WO2009110258A1 - 多層プリント配線板、及び、多層プリント配線板の製造方法 - Google Patents

多層プリント配線板、及び、多層プリント配線板の製造方法 Download PDF

Info

Publication number
WO2009110258A1
WO2009110258A1 PCT/JP2009/050989 JP2009050989W WO2009110258A1 WO 2009110258 A1 WO2009110258 A1 WO 2009110258A1 JP 2009050989 W JP2009050989 W JP 2009050989W WO 2009110258 A1 WO2009110258 A1 WO 2009110258A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating film
conductor circuit
printed wiring
wiring board
multilayer printed
Prior art date
Application number
PCT/JP2009/050989
Other languages
English (en)
French (fr)
Inventor
中井通
赤井祥
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Priority to JP2010501816A priority Critical patent/JP5216078B2/ja
Priority to CN2009801019996A priority patent/CN101911851A/zh
Publication of WO2009110258A1 publication Critical patent/WO2009110258A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/421Blind plated via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/0959Plated through-holes or plated blind vias filled with insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0369Etching selective parts of a metal substrate through part of its thickness, e.g. using etch resist
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4602Manufacturing multilayer circuits characterized by a special circuit board as base or central core whereon additional circuit layers are built or additional circuit boards are laminated
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4661Adding a circuit layer by direct wet plating, e.g. electroless plating; insulating materials adapted therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49126Assembling bases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49165Manufacturing circuit on or in base by forming conductive walled aperture in base

Definitions

  • the present invention relates to a multilayer printed wiring board and a method for producing a multilayer printed wiring board.
  • multilayer printed wiring board As the multilayer printed wiring board, a multilayer printed wiring board in which conductor circuits and interlayer resin insulating layers are alternately laminated on a resin substrate called a core has been proposed. The conductor circuits through the interlayer resin insulating layer of the multilayer printed wiring board are connected by via conductors.
  • Such a multilayer printed wiring board can be manufactured by the following method, for example.
  • the starting material is a copper clad laminate in which copper foil is bonded to both surfaces of a resin substrate, and first, a lower-layer conductor circuit is formed on the resin substrate. Next, an interlayer resin insulation layer is formed on the resin substrate on which the lower conductor circuit is formed, and an opening is formed in the interlayer resin insulation layer so that the lower conductor circuit on the resin substrate is exposed.
  • an electroless plating film is formed on the interlayer resin insulation layer and on the exposed surface in the opening, and after forming a plating resist on the electroless plating film, thickening is performed by electrolytic plating, and etching is performed after removing the plating resist.
  • an upper conductor circuit is formed on the interlayer resin insulation layer.
  • the lower conductor circuit on the resin substrate and the upper conductor circuit on the interlayer resin insulation layer are connected by via conductors.
  • a solder resist layer is formed to protect the conductive circuit, and solder bumps are connected for connection to electronic components such as IC chips and motherboards.
  • a multilayer printed wiring board can be manufactured by forming (for example, refer to Patent Document 1).
  • the connection between the lower layer conductor circuit and the upper layer conductor circuit is a via conductor composed of an electroless plating film and an electroplating film on the electroless plating film. Done through. Therefore, an electroless plating film constituting the via conductor exists between the lower conductive circuit and the electrolytic plating film constituting the via conductor.
  • the lower conductor circuit is often composed of an electrolytic plating film or a metal foil. For this reason, different types of metal films are formed at portions where the lower conductor circuit and the upper conductor circuit are connected via via conductors. Specifically, for example, an electroless plating film is formed on the electroplating film, or an electroplating film is formed on the electroless plating film.
  • Such different kinds of metal films tend to have different crystal states even if they are made of the same metal.
  • the electroless plating between the lower conductive circuit and the electroless plating film constituting the via conductor or the via conductor after the heat cycle test is performed. In some cases, peeling occurred between the plating film and the electrolytic plating film formed thereon.
  • the present inventors have found that the above problem can be solved by directly connecting the electrolytic plating film constituting the via conductor on the exposed surface of the conductor circuit, and the multilayer printed wiring according to the present invention.
  • the board and its manufacturing method were completed.
  • the multilayer printed wiring board according to claim 1 A first interlayer resin insulation layer; A first conductor circuit formed on the first interlayer resin insulation layer; A second interlayer resin insulation layer formed on the first interlayer resin insulation layer and the first conductor circuit, and having an opening reaching the first conductor circuit; A second conductor circuit formed on the second interlayer resin insulation layer; A multilayer printed wiring board formed in the opening and comprising a via conductor connecting the first conductor circuit and the second conductor circuit, The via conductor is formed on the electroless plating film formed on the inner wall surface of the opening, the electroless plating film, and the exposed surface of the first conductor circuit exposed by the opening.
  • the second conductor circuit includes the electroless plating film and the electroplating film on the electroless plating film.
  • the first conductor circuit is connected to the via conductor without the electroless plating film, the electrical resistance between them is small and the electrical characteristics are excellent.
  • the via conductor is composed of an electroless plating film on the exposed surface of the conductor circuit and an electrolytic plating film thereon. In this invention, peeling between the conductor circuit and the via conductor hardly occurs, and the connection reliability between the conductor circuit and the via conductor is excellent.
  • the invention according to claim 2 is the invention according to claim 1,
  • the electrolytic plating film is copper.
  • the electrolytic plating film is copper having a low electric resistance, the electric characteristics are excellent.
  • the invention according to claim 3 is the invention according to claim 2,
  • the electroless plating film is nickel.
  • the electrolytic plating film is made of copper and the electroless plating film is made of nickel, a fine conductor circuit having a small L / S (line / space) can be formed. The reason for this will be described later.
  • the method for producing a multilayer printed wiring board according to claim 4, Forming a first interlayer resin insulation layer; Forming a first conductor circuit on the first interlayer resin insulation layer; Forming a second interlayer resin insulation layer on the first interlayer resin insulation layer and the first conductor circuit; Forming an opening reaching the first conductor circuit in the second interlayer resin insulation layer; Forming a second conductor circuit on the second interlayer resin insulation layer; A method of manufacturing a multilayer printed wiring board comprising a step of forming a via conductor connecting the first conductor circuit and the second conductor circuit in the opening,
  • the second conductor circuit includes an electroless plating film and an electrolytic plating film on the electroless plating film,
  • the via conductor is formed on the electroless plating film formed on the inner wall surface of the opening, the electroless plating film, and the exposed surface of the first conductor circuit exposed by the opening. It is characterized by comprising an electroplating film.
  • the multilayer printed wiring board manufactured according to the invention described in claim 4 since the electrolytic plating film is directly formed on the exposed surface of the first conductor circuit, the multilayer printed wiring board manufactured according to the invention described in claim 4 The one conductor circuit and the via conductor are connected without interposing the electroless plating film, the electric resistance between them is small, and the electric characteristics are excellent.
  • the via conductor includes an electroless plating film on the exposed surface of the conductor circuit and an electrolytic plating thereon. Compared to the case of being formed of a film, peeling between the conductor circuit and the via conductor is less likely to occur, and the connection reliability between the conductor circuit and the via conductor is excellent.
  • the invention according to claim 5 is the invention according to claim 4,
  • the step of forming the second conductor circuit and the step of forming the via conductor are performed simultaneously.
  • the second conductor circuit and the via conductor can be efficiently formed. Further, by forming both at the same time, it becomes difficult for a connection failure between them to occur.
  • the invention according to claim 6 is the invention according to claim 5,
  • the step of forming the second conductor circuit and the step of forming the via conductor include Forming the electroless plating film on the surface of the second interlayer resin insulation layer and the inner wall surface of the opening; Forming the electrolytic plating film on the electroless plating film and on the exposed surface of the first conductor circuit.
  • the electrolytic plating film constituting the via conductor can be directly formed on the first conductor circuit.
  • the invention according to claim 7 is the invention according to any one of claims 4 to 6, An electrolytic plating film to be formed on the exposed surface of the first conductor circuit is formed using the first conductor circuit as a seed layer. In the invention according to claim 7, since the electrolytic plating film is formed using the first conductor circuit as a seed layer, the electrolytic plating film can be reliably formed on the exposed surface of the first conductor circuit. .
  • the invention according to claim 8 is the invention according to claim 5,
  • the step of forming the second conductor circuit and the step of forming the via conductor include Forming a plating resist on the electroless plating film after forming the electroless plating film; Forming an electrolytic plating film on the electroless plating film of the plating resist non-forming portion and on the exposed surface of the first conductor circuit; Removing the plating resist; And a step of removing the electroless plating film exposed by peeling the plating resist.
  • the invention according to claim 9 is the invention according to claim 8,
  • the electroless plating film is removed by etching using an etchant. According to invention of Claim 9, an unnecessary electroless-plated film can be removed reliably.
  • the invention according to claim 10 is the invention according to claim 9,
  • the electrolytic plating film is not substantially etched by the etching solution.
  • the invention according to claim 10 is particularly suitable for forming a fine conductor circuit because the electrolytic plating film is not substantially etched by the etching solution.
  • FIG. 1A is a cross-sectional view schematically showing a multilayer printed wiring board according to the first embodiment
  • FIG. 1B is a partially enlarged cross-sectional view showing a region a of the multilayer printed wiring board shown in FIG. 1A.
  • the conductor circuit 14 and the interlayer resin insulating layer 12 are formed on both surfaces of the insulating substrate 11, and the space between the conductor circuits 14 sandwiching the insulating substrate 11 is The through-hole conductors 19 are electrically connected.
  • the upper surface of the conductor circuit 14 is composed of an electrolytic copper plating film.
  • the conductor circuits 14 sandwiching the interlayer resin insulation layer 12 are electrically connected via via conductors 17.
  • the through hole conductor 19 is filled with a resin filler 20. And the conductor circuit 114 which covers the filling material 20 is formed. A solder resist layer 24 is formed on the outermost layer, and solder bumps 27 are formed on the outermost conductor circuit 14 via solder pads 26.
  • the conductor circuit (first conductor circuit) 14 on the interlayer resin insulation layer 12 includes an electroless copper plating film 22 and an electrolytic copper plating film 23 on the electroless copper plating film 22.
  • the via conductor 17 is formed on the upper part.
  • the via conductor 17 is made of an electroless copper plating film 22 at a portion in contact with the inner wall surface of the opening 16 formed in the interlayer resin insulation layer 12, and the other portion is made of an electrolytic copper plating film 23. Therefore, an electrolytic copper plating film of the via conductor 17 is formed on the upper surface (exposed surface exposed by the opening 16) 14a of the conductor circuit 14. That is, the electrolytic plating film of the via conductor 17 is directly formed on the conductor circuit 14.
  • the electrolytic copper plating film 23 of the conductor circuit 14 and the electrolytic copper plating film of the via conductor 17 are directly connected. Therefore, the conductor circuit 14 and the via conductor 17 are connected by the electrolytic copper plating films 23.
  • the electrolytic copper plating film 23 is formed on the conductor circuit 14 (first conductor circuit) without the electroless copper plating film 22 constituting a part of the via conductor 17. . Therefore, the electrical resistance between the first conductor circuit and the via conductor is reduced, and the electrical characteristics are excellent. Further, an electrolytic copper plating film 23 constituting the via conductor 17 is formed on the exposed surface 14a (surface exposed by the opening formed in the interlayer resin insulating layer) of the conductor circuit 14 (first conductor circuit).
  • the electrolytic plating film is preferably copper.
  • a conductor circuit is formed on the insulating substrate.
  • the insulating substrate is not particularly limited.
  • a substrate having glass fibers as a core material such as a glass epoxy substrate, a bismaleimide-triazine (BT) resin substrate, a copper clad laminate, a resin substrate such as an RCC substrate, aluminum nitride
  • BT bismaleimide-triazine
  • a resin substrate such as an RCC substrate
  • aluminum nitride examples thereof include a ceramic substrate such as a substrate, a silicon substrate, and the like.
  • the conductor circuit is formed by, for example, performing an electroless copper plating process on the surface of the insulating substrate, subsequently forming a solid conductor layer made of copper by performing an electrolytic copper plating process, and then performing an etching process. Can be formed.
  • an electrolytic copper plating film By forming such an electrolytic copper plating film, the upper surface of the conductor circuit formed on the insulating substrate is constituted by the electrolytic copper plating film. Therefore, when the via conductor is formed through the subsequent electrolytic copper plating treatment, the conductor circuit and the via conductor are connected to each other by the electrolytic copper plating film, and the electrical characteristics between them are excellent. . You may form the through-hole conductor for connecting between the conductor circuits which pinched
  • an interlayer resin insulating layer is formed on the insulating substrate on which the conductor circuit is formed, and the conductor circuit on the insulating substrate (first conductor circuit) is reached on the interlayer resin insulating layer.
  • An opening to be formed is formed.
  • the interlayer resin insulation layer is formed using a thermosetting resin, a photosensitive resin, a resin in which a photosensitive group is added to a part of the thermosetting resin, or a resin composite including these and a thermoplastic resin. do it. Specifically, first, an uncured resin is applied by a roll coater, a curtain coater, or the like, or a resin film is formed by thermocompression bonding.
  • an electroless copper plating film is formed on the surface of the interlayer resin insulation layer (including the wall surface of the opening). At this time, an electroless copper plating film is not formed on the exposed surface of the conductor circuit on the insulating substrate exposed by the opening. Specifically, first, the palladium catalyst adheres to the surface of the interlayer resin insulation layer (including the wall surface of the opening), and the palladium catalyst does not adhere to the exposed surface of the conductor circuit. Is granted. Thereafter, an electroless copper plating process that does not have autocatalytic properties with respect to copper is performed to form an electroless copper plating film only in a predetermined portion.
  • the following method can be used.
  • a palladium complex is attached to the exposed surface of the conductor circuit (copper) and the surface of the interlayer resin insulating layer (including the wall surface of the opening).
  • the surface of the exposed portion of the conductor circuit (copper) is dissolved by etching with a copper chloride etchant. Thereby, the palladium complex is removed from the exposed surface of the conductor circuit.
  • the palladium complex on the surface of the interlayer resin insulation layer (including the wall surface of the opening) remains attached.
  • C Thereafter, the palladium complex is immersed in a reducing agent solution of palladium to reduce the palladium complex to metallic palladium.
  • the palladium catalyst may be selectively attached by the following method.
  • a copper oxide (CuO) film is formed on an exposed surface of the conductor circuit made of copper by using an oxidizing agent such as an aqueous solution of H 2 O 2 or an aqueous solution of NaClO 3 .
  • a palladium catalyst is deposited on the surface of the interlayer resin insulation layer (including the wall surface of the opening) and on the exposed surface of the conductor circuit.
  • C Thereafter, the copper oxide film is dissolved and removed using an acid such as dilute sulfuric acid.
  • the palladium catalyst attached to the copper oxide film is also removed at the same time.
  • a palladium catalyst can be selectively attached to the surface of the interlayer resin insulation layer (including the wall surface of the opening).
  • a palladium catalyst is formed on an electroless plating solution containing a reducing agent (eg, hypophosphorous acid) that does not have autocatalytic properties for copper. Immerse the finished substrate. Thereby, an electroless plating film is formed on the surface of the interlayer resin insulating layer (including the wall surface of the opening), and the electroless plating film is not formed on the exposed surface of the conductor circuit exposed by the opening.
  • a reducing agent eg, hypophosphorous acid
  • the thickness of the electroless copper plating film is preferably 0.1 to 0.3 ⁇ m. Further, the surface of the interlayer resin insulating layer may be roughened before the formation of the electroless copper plating film.
  • a plating resist is formed on the electroless copper plating film.
  • the plating resist is formed in a portion where the conductor circuit and the via conductor are not formed.
  • the method for forming the plating resist is not particularly limited.
  • the plating resist can be formed by applying a photosensitive dry film and then performing an exposure development process.
  • an electrolytic copper plating film is formed on the plating resist non-formation part on the electroless copper plating film and the exposed surface of the conductor circuit.
  • the electroless copper plating film is not formed on the exposed surface of the first conductor circuit. Therefore, by performing the step (5), the first conductor circuit and the via conductor are connected without interposing the electroless copper plating film. That is, the electrolytic plating film constituting the via conductor is directly formed on the electrolytic plating film constituting the first conductor circuit.
  • the electrolytic copper plating film may be formed by a conventionally known method.
  • the thickness of the electrolytic copper plating layer is preferably 5 to 20 ⁇ m.
  • the electroless copper plating film and the exposed surface of the conductor circuit function as a seed layer in electrolytic plating.
  • the electroplating film is formed using the first conductor circuit as a seed layer, the electroplating film can be reliably formed on the exposed surface of the first conductor circuit.
  • the plating resist on the interlayer resin insulation layer is peeled off.
  • the plating resist may be removed using, for example, an alkaline aqueous solution.
  • the exposed electroless copper plating film is removed by removing the plating resist.
  • a printed wiring board having a fine conductor circuit formation and high via connection reliability can be manufactured.
  • the removal of the electroless copper plating film may be performed using, for example, an etching solution. If etching is performed using an etching solution, an unnecessary electroless copper plating film (an electroless copper plating film existing between the electroplating films) can be reliably removed.
  • a conductor circuit (second conductor circuit) is formed on the interlayer resin insulation layer, and at the same time, the conductor circuit and the conductor circuit on the insulating substrate are formed. Can be formed. Therefore, the conductor circuit (second conductor circuit) and the via conductor can be efficiently formed. In addition, poor connection between the second conductor circuit and the via conductor is less likely to occur.
  • the connection between the conductor circuit on the insulating substrate and the via conductor is the connection between the electrolytic copper plating films.
  • the insulating substrate corresponds to the first interlayer resin insulating layer described in claims 1 and 4. Moreover, after forming the said conductor circuit, you may remove the catalyst on an interlayer resin insulation layer using an acid or an oxidizing agent as needed. This is because deterioration of electrical characteristics can be prevented.
  • the steps (2) to (7) may be repeated to further form the interlayer resin insulation layer and the conductor circuit, and simultaneously form the via conductor.
  • the interlayer resin insulating layer formed in the step (2) corresponds to the first interlayer resin insulating layer described in claim 1 or 4, and the above (8 The interlayer resin insulating layer formed in the step (2) corresponds to the second interlayer resin insulating layer described in claim 1 or claim 4.
  • solder resist layer and solder bumps are formed to complete a multilayer printed wiring board.
  • a solder resist composition is applied onto the interlayer resin insulation layer including the uppermost conductor circuit by a roll coater method, etc., and subjected to opening treatment by laser treatment, exposure, development treatment, etc., and curing treatment is performed. By performing, a solder resist layer is formed. Thereafter, solder bumps are formed in the opening portions of the solder resist layer, thereby completing the production of the printed wiring board.
  • the effects of the multilayer printed wiring board and the method for manufacturing the multilayer printed wiring board according to the first embodiment will be listed.
  • the connection portion between the conductor circuit and the via conductor connected to the conductor circuit is made of an electrolytic copper plating film, the continuity of the crystal lattice is increased between the two. .
  • the connection strength between the conductor circuit and the via conductor is increased, the multilayer printed wiring board is excellent in connection reliability, in particular, connection reliability after a temperature cycle test.
  • Example 1 Although an Example is hung up below and 1st embodiment is described in more detail, embodiment of this invention is not limited only to these Examples.
  • Example 1
  • resin filler 100 parts by weight of bisphenol F type epoxy monomer (manufactured by Yuka Shell Co., Ltd., molecular weight: 310, YL983U), the average particle diameter of 1.6 ⁇ m with the surface coated with a silane coupling agent, the diameter of the largest particle In a container, 170 parts by weight of SiO 2 spherical particles having a particle size of 15 ⁇ m or less (manufactured by Adtech, CRS 1101-CE) and 1.5 parts by weight of a leveling agent (Perenol S4, manufactured by San Nopco) are stirred and mixed. A resin filler of 45 to 49 Pa ⁇ s at ⁇ 1 ° C. was prepared. As a curing agent, 6.5 parts by weight of an imidazole curing agent (manufactured by Shikoku Kasei Co., Ltd., 2E4MZ-CN) was used.
  • an imidazole curing agent manufactured by Shikoku Kasei Co., Ltd.,
  • FIG. 2A a copper-clad laminate in which 18 ⁇ m copper foil 18 is laminated on both sides of an insulating substrate 11 made of glass epoxy resin having a thickness of 0.8 mm is started. Material was used. Next, as shown in FIG. 2B, this copper-clad laminate was drilled to form through holes 29 for through-hole conductors.
  • an electroless copper plating treatment and an electrolytic copper plating treatment are performed on the copper foil 18 and the inner wall surface of the through-hole 29, and the electroless copper plating film and the electroless copper plating film are formed.
  • a conductor layer including a through-hole conductor 19 made of an electrolytic copper plating film was formed.
  • the substrate on which the through-hole conductor 19 is formed is washed with water and dried, and then an aqueous solution containing NaOH (10 g / l), NaClO 2 (40 g / l), and Na 3 PO 4 (6 g / l) is used.
  • a blackening treatment using a blackening bath (oxidation bath) and a reduction treatment using an aqueous solution containing NaOH (10 g / l) and NaBH 4 (6 g / l) as a reducing bath are performed to roughen the surface of the through-hole conductor 19.
  • a chemical surface (not shown) was used.
  • the resin filler described in A above was filled in the through-hole conductor 19 by the following method. That is, first, a resin filler was pushed into the through-hole conductor 19 using a squeegee and then dried at 100 ° C. for 20 minutes. Subsequently, one side of the substrate is polished by belt sander polishing using # 600 belt polishing paper (manufactured by Sankyori Chemical Co., Ltd.) so that the resin filler 20 does not remain on the electrolytic copper plating film, and then the belt Buffing was performed to remove scratches caused by sanding. Such a series of polishing was similarly performed on the other surface of the substrate. Subsequently, the heat processing of 100 degreeC for 1 hour, 120 degreeC for 3 hours, 150 degreeC for 1 hour, and 180 degreeC for 7 hours was performed, and the resin filler layer 20 was formed.
  • the substrate is washed with water, acid degreased, soft-etched, and then an etching solution is sprayed on both sides of the substrate to spray the conductor circuit 14 (including the conductor circuit 114 covering the resin filler 20).
  • the entire surface of the conductor circuit 14 was roughened (not shown) by etching the surface.
  • an etching solution an etching solution containing 10 parts by weight of imidazole copper (II) complex, 7 parts by weight of glycolic acid, and 5 parts by weight of potassium chloride (MEC Etch Bond, manufactured by MEC) was used.
  • an interlayer resin insulation layer 12 is formed on the insulating substrate 11 and the conductor circuit 14 by using an interlayer resin insulation layer forming film (ABF made by Ajinomoto Co., Inc.). did. That is, a resin film for an interlayer resin insulation layer was laminated on a substrate under conditions of a degree of vacuum of 65 Pa, a pressure of 0.4 MPa, a temperature of 80 ° C., and a time of 60 seconds, and then thermally cured at 170 ° C. for 30 minutes.
  • ABSF interlayer resin insulation layer forming film
  • an opening 16 having a diameter of 80 ⁇ m was formed in the interlayer resin insulation layer 12 by a CO 2 gas laser. As a result, a part of the upper surface (exposed surface 14 a) of the conductor circuit 14 was exposed by the opening 16.
  • the substrate on which the opening 16 is formed is dipped in an 80 ° C. solution containing 60 g / l permanganic acid for 10 minutes, and the surface of the interlayer resin insulation layer 12 including the inner wall surface of the opening 16 is covered. A roughened surface (not shown) was used.
  • a palladium catalyst (not shown) was applied to the surface of the interlayer resin insulation layer 12 (including the inner wall surface of the opening 16).
  • the above substrate is subjected to alkaline degreasing (HCF-45, manufactured by Atotech), hot water washing, water washing, acidic degreasing (HCF-45, manufactured by Atotech), hot water washing, water washing, 10 VOL% sulfuric acid treatment, water washing, Pre-dip (Pre-dip Neo Gantt, manufactured by Atotech), complex attachment (Activator Neo Gantt 834 Conk, manufactured by Atotech), and water washing were processed in this order to attach the palladium complex to the entire surface.
  • the palladium complex of the exposed surface 14a of the conductor circuit exposed by the opening part 16 was removed by being immersed in a copper chloride etching solution (copper chloride, hydrochloric acid). Thereafter, the Pd complex adhering to the surface of the interlayer resin insulating layer 12 (including the inner wall surface of the opening 16) was made palladium metal by an activation treatment (reducer Neogant WA).
  • the substrate on which the plating resist 13 is formed is washed and degreased with water at 50 ° C., washed with water at 25 ° C., and further washed with sulfuric acid. Electrolytic plating was performed under the conditions, and an electrolytic copper plating film 23 having a thickness of 20 ⁇ m was formed in a portion where the plating resist 13 was not formed.
  • the plating resist 13 was peeled and removed.
  • the electroless copper plating film 22 between the adjacent electrolytic copper plating films was dissolved and removed by etching with a mixed solution of sulfuric acid and hydrogen peroxide.
  • a conductor circuit 14 having a thickness of 18 ⁇ m composed of the electroless copper plating film 22 and the electrolytic copper plating film 23 on the electroless copper plating film and a via conductor 17 mainly composed of the electrolytic copper plating film 23 were formed (See FIG. 4A).
  • the via conductor 17 has a structure as shown in FIG. 1B.
  • the exposed surface 14a is made of the electrolytic copper plating film of the first conductor circuit, and the electrolytic copper plating film of the via conductor 17 is formed on the electrolytic copper plating film.
  • An electroless copper plating film is formed on the inner wall surface of the opening of interlayer resin insulation layer 12, and the electrolytic copper plating film is formed on the electroless copper plating film.
  • the minimum value of L / S (line / space) of the conductor circuit 14 was set to 10 ⁇ m / 10 ⁇ m.
  • the conductor circuit 14 and the via conductor 17 were formed by using a method similar to the method used in the steps (9) to (14) (see FIGS. 4C to 5A).
  • a commercially available solder resist composition is applied in a thickness of 30 ⁇ m on the outermost interlayer resin insulation layer 12 and the conductor circuit 14, and 70 minutes at 70 ° C. for 70 minutes.
  • a drying treatment was performed at 30 ° C. for 30 minutes to form a layer 24 ′ of a commercially available solder resist composition.
  • solder resist composition layer 24 ′ is cured by heating at 80 ° C. for 1 hour, 100 ° C. for 1 hour, 120 ° C. for 1 hour, and 150 ° C. for 3 hours to form solder bumps.
  • a solder resist layer 24 (20 ⁇ m thick) having an opening 28 was formed.
  • an electroless gold plating solution containing sodium hypophosphite (1.7 ⁇ 10 ⁇ 1 mol / l) at 80 ° C. for 7.5 minutes to form a thickness of 0 on the nickel plating layer.
  • a 0.03 ⁇ m gold plating layer was formed to form solder pads 26.
  • solder paste is printed in the solder bump forming openings 28 formed in the solder resist layer 24 and reflowed at 200 ° C. to form solder bumps 27, thereby completing the multilayer printed wiring board 10 ( See FIG. 5D).
  • the multilayer printed wiring board according to the second embodiment differs from the multilayer printed wiring board according to the first embodiment in the following points. That is, in the multilayer printed wiring board according to the first embodiment, the electroless plating film constituting the conductor circuit and the via conductor is an electroless copper plating film, whereas the multilayer printed wiring according to the second embodiment.
  • the plate is different in that the electroless plating film is an electroless nickel plating film. That is, the electroless plating film is formed on the inner wall surface of the opening of the interlayer resin insulating layer constituting the via conductor, the conductor circuit comprising an electroless nickel plating film and an electrolytic copper plating film on the electroless nickel plating film Is an electroless nickel plating film.
  • the multilayer printed wiring board according to the second embodiment is the same as the multilayer printed wiring board according to the first embodiment except that an electroless nickel plating film is provided instead of the electroless copper plating film.
  • the above-described configuration of the conductor circuit and via conductor of the multilayer printed wiring board according to the second embodiment is suitable for forming a fine conductor circuit. This is because, when forming an independent conductor circuit or via conductor in the manufacturing process of a multilayer printed wiring board, nickel is etched to remove unnecessary electroless nickel plating film, but copper is not substantially etched. This is because a selective etching solution can be used. Then, since the electrolytic copper plating film is not removed by etching, the shape of the electrolytic copper plating film can be made fine in advance. That is, it is suitable for forming a fine conductor circuit.
  • the manufacturing method of the multilayer printed wiring board which concerns on 2nd embodiment is demonstrated in order of a process.
  • an electroless nickel plating film is formed on the surface of the interlayer resin insulation layer (including the wall surface of the opening).
  • an electroless nickel plating film is not formed on the exposed surface of the conductor circuit on the insulating substrate exposed by the opening.
  • palladium catalyst palladium metal adheres to the surface of the interlayer resin insulation layer (including the wall surface of the opening), and no palladium catalyst adheres to the exposed surface of the conductor circuit. Is added with the palladium catalyst.
  • an electroless nickel plating film is formed only on a predetermined portion by performing an electroless nickel plating process.
  • the same method as in the first embodiment can be used.
  • the thickness of the electroless nickel plating film is preferably 0.1 to 2.0 ⁇ m. Further, the surface of the interlayer resin insulating layer may be roughened before the formation of the electroless nickel plating film.
  • a plating resist is formed on the electroless nickel plating film by using the same method as the steps (4) and (5) of the method for manufacturing the multilayer printed wiring board according to the first embodiment. Further, an electrolytic copper plating layer is formed on the plating resist non-formation portion on the electroless nickel plating film and the exposed surface of the conductor circuit. Thereafter, the plating resist is stripped using the same method as the step (6) of the method for manufacturing the multilayer printed wiring board according to the first embodiment.
  • the exposed electroless nickel plating film is removed by removing the plating resist.
  • an etching solution capable of selectively etching nickel By performing etching using such an etching solution, it becomes possible to selectively etch only the unnecessary electroless nickel plating film exposed by removing the plating resist.
  • the electrolytic copper plating film is not substantially etched with respect to such an etchant, it is not necessary to previously form the electrolytic copper plating film larger than the design value of the conductor circuit. As a result, even a fine conductor circuit can be suitably formed.
  • the etching solution that can selectively etch nickel include Mekku Remover NH-1865 manufactured by MEC.
  • a conductor circuit is formed on the interlayer resin insulation layer, and at the same time, a via conductor that connects the conductor circuit and the conductor circuit on the insulating substrate is formed. can do.
  • the connection between the conductor circuit on the insulating substrate and the via conductor is the connection between the electrolytic copper plating films.
  • the insulating substrate corresponds to the first interlayer resin insulating layer described in claims 1 and 4.
  • step (2) of the method for manufacturing a multilayer printed wiring board according to the first embodiment and the steps (2) to (4) above interlayer resin insulation While forming layers and conductor circuits, via conductors may be formed simultaneously.
  • the interlayer resin insulation layer to be formed corresponds to the second interlayer resin insulation layer described in claim 1 or claim 4.
  • step (9) of the method for producing a multilayer printed wiring board according to the first embodiment a solder resist layer and a solder bump are formed, and the multilayer printed wiring board is manufactured. Complete.
  • the multilayer printed wiring board and the method for manufacturing the multilayer printed wiring board according to the second embodiment have the same effects as the first embodiment. Further, in the method for manufacturing a multilayer printed wiring board according to the second embodiment, the removal of the electroless nickel plating film between the electrolytic plating films can be performed using an etching solution capable of selectively etching nickel. Therefore, a fine conductor circuit can be suitably formed.
  • Example 2 B. of Example 1
  • an electroless nickel plating film is formed by the following method.
  • an etching solution capable of selectively etching nickel (NP1865, manufactured by MEC) was used. Produced a multilayer printed wiring board in the same manner as in Example 1.
  • the electroless nickel plating film is formed by immersing a substrate on which a palladium catalyst is adhered for 4 minutes in a 90 ° C. nickel boron bath (KLP VER1, manufactured by Uemura Kogyo Co., Ltd.). A film was formed.
  • the minimum value of L / S (line / space) of the conductor circuit 14 was set to 8 ⁇ m / 8 ⁇ m.
  • an electroless copper plating film or an electroless nickel plating film is employed as the electroless plating film formed on the surface of the interlayer resin insulation layer (including the inner wall surface of the opening 16).
  • the electroless plating film is not limited to a plating film made of copper or nickel, and may be an electroless plating film made of copper, nickel, palladium, cobalt, tin, or an alloy thereof. I just need it.
  • the electroless plating film is preferably an electroless copper plating film or an electroless nickel film.
  • the electroless plating film is an electroless nickel plating film and the electrolytic plating film is an electrolytic copper plating film, as described above, by selecting an etching solution for selectively etching nickel, A fine conductor circuit having a small L / S (line / space) can be particularly preferably produced.
  • etching solution for selectively etching the electroless palladium plating film include Melstrip PD-3110 manufactured by Meltex, Inc., and the etching solution for selectively etching the electroless tin plating film. Examples thereof include Mekku Mover S-1818A / S-1818B manufactured by MEC.
  • thermosetting resin examples include an epoxy resin, a phenol resin, a polyimide resin, a polyester resin, a bismaleimide resin, a polyolefin resin, and a polyphenylene ether resin. , Polyphenylene resin, fluorine resin and the like.
  • photosensitive resin examples include acrylic resins.
  • a laser used for the said laser process As a laser used for the said laser process, a carbon dioxide laser, an ultraviolet laser, an excimer laser etc. are mentioned, for example. In addition, after forming an opening part, you may perform a desmear process as needed.
  • the number of repetitions is not particularly limited, and may be two or more.
  • the total number of interlayer resin insulating layers on both sides of the insulating substrate is the same, but the total number is different on both sides of the insulating substrate. Good.
  • FIG. 1A is a cross-sectional view schematically showing a multilayer printed wiring board according to the first embodiment
  • FIG. 1B is a partially enlarged cross-sectional view showing a region a of the multilayer printed wiring board shown in FIG. 1A
  • 2A to 2G are cross-sectional views schematically showing a part of the manufacturing process in the method for manufacturing a multilayer printed wiring board according to the first embodiment
  • 3A to 3D are cross-sectional views schematically showing a part of the manufacturing process in the method for manufacturing a multilayer printed wiring board according to the first embodiment
  • 4A to 4D are cross-sectional views schematically showing a part of the manufacturing process in the method for manufacturing a multilayer printed wiring board according to the first embodiment
  • 5A to 5D are cross-sectional views schematically showing a part of the manufacturing process in the method for manufacturing a multilayer printed wiring board according to the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

本発明は、導体回路とビア導体との接続性に優れた多層プリント配線板を提供することを目的とするものであり、本発明の多層プリント配線板は、第1の層間樹脂絶縁層と、上記第1の層間樹脂絶縁層上に形成されている第1の導体回路と、上記第1の層間樹脂絶縁層と上記第1の導体回路との上に形成されていて、上記第1の導体回路に到達する開口部を有する第2の層間樹脂絶縁層と、上記第2の層間樹脂絶縁層上に形成されている第2の導体回路と、上記開口部内に形成されていて、上記第1の導体回路と上記第2の導体回路とを接続するビア導体とからなる多層プリント配線板であって、上記ビア導体は、上記開口部の内壁面に形成されている無電解めっき膜と、上記無電解めっき膜上及び上記開口部によって露出される上記第1の導体回路の露出面上に形成されている電解めっき膜とからなり、上記第2の導体回路は、上記無電解めっき膜と上記無電解めっき膜上の上記電解めっき膜とからなることを特徴とする。

Description

多層プリント配線板、及び、多層プリント配線板の製造方法
本発明は、多層プリント配線板、及び、多層プリント配線板の製造方法に関する。
多層プリント配線板としては、コアと呼ばれる樹脂基板の上に、導体回路と層間樹脂絶縁層とが交互に積層された多層プリント配線板が提案されている。そして、多層プリント配線板の層間樹脂絶縁層を介した導体回路間は、ビア導体により接続されている。
このような多層プリント配線板は、例えば、下記の方法により製造することができる。
即ち、樹脂基板の両面に銅箔が貼り付けられた銅張積層板を出発材料とし、まず、樹脂基板上に下層の導体回路を形成する。次に、下層の導体回路が形成された樹脂基板上に層間樹脂絶縁層を形成し、さらに、樹脂基板上の下層の導体回路が露出するように、層間樹脂絶縁層に開口部を形成する。
その後、層間樹脂絶縁層上及び開口部内の露出面に無電解めっき膜を形成し、この無電解めっき膜上にめっきレジストを形成した後、電解めっきにより厚付けを行い、めっきレジスト剥離後にエッチングを行うことにより、層間樹脂絶縁層上に上層の導体回路を形成する。樹脂基板上の下層の導体回路と層間樹脂絶縁層上の上層の導体回路は、ビア導体により接続される。
さらに、層間樹脂絶縁層及び上層の導体回路の形成を繰り返した後、最後に導体回路を保護するためのソルダーレジスト層を形成し、ICチップ等の電子部品やマザーボード等との接続のため半田バンプを形成することにより、多層プリント配線板を製造することができる(例えば、特許文献1参照)。
2005-347391号公報
上述したような方法で製造された多層プリント配線板では、下層の導体回路と上層の導体回路との接続が、無電解めっき膜とこの無電解めっき膜上の電解めっき膜とからなるビア導体を介して行われる。
それ故、下層の導体回路とビア導体を構成している電解めっき膜との間には、ビア導体を構成している無電解めっき膜が存在することとなる。
そして、下層の導体回路は、電解めっき膜や金属箔で構成されていることが多い。そのため、下層の導体回路と上層の導体回路間とをビア導体を介して接続した部分には、異なる種類の金属膜が形成されていることとなる。具体的には、例えば、電解めっき膜上に無電解めっき膜が形成されたり、無電解めっき膜上に電解めっき膜が形成されたりしている。
このような異なる種類の金属膜は、たとえそれらが同一の金属からなるものであっても、それぞれの結晶状態が異なりやすい。
そして、層間樹脂絶縁層に形成される開口部の径が小さくなってくると、ヒートサイクル試験後に下層の導体回路とビア導体を構成する無電解めっき膜との間やビア導体を構成する無電解めっき膜とその上に形成されている電解めっき膜との間で剥離が発生する場合があった。
本発明者らは鋭意検討を行った結果、導体回路の露出面上にビア導体を構成する電解めっき膜を直接接続することにより上記課題を解決することができることを見出し、本発明の多層プリント配線板及びその製造方法を完成した。
即ち、請求項1に記載の多層プリント配線板は、
第1の層間樹脂絶縁層と、
上記第1の層間樹脂絶縁層上に形成されている第1の導体回路と、
上記第1の層間樹脂絶縁層と上記第1の導体回路との上に形成されていて、上記第1の導体回路に到達する開口部を有する第2の層間樹脂絶縁層と、
上記第2の層間樹脂絶縁層上に形成されている第2の導体回路と、
上記開口部内に形成されていて、上記第1の導体回路と上記第2の導体回路とを接続するビア導体とからなる多層プリント配線板であって、
上記ビア導体は、上記開口部の内壁面に形成されている無電解めっき膜と、上記無電解めっき膜上及び上記開口部によって露出される上記第1の導体回路の露出面上に形成されている電解めっき膜とからなり、
上記第2の導体回路は、上記無電解めっき膜と上記無電解めっき膜上の上記電解めっき膜とからなることを特徴とする。
請求項1に記載の発明では、第1の導体回路が、無電解めっき膜を介さずにビア導体と接続されているため、両者の間の電気抵抗が小さく、電気特性に優れる。
また、従来の多層プリント配線板のように、ビア導体が導体回路の露出面上の無電解めっき膜と、その上の電解めっき膜とから構成されている場合に比べて、請求項1に記載の発明では、導体回路とビア導体との間での剥離が発生しにくく、導体回路とビア導体との接続信頼性に優れる。
請求項2に記載の発明は、請求項1に記載の発明において、
上記電解めっき膜が銅である。
請求項2に記載の発明では、上記電解めっき膜が、電気抵抗の低い銅であるため、電気特性に優れる。
請求項3に記載の発明は、請求項2に記載の発明において、
上記無電解めっき膜がニッケルである。
請求項3に記載の発明では、上記電解めっき膜が銅からなり、上記無電解めっき膜がニッケルからなるため、L/S(ライン/スペース)の小さい微細な導体回路を形成することができる。この理由については後述する。
請求項4に記載の多層プリント配線板の製造方法は、
第1の層間樹脂絶縁層を形成する工程と、
上記第1の層間樹脂絶縁層上に第1の導体回路を形成する工程と、
上記第1の層間樹脂絶縁層と上記第1の導体回路との上に、第2の層間樹脂絶縁層を形成する工程と、
上記第2の層間樹脂絶縁層に、上記第1の導体回路に到達する開口部を形成する工程と、
上記第2の層間樹脂絶縁層上に第2の導体回路を形成する工程と、
上記開口部に、上記第1の導体回路と上記第2の導体回路とを接続するビア導体を形成する工程とからなる多層プリント配線板の製造方法であって、
上記第2の導体回路は、無電解めっき膜と上記無電解めっき膜上の電解めっき膜とからなり、
上記ビア導体は、上記開口部の内壁面に形成されている上記無電解めっき膜と、上記無電解めっき膜上及び上記開口部によって、露出される上記第1の導体回路の露出面上に形成されている電解めっき膜とからなることを特徴とする。
請求項4に記載の発明によれば、第1の導体回路の露出面上に直接電解めっき膜を形成しているため、請求項4に記載の発明により製造された多層プリント配線板では、第1の導体回路とビア導体とが、無電解めっき膜を介さずに接続されていることとなり、両者の間の電気抵抗が小さく、電気特性に優れる。
また、請求項4に記載の発明により製造された多層プリント配線板では、従来の多層プリント配線板のように、ビア導体が、導体回路の露出面上の無電解めっき膜とその上の電解めっき膜とからなっている場合に比べて、導体回路とビア導体との間での剥離が発生しにくく、導体回路とビア導体との接続信頼性に優れる。
請求項5に記載の発明は、請求項4に記載の発明において、
上記第2の導体回路を形成する工程と上記ビア導体を形成する工程とを同時に行う。
請求項5に記載の発明によれば、第2の導体回路とビア導体とを効率よく形成することができる。また、両者を同時に形成することにより、両者の接続不良が発生しにくくなる。
請求項6に記載の発明は、請求項5に記載の発明において、
上記第2の導体回路を形成する工程、及び、上記ビア導体を形成する工程が、
上記第2の層間樹脂絶縁層の表面及び上記開口部の内壁面に上記無電解めっき膜を形成する工程と、
上記無電解めっき膜上及び上記第1の導体回路の露出面上に上記電解めっき膜を形成する工程とを有する。
請求項6に記載の発明では、第1の導体回路上にビア導体を構成する電解めっき膜を直接形成できる。
請求項7に記載の発明は、請求項4~6のいずれかに記載の発明において、
上記第1の導体回路の露出面上に形成する電解めっき膜を、上記第1の導体回路をシード層として形成する。
請求項7に記載の発明では、第1の導体回路をシード層として電解めっき膜を形成しているため、上記第1の導体回路の露出面上に確実に電解めっき膜を形成することができる。
請求項8に記載の発明は、請求項5に記載の発明において、
上記第2の導体回路を形成する工程、及び、上記ビア導体を形成する工程が、
上記無電解めっき膜を形成した後、上記無電解めっき膜上にめっきレジストを形成する工程と、
上記めっきレジスト非形成部の無電解めっき膜上及び上記第1の導体回路の露出面上に電解めっき膜を形成する工程と、
上記めっきレジストを剥離する工程と、
上記めっきレジストを剥離することで露出した無電解めっき膜を除去する工程とを有する。
請求項8に記載の発明によれば、微細な導体回路形成とビア接続信頼性が高いプリント配線板を製造できる。
請求項9に記載の発明は、請求項8に記載の発明において、
上記無電解めっき膜の除去を、エッチング液を用いたエッチングにより行う。
請求項9に記載の発明によれば、不要な無電解めっき膜を確実に除去することができる。
請求項10に記載の発明は、請求項9に記載の発明において、
上記電解めっき膜が、上記エッチング液により実質的にエッチングされない。
請求項10に記載の発明では、上記電解めっき膜が、上記エッチング液により実質的にエッチングされないため、微細な導体回路を形成するのに特に適している。
請求項11に記載の発明は、請求項10に記載の発明において、
上記無電解めっき膜はニッケルからなり、上記電解めっき膜は銅からなる。
請求項11に記載の発明では、電解めっき膜を実質的にエッチングせず、無電解めっき膜を選択的にエッチングすることが容易である。
以下、本発明の実施形態を説明する。
(第一実施形態)
ここでは、第一実施形態に係る多層プリント配線板及びその製造方法を説明する。
図1Aは、第一実施形態に係る多層プリント配線板を模式的に示す断面図であり、図1Bは、図1Aに示した多層プリント配線板の領域aを示す部分拡大断面図である。
図1に示す第一実施形態の多層プリント配線板10では、絶縁性基板11の両面に導体回路14と層間樹脂絶縁層12とが形成され、絶縁性基板11を挟んだ導体回路14間は、スルーホール導体19により電気的に接続されている。ここで、導体回路14の上面は、電解銅めっき膜で構成されている。
層間樹脂絶縁層12を挟んだ導体回路14間は、ビア導体17を介して電気的に接続されている。
また、スルーホール導体19の内部には樹脂充填材20が充填されている。そして、充填充填材20を覆う導体回路114が形成されている。
最外層には、ソルダーレジスト層24が形成されており、最外層の導体回路14上には、半田パッド26を介して半田バンプ27が形成されている。
また、図1Bに示すように、層間樹脂絶縁層12上の導体回路(第1の導体回路)14は、無電解銅めっき膜22と無電解銅めっき膜22上の電解銅めっき膜23とからなり、その上部にビア導体17が形成されている。ここで、ビア導体17は、層間樹脂絶縁層12に形成された開口部16の内壁面と接する部分が無電解銅めっき膜22からなり、その他の部分が電解銅めっき膜23からなる。
従って、導体回路14の上面(開口部16によって露出されている露出面)14aには、ビア導体17の電解銅めっき膜が形成されている。つまり、導体回路14上に直接ビア導体17の電解めっき膜が形成されている。従って、導体回路14の電解銅めっき膜23と、ビア導体17の電解銅めっき膜とが直接接続されていることとなる。
従って、導体回路14とビア導体17とは電解銅めっき膜23同士で接続されていることとなる。
このように、導体回路14(第1の導体回路)上には、ビア導体17の一部を構成している無電解銅めっき膜22を介することなく、電解銅めっき膜23が形成されている。そのため、第1の導体回路とビア導体間の電気抵抗が小さくなり、電気特性に優れる。
また、導体回路14(第1の導体回路)の露出面14a(層間樹脂絶縁層に形成されている開口部によって露出された面)上にビア導体17を構成する電解銅めっき膜23が形成されるので、導体回路14(第1の導体回路)とビア導体17との間での剥離が発生しにくい。そのため、導体回路とビア導体との接続信頼性が向上する。
また、導体回路14とビア導体17とが電解銅めっき膜23同士で接続されているため、両者の接続強度も優れることとなる。ここで、銅は電気抵抗が低いので、電解めっき膜は銅が好ましい。
次に、第一実施形態に係る多層プリント配線板の製造方法を工程順に説明する。
(1)絶縁性基板を出発材料とし、まず、該絶縁性基板上に導体回路を形成する。
上記絶縁性基板としては特に限定されず、例えば、ガラスエポキシ基板等の心材としてガラス繊維を有する基板、ビスマレイミド-トリアジン(BT)樹脂基板、銅張積層板、RCC基板等の樹脂基板、窒化アルミニウム基板等のセラミック基板、シリコン基板等が挙げられる。
上記導体回路は、例えば、上記絶縁性基板の表面に無電解銅めっき処理を施し、続いて電解銅めっき処理を施す等により銅からなるベタの導体層を形成した後、エッチング処理を施すことにより形成することができる。
このような電解銅めっき膜を形成することにより、上記絶縁性基板上に形成する導体回路の上面が電解銅めっき膜で構成されることとなる。そのため、後工程の電解銅めっき処理を経てビア導体を形成した際に、導体回路とビア導体とが電解銅めっき膜同士で接続されることとなり、両者の間の電気特性が優れたものとなる。
上記絶縁性基板を挟んだ導体回路間を接続するためのスルーホール導体を形成してもよい。また、導体回路を形成した後には、必要に応じて、導体回路の表面をエッチング処理等により粗化面としてもよい。
(2)次に、導体回路を形成した絶縁性基板上に、層間樹脂絶縁層を形成するとともに、この層間樹脂絶縁層に、上記絶縁性基板上の導体回路(第1の導体回路)に到達する開口部を形成する。
上記層間樹脂絶縁層は、熱硬化性樹脂、感光性樹脂、熱硬化性樹脂の一部に感光性基が付与された樹脂や、これらと熱可塑性樹脂とを含む樹脂複合体等を用いて形成すればよい。
具体的には、まず、未硬化の樹脂をロールコータ、カーテンコータ等により塗布したり、樹脂フィルムを熱圧着したりすることにより樹脂層を形成する。その後、必要に応じて、硬化処理を施すとともに、レーザ処理や露光現像処理により上記開口部を形成することにより、上記開口部を有する層間樹脂絶縁層を形成する。
また、上記熱可塑性樹脂からなる樹脂層は、フィルム状に成形した樹脂成形体を熱圧着することにより形成すればよい。
(3)次に、上記層間樹脂絶縁層の表面(上記開口部の壁面を含む)に無電解銅めっき膜を形成する。
この際、上記開口部によって露出された上記絶縁性基板上の導体回路の露出面上には無電解銅めっき膜を形成しない。
具体的には、まず、上記層間樹脂絶縁層の表面(上記開口部の壁面を含む)にはパラジウム触媒が付着し、上記導体回路の露出面上にはパラジウム触媒が付着しない状態に上記パラジウム触媒を付与する。その後、銅に対して自己触媒性を有しない無電解銅めっき処理を行うことより、所定の部分にのみ無電解銅めっき膜を形成する。
上記パラジウム触媒を上記層間樹脂絶縁層の表面(上記開口部の壁面を含む)に選択的に付着させる方法としては、例えば、下記の方法を用いることができる。
(a)まず、上記導体回路(銅)の露出面及び上記層間樹脂絶縁層の表面(上記開口部の壁面を含む)にパラジウム錯体を付着させる。
(b)次に、塩化銅エッチング液により、導体回路(銅)の露出部の表面をエッチングにより溶解する。これにより、導体回路の露出面上からパラジウム錯体が除去される。上記層間樹脂絶縁層の表面(上記開口部の壁面を含む)のパラジウム錯体は付着したままである。
(c)その後、パラジウムの還元剤液に浸漬して、パラジウム錯体を金属パラジウムへ還元する。
また、下記の方法にて選択的にパラジウム触媒を付着させても良い。
即ち、(a)まず、銅からなる上記導体回路の露出面に、H水溶液やNaClO水溶液等の酸化剤を用いて、酸化銅(CuO)被膜を形成する。
(b)次に、上記層間樹脂絶縁層の表面(上記開口部の壁面を含む)、及び、上記導体回路の露出面上にパラジウム触媒を付着する。
(c)その後、希硫酸等の酸を用いて、上記酸化銅被膜を溶解除去する。ここでは、酸化銅被膜の溶解除去にともなって、上記酸化銅被膜に付着したパラジウム触媒も同時に除去されることとなる。
以上に説明した処理を行うことにより、上記層間樹脂絶縁層の表面(上記開口部の壁面を含む)に選択的にパラジウム触媒を付着させることができる。
また、これらの方法で、選択的にパラジウム触媒を付着させた後には、銅に対して自己触媒性を有しない還元剤(例えば次亜リン酸)を含む無電解めっき液に、パラジウム触媒を形成した基板を浸漬する。
これにより、層間樹脂絶縁層の表面(上記開口部の壁面を含む)に無電解めっき膜が形成され、開口部によって露出された導体回路の露出面上には無電解めっき膜は形成されない。
上記無電解銅めっき膜の厚さは、0.1~0.3μmが望ましい。
また、上記無電解銅めっき膜の形成前に、層間樹脂絶縁層の表面を粗化面としておいてもよい。
(4)次に、上記無電解銅めっき膜上にめっきレジストを形成する。
上記めっきレジストは、導体回路及びビア導体を形成しない部分に形成する。
上記めっきレジストを形成する方法は特に限定されず、例えば、感光性ドライフィルムを張り付けた後、露光現像処理を施すことにより形成することができる。
(5)次に、上記無電解銅めっき膜上のめっきレジスト非形成部及び上記導体回路の露出面上に電解銅めっき膜を形成する。上述した(3)の工程により、第1の導体回路の露出面上には、無電解銅めっき膜が形成されていない。そのため、(5)の工程を行うことで、第1の導体回路とビア導体は無電解銅めっき膜を介することなく接続されることとなる。つまり、第1の導体回路を構成する電解めっき膜上にビア導体を構成する電解めっき膜が直接形成されることとなる。
ここで、上記電解銅めっき膜の形成は、従来公知の方法により行えばよい。
また、上記電解銅めっき層の厚さは5~20μmが望ましい。
なお、この工程では、上記無電解銅めっき膜及び上記導体回路の露出面が、電解めっきにおけるシード層として機能することとなる。このように、第1の導体回路をシード層として電解めっき膜を形成しているので、第1の導体回路の露出面上に確実に電解めっき膜を形成することができる。
(6)その後、上記層間樹脂絶縁層上のめっきレジストを剥離する。
上記めっきレジストの剥離は、例えば、アルカリ水溶液等を用いて行えばよい。
(7)次に、上記めっきレジストを剥離することより露出した無電解銅めっき膜を除去する。このような製造方法によれば、微細な導体回路形成とビア接続信頼性が高いプリント配線板を製造できる。
ここで、上記無電解銅めっき膜の除去は、例えば、エッチング液を用いて行えばよい。エッチング液を用いたエッチングであれば、不要な無電解銅めっき膜(電解めっき膜間に存在する無電解銅めっき膜)を確実に除去することができる。
このような(3)~(7)の工程を行うことにより、層間樹脂絶縁層上に導体回路(第2の導体回路)を形成するとともに、同時にこの導体回路と絶縁性基板上の導体回路とを接続するビア導体を形成することができる。そのため、導体回路(第2の導体回路)とビア導体とを効率よく形成できる。また、第2の導体回路とビア導体との接続不良が発生しにくくなる。そして、絶縁性基板上の導体回路とビア導体との接続が電解銅めっき膜同士の接続となる。
なお、上記(1)~(7)の工程では、絶縁性基板が請求項1や請求項4に記載する第1の層間樹脂絶縁層に該当する。
また、上記導体回路を形成した後、必要に応じて、層間樹脂絶縁層上の触媒を酸や酸化剤を用いて除去してもよい。電気特性の低下を防止することができるからである。
(8)さらに、必要に応じて、上記(2)~(7)の工程を繰り返すことにより、層間樹脂絶縁層と導体回路とをさらに形成するとともに、同時にビア導体を形成してもよい。
なお、この(8)の工程を行う場合、上記(2)の工程で形成した層間樹脂絶縁層が請求項1や請求項4に記載する第1の層間樹脂絶縁層に該当し、上記(8)の工程で形成する層間樹脂絶縁層が、請求項1や請求項4に記載する第2の層間樹脂絶縁層に該当する。
(9)最後に、ソルダーレジスト層と半田バンプとの形成を行い、多層プリント配線板を完成する。
具体的には、最上層の導体回路を含む層間樹脂絶縁層上に、ロールコータ法等によりソルダーレジスト組成物を塗布し、レーザ処理、露光、現像処理等による開口処理を行い、硬化処理等を行うことにより、ソルダーレジスト層を形成する。その後、ソルダーレジスト層の開口部分に半田バンプを形成することによりプリント配線板の製造を終了する。
以下、第一実施形態に係る多層プリント配線板及び多層プリント配線板の製造方法の作用効果について列挙する。
本実施形態に係る多層プリント配線板では、導体回路とその導体回路に接続しているビア導体との接続部分が、電解銅めっき膜からなるため、両者の間で結晶格子の連続性が高くなる。その結果、導体回路とビア導体との間の接続強度が高くなるので、上記多層プリント配線板では、接続信頼性、特に、温度サイクル試験後の接続信頼性に優れる。
本実施形態に係る多層プリント配線板では、導体回路(第1の導体回路)とビア導体とが、無電解銅めっき膜を介することなく、電解銅めっき膜同士で接続されることとなるため、両者の間での電気抵抗は低くなる。従って、本実施形態に係る多層プリント配線板は電気特性に優れることとなる。
以下に実施例を掲げて、第一実施形態について、さらに詳しく説明するが、本発明の実施形態はこれら実施例のみに限定されるものではない。
(実施例1)
A.樹脂充填材の調製
ビスフェノールF型エポキシモノマー(油化シェル社製、分子量:310、YL983U)100重量部、表面にシランカップリング剤がコーティングされた平均粒子径が1.6μmで、最大粒子の直径が15μm以下のSiO球状粒子(アドテック社製、CRS 1101-CE)170重量部およびレベリング剤(サンノプコ社製 ペレノールS4)1.5重量部を容器にとり、攪拌混合することにより、その粘度が23±1℃で45~49Pa・sの樹脂充填材を調製した。なお、硬化剤として、イミダゾール硬化剤(四国化成社製、2E4MZ-CN)6.5重量部を用いた。
B.多層プリント配線板の製造
(1)図2Aに示すような、厚さ0.8mmのガラスエポキシ樹脂からなる絶縁性基板11の両面に18μmの銅箔18がラミネートされている銅張積層板を出発材料とした。
次に、図2Bに示すように、この銅張積層板をドリル削孔し、スルーホール導体用の貫通孔29を形成した。
次に、図2Cに示すように、銅箔18上と貫通孔29の内壁表面とに無電解銅めっき処理と電解銅めっき処理とを施し、無電解銅めっき膜と無電解銅めっき膜上の電解銅めっき膜とからなるスルーホール導体19を含む導体層を形成した。
(2)次に、スルーホール導体19を形成した基板を水洗いし、乾燥した後、NaOH(10g/l)、NaClO(40g/l)、NaPO(6g/l)を含む水溶液を黒化浴(酸化浴)とする黒化処理、および、NaOH(10g/l)、NaBH(6g/l)を含む水溶液を還元浴とする還元処理を行い、スルーホール導体19の表面を粗化面(図示せず)とした。
(3)次に、図2Dに示すように、スルーホール導体19の内部に、上記Aに記載した樹脂充填材を下記の方法で充填した。
すなわち、まず、スキージを用いてスルーホール導体19内に樹脂充填材を押し込んだ後、100℃、20分の条件で乾燥させた。続いて、基板の片面を、♯600のベルト研磨紙(三共理化学社製)を用いたベルトサンダー研磨により、電解銅めっき膜上に樹脂充填材20が残らないように研磨し、次いで、上記ベルトサンダー研磨による傷を取り除くためのバフ研磨を行った。このような一連の研磨を基板の他方の面についても同様に行った。
次いで、100℃で1時間、120℃で3時間、150℃で1時間、180℃で7時間の加熱処理を行って樹脂充填材層20を形成した。
(4)次に、図2Eに示すように、電解銅めっき膜上と樹脂充填材20上とに無電解銅めっき膜と電解銅めっき膜とからなる導体層21を形成した。続いて、図2Fに示すように、サブトラクティブ法で絶縁性基板11上に導体回路14を形成した。この時、同時に樹脂充填材20を覆う導体回路114も形成した。
(5)次に、上記基板を水洗、酸性脱脂した後、ソフトエッチングし、次いで、エッチング液を基板の両面にスプレーで吹き付けて、導体回路14(樹脂充填材20を覆う導体回路114を含む)の表面をエッチングすることにより、導体回路14の全表面を粗化面(図示せず)とした。エッチング液として、イミダゾール銅(II)錯体10重量部、グリコール酸7重量部、及び、塩化カリウム5重量部を含むエッチング液(メック社製、メックエッチボンド)を使用した。
(6)次に、図2Gに示すように、絶縁性基板11と導体回路14との上に、層間樹脂絶縁層形成用フィルム(味の素社製、ABF)を用いて層間樹脂絶縁層12を形成した。
すなわち、層間樹脂絶縁層用樹脂フィルムを基板上に、真空度65Pa、圧力0.4MPa、温度80℃、時間60秒の条件で積層し、その後、170℃で30分間熱硬化させた。
(7)次に、図3Aに示すように、層間樹脂絶縁層12にCOガスレーザにて、直径80μmの開口部16を形成した。
この結果、開口部16によって、導体回路14の上面の一部(露出面14a)が露出された。
(8)次に、開口部16を形成した基板を、60g/lの過マンガン酸を含む80℃の溶液に10分間浸漬し、開口部16の内壁面を含む層間樹脂絶縁層12の表面を粗化面(図示せず)とした。
(9)次に、上記処理を終えた基板を、中和溶液(シプレイ社製)に浸漬してから水洗いした。
(10)次に、層間樹脂絶縁層12の表面(開口部16の内壁面含む)に、パラジウム触媒(図示せず)を付与した。具体的には、上記基板を、アルカリ脱脂(HCF-45、アトテック社製)、湯洗い、水洗、酸性脱脂(HCF-45、アトテック社製)、湯洗、水洗、10VOL%硫酸処理、水洗、プレディップ(プリディップネオガント、アトテック社製)、錯体付着(アクチベーターネオガント834コンク、アトテック社製)、水洗の順で処理して、全面にパラジウム錯体を付着させた。その後、塩化銅エッチング液(塩化銅、塩酸)中に浸漬し開口部16によって露出された導体回路の露出面14aのパラジウム錯体を除去した。その後、活性化処理(リデューサーネオガントWA)により、層間樹脂絶縁層12の表面(開口部16の内壁面含む)に付着しているPd錯体をパラジウム金属とした。
(11)次に、図3Bに示すように、次亜リン酸ナトリウムを還元剤とする無電解銅めっき水溶液(MF-390、日本マクダーミッド社製)中に、上記パラジウム触媒を付着させた基板を浸漬し、層間樹脂絶縁層12の表面(開口部16の内壁面を含む)に厚さ0.1~0.3μmの無電解銅めっき膜22を形成した。
なお、ここで、導体回路の露出面14a上には、無電解銅めっき膜は形成されなかった。これは、露出面14aにはパラジウム触媒が存在しない上に、次亜リン酸ナトリウムを還元剤とする無電解銅めっき液は銅に対して触媒活性を有しないからである。
〔無電解銅めっき条件〕
75℃の液温度で4分
(12)次に、図3Cに示すように、無電解銅めっき膜22上に市販の感光性ドライフィルムを張り付け、マスクを載置して、露光・現像処理することにより、厚さ25μmのめっきレジスト13を設けた。
(13)次に、図3Dに示すように、めっきレジスト13を形成した基板を50℃の水で洗浄して脱脂し、25℃の水で水洗後、さらに硫酸で洗浄してから、以下の条件で電解めっきを施し、めっきレジスト13非形成部に、厚さ20μmの電解銅めっき膜23を形成した。
〔電解銅めっき液〕
硫酸        150g/L
硫酸銅      150g/L
塩素イオン    8mg/L
添加剤      4ml/L(奥野製薬工業社製、トップルチナNSV-1)
           0.5ml/L(奥野製薬工業社製、トップルチナNSV-2)
           1ml/L(奥野製薬工業社製、トップルチナNSV-3)
〔電解めっき条件〕
電流密度     1A/dm
時間        90分
温度        23℃
(14)次に、めっきレジスト13を剥離除去した。続いて、隣接する電解銅めっき膜の間の無電解銅めっき膜22を硫酸と過酸化水素との混合液でエッチング処理して溶解除去した。これにより、無電解銅めっき膜22と無電解銅めっき膜上の電解銅めっき膜23とからなる厚さ18μmの導体回路14及び主に電解銅めっき膜23からなるビア導体17が形成された(図4A参照)。
以上に説明したように、実施例1では、導体回路の露出面上に無電解銅めっき膜を形成していないので、ビア導体17は、図1Bに示したような構造となった。つまり、露出面14aが第1導体回路の電解銅めっき膜からなり、この電解銅めっき膜上にビア導体17の電解銅めっき膜が形成されている。そして、層間樹脂絶縁層12の開口部の内壁面上には無電解銅めっき膜が形成されており、その無電解銅めっき膜上に電解銅めっき膜が形成されている。
なお、実施例において、導体回路14のL/S(ライン/スペース)の最小値は、10μm/10μmに設定した。
(15)さらに、上記(5)の工程で用いたエッチング液と同様のエッチング液を用いて、導体回路14及びビア導体17の表面を粗化面(図示せず)とした。次いで、上記(6)~(8)の工程と同様にして開口部16を有し、その表面を粗化面(図示せず)とした層間樹脂絶縁層12を形成した(図4B参照)。
(16)次に、上記(9)~(14)工程で用いた方法と同様の方法を用いて、導体回路14とビア導体17とを形成した(図4C~図5A参照)。
(17)次に、図5Bに示すように、最外層の層間樹脂絶縁層12及び導体回路14上に、市販のソルダーレジスト組成物を30μmの厚さで塗布し、70℃で20分間、70℃で30分間の条件で乾燥処理を行い、市販のソルダーレジスト組成物の層24′を形成した。
(18)次に、図5Cに示すように、半田バンプ形成用開口のパターンが描画された厚さ5mmのフォトマスクをソルダーレジスト組成物の層24′に密着させて1000mJ/cmの紫外線で露光し、DMTG溶液で現像処理し、半田バンプ形成用開口28を形成した。
さらに、80℃で1時間、100℃で1時間、120℃で1時間、150℃で3時間の条件でそれぞれ加熱処理を行ってソルダーレジスト組成物の層24′を硬化させ、半田バンプ形成用開口28を有するソルダーレジスト層24(20μm厚)を形成した。
(19)次に、ソルダーレジスト層24を形成した基板を、塩化ニッケル(2.3×10-1mol/l)、次亜リン酸ナトリウム(2.8×10-1mol/l)、クエン酸ナトリウム(1.6×10-1mol/l)を含むpH=4.5の無電解ニッケルめっき液に20分間浸漬して、半田バンプ形成用開口28に厚さ5μmのニッケルめっき層を形成した。さらに、その基板をシアン化金カリウム(7.6×10-3mol/l)、塩化アンモニウム(1.9×10-1mol/l)、クエン酸ナトリウム(1.2×10-1mol/l)、次亜リン酸ナトリウム(1.7×10-1mol/l)を含む無電解金めっき液に80℃の条件で7.5分間浸漬して、ニッケルめっき層上に、厚さ0.03μmの金めっき層を形成し、半田パッド26とした。
(20)次に、ソルダーレジスト層24に形成した半田バンプ形成用開口28に半田ペーストを印刷し、200℃でリフローすることにより、半田バンプ27を形成し、多層プリント配線板10を完成した(図5D参照)。
(第二実施形態)
第二実施形態の多層プリント配線板は、第一実施形態の多層プリント配線板と比較して下記の点で異なる。
即ち、第一実施形態に係る多層プリント配線板では、導体回路及びビア導体を構成している無電解めっき膜が、無電解銅めっき膜であるのに対し、第二実施形態に係る多層プリント配線板では、無電解めっき膜が、無電解ニッケルめっき膜である点で異なる。つまり、導体回路が無電解ニッケルめっき膜と無電解ニッケルめっき膜上の電解銅めっき膜とからなり、ビア導体を構成する層間樹脂絶縁層の開口部の内壁面に形成されている無電解めっき膜が無電解ニッケルめっき膜である。即ち、第二実施形態の多層プリント配線板は、第一実施形態の多層プリント配線板において、無電解銅めっき膜に代えて無電解ニッケル膜を備えたものである。
第二実施形態に係る多層プリント配線板の導体回路及びビア導体が備える上記の構成は、微細な導体回路を形成するのに適している。
これは、多層プリント配線板の製造工程において、独立な導体回路やビア導体を形成するとき、不要な無電解ニッケルめっき膜を除去するのに、ニッケルはエッチングするが、銅は実質的にエッチングしない選択的エッチング液を使用することができるからである。
そうすれば、電解銅めっき膜はエッチングにより除去されないため、予め、電解銅めっき膜の形状を微細にしておくことが可能となる。つまり、微細な導体回路を形成するのに適している。
次に、第二実施形態に係る多層プリント配線板の製造方法を工程順に説明する。
(1)第一実施形態に係る多層プリント配線板の製造方法の(1)及び(2)の工程と同様にして、導体回路を形成した絶縁性基板上に、層間樹脂絶縁層を形成するとともに、この層間樹脂絶縁層に、上記絶縁性基板上の導体回路に到達する開口部を形成する。
(2)次に、上記層間樹脂絶縁層の表面(上記開口部の壁面を含む)に無電解ニッケルめっき膜を形成する。
ここで、上記開口部によって露出される上記絶縁性基板上の導体回路の露出面上には無電解ニッケルめっき膜を形成しない。
具体的には、まず、上記層間樹脂絶縁層の表面(上記開口部の壁面を含む)にはパラジウム触媒(パラジウム金属)が付着し、上記導体回路の露出面上にはパラジウム触媒が付着しない状態に上記パラジウム触媒を付与する。その後、無電解ニッケルめっき処理を行うことより、所定の部分にのみ無電解ニッケルめっき膜を形成する。
上記パラジウム触媒を上記層間樹脂絶縁層の表面(上記開口部の壁面を含む)に選択的に付着させる方法としては、第一実施形態と同様の方法を用いることができる。
上記無電解ニッケルめっき膜の厚さは、0.1~2.0μmが望ましい。
また、上記無電解ニッケルめっき膜の形成前に、層間樹脂絶縁層の表面を粗化面としておいてもよい。
(3)次に、第一実施形態に係る多層プリント配線板の製造方法の(4)及び(5)の工程と同様の方法を用いて、上記無電解ニッケルめっき膜上にめっきレジストを形成し、さらに、上記無電解ニッケルめっき膜上のめっきレジスト非形成部及び上記導体回路の露出面上に電解銅めっき層を形成する。
その後、第一実施形態に係る多層プリント配線板の製造方法の(6)の工程と同様の方法を用いて、めっきレジストを剥離する。
(4)次に、上記めっきレジストを剥離することより露出した無電解ニッケルめっき膜を除去する。
ここで、無電解ニッケルめっき膜の除去は、ニッケルを選択的にエッチングすることができるエッチング液を用いて行うことが望ましい。
このようなエッチング液を用いてエッチングを行うことにより、めっきレジストを剥離することより露出した不要な無電解ニッケルめっき膜のみを選択的にエッチングすることが可能となる。
また、このようなエッチング液に対しては、電解銅めっき膜は実質的にエッチングされないため、予め、電解銅めっき膜を導体回路の設計値よりも大きく形成しておく必要がない。その結果、微細な導体回路であっても好適に形成することができる。
上記ニッケルを選択的にエッチングすることができるエッチング液としては、例えば、メック社製、メックリムーバー NH-1865等が挙げられる。
このような(2)~(4)の工程を行うことにより、層間樹脂絶縁層上に導体回路を形成するとともに、同時にこの導体回路と絶縁性基板上の導体回路とを接続するビア導体を形成することができる。そして、絶縁性基板上の導体回路とビア導体との接続が電解銅めっき膜同士の接続となる。
なお、上記(1)~(4)の工程では、絶縁性基板が請求項1や請求項4に記載する第1の層間樹脂絶縁層に該当する。
また、上記導体回路を形成した後、必要に応じて、層間樹脂絶縁層上の触媒を酸や酸化剤を用いて除去してもよい。電気特性の低下を防止することができるからである。
(5)さらに、必要に応じて、第一実施形態に係る多層プリント配線板の製造方法の(2)の工程、及び、上記(2)~(4)の工程を繰り返すことにより、層間樹脂絶縁層と導体回路とを形成するとともに、同時にビア導体を形成してもよい。
なお、この(5)の工程を行う場合、形成する層間樹脂絶縁層が、請求項1や請求項4に記載する第2の層間樹脂絶縁層に該当する。
(6)最後に、第一実施形態に係る多層プリント配線板の製造方法の(9)の工程と同様の方法を用いて、ソルダーレジスト層と半田バンプとの形成を行い、多層プリント配線板を完成する。
第二実施形態に係る多層プリント配線板及び多層プリント配線板の製造方法は、第一実施形態と同様な作用効果を有する。
また、第二実施形態に係る多層プリント配線板の製造方法では、電解めっき膜間の無電解ニッケルめっき膜の除去は、ニッケルを選択的にエッチングすることができるエッチング液を用いて行うことができるため、微細な導体回路を好適に形成することができる。
以下に実施例を掲げて、第二実施形態について、さらに詳しく説明するが、本発明の実施形態はこれら実施例のみに限定されるものではない。
(実施例2)
実施例1のB.多層プリント配線板の製造の(12)の工程で、無電解銅めっき膜に代えて、下記の方法で無電解ニッケルめっき膜を形成し、さらに、実施例1のB.多層プリント配線板の製造の(15)の工程で、硫酸と過酸化水素との混合液に代えて、ニッケルを選択的にエッチングすることができるエッチング液(メック社製、NP1865)を使用した以外は、実施例1と同様にして多層プリント配線板を製造した。
上記無電解ニッケルめっき膜の形成は、90℃のニッケルホウ素浴(上村工業社製、KLP VER1)中に、4分間パラジウム触媒を付着させた基板を浸漬することにより行い、1μmの無電解ニッケルめっき膜を形成した。
また、導体回路14のL/S(ライン/スペース)の最小値は、8μm/8μmに設定した。
(その他の実施形態)
既に説明した実施形態では、上記層間樹脂絶縁層の表面(開口部16の内壁面含む)に形成する無電解めっき膜として、無電解銅めっき膜又は無電解ニッケルめっき膜が採用されている。
しかし、本発明の実施形態において、上記無電解めっき膜は、銅又はニッケルからなるめっき膜に限定されず、銅、ニッケル、パラジウム、コバルト、スズや、これらの合金からなる無電解めっき膜等であればよい。
ただし、上記無電解めっき膜は、無電解銅めっき膜や無電解ニッケル膜が好ましい。
特に、無電解めっき膜が無電解ニッケルめっき膜であって、電解めっき膜が電解銅めっき膜の場合には、既に説明したように、ニッケルを選択的にエッチングするエッチング液を選択することで、L/S(ライン/スペース)の小さい微細な導体回路を特に好適に製造することができる。
また、これらの無電解めっき膜を形成した場合には、第二実施形態に係る多層プリント配線板の製造方法のように、上記無電解めっき膜の不要な部分(めっきレジストを剥離することにより露出する部分)をエッチングする際に、無電解めっき膜を選択的にエッチングするエッチング液を用いることが望ましい。
上記無電解パラジウムめっき膜を選択的にエッチングするエッチング液としては、例えば、メルテックス社製、メルストリップ PD-3110等が挙げられ、上記無電解スズめっき膜を選択的にエッチングするエッチング液としては、例えば、メック社製、メックリムーバーS-1818A/S-1818B等が挙げられる。
上記層間樹脂絶縁層を熱硬化性樹脂を用いて形成する場合、上記熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ポリエステル樹脂、ビスマレイミド樹脂、ポリオレフィン系樹脂、ポリフェニレンエーテル樹脂、ポリフェニレン樹脂、フッ素樹脂等が挙げられる。
上記層間樹脂絶縁層を感光性樹脂を用いて形成する場合、上記感光性樹脂としては、例えば、アクリル樹脂等が挙げられる。
また、上記層間樹脂絶縁層の開口部をレーザ処理により形成する場合、上記レーザ処理に使用するレーザとしては、例えば、炭酸ガスレーザ、紫外線レーザ、エキシマレーザ等が挙げられる。
なお、開口部を形成した後には、必要に応じて、デスミア処理を施してもよい。
第一実施形態に係る多層プリント配線板の製造方法の(8)の工程や、第二実施形態に係る多層プリント配線板の製造方法の(5)の工程のように、導体回路と層間樹脂絶縁層とをさらに形成する場合、その繰り返し回数は特に限定されず、2回以上であってもよい。
また、第一及び第二実施形態に係る多層プリント配線板の製造方法では、絶縁性基板の両側の層間樹脂絶縁層の総数は同数であるが、絶縁性基板の両側で総数が異なっていてもよい。
図1Aは、第一実施形態に係る多層プリント配線板を模式的に示す断面図であり、図1Bは、図1Aに示した多層プリント配線板の領域aを示す部分拡大断面図である。 図2A~図2Gは、第一実施形態の多層プリント配線板の製造方法における製造工程の一部を模式的に示す断面図である。 図3A~図3Dは、第一実施形態の多層プリント配線板の製造方法における製造工程の一部を模式的に示す断面図である。 図4A~図4Dは、第一実施形態の多層プリント配線板の製造方法における製造工程の一部を模式的に示す断面図である。 図5A~図5Dは、第一実施形態の多層プリント配線板の製造方法における製造工程の一部を模式的に示す断面図である。
符号の説明
10 多層プリント配線板
11 絶縁性基板
12 層間樹脂絶縁層
13 めっきレジスト
14 導体回路
16 開口部
17 ビア導体
18 銅箔
19 スルーホール
20 樹脂充填材層
22 無電解銅めっき膜
23 電解銅めっき膜
24 ソルダーレジスト層
26 半田パッド
27 半田バンプ
28 半田バンプ形成用開口

Claims (11)

  1. 第1の層間樹脂絶縁層と、
    前記第1の層間樹脂絶縁層上に形成されている第1の導体回路と、
    前記第1の層間樹脂絶縁層と前記第1の導体回路との上に形成されていて、前記第1の導体回路に到達する開口部を有する第2の層間樹脂絶縁層と、
    前記第2の層間樹脂絶縁層上に形成されている第2の導体回路と、
    前記開口部内に形成されていて、前記第1の導体回路と前記第2の導体回路とを接続するビア導体とからなる多層プリント配線板であって、
    前記ビア導体は、前記開口部の内壁面に形成されている無電解めっき膜と、前記無電解めっき膜上及び前記開口部によって露出される前記第1の導体回路の露出面上に形成されている電解めっき膜とからなり、
    前記第2の導体回路は、前記無電解めっき膜と前記無電解めっき膜上の前記電解めっき膜とからなる
    ことを特徴とする多層プリント配線板。
  2. 前記電解めっき膜は銅である請求項1に記載の多層プリント配線板。
  3. 前記無電解めっき膜はニッケルである請求項2に記載の多層プリント配線板。
  4. 第1の層間樹脂絶縁層を形成する工程と、
    前記第1の層間樹脂絶縁層上に第1の導体回路を形成する工程と、
    前記第1の層間樹脂絶縁層と前記第1の導体回路との上に、第2の層間樹脂絶縁層を形成する工程と、
    前記第2の層間樹脂絶縁層に、前記第1の導体回路に到達する開口部を形成する工程と、
    前記第2の層間樹脂絶縁層上に第2の導体回路を形成する工程と、
    前記開口部に、前記第1の導体回路と前記第2の導体回路とを接続するビア導体を形成する工程とからなる多層プリント配線板の製造方法であって、
    前記第2の導体回路は、無電解めっき膜と前記無電解めっき膜上の電解めっき膜とからなり、
    前記ビア導体は、前記開口部の内壁面に形成されている前記無電解めっき膜と、前記無電解めっき膜上及び前記開口部によって露出される前記第1の導体回路の露出面上に形成されている電解めっき膜とからなる
    ことを特徴とする多層プリント配線板の製造方法。
  5. 前記第2の導体回路を形成する工程と前記ビア導体を形成する工程とを同時に行う請求項4に記載の多層プリント配線板の製造方法。
  6. 前記第2の導体回路を形成する工程、及び、前記ビア導体を形成する工程は、
    前記第2の層間樹脂絶縁層の表面及び前記開口部の内壁面に前記無電解めっき膜を形成する工程と、
    前記無電解めっき膜上及び前記第1の導体回路の露出面上に前記電解めっき膜を形成する工程と
    を有する請求項5に記載の多層プリント配線板の製造方法。
  7. 前記第1の導体回路の露出面上に形成する電解めっき膜は、前記第1の導体回路をシード層として形成する請求項4~6のいずれかに記載の多層プリント配線板の製造方法。
  8. 前記第2の導体回路を形成する工程、及び、前記ビア導体を形成する工程は、
    前記無電解めっき膜を形成した後、前記無電解めっき膜上にめっきレジストを形成する工程と、
    前記めっきレジスト非形成部の無電解めっき膜上及び前記第1の導体回路の露出面上に電解めっき膜を形成する工程と、
    前記めっきレジストを剥離する工程と、
    前記めっきレジストを剥離することで露出した無電解めっき膜を除去する工程とを有する請求項5に記載の多層プリント配線板の製造方法。
  9. 前記無電解めっき膜の除去は、エッチング液を用いたエッチングにより行う請求項8に記載の多層プリント配線板の製造方法。
  10. 前記電解めっき膜は、前記エッチング液により実質的にエッチングされない請求項9に記載の多層プリント配線板の製造方法。
  11. 前記無電解めっき膜はニッケルからなり、前記電解めっき膜は銅からなる請求項10に記載の多層プリント配線板の製造方法。
PCT/JP2009/050989 2008-03-03 2009-01-22 多層プリント配線板、及び、多層プリント配線板の製造方法 WO2009110258A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010501816A JP5216078B2 (ja) 2008-03-03 2009-01-22 多層プリント配線板、及び、多層プリント配線板の製造方法
CN2009801019996A CN101911851A (zh) 2008-03-03 2009-01-22 多层印刷电路板以及多层印刷电路板的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US3320108P 2008-03-03 2008-03-03
US61/033,201 2008-03-03

Publications (1)

Publication Number Publication Date
WO2009110258A1 true WO2009110258A1 (ja) 2009-09-11

Family

ID=41012304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050989 WO2009110258A1 (ja) 2008-03-03 2009-01-22 多層プリント配線板、及び、多層プリント配線板の製造方法

Country Status (5)

Country Link
US (2) US8314348B2 (ja)
JP (1) JP5216078B2 (ja)
KR (1) KR20100090803A (ja)
CN (1) CN101911851A (ja)
WO (1) WO2009110258A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103210704A (zh) * 2010-11-15 2013-07-17 赛姆布兰特有限公司 用于减轻蠕变腐蚀的方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006033315A1 (ja) 2004-09-24 2006-03-30 Ibiden Co., Ltd. めっき方法及びめっき装置
US20090218119A1 (en) 2008-03-03 2009-09-03 Ibiden Co., Ltd Method of manufacturing multilayer printed wiring board
KR101004063B1 (ko) * 2008-09-05 2010-12-24 삼성엘이디 주식회사 니켈-금 도금방법 및 인쇄회로기판
CN101790903B (zh) 2008-09-30 2012-04-11 揖斐电株式会社 多层印刷线路板以及多层印刷线路板的制造方法
JP4951674B2 (ja) 2008-09-30 2012-06-13 イビデン株式会社 多層プリント配線板、及び、多層プリント配線板の製造方法
US8581104B2 (en) 2010-03-31 2013-11-12 Ibiden Co., Ltd. Wiring board and method for manufacturing the same
US8693203B2 (en) * 2011-01-14 2014-04-08 Harris Corporation Method of making an electronic device having a liquid crystal polymer solder mask laminated to an interconnect layer stack and related devices
US20120298412A1 (en) * 2011-05-25 2012-11-29 Samsung Electro-Mechanics Co., Ltd. Printed circuit board and method of manufacturing the same
US8969732B2 (en) * 2011-09-28 2015-03-03 Ibiden Co., Ltd. Printed wiring board
JP6009300B2 (ja) * 2012-09-27 2016-10-19 新光電気工業株式会社 配線基板及びその製造方法
US20140174791A1 (en) * 2012-12-26 2014-06-26 Unimicron Technology Corp. Circuit board and manufacturing method thereof
TWI462672B (zh) * 2013-02-08 2014-11-21 Ichia Tech Inc 前驅基板、軟性印刷電路板及其製造方法
TWI462669B (zh) * 2013-02-08 2014-11-21 Ichia Tech Inc 多層式的軟性印刷電路板及其製造方法
TWI589195B (zh) * 2014-05-09 2017-06-21 Sensitive and perforated circuit board and multilayer circuit board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09116269A (ja) * 1995-10-19 1997-05-02 Toppan Printing Co Ltd 多層プリント配線板及びその製造方法
JPH11163517A (ja) * 1997-11-27 1999-06-18 Hitachi Chem Co Ltd 多層プリント配線板の製造方法
JP2002314247A (ja) * 2001-04-13 2002-10-25 Hitachi Chem Co Ltd 多層プリント配線板及びその製造方法
JP2007335539A (ja) * 2006-06-13 2007-12-27 Hitachi Cable Ltd 両面配線基板の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4642160A (en) * 1985-08-12 1987-02-10 Interconnect Technology Inc. Multilayer circuit board manufacturing
CN100435605C (zh) * 1996-12-19 2008-11-19 揖斐电株式会社 印刷布线板
KR100448561B1 (ko) * 1997-04-15 2004-09-13 이비덴 가부시키가이샤 무전해 도금용 접착제, 무전해 도금용 접착제 조제용의 원료조성물 및 프린트 배선판
JP2000232269A (ja) * 1999-02-10 2000-08-22 Nec Toyama Ltd プリント配線板およびプリント配線板の製造方法
JP2001196746A (ja) 2000-01-11 2001-07-19 Toshiba Chem Corp プリント配線板およびプリント配線板の製造方法
JP3674927B2 (ja) * 2003-06-13 2005-07-27 Tdk株式会社 電子部品の製造方法および電子部品
JP2005347391A (ja) 2004-06-01 2005-12-15 Ibiden Co Ltd プリント配線板
JP4955263B2 (ja) 2004-12-15 2012-06-20 イビデン株式会社 プリント配線板
JP2006216713A (ja) 2005-02-02 2006-08-17 Ibiden Co Ltd 多層プリント配線板
TWI302811B (en) 2006-01-16 2008-11-01 Advanced Semiconductor Eng Method for fabricating conductive blind via of circuit substrate
JP2007194265A (ja) 2006-01-17 2007-08-02 Dainippon Printing Co Ltd フレキシブルプリント配線板、およびその製造方法
US20090218119A1 (en) 2008-03-03 2009-09-03 Ibiden Co., Ltd Method of manufacturing multilayer printed wiring board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09116269A (ja) * 1995-10-19 1997-05-02 Toppan Printing Co Ltd 多層プリント配線板及びその製造方法
JPH11163517A (ja) * 1997-11-27 1999-06-18 Hitachi Chem Co Ltd 多層プリント配線板の製造方法
JP2002314247A (ja) * 2001-04-13 2002-10-25 Hitachi Chem Co Ltd 多層プリント配線板及びその製造方法
JP2007335539A (ja) * 2006-06-13 2007-12-27 Hitachi Cable Ltd 両面配線基板の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103210704A (zh) * 2010-11-15 2013-07-17 赛姆布兰特有限公司 用于减轻蠕变腐蚀的方法
JP2014501039A (ja) * 2010-11-15 2014-01-16 センブラント リミテッド クリープ腐食を減少させる方法

Also Published As

Publication number Publication date
JP5216078B2 (ja) 2013-06-19
US20110296682A1 (en) 2011-12-08
US8683685B2 (en) 2014-04-01
KR20100090803A (ko) 2010-08-17
US8314348B2 (en) 2012-11-20
JPWO2009110258A1 (ja) 2011-07-14
CN101911851A (zh) 2010-12-08
US20090218125A1 (en) 2009-09-03

Similar Documents

Publication Publication Date Title
JP5216078B2 (ja) 多層プリント配線板、及び、多層プリント配線板の製造方法
JP5033192B2 (ja) 多層プリント配線板、及び、多層プリント配線板の製造方法
KR100833723B1 (ko) 다층프린트배선판 및 다층프린트배선판의 제조 방법
JP5351299B2 (ja) 多層プリント配線板、及び、多層プリント配線板の製造方法
JP5216079B2 (ja) 多層プリント配線板の製造方法
WO1999034654A1 (fr) Plaquette a circuits imprimes multicouche
JPH1187928A (ja) 多層プリント配線板
JP2003023251A (ja) 多層プリント配線板
JP2001102751A (ja) 多層プリント配線板およびその製造方法
JP4666332B2 (ja) 多層プリント配線板の製造方法
JP4743974B2 (ja) 樹脂フィルムおよび多層プリント配線板の製造方法
JP2010166099A (ja) プリント配線板及びプリント配線板の製造方法
JP2009147387A (ja) 多層プリント配線板および多層プリント配線板の製造方法
JP4832621B2 (ja) 多層プリント配線板
JP2001060765A (ja) 多層プリント配線板の製造方法
JP2010263249A (ja) 多層プリント配線板及び多層プリント配線板の製造方法
JP4875776B2 (ja) フィルビア構造を有する多層プリント配線板の製造方法
JP2010109396A (ja) プリント配線板の製造方法
JP2007227959A (ja) 多層プリント配線板およびその製造方法
JP2001094264A (ja) 多層プリント配線板およびその製造方法
JP2001102750A (ja) 多層プリント配線板およびその製造方法
JPH10242622A (ja) プリント配線板、多層プリント配線板およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980101999.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09717845

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010501816

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20107014811

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09717845

Country of ref document: EP

Kind code of ref document: A1