WO2009104632A1 - スクラップ磁石の再生方法 - Google Patents

スクラップ磁石の再生方法 Download PDF

Info

Publication number
WO2009104632A1
WO2009104632A1 PCT/JP2009/052748 JP2009052748W WO2009104632A1 WO 2009104632 A1 WO2009104632 A1 WO 2009104632A1 JP 2009052748 W JP2009052748 W JP 2009052748W WO 2009104632 A1 WO2009104632 A1 WO 2009104632A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
sintered
raw material
scrap
metal
Prior art date
Application number
PCT/JP2009/052748
Other languages
English (en)
French (fr)
Inventor
浩 永田
良憲 新垣
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to KR1020107020125A priority Critical patent/KR101303717B1/ko
Priority to CN2009801056641A priority patent/CN101952915A/zh
Priority to US12/863,338 priority patent/US20110052799A1/en
Priority to JP2009554340A priority patent/JP5401328B2/ja
Priority to DE200911000399 priority patent/DE112009000399T5/de
Publication of WO2009104632A1 publication Critical patent/WO2009104632A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F8/00Manufacture of articles from scrap or waste metal particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/06Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Definitions

  • the present invention relates to a method for recycling a scrap magnet, and in particular, recovers a sintered magnet that has been used once or has failed in a manufacturing process, and performs high magnetic properties without performing dissolution extraction of a specific element from the sintered magnet.
  • the present invention relates to a method for regenerating a scrap magnet that can be regenerated into a sintered magnet (permanent magnet).
  • Nd-Fe-B based sintered magnets can be manufactured at low cost by being made of a combination of iron and Nd and B elements that are inexpensive and abundant in resources and can be stably supplied.
  • neodymium magnets since it has high magnetic properties (the maximum energy product is about 10 times that of ferrite magnets), it is used in various products such as electronic equipment, and is also used in motors and generators for hybrid cars. is increasing.
  • Such sintered magnets are mainly produced by a powder metallurgy method.
  • Nd, Fe, and B are blended in a predetermined composition ratio.
  • a rare earth element such as dysprosium is mixed to increase the coercive force.
  • the alloy raw material is prepared by melting and casting, for example, coarsely pulverized by, for example, a hydrogen pulverization step, and then finely pulverized by, for example, a jet mill pulverization step (pulverization step) to obtain alloy raw material powder.
  • the obtained alloy raw material powder is oriented in a magnetic field (magnetic field orientation), and compression molded in a state where a magnetic field is applied to obtain a compact.
  • the compact is sintered under predetermined conditions to produce a sintered magnet (see Patent Document 1).
  • scraps are generated due to molding defects and sintering defects. Since scrap contains rare earth elements, it is necessary to recycle from the viewpoint of preventing resource depletion.
  • the Curie temperature of the sintered magnet is as low as about 300 ° C., and there is a problem that it is demagnetized by heat depending on the usage condition of the adopted product. In such a case, the sintered magnet becomes scrap. For this reason, such product scrap also needs to be recyclable.
  • the scrap magnet usually contains a large amount of impurities such as oxygen, nitrogen, and carbon due to oxidation during sintering, and the average crystal grain size is increased due to crystal grain growth during sintering. For this reason, there is a problem that a sintered magnet with high coercive force cannot be obtained if the scrap magnet is pulverized as it is and regenerated by powder metallurgy.
  • rare earth elements such as neodymium and dysprosium are separated and purified using a solvent extraction method, hydrofluoric acid, oxalic acid, sodium carbonate, etc. are added, and separated as a precipitate, It is known that these are recovered and converted into oxides or fluorides and then regenerated by molten salt electrolysis or the like.
  • Patent Document 2 discloses that a dissolved rare earth oxide is reduced to a rare earth metal by electrolysis, and a magnet alloy portion is alloyed with a rare earth metal produced by electrolytic reduction to be regenerated as a rare earth metal-transition metal-boron alloy. It has been.
  • scrap magnets are regenerated through a plurality of processing steps such as solvent extraction, so that productivity is poor, and furthermore, several types of solvents such as hydrofluoric acid are used. There is a problem of incurring high.
  • the present invention has a problem in providing a low-cost scrap magnet recycling method that can achieve high mass productivity.
  • a method of reclaiming a scrap magnet includes a step of recovering and pulverizing a scrap magnet as an iron-boron-rare earth sintered magnet to obtain a recovered raw material powder; And obtaining a sintered body by powder metallurgy, heating the sintered body in a processing chamber, and evaporating a metal evaporation material containing at least one of Dy and Tb disposed in the same or another processing chamber Adjusting the supply amount of the evaporated metal atoms to the surface of the sintered magnet, attaching metal atoms, and diffusing the attached metal atoms to the crystal grain boundaries and / or crystal grain boundary phases of the sintered body. It is characterized by including.
  • a scrap magnet is pulverized as it is to obtain a recovered raw material powder, and then a sintered body is obtained by a powder metallurgy method.
  • the sintered body contains a large amount of impurities such as oxygen as compared with the sintered magnet before regeneration, and as it is, it cannot be a high-performance magnet having a high coercive force.
  • the sintered body is disposed and heated in the processing chamber, and the metal evaporation material containing at least one of Dy and Tb disposed in the same or another processing chamber is evaporated, and the sintered magnet of the evaporated metal atoms
  • the supply amount to the surface is adjusted to deposit metal atoms, and the deposited metal atoms are diffused into the crystal grain boundaries and / or grain boundary phases of the sintered magnet (vacuum vapor process).
  • Dy and Tb are diffused and uniformly distributed in the crystal grains and / or the grain boundary phase of the sintered magnet, so that the rich phase (Dy, Tb)
  • Dy and Tb diffuse only near the surface of the crystal grains, resulting in effective recovery of magnetization and coercive force, and high-performance recycling. A magnet is obtained.
  • the present invention after collecting the scrap magnet, immediately return to the pulverization step, obtain the sintered body again by powder metallurgy, and then only perform the vacuum vapor treatment.
  • the processing step is not required, and the productivity can be improved to obtain a high-performance magnet.
  • the production cost can be reduced, and the cost can be reduced.
  • rare rare earth elements mixed in the scrap magnet before recycling are reused as they are, it is also effective from the viewpoint of preventing depletion of resources.
  • the raw material powder obtained by pulverizing the alloy raw material for iron-boron-rare earth magnet produced by the rapid cooling method is mixed with the recovered raw material powder, it is sintered when recycled.
  • the amount of impurities such as oxygen brought into the body can be reduced, and as a result, the recycled magnet can be sent for further recycling.
  • the pulverization may be performed through hydrogen pulverization and jet mill pulverization.
  • the present invention includes a step of introducing an inert gas into the processing chamber in which the sintered magnet is disposed during the evaporation of the metal evaporation material, and the supply by changing the partial pressure of the inert gas.
  • the amount of the metal atoms may be diffused into the grain boundaries and / or the grain boundary phases before the thin film composed of the attached metal atoms is formed.
  • heat treatment is performed at a temperature lower than the heating temperature, thereby further improving the magnetic characteristics of the recycled sintered magnet. You can do it.
  • scrap magnets scraps generated due to molding defects or sintering defects in the manufacturing process of sintered magnets and used product scraps are used.
  • a protective film may be formed by Ni plating or the like in order to provide corrosion resistance.
  • the protective film is peeled off by a known peeling treatment method corresponding to the type of the protective film, and washed appropriately.
  • the recovered scrap magnet is appropriately pulverized to a thickness of about 5 to 10 mm using a stamp mill, for example, according to its shape and size, and is made into flakes. Then, it is further roughly pulverized by a known hydrogen pulverization step. In this case, depending on the shape and size of the scrap magnet, it may be coarsely pulverized in the hydrogen pulverization step without being pulverized into thin pieces. Subsequently, it is finely pulverized in a nitrogen gas atmosphere by a jet mill finely pulverizing step to obtain a recovered raw material powder having an average particle diameter of 3 to 10 ⁇ m.
  • the scrap magnet contains a large amount of impurities such as oxygen, nitrogen, and carbon due to oxidation during sintering, for example.
  • impurities such as oxygen, nitrogen, and carbon due to oxidation during sintering, for example.
  • a predetermined value for example, about 8000 ppm for oxygen and 1000 ppm for carbon
  • the Nd—Fe—B-based raw material powder is mixed at a predetermined mixing ratio in accordance with the content of impurities in the scrap sintered magnet.
  • the mixing amount of the raw material powder is such that the oxygen content of the sintered magnet itself is It is preferable to set it to be 3000 ppm or less.
  • Raw material powder is produced as follows. That is, industrial pure iron, metallic neodymium, and low carbon ferroboron are blended and dissolved using a vacuum induction furnace so that Fe, Nd, and B have a predetermined composition ratio, and then quenched by a rapid cooling method such as a strip casting method.
  • a rapid cooling method such as a strip casting method.
  • an alloy raw material of 05 mm to 0.5 mm is prepared.
  • an alloy raw material having a thickness of about 5 to 10 mm may be produced by a centrifugal casting method, and Dy, Tb, Co, Cu, Nb, Zr, Al, Ga, etc. may be added at the time of blending. . It is preferable to make the total content of rare earth elements more than 28.5% and to make an ingot that does not produce ⁇ iron.
  • the produced alloy raw material is coarsely pulverized by a known hydrogen pulverization step, and then finely pulverized in a nitrogen gas atmosphere by a jet mill pulverization step. Thereby, a raw material powder having an average particle diameter of 3 to 10 ⁇ m is obtained.
  • a raw material powder having an average particle diameter of 3 to 10 ⁇ m is obtained.
  • the timing of mixing the raw material powder and the recovered raw material powder but both of them are mixed before the hydrogen pulverization process or when any powder is pulverized into fine powder by hydrogen pulverization process pulverization. If pulverized and mixed, the pulverization process may be made more efficient.
  • the recovered raw material powder or the mixed fine powder of the recovered raw material powder and the raw material powder produced as described above is compression molded into a predetermined shape in a magnetic field using a known compression molding machine.
  • the compact taken out from the compression molding machine is stored in a sintering furnace (not shown), and subjected to liquid phase sintering (sintering process) at a predetermined temperature (for example, 1050 ° C.) for a predetermined time in vacuum.
  • a predetermined temperature for example, 1050 ° C.
  • Get the body (powder metallurgy) Thereafter, it is appropriately processed into a predetermined shape by machining using a wire cutter or the like.
  • the vacuum steam process is performed with respect to the sintered compact S obtained in this way.
  • a vacuum steam processing apparatus that performs this vacuum steam processing will be described below with reference to FIG.
  • the vacuum vapor processing apparatus 1 includes a vacuum chamber 3 that can be held at a reduced pressure to a predetermined pressure (for example, 1 ⁇ 10 ⁇ 5 Pa) through a vacuum exhaust unit 2 such as a turbo molecular pump, a cryopump, or a diffusion pump.
  • a heating means 4 composed of a heat insulating material 41 surrounding a processing box, which will be described later, and a heating element 42 arranged inside the heat insulating material 41.
  • the heat insulating material 41 is made of, for example, Mo
  • the heating element 42 is a heater having a Mo filament (not shown).
  • the filament is energized from a power source (not shown), and is a resistance heating type heat insulating material.
  • the space 5 surrounded by 41 and in which the processing box is installed can be heated. In this space 5, for example, a mounting table 6 made of Mo is provided, and at least one processing box 7 can be mounted.
  • the processing box 7 includes a rectangular parallelepiped box portion 71 whose upper surface is opened and a lid portion 72 that is detachable from the upper surface of the opened box portion 71.
  • a flange 72a bent downward is formed on the outer peripheral edge of the lid portion 72 over the entire circumference.
  • a predetermined pressure of the vacuum chamber 3 by actuating the evacuating means 2 e.g., 1 ⁇ 10 -5 Pa
  • a vacuum chamber 3 e.g., 5 ⁇ 10 -
  • the pressure is reduced to 4 Pa.
  • the sintered magnet S and the metal evaporating material v are stacked up and down with a spacer 8 interposed therebetween so that the both are stored.
  • the spacer 8 is configured by assembling a plurality of wires 81 (for example, ⁇ 0.1 to 10 mm) in a lattice shape so as to have an area smaller than the cross section of the box portion 72, and the outer peripheral edge portion thereof is substantially perpendicular. (See FIG. 2).
  • the height of the bent portion is set to be higher than the height of the sintered body S to be vacuum-steamed.
  • a plurality of sintered bodies S are placed on the horizontal portion of the spacer 8 at regular intervals.
  • the spacer 8 may be made of a so-called expanded metal.
  • the metal evaporating material v As the metal evaporating material v, Dy and Tb that greatly improve the magnetocrystalline anisotropy of the main phase, or an alloy in which a metal that further enhances the coercive force such as Nd, Pr, Al, Cu, and Ga is mixed. (The mass ratio of Dy and Tb is 50% or more) is used, and after the above metals are mixed at a predetermined mixing ratio, for example, after being melted in an arc melting furnace, a plate having a predetermined thickness is formed. .
  • the metal evaporating material v has an area that is supported by the entire circumference of the upper surface of the outer peripheral edge bent substantially at right angles to the spacer 8.
  • the spacer 8 which mounted the sintered magnet S and the other plate-shaped metal evaporation material v are installed in the upper side.
  • the metal evaporation material v and the spacer 8 in which a plurality of sintered magnets S are juxtaposed are alternately stacked in a hierarchical manner up to the upper end of the processing box 7 (see FIG. 2).
  • the metal evaporating material v can be omitted because the lid portion 72 is located close to the uppermost spacer 8.
  • the processing box 7 and the spacer 8 are made of materials other than Mo, such as W, V, Nb, Ta, or alloys thereof (including rare earth-added Mo alloys, Ti-added Mo alloys), CaO, Y 2 O. 3 or made of rare earth oxides, or these materials may be formed as a lining film on the surface of another heat insulating material. Thereby, it may be possible to prevent the reaction product from being formed on the surface by reacting with Dy or Tb.
  • materials other than Mo such as W, V, Nb, Ta, or alloys thereof (including rare earth-added Mo alloys, Ti-added Mo alloys), CaO, Y 2 O. 3 or made of rare earth oxides, or these materials may be formed as a lining film on the surface of another heat insulating material. Thereby, it may be possible to prevent the reaction product from being formed on the surface by reacting with Dy or Tb.
  • the interval between the metal evaporation material v and the sintered body S becomes narrow. If the metal evaporating material v is evaporated in such a state, there is a risk of being strongly influenced by the straightness of the evaporated metal atoms. That is, in the sintered body S, metal atoms are likely to be locally attached to the surface facing the metal evaporation material v, and a shadow of the wire 81 on the contact surface of the sintered body S with the spacer 8. It becomes difficult to supply Dy and Tb to the portion.
  • the obtained recycled magnet M has a portion having a high coercive force and a portion having a low coercive force locally, and as a result, the squareness of the demagnetization curve is impaired.
  • the vacuum chamber 3 is provided with an inert gas introducing means.
  • the inert gas introduction means has a gas introduction pipe 9 communicating with the space 5 surrounded by the cross-section material 41, and the gas introduction pipe 9 communicates with a gas source of an inert gas via a mass flow controller (not shown). .
  • an inert gas such as He, Ar, Ne, Kr, N2 or the like is introduced in a constant amount during the vacuum steam treatment.
  • the introduction amount of the inert gas may be changed during the vacuum steam treatment (initially, the introduction amount of the inert gas is increased and then decreased or the introduction amount of the inert gas is initially reduced. Less, then more, or repeat these).
  • the inert gas may be introduced, for example, after the metal evaporating material v starts evaporation or after reaching a set heating temperature, and may be introduced for a predetermined time during or around the set vacuum vapor processing time.
  • a valve 10 whose degree of opening and closing can be adjusted is provided in the exhaust pipe leading to the vacuum exhaust means 2 so that the partial pressure of the inert gas in the vacuum chamber 3 can be adjusted. preferable.
  • the inert gas introduced into the space 5 is also introduced into the processing box 7.
  • the inert gas evaporates in the processing box 7.
  • the metal atoms diffused and the amount of metal atoms adhering directly to the surface of the sintered magnet S is reduced and supplied to the surface of the sintered magnet S from a plurality of directions. For this reason, even when the space
  • the sintered body S and the plate-like metal evaporation material v are alternately stacked via the spacers 8 and both are first installed in the box portion 71 (thereby, the sintered body S and The metal evaporation material v is spaced apart). And after attaching the cover part 72 to the upper surface which the box part 71 opened, the process box 7 is installed on the table 6 in the space 5 enclosed by the heating means 4 in the vacuum chamber 3 (refer FIG. 1).
  • the vacuum chamber 3 is evacuated and depressurized until it reaches a predetermined pressure (for example, 1 ⁇ 10 ⁇ 4 Pa) through the vacuum evacuation means 2 (the processing chamber 70 is evacuated to a pressure approximately half digit higher). )
  • a predetermined pressure for example, 1 ⁇ 10 ⁇ 4 Pa
  • the heating means 4 is operated to heat the processing chamber 70.
  • the Dy in the processing chamber 70 is heated to substantially the same temperature as the processing chamber 70 to start evaporation, and a Dy vapor atmosphere is formed in the processing chamber 70.
  • the gas introduction means is operated to introduce the inert gas into the vacuum chamber 3 with a constant introduction amount.
  • an inert gas is also introduced into the processing box 7, and the metal atoms evaporated in the processing chamber 70 are diffused by the inert gas.
  • the sintered magnets S and Dy are arranged so as not to contact each other, so that the melted Dy directly adheres to the sintered magnet S in which the surface Nd-rich phase is melted. Absent. Then, the Dy atoms in the Dy vapor atmosphere diffused in the processing box are supplied from a plurality of directions, directly or repeatedly, toward the substantially entire surface of the sintered magnet S heated to substantially the same temperature as Dy. The adhered Dy is diffused to the crystal grain boundary and / or the crystal grain boundary phase of the sintered magnet S.
  • the average composition of the sintered magnet surface S adjacent to the thin film becomes a Dy rich composition.
  • the surface of the magnet S is melted (that is, the main phase is melted and the amount of the liquid phase is increased).
  • the vicinity of the surface of the sintered magnet S melts and collapses, and the unevenness increases.
  • Dy excessively penetrates into the crystal grains together with a large amount of liquid phase, and the maximum energy product and the residual magnetic flux density showing the magnetic characteristics are further lowered.
  • the heating means 4 is controlled so that the temperature in the processing chamber 70 is 800 ° C. to 1050 ° C., preferably 850 ° C.
  • the range was set to a range of ⁇ 950 ° C. (for example, when the processing chamber temperature is 900 ° C. to 1000 ° C., the saturated vapor pressure of Dy is about 1 ⁇ 10 ⁇ 2 to 1 ⁇ 10 ⁇ 1 Pa).
  • the diffusion rate of Dy atoms adhering to the surface of the sintered magnet S to the grain boundaries and / or grain boundary layers is increased. It becomes slow and cannot be uniformly distributed by diffusing into the crystal grain boundary and / or the grain boundary phase of the sintered magnet before the thin film is formed on the surface of the sintered magnet S.
  • the vapor pressure of Dy increases, and there is a risk that Dy atoms in the vapor atmosphere are excessively supplied to the surface of the sintered magnet S.
  • Dy diffuses into the crystal grains and when Dy diffuses into the crystal grains, the magnetization in the crystal grains is greatly reduced, so that the maximum energy product and the residual magnetic flux density are further lowered.
  • the opening / closing degree of the valve 11 was changed so that the partial pressure of the inert gas introduced into the vacuum chamber 3 was 3 Pa to 50000 Pa.
  • Dy and Tb are locally attached to the sintered magnet S, and the squareness of the demagnetization curve is deteriorated.
  • the evaporation of the metal evaporation material v is suppressed, and the processing time becomes excessively long.
  • the partial pressure of an inert gas such as Ar is adjusted to control the evaporation amount of Dy, and by introducing the inert gas, the evaporated Dy atoms are diffused in the processing box, so that the sintered magnet S Combining the adhesion of Dy atoms to the entire surface while suppressing the supply amount of Dy atoms to the surface, and increasing the diffusion rate by heating the sintered magnet S in a predetermined temperature range, Dy atoms adhering to the surface of the sintered magnet S are efficiently diffused to the crystal grain boundary and / or the grain boundary phase of the sintered magnet S before being deposited on the surface of the sintered magnet S to form a Dy layer (thin film). Can be distributed evenly (see FIG. 3).
  • the surface of the recycled magnet M is prevented from being deteriorated, and Dy is prevented from excessively diffusing into the grain boundary in the region close to the sintered magnet surface, so that the Dy rich phase (Dy Further, Dy diffuses only near the surface of the crystal grains, so that the magnetization and the coercive force are effectively recovered.
  • the metal atoms evaporated in the processing box 7 are diffused and the sintered magnet S is placed on the spacer 8 in which thin wires 81 are assembled in a lattice shape, and the sintered magnet S and the metal are evaporated. Even when the distance from the material v is narrow, the evaporated Dy and Tb wrap around and adhere to the shadowed portion of the wire 81. As a result, the presence of locally high coercivity portions and low portions can be suppressed, and the squareness of the demagnetization curve can be prevented from being impaired even when the sintered magnet S is subjected to the vacuum vapor treatment. .
  • the operation of the heating unit 4 is stopped and the introduction of the inert gas by the gas introduction unit is temporarily stopped.
  • an inert gas is again introduced (100 kPa), and evaporation of the metal evaporation material v is stopped. Note that the evaporation may be stopped by increasing only the introduction amount without stopping the introduction of the inert gas.
  • the temperature in the processing chamber 70 is temporarily lowered to 500 ° C., for example.
  • the heating means 4 is operated again, the temperature in the processing chamber 70 is set in the range of 450 ° C. to 650 ° C., and heat treatment is performed to further improve or recover the coercive force. Then, it is rapidly cooled to approximately room temperature, and the processing box 7 is taken out from the vacuum chamber 3.
  • scrap magnets are collected and immediately pulverized, and after obtaining the sintered body S by powder metallurgy, only the vacuum vapor treatment is performed. Combined with the elimination of the processing step and the need for finishing, the productivity for obtaining a high-performance recycled magnet can be improved and the cost can be reduced. At that time, since rare rare earth elements mixed in the scrap magnet before recycling are reused as they are, it is also effective from the viewpoint of preventing depletion of resources. Further, by appropriately mixing the raw material powder and controlling the oxygen content of the magnet to a predetermined value (for example, 3000 ppm) or less, the recycled magnet produced as described above can be sent for further recycling.
  • a predetermined value for example, 3000 ppm
  • the case where the support piece 9 is formed integrally with the spacer 8 formed by assembling the wire rods in the grid shape is not limited to this, but the evaporated metal Any form is acceptable as long as it allows the passage of atoms.
  • the metal evaporating material v has been described as an example of a plate-like material, but the present invention is not limited to this, and the wire is assembled in a lattice shape on the upper surface of the sintered magnet placed on the spacer member. Another spacer may be placed and a granular metal evaporation material may be placed on the spacer.
  • the example using Dy as the metal evaporation material has been described as an example.
  • a mixture of Tb and Dy and Tb having a low vapor pressure in the heating temperature range of the sintered body S capable of increasing the diffusion rate is used.
  • the processing chamber 70 may be heated in the range of 900 ° C. to 1150 ° C.
  • the vapor pressure that can supply Tb atoms to the surface of the sintered magnet S is not reached.
  • Tb is excessively diffused in the crystal grains, thereby reducing the maximum energy product and the residual magnetic flux density.
  • the vacuum chamber 3 is provided via the vacuum exhaust means 2. May be reduced to a predetermined pressure (for example, 1 ⁇ 10 ⁇ 5 Pa) and held for a predetermined time. At that time, the heating means 4 may be operated to heat the inside of the processing chamber 70 to, for example, 100 ° C. and hold it for a predetermined time.
  • a predetermined pressure for example, 1 ⁇ 10 ⁇ 5 Pa
  • the vacuum steam treatment is performed as an example.
  • the produced sintered body is housed in a vacuum heat treatment furnace (not shown) and vacuum Due to the difference in vapor pressure at a certain temperature in an atmosphere (for example, at 1000 ° C., the vapor pressure of Nd is 10 ⁇ 3 Pa, the vapor pressure of Fe is 10 ⁇ 5 Pa, the vapor pressure of B 10 ⁇ 13 Pa), a process of evaporating only the rare earth element R in the R-rich phase of the primary sintered body may be performed.
  • the heating temperature is set to 900 ° C. or higher and lower than the sintering temperature.
  • the temperature is lower than 900 ° C., the evaporation rate of the rare earth element R is slow, and when the sintering temperature is exceeded, abnormal grain growth occurs and the magnetic properties are greatly deteriorated.
  • the pressure in the furnace is set to a pressure of 10 ⁇ 3 Pa or less.
  • the pressure is higher than 10 ⁇ 3 Pa, the rare earth element R cannot be evaporated efficiently. Thereby, as a result, the ratio of the Nd-rich phase is reduced, and a higher-performance recycled magnet S with an improved maximum energy product ((BH) max) and residual magnetic flux density (Br) showing magnetic characteristics can be produced.
  • scrap magnets used in hybrid cars were collected to produce recycled magnets.
  • the scrap magnet is made from 23Nd-6Dy-1Co-0.1Cu-0.1B-Bal., Made from industrially pure iron, metallic neodymium, low carbon ferroboron, and metallic cobalt. It was prepared with a blending composition (% by weight) of Fe. Further, since the recovered scrap magnet was subjected to surface treatment such as Ni plating, the surface treatment layer (protective film) was peeled off using a known separating agent and washed. And the said scrap was grind
  • the recovered raw material was mixed with the raw material powder at a predetermined mixing ratio, and coarsely pulverized once by a hydrogen pulverization step.
  • the hydrogen pulverizer was used in a 100 kg batch for 5 hours under a hydrogen atmosphere of 1 atm, and then dehydrogenated at 600 ° C. for 5 hours.
  • the mixed powder was pulverized by a jet mill pulverizer.
  • a fine pulverization process was performed in a nitrogen pulverization gas at 8 atm to obtain a mixed raw material powder having an average particle diameter of 3 ⁇ m.
  • a molded body of 50 mm ⁇ 50 mm ⁇ 50 mm was obtained in a magnetic field of 18 kOe.
  • the compact was vacuum degassed and then liquid phase sintered at a temperature of 1100 ° C. for 2 hours in a vacuum sintering furnace to obtain a sintered body S. Thereafter, heat treatment was performed at 550 ° C. for 2 hours to obtain a sintered body taken out after cooling. And after processing the sintered magnet into a shape of 40 ⁇ 20 ⁇ 7 mm by wire cutting, the surface was cleaned using a nitric acid-based etching solution.
  • the sintered magnet S produced as described above was subjected to vacuum vapor processing.
  • Dy (99.5%) formed in a plate shape with a thickness of 0.5 mm is used as the metal evaporating material v, and the metal evaporating material v and the sintered magnet S are stored in the processing box 7 made of Nb. It was decided.
  • the heating means 4 is operated, the temperature in the processing chamber 70 is set to 850 ° C., the processing time is set to 18 hours, steam processing is performed, and recycling is performed. A magnet was obtained.
  • FIG. 4 shows an average value of magnetic properties (measured by a BH curve tracer) and oxygen content (using an infrared absorption analyzer manufactured by LECO) when a recycled magnet is produced by changing the mixing ratio of the raw material powder to the recovered raw material powder. , Measured by absorption spectrometry), and also shows the average value of magnetic properties and oxygen content of the sintered body S before vacuum vapor treatment.
  • the coercive force when the sintered body S is produced only with the recovered raw material powder, the coercive force is as low as 16.5 kOe, but when the sintered body is subjected to vacuum vapor treatment, the coercive force is improved to 23.5 kOe.
  • the average value of oxygen content also increases only about 20 ppm, and it turns out that a high performance recycled magnet is obtained.
  • the coercive force improves and the oxygen content can be reduced as the mixing ratio of the dissolved raw material increases. Therefore, it can be seen that the recycled magnet regenerated by applying the present invention is also effective for recycle.
  • the typical sectional view of the vacuum steam processing device which performs vacuum steam processing.
  • Sectional drawing which illustrates typically the cross section of the permanent magnet produced by this invention. 2 is a table showing the magnetic characteristics of the permanent magnet produced in Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

 従来例の焼結磁石の再生方法では、溶媒抽出などの複数の処理工程を経てスクラップ磁石を再生するため、生産性が悪く、その上、フッ酸などの数種の溶剤を用いるため、コスト高を招く。  鉄-ホウ素-希土類系の焼結磁石たるスクラップ磁石を回収して粉砕し、回収原料粉末を得る工程と、前記回収原料粉末から粉末冶金法により焼結体を得る工程と、前記焼結体を処理室内に配置して加熱すると共に、同一または他の処理室内に配置したDy、Tbの少なくとも一方を含む金属蒸発材料を蒸発させ、前記蒸発した金属原子の焼結磁石表面への供給量を調節して金属原子を付着させ、この付着した金属原子を焼結体の結晶粒界及び/または結晶粒界相に拡散させる工程とを含む。          

Description

スクラップ磁石の再生方法
 本発明は、スクラップ磁石の再生方法に関し、特に、一旦使用されたまたは製造工程で不良となった焼結磁石を回収し、この焼結磁石から特定元素の溶解抽出を行うことなく、高磁気特性の焼結磁石(永久磁石)に再生することができるスクラップ磁石の再生方法に関する。
 Nd-Fe-B系の焼結磁石(所謂、ネオジム磁石)は、鉄と、安価であって資源的に豊富で安定供給が可能なNd、Bの元素の組み合わせからなることで安価に製造できると共に、高磁気特性(最大エネルギー積はフェライト系磁石の10倍程度)を有することから、電子機器など種々の製品に利用され、ハイブリッドカー用のモーターや発電機などにも採用され、使用量が増えている。
 このような焼結磁石は主に粉末冶金法で生産されており、この方法では、先ず、Nd、Fe、Bを所定の組成比で配合する。その際、保磁力を高めるためにジスプロシウムなどの希少な希土類元素が混合される。そして、溶解、鋳造して合金原料を作製し、例えば水素粉砕工程により一旦粗粉砕し、引き続き、例えばジェットミル微粉砕工程により微粉砕して(粉砕工程)、合金原料粉末を得る。次いで、得られた合金原料粉末を磁界中にて配向(磁場配向)させ、磁場を印加した状態で圧縮成形して成形体を得る。最後に、この成形体を所定の条件下で焼結させて焼結磁石が作製される(特許文献1参照)。
 このような焼結磁石の製造工程においては、成形不良や焼結不良等によるスクラップが発生する。スクラップは、希少な希土類元素も含まれていることから、資源の枯渇化防止等の観点からリサイクルする必要がある。
 他方で、上記のように焼結磁石のキュリー温度は約300℃と低く、採用する製品の使用状況によっては熱により減磁するという問題があり、減磁した焼結磁石はそのままでは他の用途で再利用できず、このような場合にも上記焼結磁石はスクラップとなる。このため、このような製品スクラップもまたリサイクルできるようにする必要がある。
 ここで、スクラップ磁石は、通常、焼結時の酸化等により酸素、窒素、炭素といった不純物を多く含み、また、焼結時の結晶粒成長により平均結晶粒径が大きくなっている。このため、スクラップ磁石をそのまま粉砕し、粉末冶金法により再生したのでは、高い保磁力の焼結磁石が得られないという問題がある。
 そこで、従来では、酸溶解を行った後、ネオジムやジスプロシウムなどの希土類元素を溶媒抽出法を利用して分離精製し、フッ酸、シュウ酸や炭酸ナトリウムなどを添加し、沈殿物として分離し、これらを回収して酸化物やフッ化物として後、溶融塩電解等により再生することが知られている。
 また、スクラップやスラッジの再生方法として、希土類酸化物を原料とする溶融塩電解浴に該スクラップを投入し、電解浴中にてスクラップを希土類酸化物と磁石合金部に溶融分離させ、電解浴に溶解した希土類酸化物は電解により希土類金属に還元し、さらに磁石合金部は電解還元により生成される希土類金属と合金化させ、希土類金属-遷移金属-ボロン合金として再生することが特許文献2で知られている。
 然し、上述のように、いずれの従来例でも溶媒抽出などの複数の処理工程を経てスクラップ磁石を再生するため、生産性が悪く、その上、フッ酸などの数種の溶剤を用いるため、コスト高を招くという問題がある。
特開2004-6761号公報 特開2004-296973号公報
 本発明は、以上の点に鑑み、高い量産性を達成できる低コストのスクラップ磁石の再生方法を提供することにその課題がある。
 上記課題を解決するために、本発明のスクラップ磁石の再生方法は、鉄-ホウ素-希土類系の焼結磁石たるスクラップ磁石を回収して粉砕し、回収原料粉末を得る工程と、前記回収原料粉末から粉末冶金法により焼結体を得る工程と、前記焼結体を処理室内に配置して加熱すると共に、同一または他の処理室内に配置したDy、Tbの少なくとも一方を含む金属蒸発材料を蒸発させ、前記蒸発した金属原子の焼結磁石表面への供給量を調節して金属原子を付着させ、この付着した金属原子を焼結体の結晶粒界及び/または結晶粒界相に拡散させる工程とを含むことを特徴とする。
 本発明によれば、スクラップ磁石をそのまま粉砕して回収原料粉末を得た後、粉末冶金法により焼結体を得る。このとき、焼結体は、再生前の焼結磁石と比較しての酸素などの不純物を多く含有しており、このままでは、高い保磁力を有する高性能磁石とはなり得ない。そこで、上記焼結体を処理室内に配置して加熱すると共に、同一または他の処理室内に配置したDy、Tbの少なくとも一方を含む金属蒸発材料を蒸発させ、前記蒸発した金属原子の焼結磁石表面への供給量を調節して金属原子を付着させ、この付着した金属原子を焼結磁石の結晶粒界及び/または結晶粒界相に拡散させる処理(真空蒸気処理)を施す。
 これにより、DyやTbが焼結磁石の結晶粒子及び/または結晶粒界相に拡散させて均一に行き渡っていることで、結晶粒界や結晶粒界相にDy、Tbのリッチ相(Dy、Tbを5~80%の範囲で含む相)を有し、さらには結晶粒の表面付近にのみDyやTbが拡散し、その結果、磁化および保磁力が効果的に回復し、高性能なリサイクル磁石が得られる。
 このように本発明においては、スクラップ磁石を回収後、直ちに粉砕工程に戻し、粉末冶金法により再度焼結体を得た後、上記真空蒸気処理を施すだけであるため、溶媒抽出等の複数の処理工程は不要になって高性能磁石を得るのに生産性を向上でき、その上、生産設備も少なくできることと相まって、低コスト化を図ることができる。その際、再生前のスクラップ磁石に混合されていた希少な希土類元素がそのまま再利用されるため、資源の枯渇化防止等の観点からも有効である。
 本発明においては、前記回収原料粉末に、急冷法により作製した鉄-ホウ素-希土類系磁石用の合金原料を粉砕して得た原料粉末を混合するようにすれば、リサイクルされる際に焼結体に持ち込まれる酸素等の不純物の量を少なくでき、結果として、このリサイクル磁石を更なるリサイクルに回すことが可能になる。
 尚、前記粉砕は水素粉砕及びジェットミル微粉砕の各工程を経て行えばよい。
 また、本発明においては、前記金属蒸発材料の蒸発中に前記焼結磁石が配置された処理室内に不活性ガスを導入する工程を含み、前記不活性ガスの分圧を変化させることで前記供給量を調節し、付着した金属原子からなる薄膜が形成される前に前記金属原子を結晶粒界及び/または結晶粒界相に拡散させるのがよい。これにより、当該処理後の永久磁石の表面状態が処理前の状態と略同一であり、表面の仕上加工が不要になって更に生産性を高めることが可能になる。
 さらに、前記焼結体の結晶粒界及び/または結晶粒界相に前記金属原子を拡散させた後、前記加熱の温度より低い温度で熱処理を施せば、リサイクル焼結磁石の磁気特性を一層向上できてよい。
 以下に、図面を参照しながら、本発明の実施の形態の鉄-ホウ素-希土類系の焼結磁石たるスクラップ磁石の再生方法について説明する。
 スクラップ磁石としては、焼結磁石の製造工程で成形不良や焼結不良等により発生したスクラップ及び使用済みの製品スクラップが用いられる。ここで、製品スクラップの場合には、例えば耐食性を持たせるためにNiメッキ等により保護膜が形成されている場合がある。このような場合には、従来技術同様、再生に先立って、保護膜の種類に応じた公知の剥離処理方法により当該保護膜が剥離され、適宜洗浄される。
 回収したスクラップ磁石は、その形状や大きさに応じて、例えばスタンプミルを用い、5~10mm程度の厚さに適宜粉砕して薄片とされる。そして、公知の水素粉砕工程によりさらに粗粉砕される。この場合、スクラップ磁石の形状や大きさによっては、薄片に粉砕することなく、水素粉砕工程で粗粉砕するようにしてもよい。引き続き、ジェットミル微粉砕工程により窒素ガス雰囲気中にて微粉砕され、平均粒径3~10μmの回収原料粉末とされる。
 ここで、上記スクラップ磁石は、例えば焼結時の酸化により酸素、窒素、炭素といった不純物を多く含む。このような場合に、例えば酸素や炭素の含有量が所定値(例えば、酸素では約8000ppm、炭素では1000ppm)を超えていると、焼結工程で液相焼結ができない等の不具合が生じる。
 そこで、本実施の形態では、スクラップ焼結磁石の不純物の含有量に応じて、Nd-Fe-B系の原料粉末を所定の混合比で混合するようにした。この場合、後述する真空蒸気処理時の焼結体への金属原子の拡散速度を速めつつ高性能焼結磁石を得るためには、原料粉末の混合量は、焼結磁石自体の酸素含有量が3000ppm以下となるように設定することが好ましい。
 原料粉末は次のように作製される。即ち、Fe、Nd、Bが所定の組成比となるように、工業用純鉄、金属ネオジウム、低炭素フェロボロンを配合して真空誘導炉を用いて溶解し、急冷法、例えばストリップキャスト法により0.05mm~0.5mmの合金原料を先ず作製する。あるいは、遠心鋳造法で5~10mm程度の厚さの合金原料を作製してもよく、配合の際に、Dy、Tb、Co、Cu、Nb、Zr、Al、Ga等を添加しても良い。希土類元素の合計含有量を28.5%より多くし、α鉄が生成しないインゴットとすることが好ましい。
 次いで、作製した合金原料を、公知の水素粉砕工程により粗粉砕し、引き続き、ジェットミル微粉砕工程により窒素ガス雰囲気中で微粉砕する。これにより、平均粒径3~10μmの原料粉末を得る。尚、原料粉末と回収原料粉末とを混合する時期については特に限定はないが、水素粉砕工程前またはいずれかの粉末を水素粉砕工程砕で微粉末に粉砕する際に他方を混入しながら、両者を粉砕しつつ、混ぜ合わせれば、粉砕工程を効率化できてよい。
 次いで、上記のように作製した、回収原料粉末または回収原料粉末及び原料粉末の混合微粉末を公知の圧縮成形機を用いて磁界中にて所定形状に圧縮成形する。そして、圧縮成形機から取出した成形体を、図示省略した焼結炉内に収納し、真空中で所定温度(例えば、1050℃)で所定時間液相焼結(焼結工程)し、焼結体を得る(粉末冶金法)。その後、ワイヤカッタ等を用いた機械加工により所定形状に適宜加工される。そして、このようにして得た焼結体Sに対し真空蒸気処理を施す。この真空蒸気処理を施す真空蒸気処理装置を図1を用いて以下に説明する。
 真空蒸気処理装置1は、ターボ分子ポンプ、クライオポンプ、拡散ポンプなどの真空排気手段2を介して所定圧力(例えば1×10-5Pa)まで減圧して保持できる真空チャンバ3を有する。真空チャンバ3内には、後述する処理箱の周囲を囲う断熱材41とその内側に配置した発熱体42とから構成される加熱手段4が設けられる。断熱材41は、例えばMo製であり、また、発熱体42としては、Mo製のフィラメント(図示せず)を有するヒータであり、図示省略した電源からフィラメントに通電し、抵抗加熱式で断熱材41により囲繞され処理箱が設置される空間5を加熱できる。この空間5には、例えばMo製の載置テーブル6が設けられ、少なくとも1個の処理箱7が載置できるようになっている。
 処理箱7は、上面を開口した直方体形状の箱部71と、開口した箱部71の上面に着脱自在な蓋部72とから構成されている。蓋部72の外周縁部には下方に屈曲させたフランジ72aがその全周に亘って形成され、箱部71の上面に蓋部72を装着すると、フランジ72aが箱部71の外壁に嵌合して(この場合、メタルシールなどの真空シールは設けていない)、真空チャンバ3と隔絶された処理室70が画成される。そして、真空排気手段2を作動させて真空チャンバ3を所定圧力(例えば、1×10-5Pa)まで減圧すると、処理室70が真空チャンバ3より略半桁高い圧力(例えば、5×10-4Pa)まで減圧される。これにより、付加的な真空排気手段を必要とすることなく、処理室70内を適宜所定の真空圧に減圧できる。
 図3に示すように、処理箱7の箱部71には、上記焼結磁石S及び金属蒸発材料vが相互に接触しないようにスペーサー8を介在させて上下に積み重ねて両者が収納される。スペーサー8は、箱部72の横断面より小さい面積となるように複数本の線材81(例えばφ0.1~10mm)を格子状に組付けて構成したものであり、その外周縁部が略直角に上方に屈曲されている(図2参照)。この屈曲した箇所の高さは、真空蒸気処理すべき焼結体Sの高さより高く設定されている。そして、このスペーサー8の水平部分に複数個の焼結体Sが等間隔で並べて載置される。なお、スペーサー8は所謂エクスパンドメタルで構成してもよい。
 ここで、金属蒸発材料vとしては、主相の結晶磁気異方性を大きく向上させるDy及びTbまたはこれらに、Nd、Pr、Al、Cu及びGa等の一層保磁力を高める金属を配合した合金(DyやTbの質量比が50%以上)が用いられ、上記各金属を所定の混合割合で配合した後、例えばアーク溶解炉で溶解した後、所定の厚さの板状に形成されている。この場合、金属蒸発材料vは、スペーサー8の略直角に屈曲された外周縁部上面全周で支持されるような面積を有する。
 そして、箱部71の底面に板状の金属蒸発材料vを設置した後、その上側に、焼結磁石Sを載置したスペーサー8と、他の板状の金属蒸発材料vとを設置する。このようにして、処理箱7の上端部まで金属蒸発材料vと焼結磁石Sの複数個が並置されたスペーサー8とを階層状に交互に積み重ねられる(図2参照)。尚、最上階のスペーサー8の上方においては、蓋部72が近接して位置するため、金属蒸発材料vを省略することもできる。
 また、処理箱7やスペーサー8は、Mo以外の材料、例えば、W、V、Nb、Taまたはこれらの合金(希土類添加型Mo合金、Ti添加型Mo合金などを含む)やCaO、Y O 、或いは希土類酸化物から製作するか、またはこれらの材料を他の断熱材の表面に内張膜として成膜したものから構成することができる。これにより、DyやTbと反応してその表面に反応生成物が形成されることが防止できてよい。
 ところで、上記のように、処理箱7内においてサンドイッチ構造で金属蒸発材料vと焼結体Sとを上下に積み重ねと、金属蒸発材料vと焼結体Sとの間の間隔が狭くなる。このような状態で金属蒸発材料vを蒸発させると、蒸発した金属原子の直進性の影響を強く受ける虞がある。つまり、焼結体Sのうち、金属蒸発材料vと対向した面に金属原子が局所的に付着し易くなり、また、焼結体Sのスペーサー8との当接面において線材81の影となる部分にDyやTbが供給され難くなる。このため、上記真空蒸気処理を施すと、得られたリサイクル磁石Mには局所的に保磁力の高い部分と低い部分とが存在し、その結果、減磁曲線の角型性が損なわれる。
 本実施の形態においては、真空チャンバ3に不活性ガス導入手段を設けた。不活性ガス導入手段は、断面材41で囲繞された空間5に通じるガス導入管9を有し、ガス導入管9が図示省略したマスフローコントローラを介して不活性ガスのガス源に連通している。そして、真空蒸気処理の間において、He、Ar、Ne、Kr、N2等の不活性ガスを一定量で導入する。この場合、真空蒸気処理中に不活性ガスの導入量を変化させるようにしてもよい(当初に不活性ガスの導入量を多くし、その後に少なくしたり若しくは当初に不活性ガスの導入量を少なくし、その後に多くしたり、または、これらを繰り返す)。不活性ガスは、例えば、金属蒸発材料vが蒸発を開始後や設定された加熱温度に達した後に導入され、設定された真空蒸気処理時間の間またはその前後の所定時間だけ導入すればよい。また、不活性ガスを導入したとき、真空チャンバ3内の不活性ガスの分圧が調節できるように、真空排気手段2に通じる排気管に開閉度が調節自在なバルブ10を設けておくことが好ましい。
 これにより、空間5に導入された不活性ガスが処理箱7内にも導入され、このとき、DyやTbの金属原子の平均自由行程が短いことから、不活性ガスにより処理箱7内で蒸発した金属原子が拡散し、直接焼結磁石S表面に付着する金属原子の量が減少すると共に、複数の方向から焼結磁石S表面に供給されるようになる。このため、当該焼結体Sと金属蒸発材料Vとの間の間隔が狭い場合(例えば5mm以下)でも、線材81の影となる部分まで蒸発したDyやTbが回り込んで付着する。その結果、DyやTbの金属原子が結晶粒内に過剰に拡散し、最大エネルギー積及び残留磁束密度を低下させることを防止できる。さらに、局所的に保磁力の高い部分と低い部分とが存在することが抑制でき、減磁曲線の角型性が損なわれることを防止できる。
 次に、上記真空蒸気処理装置1を用い、金属蒸発材料vとしてDyを用いた真空蒸気処理について説明する。上述したように焼結体Sと板状の金属蒸発材料vとをスペーサー8を介して交互に積み重ねて箱部71に両者を先ず設置する(これにより、処理室20内で焼結体Sと金属蒸発材料vが離間して配置される)。そして、箱部71の開口した上面に蓋部72を装着した後、真空チャンバ3内で加熱手段4によって囲繞された空間5内でテーブル6上に処理箱7を設置する(図1参照)。そして、真空排気手段2を介して真空チャンバ3を所定圧力(例えば、1×10-4Pa)に達するまで真空排気して減圧し、(処理室70は略半桁高い圧力まで真空排気される)、真空チャンバ3が所定圧力に達すると、加熱手段4を作動させて処理室70を加熱する。
 減圧下で処理室70内の温度が所定温度に達すると、処理室70のDyが、処理室70と略同温まで加熱されて蒸発を開始し、処理室70内にDy蒸気雰囲気が形成される。その際、ガス導入手段を作動させて一定の導入量で真空チャンバ3内に不活性ガスを導入する。このとき、不活性ガスが処理箱7内にも導入され、当該不活性ガスにより処理室70内で蒸発した金属原子が拡散される。
 Dyが蒸発を開始した場合、焼結磁石SとDyとを相互に接触しないように配置されているため、溶けたDyが、表面Ndリッチ相が溶けた焼結磁石Sに直接付着することはない。そして、処理箱内で拡散されたDy蒸気雰囲気中のDy原子が、直接または衝突を繰返して複数の方向から、Dyと略同温まで加熱された焼結磁石S表面略全体に向かって供給されて付着し、この付着したDyが焼結磁石Sの結晶粒界及び/または結晶粒界相に拡散される。
 ここで、Dy層(薄膜)が形成されるように、Dy蒸気雰囲気中のDy原子が焼結磁石Sの表面に供給されると、焼結磁石S表面で付着して堆積したDyが再結晶したとき、永久磁石M表面を著しく劣化させ(表面粗さが悪くなる)、また、処理中に略同温まで加熱されている焼結磁石S表面に付着して堆積したDyが溶解して焼結磁石S表面に近い領域における粒界内に過剰に拡散し、磁気特性を効果的に向上または回復させることができない。
 つまり、焼結磁石S表面にDyの薄膜が一度形成されると、薄膜に隣接した焼結磁石表面Sの平均組成はDyリッチ組成となり、Dyリッチ組成になると、液相温度が下がり、焼結磁石S表面が溶けるようになる(即ち、主相が溶けて液相の量が増加する)。その結果、焼結磁石S表面付近が溶けて崩れ、凹凸が増加することとなる。その上、Dyが多量の液相と共に結晶粒内に過剰に侵入し、磁気特性を示す最大エネルギー積及び残留磁束密度がさらに低下する。
 本実施の形態では、金属蒸発材料vがDyであるとき、このDyの蒸発量をコントロールするため、加熱手段4を制御して処理室70内の温度を800℃~1050℃、好ましくは850℃~950℃の範囲に設定することとした(例えば、処理室内温度が900℃~1000℃のとき、Dyの飽和蒸気圧は約1×10-2~1×10-1Paとなる)。
 処理室70内の温度(ひいては、焼結磁石Sの加熱温度)が800℃より低いと、焼結磁石S表面に付着したDy原子の結晶粒界及び/または結晶粒界層への拡散速度が遅くなり、焼結磁石S表面に薄膜が形成される前に焼結磁石の結晶粒界及び/または結晶粒界相に拡散させて均一に行き渡らせることができない。他方、1050℃を超えた温度では、Dyの蒸気圧が高くなって蒸気雰囲気中のDy原子が焼結磁石S表面に過剰に供給される虞がある。また、Dyが結晶粒内に拡散する虞があり、Dyが結晶粒内に拡散すると、結晶粒内の磁化を大きく下げるため、最大エネルギー積及び残留磁束密度がさらに低下することになる。
 それに併せて、バルブ11の開閉度を変化させて、真空チャンバ3内の導入した不活性ガスの分圧が3Pa~50000Paとなるようにした。3Paより低い圧力では、DyやTbが局所的に焼結磁石Sに付着し、減磁曲線の角型性が悪化する。また、50000Paを超えた圧力では、金属蒸発材料vの蒸発が抑制されてしまい、処理時間が過剰に長くなる。
 これにより、Arなどの不活性ガスの分圧を調節してDyの蒸発量をコントロールし、当該不活性ガスの導入によって、蒸発したDy原子を処理箱内で拡散させることで、焼結磁石SへのDy原子の供給量を抑制しながらその表面全体にDy原子を付着させることと、焼結磁石Sを所定温度範囲で加熱することによって拡散速度が早くなることとが相俟って、焼結磁石S表面に付着したDy原子を、焼結磁石S表面で堆積してDy層(薄膜)を形成する前に焼結磁石Sの結晶粒界及び/または結晶粒界相に効率よく拡散させて均一に行き渡らせることができる(図3参照)。その結果、リサイクル磁石M表面が劣化することが防止され、また、焼結磁石表面に近い領域の粒界内にDyが過剰に拡散することが抑制され、結晶粒界相にDyリッチ相(Dyを5~80%の範囲で含む相)を有し、さらには結晶粒の表面付近にのみDyが拡散することで、磁化および保磁力が効果的に回復する。
 それに加えて、機械加工時に、焼結磁石表面の主相である結晶粒にクラックが生じて磁気特性が著しく劣化する場合があるが、表面付近の結晶粒のクラックの内側にDyリッチ相が形成されることで、(図3参照)、磁気特性が損なわれることが防止され、その上、極めて強い耐食性、耐候性を有する。
 また、当該処理箱7内で蒸発した金属原子が拡散されて存在し、焼結磁石Sが、細い線材81を格子状に組付けたスペーサー8に載置され、当該焼結磁石Sと金属蒸発材料vとの間の間隔が狭い場合でも、線材81の影となる部分まで蒸発したDyやTbが回り込んで付着する。その結果、局所的に保磁力の高い部分と低い部分とが存在することが抑制でき、焼結磁石Sに上記真空蒸気処理を施しても減磁曲線の角型性が損なわれることを防止できる。
 最後に、上記処理を所定時間(例えば、4~48時間)だけ実施した後、加熱手段4の作動を停止させると共に、ガス導入手段による不活性ガスの導入を一旦停止する。引き続き、不活性ガスを再度導入し(100kPa)、金属蒸発材料vの蒸発を停止させる。なお、不活性ガスの導入を停止せず、その導入量のみを増加させて蒸発を停止させるようにしてもよい。そして、処理室70内の温度を例えば500℃まで一旦下げる。引き続き、加熱手段4を再度作動させ、処理室70内の温度を450℃~650℃の範囲に設定し、一層保磁力を向上または回復させるために、熱処理を施す。そして、略室温まで急冷し、処理箱7を真空チャンバ3から取り出す。
 このように本実施の形態においては、スクラップ磁石を回収して直ちに粉砕し、粉末冶金法により焼結体Sを得た後、上記真空蒸気処理を施すだけであるため、溶媒抽出等の複数の処理工程は不要になることと、仕上げ加工が不要になることとが相俟って、高性能なリサイクル磁石を得るための生産性を向上でき、その上、低コスト化を図ることができる。その際、再生前のスクラップ磁石に混合されていた希少な希土類元素がそのまま再利用されるため、資源の枯渇化防止等の観点からも有効である。また、原料粉末を適宜混合して磁石の酸素含有量を所定値(例えば、3000ppm)以下にコントロールすることで、上記のように作製したリサイクル磁石を更なるリサイクルに回すことが可能になる。
 尚、本実施の形態では、スペーサー8として、線材を格子状に組付けて構成したものに一体で支持片9を形成する場合について説明したが、これに限定されるものではなく、蒸発した金属原子の通過を許容するものであれば、その形態を問わない。また、金属蒸発材料vとして板状に形成したものを例に説明したが、これに限定されるものではなく、スペーサー部材上に載置された焼結磁石上面に、線材を格子状に組付けた他のスペーサーを載置し、このスペーサー上に粒状の金属蒸発材料を敷きつめるようにしてもよい。
 また、本実施の形態では、金属蒸発材料としてDyを用いるものを例として説明したが、拡散速度を早くできる焼結体Sの加熱温度範囲で蒸気圧が低いTb、DyとTbとの混合物を用いることができる。Tbを用いる場合、処理室70を900℃~1150℃の範囲で加熱すればよい。900℃より低い温度では、焼結磁石S表面にTb原子を供給できる蒸気圧に達しない。他方、1150℃を超えた温度では、Tbが結晶粒内に過剰に拡散してしまい、最大エネルギー積及び残留磁束密度を低下させる。
 また、DyやTbを結晶粒界及び/または結晶粒界相に拡散させる前に焼結体S表面に吸着した汚れ、ガスや水分を除去するために、真空排気手段2を介して真空チャンバ3を所定圧力(例えば、1×10-5Pa)まで減圧し、所定時間保持するようにしてもよい。その際、加熱手段4を作動させて処理室70内を例えば100℃に加熱し、所定時間保持するようにしてもよい。
 さらに、本実施の形態では、焼結体Sを得た後、そのまま真空蒸気処理を施すものを例に説明したが、作製した焼結体を、図示省略した真空熱処理炉内に収納し、真空雰囲気にて所定温度に加熱し、一定温度下での蒸気圧の相違により(例えば、1000℃において、Ndの蒸気圧は10-3Pa、Feの蒸気圧は10-5Pa、Bの蒸気圧は10-13Pa)、一次焼結体のRリッチ相中の希土類元素Rのみを蒸発させる処理を施してもよい。
 この場合、加熱温度は900℃以上で、焼結温度未満の温度に設定する。900℃より低い温度では、希土類元素Rの蒸発速度が遅く、また、焼結温度を超えると、異常粒成長が起こり、磁気特性が大きく低下する。また、炉内の圧力を10-3Pa以下の圧力に設定する。10-3Paより高い圧力では、希土類元素Rを効率よく蒸発させることができない。これにより、その結果、Ndリッチ相の割合が減少して、磁気特性を示す最大エネルギー積((BH)max)及び残留磁束密度(Br)が向上した更に高性能のリサイクル磁石Sが作製できる。
 実施例1では、ハイブリットカーに用いられていたスクラップ磁石を回収し、リサイクル磁石を作製した。スクラップ磁石は、工業用純鉄、金属ネオジウム、低炭素フェロボロン、金属コバルトを原料として、23Nd-6Dy-1Co-0.1Cu-0.1B-Bal.Feの配合組成(重量%)で作製したものであった。また、回収したスクラップ磁石には、Niメッキなどの表面処理が施されていたため、公知の隔離剤を用いて表面処理層(保護膜)を剥離し、洗浄した。そして、当該スクラップを5mm程度に粉砕して回収原料を得た。
 また、工業用純鉄、金属ネオジウム、低炭素フェロボロンを主原料として、24(Nd+Pr)-6Dy-1Co-0.1Cu-0.1Hf-0.1Ga-0.98B-Bal Feの配合組成(重量%)で、真空誘導溶解を行い、ストリップキャスティング法で厚さ約0.4mmの薄片状インゴット(溶解原料)を得た。
 次いで、回収原料を所定の混合比で上記原料粉末に混ぜ、水素粉砕工程により一旦粗粉砕した。この場合、水素粉砕機は100kgバッチで1気圧の水素雰囲気下で5時間行い、その後、600℃、5時間の条件で脱水素処理を行った。そして、冷却後、混合された粉末をジェットミル微粉砕機により微粉砕した。この場合、8気圧の窒素粉砕ガス中で微粉砕処理を行い、平均粒径3μmの混合原料粉末を得た。
 次いで、公知の構造を有する横磁場圧縮成形装置を用いて、18kOeの磁界中で50mm×50mm×50mmの成形体を得た。そして、成形体を真空脱ガス処理後、真空焼結炉にて1100℃の温度下で2時間液相焼結させて焼結体Sを得た。その後、550℃で2時間熱処理を行い、冷却後取り出した焼結体を得た。そして、ワイヤカットにより焼結磁石を40×20×7mmの形状に加工した後、硝酸系エッチング溶液を用いて表面を洗浄した。
 次に、図1に示す真空蒸気処理装置1を用い、上記のように作製した焼結磁石Sに対し、真空蒸気処理を施した。この場合、金属蒸発材料vとして厚さ0.5mmで板状に形成したDy(99.5%)を用い、当該金属蒸発材料vと焼結磁石SとをNb製の処理箱7に収納することとした。そして、真空チャンバ3内の圧力が10-4Paに達した後、加熱手段4を作動させ、処理室70内の温度を850℃、処理時間を18時間に設定して蒸気処理を行い、リサイクル磁石を得た。
 図4は、回収原料粉末への原料粉末の混合比を変えてリサイクル磁石を作製したときの磁気特性(BHカーブトレーサーにより測定)の平均値と酸素含有量(LECO社製赤外線吸光分析機を用い、吸光分析法により測定)の平均値を示す表であり、併せて、真空蒸気処理前の焼結体Sの磁気特性の平均値と酸素含有量も示すものである。
 これによれば、回収原料粉末のみで焼結体Sを作製した場合、保磁力が16.5kOeと低いのに対し、焼結体に真空蒸気処理を施すと、保磁力が23.5kOeまで向上していることが判る。また、酸素含有量の平均値も20ppm程度しか増加しておらず、高性能のリサイクル磁石が得られるいることが判る。さらに、回収原料に溶解原料を混合してリサイクル磁石を作製した場合、溶解原料の混合割合が増えるに従い、保磁力が向上すると共に、酸素含有量を少なくできることが判る。よって、本発明を適用して再生したリサイクル磁石は、再度のリサイクルにも有効であることが判る。
真空蒸気処理を施す真空蒸気処理装置の模式的断面図。 処理箱への焼結磁石と金属蒸発材料との積載を模式的に説明する斜視図。 本発明で作製した永久磁石の断面を模式的に説明する断面図。 実施例1で作製した永久磁石の磁気特性を示す表。
符号の説明
1 真空蒸気処理装置
2 真空排気手段
3 真空チャンバ
4 加熱手段
7 処理箱
71 箱部
72 蓋部
8 スペーサー
81 線材
S スクラップ磁石
M リサイクル磁石
v 金属蒸発材料

Claims (5)

  1.  鉄-ホウ素-希土類系の焼結磁石たるスクラップ磁石を回収して粉砕し、回収原料粉末を得る工程と、
     前記回収原料粉末から粉末冶金法により焼結体を得る工程と、
     前記焼結体を処理室内に配置して加熱すると共に、同一または他の処理室内に配置したDy、Tbの少なくとも一方を含む金属蒸発材料を蒸発させ、前記蒸発した金属原子の焼結磁石表面への供給量を調節して金属原子を付着させ、この付着した金属原子を焼結体の結晶粒界及び/または結晶粒界相に拡散させる工程とを含むことを特徴とするスクラップ磁石の再生方法。
  2.  前記回収原料粉末に、急冷法により作製した鉄-ホウ素-希土類系磁石用の合金原料を粉砕して得た原料粉末を混合することを特徴とする請求項1記載のスクラップ磁石の再生方法。
  3.  前記粉砕は水素粉砕及びジェットミル微粉砕の各工程を経て行われることを特徴とする請求項2記載のスクラップ磁石の再生方法。
  4.  前記金属蒸発材料の蒸発中に前記焼結磁石が配置された処理室内に不活性ガスを導入する工程を含み、前記不活性ガスの分圧を変化させることで前記供給量を調節し、付着した金属原子からなる薄膜が形成される前に前記金属原子を結晶粒界及び/または結晶粒界相に拡散させることを特徴とする請求項1乃至請求項3のいずれか1項に記載のスクラップ磁石の再生方法。
  5.  前記焼結体の結晶粒界及び/または結晶粒界相に前記金属原子を拡散させた後、前記加熱の温度より低い温度で熱処理を施すことを特徴とする請求項1乃至請求項4のいずれか1項に記載のスクラップ磁石の再生方法。
     
PCT/JP2009/052748 2008-02-20 2009-02-18 スクラップ磁石の再生方法 WO2009104632A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020107020125A KR101303717B1 (ko) 2008-02-20 2009-02-18 스크랩 자석의 재생 방법
CN2009801056641A CN101952915A (zh) 2008-02-20 2009-02-18 废磁体的再生方法
US12/863,338 US20110052799A1 (en) 2008-02-20 2009-02-18 Method of recycling scrap magnet
JP2009554340A JP5401328B2 (ja) 2008-02-20 2009-02-18 スクラップ磁石の再生方法
DE200911000399 DE112009000399T5 (de) 2008-02-20 2009-02-18 Verfahren zur Wiederverwertung von Schrottmagneten

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-039299 2008-02-20
JP2008039299 2008-02-20

Publications (1)

Publication Number Publication Date
WO2009104632A1 true WO2009104632A1 (ja) 2009-08-27

Family

ID=40985510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052748 WO2009104632A1 (ja) 2008-02-20 2009-02-18 スクラップ磁石の再生方法

Country Status (8)

Country Link
US (1) US20110052799A1 (ja)
JP (1) JP5401328B2 (ja)
KR (1) KR101303717B1 (ja)
CN (1) CN101952915A (ja)
DE (1) DE112009000399T5 (ja)
RU (1) RU2446497C1 (ja)
TW (1) TWI444236B (ja)
WO (1) WO2009104632A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104801717A (zh) * 2015-05-07 2015-07-29 安徽万磁电子有限公司 一种镀锌烧结钕铁硼废料的再利用工艺
CN104801719A (zh) * 2015-05-07 2015-07-29 安徽万磁电子有限公司 一种镀镍烧结钕铁硼废料的再利用工艺
JP2016122862A (ja) * 2015-08-28 2016-07-07 ティアンヘ (パオトウ) アドヴァンスト テック マグネット カンパニー リミテッド 希土類永久磁石材料及びその製造方法
JP2016532287A (ja) * 2013-06-17 2016-10-13 アーバン マイニング テクノロジー カンパニー,エルエルシー 磁気性能が改善又は回復されたnd−fe−b磁石を形成するための磁石の再生

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5373834B2 (ja) * 2011-02-15 2013-12-18 株式会社豊田中央研究所 希土類磁石およびその製造方法
JP5691989B2 (ja) * 2011-10-11 2015-04-01 トヨタ自動車株式会社 希土類磁石前駆体の焼結体を形成する磁性粉体の製造方法
CN102719725B (zh) * 2012-07-10 2014-02-26 宁波科田磁业有限公司 烧结钕铁硼废料再成型的方法
US9336932B1 (en) 2014-08-15 2016-05-10 Urban Mining Company Grain boundary engineering
CN104900359B (zh) * 2015-05-07 2017-09-12 安泰科技股份有限公司 复合靶气相沉淀制备晶界扩散稀土永磁材料的方法
US11557411B2 (en) 2016-01-28 2023-01-17 Noveon Magnetics Inc. Grain boundary engineering of sintered magnetic alloys and the compositions derived therefrom
CN107470640B (zh) * 2017-09-26 2019-10-01 北京京磁电工科技有限公司 钕铁硼磁体的废料再利用制备工艺
KR102045401B1 (ko) * 2018-04-30 2019-11-15 성림첨단산업(주) 희토류 영구자석의 제조방법
KR102045402B1 (ko) * 2018-04-30 2019-11-15 성림첨단산업(주) 희토류 영구자석의 제조방법
CN111223622A (zh) * 2020-01-13 2020-06-02 桂林电子科技大学 一种利用Dy制备的钕铁硼永磁材料及其制备方法
CN114101686B (zh) * 2021-11-09 2023-07-25 中磁科技股份有限公司 一种钕铁硼氧化毛坯的处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06340902A (ja) * 1993-06-02 1994-12-13 Shin Etsu Chem Co Ltd 希土類焼結永久磁石の製造方法
JP2003049234A (ja) * 2001-05-30 2003-02-21 Sumitomo Special Metals Co Ltd 希土類磁石用焼結体の製造方法
JP2005268684A (ja) * 2004-03-22 2005-09-29 Tdk Corp 焼結磁石スラッジの再利用方法、r−tm−b系永久磁石の製造方法及び磁石製造システム
WO2007102391A1 (ja) * 2006-03-03 2007-09-13 Hitachi Metals, Ltd. R-Fe-B系希土類焼結磁石およびその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1394557A1 (ru) * 1986-03-11 1999-06-20 Московский институт стали и сплавов Способ переработки отходов производства постоянных магнитов
EP0261579B1 (en) * 1986-09-16 1993-01-07 Tokin Corporation A method for producing a rare earth metal-iron-boron permanent magnet by use of a rapidly-quenched alloy powder
JPH11329811A (ja) * 1998-05-18 1999-11-30 Sumitomo Special Metals Co Ltd R−Fe−B系磁石用原料粉末並びにR−Fe−B系磁石の製造方法
CN1269587A (zh) * 1999-04-05 2000-10-11 潘树明 稀土过渡族永磁体生产中废料磁性再生方法及其产品
RU2179764C2 (ru) * 2000-01-05 2002-02-20 ОАО Научно-производственное объединение "Магнетон" Способ изготовления оксидных постоянных магнитов из отходов феррита стронция
JP2001335852A (ja) * 2000-05-25 2001-12-04 Shin Etsu Chem Co Ltd Nd系希土類磁石合金廃粉末の回収方法
WO2002099823A1 (en) * 2001-05-30 2002-12-12 Sumitomo Special Metals Co., Ltd. Method of making sintered compact for rare earth magnet
JP4353402B2 (ja) 2002-03-27 2009-10-28 Tdk株式会社 希土類永久磁石の製造方法
JP2004296973A (ja) 2003-03-28 2004-10-21 Kenichi Machida 金属蒸気収着による高性能希土類磁石の製造
JP2005011973A (ja) * 2003-06-18 2005-01-13 Japan Science & Technology Agency 希土類−鉄−ホウ素系磁石及びその製造方法
US7323228B1 (en) * 2003-10-29 2008-01-29 Lsi Logic Corporation Method of vaporizing and ionizing metals for use in semiconductor processing
RU2401881C2 (ru) * 2005-03-18 2010-10-20 Улвак, Инк. Способ и устройство нанесения покрытия, постоянный магнит и способ его изготовления
RU2286230C1 (ru) * 2005-03-23 2006-10-27 Владимир Васильевич Котунов Способ получения материала для анизотропных магнитопластов
DE112007002010T5 (de) * 2006-08-23 2009-07-02 ULVAC, Inc., Chigasaki Permanentmagnet und Herstellungsverfahren davon
JP2009149916A (ja) * 2006-09-14 2009-07-09 Ulvac Japan Ltd 真空蒸気処理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06340902A (ja) * 1993-06-02 1994-12-13 Shin Etsu Chem Co Ltd 希土類焼結永久磁石の製造方法
JP2003049234A (ja) * 2001-05-30 2003-02-21 Sumitomo Special Metals Co Ltd 希土類磁石用焼結体の製造方法
JP2005268684A (ja) * 2004-03-22 2005-09-29 Tdk Corp 焼結磁石スラッジの再利用方法、r−tm−b系永久磁石の製造方法及び磁石製造システム
WO2007102391A1 (ja) * 2006-03-03 2007-09-13 Hitachi Metals, Ltd. R-Fe-B系希土類焼結磁石およびその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016532287A (ja) * 2013-06-17 2016-10-13 アーバン マイニング テクノロジー カンパニー,エルエルシー 磁気性能が改善又は回復されたnd−fe−b磁石を形成するための磁石の再生
JP2020047926A (ja) * 2013-06-17 2020-03-26 アーバン マイニング テクノロジー カンパニー,エルエルシー 磁気性能が改善又は回復されたnd−fe−b磁石を形成するための磁石の再生
CN104801717A (zh) * 2015-05-07 2015-07-29 安徽万磁电子有限公司 一种镀锌烧结钕铁硼废料的再利用工艺
CN104801719A (zh) * 2015-05-07 2015-07-29 安徽万磁电子有限公司 一种镀镍烧结钕铁硼废料的再利用工艺
JP2016122862A (ja) * 2015-08-28 2016-07-07 ティアンヘ (パオトウ) アドヴァンスト テック マグネット カンパニー リミテッド 希土類永久磁石材料及びその製造方法

Also Published As

Publication number Publication date
TWI444236B (zh) 2014-07-11
CN101952915A (zh) 2011-01-19
KR101303717B1 (ko) 2013-09-04
DE112009000399T5 (de) 2010-12-30
RU2446497C1 (ru) 2012-03-27
TW200940217A (en) 2009-10-01
JPWO2009104632A1 (ja) 2011-06-23
KR20100127218A (ko) 2010-12-03
JP5401328B2 (ja) 2014-01-29
US20110052799A1 (en) 2011-03-03

Similar Documents

Publication Publication Date Title
JP5401328B2 (ja) スクラップ磁石の再生方法
JP5247717B2 (ja) 永久磁石の製造方法及び永久磁石
KR101425828B1 (ko) 영구자석 및 영구자석의 제조방법
KR101456841B1 (ko) 영구자석 및 영구자석의 제조방법
KR101373272B1 (ko) 영구자석 및 영구자석의 제조방법
JP5277179B2 (ja) 永久磁石の製造方法及び永久磁石
JP5117220B2 (ja) 永久磁石の製造方法
US8128760B2 (en) Permanent magnet and method of manufacturing same
JP2011035001A (ja) 永久磁石の製造方法
JP4860493B2 (ja) 永久磁石の製造方法及び永久磁石の製造装置
JP5117219B2 (ja) 永久磁石の製造方法
WO2008075712A1 (ja) 永久磁石及び永久磁石の製造方法
JP4999661B2 (ja) 永久磁石の製造方法
JP5117357B2 (ja) 永久磁石の製造方法
JP2014135441A (ja) 永久磁石の製造方法
JP6408284B2 (ja) 永久磁石の製造方法
JP5179133B2 (ja) 焼結体の製造装置
WO2014108950A1 (ja) 永久磁石の製造方法
JP2010245392A (ja) ネオジウム鉄ボロン系の焼結磁石

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980105664.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09712579

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009554340

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107020125

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010138553

Country of ref document: RU

RET De translation (de og part 6b)

Ref document number: 112009000399

Country of ref document: DE

Date of ref document: 20101230

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 09712579

Country of ref document: EP

Kind code of ref document: A1