WO2009107395A1 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
WO2009107395A1
WO2009107395A1 PCT/JP2009/000893 JP2009000893W WO2009107395A1 WO 2009107395 A1 WO2009107395 A1 WO 2009107395A1 JP 2009000893 W JP2009000893 W JP 2009000893W WO 2009107395 A1 WO2009107395 A1 WO 2009107395A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
indoor
refrigerant
tgc
refrigerant temperature
Prior art date
Application number
PCT/JP2009/000893
Other languages
English (en)
French (fr)
Inventor
岡本哲也
笠原伸一
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to AU2009219540A priority Critical patent/AU2009219540B2/en
Priority to EP09715542A priority patent/EP2261578A4/en
Priority to JP2010500575A priority patent/JP5182358B2/ja
Priority to CN2009801066516A priority patent/CN101960232B/zh
Priority to US12/919,942 priority patent/US8522568B2/en
Publication of WO2009107395A1 publication Critical patent/WO2009107395A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present invention relates to a refrigeration apparatus, and particularly relates to a countermeasure for controlling the outlet refrigerant temperature of a heat radiation side heat exchanger in a refrigeration cycle in which a high-pressure refrigerant is equal to or higher than a critical pressure.
  • This air conditioner includes a multi-type air conditioner in which a plurality of indoor units are connected in parallel and each indoor unit is connected in parallel to an outdoor unit.
  • an air conditioner of Patent Document 1 includes a compressor, an outdoor heat exchanger (heat source side heat exchanger), one outdoor unit having an outdoor expansion valve, and an indoor heat exchanger (use side heat exchanger). And two indoor units.
  • the two branch pipes to which the two indoor heat exchangers are connected are respectively provided with indoor expansion valves corresponding to the indoor heat exchangers.
  • the indoor refrigeration capacity during heating of the air conditioner is controlled by adjusting the opening of the indoor expansion valve based on the degree of supercooling of each indoor heat exchanger.
  • a refrigeration apparatus using carbon dioxide as a refrigerant becomes a refrigeration cycle (supercritical refrigeration cycle) in which the pressure of the high-pressure refrigerant is equal to or higher than the critical pressure. Therefore, the indoor refrigeration capacity cannot be adjusted based on the degree of supercooling of each indoor heat exchanger. For this reason, in the refrigeration apparatus of the supercritical refrigeration cycle, the outlet refrigerant temperature of the indoor heat exchanger is used as a direct parameter, and the opening of the indoor expansion valve is adjusted so that the outlet refrigerant temperature becomes the target refrigerant temperature.
  • the opening degree of the indoor expansion valve is frequently changed every time the actual outlet refrigerant temperature of the indoor heat exchanger fluctuates frequently. It will be adjusted. As a result, the opening degree of the indoor expansion valve is not stable, and as a result, the outlet refrigerant temperature of the indoor heat exchanger is not stable, and the indoor refrigeration capacity is not stable.
  • the present invention has been made in view of such a point, and even if the outlet refrigerant temperature of the indoor heat exchanger fluctuates with the pressure fluctuation of the high-pressure refrigerant, the opening degree of the control valve is stabilized, and the refrigerating capacity is improved.
  • the purpose is to stabilize.
  • a heat source side circuit (21) having a compressor (22), a heat source side heat exchanger (23) and an expansion mechanism (24) and a control valve (34a, 34b) having a variable opening degree are connected.
  • the refrigerant circuit (10) that performs the refrigeration cycle that exceeds the pressure and the use side heat exchanger (33a, 33b) release heat the outlet refrigerant temperature of each use side heat exchanger (33a, 33b) is set to a predetermined temperature.
  • a refrigeration apparatus including a controller (50) for control is intended.
  • the said controller (50) is the exit refrigerant
  • the refrigerant circulates through the refrigerant circuit (10), and a vapor compression refrigeration cycle is performed.
  • the refrigerant compressed by the compressor (22) dissipates heat in the use side heat exchangers (33a, 33b) to heat the room.
  • the valve control section (50a) of the controller (50) calculates the average value of the outlet refrigerant temperatures of all the use side heat exchangers (33a, 33b), and is the target of the control. The deviation from the outlet refrigerant temperature of the use side heat exchanger (33a, 33b) is calculated.
  • the target value of the valve control unit (50a) is based on the target air temperature in the room in which the use side heat exchangers (33a, 33b) are provided. This is a deviation between the target refrigerant temperature of the outlet refrigerant temperature of the use side heat exchanger ((33a, 33b) and the above average value.
  • the target refrigerant temperature of the outlet refrigerant temperature of the use side heat exchanger (33a, 33b) based on the target air temperature that is the difference between the current indoor temperature and the set temperature set by the user, Then, a deviation from the average value is calculated, and the deviation is set as a target value. That is, the difference between the target refrigerant temperature and the average value is set as the target value. Then, the use-side heat exchanger (33a, 33b) to be controlled is adjusted so that the deviation between the average value and the actual outlet refrigerant temperature in the use-side heat exchanger (33a, 33b) to be controlled approaches the target value. ) To adjust the opening of the control valve (34a, 34b).
  • the control valve (34a) corresponding to the target usage side heat exchanger (33a) Increase the opening of.
  • the circulation amount of the refrigerant increases, the outlet refrigerant temperature of the use side heat exchanger (33a) rises, and the deviation between the outlet refrigerant temperature and the average value approaches the target value. That is, the outlet refrigerant temperature of the first usage side heat exchanger (33a) approaches the target refrigerant temperature.
  • the target value of the other use side heat exchanger (33b) is constant, and the deviation between the outlet refrigerant temperature of the other use side heat exchanger (33b) and the above average value does not vary substantially.
  • the control valve (34b) of the other use side heat exchanger (33b) maintains substantially the same opening, and the outlet refrigerant temperature of the use side heat exchanger (33b) is maintained at the target refrigerant temperature.
  • the control valve (34a) corresponding to the target usage side heat exchanger (33a) Reduce the opening.
  • the circulation amount of the refrigerant decreases
  • the outlet refrigerant temperature of the use side heat exchanger (33a) decreases
  • the deviation between the outlet refrigerant temperature and the average value approaches the target value. That is, the outlet refrigerant temperature of the first usage side heat exchanger (33a) approaches the target refrigerant temperature.
  • the target value of the other use side heat exchanger (33b) is constant, and the deviation between the outlet refrigerant temperature of the other use side heat exchanger (33b) and the above average value does not vary substantially.
  • the control valve (34b) of the other use side heat exchanger (33b) maintains substantially the same opening, and the outlet refrigerant temperature of the use side heat exchanger (33b) is maintained at the target refrigerant temperature.
  • the deviation between the average value of the outlet refrigerant temperatures of all the use side heat exchangers (33a, 33b) and the outlet refrigerant temperature of the use side heat exchangers (33a, 33b) is calculated, Since the deviation approaches a predetermined target value, even if the outlet refrigerant temperature of each use-side heat exchanger (33a, 33b) fluctuates with the pressure fluctuation of the high-pressure refrigerant, the fluctuation of the deviation is suppressed. be able to.
  • the deviation between the target refrigerant temperature of the outlet refrigerant temperature of the use side heat exchanger (33a, 33b) based on the indoor target air temperature and the average value is set as the target value.
  • the target refrigerant temperature of the outlet refrigerant temperature of one usage-side heat exchanger (33a) is changed, the outlet refrigerant temperature of the first usage-side heat exchanger (33a) can be made to follow the target refrigerant temperature.
  • the outlet refrigerant temperature of the use side heat exchanger (33a) can be controlled without being subjected to pressure fluctuations of the high pressure refrigerant.
  • the usage side heat exchanger (33a, 33b) Since the deviation between the target refrigerant temperature of the outlet refrigerant temperature of the usage side heat exchanger (33a, 33b) based on the indoor target air temperature and the above average value is used, the usage side heat exchanger (33a, 33b) It becomes easy to judge whether the capacity of 33b) is excessive or insufficient. As a result, it is possible to appropriately control the outlet refrigerant temperature of the usage side heat exchanger (33a) according to the capacity requirement of the usage side heat exchanger (33a, 33b). Thereby, useless input of the compressor (22) can be reduced, so that energy saving can be achieved. Moreover, since the refrigerating capacity suitable for the required capacity of the use side heat exchangers (33a, 33b) can be stably exhibited, the comfort can be improved.
  • FIG. 1 is a piping system diagram of a refrigerant circuit of an air conditioner according to an embodiment.
  • FIG. 2 is a state diagram illustrating a relationship between the refrigerant pressure and the refrigerant temperature when the pressure of the high-pressure refrigerant according to the embodiment varies.
  • FIG. 3 is a state diagram illustrating a relationship between the refrigerant pressure and the refrigerant temperature when the outlet refrigerant temperature of the heat exchanger according to the embodiment is changed.
  • FIG. 4 is a diagram illustrating the relationship between the outlet refrigerant temperature, the opening of the indoor expansion valve, and time according to the embodiment.
  • FIG. 1 is a piping system diagram of a refrigerant circuit of an air conditioner according to an embodiment.
  • FIG. 2 is a state diagram illustrating a relationship between the refrigerant pressure and the refrigerant temperature when the pressure of the high-pressure refrigerant according to the embodiment varies.
  • FIG. 3 is a state diagram illustrating a relationship between
  • FIG. 5 is a state diagram showing the relationship between the refrigerant pressure and the refrigerant temperature when the pressure of the high-pressure refrigerant according to the prior art increases.
  • FIG. 6 is a state diagram showing a relationship between the refrigerant pressure and the refrigerant temperature when the pressure of the high-pressure refrigerant according to the related art is decreased.
  • the refrigeration apparatus is an air conditioner that can be switched to an air conditioning operation, and constitutes a so-called multi-type air conditioner (1).
  • the air conditioner (1) includes one outdoor unit (20) installed outdoors, and a first indoor unit (30a) and a second indoor unit (30b) installed in different rooms.
  • the outdoor unit (20) is provided with an outdoor circuit (21) that constitutes a heat source side circuit.
  • the first indoor unit (30a) includes a first indoor circuit (31a) that constitutes a use side circuit
  • the second indoor unit (30b) includes a second indoor side circuit ( 31b) is provided.
  • the indoor side circuits (31a, 31b) are connected in parallel to each other and connected to the outdoor circuit (21) via the first connection pipe (11) and the second connection pipe (12).
  • a refrigerant circuit (10) is formed in which the refrigerant circulates and performs a refrigeration cycle.
  • the refrigerant circuit (10) is filled with carbon dioxide as a refrigerant to constitute a supercritical refrigeration cycle.
  • the outdoor circuit (21) includes a compressor (22), an outdoor heat exchanger (23), an outdoor expansion valve (24), and a four-way switching valve (25) that serve as an evaporator during heating and serve as a radiator during cooling.
  • the compressor (22) is a fully sealed high-pressure dome type scroll compressor. Electric power is supplied to the compressor (22) via an inverter. That is, the capacity of the compressor (22) can be changed by changing the rotation speed of the compressor motor by changing the output frequency of the inverter.
  • the outdoor heat exchanger (23) is a cross-fin type fin-and-tube heat exchanger and constitutes a heat source side heat exchanger. In the outdoor heat exchanger (23), heat is exchanged between the refrigerant and the outdoor air.
  • the outdoor expansion valve (24) is an electronic expansion valve whose opening degree can be adjusted, and constitutes an expansion mechanism.
  • the four-way selector valve (25) has a first port to a fourth port.
  • the four-way switching valve (25) has a first port connected to the discharge pipe (22a) of the compressor (22), a second port connected to the outdoor heat exchanger (23), and a third port connected to the compressor.
  • the suction port (22b) of (22) is connected, and the fourth port is connected to the first connection pipe (11).
  • the four-way selector valve (25) has a state in which the first port and the fourth port communicate with each other and the second port and the third port communicate with each other (state shown by a solid line in FIG. 1), the first port,
  • the two ports can communicate with each other and the third port and the fourth port can communicate with each other (a state indicated by a broken line in FIG. 1).
  • the first indoor circuit (31a) is provided with a first branch pipe (32a) having one end connected to the first connecting pipe (11) side and the other end connected to the second connecting pipe (12).
  • the first branch pipe (32a) is provided with a first indoor heat exchanger (33a) and a first indoor expansion valve (34a) that serve as a radiator during heating and serve as an evaporator during cooling.
  • the second indoor circuit (31b) is provided with a second branch pipe having one end connected to the first connecting pipe (11) side and the other end connected to the second connecting pipe (12) side.
  • the second branch pipe (32b) is provided with a second indoor heat exchanger (33b) and a second indoor expansion valve (34b) that serve as a radiator during heating and serve as an evaporator during cooling.
  • Each of the indoor heat exchangers (33a, 33b) is a cross fin type fin-and-tube heat exchanger and constitutes a use side heat exchanger. In each indoor heat exchanger (33a, 33b), heat is exchanged between the refrigerant and the room air.
  • the first indoor expansion valve (34a) and the second indoor expansion valve (34b) constitute a control valve and are electronic expansion valves whose opening degree can be adjusted.
  • the first indoor expansion valve (34a) is provided on the second connecting pipe (12) side of the first branch pipe (32a).
  • the second indoor expansion valve (34b) is provided on the second connecting pipe (12) side of the second branch pipe (32b).
  • the first indoor expansion valve (34a) adjusts the circulation amount of the refrigerant flowing through the first indoor heat exchanger (33a), and the second indoor expansion valve (34b) controls the second indoor heat exchanger (33b). Adjust the circulation rate of the flowing refrigerant.
  • the refrigerant circuit (10) is provided with a high pressure sensor (40), a high pressure temperature sensor (41), a first refrigerant temperature sensor (42), and a second refrigerant temperature sensor (43).
  • the high pressure sensor (40) detects the pressure of the refrigerant discharged from the compressor (22).
  • the high pressure temperature sensor (41) detects the temperature of the refrigerant discharged from the compressor (22).
  • the first refrigerant temperature sensor (42) is provided at the refrigerant outlet of the first indoor heat exchanger (33a) during heating, and the refrigerant temperature (exit refrigerant temperature Tgc immediately after flowing out of the first indoor heat exchanger (33a). (1)) is detected.
  • the second refrigerant temperature sensor (43) is provided at the refrigerant outlet of the second indoor heat exchanger (33b) during heating, and the refrigerant temperature (exit refrigerant temperature Tgc ( 2)) is detected.
  • the first indoor unit (30a) is provided with a first indoor temperature sensor (44) in the vicinity of the first indoor heat exchanger (33a).
  • the first indoor temperature sensor (44) detects the indoor air temperature around the first indoor heat exchanger (33a).
  • the second indoor unit (30b) is provided with a second indoor temperature sensor (45) in the vicinity of the second indoor heat exchanger (33b).
  • the second indoor temperature sensor (45) detects the indoor air temperature around the second indoor heat exchanger (33b).
  • the air conditioner (1) further includes a controller (50) for controlling the outlet refrigerant temperature of the first indoor heat exchanger (33a) and the outlet refrigerant temperature of the second indoor heat exchanger (33b). Yes.
  • the controller (50) includes a valve control unit (50a).
  • the valve controller (50a) is configured such that a deviation between the outlet refrigerant temperature of the indoor heat exchanger (33a, 33b) and the average value of the outlet refrigerant temperature of the indoor heat exchangers (33a, 33b) is a predetermined target value.
  • the opening degree of the indoor expansion valve (34a, 34b) of the indoor heat exchanger (31a, 31b) is adjusted so that
  • the first refrigerant temperature sensor (42) and the second refrigerant temperature sensor (43) are respectively connected to the outlet refrigerant temperature Tgc (1) of the first indoor heat exchanger (33a) and the second indoor heat exchanger (
  • the outlet refrigerant temperature Tgc (2) of 33b) is detected.
  • the valve controller (50a) calculates an average value Tgc (a) from the outlet refrigerant temperature Tgc (1) and the outlet refrigerant temperature Tgc (2), and this outlet refrigerant temperature Tgc. Deviation ⁇ Tgc (1) between (1) and average value Tgc (a) is calculated.
  • the target refrigerant temperature of the outlet refrigerant temperature Tgc (1) of the first indoor heat exchanger (33a) is set to Tgc (S1).
  • This target refrigerant temperature Tgc (S1) is the target of the indoor air temperature detected by the first indoor temperature sensor (44) in the room where the first indoor unit (30a) is installed and the indoor air temperature set by the user. It is calculated according to the difference with temperature. That is, the target refrigerant temperature Tgc (S1) is also changed as the target air temperature target temperature set by the user is changed.
  • the valve control unit (50a) calculates a target value ⁇ Tgc (S1) that is a deviation between the target refrigerant temperature Tgc (S1) and the average value Tgc (a), and then the deviation ⁇ Tgc (1) is the target value ⁇ Tgc.
  • the opening degree of the first indoor expansion valve (34a) is adjusted so as to approach (S1). As a result, the outlet refrigerant temperature Tgc (1) of the first indoor heat exchanger (33a) is controlled.
  • the outlet refrigerant temperature Tgc (2) of the second indoor heat exchanger (33b) is controlled in the same manner as the outlet refrigerant temperature Tgc (1) of the first indoor heat exchanger (33a).
  • the target refrigerant temperature of the outlet refrigerant temperature Tgc (2) is set to Tgc (S2), and the valve control unit (50a) calculates the outlet refrigerant temperature Tgc (2) and the average value Tgc (a).
  • the second indoor expansion valve (34b) is adjusted so that the deviation ⁇ Tgc (2) of the valve approaches the target value ⁇ Tgc (S2) that is the deviation between the target refrigerant temperature Tgc (S2) and the average value Tgc (a). To do.
  • the air conditioner (1) it is possible to perform an operation of heating the indoor units (30a, 30b) and an operation of cooling the indoor units (30a, 30b).
  • the heating operation will be described.
  • the first indoor expansion valve (34a) and the second indoor expansion valve (34b) adjust the refrigerant flow rate flowing through the first indoor heat exchanger (33a) and the second indoor heat exchanger (33b). Functions as a regulating valve.
  • the four-way selector valve (25) is switched to the solid line side in FIG.
  • the refrigerant compressed to a critical pressure or higher by the compressor (22) passes through the four-way switching valve (25) and the first connection pipe (11), and the first branch pipe (32a) and The current is diverted to the second branch pipe (32b).
  • the refrigerant releases heat to the indoor air. That is, in the first indoor heat exchanger (33a), a heating operation for heating the room air is performed, and the room in which the first indoor unit (30a) is installed is heated.
  • the refrigerant that has flowed out of the first indoor heat exchanger (33a) passes through the first indoor expansion valve (34a) and flows into the second connection pipe (12).
  • the refrigerant flowing into the second branch pipe (32b) flows through the second indoor heat exchanger (33b).
  • the refrigerant releases heat to the indoor air. That is, in the second indoor heat exchanger (33b), a heating operation for heating the room air is performed, and the room in which the second indoor unit (30b) is installed is heated.
  • the refrigerant that has flowed out of the second indoor heat exchanger (33b) passes through the second indoor expansion valve (34b) and flows into the second communication pipe (12).
  • the refrigerant flowing through the second communication pipe (12) is expanded by the outdoor expansion valve (24) and evaporated (heat absorption) by the outdoor heat exchanger (23) to become a gas refrigerant.
  • This gas refrigerant is sucked into the compressor (22) via the four-way switching valve (25).
  • the compressor (22) the refrigerant is compressed to a critical pressure or higher.
  • a target value ⁇ Tgc (S1) that is a deviation between the target refrigerant temperature Tgc (S1) and the average value Tgc (a) of the outlet refrigerant temperature of the first indoor heat exchanger (33a) is calculated.
  • the deviation ⁇ Tgc (1) and the target value ⁇ Tgc (S1) are substantially equal, so the outlet refrigerant temperature Tgc (1) is changed by adjusting the opening of the first indoor expansion valve (34a). There is no need to let them.
  • the outlet refrigerant temperature Tgc (1) of the first indoor heat exchanger (33a) is at the position A along with the fluctuation.
  • the outlet refrigerant temperature Tgc (2) of the second indoor heat exchanger (33b) moves to the position B.
  • the average value Tgc (a) moves to the position C as the outlet refrigerant temperatures Tgc (1) and Tgc (2) move, the deviation ⁇ Tgc (1) before and after the change in the pressure value of the high-pressure refrigerant.
  • the target refrigerant temperature Tgc (S1) does not fluctuate
  • the target value ⁇ Tgc (S1) does not fluctuate before and after the fluctuation of the pressure value of the high-pressure refrigerant.
  • the deviation ⁇ Tgc (1) and the target value ⁇ Tgc (S1) remain substantially equal before and after the change in the pressure value of the high-pressure refrigerant, so that the opening degree of the first indoor expansion valve (34a) is adjusted. Thus, there is no need to change the outlet refrigerant temperature Tgc (1).
  • the outlet refrigerant temperature Tgc (2) of the second indoor heat exchanger (33b) is not shown, but is the same as the control of the outlet refrigerant temperature Tgc (1) in the first indoor heat exchanger (33a). Control is executed.
  • the control of the outlet refrigerant temperatures Tgc (1) and Tgc (2) when the target refrigerant temperature Tgc (S1) of the outlet refrigerant temperature Tgc (1) of the first indoor heat exchanger (33a) is changed is illustrated.
  • the target refrigerant temperatures Tgc (S1) and Tgc (S2) of the outlet refrigerant temperatures of the indoor heat exchangers (33a, 33b) are changed based on the setting of the target temperature of the indoor air temperature by the user. .
  • the controller (50) sets the target refrigerant temperature Tgc (S1) of the first indoor heat exchanger (33a) to Tgc (S1) as the user changes the indoor air temperature. Change to '). Then, the target value ⁇ Tgc (S1) increases to ⁇ Tgc (S1 ′). For this reason, the opening degree of the first indoor expansion valve (34a) is adjusted so that the deviation ⁇ Tgc (1) approaches the target value ⁇ Tgc (S1 ′).
  • the opening degree of the first indoor expansion valve (34a) is increased, and the amount of refrigerant circulating through the first indoor heat exchanger (33a) is increased.
  • the outlet refrigerant temperature Tgc (1) rises, and the deviation ⁇ Tgc (1) eventually approaches ⁇ Tgc (S1 ′) and the outlet refrigerant temperature Tgc (1 ) Approaches Tgc (S1 ′).
  • the outlet refrigerant temperature Tgc (1) of the first indoor heat exchanger (33a) rises, the amount of refrigerant circulating in the second indoor heat exchanger (33b) decreases, so the second indoor heat exchanger ( 33b), the outlet refrigerant temperature Tgc (2) decreases and the deviation ⁇ Tgc (2) increases.
  • the average value Tgc (a) slightly increases as the outlet refrigerant temperature Tgc (1) increases.
  • the target value ⁇ Tgc (S2) does not change due to the change in the target refrigerant temperature Tgc (S1)
  • the target refrigerant temperature Tgc (S2) slightly increases and changes to Tgc (S2 ′).
  • the opening degree of the second indoor expansion valve (34b) is increased, and the amount of refrigerant circulating through the second indoor heat exchanger (33b) is increased.
  • the outlet refrigerant temperature Tgc (2) rises, and the deviation ⁇ Tgc (2) eventually approaches the target value ⁇ Tgc (S2 ′) and the outlet refrigerant temperature Tgc. (2) approaches the target refrigerant temperature Tgc (S2 '). Therefore, the outlet refrigerant temperature Tgc (2) of the second indoor heat exchanger (33b) slightly increases as the outlet refrigerant temperature Tgc (1) of the first indoor heat exchanger (33a) increases. .
  • the average value Tgc (a) is the average value of the outlet refrigerant temperatures Tgc (1) and Tgc (2) of the indoor heat exchangers (33a, 33b), and therefore the indoor heat exchangers connected in parallel. As the number increases, the increase in the average value Tgc (a) accompanying the increase in the target refrigerant temperature Tgc (S1) is suppressed.
  • the first indoor expansion valve (34a) and the second indoor expansion valve (34b) function as expansion valves, and the outdoor expansion valve (24) is maintained in the previous state. Is done. Further, the four-way switching valve (25) is switched to the broken line side in FIG.
  • the refrigerant compressed to a critical pressure or higher by the compressor (22) radiates heat in the outdoor heat exchanger (23), and then the first branch pipe (32a) and the second branch pipe (32b).
  • Divide into The separated refrigerant is decompressed by the first indoor expansion valve (34a) and the second indoor expansion valve (34b), and then evaporated by the first indoor heat exchanger (33a) and the second indoor heat exchanger (33b).
  • Gas refrigerant This gas refrigerant merges in the first communication pipe (11) and is sucked into the compressor (22) via the four-way switching valve (25). In the compressor (22), the refrigerant is compressed to a critical pressure or higher.
  • Deviations ⁇ Tgc (1) and ⁇ Tgc (2) from the outlet refrigerant temperatures Tgc (1) and Tgc (2) are calculated, and these deviations ⁇ Tgc (1) and ⁇ Tgc (2) are calculated as the outlet refrigerant temperatures Tgc (1) and
  • the target refrigerant temperatures Tgc (S1) and Tgc (S2) of Tgc (2) and the average values Tgc (a) are made to approach target values ⁇ Tgc (S1) and ⁇ Tgc (S2).
  • the target refrigerant temperatures Tgc (S1) and Tgc (S2) of the outlet refrigerant temperatures Tgc (1) and Tgc (2) of the indoor heat exchanger (33a, 33b) based on the indoor target air temperature, and the above average value
  • the indoor heat exchanger The outlet refrigerant temperature Tgc (1) of 33a) can be made to follow the target refrigerant temperature Tgc (S1).
  • the outlet refrigerant temperatures Tgc (1) and Tgc (2) of the indoor heat exchangers (33a, 33b) can be controlled without receiving the pressure fluctuation of the high-pressure refrigerant.
  • the present invention may be configured as follows with respect to the above embodiment.
  • the target refrigerant temperature of the outlet refrigerant temperature of each indoor heat exchanger (33a, 33b) is not changed with respect to the pressure fluctuation of the high-pressure refrigerant of the compressor (22).
  • the present invention can also be applied to a case where the target refrigerant temperature is changed (reset) as the pressure of the high-pressure refrigerant changes.
  • the above embodiment is directed to the air conditioner (1) that can be switched between the cooling operation and the heating operation.
  • the present invention may be applied to a heating-only air conditioner that performs only heating operation.
  • the indoor expansion valve may be a control valve (flow rate adjusting valve) that adjusts the amount of refrigerant flowing through the indoor heat exchanger.
  • the present invention is not limited to an air conditioner and may be applied to various refrigeration apparatuses.
  • the present invention is not limited to two indoor units (30a, 30b), and may have three or more indoor units, that is, three or more indoor heat exchangers.
  • the present invention is useful for a refrigeration apparatus that performs a refrigeration cycle in which a high-pressure refrigerant has a critical pressure or higher.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

  空気調和装置(1)は、圧縮機(22)、室外熱交換器(23)及び室外膨張弁(24)を有する室外側回路(21)と、室内熱交換器(33a,33b)及び室内膨張弁(34a,34b)を有する2つの室内側回路(31a,31b)とを備えて超臨界冷凍サイクルを行う冷媒回路(10)が設けられている。空気調和装置(1)は、各室内熱交換器(33a,33b)の出口冷媒温度を制御するコントローラ(50)が設けられている。コントローラ(50)は、各室内熱交換器(33a,33b)の出口冷媒温度と、全ての室内熱交換器(33a,33b)の出口冷媒温度の平均値との偏差が、各室内熱交換器(33a,33b)の出口冷媒温度の目標冷媒温度と平均値との偏差である目標値に近づくように室内膨張弁(34a,34b)の開度を調節する弁制御部(50a)を備えている。

Description

冷凍装置
  本発明は、冷凍装置に関し、特に、高圧冷媒が臨界圧力以上となる冷凍サイクルにおける放熱側熱交換器の出口冷媒温度の制御対策に係るものである。
  従来、冷媒を循環させて冷凍サイクルを行う冷凍装置は、空気調和装置に広く適用されている。この空気調和装置には、複数の室内ユニットが並列に接続されると共に、各室内ユニットが室外ユニットに並列に接続されたマルチ型空気調和装置がある。
  例えば、特許文献1の空気調和装置は、圧縮機、室外熱交換器(熱源側熱交換器)及び室外膨張弁を有する1台の室外ユニットと、室内熱交換器(利用側熱交換器)を有する2台の室内ユニットとを備えている。上記2つの室内熱交換器がそれぞれ接続される2本の分岐配管には、各室内熱交換器に対応する室内膨張弁がそれぞれ設けられている。この空気調和装置の暖房時における室内冷凍能力は、各室内熱交換器の過冷却度に基づき室内膨張弁の開度を調節して制御されている。
特開2004-44921号公報
  しかしながら、二酸化炭素を冷媒とする冷凍装置は、高圧冷媒の圧力が臨界圧力以上となる冷凍サイクル(超臨界冷凍サイクル)となる。したがって、各室内熱交換器の過冷却度に基づいて室内冷凍能力を調節することができない。このため、超臨界冷凍サイクルの冷凍装置では、室内熱交換器の出口冷媒温度を直接のパラメータとし、この出口冷媒温度が目標冷媒温度になるよう室内膨張弁の開度を調節することになる。
  ところが、超臨界冷凍サイクルでは冷媒の凝縮領域が定まっていないため、高圧冷媒の圧力変動が大きく、この高圧変動に伴って出口冷媒温度が変動する。
  具体的に、例えば、図5に示すように、室内熱交換器の出口冷媒温度Tgc(1)と目標冷媒温度Tgc(S1)とが30℃である状態から、高圧冷媒の圧力が上昇すると、この圧力上昇に伴って出口冷媒温度Tgc(1)がTgc(2)に上昇する。その際、目標冷媒温度Tgc(S1)は変動しないため、出口冷媒温度Tgc(2)と目標冷媒温度Tgc(S1)との間に温度差が生じる(Tgc(2)>Tgc(S1))。この結果、室内膨張弁の開度を小さくして冷媒の循環量を減らし、出口冷媒温度Tgc(2)を目標冷媒温度Tgc(S1)に近づける。
  一方、図6に示すように、出口冷媒温度Tgc(2)と目標冷媒温度Tgc(S1)とが30℃である状態から、高圧冷媒の圧力が降下すると、この圧力降下に伴って出口冷媒温度Tgc(2)がTgc(3)に低下する。その際、目標冷媒温度Tgc(S1)は変動しないため、出口冷媒温度Tgc(3)と目標冷媒温度Tgc(S1)との間に温度差が生じる(Tgc(3)<Tgc(S1))。この結果、室内膨張弁の開度を大きくして冷媒の循環量を増やし、出口冷媒温度Tgc(3)が目標冷媒温度Tgc(S1)に近づける。
  このように、従来の制御方法は、出口冷媒温度そのものの値を目標冷媒温度としているので、室内熱交換器の実際の出口冷媒温度が頻繁に変動するたびに室内膨張弁の開度を頻繁に調節することとなる。この結果、室内膨張弁の開度が安定せず、結果的に室内熱交換器の出口冷媒温度も安定せず、室内冷凍能力が安定しないという問題があった。
  本発明は、斯かる点に鑑みてなされたものであり、高圧冷媒の圧力変動に伴って室内熱交換器の出口冷媒温度が変動しても、制御弁の開度を安定させ、冷凍能力を安定させることを目的とする。
  第1の発明は、圧縮機(22)、熱源側熱交換器(23)及び膨張機構(24)を有する熱源側回路(21)と、開度可変な制御弁(34a,34b)が接続された利用側熱交換器(33a,33b)を有し且つ互いに並列状態で上記熱源側回路(21)に接続された複数の利用側回路(31a,31b)とを備え、高圧冷媒の圧力が臨界圧力以上となる冷凍サイクルを行う冷媒回路(10)と、上記利用側熱交換器(33a,33b)の放熱時に、上記各利用側熱交換器(33a,33b)の出口冷媒温度を所定温度に制御するコントローラ(50)とを備えた冷凍装置を対象としている。
  そして、上記コントローラ(50)は、上記各利用側回路(31a,31b)における利用側熱交換器(33a,33b)の出口冷媒温度と、全ての利用側熱交換器(33a,33b)の出口冷媒温度の平均値との偏差が、所定の目標値になるように上記各利用側回路(31a,31b)の制御弁(34a,34b)の開度を調節する弁制御部(50a)を備えている。
  上記第1の発明では、冷媒が冷媒回路(10)を循環し、蒸気圧縮式の冷凍サイクルが行われる。そして、例えば、上記圧縮機(22)で圧縮された冷媒が、利用側熱交換器(33a,33b)で放熱して室内の暖房を行う。その際、上記コントローラ(50)の弁制御部(50a)は、全ての利用側熱交換器(33a,33b)の出口冷媒温度の平均値を算出し、該平均値と、制御の対象となる利用側熱交換器(33a,33b)の出口冷媒温度との偏差を算出する。この偏差は、高圧冷媒の圧力の変動に伴って各利用側熱交換器(33a,33b)の出口冷媒温度が変動しても一定に保たれる。そして、上記偏差が所定の目標値に近づくよう上記利用側熱交換器(33a,33b)に対応する制御弁(34a,34b)の開度を調節する。
  第2の発明は、上記第1の発明において、上記弁制御部(50a)の目標値は、上記各利用側熱交換器(33a,33b)が設けられる室内の目標空気温度に基づいた上記各利用側熱交換器((33a,33b)の出口冷媒温度の目標冷媒温度と上記平均値との偏差としたものである。
  上記第2の発明では、例えば、現在の室内温度とユーザが設定する設定温度との差である目標空気温度に基づいた利用側熱交換器(33a,33b)の出口冷媒温度の目標冷媒温度と、上記平均値との偏差を算出し、その偏差を目標値とする。つまり、目標冷媒温度と平均値との差を目標値とする。そして、上記平均値と、制御対象の利用側熱交換器(33a,33b)における実際の出口冷媒温度との偏差が上記目標値に近づくように上記制御対象の利用側熱交換器(33a,33b)に対応する制御弁(34a,34b)の開度を調節する。
  具体的に、1の利用側熱交換器(33a)の出口冷媒温度の目標冷媒温度を上げて目標値を大きくすると、対象となる利用側熱交換器(33a)に対応する制御弁(34a)の開度を大きくする。この結果、冷媒の循環量が増加し、上記利用側熱交換器(33a)の出口冷媒温度が上昇し、上記出口冷媒温度と上記平均値との偏差が上記目標値に近づく。つまり、上記1の利用側熱交換器(33a)の出口冷媒温度が目標冷媒温度に近づく。一方、他の利用側熱交換器(33b)の目標値は一定であり、且つこの他の利用側熱交換器(33b)の出口冷媒温度と上記平均値との偏差はほぼ変動しない。この結果、上記他の利用側熱交換器(33b)の制御弁(34b)は、ほぼ同じ開度を維持し、上記利用側熱交換器(33b)の出口冷媒温度が目標冷媒温度に維持される。
  また、1の利用側熱交換器(33a)の出口冷媒温度の目標冷媒温度を下げて上記目標値を小さくすると、対象となる利用側熱交換器(33a)に対応する制御弁(34a)の開度を小さくする。この結果、冷媒の循環量が減少し、上記利用側熱交換器(33a)の出口冷媒温度が下降し、上記出口冷媒温度と上記平均値との偏差が上記目標値に近づく。つまり、上記1の利用側熱交換器(33a)の出口冷媒温度が目標冷媒温度に近づく。一方、他の利用側熱交換器(33b)の目標値は一定であり、且つこの他の利用側熱交換器(33b)の出口冷媒温度と上記平均値との偏差はほぼ変動しない。この結果、上記他の利用側熱交換器(33b)の制御弁(34b)は、ほぼ同じ開度を維持し、上記利用側熱交換器(33b)の出口冷媒温度が目標冷媒温度に維持される。
  上記第1の発明によれば、全ての利用側熱交換器(33a,33b)の出口冷媒温度の平均値と、利用側熱交換器(33a,33b)の出口冷媒温度の偏差を算出し、該偏差が所定の目標値に近づくようにしたために、高圧冷媒の圧力変動に伴って各利用側熱交換器(33a,33b)の出口冷媒温度が変動しても、上記偏差の変動を抑制することができる。この結果、高圧冷媒の圧力変動が生じても、制御弁(34a,34b)の開度を調節する必要がなく、各利用側熱交換器(33a,33b)の出口冷媒温度を安定して制御することができる。
  上記第2の発明によれば、室内の目標空気温度に基づいた利用側熱交換器(33a,33b)の出口冷媒温度の目標冷媒温度と、上記平均値との偏差を目標値としたために、1の利用側熱交換器(33a)の出口冷媒温度の目標冷媒温度を変更した際、上記1の利用側熱交換器(33a)の出口冷媒温度を目標冷媒温度に追従させることができる。この結果、高圧冷媒の圧力変動を受けることなく、利用側熱交換器(33a)の出口冷媒温度を制御することができる。
  また、室内の目標空気温度に基づいた利用側熱交換器(33a,33b)の出口冷媒温度の目標冷媒温度と、上記平均値との偏差を用いているので、利用側熱交換器(33a,33b)の能力の過不足の判定が容易となる。この結果、利用側熱交換器(33a,33b)の能力要求に応じた利用側熱交換器(33a)の出口冷媒温度を適切に制御することができる。これにより圧縮機(22)の無駄な入力を削減することができるので、省エネルギ化を図ることができる。また、上記利用側熱交換器(33a,33b)の必要能力に合った冷凍能力を安定して発揮させることができるので、快適性の向上を図ることができる。
図1は、実施形態に係る空気調和装置の冷媒回路の配管系統図である。 図2は、実施形態に係る高圧冷媒の圧力変動時における冷媒圧力と冷媒温度との関係を示す状態図である。 図3は、実施形態に係る熱交換器の出口冷媒温度の変更時における冷媒圧力と冷媒温度との関係を示す状態図である。 図4は、実施形態に係る出口冷媒温度及び室内膨張弁の開度と、時間との関係を示す図である。 図5は、従来技術に係る高圧冷媒の圧力上昇時における冷媒圧力と冷媒温度との関係を示す状態図である。 図6は、従来技術に係る高圧冷媒の圧力下降時における冷媒圧力と冷媒温度との関係を示す状態図である。
符号の説明
10     冷媒回路
21     熱源側回路
22     圧縮機
23     室外熱交換器
24     室外膨張弁
31a    第1室内側回路
31b    第2室内側回路
33a    第1室内熱交換器
33b    第2室内熱交換器
34a    第1室内膨張弁
34b    第2室内膨張弁
50     コントローラ
  以下、本発明の実施形態を図面に基づいて詳細に説明する。
  本実施形態に係る冷凍装置は、図1に示すように、冷暖房運転に切換可能な空気調和装置で、いわゆるマルチ式の空気調和装置(1)を構成している。この空気調和装置(1)は、室外に設置される一つの室外ユニット(20)と、異なる室内に設置される第1室内ユニット(30a)及び第2室内ユニット(30b)とを備えている。
  上記室外ユニット(20)には、熱源側回路を構成する室外側回路(21)が設けられている。上記第1室内ユニット(30a)には、利用側回路を構成する第1室内側回路(31a)が、上記第2室内ユニット(30b)には、利用側回路を構成する第2室内側回路(31b)がそれぞれ設けられている。上記各室内側回路(31a,31b)は、互いに並列に接続されると共に、第1連絡配管(11)及び第2連絡配管(12)を介して室外側回路(21)に接続されている。その結果、この空気調和装置(1)では、冷媒が循環して冷凍サイクルが行われる冷媒回路(10)が構成される。この冷媒回路(10)には、冷媒として二酸化炭素が充填され、超臨界冷凍サイクルを構成している。
  上記室外側回路(21)には、圧縮機(22)、暖房時に蒸発器となり、冷房時に放熱器となる室外熱交換器(23)、室外膨張弁(24)及び四路切換弁(25)が設けられている。圧縮機(22)は、全密閉型で高圧ドーム型のスクロール圧縮機である。この圧縮機(22)には、インバータを介して電力が供給される。即ち、圧縮機(22)は、インバータの出力周波数を変化させて圧縮機モータの回転速度を変更することによって、その容量が変更可能となっている。室外熱交換器(23)は、クロスフィン式のフィン・アンド・チューブ型熱交換器であって、熱源側熱交換器を構成している。この室外熱交換器(23)では、冷媒と室外空気との間で熱交換が行われる。室外膨張弁(24)は、開度が調節可能な電子膨張弁で構成され、膨張機構を構成している。
  上記四路切換弁(25)は、第1ポートから第4ポートを有している。この四路切換弁(25)は、第1ポートが圧縮機(22)の吐出管(22a)と接続し、第2ポートが室外熱交換器(23)と接続し、第3ポートが圧縮機(22)の吸入管(22b)と接続し、第4ポートが第1連絡配管(11)と接続している。四路切換弁(25)は、第1ポートと第4ポートとが互いに連通して第2ポートと第3ポートが互いに連通する状態(図1に実線で示す状態)と、第1ポートと第2ポートが互いに連通して第3ポートと第4ポートが互いに連通する状態(図1に破線で示す状態)とに切換可能となっている。
  上記第1室内側回路(31a)には、一端が第1連絡配管(11)側と繋がり、他端が第2連絡配管(12)と繋がる第1分岐配管(32a)が設けられている。この第1分岐配管(32a)には、暖房時に放熱器となり、冷房時に蒸発器となる第1室内熱交換器(33a)及び第1室内膨張弁(34a)が設けられている。第2室内側回路(31b)には、一端が第1連絡配管(11)側と繋がり、他端が第2連絡配管(12)側と繋がる第2分岐配管が設けられている。この第2分岐配管(32b)には、暖房時に放熱器となり、冷房時に蒸発器となる第2室内熱交換器(33b)及び第2室内膨張弁(34b)が設けられている。
  上記各室内熱交換器(33a,33b)は、クロスフィン式のフィン・アンド・チューブ型熱交換器であって、利用側熱交換器をそれぞれ構成している。各室内熱交換器(33a,33b)では、冷媒と室内空気の間で熱交換が行われる。
  上記第1室内膨張弁(34a)及び第2室内膨張弁(34b)は、制御弁を構成し、開度が調節可能な電子膨張弁で構成されている。第1室内膨張弁(34a)は、第1分岐配管(32a)の第2連絡配管(12)側に設けられている。また、第2室内膨張弁(34b)は、第2分岐配管(32b)の第2連絡配管(12)側に設けられている。そして、第1室内膨張弁(34a)は、第1室内熱交換器(33a)を流れる冷媒の循環量を調節し、第2室内膨張弁(34b)は第2室内熱交換器(33b)を流れる冷媒の循環量を調節する。
  上記冷媒回路(10)には、高圧圧力センサ(40)、高圧温度センサ(41)、第1冷媒温度センサ(42)及び第2冷媒温度センサ(43)が設けられている。高圧圧力センサ(40)は、圧縮機(22)の吐出冷媒の圧力を検出する。高圧温度センサ(41)は、圧縮機(22)の吐出冷媒の温度を検出する。上記第1冷媒温度センサ(42)は、暖房時の第1室内熱交換器(33a)の冷媒出口に設けられ、第1室内熱交換器(33a)の流出直後の冷媒温度(出口冷媒温度Tgc(1))を検出する。第2冷媒温度センサ(43)は、暖房時の第2室内熱交換器(33b)の冷媒出口に設けられ、第2室内熱交換器(33b)の流出直後の冷媒温度(出口冷媒温度Tgc(2))を検出する。
  また、上記第1室内ユニット(30a)には、第1室内熱交換器(33a)の近傍に第1室内温度センサ(44)が設けられている。この第1室内温度センサ(44)は、第1室内熱交換器(33a)の周囲の室内空気温度を検出する。第2室内ユニット(30b)には、第2室内熱交換器(33b)の近傍に第2室内温度センサ(45)が設けられている。この第2室内温度センサ(45)は、第2室内熱交換器(33b)の周囲の室内空気温度を検出する。
  更に、上記空気調和装置(1)は、第1室内熱交換器(33a)の出口冷媒温度及び第2室内熱交換器(33b)の出口冷媒温度を制御するためのコントローラ(50)を備えている。そして、該コントローラ(50)は弁制御部(50a)を備えている。該弁制御部(50a)は、室内熱交換器(33a,33b)の出口冷媒温度と、両室内熱交換器(33a,33b)の出口冷媒温度の平均値との偏差が、所定の目標値になるように室内熱交換器(31a,31b)の室内膨張弁(34a,34b)の開度を調節する。
  ここで、本実施形態の冷媒回路(10)における各室内熱交換器(33a,33b)の出口冷媒温度制御について図面に基づいて説明する。
  上述したように、第1冷媒温度センサ(42)及び第2冷媒温度センサ(43)は、それぞれ第1室内熱交換器(33a)の出口冷媒温度Tgc(1)及び第2室内熱交換器(33b)の出口冷媒温度Tgc(2)を検出している。先ず、図2に示すように、上記弁制御部(50a)は、出口冷媒温度Tgc(1)と出口冷媒温度Tgc(2)とから平均値Tgc(a)を算出し、この出口冷媒温度Tgc(1)と平均値Tgc(a)の偏差ΔTgc(1)を算出する。ここで、第1室内熱交換器(33a)の出口冷媒温度Tgc(1)の目標冷媒温度は、Tgc(S1)に設定されている。この目標冷媒温度Tgc(S1)は、第1室内ユニット(30a)が設置される室内の第1室内温度センサ(44)で検出された室内空気温度と、ユーザにより設定される室内空気温度の目標温度との差に応じて算出される。つまり、ユーザが設定する室内空気温度の目標温度を変更するのに伴って目標冷媒温度Tgc(S1)も変更される。
  上記弁制御部(50a)は、目標冷媒温度Tgc(S1)と平均値Tgc(a)との偏差である目標値ΔTgc(S1)を算出し、次に、偏差ΔTgc(1)が目標値ΔTgc(S1)に近づくように第1室内膨張弁(34a)の開度を調節する。これにより、第1室内熱交換器(33a)の出口冷媒温度Tgc(1)が制御される。
  また、第2室内熱交換器(33b)の出口冷媒温度Tgc(2)は、第1室内熱交換器(33a)の出口冷媒温度Tgc(1)と同様に制御される。具体的には、出口冷媒温度Tgc(2)の目標冷媒温度は、Tgc(S2)に設定され、上記弁制御部(50a)は、出口冷媒温度Tgc(2)と平均値Tgc(a)との偏差ΔTgc(2)が、目標冷媒温度Tgc(S2)と平均値Tgc(a)との偏差である目標値ΔTgc(S2)に近づくように第2室内膨張弁(34b)の開度を調節する。
    -運転動作-
  次に、本実施形態に係る空気調和装置(1)の運転動作について説明する。この空気調和装置(1)では、各室内ユニット(30a,30b)で暖房を行う運転と、各室内ユニット(30a,30b)で冷房を行う運転とが可能となっている。
  先ず、暖房運転の動作を説明する。この暖房運転では、第1室内膨張弁(34a)及び第2室内膨張弁(34b)が第1室内熱交換器(33a)及び第2室内熱交換器(33b)を流れる冷媒流量を調整する流量調整弁として機能する。また、四路切換弁(25)は、図1の実線側に切り換わっている。
  図1に示すように、圧縮機(22)で臨界圧力以上に圧縮された冷媒は、四路切換弁(25)及び第1連絡配管(11)を経由して第1分岐配管(32a)及び第2分岐配管(32b)に分流する。
  第1分岐配管(32a)に流入した冷媒は、第1室内熱交換器(33a)を流れる。第1室内熱交換器(33a)では、冷媒が室内空気に熱を放出する。つまり、第1室内熱交換器(33a)では、室内空気を加熱する加熱動作が行われ、第1室内ユニット(30a)が設置された室内の暖房が行われる。第1室内熱交換器(33a)を流出した冷媒は、第1室内膨張弁(34a)を通過して第2連絡配管(12)に流入する。
  一方、第2分岐配管(32b)に流入した冷媒は、第2室内熱交換器(33b)を流れる。第2室内熱交換器(33b)では、冷媒が室内空気に熱を放出する。つまり、第2室内熱交換器(33b)では、室内空気を加熱する加熱動作が行われ、第2室内ユニット(30b)が設置された室内の暖房が行われる。第2室内熱交換器(33b)を流出した冷媒は、第2室内膨張弁(34b)を通過して第2連絡配管(12)に流入する。
  その後、上記第2連絡配管(12)を流れる冷媒は、室外膨張弁(24)で膨張し、室外熱交換器(23)で蒸発(吸熱)してガス冷媒となる。このガス冷媒は、四路切換弁(25)を経由して圧縮機(22)に吸入される。圧縮機(22)では、この冷媒が臨界圧力以上まで圧縮される。
  ここで、本実施形態の冷媒回路(10)において、圧縮機(22)で圧縮された冷媒の圧力が変動した場合における第1室内熱交換器(33a)の出口冷媒温度Tgc(1)の挙動について図面に基づいて説明する。
  上記冷媒回路(10)では、図2に示すように、先ず、各室内熱交換器(33a,33b)の出口冷媒温度Tgc(1)及びTgc(2)の平均値Tgc(a)に基づいて、第1室内熱交換器(33a)の出口冷媒温度Tgc(1)と平均値Tgc(a)との偏差ΔTgc(1)を算出する一方、第2室内熱交換器(33b)の出口冷媒温度Tgc(2)と平均値Tgc(a)との偏差ΔTgc(2)を算出する。次に、第1室内熱交換器(33a)の出口冷媒温度の目標冷媒温度Tgc(S1)と平均値Tgc(a)との偏差である目標値ΔTgc(S1)を算出する。この状態では、偏差ΔTgc(1)と目標値ΔTgc(S1)とは、ほぼ等しい値であるため、第1室内膨張弁(34a)の開度を調節して出口冷媒温度Tgc(1)を変化させる必要はない。
  次に、圧縮機(22)から吐出される高圧冷媒の圧力値が高い値に変動すると、その変動に伴い、第1室内熱交換器(33a)の出口冷媒温度Tgc(1)がAの位置に移動すると共に、第2室内熱交換器(33b)の出口冷媒温度Tgc(2)がBの位置に移動する。このとき、出口冷媒温度Tgc(1)及びTgc(2)の移動に伴って平均値Tgc(a)がCの位置に移動するため、高圧冷媒の圧力値の変動の前後において、偏差ΔTgc(1)は変動することはない。そして、目標冷媒温度Tgc(S1)は変動していないため、目標値ΔTgc(S1)が高圧冷媒の圧力値の変動の前後において変動することはない。
  したがって、偏差ΔTgc(1)と目標値ΔTgc(S1)とは、高圧冷媒の圧力値の変動の前後において、ほぼ等しい値のままであるため、第1室内膨張弁(34a)の開度を調節して出口冷媒温度Tgc(1)を変化させる必要がない。
  尚、第2室内熱交換器(33b)の出口冷媒温度Tgc(2)については、図示はしないが、上記第1室内熱交換器(33a)における出口冷媒温度Tgc(1)の制御と同様の制御が実行される。
  ここで、上記第1室内熱交換器(33a)の出口冷媒温度Tgc(1)の目標冷媒温度Tgc(S1)を変更した場合の出口冷媒温度Tgc(1)及びTgc(2)の制御について図面に基づいて説明する。尚、上記各室内熱交換器(33a,33b)のそれぞれの出口冷媒温度の目標冷媒温度Tgc(S1)及びTgc(S2)は、ユーザによる室内空気温度の目標温度の設定に基づいて変更される。
  上記コントローラ(50)は、図3及び図4に示すように、ユーザが室内空気温度を変更するのに伴って第1室内熱交換器(33a)の目標冷媒温度Tgc(S1)をTgc(S1')に変更する。そうすると、目標値ΔTgc(S1)はΔTgc(S1')に増加する。このため、偏差ΔTgc(1)が目標値ΔTgc(S1')に近づくように第1室内膨張弁(34a)の開度が調節される。
  具体的には、第1室内膨張弁(34a)の開度を大きくし、第1室内熱交換器(33a)を循環する冷媒量を増加させる。第1室内熱交換器(33a)の循環冷媒量が増加すると、出口冷媒温度Tgc(1)が上昇し、やがて偏差ΔTgc(1)がΔTgc(S1')に近づくと共に、出口冷媒温度Tgc(1)がTgc(S1')に近づく。
  ここで、第1室内熱交換器(33a)の出口冷媒温度Tgc(1)が上昇すると、第2室内熱交換器(33b)を循環する冷媒量が減少するため、第2室内熱交換器(33b)の出口冷媒温度Tgc(2)が降下して偏差ΔTgc(2)が大きくなる。また、出口冷媒温度Tgc(1)の増加に伴って僅かに平均値Tgc(a)が上昇する。ところが、目標値ΔTgc(S2)は、目標冷媒温度Tgc(S1)の変更によって変動することはないため、目標冷媒温度Tgc(S2)が僅かに上昇してTgc(S2')に変動することになる。そして、偏差ΔTgc(2)が目標値ΔTgc(S2')(=ΔTgc(S2))に近づくように第2室内膨張弁(34b)の開度が調節される。
  具体的には、第2室内膨張弁(34b)の開度を大きくし、第2室内熱交換器(33b)を循環する冷媒量を増加させる。第2室内熱交換器(33b)の循環冷媒量が増加すると、出口冷媒温度Tgc(2)が上昇し、やがて偏差ΔTgc(2)が目標値ΔTgc(S2')に近づくと共に、出口冷媒温度Tgc(2)が目標冷媒温度Tgc(S2')に近づく。したがって、第1室内熱交換器(33a)の出口冷媒温度Tgc(1)の上昇に伴って、第2室内熱交換器(33b)の出口冷媒温度Tgc(2)は僅かに上昇することになる。
  尚、上記平均値Tgc(a)は、各室内熱交換器(33a,33b)の出口冷媒温度Tgc(1)及びTgc(2)の平均値であるため、並列に接続された室内熱交換器の数が多くなるほど、目標冷媒温度Tgc(S1)の上昇に伴う平均値Tgc(a)の上昇が抑制される。
  一方、、上記空気調和装置(1)の冷房運転では、第1室内膨張弁(34a)及び第2室内膨張弁(34b)が膨張弁として機能し、室外膨張弁(24)は前回状態に保持される。また、四路切換弁(25)は、図1の破線側に切り換わっている。
  図1に示すように、圧縮機(22)で臨界圧力以上に圧縮された冷媒は、室外熱交換器(23)で放熱した後、第1分岐配管(32a)及び第2分岐配管(32b)に分流する。分流した冷媒は、第1室内膨張弁(34a)及び第2室内膨張弁(34b)で減圧された後、第1室内熱交換器(33a)及び第2室内熱交換器(33b)で蒸発してガス冷媒となる。このガス冷媒は、第1連絡配管(11)で合流し、四路切換弁(25)を経由して圧縮機(22)に吸入される。圧縮機(22)では、この冷媒が臨界圧力以上まで圧縮される。
    -実施形態の効果-
  上記実施形態は、全ての室内熱交換器(33a,33b)の出口冷媒温度Tgc(1)及びTgc(2)の平均値Tgc(a)と、制御対象の室内熱交換器(33a,33b)の出口冷媒温度Tgc(1)及びTgc(2)との偏差ΔTgc(1)及びΔTgc(2)を算出し、この偏差ΔTgc(1)及びΔTgc(2)が、出口冷媒温度Tgc(1)及びTgc(2)の目標冷媒温度Tgc(S1)及びTgc(S2)と上記平均値Tgc(a)との偏差である目標値ΔTgc(S1)及びΔTgc(S2)に近づくようにした。したがって、上記実施形態によれば、高圧冷媒の圧力変動に伴って各室内熱交換器(33a,33b)の出口冷媒温度が変動Tgc(1)及びTgc(2)しても、上記偏差ΔTgc(1)及びΔTgc(2)の変動を抑制することができる。この結果、高圧冷媒の圧力変動が生じても、各室内膨張弁(34a,34b)の開度を調節する必要がなく、各室内熱交換器(33a,33b)の出口冷媒温度Tgc(1)及びTgc(2)を安定して制御することができる。よって、上記各室内熱交換器(33a,33b)の暖房能力を安定させることができる。
  また、室内の目標空気温度に基づいた室内熱交換器(33a,33b)の出口冷媒温度Tgc(1)及びTgc(2)の目標冷媒温度Tgc(S1)及びTgc(S2)と、上記平均値Tgc(a)との偏差を目標値としたために、一の室内熱交換器(33a)の出口冷媒温度Tgc(1)の目標冷媒温度Tgc(S1)を変更した際、該室内熱交換器(33a)の出口冷媒温度Tgc(1)を目標冷媒温度Tgc(S1)に追従させることができる。この結果、高圧冷媒の圧力変動を受けることなく、各室内熱交換器(33a,33b)の出口冷媒温度Tgc(1)及びTgc(2)を制御することができる。
  また、室内の目標空気温度に基づいた室内熱交換器(33a,33b)の出口冷媒温度Tgc(1)及びTgc(2)の目標冷媒温度Tgc(S1)及びTgc(S2)と、上記平均値Tgc(a)との偏差を用いているので、各室内熱交換器(33a,33b)の能力の過不足の判定が容易となる。この結果、各室内熱交換器(33a,33b)の能力要求に応じた室内熱交換器(33a,33b)の出口冷媒温度Tgc(1)及びTgc(2)を適切に制御することができる。これにより圧縮機(22)の無駄な入力を削減することができるので、省エネルギ化を図ることができる。また、上記各室内熱交換器(33a,33b)の必要能力に合った空調能力を安定して発揮させることができるので、快適性の向上を図ることができる。
  〈その他の実施形態〉
  本発明は、上記実施形態について、以下のような構成としてもよい。
  本実施形態は、圧縮機(22)の高圧冷媒の圧力変動に対して、各室内熱交換器(33a,33b)の出口冷媒温度の目標冷媒温度を変更していない。しかしながら、本発明は、図示はしないが、高圧冷媒の圧力変動に伴って、目標冷媒温度を変更(再設定)する場合においても適用することができる。
  また、上記実施形態は、冷房運転と暖房運転とに切り換え可能な空気調和装置(1)を対象としている。しかしながら、本発明は、暖房運転のみを行う暖房専用空気調和装置に適用してもよい。その際、室内膨張弁は、室内熱交換器を流れる冷媒量を調整する制御弁(流量調節弁)であればよい。
  また、本発明は、空気調和装置に限られず、各種の冷凍装置に適用してもよい。
  また、本発明は、2台の室内ユニット(30a,30b)に限られるものではなく、3台以上の室内ユニット、つまり、3台以上の室内熱交換器を有するものであってもよい。
  尚、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
  以上説明したように、本発明は、高圧冷媒が臨界圧力以上となる冷凍サイクルを行う冷凍装置について有用である。

Claims (2)

  1.   圧縮機(22)、熱源側熱交換器(23)及び膨張機構(24)を有する熱源側回路(21)と、開度可変な制御弁(34a,34b)が接続された利用側熱交換器(33a,33b)を有し且つ互いに並列状態で上記熱源側回路(21)に接続された複数の利用側回路(31a,31b)とを備え、高圧冷媒の圧力が臨界圧力以上となる冷凍サイクルを行う冷媒回路(10)と、
      上記利用側熱交換器(33a,33b)の放熱時に、上記各利用側熱交換器(33a,33b)の出口冷媒温度を所定温度に制御するコントローラ(50)とを備えた冷凍装置であって、
      上記コントローラ(50)は、上記各利用側回路(31a,31b)における利用側熱交換器(33a,33b)の出口冷媒温度と、全ての利用側熱交換器(33a,33b)の出口冷媒温度の平均値との偏差が、所定の目標値になるように上記各利用側回路(31a,31b)の制御弁(34a,34b)の開度を調節する弁制御部(50a)を備えている
    ことを特徴とする冷凍装置。
  2.   請求項1において、
      上記弁制御部(50a)の目標値は、上記各利用側熱交換器(33a,33b)が設けられる室内の目標空気温度に基づいた上記各利用側熱交換器((33a,33b)の出口冷媒温度の目標冷媒温度と上記平均値との偏差である
    ことを特徴とする冷凍装置。
PCT/JP2009/000893 2008-02-28 2009-02-27 冷凍装置 WO2009107395A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2009219540A AU2009219540B2 (en) 2008-02-28 2009-02-27 Refrigeration system
EP09715542A EP2261578A4 (en) 2008-02-28 2009-02-27 REFRIGERATION DEVICE
JP2010500575A JP5182358B2 (ja) 2008-02-28 2009-02-27 冷凍装置
CN2009801066516A CN101960232B (zh) 2008-02-28 2009-02-27 制冷装置
US12/919,942 US8522568B2 (en) 2008-02-28 2009-02-27 Refrigeration system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008048540 2008-02-28
JP2008-048540 2008-02-28

Publications (1)

Publication Number Publication Date
WO2009107395A1 true WO2009107395A1 (ja) 2009-09-03

Family

ID=41015802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000893 WO2009107395A1 (ja) 2008-02-28 2009-02-27 冷凍装置

Country Status (7)

Country Link
US (1) US8522568B2 (ja)
EP (1) EP2261578A4 (ja)
JP (1) JP5182358B2 (ja)
KR (1) KR20100123729A (ja)
CN (1) CN101960232B (ja)
AU (1) AU2009219540B2 (ja)
WO (1) WO2009107395A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102032648A (zh) * 2010-12-07 2011-04-27 海信(山东)空调有限公司 多联空调***制热时冷媒流量的控制方法
CN102620387A (zh) * 2012-04-23 2012-08-01 三一重工股份有限公司 温度控制***、温度控制方法和空调***
JP2012243035A (ja) * 2011-05-18 2012-12-10 Hitachi Plant Technologies Ltd 電子機器の冷却システム
JP2014037959A (ja) * 2012-07-18 2014-02-27 Denso Corp 冷凍サイクル装置
WO2016158938A1 (ja) * 2015-04-03 2016-10-06 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和機

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5404487B2 (ja) * 2010-03-23 2014-01-29 三菱電機株式会社 多室形空気調和機
JP5710004B2 (ja) * 2011-08-19 2015-04-30 三菱電機株式会社 空気調和装置
US20130312440A1 (en) * 2012-05-24 2013-11-28 General Electric Company Absorption chillers
JP5887217B2 (ja) * 2012-06-29 2016-03-16 株式会社日立製作所 機械設備の管理システム
JP5734524B2 (ja) * 2012-08-08 2015-06-17 三菱電機株式会社 空気調和装置
US10465964B2 (en) * 2012-12-26 2019-11-05 Mitsubishi Electric Corporation Refrigeration cycle apparatus and control method of refrigeration cycle apparatus
KR20160081431A (ko) * 2014-12-31 2016-07-08 삼성전자주식회사 스크롤 압축기 및 이를 구비한 공기조화장치
JP6569536B2 (ja) * 2016-01-08 2019-09-04 株式会社富士通ゼネラル 空気調和装置
CN106440443B (zh) * 2016-11-25 2022-04-12 广州华凌制冷设备有限公司 一种适用高温制冷的空调***及控制方法
JP6791315B1 (ja) * 2019-07-18 2020-11-25 ダイキン工業株式会社 冷凍装置
CN111878980A (zh) * 2020-07-31 2020-11-03 广东美的暖通设备有限公司 空调器、空调器的控制方法和计算机可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195255A (ja) * 1985-02-25 1986-08-29 株式会社日立製作所 ヒ−トポンプ式冷暖房装置
JP2004044921A (ja) 2002-07-12 2004-02-12 Daikin Ind Ltd 冷凍装置
JP2005226950A (ja) * 2004-02-16 2005-08-25 Mitsubishi Electric Corp 冷凍空調装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6126080A (en) * 1996-10-18 2000-10-03 Sanyo Electric Co., Ltd. Air conditioner
CN1104605C (zh) * 2000-06-02 2003-04-02 海尔集团公司 一拖多空调器改进的制冷***
CN100513913C (zh) * 2004-11-30 2009-07-15 乐金电子(天津)电器有限公司 一托多型空气调节器及其控制方法
KR100640856B1 (ko) 2004-12-14 2006-11-02 엘지전자 주식회사 멀티 공기조화기의 제어방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195255A (ja) * 1985-02-25 1986-08-29 株式会社日立製作所 ヒ−トポンプ式冷暖房装置
JP2004044921A (ja) 2002-07-12 2004-02-12 Daikin Ind Ltd 冷凍装置
JP2005226950A (ja) * 2004-02-16 2005-08-25 Mitsubishi Electric Corp 冷凍空調装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2261578A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102032648A (zh) * 2010-12-07 2011-04-27 海信(山东)空调有限公司 多联空调***制热时冷媒流量的控制方法
CN102032648B (zh) * 2010-12-07 2012-12-05 海信(山东)空调有限公司 多联空调***制热时冷媒流量的控制方法
JP2012243035A (ja) * 2011-05-18 2012-12-10 Hitachi Plant Technologies Ltd 電子機器の冷却システム
CN102620387A (zh) * 2012-04-23 2012-08-01 三一重工股份有限公司 温度控制***、温度控制方法和空调***
JP2014037959A (ja) * 2012-07-18 2014-02-27 Denso Corp 冷凍サイクル装置
WO2016158938A1 (ja) * 2015-04-03 2016-10-06 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和機

Also Published As

Publication number Publication date
AU2009219540A1 (en) 2009-09-03
CN101960232B (zh) 2012-11-07
EP2261578A4 (en) 2013-02-06
JPWO2009107395A1 (ja) 2011-06-30
EP2261578A1 (en) 2010-12-15
KR20100123729A (ko) 2010-11-24
US8522568B2 (en) 2013-09-03
JP5182358B2 (ja) 2013-04-17
US20110000239A1 (en) 2011-01-06
AU2009219540B2 (en) 2012-07-19
CN101960232A (zh) 2011-01-26

Similar Documents

Publication Publication Date Title
JP5182358B2 (ja) 冷凍装置
US9074787B2 (en) Operation controller for compressor and air conditioner having the same
US9995517B2 (en) Operation control apparatus of air-conditioning apparatus and air-conditioning apparatus comprising same
US8020395B2 (en) Air conditioning apparatus
EP2889554B1 (en) Air conditioning system
US10955160B2 (en) Air conditioner including a plurality of utilization units connected in parallel to a heat source unit
WO2009122706A1 (ja) 冷凍装置
WO2016157519A1 (ja) 空気調和装置
WO2016204194A1 (ja) 空気調和装置
WO2017203655A1 (ja) ヒートポンプ式空調給湯装置
WO2008032559A1 (fr) climatiseur
US10161651B2 (en) Air conditioning apparatus
JP6123289B2 (ja) 空気調和システム
WO2018164253A1 (ja) 空気調和装置
JP2005226950A (ja) 冷凍空調装置
JP6576603B1 (ja) 空気調和装置
JP2008039233A (ja) 冷凍装置
KR102558826B1 (ko) 공기 조화 시스템 및 제어 방법
JP2001248919A (ja) 空気調和装置
JP2008209021A (ja) マルチ型空気調和装置
JP6507598B2 (ja) 空調システム
KR101229345B1 (ko) 멀티형 공기조화기의 제어방법
JP2014126289A (ja) 空気調和システム
JP7535371B2 (ja) 空気調和装置
WO2023135630A1 (ja) 空気調和装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980106651.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09715542

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010500575

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009219540

Country of ref document: AU

Ref document number: 12919942

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009715542

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107020901

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2009219540

Country of ref document: AU

Date of ref document: 20090227

Kind code of ref document: A