WO2009108975A1 - GLEITLAGERLEGIERUNG AUS WEIßMETALL AUF ZINNBASIS - Google Patents

GLEITLAGERLEGIERUNG AUS WEIßMETALL AUF ZINNBASIS Download PDF

Info

Publication number
WO2009108975A1
WO2009108975A1 PCT/AT2009/000082 AT2009000082W WO2009108975A1 WO 2009108975 A1 WO2009108975 A1 WO 2009108975A1 AT 2009000082 W AT2009000082 W AT 2009000082W WO 2009108975 A1 WO2009108975 A1 WO 2009108975A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
white metal
antimony
bearing alloy
plain bearing
Prior art date
Application number
PCT/AT2009/000082
Other languages
English (en)
French (fr)
Inventor
Alexander Eberhard
Falco Langbein
Original Assignee
Miba Gleitlager Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miba Gleitlager Gmbh filed Critical Miba Gleitlager Gmbh
Priority to JP2010549994A priority Critical patent/JP5563489B2/ja
Priority to DE112009000194T priority patent/DE112009000194A5/de
Priority to CN200980107224.XA priority patent/CN101960029B/zh
Publication of WO2009108975A1 publication Critical patent/WO2009108975A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • C22C13/02Alloys based on tin with antimony or bismuth as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials

Definitions

  • the invention relates to a tin-based white metal plain bearing alloy containing antimony as the main alloying element and 1 to 10% by weight of copper.
  • Tin-based plain bearing alloys are known (GB 2 146 354 A) containing 2 to 15% by weight of antimony, 1 to 10% by weight of copper, up to 15% by weight of lead and further alloying elements such as cadmium, nickel, silver, tellurium , Cobalt, magnesium, manganese and arsenic, wherein a content of 0.005 to 0.5 wt.% Titanium refine the microstructure of the bearing material and thus improve the carrying capacity of a sliding bearing.
  • the invention is therefore an object of the invention to increase the strength of a sliding bearing alloy of tin-based white metal of the type described without having to use polluting alloying elements such as cadmium, lead, arsenic and chromium.
  • the cadmium-, lead-, arsenic- and chromium-free white metal apart from unavoidable impurities, contains 4 to 30% by weight of antimony as the main alloying element, at least one element consisting of a cobalt, manganese, scandium and germanium-containing element group a total concentration of between 0.2 and 2.6% by weight, based on the elements used in this group, and at least one element of a magnesium, nickel, zirconium and titanium-containing element group in a total concentration of between 0.05 and 10 based on the elements used in this group 1, 7 wt.%, Wherein the sum content of antimony and copper at a minimum of three times the copper content corresponding antimony content is at most 35 wt.%. In both cases, the minimum content is the efficacy limit, the maximum content prevents extensive, due to their size and number already harmful excretions.
  • the alloying of cobalt, manganese, scandium and / or germanium advantageously achieves a refinement and a rounding off of the precipitated intermetallic phases.
  • Germanium also forms intermetallic compounds with free copper, which positively influences the strength of the alloy, provided that the size of the individual precipitates is kept low. Due to the primary crystallization of these higher melting elements, solidification of the white metal results in the formation of a large number of crystallization nuclei which considerably reduce the precipitation of the intermetallic phases with copper and antimony, thereby increasing their strength The tin matrix can be significantly improved without significantly affecting the deformability of the white metal.
  • the elements of the magnesium, nickel, zirconium and titanium-containing element group bind a part of the antimony in intermetallic phases, in particular at higher antimony contents, which counteracts an otherwise associated with a higher antimony content embrittlement.
  • Magnesium also has a strong deoxidizing effect. Excessive levels of magnesium, however, increase the susceptibility to corrosion, especially the pitting occurs.
  • Nickel is found in the copper-tin crystals and increases their hardness. However, it has no negative influence on the sliding properties of the alloy according to the invention. Nickel also improves corrosion resistance and reduces susceptibility to segregation. Contents above 5 wt.%, However, lead to embrittlement of the alloy due to the coating of large, hard phases.
  • Additions of zirconium in the stated contents have a strengthening effect on the matrix and serve for grain refining. Additions of titanium aid grain refining, thereby improving the bearing capacity of the plain bearing alloy, but its hardness remains almost unchanged.
  • An increased copper content solidifies the alloy because an intermetallic phase forms between antimony and copper. However, the copper content must not exceed the stated limit ratio because of the otherwise excessive formation of nadelfömiger copper-tin phases.
  • the white metal can additionally 0.6 to 1, 8 wt.%, Preferably 0.7 to 0.9 wt. % Zinc can be added. Zinc serves to refine the copper-tin and tin antimony phases by forming additional nuclei. This prevents growth of these phases to a harmful size.
  • Similar effects can be achieved by adding to the white metal at least one element from an elemental group comprising silver, gold, vanadium and iron, the individual parts of these alloying elements not exceeding 4% by weight.
  • the total amount must be limited to the top with 8% by weight.
  • the white metal may have an aluminum content of 0.05 to 2.5 wt.%.
  • the aluminum content must be limited to the top in order not to have to negatively impact the porosity of the white metal.
  • Silicon has a similar influence on the white metal. Excess silicon combines with zirconium and scandium to form intermetallic phases, preventing the formation of wave damaging primary silicon crystals. For this reason, silicon and aluminum are preferably added in hypoeutectic composition to avoid the formation of primary silicon crystals. It should therefore the aluminum and the silicon as a heterogeneous phase mixture are present, wherein the aluminum content corresponds to 7 to 45 times the silicon content.
  • the white metal In order to increase the strength properties of the white metal by intermetallic compounds, it is also possible to alloy lithium in a proportion of 0.05 to 1.6% by weight.
  • the addition of at least one rare earth metal may improve the casting properties of the white metal alloy and reduce the susceptibility to segregation.
  • these rare earths have a grain-refining effect.
  • the total concentration of the rare earths used may not exceed 1, 3 wt.%, If adverse effects are to be suppressed.
  • a plain bearing alloy with 15.4 wt.% Antimony, 4.6 wt.% Copper, 0.3 wt.% Manganese, 0.07 wt.% Cobalt, 0.1 wt.% Magnesium, 0, 05 wt.% Nickel and 0.7 wt.% Zinc, remainder tin.
  • This plain bearing alloy had a casting hardness of 36.1 HBW 2.5 / 15.625 / 15. Although the hardness fell off due to cold rolling, it could be increased again to 37.6 HBW 2.5 / 15.625 / 15 by a heat treatment, ie to a hardness above the casting hardness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

Es wird eine Gleitlagerlegierung aus Weißmetall auf Zinnbasis beschrieben, das Antimon als Hauptlegierungselement und 1 bis 10 Gew.% Kupfer enthält. Um gute Festigkeitseigenschaften bei einer hohen Umweltverträglichkeit zu erreichen, ohne die tribologischen Eigenschaften zu gefährden, wird vorgeschlagen, dass das bis auf unvermeidbare Verunreinigungen cadmium-, blei-, arsen- und chromfreie Weißmetall 4 bis 30 Gew.% Antimon als Hauptlegierungselement, wenigstens ein Element aus einer Kobalt, Mangan, Scandium und Germanium enthaltenden Elementegruppe in einer auf die eingesetzten Elemente dieser Gruppe bezogenen Gesamtkonzentration zwischen 0,2 und 2,6 Gew.% sowie mindestens ein Element aus einer Magnesium, Nickel, Zirkon und Titan enthaltenden Elementegruppe in einer auf die eingesetzten Elemente dieser Gruppe bezogenen Gesamtkonzentration zwischen 0,05 und 1,7 Gew.% aufweist, wobei der Summenanteil von Antimon und Kupfer bei einem zumindest dem dreifachen Kupfergehalt entsprechenden Antimongehalt höchstens 35 Gew.% beträgt.

Description

Gleitlaqerlegierunq aus Weißmetall auf Zinnbasis
Technisches Gebiet
Die Erfindung bezieht sich auf eine Gleitlagerlegierung aus Weißmetall auf Zinnbasis, das Antimon als Hauptlegierungselement und 1 bis 10 Gew.% Kupfer enthält.
Stand der Technik
Es sind Gleitlagerlegierungen auf Zinnbasis bekannt (GB 2 146 354 A), die 2 bis 15 Gew.% Antimon, 1 bis 10 Gew.% Kupfer, bis zu 15 Gew.% Blei und weitere Legierungselemente, wie Cadmium, Nickel, Silber, Tellur, Kobalt, Magnesium, Mangan und Arsen aufweisen können, wobei ein Gehalt von 0,005 bis 0,5 Gew.% Titan die Mikrostruktur des Lagerwerkstoffes verfeinern und damit die Tragfähigkeit eines Gleitlagers verbessern soll. Um die Belastbarkeit von ökologischen Weißmetalllegierungen zu steigern, wurde bereits vorgeschlagen (DE 101 45 389 C2), neben Antimon mit einem Anteil von 6 bis 15 Gew.% und Kupfer mit einem Anteil von 3 bis 10 Gew.% Wismut mit einem Anteil zwischen 0,1 und 18 Gew.% einzusetzen. Trotz dieser Maßnahme können diese bekannten, von umweltbelastenden Legierungsbestandteilen freien Gleitlagerlegierungen höheren Festigkeitsansprüchen nicht genügen, sodass bei höheren Anforderungen an die Belastbarkeit und an die Verschleißbeständigkeit häufig auf Lagermetalle auf Aluminiumbasis ausgewichen wird, obwohl beim Einsatz dieser Lagermetalle auf die hervorragenden Notlaufeigenschaften von Lagermetalllegierungen auf Zinnbasis verzichtet werden muss. Darstellung der Erfindung
Der Erfindung liegt somit die Aufgabe zugrunde, die Festigkeit einer Gleitlagerlegierung aus Weißmetall auf Zinnbasis der eingangs geschilderten Art zu steigern, ohne umweltbelastende Legierungselemente, wie Cadmium, Blei, Arsen und Chrom, einsetzen zu müssen.
Die Erfindung löst die gestellte Aufgabe dadurch, dass das bis auf unvermeidbare Verunreinigungen cadmium-, blei-, arsen- und chromfreie Weißmetall 4 bis 30 Gew.% Antimon als Hauptlegierungselement, wenigstens ein Element aus einer Kobalt, Mangan, Scandium und Germanium enthaltenden Elementegruppe in einer auf die eingesetzten Elemente dieser Gruppe bezogenen Gesamtkonzentration zwischen 0,2 und 2,6 Gew.% sowie mindestens ein Element aus einer Magnesium, Nickel, Zirkon und Titan enthaltenden Elementegruppe in einer auf die eingesetzten Elemente dieser Gruppe bezogenen Gesamtkonzentration zwischen 0,05 und 1 ,7 Gew.% aufweist, wobei der Summenanteil von Antimon und Kupfer bei einem zumindest dem dreifachen Kupfergehalt entsprechenden Antimongehalt höchstens 35 Gew.% beträgt. In beiden Fällen stellt der Mindestgehalt die Wirksamkeitsgrenze dar, der Maximalgehalt verhindert ausgedehnte, auf Grund ihrer Größe und Anzahl bereits schädigende Ausscheidungen.
Durch die Zulegierung von Kobalt, Mangan, Scandium und/oder Germanium wird in vorteilhafter Weise eine Feinung und eine Abrundung der ausgeschiedenen intermetallischen Phasen erreicht. Germanium bildet zudem intermetallische Verbindungen mit freiem Kupfer, was die Festigkeit der Legierung positiv beeinflusst, und zwar unter der Voraussetzung, dass die Größe der einzelnen Ausscheidungen gering gehalten wird. Durch die primäre Kristallisation dieser höher schmelzenden Elemente bilden sich bei der Erstarrung des Weißmetalls eine Vielzahl von Kristallisationskeimen, die die Ausscheidung der intermetallischen Phasen mit Kupfer und Antimon erheblich feinen, wodurch die Festigkeit der Zinnmatrix entscheidend verbessert werden kann, ohne die Verformbarkeit des Weißmetalls nennenswert zu beeinträchtigen. Die sonst in tribologisch ungünstiger Nadelform ausgeschiedenen Phasen von Kupfer-Zinn und die ebenfalls ungünstigen würfelförmigen Zinn-Antimonphasen werden vorteilhaft gerundet. Außerdem wird die Neigung zur Rissausbildung erheblich verringert. In diesem Zusammenhang ist zu erwähnen, dass eine ausreichend rasche Erstarrung der Legierungsschmelze sichergestellt werden muss, um der Ausbildung von intermetallischen Kupfer-Zinn- und Zinn-Antimonphasen in Form von vergleichsweise langen Nadeln entgegenzuwirken.
Die Elemente der Magnesium, Nickel, Zirkon und Titan enthaltenden Elementegruppe binden insbesondere bei höheren Antimongehalten einen Teil des Antimons in intermetallischen Phasen ab, was einer sonst mit einem höheren Antimongehalt einhergehenden Versprödung entgegenwirkt. . Magnesium hat zusätzlich eine stark desoxidierende Wirkung. Zu hohe Gehalte an Magnesium steigern jedoch die Anfälligkeit für Korrosion, wobei besonders der Lochfraß auftritt. Nickel findet sich in den Kupfer-Zinnkristallen und steigert deren Härte. Es hat jedoch keinen negativen Einfluss auf die Gleiteigenschaften der erfindungsgemäßen Legierung. Nickel verbessert zudem die Korrosionsbeständigkeit und verringert die Anfälligkeit für Seigerungserscheinungen. Gehalte über 5 Gew.% führen jedoch durch die Ausschedung großer, harter Phasen zum Verspröden der Legierung. Zugaben an Zirkon in den angegebenen Gehalten haben verfestigende Wirkung auf die Matrix und dienen der Kornfeinung. Zugaben von Titan unterstützen die Kornfeinung, wodurch die Tragfähigkeit der Gleitlagerlegierung verbessert wird, ihre Härte jedoch nahezu unverändert bleibt. Ein erhöhter Kupfergehalt verfestigt die Legierung, weil sich zwischen Antimon und Kupfer eine intermetallische Phase ausbildet. Der Kupfergehalt darf jedoch das angegebene Grenzverhältnis wegen der sonst übermäßigen Ausbildung nadelfömiger Kupfer-Zinnphasen nicht übersteigen.
Besonders vorteilhafte Belastungsbedingungen für Lagermetallschichten aus einer solchen Gleitlagerlegierung ergeben sich, wenn der Antimongehalt des - A -
Weißmetalls 10 bis 22 Gew.% und der Kupfergehalt 3 bis 7 Gew.% beträgt. Ein Optimum ergibt sich in dieser Hinsicht bei einem Antimongehalt von 13 bis 18 Gew.% und einem Kupfergehalt von 3,5 bis 5,5 Gew.%. Um der Gefahr der Ausbildung von nadeiförmigen Kupfer-Zinnphasen in einem für ein Lagermetall schädigenden Ausmaß aufgrund einer erhöhten Zugabe von Kupfer vorzubeugen, kann dem Weißmetall zusätzlich 0,6 bis 1 ,8 Gew.%, vorzugsweise 0,7 bis 0,9 Gew.% Zink zulegiert werden. Zink dient durch die Bildung von zusätzlichen Kristallisationskeimen zur Feinung der Kupfer-Zinn- und Zinn- Antimonphasen. Dadurch wird ein Anwachsen dieser Phasen auf eine schädigende Größe verhindert. Unter 0,6 Gew.% Zink stellt sich keine positive Wirkung ein, über 1 Gew.% ist Zink nicht mehr im Zinnmischkristall gelöst, und es bildet sich zwischen Zinn und Zink eine niedrigschmelzende eutektische Phase (Tm ca. 200°C). Diese senkt die Warmfestigkeit und auch die Korrosionsbeständigkeit.
Ähnliche Wirkungen können dadurch erzielt werden, dass dem Weißmetall wenigstens ein Element aus einer Elementegruppe zulegiert wird, die Silber, Gold, Vanadium und Eisen umfasst, wobei die Einzelanteile dieser Legierungselemente 4 Gew.% nicht übersteigen dürfen. Der Summenanteil muss nach oben mit 8 Gew.% begrenzt werden.
Aluminium unterstützt die Feinung der auf Antimon und Kupfer beruhenden intermetallischen Phasen. Aus diesem Grunde kann das Weißmetall einen Aluminiumanteil von 0,05 bis 2,5 Gew.% besitzen. Der Aluminiumanteil ist nach oben zu begrenzen, um keinen negativen Einfluss auf die Porosität des Weißmetalls in Kauf nehmen zu müssen. Silizium hat einen ähnlichen Einfluss auf das Weißmetall. Überschüssiges Silizium verbindet sich mit Zirkon und Scan- dium zu intermetallischen Phasen und verhindert so die Ausbildung von wellenschädigenden primären Siiiziumkristallen. Aus diesem Grund werden Silizium und Aluminium vorzugsweise in untereutektischer Zusammensetzung zugegeben, um die Ausbildung von primären Siliziumkristallen zu vermeiden. Es soll daher das Aluminium und das Silizium als heterogenes Phasengemisch vorliegen, wobei der Aluminiumanteil dem 7- bis 45-Fachen des Siliziumanteils entspricht.
Um die Festigkeitseigenschaften des Weißmetalls durch intermetallische Verbindungen zu steigern, kann auch Lithium mit einem Anteil von 0,05 bis 1 ,6 Gew.% zulegiert werden. Die Zugabe wenigstens eines Metalls aus der Gruppe der seltenen Erden kann schließlich die Gießeigenschaften der Weißmetalllegierung verbessern und die Anfälligkeit gegenüber von Seigerungen vermindern. Außerdem haben diese seltenen Erden eine kornfeinernde Wirkung. Die Gesamtkonzentration der eingesetzten seltenen Erden darf jedoch 1 ,3 Gew.% nicht übersteigen, wenn nachteilige Einflüsse unterdrückt werden sollen.
Im Folgenden werden einige Ausführungsbeispiele einer erfindungsgemäßen Gleitlagerlegierung beschrieben.
Beispiel 1:
Eine Gleitlagerlegierung aus 10,1 Gew.% Antimon, 3,1 Gew.% Kupfer, 0,5 Gew.% Mangan, 0,08 Gew.% Scandium, 0,05 Gew.% Zirkon und 0,1 Gew.% Magnesium, Rest Zinn zeigte eine gute Verformbarkeit und eine Gusshärte von 30,0 HBW 2,5/15, 625/15.
Beispiel 2:
Zur Steigerung der Festigkeit wurde eine Gleitlagerlegierung mit 15,4 Gew.% Antimon, 4,6 Gew.% Kupfer, 0,3 Gew.% Mangan, 0,07 Gew.% Kobalt, 0,1 Gew.% Magnesium, 0,05 Gew.% Nickel sowie 0,7 Gew.% Zink, Rest Zinn hergestellt. Diese Gleitlagerlegierung wies eine Gusshärte von 36,1 HBW 2,5/15,625/15 auf. Durch ein Kaltwalzen fiel die Härte zwar ab, konnte durch eine Wärmebehandlung aber wieder auf 37,6 HBW 2,5/15,625/15 gesteigert werden, also auf eine Härte über der Gusshärte.

Claims

P a t e n t a n s p r ü c h e :
1. Gleitlagerlegierung aus Weißmetall auf Zinnbasis, das Antimon als Hauptlegierungselement und 1 bis 10 Gew.% Kupfer enthält, dadurch gekennzeichnet, dass das bis auf unvermeidbare Verunreinigungen cadmium-, blei-, arsen- und chromfreie Weißmetall 4 bis 30 Gew.% Antimon als Hauptlegierungselement, wenigstens ein Element aus einer Kobalt, Mangan, Scandium und Germanium enthaltenden Elementegruppe in einer auf die eingesetzten Elemente dieser Gruppe bezogenen Gesamtkonzentration zwischen 0,2 und 2,6 Gew.% sowie mindestens ein Element aus einer Magnesium, Nickel, Zirkon und Titan enthaltenden Elementegruppe in einer auf die eingesetzten Elemente dieser Gruppe bezogenen Gesamtkonzentration zwischen 0,05 und 1 ,7 Gew.% aufweist, wobei der Summenanteil von Antimon und Kupfer bei einem zumindest dem dreifachen Kupfergehalt entsprechenden Antimongehalt höchstens 35 Gew.% beträgt.
2. Gleitlagerlegierung nach Anspruch 1 , dadurch gekennzeichnet, dass der Antimongehalt des Weißmetalls 10 bis 22 Gew.% und der Kupfergehalt 3 bis 7 Gew.% beträgt.
3. Gleitlagerlegierung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Antimongehalt des Weißmetalls 13 bis 18 Gew.% und der Kupfergehalt 3,5 bis 5,5 Gew.% beträgt.
4. Gleitlagerlegierung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Weißmetall 0,6 bis 1 ,8 Gew.%, vorzugsweise 0,7 bis 0,9 Gew.%, Zink enthält.
5. Gleitlagerlegierung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Weißmetall wenigstens ein Element aus einer Silber, Gold, Vanadium und Eisen enthaltenden Elementegruppe aufweist, wobei der Einzelanteil dieser Legierungselemente höchstens 4 Gew.% ausmacht, der Summenanteil jedoch höchstens 8 Gew.% beträgt.
6. Gleitlagerlegierung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Weißmetall einen Aluminiumanteil von 0,05 bis 2,5 Gew.% besitzt.
7. Gleitlagerlegierung nach Anspruch 6, dadurch gekennzeichnet, dass das Weißmetall einen Siliziumanteil besitzt, wobei das Aluminium und das Silizium als heterogenes Phasengemisch vorliegen, und dass der Aluminiumanteil dem 7- bis 45-Fachen des Siliziumanteils entspricht.
8. Gleitlagerlegierung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Weißmetall einen Lithiumanteil von 0,05 bis 1 ,6 Gew.% aufweist.
9. Gleitlagerlegierung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Weißmetall wenigstens ein Metall der seltenen Erden in einer Gesamtkonzentration von höchstens 1 , 3 Gew.% enthält.
PCT/AT2009/000082 2008-03-03 2009-03-02 GLEITLAGERLEGIERUNG AUS WEIßMETALL AUF ZINNBASIS WO2009108975A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010549994A JP5563489B2 (ja) 2008-03-03 2009-03-02 錫基ホワイトメタルから成る滑り軸受合金
DE112009000194T DE112009000194A5 (de) 2008-03-03 2009-03-02 Gleitlagerlegierung aus Weißmetall auf Zinnbasis
CN200980107224.XA CN101960029B (zh) 2008-03-03 2009-03-02 由锡基白色金属构成的滑动轴承合金

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA344/2008 2008-03-03
AT3442008A AT505664B1 (de) 2008-03-03 2008-03-03 Gleitlagerlegierung aus weissmetall auf zinnbasis

Publications (1)

Publication Number Publication Date
WO2009108975A1 true WO2009108975A1 (de) 2009-09-11

Family

ID=40427631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2009/000082 WO2009108975A1 (de) 2008-03-03 2009-03-02 GLEITLAGERLEGIERUNG AUS WEIßMETALL AUF ZINNBASIS

Country Status (6)

Country Link
JP (1) JP5563489B2 (de)
KR (1) KR101566044B1 (de)
CN (1) CN101960029B (de)
AT (1) AT505664B1 (de)
DE (1) DE112009000194A5 (de)
WO (1) WO2009108975A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013006388A1 (de) * 2013-04-15 2014-10-16 Zollern Bhw Gleitlager Gmbh & Co. Kg Gleitlagerlegierung auf Zinnbasis
EP2902526A1 (de) 2014-01-31 2015-08-05 Miba Gleitlager GmbH Mehrschichtgleitlager
WO2015113092A1 (de) * 2014-01-31 2015-08-06 Miba Gleitlager Gmbh Gleitlager

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102242293A (zh) * 2011-06-24 2011-11-16 哈尔滨工业大学 一种锡基巴氏合金
CN102248320B (zh) * 2011-07-06 2013-06-05 东南大学 锡基复合巴氏合金及制备焊丝的方法
US20130084209A1 (en) * 2011-09-30 2013-04-04 Siemens Industry, Inc. White Metal Babbitt for Rolling Mill Bushing
AT512442B1 (de) 2012-01-25 2013-10-15 Miba Gleitlager Gmbh Verfahren zur herstellung eines gleitlagers
JP5897934B2 (ja) * 2012-03-02 2016-04-06 大同メタル工業株式会社 摺動材料および軸受装置
CN102994803B (zh) * 2012-12-17 2014-02-12 浙江省诸暨申发轴瓦有限公司 一种高软化点温度的轴承合金材料
JP5636033B2 (ja) * 2012-12-28 2014-12-03 大同メタル工業株式会社 摺動部材及びこれを用いた軸受装置
AT514941B1 (de) * 2013-12-23 2015-05-15 Miba Gleitlager Gmbh Mehrschichtgleitlager
CN104451253A (zh) * 2014-12-02 2015-03-25 常熟市华阳机械制造厂 一种使用寿命长的船用轮架
AT516877B1 (de) 2015-02-19 2016-12-15 Miba Gleitlager Austria Gmbh Gleitlagerelement
CN105750757A (zh) * 2016-03-22 2016-07-13 苏州虎伏新材料科技有限公司 一种用于堆焊以获得锡基巴氏合金耐磨层的焊接材料
JP6959171B2 (ja) 2018-03-28 2021-11-02 大同メタル工業株式会社 摺動部材及びその製造方法
CN108950266B (zh) * 2018-07-26 2019-07-02 红河学院 一种锡基轴承合金的制备方法
CN109055812A (zh) * 2018-09-07 2018-12-21 浙江申发轴瓦股份有限公司 一种巴氏合金材料
CN110819847B (zh) * 2019-11-22 2021-04-16 四川朗峰电子材料有限公司 一种高锑锡基巴氏合金材料及其制备方法
CN111020286B (zh) * 2019-12-13 2021-07-02 郑州机械研究所有限公司 一种锡基巴氏合金及其方法和用途
CN114058899A (zh) * 2022-01-17 2022-02-18 中机智能装备创新研究院(宁波)有限公司 一种锡基巴氏合金的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1523665A (en) * 1976-06-23 1978-09-06 Daido Metal Co Ltd Bearing materials
DE2818099A1 (de) * 1978-04-25 1979-11-08 Hohenzollern Huettenverwalt Weissmetall-legierung und deren verwendung
GB2146354A (en) * 1983-09-12 1985-04-17 Darchem Limited Tin-base bearing alloy with refined structure
GB2285059A (en) * 1993-12-27 1995-06-28 Daido Metal Co A tin-base white metal bearing alloy
DE10145389A1 (de) * 2001-09-14 2003-04-10 Forschungsvereinigung Antriebs Gleitlagerlegierung auf Sn-Basis
US20040076541A1 (en) * 2002-10-22 2004-04-22 Laughlin John P. Friction-resistant alloy for use as a bearing

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53131922A (en) * 1977-04-22 1978-11-17 Daido Metal Co Ltd Tinnbased white metal bearing alloy
CN1012080B (zh) * 1988-10-15 1991-03-20 山东省特种金属材料科技开发公司 一种滑动轴承的合金材料
JP2679920B2 (ja) * 1992-09-28 1997-11-19 大同メタル工業株式会社 非焼付性に優れたオーバーレイを有するすべり軸受材料
US5411703A (en) * 1993-06-16 1995-05-02 International Business Machines Corporation Lead-free, tin, antimony, bismtuh, copper solder alloy
DE4440477C1 (de) * 1994-11-12 1996-01-11 Elektro Thermit Gmbh Gleitlagerlegierung
GB9808981D0 (en) * 1998-04-27 1998-06-24 Itri Ltd Tin alloy wheel balancing weights
JP4401671B2 (ja) * 2003-03-31 2010-01-20 千住金属工業株式会社 高温鉛フリーはんだ合金および電子部品
US7499921B2 (en) * 2004-01-07 2009-03-03 International Business Machines Corporation Streaming mechanism for efficient searching of a tree relative to a location in the tree
JP4504328B2 (ja) * 2006-03-30 2010-07-14 大同メタル工業株式会社 摺動部材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1523665A (en) * 1976-06-23 1978-09-06 Daido Metal Co Ltd Bearing materials
DE2818099A1 (de) * 1978-04-25 1979-11-08 Hohenzollern Huettenverwalt Weissmetall-legierung und deren verwendung
GB2146354A (en) * 1983-09-12 1985-04-17 Darchem Limited Tin-base bearing alloy with refined structure
GB2285059A (en) * 1993-12-27 1995-06-28 Daido Metal Co A tin-base white metal bearing alloy
DE10145389A1 (de) * 2001-09-14 2003-04-10 Forschungsvereinigung Antriebs Gleitlagerlegierung auf Sn-Basis
US20040076541A1 (en) * 2002-10-22 2004-04-22 Laughlin John P. Friction-resistant alloy for use as a bearing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013006388A1 (de) * 2013-04-15 2014-10-16 Zollern Bhw Gleitlager Gmbh & Co. Kg Gleitlagerlegierung auf Zinnbasis
WO2014169890A1 (de) 2013-04-15 2014-10-23 Zollern Bhw Gleitlager Gmbh & Co. Kg Gleitlagerlegierung auf zinnbasis
RU2667188C2 (ru) * 2013-04-15 2018-09-17 Цоллерн Бхв Гляйтлагер Гмбх Унд Ко. Кг Сплав для подшипников скольжения на основе олова
US10190630B2 (en) 2013-04-15 2019-01-29 Zollern Bhw Gleitlager Gmbh & Co. Kg Tin-based sliding bearing alloy
EP2902526A1 (de) 2014-01-31 2015-08-05 Miba Gleitlager GmbH Mehrschichtgleitlager
WO2015113092A1 (de) * 2014-01-31 2015-08-06 Miba Gleitlager Gmbh Gleitlager
US9435376B2 (en) 2014-01-31 2016-09-06 Miba Gleitlager Austria Gmbh Multi-layered plain bearing

Also Published As

Publication number Publication date
CN101960029B (zh) 2013-06-12
JP5563489B2 (ja) 2014-07-30
JP2011513592A (ja) 2011-04-28
DE112009000194A5 (de) 2011-04-07
KR20100125232A (ko) 2010-11-30
AT505664A4 (de) 2009-03-15
CN101960029A (zh) 2011-01-26
AT505664B1 (de) 2009-03-15
KR101566044B1 (ko) 2015-11-05

Similar Documents

Publication Publication Date Title
AT505664B1 (de) Gleitlagerlegierung aus weissmetall auf zinnbasis
AT511196B1 (de) Mehrschichtlagerschale
CA2663605C (en) Magnesium gadolinium alloys
EP3736350B1 (de) Mehrschichtgleitlagerelement
EP2986748B1 (de) Gleitlagerlegierung auf zinnbasis
DE3114533A1 (de) Rostfreier ferritstahl
EP3243920B1 (de) Sphärogusslegierung
DE4219336A1 (de) Verwendung eines Stahls zur Herstellung von Konstruktionsrohren
EP3443134A1 (de) Aushärtbare aluminiumlegierung auf al-mg-si-basis
EP3024958A1 (de) Hochwarmfeste aluminiumgusslegierung und gussteil für verbrennungsmotoren gegossen aus einer solchen legierung
AT410946B (de) Aluminiumlegierung für ein gleitelement
DE10145389C2 (de) Gleitlagerlegierung auf Sn-Basis
EP2455505A1 (de) Zylinderkopf für Verbrennungsmotoren aus einer Aluminiumlegierung
AT501806B1 (de) Gleitlager
EP2906733B1 (de) Werkstoff für elektrische kontaktbauteile
DE102006027844B4 (de) Kupferlegierung auf der Basis von Kupfer und Zinn
EP3847284A1 (de) Warmgewalztes stahlflachprodukt und verfahren zu seiner herstellung
EP1279748B1 (de) Aluminiumbronze mit hoher Verschleissfestigkeit
EP1099000B1 (de) Gleitlagerwerkstoff auf aluminiumbasis
AT505290B1 (de) Gleitlagerwerkstoff aus einer legierung auf kupferbasis
DE10231125A1 (de) Hochfester Duplex-/Triplex-Leichtbaustahl und seine Verwendung
DE19845279A1 (de) Al-Ni-Si-Legierung
DE1558624C (de) Kupferlegierung mit verbesserter Festigkeit und Dehnung
WO2023099734A1 (de) Kupfer-zinn stranggusslegierung, hieraus gefertigter strangguss-rohling oder spanend gefertigtes maschinenteil oder getriebeteil
EP2809818A1 (de) Duplexstahl mit verbesserter kerbschlagzähigkeit und zerspanbarkeit

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980107224.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09716451

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107016818

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010549994

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09716451

Country of ref document: EP

Kind code of ref document: A1

REF Corresponds to

Ref document number: 112009000194

Country of ref document: DE

Date of ref document: 20110407

Kind code of ref document: P

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112009000194

Country of ref document: DE

Effective date: 20110407