、照明光の利用効率を高めることができる。
 第1の態様に係る投写型映像表示装置において、前記複数の光源のうち少なくとも2つは同じ方向に光を出射する構成とされ得る。ここで、これら2つの光源は、前記光の出射方向に垂直で前記設置面に平行な方向に並べて配置され、これら2つの光源に対して、前記熱搬送系の一部を構成する共通の冷却部が装着され得る。
 このようにすれば、光源間の距離を小さくすることができるので、これら2つの光源からの光を併せた光束全体の大きさをより一層小さくすることができ、Etendue理論から、照明光の利用効率を高めることができる。
 第1の態様に係る投写型映像表示装置において、前記照明装置は、光の出射方向が異なる複数の光源ブロックを備える構成とされ得る。ここで、各光源ブロックには、同一方向に光を出射する前記複数の光源が配され得る。さらに、照明装置は、これら光源ブロックから出射された光を同一方向に反射して合成する反射手段を備える構成とされ得る。
 このようにすれば、複数の光源ブロックからの光を同一方向に揃えることができ、同一方向での照明光の高輝度化を実現することができる。また、光源と反射手段の配置を調整することにより、反射手段にて合成された後の照明光の断面積(光線領域)を小さくすることができ、Etendue理論から、照明光の利用効率を高めることができる。
 第1の態様に係る投写型映像表示装置において、前記熱搬送系は、前記光源が装着されるとともに、前記冷却装置からの冷媒液が循環する流路を内部に含む冷却部を備えるよう構成され得る。ここで、前記冷却部は、前記光源が装着される面が重力方向に沿うように配置され得る。
 このようにすれば、流路中の空気(気泡)が光源装着面近傍に滞留し難くなるため、空気(気泡)の滞留による熱伝達の低下(熱抵抗の増大)を抑制することができ、光源の冷却効果を劣化なく維持することができる。
 この場合さらに、前記冷却部は、前記冷媒液が下から上へと流れるように前記流路が形成されるとともに、前記流路に繋がるように前記冷却部の下部と上部に前記冷媒液の流入部と流出部が配されるよう構成され得る。
 このようにすれば、流路内の空気が、冷媒液とともに排出され易くなるので、空気(気泡)の滞留による熱伝達の低下(熱抵抗の増大)をより効果的に抑制することができる。
 なお、前記流路は、前記流出部に向かうに連れて徐々に狭くなるよう構成されるのが望ましい。このようにすれば、より一層、空気が流出部に集まり易くなり、空気が外部に排出され易くなる。
  本発明の第2の態様は、複数の光源を有するとともに前記複数の光源からの光を第1の軸方向へと出射する照明装置において、前記光源にて発生した熱を前記第1の軸方向に垂直な第2の軸方向へ搬送する熱搬送系と、前記第1の軸方向に垂直な方向に設けられ、前記熱搬送系によって搬送された熱を除却する冷却装置とを備えることを特徴とする。
 この態様に係る照明装置は、上記第1の態様に係る投写型映像表示装置に用いて好適なものである。この態様に係る照明装置によれば、冷却装置が光源群の上段または下段の位置に配置されるため、冷却装置を光源群に横並びに配置する場合に比べ、冷却装置を含めた照明装置全体の外形をコンパクトにすることができる。また、冷却装置を光源群の直上または直下の位置に配置すれば、熱搬送系の引き回しを抑制することができ、その結果、熱搬送系の構成の簡素化とコストの低減を図ることができる。
 本発明の第3の態様は、複数の光源を有するとともに前記複数の光源からの光を第1の軸方向へと出射する照明装置において、前記第1の軸方向に垂直な第2の軸方向へ光を出射する第1の光源と、前記第1の光源にて発生した熱を前記第1の軸方向および前記第2の軸方向に垂直な第3の軸方向へ搬送する第1の熱搬送系と、前記第2の軸方向に光を出射するとともに前記第1の光源の光の出射方向に前後するよう配置された第2の光源と、前記第1の光源にて発生した熱を前記第3の軸方向へ搬送する第2の熱搬送系と、前記第3の軸方向に設けられ、前記第1の熱搬送系と前記第2の熱搬送系とによって搬送された熱を除去する冷却装置と、前記第1の光源および前記第2の光源からそれぞれ出射された光を前記第1の軸方向へと導く反射手段とを備え、前記第1の光源と前記第2の光源は、後方の光源が、前方の光源に対し、前記熱の搬送方向と反対の方向にシフトするよう配置されていることを特徴とする。
 この態様に係る照明装置によれば、上記第2の態様と同様、冷却装置が第1および第2の光源の上段または下段の位置に配置されるため、冷却装置を第1および第2の光源の直上または直下の位置に配置すれば、熱搬送系の引き回しを抑制することができ、その結果、熱搬送系の構成の簡素化とコストの低減を図ることができる。さらに、この態様に係る照明装置によれば、第1および第2の光源のうち後方の光源が、前方の光源に対して、熱の搬送方向と反対の方向に所定距離だけシフトするよう配置されているため、後方の光源から出射された光の光路上に、前方の光源のための熱搬送系が位置づけられることがない。よって、後方の光源から出射された光が前方の光源のための熱搬送系によって遮られることなく円滑に導光系に導かれる。
 本発明の第4の態様は、投写型映像表示装置において、映像信号をもとに光を変調して映像光を生成出力する光学系と、前記光学系に前記光を供給する光源と、前記光源にて発生した熱を搬送する熱搬送系と、前記熱搬送系によって搬送された熱を除去する冷却装置とを備える。ここで、前記熱搬送系は、前記光源が装着されるとともに、前記冷却装置からの冷媒液が循環する流路を内部に含む冷却部を有する。さらに、前記冷却部は、前記光源が装着される面が重力方向に沿うように配置されている。
 この態様に係る投写型映像表示装置によれば、流路中の空気(気泡)が光源装着面近傍に滞留し難くなるため、空気(気泡)の滞留による熱伝達の低下(熱抵抗の増大)を抑制することができ、光源の冷却効果を劣化なく維持することができる。
 以上のとおり本発明によれば、投写型映像表示装置の本体形状をコンパクトなものとすることができる。また、熱搬送系が光源からの光を遮らないようにしつつ、照明光の利用効率を高めることができる。
 本発明の効果ないし意義は、以下に示す実施の形態の説明により更に明らかとなろう。ただし、以下の実施の形態は、あくまでも、本発明を実施化する際の一つの例示であって、本発明ないし各構成要件の用語の意義は、以下の実施の形態に記載されたものに制限されるものではない。
実施形態1に係るプロジェクタの構成を示す図である。 実施形態1に係る光学ユニットの構成を示す図である。 実施形態1に係る光学ユニットの構成を示す図である。 実施形態1に係る光学ユニットの配置方法を説明する図である。 実施形態1に係るレーザ光の合成形態を示す図(斜視図)である。 実施形態1に係るレーザ光の合成形態を示す図(上面図/正面図)である。 実施形態1に係るレーザ光の合成形態を示す図(斜視図)である。 実施形態1に係るレーザ光の合成形態を示す図(上面図/正面図)である。 実施形態1に係るレーザ光の合成形態を示す図(斜視図)である。 実施形態1に係るレーザ光の合成形態を示す図(上面図/正面図)である。 実施形態1に係るレーザ光の合成形態を示す図(斜視図)である。 実施形態1に係るレーザ光の合成形態を示す図(上面図/正面図)である。 実施形態1に係るレーザ光の合成形態を示す図(斜視図)である。 実施形態1に係るレーザ光の合成形態を示す図(上面図/正面図)である。 実施形態1に係るレーザ光の合成形態を示す図(斜視図)である。 実施形態1に係るレーザ光の合成形態を示す図(上面図/正面図)である。 実施形態1に係るレーザ光の合成形態を示す図(上面図/正面図)である。 実施形態1に係るレーザ光の合成形態を示す図(斜視図)である。 実施形態1に係るレーザ光の合成形態を示す図(上面図/正面図)である。 実施形態1に係るレーザ光の合成形態を示す図(斜視図)である。 実施形態1に係るレーザ光の合成形態を示す図(上面図/正面図)である。 実施形態1に係るレーザ光の合成形態を示す図(斜視図)である。 実施形態1に係るレーザ光の合成形態を示す図(上面図/正面図)である。 実施形態2に係るプロジェクタの構成を示す図である。 実施形態2に係るレーザ光の合成形態を示す図(上面図/正面図)である。 実施形態2に係るレーザ光の合成形態を示す図(上面図/正面図)である。 実施形態2に係るレーザ光の合成形態を示す図(上面図/正面図)である。 実施形態2に係るレーザ光の合成形態を示す図(上面図/正面図)である。 実施形態2に係るレーザ光の合成形態を示す図(上面図/正面図)である。 実施形態2に係るレーザ光の合成形態を示す図(上面図/正面図)である。 実施形態2に係るレーザ光の合成形態を示す図(上面図/正面図)である。 実施形態2に係るレーザ光の合成形態を示す図(上面図/正面図)である。 実施形態2に係るレーザ光の合成形態を示す図(上面図/正面図)である。 実施形態2に係るレーザ光の合成形態を示す図(上面図/正面図)である。 光源ユニットの他の構成例を示す図である。 他の構成例に係る液冷ジャケットの構成を示す図である。 他の構成例に係る冷却部によるレーザ光源の冷却動作について説明するための図である。 他の構成例に係る液冷ジャケットの変更例を示す図である。
 ただし、図面はもっぱら説明のためのものであって、この発明の範囲を限定するものではない。
  以下、本発明の実施の形態につき図面を参照して説明する。
 A.実施形態1
 図1に、実施の形態に係るプロジェクタの構成を示す。図1(a)は、プロジェクタを側面から透視した図、図1(b)はプロジェクタを上面から透視した図である。
 図1(a)、(b)を参照して、プロジェクタ1の内部は、仕切り板2によって、上段側の空間R1と下段側の空間R2に区分されている。このうち、空間R1に、映像信号に応じて光を変調するための光学系20と、この光学系20に照明光を供給する照明装置10が配置されている。なお、光学系20は、光変調器として液晶パネルを用いる光学系の他、LCOS方式やDLP方式の光学系等、周知の光学系によって構成され得る。光学系20によって変調された光(映像光)は、投写レンズ21を介して被投写面(スクリーン)に投写される。
 空間R2には、照明装置10の直下の位置に冷却装置30が配されている。冷却装置30は、ラジエータ31と、ポンプ32と、ファン33と、配管34とを備える。配管34は、ラジエータ31とポンプ32とを連結するとともに、仕切り板2に形成された開口から空間R1へと延び、照明装置10内のレーザ光源11に装着された冷却部12の配管12d(図2参照)に連結されている。かかる配管34、12dによって、ラジエータ31、ポンプ32およびレーザ光源の冷却部が閉ループ状に連結され、これにより、冷媒の流路が構成されている。
 ポンプ32が駆動されると、配管12dを通って冷媒が循環し、レーザ光源にて発生した熱がラジエータ31に搬送される。ラジエータ31に搬送された熱は、ファン33によってラジエータ31に送られた風により取り除かれる。こうして、レーザ光源に発生した熱が外部に放熱され、レーザ光源の温度が所定の温度に調節される。
 図2(a)、(b)は光源ユニットの構成例を示す図、図2(c)、(d)は光源ユニットの他の構成例を示す図である。図2(a)、(c)は光源ユニットの側面図、図2(b)、(d)は、光源ユニットの正面図である。
 図2(a)、(b)を参照して、光源ユニットは、レーザ光源11と冷却部12から構成されている。このうち、レーザ光源11は、波長選択性の反射素子11aと、波長変換素子11bと、レーザダイオード11cと、これらを収容するハウジング11dから構成されている。レーザダイオード11cは、波長λ1のレーザ光を出射する。波長変換素子11bは、波長λ1のレーザ光から波長λ2のレーザ光(λ2<λ1)を生成する。反射素子11aは、波長λ2のレーザ光を透過し、波長λ1のレーザ光を反射する。波長λ1のレーザ光は、反射素子11aとレーザダイオード11cの間で反射を繰り返し、その間に波長変換素子11bによって波長λ2のレーザ光が生成される。生成された波長λ2のレーザ光は、順次、反射素子11aを透過し、ハウジング11d前面の開口から外部に出射される。
 冷却部12は、銅板12aと、ペルチェ素子12bと、液冷ジャケット12cから構成されている。銅板12aは、レーザダイオード11cの背面に装着されており、レーザダイオード11cにて発生した熱を拡散する。ペルチェ素子12bは、銅板12aに装着され、銅板12aにて拡散された熱を液冷ジャケット12cへと移動させる。液冷ジャケット12cは、内部に流路を備え、流路の入り口と出口に配管12dが連結されている。これら2つの配管12dの一方から冷媒が流入し、他方から冷媒が流出する。こうして、液冷ジャケット12内の流路を冷媒が循環し、ペルチェ素子12bから液冷ジャケット12cに移された熱が、液冷ジャケット12c内を循環する冷媒に移される。この熱は、上記のように、冷媒によってラジエータ31に搬送され、ラジエータ31を通過する風によって取り除かれる。
 図2(a)、(b)の構成例では、配管12dが液冷ジャケット12の下面から下方に延びるように配されている。これに代えて、図2(c)、(d)の構成例のように、液冷ジャケット12の背面下部から配管12dを所定長さだけ突出させた後、下方に折り曲げて、配管12dを下方に向けるようにしても良い。なお、図2に示す光源ユニットは、緑色波長帯および青色波長帯のレーザ光を出射させるために用いられるものである。
 図3(a)、(b)は光源ユニットの他の構成例を示す図、図3(c)、(d)はその変更例を示す図ある。図3(a)、(c)は光源ユニットの側面図、図3(b)、(d)は、光源ユニットの正面図である。なお、図3に示す光源ユニットは、赤色波長帯のレーザ光を出射させるために用いられるものである。
 図3(a)、(b)の構成例では、レーザ光源11が、半導体レーザアレイから構成されている。半導体レーザアレイには、複数のレーザ発光部が、図3(b)の左右方向に並ぶように形成されている。レーザ光源11の下面には、銅板12aが装着され、さらに、ペルチェ素子12bと液冷ジャケット12cが順番に装着されている。銅板12a、ペルチェ素子12bおよび液冷ジャケット12cの構成および作用は、図2の構成例と同様である。
 図3(a)、(b)の構成例では、配管12dが液冷ジャケット12の下面から下方に延びるように配されている。これに代えて、図3(c)、(d)の構成例のように、液冷ジャケット12の背面下部から配管12dを所定長さだけ突出させた後、下方に折り曲げて、配管12dを下方に向けるようにしても良い。
 なお、図2および図3の構成例では、熱拡散のために銅板12aを用いたが、これに替えて、熱伝導シート(グラファイトシート)、熱拡散シートまたはサーマルグリス等を用いることもできる。また、レーザ光源11の発熱面積や液冷ジャケット12の面積によっては銅板12aを用いない方が冷却効率を高め得る場合もある。このような場合には、銅板12aを省略しても良い。さらに、ペルチェ素子12bに替えて他の熱移動素子を用いても良い。
 図4は、光源ユニットの配置方法を示す図である。なお、図4には、便宜上、図2の光源ユニットを用いる場合の配置方法が示されているが、図3の光源ユニットを用いる場合も同様の配置方法をとることができる。
 図4(a)は、2つの光源ユニットを左右に並べる配置方法である。図4(b)は、2つの光源ユニットを光の出射方向に前後させるとともに左右方向に重なり合わせる配置方法である。図4(b)の配置方法では、光源ユニットが左右方向に重なり合っているため、左右方向におけるレーザ光源間の距離L1が、図4(a)の配置方法よりも小さくなる。よって、図4(b)の配置方法によれば、同4(a)の配置方法に比べて、これら2つの光源ユニットからのレーザ光を併せた光束全体の大きさを小さくすることができ、Etendue理論から、光の利用効率を高めることができる。
 図4(c)は、2つのレーザ光源11を左右に並べて配置するとともに、これらレーザ光源に共通の冷却部12を装着した構成例である。この構成例では、2つのレーザ光源11の背面に共通の銅板12aと共通のペルチェ素子12b(図4には図示せず)が装着され、さらに、共通の液冷ジャケット12cが装着されている。この構成例では、2つのレーザ光源11を、図4(b)の場合よりもさらに接近させることができるため、左右方向におけるレーザ光源間の距離L1が、図4(b)の配置方法よりもさらに小さくなる。よって、図4(c)の配置方法によれば、図4(b)の配置方法に比べて、これら2つのレーザ光源11からのレーザ光を併せた光束全体の大きさをさらに小さくすることができ、Etendue理論から、光の利用効率を一層高めることができる。
 図4(d)は、2つの光源ユニットを上下に並べる配置方法である。図4(e)は、2つの光源ユニットを光の出射方向に前後させるとともに上下方向に重なり合わせる配置方法である。図4(e)の配置方法では、光源ユニットが上下方向に重なり合っているため、上下方向におけるレーザ光源間の距離L2が、図4(d)の配置方法よりも小さくなる。よって、図4(e)の配置方法によれば、図4(d)の配置方法に比べて、これら2つの光源ユニットからのレーザ光を併せた光束全体の大きさを小さくすることができ、Etendue理論から、光の利用効率を高めることができる。
 図4(f)は、2つのレーザ光源11を上下に並べて配置するとともに、これらレーザ光源に共通の冷却部12を装着した構成例である。この構成例では、2つのレーザ光源11の背面に共通の銅板12aと共通のペルチェ素子12b(図4には図示せず)が装着され、さらに、共通の液冷ジャケット12cが装着されている。この構成例では、2つのレーザ光源11を、図4(e)の場合よりもさらに接近させることができるため、上下方向におけるレーザ光源間の距離L2が、図4(e)の配置方法よりもさらに小さくなる。よって、図4(f)の配置方法によれば、図4(e)の配置方法に比べて、これら2つのレーザ光源11からのレーザ光を併せた光束全体の大きさをさらに小さくすることができ、Etendue理論から、光の利用効率を一層高めることができる。
 以下、照明装置10におけるレーザ光の合成形態について説明する。なお、図5以降には、便宜上、図2の光源ユニットが模式的に図示されているが、各光源ユニットは、適宜、図3の光源ユニットに置き換えられる。照明装置10からは、少なくとも赤色波長帯、緑色波長帯および青色波長帯のレーザ光が出射される必要がある。よって、以下の合成形態では、何れかの光源ユニットが、適宜、赤色波長帯、緑色波長帯および青色波長帯のレーザ光を出射する光源ユニットに割り当てられ、これらから出射された各波長帯のレーザ光が、プリズムミラーによって合成される。なお、以下の合成形態において、黄色波長帯のレーザ光を出射する光源ユニットをさらに含めるようにしても良い。
 図5以降の各図において、光源ユニットに付記される“B”、“M”、“U”は、それぞれ、下段、中段、上段に配置される光源ユニットを示すものである。同様に、プリズムミラーに付記される“B”、“M”、“U”は、それぞれ、下段、中段、上段に配置されるプリズムミラーを示すものである。
 <合成形態1-1>
 図5および図6は、4つの光源ユニット101~104をX軸方向に対向させ、2つのプリズムミラー151、152によってZ軸方向にレーザ光を反射させる合成形態を示す図である。なお、図6(a)は図5の上面図、図6(b)は図5の正面図である。
 この合成形態において、光源ユニット101、102は、光の出射方向に前後するよう配置され、後方の光源ユニット101が、前方の光源ユニット102に対して、上方向に所定距離だけシフトするよう配置されている。また、光源ユニット103、104は、光の出射方向に前後するよう配置され、後方の光源ユニット103が、前方の光源ユニット104に対して、下方向に所定距離だけシフトするよう配置されている。なお、これら光源ユニット101~104から出射されるレーザ光の偏光方向は同一方向となっており、よって、プリズムミラー151、152によって反射された後のこれらレーザ光の偏光方向も同一である。このようにレーザ光の偏光方向が同一である点は、以下の全ての合成形態についても同様である。
 この合成形態では、光源ユニット101~104から、対応するプリズムミラー151、152のミラー面までの光路長を同じにすることができる。よって、プリズムミラー151によって反射された後の2つのレーザ光のビームシェイプを揃えることができ、同様に、プリズムミラー152によって反射された後の2つのレーザ光のビームシェイプを揃えることができる。しかし、この合成形態では、光源ユニット103からのレーザ光が、光源ユニット104のための配管12dと干渉するため、光源ユニット103からのレーザ光に劣化が生じる。照明光を安定化させるためには、レーザ光と配管12dの間に干渉が生じないように、光源ユニットを配置するのが望ましい。
 <合成形態1-2>
 図7および図8は、レーザ光と配管12dとの間に干渉が生じないように、図5および図6における光源ユニットの配置を調整した合成形態を示す図である。なお、図8(a)は図7の上面図、図8(b)は図7の正面図である。
 この合成形態において、光源ユニット103、104は、光の出射方向に前後するよう配置され、後方の光源ユニット103が、前方の光源ユニット104に対して、上方向に所定距離だけシフトするよう配置されている。こうすると、光源ユニット103からのレーザ光が、光源ユニット104のための配管12dによって遮られることはなく、全ての光源ユニット101~104からのレーザ光を円滑に、対応するプリズムミラー151、152に入射させることができる。よって、配管12dとの干渉によってレーザ光に劣化が生じることがなく、安定した照明光を光学系20に供給することができる。
 なお、この合成形態において、光源ユニット101、102の配置と光源ユニット103、104の配置を図4(e)に示すものとすれば、図4(e)を参照して説明した如く、これら2つの光源ユニットからのレーザ光を併せた光束全体の大きさを小さくすることができ、Etendue理論から、照明光の利用効率を高めることができる。
 <合成形態1-3>
 図9および図10は、6つの光源ユニット101~106をX軸方向に対向させ、3つのプリズムミラー151、152、153によってZ軸方向にレーザ光を反射させる合成形態を示す図である。なお、図10(a)は図9の上面図、図10(b)は図9の正面図である。
 この合成形態において、光源ユニット101、102、105は、光の出射方向に前後するよう配置され、後方の光源ユニット101、102が、前方の光源ユニット105に対して、上方向に所定距離ずつ段階的にシフトするよう配置されている。また、光源ユニット103、104、106は、光の出射方向に前後するよう配置され、後方の光源ユニット103、104が、前方の光源ユニット106に対して、上方向に所定距離ずつ段階的にシフトするよう配置されている。なお、これら光源ユニット101~106から出射されるレーザ光の偏光方向は同一方向となっており、よって、プリズムミラー151、152、153によって反射された後のこれらレーザ光の偏光方向も同一である。
 この合成形態では、光源ユニット101、103からのレーザ光が、その前方に位置する光源ユニット102、104のための配管12dによって遮られることはなく、また、光源ユニット102、104からのレーザ光が、その前方に位置する光源ユニット105、106のための配管12dによって遮られることもない。したがって、全ての光源ユニット101~104からのレーザ光を円滑に、対応するプリズムミラー151、152、153に入射させることができる。よって、この合成形態では、配管12dとの干渉によってレーザ光に劣化が生じることがなく、安定した照明光を光学系20に供給することができる。
 なお、この合成形態において、光源ユニット101、102の配置、光源ユニット102、105の配置、光源ユニット103、104の配置、および、光源ユニット104、106の配置を、図4(e)に示すように調整すれば、図4(e)を参照して説明した如く、2つの光源ユニットからのレーザ光を併せた光束全体の大きさを小さくすることができ、Etendue理論から、照明光の利用効率を高めることができる。
 <合成形態1-4>
 図11および図12は、図4(f)に示す光源ユニット111、112をX軸方向に対向させ、プリズムミラー161によってZ軸方向にレーザ光を反射させる合成形態を示す図である。なお、図12(a)は図11の上面図、図12(b)は図11の正面図である。
 この合成形態では、レーザ光源111a、111b間の距離、および、レーザ光源112a、112b間の距離を、図7および図8の合成形態よりもさらに小さくすることができるため、図4(f)を参照して説明した如く、これら2つのレーザ光源からのレーザ光を併せた光束全体の大きさを小さくすることができ、Etendue理論から、照明光の利用効率を高めることができる。なお、この合成形態では、2つのレーザ光源に対して一つの冷却部が装着されるため、構成の簡素化を図ることができるが、反面、2つのレーザ光源を組として冷却が行われるため、各光源を個別に温度制御することができず、温度制御の観点からは、図7および図8の合成形態の方が優れている。
 <合成形態1-5>
 図13および図14は、図5および図6の合成形態における光源ユニット101、104とプリズムミラー151をZ軸方向に所定距離だけシフトさせた合成形態を示す図である。なお、図14(a)は図13の上面図、図14(b)は図14の正面図である。
 この合成形態では、光源ユニット101、104とプリズムミラー151がZ軸方向に所定距離だけシフトして配置されているため、図5および図6の合成形態における問題点、すなわち、光源ユニット103からのレーザ光と光源ユニット104のための配管12dとの干渉を回避することができ、よって、照明光の劣化を抑制することができる。
 また、この合成形態では、光源ユニット101~104から、対応するプリズムミラー151、152のミラー面までの光路長を同じにすることができる。よって、プリズムミラー151によって反射された後の2つのレーザ光のビームシェイプを揃えることができ、同様に、プリズムミラー152によって反射された後の2つのレーザ光のビームシェイプを揃えることができる。
 なお、この合成形態では、光源ユニット101、102がZ軸方向に重なり合って配置され、また、光源ユニット103、104もZ軸方向に重なり合って配置されている。こうすると、これら光源が重なり合うことなく配置された場合に比べ、光源ユニット101、103からのレーザ光と、光源ユニット102、104からのレーザ光の光路差を小さくすることができる。その結果、プリズムミラー151にて反射された後の光源ユニット101、103からのレーザ光のビームシェイプと、プリズムミラー152にて反射された後の光源ユニット102、104からのレーザ光のビームシェイプのサイズ差を小さくすることができ、照明光の均一性を高めることができる。
 なお、この合成形態において、さらに、光源ユニット101、102をY軸方向に重なり合わせ、同じく、光源ユニット103、104をY軸方向に重なり合わせると、2つの光源ユニットからのレーザ光を併せた光束全体の大きさを小さくすることができ、Etendue理論から、照明光の利用効率を高めることができる。
 <合成形態1-6>
 図15および図16は、8つの光源ユニット121~128をX軸方向に対向させ、2つのプリズムミラー171、172によってZ軸方向にレーザ光を反射させる合成形態を示す図である。なお、図16(a)は図15の上面図、図16(b)は図15の正面図である。
 この合成形態において、光源ユニット121、122、光源ユニット123、124、光源ユニット125、126、光源ユニット127、128は、それぞれ、X軸方向に前後するように配置され、後方の光源ユニット121、123、125、127が、前方の光源ユニット122、124、126、128に対して、上方向に所定距離だけシフトするよう配置されている。また、光源ユニット121、123、光源ユニット122、124、光源ユニット125、127、光源ユニット126、128は、それぞれ、Z軸方向に並ぶように配置されている。
 この合成形態では、光源ユニット121、123、125、127からのレーザ光が、その前方に位置する光源ユニット122、124、126、128のための配管12dによって遮られることがないため、全ての光源ユニット121~128からのレーザ光を円滑に、対応するプリズムミラー171、172に入射させることができる。よって、この合成形態では、配管12dとの干渉によってレーザ光に劣化が生じることがなく、安定した照明光を光学系20に供給することができる。
 また、この合成形態において、光源ユニット121、122、光源ユニット123、124、光源ユニット125、126、および、光源ユニット127、128は、それぞれ、図4(e)の如く、Y軸方向に重なり合うよう配置されているため、図4(e)を参照して説明した如く、2つの光源ユニットからのレーザ光を併せた光束全体の大きさを小さくすることができ、Etendue理論から、照明光の利用効率を高めることができる。また、このように前後の光源ユニットをY軸方向に重なり合わせると、Y軸方向におけるプリズムミラー171、172のサイズを小さくすることができる。
 なお、この合成形態において、Z軸方向に並ぶ光学ユニット、すなわち、光源ユニット121、123、光源ユニット122、124、光源ユニット125、127、および、光源ユニット126、128を、それぞれ、図4(c)の構成例に置き換えれば、図4(c)を参照して説明した如く、2つの光源ユニットからのレーザ光を併せた光束全体の大きさをさらに小さくすることができ、Etendue理論から、照明光の利用効率を一層高めることができる。
 また、この合成形態では、前後の光源ユニットをY軸方向に重なり合わせたが、図17に示すように、前後の光源ユニットをX軸方向に重なり合わせるようにすることもできる。こうすると、X軸方向に前後する2つの光源ユニットからのレーザ光の光路差を小さくでき、プリズムミラー171、172にて反射された後のこれらレーザ光のビームシェイプのサイズ差を小さくすることができる。その結果、照明光の均一性を高めることができる。
 <合成形態1-7>
 図18および図19は、8つの光源ユニット121~128をX軸方向に対向させつつ、これら光源ユニット121~128からのレーザ光を4つのプリズムミラー181~184によってZ軸方向に反射させ、さらに、2つの光源ユニット129、130を背面側に配置して、これら光源ユニット129、130からの2つのレーザ光を、それぞれ、プリズムミラー181、182の間の隙間とプリズムミラー183、184の間の隙間からZ軸方向に出射させる合成形態を示す図である。なお、図19(a)は図18の上面図、図19(b)は図18の正面図である。
 この合成形態において、光源ユニット121、122、光源ユニット123、124、光源ユニット125、126、光源ユニット127、128は、それぞれ、X軸方向に前後するように配置され、後方の光源ユニット121、123、125、127が、前方の光源ユニット122、124、126、128に対して、上方向に所定距離だけシフトするよう配置されている。また、光源ユニット121、123、光源ユニット122、124、光源ユニット125、127、光源ユニット126、128は、それぞれ、Z軸方向に並ぶように配置されている。
 この合成形態では、光源ユニット121、123、125、127からのレーザ光が、その前方に位置する光源ユニット122、124、126、128のための配管12dによって遮られることがないため、全ての光源ユニット121~128からのレーザ光を円滑に、対応するプリズムミラー181~184に入射させることができる。よって、この合成形態では、配管12dとの干渉によってレーザ光に劣化が生じることがなく、安定した照明光を光学系20に供給することができる。また、この合成形態では、図15および図16の合成形態に比べ、2つの光源ユニット129、130が追加されているため、照明光のさらなる高輝度化を図ることができる。
 なお、この合成形態においても、図15および図16の場合と同様、Z軸方向に並ぶ光学ユニット、すなわち、光源ユニット121、123、光源ユニット122、124、光源ユニット125、127、および、光源ユニット126、128を、それぞれ、図4(c)の構成例に置き換えれば、図4(c)を参照して説明した如く、2つの光源ユニットからのレーザ光を併せた光束全体の大きさをさらに小さくすることができ、Etendue理論から、照明光の利用効率を一層高めることができる。また、図17の場合と同様、X軸方向に前後する2つの光源ユニットをX軸方向に重なり合わせるよう配置することにより、光学系20における照明光の利用効率を高めることができる。
 <合成形態1-8>
 図20および図21は、図18および図19の合成形態においてプリズムミラー181~184の配置を変更した合成形態を示す図である。なお、図21(a)は図20の上面図、図21(b)は図20の正面図である。
 この合成形態では、図18および図19の合成形態に比べ、下段側のプリズムミラー182、184の配置位置が相違している。すなわち、光源ユニット122、126からのレーザ光がプリズムミラー184によって反射され、また、光源ユニット124、128からのレーザ光がプリズムミラー182によって反射される。
 この合成形態においても、図18および図19の合成形態と同様の効果が奏される。また、この合成形態においても、図18および図19の場合と同様、Z軸方向に並ぶ光学ユニットを図4(c)の構成例に置き換えることにより照明光の利用効率を高めることができ、また、X軸方向に前後する2つの光源ユニットをX軸方向に重なり合わせて配置することにより、光学系20における照明光の利用効率を高めることができる。
 <合成形態1-9>
 図22および図23は、4つの光源ユニット101~104をX軸方向に対向させ、2つのプリズムミラー151、152によってZ軸方向にレーザ光を反射させる合成形態を示す図である。なお、図23(a)は図22の上面図、図23(b)は図22の正面図である。
 この合成形態では、光源ユニット101~104から、プリズムミラー151、152で反射された後のレーザ光の光軸に垂直な面Sまでの光路長が等しくなるよう、光源ユニット101~104とプリズムミラー151、152が配置されている。すなわち、図23(a)を参照して、光源ユニット101、103からプリズムミラー151の反射面までの距離をP1、光源ユニット102、104からプリズムミラー152の反射面までの距離をP2、光源ユニット101、102間のZ軸方向の距離および光源ユニット103、104間のZ軸方向の距離をDとすると、P1+D=P2となるように、光源ユニット101~104とプリズムミラー151、152の配置が調整されている。
 このように、この合成形態では、光源ユニット101~104から、プリズムミラー151、152で反射された後のレーザ光の光軸に垂直な面Sまでの光路長が等しくなるため、プリズムミラー151、152によって反射された後の全てのレーザ光のビームシェイプを揃えることができる。その結果、照明光の均一性を高めることができる。
 B.実施形態2
 本実施の形態は、冷却装置30を光学系20の上段に配する場合の構成に係るものである。本実施の形態では、冷却装置30が光学系20よりも上段に配されるため、冷却装置30として空冷による冷却装置が用いられ、熱搬送系としてヒートパイプが用いられている。このように、液冷以外の冷却装置および熱搬送系を用いることにより、液漏れによる不具合を回避することができる。
 図24に、本実施の形態に係るプロジェクタの構成を示す。図24(a)は、プロジェクタを側面から透視した図、図24(b)はプロジェクタを下面から透視した図である。
 図24(a)、(b)を参照して、プロジェクタ1の内部は、上記と同様、仕切り板2によって、上段側の空間R1と下段側の空間R2に区分されている。このうち、空間R2に、光学系20と、この光学系20に照明光を供給する照明装置10が配置されている。
 空間R1には、照明装置10の直上の位置に、冷却装置30が配されている。冷却装置30は、ヒートパイプ25と、ヒートシンク36と、ファン37とを備える。ヒートパイプ25は、光源ユニット側のペルチェ素子12b(図2および図3参照)に接続されている。すなわち、本実施の形態では、図2および図3に示す構成から液冷ジャケット12cと配管12dが省略され、ペルチェ素子12bにヒートパイプ35が装着されている。なお、ヒートパイプ35は、ペルチェ素子12bから上方向に伸びるようにペルチェ素子12bに装着される。
 レーザ光源にて発生した熱は、ヒートパイプ35によってヒートシンク36に搬送される。ヒートシンク36に搬送された熱は、ファン37によってヒートシンク36に送られた風により取り除かれる。こうして、レーザ光源に発生した熱が外部に放熱され、レーザ光源の温度が所定の温度に調節される。
 本実施の形態では、上記図1の構成例(実施形態1)に比べ、熱の搬送方向が上下逆となっているため、レーザ光とヒートパイプ35の間の干渉を避けるには、図5~図23の合成形態における光源ユニットの位置関係を上下で逆転させ、これに伴い、プリズムミラーの位置関係も上下で逆転させる必要がある。
 以下、上記実施形態1で示した図5~図23の合成形態における光源ユニットの配置とプリズムミラーの配置を、それぞれ、上下(Y軸方向)で逆転させて、本実施の形態に適応させた場合の合成形態について、順次図面を参照して説明する。なお、以下には、便宜上、各合成形態の上面図と正面図のみを示し、斜視図は省略する。
 <合成形態2-1>
 図25は、上記図5および図6の合成形態(実施形態1)を本実施の形態に適応させた場合の合成形態を示す図である。この合成形態では、上記図5および図6の合成形態と同様、光源ユニット103からのレーザ光が、光源ユニット104に装着されたヒートパイプ35と干渉するため、光源ユニット103からのレーザ光に劣化が生じる。
 <合成形態2-2>
 図26は、上記図7および図8の合成形態(実施形態1)を本実施の形態に適応させた場合の合成形態を示す図である。この合成形態では、上記図7および図8の合成形態と同様、光源ユニット103からのレーザ光が、光源ユニット104に装着されたヒートパイプ35によって遮られることはなく、全ての光源ユニット101~104からのレーザ光を円滑に、対応するプリズムミラー151、152に入射させることができる。よって、ヒートパイプ35との干渉によってレーザ光に劣化が生じることがなく、安定した照明光を光学系20に供給することができる。
 なお、この合成形態においても、上記図7および図8の合成形態と同様、X軸方向に前後する光源ユニットの配置を、図4(e)に示すように調整することにより、照明光の利用効率を高めることができる。
 <合成形態2-3>
 図27は、上記図9および図10の合成形態(実施形態1)を本実施の形態に適応させた場合の合成形態を示す図である。この合成形態では、上記図9および図10の合成形態と同様、光源ユニット101、103からのレーザ光が、その前方に位置する光源ユニット102、104のヒートパイプ35によって遮られることはなく、また、光源ユニット102、104からのレーザ光が、その前方に位置する光源ユニット105、106のヒートパイプ35によって遮られることもない。したがって、全ての光源ユニット101~104からのレーザ光を円滑に、対応するプリズムミラー151、152、153に入射させることができ、安定した照明光を光学系20に供給することができる。
 なお、この合成形態においても、上記図9および図10の合成形態と同様、X軸方向に前後する光源ユニットの配置を、図4(e)に示すように調整することにより、照明光の利用効率を高めることができる。
 <合成形態2-4>
 図28は、上記図11および図12の合成形態(実施形態1)を本実施の形態に適応させた場合の合成形態を示す図である。この合成形態では、上記図11および図12の合成形態と同様、レーザ光源111a、111b間の距離、および、レーザ光源112a、112b間の距離を小さくすることができるため、2つのレーザ光源からのレーザ光を併せた光束全体の大きさを小さくすることができ、照明光の利用効率を高めることができる。なお、この合成形態では、2つのレーザ光源に対して一つの冷却部が装着されるため、構成の簡素化を図ることができるが、反面、2つのレーザ光源を組として冷却が行われるため、各光源を個別に温度制御することができない。
 <合成形態2-5>
 図29は、上記図13および図14の合成形態(実施形態1)を本実施の形態に適応させた場合の合成形態を示す図である。この合成形態では、上記図13および図14の合成形態と同様、光源ユニット101、104とプリズムミラー151がZ軸方向に所定距離だけシフトして配置されているため、光源ユニット104からのレーザ光と光源ユニット103のヒートパイプ35との干渉を回避でき、よって、照明光の劣化を抑制することができる。この他、この合成形態では、上記図13および図14の合成形態(実施形態1)と同様の効果が奏される。また、この合成形態も、上記図13および図14の合成形態(実施形態1)と同様に変更可能である。
 <合成形態2-6>
 図30は、上記図15および図16の合成形態(実施形態1)を本実施の形態に適応させた場合の合成形態を示す図である。この合成形態では、上記図15および図16の合成形態と同様、光源ユニット121、123、125、127からのレーザ光が、その前方に位置する光源ユニット122、124、126、128のヒートパイプ35によって遮られることがないため、全ての光源ユニット121~128からのレーザ光を円滑に、対応するプリズムミラー171、172に入射させることができ、安定した照明光を光学系20に供給することができる。この他、この合成形態では、上記図15および図16の合成形態(実施形態1)と同様の効果が奏される。また、この合成形態も、上記図15および図16の合成形態(実施形態1)と同様に変更可能である。
 <合成形態2-7>
 図31は、上記図17の合成形態(実施形態1)を本実施の形態に適応させた場合の合成形態を示す図である。この合成形態では、上記図17の合成形態と同様、X軸方向に前後する2つの光源ユニットからのレーザ光の光路差を小さくでき、プリズムミラー171、172にて反射された後のこれらレーザ光のビームシェイプのサイズ差を小さくすることができる。その結果、光学系20における照明光の利用効率を高めることができる。
 <合成形態2-8>
 図32は、上記図18および図19の合成形態(実施形態1)を本実施の形態に適応させた場合の合成形態を示す図である。この合成形態では、上記図18および図19の合成形態と同様、光源ユニット121、123、125、127からのレーザ光が、その前方に位置する光源ユニット122、124、126、128のヒートパイプ35によって遮られることがないため、全ての光源ユニット121~128からのレーザ光を円滑に、対応するプリズムミラー181~184に入射させることができる。よって、この合成形態では、ヒートパイプ35との干渉によってレーザ光に劣化が生じることがなく、安定した照明光を光学系20に供給することができる。この他、この合成形態では、上記図18および図19の合成形態(実施形態1)と同様の効果が奏される。また、この合成形態も、上記図18および図19の合成形態(実施形態1)と同様に変更可能である。
 <合成形態2-9>
 図33は、上記図20および図21の合成形態(実施形態1)を本実施の形態に適応させた場合の合成形態を示す図である。この合成形態では、上記図20および図21の合成形態と同様、下段側のプリズムミラー181、183の配置が、図32の合成形態に比べ相違している。この合成形態によっても図32の合成形態と同様の効果が奏される。また、この合成形態も、上記図20および図21の合成形態(実施形態1)と同様に変更可能である。
 <合成形態2-10>
 図34は、上記図22および図23の合成形態(実施形態1)を本実施の形態に適応させた場合の合成形態を示す図である。この合成形態では、光源ユニット101~104から、プリズムミラー151、152で反射された後のレーザ光の光軸に垂直な面Sまでの光路長が等しくなるため、プリズムミラー151、152によって反射された後の全てのレーザ光のビームシェイプを揃えることができる。その結果、照明光の均一性を高めることができる。
 以上、実施形態1および実施形態2によれば、冷却装置30が光学系20の下段または上段の位置に配置されるため、冷却装置30を光学系20の設置面に平行に配置する場合に比べ、プロジェクタ1の外形をコンパクトにすることができる。また、冷却装置30を照明装置10の直下または直上の位置に配置したため、配管14d、34およびヒートパイプ35の引き回しを抑制することができ、熱搬送系の構成の簡素化とコストの低減を図ることができる。
 また、照明装置10におけるレーザ光の合成を、図7~図23の合成形態および図26~図34の合成形態にて行うようにすれば、配管14dまたはヒートパイプ35とレーザ光の干渉を回避することができ、安定した照明光を光学系20に供給することができる。さらに、図7~図23の合成形態および図26~図34の合成形態を用いれば、各合成形態にて個別に説明した如く、光学系20における照明光の利用効率を高めることができ、投写画像の高輝度化を図ることができる。
 C.光源ユニットの他の構成例
 図35は、光源ユニットの他の構成例を示す図である。図35(a)は光源ユニットの側面図、図35(b)は光源ユニットの正面図である。
 図35(a)、(b)を参照して、光源ユニットは、レーザ光源50と冷却部60から構成されている。レーザ光源50の構成は、実施形態1のレーザ光源11と同様であり、第1波長選択性の反射素子51と、波長変換素子52と、レーザダイオード53と、これらを収容するハウジング54から構成されている。
 冷却部60は、銅板61と、ペルチェ素子62と、液冷ジャケット63から構成されている。銅板61は、レーザダイオード53の背面に装着されており、レーザダイオード53にて発生した熱を拡散する。ペルチェ素子62は、銅板61に装着され、銅板61にて拡散された熱を液冷ジャケット63へと移動させる。銅板61とペルチェ素子62は、4つのネジ64によって液冷ジャケット63の前面(取付面)に取り付けられている。このとき、レーザダイオード53と銅板61との界面、銅板61とペルチェ素子62との界面、ペルチェ素子62と冷却ジャケット63との界面には、熱伝導率の高いグラファイトシートやイリジウムシートが配される。なお、これらのシートに代えて、これらの各界面にサーマルグリスが塗布されても良い。
 冷却部60は、ペルチェ素子61を省略することもできる。この場合、銅板61が液冷ジャケット63に直接取り付けられる。
 図36は、液冷ジャケット63の構成を示す図である。図36(a)、(b)は、それぞれ、液冷ジャケット63の正面図、上面図である。図36(c)は、図36(a)のA-A´断面図、図36(d)は、正面から見た液冷ジャケット63の内部透視図である。
 液冷ジャケット63は、ジャケット部631と、ジャケット部631の下面および上面から、それぞれ突出形成された流入口632および流出口633により構成されている。
 液冷ジャケット63は、熱伝導性の高いアルミニウムや銅等の材質からなる。図36(c)に示すように、前側のジャケットFと後側のジャケットBとが中央部で溶接等によって接合されることにより、液冷ジャケット63が出来上がる。
 ジャケット部631の前面には、銅板61およびペルチェ素子62をネジ64にて固定するための4つのネジ孔631aが開けられている。また、ジャケット部631の内部には流路634が形成されている。流路634の下面には入口634aが形成されており、流路634の上面には出口634bが形成されている。入口634aには、流入口632に形成された流入路635が繋がっており、出口634bには、流出口633に形成された流出路636が繋がっている。
 図36(d)に示すように、流路634内には、左右方向に一定の間隔(たとえば、1mm)を置いて、複数のストレートフィン637が配されている。ストレートフィン637は、流路634の前面から後方に突出するように形成されており、流路634内の冷媒液の流れに沿うよう、上下方向に延びている。正面から見たときに、ストレートフィン637が配された領域にレーザ光源50が収まるよう、ストレートフィン637が形成されている。
 流路634の下部には、流路634が入口634aから徐々に広がるよう傾斜面634cが形成されており、流路634の上部には、流路634が出口634bに向かって徐々に狭まるよう傾斜面634dが形成されている。
 また、ストレートフィン637の下端と傾斜面634cとの間には、ストレートフィンの配置区間S1と横幅の等しい区間S2が設けられており、ストレートフィン637の上端と傾斜面634dとの間には、上記配置区間S1と横幅の等しい区間S3が設けられている。
 図37は、冷却部60によるレーザ光源50の冷却動作について説明するための図である。図37(a)は側面図であり、液冷ジャケット63の部分は断面図とされている。図37(b)は正面からの内部透視図である。
 図37(a)、(b)を参照して、冷却部60は、レーザ光源50が取り付けられる面(冷却ジャケット63の前面)がプロジェクタの上下方向、即ち重力方向に沿うような状態で配されている。このとき、流路634は、重力方向の下側に入口634aが位置し、重力方向の上側に出口634bが位置する状態となる。
 液冷ジャケット63の流入口632と流出口633には、図1に示す冷却装置30のラジエータ31からの配管(図示せず)が連結される。これにより、流入口632から冷媒液が流入し、流路634を通って流出口633から冷媒液が流出する。こうして、液冷ジャケット63内の流路634とラジエータ31とを冷媒液が循環する。なお、冷媒液には、水やエチレングリコール系の液剤を用いてもよい。
 レーザ光源50で発生した熱は、銅板61およびペルチェ素子62を通じて液冷ジャケット63に移される。そして、冷却ジャケット63に移された熱は、流路634の前面やストレートフィン637において、流路634を流れる冷媒液と熱交換され、冷媒液に移される。この熱は、冷媒液によってラジエータ31に搬送され、ラジエータ31を通過する風によって取り除かれる。
 さて、冷媒液に空気が混入していたり、冷媒液に溶解していた空気が冷媒液から蒸発したりすること等により、液冷ジャケット63の流路634内に気泡が生じる場合がある。この場合、気泡が、液冷ジャケット63内に滞留すると、レーザ光源50から移ってきた熱が、気泡に妨げられて(熱抵抗の増大により)冷媒液へ十分に伝わらず、レーザ光源50の冷却効果が十分に得られなくなり、レーザ光源50の劣化(寿命低下)に繋がる惧れがある。
 これに対し、本構成例では、レーザ光源50が取り付けられる冷却ジャケット63の前面が重力方向に沿うような状態で配されており、また、流路634の上部に出口634bが設けられているため、図37(b)に示すように、流路634内で生じた気泡は、流路631の上部に移動し、冷媒液とともに出口634bから流出路636を通って排出される。
 したがって、本構成例によれば、レーザ光源50からの熱と冷媒液との主たる熱交換部分となる流路634の前面やストレートフィン637の部分に気泡が溜り難く、これにより、気泡による熱抵抗の増大が抑制されるので、レーザ光源50の冷却効果を維持することができる。
 なお、傾斜面634c、634dにより、流路634の下部では幅が徐々に広がり、流路634の上部では幅が徐々に狭まるような構成とされているため、流路抵抗が小さくなり、流路634内を冷媒液が円滑に流れる。しかも、流路634の上部では、傾斜面634dにより、気泡が円滑に出口634bに導かれ排出される。
 また、ストレートフィン637の前段部および後段部に区間S2、S3形成され、ストレートフィン637の端部からすぐに流路634の幅が狭くなっていかない構成とされているので、より流路抵抗が小さくなり、冷媒液が円滑に流れる。しかも、流路の上部では、左右両隅部分おいてもストレートフィン634の上端と流路634上面との間に十分な隙間(区間S3)が確保されているので、この隙間(区間S3)がない場合に比べ、左右の隅部分を通る気泡がストレートフィン634から抜けやすくなる。よって、気泡の排出が円滑に行われるようになる。
 このように、流路634の上下(重力方向)に出入口634a、634bを設け、さらに上下の面を傾斜面634c、634dとすれば、冷媒液の円滑な流れを確保するだけでなく、流路634内で生じた気泡の円滑な排出を実現することができる。なお、冷媒液にエチレングリコール系の液剤を用いた場合、水に比べて粘度が高くなるので、円滑な流れを確保するためには、上記構成とすることがより望ましい。
 図38(a)、(b)は、液冷ジャケットの変更例を示す図であり、正面から見た内部透視図である。本変更例では、図36に示すストレートフィン637に替えてニードルフィン737が用いられている。なお、図38(a)の変更例と図38(b)の変更例とは、ニードルフィン737の配置が異なっている。
 図38(a)を参照して、液冷ジャケット73は、ジャケット部731と、ジャケット部731の下面から、それぞれ突出形成された流入口732および流出口733により構成されている。
 液冷ジャケット73は、上述の液冷ジャケット63と同様、熱伝導性の高いアルミニウムや銅等の材質からなり、前側のジャケットと後側のジャケットとが中央部で溶接等によって接合されることにより出来上がる。
 ジャケット部631の内部には流路734が形成されている。流路734の下部は二股になっており、一方の流路に入口734aが繋がっており、他方の流路に出口734bが繋がっている。入口734aには流入口732に形成された流入路735が繋がっており、出口734bには、流出口733に形成された流出路736が繋がっている。
 流路734内には、上下および左右方向に一定の間隔(たとえば、1mm)を置いて、複数のニードルフィン737がマトリクス状に配されている。ストレートフィン737は、流路734の前面から後方に突出するように形成されている。正面から見たときに、ニードルフィン737が配された領域にレーザ光源50が収まるよう、ニードルフィン737が形成されている。
 最上部のニードルフィン737と流路734の上面との間には、ニードルフィン737が配されていない所定の広さの空間が設けられている。この空間は、流路734内で生じた気泡が溜められる気泡滞留部734cとなる。なお、流路734の隅部分は、冷媒液が流れやすいよう、図示のとおり内面が曲面となっている。
 液冷ジャケット73は、レーザ光源50が取り付けられる前面がプロジェクタの上下方向、即ち重力方向に沿うような状態で配されている。液冷ジャケット73の流入口732と流出口733には、図1に示す冷却装置30のラジエータ31からの配管(図示せず)が連結される。これにより、流入口732から冷媒液が流入し、流路634内を通って流出口733から冷媒液が流出する。流路734内において、冷媒液は、図の白ぬき矢印で示すように、主に上下に並ぶ2つのニードルフィン737の隙間を通るようにして、上方向から下方向に流れを変える。こうして、液冷ジャケット73内の流路734とラジエータ31とを冷媒液が循環する。なお、冷媒液には、液冷ジャケット63と同様、水やエチレングリコール系の液剤を用いてもよい。
 レーザ光源50から冷却ジャケット73に移された熱は、流路734の前面やニードルフィン737において流路734を流れる冷媒液と熱交換され、冷媒液に移される。この熱は、冷媒液によってラジエータ31に搬送され、ラジエータ31を通過する風によって取り除かれる。
 このとき、液冷ジャケット73は、レーザ光源50が取り付けられる前面が重力方向に沿うような状態で配されており、また、流路634の上部には気泡滞留部734cが設けられているため、流路931の内部で生じた気泡は、流路631上部の空気滞留部734cへ移動し、そこに溜まる。
 したがって、本変更例によれば、レーザ光源50からの熱と冷媒液との主たる熱交換部分となる流路734の前面やニードルフィン737の部分に気泡が溜り難く、これにより、気泡による熱抵抗の増大が抑制されるので、レーザ光源の冷却効果を維持することができる。
 なお、ニードルフィン737の配置は、図38(b)のように変更することもできる。図38(b)の構成では、左右に隣り合う列のニードルフィン37が、上下方向に半ピッチだけずれるように、ニードルフィン37が形成されている。
 また、図38の構成では、冷媒液の流入口732と流出口733が液冷ジャケット73の下部に配されているが、図36の構成のように、冷媒液の流入口と流出口を、それぞれ、液冷ジャケットの下部と上部に配するようにしても良い。また、図36に示す構成の液冷ジャケットにおいて、ストレートフィン637をニードルフィンに置き換えるようにしても良い。
 なお、図35ないし図38には、一つの液冷ジャケットに一つのレーザ光源50が装着される例を示したが、一つの液冷ジャケットに複数のレーザ光源50が配される構成であっても良い。この場合、フィン構造は、対応するレーザ光源が接する面に合わせて形成されても良く、あるいは、全てのレーザ光源を一様にカバーするように形成されても良い。
 また、図35ないし図38の構成において、冷却部60は、レーザ光源50の装着面(冷却ジャケット63、73の前面)がプロジェクタの上下方向、即ち重力方向に沿うような状態で配されたが、この装着面は、必ずしも重力方向に厳密に平行となっていなくともよく、重力方向からやや傾いた状態となっていても良い。装着面が重力方向からやや傾いた状態にあるときも、流路内の空気(気泡)は、浮力により流路上部に退避し、レーザ光源50の装着部近傍に滞留し難くなる。よって、上記と同様の効果が奏され得る。なお、特許請求の範囲に記載の「前記冷却部は、前記光源が装着される面が重力方向に沿うように配置されている」とは、このようにレーザ光源50の装着面が重力方向からやや傾いた状態にある場合も含むものである。
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に何ら制限されるものではなく、また、本発明の実施形態も、他に種々の変更が可能である。
 たとえば、図1および図24では、光学系20に対して一方向から照明光が入射され、上記合成形態においても、赤色、緑色および青色波長帯の光がプリズムミラーによって合成されて光学系20に入射されると説明したが、光学系20に対して3方向から各色の光が別々に入射される光学系に本発明を適用することも勿論可能である。上記のように、光学系20に一方向から照明光が入射される場合には、光学系20内において赤色、緑色および青色波長帯の光に一旦分離され、各色の光が光変調素子によって変調された後、再び、ダイクロイックキューブによって合成されて投写レンズ21に入射される。また、3方向から各色光が入射される場合には、各色光がそれぞれの導光光学系によって光変調素子(液晶パネル)に導かれて変調された後、ダイクロイックキューブによって合成されて投写レンズ21に入射される。なお、3方向から各色光が入射される場合には、各色の導光光学系に対応して、上記合成形態の照明装置が個別に配置される。この場合、上記合成形態における光源ユニットは、全て、同じ波長帯のレーザ光を出射するよう変更される。たとえば、緑色用の導光光学系に照明光を供給する照明装置の合成形態では、全ての光源ユニットが緑色波長帯のレーザ光を出射し、出射されたレーザ光がプリズムミラーによって合成されて照明光とされる。
 この他、上記実施の形態では、プリズムミラーを用いてレーザ光を合成するようにしたが、プリズムミラーに替えて、2枚のミラーやエッジミラーを用いることも可能である。本発明の実施形態は、請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。

Claims (11)

  1. 投写型映像表示装置において、
     映像信号をもとに光を変調して映像光を生成出力する光学系と、
     複数の光源を有するとともに前記光学系の設置面に平行な所定の軸方向に照明光を出射して前記光学系に供給する照明装置と、
     前記光源にて発生した熱を前記設置面に略垂直な方向に搬送する熱搬送系と、
     前記設置面に略垂直な方向に配置され、前記熱搬送系によって搬送された熱を除去する冷却装置と、
    を備えることを特徴とする投写型映像表示装置。
     
  2. 請求項1に記載の投写型映像表示装置において、
     前記複数の光源のうち少なくとも2つは同じ方向に光を出射し、
     これら2つの光源は、前記光の出射方向に前後するよう配置され、さらに、これら2つの光源のうち後方の光源は、前方の光源に対し、前記熱の搬送方向と反対の方向に所定距離だけシフトするよう配置されている、
    ことを特徴とする投写型映像表示装置。
     
  3. 請求項2に記載の投写型映像表示装置において、
     前記2つの光源には、前記熱搬送系の一部を構成する冷却部がそれぞれ装着され、
     前記冷却部が装着された状態におけるこれら2つの光源の前記光の出射方向の投影面が、前記熱の搬送方向に平行な方向において、互いに重なり合うように、これら2つの光源が配置されている、
    ことを特徴とする投写型映像表示装置。
     
  4. 請求項1に記載の投写型映像表示装置において、
     前記複数の光源のうち少なくとも2つは同じ方向に光を出射し、
     これら2つの光源は、前記設置面に垂直な方向に並べて配置され、これら2つの光源に対して、前記熱搬送系の一部を構成する共通の冷却部が装着されている、
    ことを特徴とする投写型映像表示装置。
     
  5. 請求項1に記載の投写型映像表示装置において、
     前記複数の光源のうち少なくとも2つは同じ方向に光を出射し、
     これら2つの光源は、前記光の出射方向と、前記設置面に平行で前記光の出射方向に垂直な方向に、それぞれ所定距離だけ離れるよう配置され、
     前記2つの光源には、前記熱搬送系の一部を構成する冷却部がそれぞれ装着され、
     前記冷却部が装着された状態におけるこれら2つの光源の前記光の出射方向の投影面が、前記設置面に平行で前記光の出射方向に垂直な方向において、互いに重なり合うように、これら2つの光源が配置されている、
    ことを特徴とする投写型映像表示装置。
     
  6. 請求項1に記載の投写型映像表示装置において、
     前記複数の光源のうち少なくとも2つは同じ方向に光を出射し、
     これら2つの光源は、前記光の出射方向に垂直で前記設置面に平行な方向に並べて配置され、これら2つの光源に対して、前記熱搬送系の一部を構成する共通の冷却部が装着されている、
    ことを特徴とする投写型映像表示装置。
     
  7. 請求項1ないし6の何れか一項に記載の投写型映像表示装置において、
     前記熱搬送系は、前記光源が装着されるとともに、前記冷却装置からの冷媒液が循環する流路を内部に含む冷却部を備え、
     前記冷却部は、前記光源が装着される面が重力方向に沿うように配置されている、
    ことを特徴とする投写型映像表示装置。
     
  8. 請求項7に記載の投写型映像表示装置において、
     前記冷却部は、前記冷媒液が下から上へと流れるように前記流路が形成されるとともに、前記流路に繋がるように前記冷却部の下部と上部に前記冷媒液の流入部と流出部が配されている、
    ことを特徴とする投写型映像表示装置。
     
  9. 複数の光源を有するとともに前記複数の光源からの光を第1の軸方向へと出射する照明装置において、
     前記光源にて発生した熱を前記第1の軸方向に垂直な第2の軸方向へ搬送する熱搬送系と、
     前記第1の軸方向に垂直な方向に設けられ、前記熱搬送系によって搬送された熱を除却する冷却装置と、
    を備えることを特徴とする照明装置。
     
  10. 複数の光源を有するとともに前記複数の光源からの光を第1の軸方向へと出射する照明装置において、
     前記第1の軸方向に垂直な第2の軸方向へ光を出射する第1の光源と、
     前記第1の光源にて発生した熱を前記第1の軸方向および前記第2の軸方向に垂直な第3の軸方向へ搬送する第1の熱搬送系と、
     前記第2の軸方向に光を出射するとともに前記第1の光源の光の出射方向に前後するよう配置された第2の光源と、
     前記第1の光源にて発生した熱を前記第3の軸方向へ搬送する第2の熱搬送系と、
     前記第3の軸方向に設けられ、前記第1の熱搬送系と前記第2の熱搬送系とによって搬送された熱を除去する冷却装置と、
     前記第1の光源および前記第2の光源からそれぞれ出射された光を前記第1の軸方向へと導く反射手段とを備え、
     前記第1の光源と前記第2の光源は、後方の光源が、前方の光源に対し、前記熱の搬送方向と反対の方向にシフトするよう配置されている、
    ことを特徴とする照明装置。
     
  11. 投写型映像表示装置において、
     映像信号をもとに光を変調して映像光を生成出力する光学系と、
     前記光学系に前記光を供給する光源と、
     前記光源にて発生した熱を搬送する熱搬送系と、
     前記熱搬送系によって搬送された熱を除去する冷却装置と、を備え、
     前記熱搬送系は、前記光源が装着されるとともに、前記冷却装置からの冷媒液が循環する流路を内部に含む冷却部を有し、
     前記冷却部は、前記光源が装着される面が重力方向に沿うように配置されている、
    ことを特徴とする投写型映像表示装置。
PCT/JP2009/053488 2008-03-07 2009-02-26 投写型映像表示装置および照明装置 WO2009110365A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801080814A CN101960378A (zh) 2008-03-07 2009-02-26 投影型影像显示装置和照明装置
US12/876,851 US20110001937A1 (en) 2008-03-07 2010-09-07 Projection Display Device And Illumination Device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-058384 2008-03-07
JP2008058384 2008-03-07
JP2009-024213 2009-02-04
JP2009024213A JP2009237546A (ja) 2008-03-07 2009-02-04 投写型映像表示装置および照明装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/876,851 Continuation US20110001937A1 (en) 2008-03-07 2010-09-07 Projection Display Device And Illumination Device

Publications (1)

Publication Number Publication Date
WO2009110365A1 true WO2009110365A1 (ja) 2009-09-11

Family

ID=41055925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053488 WO2009110365A1 (ja) 2008-03-07 2009-02-26 投写型映像表示装置および照明装置

Country Status (4)

Country Link
US (1) US20110001937A1 (ja)
JP (1) JP2009237546A (ja)
CN (1) CN101960378A (ja)
WO (1) WO2009110365A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017138524A (ja) * 2016-02-05 2017-08-10 日立マクセル株式会社 投射型映像表示装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5371875B2 (ja) * 2010-04-13 2013-12-18 三菱電機株式会社 冷却装置、及び画像表示装置
JP5794405B1 (ja) * 2011-06-20 2015-10-14 株式会社リコー 画像投射装置
CN102289139B (zh) * 2011-08-19 2013-01-30 四川长虹电器股份有限公司 激光投影机的整机散热***
US9116421B1 (en) * 2012-01-07 2015-08-25 Greenlight Optics, LLC Projector with laser illumination elements offset along an offset axis
CN102645824B (zh) * 2012-05-10 2014-10-29 海信集团有限公司 壁挂式投影机散热***
JP5914254B2 (ja) * 2012-08-24 2016-05-11 株式会社日立エルジーデータストレージ 光モジュールおよび走査型画像表示装置
JP6160373B2 (ja) 2013-09-03 2017-07-12 ソニー株式会社 光源装置および映像表示装置
JP6221550B2 (ja) * 2013-09-19 2017-11-01 岩崎電気株式会社 光照射装置
JP6603895B2 (ja) * 2016-05-23 2019-11-13 パナソニックIpマネジメント株式会社 冷却装置、プロジェクタ、および、受熱ユニット
US11487193B2 (en) * 2016-07-07 2022-11-01 Sony Corporation Projector device and control method
JP6593901B2 (ja) * 2016-08-30 2019-10-23 Necディスプレイソリューションズ株式会社 光源装置および投写型表示装置、半導体発光素子の冷却方法
JP6504142B2 (ja) * 2016-11-09 2019-04-24 住友電気工業株式会社 光アセンブリ
JP2019015769A (ja) * 2017-07-04 2019-01-31 株式会社島津製作所 光結合モジュール
CN107787164B (zh) * 2017-09-26 2019-08-27 青岛海信电器股份有限公司 一种液冷块、液冷散热***以及激光投影机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08242463A (ja) * 1995-03-06 1996-09-17 Sony Corp プロジェクタ装置
JP2004311224A (ja) * 2003-04-08 2004-11-04 Koito Mfg Co Ltd 車両用前照灯
JP2005106974A (ja) * 2003-09-29 2005-04-21 Seiko Epson Corp プロジェクタ
JP2005121890A (ja) * 2003-10-16 2005-05-12 Seiko Epson Corp 画像表示装置および光源の温度制御方法
JP2005242364A (ja) * 2004-02-27 2005-09-08 Lumileds Lighting Us Llc 整列したledを有する照明システム
JP2007024939A (ja) * 2005-07-12 2007-02-01 Olympus Corp 光源装置、プロジェクタ
JP2007133300A (ja) * 2005-11-14 2007-05-31 Hitachi Ltd 半導体光源装置及びそれを利用した投射型映像表示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02130542A (ja) * 1988-11-11 1990-05-18 Kawasaki Heavy Ind Ltd 画像投影装置
JPH04177386A (ja) * 1990-11-13 1992-06-24 Toshiba Corp 液晶表示プロジェクタの冷却装置
JPH07181463A (ja) * 1993-12-24 1995-07-21 Canon Inc 液晶表示装置
JP2003075081A (ja) * 2001-08-28 2003-03-12 Sanyo Electric Co Ltd 光源ランプ冷却構造
JP4244908B2 (ja) * 2003-12-26 2009-03-25 セイコーエプソン株式会社 光変調素子保持体、光学装置、およびプロジェクタ
JP4096904B2 (ja) * 2004-03-26 2008-06-04 セイコーエプソン株式会社 光変調素子保持体、光学装置、およびプロジェクタ
JP4657022B2 (ja) * 2004-10-15 2011-03-23 三洋電機株式会社 投写型映像表示装置
JP2006330642A (ja) * 2005-05-30 2006-12-07 Seiko Epson Corp 光学装置、およびプロジェクタ
JP4254747B2 (ja) * 2005-05-31 2009-04-15 カシオ計算機株式会社 光源装置及び投影装置
JP4910496B2 (ja) * 2005-11-04 2012-04-04 セイコーエプソン株式会社 光学装置、および光学機器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08242463A (ja) * 1995-03-06 1996-09-17 Sony Corp プロジェクタ装置
JP2004311224A (ja) * 2003-04-08 2004-11-04 Koito Mfg Co Ltd 車両用前照灯
JP2005106974A (ja) * 2003-09-29 2005-04-21 Seiko Epson Corp プロジェクタ
JP2005121890A (ja) * 2003-10-16 2005-05-12 Seiko Epson Corp 画像表示装置および光源の温度制御方法
JP2005242364A (ja) * 2004-02-27 2005-09-08 Lumileds Lighting Us Llc 整列したledを有する照明システム
JP2007024939A (ja) * 2005-07-12 2007-02-01 Olympus Corp 光源装置、プロジェクタ
JP2007133300A (ja) * 2005-11-14 2007-05-31 Hitachi Ltd 半導体光源装置及びそれを利用した投射型映像表示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017138524A (ja) * 2016-02-05 2017-08-10 日立マクセル株式会社 投射型映像表示装置
WO2017134855A1 (ja) * 2016-02-05 2017-08-10 日立マクセル株式会社 投射型映像表示装置
US10416543B2 (en) 2016-02-05 2019-09-17 Maxell, Ltd. Projection-type image display apparatus

Also Published As

Publication number Publication date
JP2009237546A (ja) 2009-10-15
US20110001937A1 (en) 2011-01-06
CN101960378A (zh) 2011-01-26

Similar Documents

Publication Publication Date Title
WO2009110365A1 (ja) 投写型映像表示装置および照明装置
JP4096896B2 (ja) プロジェクタ
JP6160373B2 (ja) 光源装置および映像表示装置
US10890835B2 (en) Light conversion device, light source apparatus, and projection display apparatus with improved cooling efficiency
JP4988912B2 (ja) 投写型映像表示装置
JP4266959B2 (ja) 電子機器の冷却装置および投写型光学装置
US11190740B2 (en) Projection display apparatus
JP2017045002A (ja) 光源装置及び投射型表示装置
US9817303B2 (en) Light source device, illumination device and projector
JP2016200316A (ja) 熱交換装置、冷却装置及びプロジェクター
JP2007316626A (ja) 投写型映像表示装置
JP2013025212A (ja) プロジェクター
JP7107351B2 (ja) 照明装置及びプロジェクター
JP6813118B2 (ja) 照明装置及びプロジェクター
JP6593901B2 (ja) 光源装置および投写型表示装置、半導体発光素子の冷却方法
JP2023107102A (ja) 冷却装置、光源装置、画像投射装置および波長変換装置
JP7154917B2 (ja) 投射型表示装置
WO2020253167A1 (zh) 激光投影设备
JP2014211549A (ja) 画像表示装置、冷却ユニット、及び冷却方法
JP2005202112A (ja) 光源装置および投射型表示装置
JP2008192579A (ja) 光源装置、照明装置及びプロジェクタ
JP2024054504A (ja) プロジェクター
JP2016218124A (ja) 光源装置および画像投射装置
JP2023013837A (ja) 光源装置、プロジェクター及び冷却プレート
JP2024054505A (ja) プロジェクター

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980108081.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09718400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09718400

Country of ref document: EP

Kind code of ref document: A1