WO2009098846A1 - 回折光学素子およびその製造方法 - Google Patents

回折光学素子およびその製造方法 Download PDF

Info

Publication number
WO2009098846A1
WO2009098846A1 PCT/JP2009/000319 JP2009000319W WO2009098846A1 WO 2009098846 A1 WO2009098846 A1 WO 2009098846A1 JP 2009000319 W JP2009000319 W JP 2009000319W WO 2009098846 A1 WO2009098846 A1 WO 2009098846A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
diffraction grating
diffractive optical
resin
distance
Prior art date
Application number
PCT/JP2009/000319
Other languages
English (en)
French (fr)
Inventor
Tsuguhiro Korenaga
Seiji Nishiwaki
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to US12/529,207 priority Critical patent/US8149510B2/en
Priority to JP2009521038A priority patent/JP4378433B2/ja
Priority to CN2009800002165A priority patent/CN101965529B/zh
Publication of WO2009098846A1 publication Critical patent/WO2009098846A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0018Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for preventing ghost images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • G02B5/1852Manufacturing methods using mechanical means, e.g. ruling with diamond tool, moulding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1876Diffractive Fresnel lenses; Zone plates; Kinoforms
    • G02B5/189Structurally combined with optical elements not having diffractive power
    • G02B5/1895Structurally combined with optical elements not having diffractive power such optical elements having dioptric power

Definitions

  • the present invention relates to a diffractive optical element capable of condensing white light efficiently and having high mass productivity, and a manufacturing method thereof.
  • a condensing lens used in an optical system such as a camera or video camera is formed as a diffractive optical element, it is not necessary to use a plurality of complex aspherical lenses. Therefore, by providing the diffraction grating on the surface of the lens base, it is possible to make the condensing lens thinner and the optical system thinner and lighter. Further, a condensing lens for an optical disk used in a wide wavelength region (for example, a visible light region having a wavelength of about 400 nm to 700 nm) can also be constituted by one diffractive optical element. Therefore, according to the diffractive optical element, white light or the like can be collected efficiently, and the optical system can be simplified, reduced in weight, and reduced in cost.
  • the surface of the lens substrate on which the diffraction grating is formed is coated with a layer of an optical material having a refractive index and refractive index dispersion different from those of the lens substrate.
  • Such a coating layer can be formed by applying the optical material to the surface of the lens substrate or by bonding a film made of the optical material to the surface of the lens substrate.
  • n1 ( ⁇ ) is the refractive index of the material constituting the lens base
  • n2 ( ⁇ ) is the refractive index of the material constituting the coating layer
  • Equation 1 If the right side of the above (Equation 1) becomes a constant value in the wavelength region used, theoretically, the wavelength dependence of the diffraction efficiency in that wavelength region is lost. Accordingly, if the diffractive optical element is formed by combining the lens base and the coating layer with a combination of a high refractive index, low wavelength dispersion material and a low refractive index, high wavelength dispersion material, the wavelength dependence of diffraction efficiency can be reduced.
  • a condensing lens that efficiently collects white light or the like can be realized by a diffractive optical element.
  • the lens substrate is made of an optical glass made of a material with a high refractive index and low wavelength dispersion
  • the coating layer is made of an optical glass made of a material with a low refractive index and high wavelength dispersion or an optical material of a resin.
  • the lens substrate is made of an optical glass made of a material having a high refractive index and low wavelength dispersion
  • the coating layer is made of a resin optical material made of a material having a low refractive index and high wavelength dispersion.
  • a phase structure having a ring-shaped step is formed at the boundary between the lens base and the coating layer.
  • a non-reflective lens substrate such as optical glass having a high refractive index and low wavelength dispersion
  • a white diffractive optical element is manufactured by forming a diffraction grating in a spherical shape by press molding or the like and then coating a resin film having a low refractive index and high wavelength dispersion.
  • the diffraction grating itself has a positive condensing power, and the lens substrate with a high refractive index is covered with a resin layer with a low refractive index. It is formed with a blazed step which becomes a decreasing function as it goes away from the axis.
  • the coating layer of the white diffractive optical element is sufficiently smaller than the refractive index of the resin material used for the lens substrate.
  • a resin material having a low refractive index that can be used as a substrate is desired.
  • the lens substrate and the coating layer are both formed from a resin, manufacturing should be easy.
  • the refractive index of the resin material used for the lens substrate is generally smaller than the refractive index of the optical glass, it has been difficult to find a low refractive index resin material that can be used as a coating layer.
  • the lens base of the white diffractive optical element is formed from a resin material by changing the conventional idea, an attempt was made to form a coating layer from a resin material having a higher refractive index than the resin material used for the lens base.
  • the resin material include a material obtained by mixing a nanocomposite material with a resin base.
  • the cross section of the diffraction grating needs to be formed with a blazed step having an increasing function as the distance from the optical axis increases.
  • the distance between the optical axis of the white diffractive optical element and the step closest to the optical axis is large, and the optical axis of the diffraction grating In a region close to, there is a wide concave portion in the portion covered with the coating layer.
  • the volume of the portion of the coating layer made of resin that fills the concave portion is increased. If an attempt is made to manufacture a white diffractive optical element having such a structure, the portion of the coating layer located in the recess may be deformed during the manufacturing process.
  • the present invention solves the above-mentioned problems, and in a diffractive optical element capable of efficiently collecting white light, a diffraction grating can be molded on a lens base made of a resin material by a method with excellent mass productivity, and MTF
  • An object of the present invention is to provide a diffractive optical element having stable optical characteristics such as characteristics.
  • the diffractive optical element of the present invention is a diffractive optical element having a lens base provided with a blazed diffraction grating on an aspheric surface, and an optical adjustment layer covering the diffraction grating.
  • the optical adjustment layer is formed of a second material having a refractive index higher than that of the first material, and the diffraction grating includes a plurality of concentric circles arranged around the optical axis.
  • the first material is composed of a first resin material
  • the second material is composed of a second resin material
  • the second material includes fine particles dispersed in the second resin material.
  • the fine particles are inorganic particles
  • the second resin is a photocurable resin
  • the inorganic particles are made of at least one material selected from the group consisting of zirconium oxide, aluminum oxide, and yttrium oxide.
  • the first material is at least one material selected from the group consisting of a polycarbonate resin, a polystyrene resin, and a fluorene polyester resin.
  • the surface of the aspheric surface is convex toward the tip of the direction in which the light beam travels along the optical axis.
  • the surface of the lens base body on which the diffraction grating is not provided has a concave aspherical shape toward the tip of the direction in which the light beam travels along the optical axis.
  • a method of manufacturing a diffractive optical element according to the present invention includes a step of preparing a lens substrate having a blazed diffraction grating provided on an aspheric surface, the lens substrate being formed of a first resin material,
  • a method of manufacturing a diffractive optical element comprising: forming an optical adjustment layer formed from a second resin material having a refractive index higher than that of one resin material on the diffraction grating by a pad printing method.
  • the grating has a plurality of annular zones arranged concentrically around the optical axis, and the height of each annular zone with respect to the surface of the aspheric surface of the lens base is a distance from the optical axis, respectively.
  • the optical adjustment layer made of resin can be formed in an appropriate shape by, for example, the pad printing method on the diffraction grating formed on the curved surface of the lens substrate. Therefore, according to the present invention, it is possible to provide a diffractive optical element that can be reduced in thickness and weight, can be reduced in cost, and can have high reliability, and is rich in mass productivity.
  • the diffractive optical element of the present invention it is possible to further reduce the thickness, size, and weight of electronic devices such as portable information devices and information home appliances, as well as ensuring low cost and high reliability. There is an effect that can be achieved.
  • (A) is a plan view schematically showing a configuration of an embodiment of a diffractive optical element according to the present invention, and (b) is a cross-sectional view taken along line 1A-1A in (a).
  • (A) is the schematic diagram which expanded and showed the vicinity of the 1st surface of a diffractive optical element
  • (b) is a figure which shows the basic composition of a white diffraction grating.
  • (A) is a figure which shows the conventional design of a blazed shape
  • (b) is a figure which shows the design concerning this embodiment.
  • (A) is the schematic diagram which expanded and showed the vicinity of the 1st surface of the diffractive optical element in embodiment of this invention
  • (b) is a figure which shows the diffractive optical element formed by the conventional design. .
  • 1 is a schematic cross-sectional view of a white diffractive optical element according to a first embodiment of the present invention. It is a figure which shows the white diffractive optical element which has a mortar-shaped dent in the film
  • (A) to (c) are schematic cross-sectional views showing the process flow of the first half of the diffractive optical element according to the embodiment of the present invention.
  • (A) to (c) are schematic cross-sectional views showing a process flow in the latter half of the diffractive optical element according to the embodiment of the present invention.
  • FIG. 1A is a plan view of the diffractive optical element 10 in the present embodiment
  • FIG. 1B is a cross-sectional view taken along line 1A-1A in FIG.
  • the diffractive optical element 10 of the present embodiment includes a lens base 11 provided with a blazed diffraction grating 13 on an aspheric surface (first surface 11a), and The optical adjustment layer 15 covering the diffraction grating 13 is provided.
  • the lens base 11 is formed from the first material 14a
  • the optical adjustment layer 15 is formed from the second material 14b having a higher refractive index than the first material 14a.
  • the first material 14a and the second material 14b may be referred to as a resin material 14 as a whole.
  • the diffraction grating 13 has a plurality of annular zones arranged concentrically around the optical axis 12.
  • the diffraction grating 13 of this embodiment is integrated with the lens base 11, and it can be considered that the actual surface of the lens base 11 constitutes the surface of the diffraction grating 13.
  • the first surface 11a of the lens base 11 is an aspherical curved surface that gently curves as shown by a broken line in FIG. Therefore, the “diffraction grating” in this specification is composed of a portion between the first surface 11 a of the lens base 11 and the surface of the diffraction grating 13, and the portion is made of the same material as the lens base 11. .
  • the distance from the first surface 11 a of the lens base 11 to the surface of the diffraction grating 13 is referred to as the “height” of the diffraction grating 13.
  • the height of the diffraction grating 13 increases and decreases depending on the distance r from the optical axis 12, and each annular zone area is divided at a position where the height is minimized.
  • the part where the height of a certain annular zone is minimum is in contact with the part where the height of the annular zone adjacent to the annular zone is maximized, and a “step” is generated at the boundary. .
  • a plurality of steps 13 a are formed concentrically around the optical axis 12.
  • each annular zone is expressed by an increasing function of the distance r from the optical axis 12 with respect to the aspherical first surface 11a of the lens base 11.
  • the lower surface of the optical adjustment layer 15 is in contact with the surface of the diffraction grating 13, and the upper surface (surface) 15a of the optical adjustment layer 15 is in contact with the aspherical surface 11a of the lens base 11. And have a substantially parallel shape.
  • the second surface 11b opposite to the first surface 11a of the lens base 11 also has an aspherical shape, but no diffraction grating is formed on the second surface 11b of the lens base 11 and a low wavelength dispersion material.
  • a coating film 16 formed from is provided.
  • 2A is a schematic diagram in which the vicinity of the first surface 11a in the diffractive optical element 10 shown in FIG. 1B is enlarged
  • FIG. 2B is a diagram showing a basic configuration of the diffractive optical element 10. FIG. It is.
  • the white diffraction grating 17 as shown in FIG. 2B is realized by the portion 17a made of the first material 14a in which the blazed irregularities are formed and the portion 17b made of the second material 14b in close contact therewith.
  • the refractive index of the first material 14a is n1 ( ⁇ )
  • the refractive index of the second material 14b is n2 ( ⁇ )
  • the height of the step is d
  • the wavelength is ⁇
  • the lens base 11 is made of a resin material, it is easier to form the diffraction grating 13 on the lens base 11 than a lens base made of a glass material. Further, by performing a step of transferring the shape of the diffraction grating 13 onto the surface of the lens base 11 using a mold that defines the shape of the diffraction grating 13, the diffraction grating 13 with high dimensional accuracy can be formed with good reproducibility. It becomes possible. Even if the transfer process is repeated using such a mold, since the molding object is a resin, there is an advantage that the mold is less deteriorated and the number of times of use is increased. Therefore, even in mass production, since the diffraction grating 13 is formed as designed, it can be coated with the optical adjustment layer 15 with good adhesion even by pad printing.
  • the diffractive optical element 10 of the present embodiment has a configuration suitable for reduction in thickness and weight, contributes to reduction in manufacturing cost and improvement in reliability, and is rich in mass productivity.
  • the refractive index of the second material 14b forming the optical adjustment layer 15 is set to be the first material forming the lens base 11.
  • the diffraction grating 13 is formed by a blazed shape that is higher than the refractive index of 14 a and increases as the height of each annular zone increases from the optical axis 12.
  • FIG. 3A is a diagram illustrating a conventional blazed shape design method
  • FIG. 3B is a diagram illustrating a blazed shape design method according to the present embodiment.
  • the vertical axis represents the phase ⁇
  • the horizontal axis represents the distance r from the optical axis 12 (FIG. 2A).
  • the curves shown in these figures indicate the amount of phase shift due to the diffraction grating, and are expressed by a phase polynomial f (r) with the distance r as a variable. Since the phase ⁇ that differs by 2 ⁇ is optically equivalent, the actual cross section of the diffraction grating can be obtained by converting the curve so that the shift amount of the phase ⁇ falls within the range of 0 to 2 ⁇ .
  • the blaze shape obtained by “shape conversion” is described at the tip of the arrow.
  • the blaze shape is composed of a plurality of portions (annular zones) in which the phase ⁇ monotonously increases from 0 to 2 ⁇ as the distance r increases. In a region where the distance r is greater than zero, the phase ⁇ is zero at a plurality of positions. The part where the phase ⁇ is zero is the boundary of the annular zone, and there is a step in that part. As can be seen from FIG. 3A, the width of the annular zone (the interval between adjacent steps) becomes narrower as the distance r increases.
  • phase polynomial f (r) indicating the curve in FIG. 3A is obtained by multiplying the polynomial indicating the optical path difference by 2 ⁇ / ⁇ .
  • This optical path difference is given by the following polynomial F (r).
  • a 1 , a 2 , a 3 ... Are first , second , third ,.
  • phase polynomial f (r) can be expressed by Equation 2 below using the above F (r).
  • is a design wavelength (typically the center wavelength in the visible light region).
  • the distance r 1 at which the step closest to the optical axis 12 is located is larger than the width of the other annular zone, and the concave portion with the radius r 1 is the optical axis 12. It is formed around.
  • an optical adjustment layer formed of a resin on the diffraction grating having such a shape is formed by, for example, a pad printing method, a recess is easily formed on the surface of the optical adjustment layer in the vicinity of the optical axis 12.
  • the optical path difference is defined by the following F ′ (r).
  • is a constant term that does not depend on the distance r.
  • the phase polynomial f ′ (r) is expressed by Equation 3 below.
  • the phase is adjusted within the range of 0 to 2 ⁇ at all distances r.
  • the blaze waveform obtained by this shape conversion has a small radius of the recess in the vicinity of the optical axis 12 as shown in FIG. In other words, the distance r 1 at which the step closest to the optical axis 12 is located is smaller in this embodiment than in the conventional example shown in FIG.
  • phase polynomial f ′ (r) includes the constant term 2 ⁇ / ⁇ that does not depend on the distance r as described above, the distance r1 from the optical axis 12 to the nearest step is shortened as shown in FIG. be able to.
  • the surface shape of the optical adjustment layer is appropriately maintained.
  • a diffractive optical element having a uniform shape in which the surface shape of the optical adjustment layer is uniform can be produced.
  • FIG. 4A is a diagram showing a diffractive optical element formed by the design according to the present embodiment
  • FIG. 4B is a diagram showing a diffractive optical element formed by a conventional design.
  • the distance rb from the optical axis 12 to the nearest step 18b becomes longer, so that a dip 15b is generated in the optical adjustment layer 15 near the optical axis 12.
  • the optical characteristics of the diffractive optical element will be impaired.
  • the distance ra from the optical axis 12 to the nearest step 18a is shortened as shown in FIG. 4A, so that the surface 15a of the optical adjustment layer 15 is located near the optical axis 12 on the lens base.
  • 11 has a shape parallel to the first surface 11a, and can collect white light with high efficiency. Furthermore, since the variation in the thickness of the optical adjustment layer in the vicinity of the optical axis can be reduced, a white diffractive optical element with little variation in optical characteristics can be manufactured with high productivity.
  • FIG. 5 is a view showing an example of a resin material 19 that is preferably used as the optical adjustment layer 15.
  • the resin material 19 has a structure in which inorganic particles 19b are dispersed in a resin base material 19a.
  • the resin base material 19a is made of, for example, a photocurable resin, and the inorganic particles 19b are made of, for example, inorganic nanoparticles.
  • the inorganic particles 19b may be formed of at least one material selected from the group consisting of zirconium oxide, aluminum oxide, and yttrium oxide.
  • an optical adjustment layer having a high refractive index and low wavelength dispersion can be formed on a diffraction grating with high productivity, and a highly reliable diffractive optical element can be realized.
  • FIG. 6 shows a schematic cross section of a white diffractive optical element 30 which is an embodiment of the present invention.
  • the white diffractive optical element 30 includes a lens base 31 and an optical adjustment layer 35 that covers the diffraction grating 33 formed on the lens base 31.
  • the first surface 31 a of the lens base 31 has an aspherical shape that is convex in the direction in which light rays (not shown) travel along the optical axis 32.
  • the second surface 31 b facing the first surface 31 a of the lens base 31 has a concave aspherical shape toward the direction along the optical axis 32.
  • the white diffractive optical element 30 is made of a resin material 34
  • the lens base 31 is made of a first material 34a.
  • the optical adjustment layer 35 is made of the second material 34b.
  • the first material 34a is made of at least one material selected from a polycarbonate resin, a polystyrene resin, and a fluorene polyester resin.
  • the first material 34a of the lens base 31 is polycarbonate having a d-line refractive index of 1.585 and an Abbe number of 28.
  • the second material 34b of the optical adjustment layer 35 is obtained by dispersing nanoparticles of zirconium oxide having a diameter of 3 nm to 10 nm in a resin mainly composed of an acrylic ultraviolet curable resin having a d-line refractive index of 1.623 and an Abbe number of 42. It has been made.
  • the optical adjustment layer 35 also contains a resin-based dispersant, an ultraviolet curing initiator, and the like in order to improve the dispersibility of the nanoparticles.
  • the height of the step 36 of the diffraction grating 33 is 15 ⁇ m. In the visible wavelength range of 400 to 700 nm, the first-order diffraction efficiency of the present embodiment is 95% or more.
  • the optical adjustment layer 35 is formed to have a film thickness of 30 ⁇ m and a substantially constant film thickness along the aspherical shape.
  • Equation 2 The shape of the diffraction grating 33 of the white diffractive optical element 30 shown in FIG. 6 is represented by the phase polynomial f (r) of the above (Equation 2).
  • F is an optical path difference polynomial
  • f is a phase polynomial
  • r is a radial distance from the optical axis
  • is a design wavelength
  • Table 1 shows lens numerical data of the white diffractive optical element 30
  • Table 2 shows an aspheric coefficient
  • Table 3 shows a diffraction coefficient of the second surface of the lens base.
  • the MTF which is the imaging performance index of the lens of the white diffractive optical element 30 designed based on these data, is 61.4% by design at a spatial frequency of 80 lp / mm and an angle of view of 0 °.
  • the value of ⁇ in the phase polynomial that defines the shape of the diffraction grating 33 of the white diffractive optical element 30 was changed within a predetermined range.
  • a mortar-shaped dent was formed in the optical adjustment layer 35 at the center of the lens as shown in FIG. .
  • be the thickness, ideal thickness (design thickness), and deviation of the optical adjustment layer at the deepest position of the recess, and let W be the diameter of the recess.
  • Table 5 shows the relationship between the value of ⁇ , the radial distance from the optical axis, and the evaluation result of the MTF of the lens.
  • the distance r1 between the diffraction grating step closest to the optical axis and the optical axis is 108.3 ⁇ m
  • is 3 ⁇ m
  • the width W is 140 ⁇ m.
  • the film thickness T was 30 ⁇ m
  • the step d of the diffraction grating was 15 ⁇ m.
  • is 3 ⁇ / 8 or more, the concave portion formed in the optical adjustment layer is small, and there is no problem.
  • FIGS. 8A to 8C and FIGS. 9A to 9C are process cross-sectional views schematically showing a method for manufacturing the diffractive optical element 10 according to the present embodiment.
  • a plate 20 having a recess 20a on the upper surface is prepared, and a liquid resin material 19 is poured into the recess 20a of the plate 20 from a dispenser 21, for example.
  • the resin material 19 is stretched in a planar shape and adjusted to a substantially uniform thickness.
  • a light curable resin such as a UV curable resin is used for the resin base material 19a of the resin material 19 shown in FIG. 5, and inorganic nanoparticles made of, for example, a zirconium oxide material are used for the inorganic particles 19b.
  • the pad 22 shown in FIG. 8B is brought close to the resin material 19 on the plate 20, and the resin material 19 is attached to the main surface of the pad 22.
  • the lens base 11 on which the diffraction grating 13 is formed is prepared, and the lens base 11 is fixed to a fixing jig 23 shown in FIG. At this time, the surface of the lens base 11 on which the diffraction grating 13 is formed is exposed upward from the fixing jig 23.
  • the lens base 11 is made of, for example, a polyolefin-based resin material, and the diffraction grating 13 of the lens base 11 has a cross-sectional configuration shown in FIG.
  • the pad 22 with the resin material 19 attached to the main surface is disposed above the fixing jig 23, and the resin material 19 is pressed against the surface of the lens base 11 on which the diffraction grating 13 is formed. At this time, the position where the resin material 19 is pressed against the lens base 11 is adjusted so that the optical characteristics are good.
  • the elastic force of the pad 22 is used to cover the diffraction grating 13 of the lens base 11 without a gap and press the resin material 19 so as to be in close contact, thereby the optical adjustment layer 15. Form.
  • the diffractive optical element 10 After separating the pad 22 from the fixing jig 23, the diffractive optical element 10 is placed in a constant drying furnace while being fixed to the fixing jig 23. In the constant drying furnace, the diffractive optical element 10 is placed in a dry atmosphere 24 at about 100 to 150 ° C. and dried for about 12 hours.
  • the adhesion at the interface between the optical adjustment layer 15 and the diffraction grating 13 is improved, and the resin material constituting the lens base 11 and the optical adjustment layer 15 is stabilized.
  • the refractive index of the optical adjustment layer 15 is larger than the refractive index of the lens base 11.
  • the diffractive optical element 10 is irradiated with UV light 25a as shown in FIG. 9C.
  • the entire optical adjustment layer 15 including the resin base material 19a is cured.
  • the cross section of the diffraction grating 13 formed on the lens base 11 has the structure shown in FIG.
  • the optical adjustment layer 15 having a shape can be obtained.
  • the present invention can realize a white diffractive optical element with high condensing efficiency, it is possible to reduce the thickness and weight of the diffractive optical element so that it can achieve low cost and high reliability, and has high productivity. Can do. Therefore, by using the diffractive optical element of the present invention, it is possible to further reduce the thickness, size, and weight of electronic devices such as portable information devices and information home appliances, thereby reducing manufacturing costs and improving reliability.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Lenses (AREA)

Abstract

 本発明の回折光学素子は、非球面の表面11a上にブレーズ型の回折格子13が設けられたレンズ基体11と、回折格子13を覆う光学調整層15とを有している。レンズ基体11は第1材料14aから形成され、かつ、光学調整層15は第1材料14aよりも屈折率が高い第2材料14bから形成されている。回折格子13は、光軸を中心として同心円状に配列された複数の輪帯領域を有している。レンズ基体11における非球面の表面11aに対する各輪帯領域の高さは、それぞれ、光軸からの距離rの増加関数によって表現される。この増加関数は、距離rを変数とする位相多項式で表現され、前記位相多項式は、距離r=0のときに3/4π以上7/4πの大きさを有する。

Description

回折光学素子およびその製造方法
 本発明は、白色光を効率よく集光できる量産性に富んだ回折光学素子およびその製造方法に関する。
 近年、デジタル技術の進展に伴って画像情報をデジタル情報として取り込む、例えばカメラやビデオカメラなどの電子機器が、携帯情報機器や情報家電などの形態で、より一層高機能化している。これらのカメラやビデオカメラなどの電子機器の高機能化に伴い、使用されるレンズなどの光学部品および光学系の軽量化・薄型化・低コスト化が強く要望されている。
 このようなカメラやビデオカメラなどの光学系に用いる集光レンズを回折光学素子として形成すると、複雑な面形状の非球面レンズを複数個使用する必要がない。従って、回折格子をレンズ基体の表面に設けることにより、集光レンズの薄型化や光学系の薄型化・軽量化が可能となる。さらに、広い波長領域(例えば、波長400nm~700nm程度の可視光域など)で用いる光ディスク用の集光レンズも、1個の回折光学素子で構成できる。従って、回折光学素子によれば、白色光なども効率よく集光できて、光学系も簡単化・軽量化・低コスト化することができる。
 一方、白色光などの広い波長領域を含む光を、このような撮像用途のレンズに適用すると、不要な回折光が発生したり、フレアやゴーストとなって画像を劣化させたり、MTF(Modulation Transfer Function:変調伝達関数)特性を劣化させたりすることがある。このような特性の劣化を避けるために、回折格子が形成されたレンズ基体の面上にレンズ基体とは異なる屈折率および屈折率分散を有する光学材料の層で被覆することがよく知られている。このような被覆層は、上記光学材料をレンズ基体の表面に塗布したり、あるいは、上記光学材料からなる膜をレンズ基体の表面に接合することによって形成され得る。
 レンズ基体上に被覆層を有する回折光学素子において、1次回折効率が100%となる回折格子深さdは、理論上、下記(数式1)で与えられる。
Figure JPOXMLDOC01-appb-M000001
 ただし、n1(λ)はレンズ基体を構成する材料の屈折率、n2(λ)は被覆層を構成する材料の屈折率であり、いずれも波長λの関数である。
 上記(数式1)の右辺が使用する波長領域で一定値になれば、理論上、その波長領域での回折効率の波長依存性がなくなることになる。従って、回折光学素子はレンズ基体と被覆層とを高屈折率低波長分散材料と低屈折率高波長分散材料との組合せで構成すれば、回折効率の波長依存性を小さくすることができ、例えば白色光なども効率よく集光するような集光レンズを回折光学素子により実現することができる。
 このような例として、積層された複数の光学材料層を有し、その境界面にレリーフパターンを形成した回折光学素子において、回折効率の波長依存性を低減して、色むらや不要次数光によるフレアの発生などを有効に防止することができる構成が提案されている(例えば、特許文献1参照)。このような例におけるレンズ基体は、高屈折率低波長分散の材料からなる光学ガラスから構成され、被覆層は低屈折率高波長分散の材料からなる光学ガラスまたは樹脂の光学材料から構成される。
 光ディスクの光ピックアップ用の光学系として、400nm近傍、650nm近傍および780nm近傍のうちのいずれの波長領域でも高い光利用効率が得られる回折光学素子が対物レンズとして提案されている(例えば、特許文献2参照)。このような例におけるレンズ基体は、高屈折率低波長分散の材料からなる光学ガラスから形成され、被覆層は低屈折率高波長分散の材料からなる樹脂の光学材料から形成される。レンズ基体と被覆層との境界には、輪帯状の段差を有する位相構造が形成されている。このような構成を有する回折光学素子によれば、上記の3つの波長領域で高い光利用効率が得られる対物レンズが実現される。
 上記の従来例に示す白色光を効率よく集光することができる回折光学素子(以下、「白色回折光学素子」とする)においては、高屈折率低波長分散の光学ガラスなどのレンズ基体の非球面形状に回折格子をプレス成形などにより形成したのち、低屈折率高波長分散の樹脂膜などを被覆することにより白色回折光学素子が作製されていた。このような従来の白色回折光学素子では、回折格子自体が正の集光パワーを有し、高屈折率のレンズ基体が低屈折率の樹脂層で被覆されるため、回折格子の断面は、光軸から離れるに従い減少関数となるブレーズ形状の段差で形成されている。
特開平9-127321号公報 特開2006-12394号公報
 このような従来の白色回折光学素子においては、レンズ基体が樹脂ではなく光学ガラスを用いているので、回折格子を成形するためのプレス成形金型の耐用回数を多くすることができず、また、レンズ基体に被覆する被覆層の樹脂とレンズ基体に形成された回折格子の密着性や密着の信頼性が十分でないという量産性に関する課題が生じていた。
 このような課題を解決するために、レンズ基体に光学ガラスではなく加工が容易な樹脂材料を用いた場合、レンズ基体に使用する樹脂材料の屈折率よりも充分に小さく白色回折光学素子の被覆層として使用できる低屈折率の樹脂材料が要望される。この場合、レンズ基体も被覆層も樹脂から形成されるため、製造が容易になるはずである。しかしながら、光学ガラスの屈折率に比べてレンズ基体に使用する樹脂材料の屈折率は一般的に小さくなるため、被覆層として使用できる低屈折率の樹脂材料を見出すのは困難であった。
 そこで、従来からの発想を変えて白色回折光学素子のレンズ基体を樹脂材料から形成するときに、レンズ基体に使用する樹脂材料よりも屈折率の大きい樹脂材料から被覆層を形成することを試みた。この樹脂材料としては、例えばナノコンポジット材料を樹脂ベースに混ぜたものが挙げられる。ただし、レンズ基体と被覆層との屈折率の大小関係が逆転するので、回折格子の断面は、光軸から離れるに従い増加関数となるブレーズ形状の段差で形成されている必要がある。
 しかしながら、このような増加関数となるブレーズ形状の段差が形成された白色回折光学素子では、白色回折光学素子の光軸とこの光軸に最も近い段差との距離が大きく、回折格子のうち光軸に近い領域では被覆層で覆われる部分に面積の広い凹部が存在することになる。その結果、樹脂からなる被覆層のうち、上記の凹部を埋める部分の体積が大きくなる。このような構造の白色回折光学素子を製造しようとすると、被覆層のうち上記凹部内の位置する部分が製造工程中に変形することがある。特に、低コストで量産性に優れる「パッド印刷法」によって被覆層を形成しようとすると、上記凹部に位置する被覆層の一部が薄くなりやすいため、MTF特性がばらつき、光学特性のよい白色回折光学素子が量産できないという課題を見出すに至った。
 本発明は上記課題を解決し、白色光を効率よく集光することができる回折光学素子において、樹脂材料からなるレンズ基体に量産性に優れた方法で回折格子を成形することができ、しかもMTF特性などの光学特性が安定した回折光学素子を提供することを目的とする。
 本発明の回折光学素子は、非球面の表面上にブレーズ型の回折格子が設けられたレンズ基体と、前記回折格子を覆う光学調整層とを有する回折光学素子であって、前記レンズ基体は第1材料から形成され、かつ、前記光学調整層は前記第1材料よりも屈折率が高い第2材料から形成されており、前記回折格子は、光軸を中心として同心円状に配列された複数の輪帯領域を有し、前記レンズ基体における前記非球面の表面に対する各輪帯領域の高さは、それぞれ、前記光軸からの距離rの増加関数によって表現されており、前記増加関数は、距離rを変数とする位相多項式で表現され、前記位相多項式は、距離r=0のときに3/4π以上7/4πの大きさを有する。
 好ましい実施形態において、前記回折格子の段差の高さをdとするとき、距離r=0の位置における前記輪帯領域の高さd0は、3d/8≦d0≦7d/8の範囲内にある。
 好ましい実施形態において、前記第1材料は第1樹脂材料から構成され、前記第2材料は第2の樹脂材料から構成されている。
 好ましい実施形態において、前記第2材料は、前記第2樹脂材料中に分散された微粒子を含んでいる。
 好ましい実施形態において、前記微粒子は無機粒子であり、前記第2の樹脂は光硬化樹脂である。
 好ましい実施形態において、前記無機粒子は、酸化ジルコニウム、酸化アルミニウム、および酸化イットリウムからなる群から選択された少なくとも1つの材料から形成されている。
 好ましい実施形態において、前記第1材料は、ポリカーボネート系樹脂、ポリスチレン系樹脂、およびフルオレン系ポリエステル樹脂からなる群から選択された少なくとも1つの材料である。
 好ましい実施形態において、前記非球面の表面は、光線が前記光軸に沿って進む方向の先に向かって凸状である。
 好ましい実施形態において、前記レンズ基体のうち、前記回折格子が設けられていない面は、光線が前記光軸に沿って進む方向の先に向かって凹状の非球面形状である。
 本発明による回折光学素子の製造方法は、非球面の表面上にブレーズ型の回折格子が設けられたレンズ基体であって、第1樹脂材料から形成されたレンズ基体を用意する工程と、前記第1樹脂材料よりも屈折率の高い第2樹脂材料から形成された光学調整層を、パッド印刷法により、前記回折格子上に形成する工程とを含む回折光学素子の製造方法であって、前記回折格子は、光軸を中心として同心円状に配列された複数の輪帯領域を有し、前記レンズ基体における前記非球面の表面に対する各輪帯領域の高さは、それぞれ、前記光軸からの距離rの増加関数によって表現されており、前記増加関数は、距離rを変数とする位相多項式で表現され、前記位相多項式は、距離r=0のときに3/4π以上7/4πの大きさを有する。
 本発明によれば、レンズ基体の曲面に形成した回折格子上に樹脂からなる光学調整層を例えばパッド印刷法によって適切な形状に形成することができる。このため、本発明によれば、薄型化・軽量化が可能で、低コスト化・高信頼性の確保などができ量産性に富む回折光学素子を提供することができる。
 また、本発明の回折光学素子を使用することにより、携帯情報機器や情報家電等の電子機器のより一層の薄型化・小型化・軽量化を実現でき、低コスト化・高信頼性の確保も図れるという効果を奏する。
(a)は、本発明による回折光学素子の実施形態の構成を模式的に示す平面図であり、(b)は、(a)の1A-1A線断面図である。 (a)は、回折光学素子の第1表面の近傍を拡大して示した模式図であり、(b)は、白色回折格子の基本構成を示す図である。 (a)は、ブレーズ形状の従来の設計を示す図、(b)は、本実施形態にかかる設計を示す図である。 (a)は、本発明の実施形態における回折光学素子の第1表面の近傍を拡大して示した模式図であり、(b)は、従来の設計により形成した回折光学素子を示す図である。 本発明の実施形態における光学調整層15として好適に使用される樹脂材料19の一例を示す断面図である。 本発明の第1の実施形態にかかる白色回折光学素子の模式的な断面図である。 レンズ中央部の膜にすり鉢状の凹みを有する白色回折光学素子を示す図である。 (a)から(c)は、本発明の実施形態にかかる回折光学素子の前半のプロセスフローを示す模式的な断面図である。 (a)から(c)は、本発明の実施形態にかかる回折光学素子の後半のプロセスフローを示す模式的な断面図である。
符号の説明
10,30  回折光学素子
11,17a,31  レンズ基体
11a,31a  レンズ基体の第1表面
11b,31b  レンズ基体の第2表面
12,32  光軸
13,33  回折格子
13a  ブレーズ形状の段差
14,19,34  樹脂材料
14a,34a  第1材料
14b,34b  第2材料
15,35  光学調整層
15a  光学調整層の表面
16  コーティング膜
17  白色回折格子
18a,18b,36  段差
19a  樹脂母材
19b  無機粒子
20  版
20a  凹部
21  ディスペンサ
22  パッド
23  固定治具
24  雰囲気
25  UV光源
25a  UV光
 以下、図面を参照しながら、本発明による回折光学素子の実施形態を説明する。
 (第1の実施形態)
 まず、本発明による回折光学素子の実施形態を説明する。
 図1を参照する。図1(a)は、本実施形態における回折光学素子10の平面図であり、図1(b)は、図1(a)の1A-1A線断面図である。
 本実施形態の回折光学素子10は、図1(a)および(b)に示すように、非球面の表面(第1表面11a)上にブレーズ型の回折格子13が設けられたレンズ基体11と、回折格子13を覆う光学調整層15と備えている。また、レンズ基体11は、第1材料14aから形成され、光学調整層15は、第1材料14aよりも屈折率が高い第2材料14bから形成されている。第1材料14aおよび第2材料14bを、全体として、樹脂材料14と呼ぶことがある。
 回折格子13は、光軸12を中心として同心円状に配列された複数の輪帯領域を有している。本実施形態の回折格子13は、レンズ基体11と一体化されており、レンズ基体11の実際の表面が回折格子13の表面を構成していると考えることも可能である。しかし、本明細書では、レンズ基体11の第1表面11aは、図1(b)における破線で示すように緩やかにカーブする非球面の曲面であるものとする。従って、本明細書における「回折格子」は、レンズ基体11の第1表面11aと回折格子13の表面との間の部分から構成され、その部分は、レンズ基体11と同じ材料から構成されている。
 レンズ基体11の第1表面11aから回折格子13の表面までの距離を、回折格子13の「高さ」と称することとする。回折格子13の高さは、光軸12からの距離rに依存して増減しており、各輪帯領域は、高さが極小となる位置で区分されている。なお、ある輪帯領域の高さが極小となる部分は、その輪帯領域に隣接する輪帯領域の高さが極大となる部分と接しており、その境界で「段差」が発生している。図1(a)に示すように、複数の段差13aが光軸12を中心とする同心円状に形成されている。
 レンズ基体11における非球面の第1表面11aに対して、各輪帯領域の高さは、それぞれ、光軸12からの距離rの増加関数によって表現される。本実施形態では、輪帯領域の高さを規定する増加関数が、距離rを変数とする位相多項式で表現され、距離r=0のときに位相多項式が3/4π以上7/4πの大きさを有する点に重要な特徴点を有している。この特徴点から生じる作用効果については、後に詳述する。
 光学調整層15の下面は、図1(b)に示すように、回折格子13の表面と接触し、光学調整層15の上面(表面)15aは、レンズ基体11の非球面の表面11aに対して実質的に平行な形状を有している。
 レンズ基体11の第1表面11aに対向する第2表面11bも非球面の形状を有しているが、レンズ基体11の第2表面11bには回折格子が形成されておらず、低波長分散材料から形成されたコーティング膜16が設けられている。
 次に、図2(a)および(b)を参照する。図2(a)は、図1(b)に示す回折光学素子10における第1表面11aの近傍を拡大した模式図であり、図2(b)は、回折光学素子10の基本構成を示す図である。
 回折格子13と光学調整層15との間には屈折率差が存在しており、レンズ基体11の第1表面11aが平坦であると仮定した場合、基本的には、図2(b)に示す構成が実現されている。すなわち、ブレーズ形状の凹凸が形成された第1材料14aからなる部分17aと、これに密着する第2材料14bからなる部分17bとにより、図2(b)に示すような白色回折格子17が実現されている。第1材料14aの屈折率をn1(λ)、第2材料14bの屈折率をn2(λ)、段差の高さをd、波長をλとするとき、本実施形態では、前述の数式1の関係が成立している。数式1の関係が成立していることにより、回折光学素子10は白色光を高効率で集光することができる。
 本実施形態の回折光学素子10では、レンズ基体11が樹脂材料から形成されているため、ガラス材料からなるレンズ基体に比べ、回折格子13をレンズ基体11に形成することが容易になる。また、回折格子13の形状を規定する型を用いて、レンズ基体11の表面に回折格子13の形状を転写する工程を行うことにより、寸法精度の高い回折格子13を再現性良く形成することが可能になる。このような型を用いて転写工程を繰り返しても、成形の対象が樹脂であるため、型の劣化が少なく、その耐用回数が増加する利点もある。従って、量産化する場合においても、回折格子13が設計どおりに形成されるため、パッド印刷法によっても、密着性よく光学調整層15で被覆することができる。
 このように本実施形態の回折光学素子10は、薄型化・軽量化に適した構成を有するとともに、製造コストの低減、信頼性の向上にも寄与し、量産性に富む。
 なお、1次回折光を利用して白色光を高効率で集光するため、本実施形態では、光学調整層15を形成する第2材料14bの屈折率を、レンズ基体11を形成する第1材料14aの屈折率より高くし、各輪帯領域の高さが光軸12から離れるに従って増加するブレーズ形状によって回折格子13を形成している。
 次に、図3(a)および(b)を参照して、本実施形態における回折格子13の断面形状を詳細に説明する。図3(a)は、従来のブレーズ形状の設計方法を示す図であり、図3(b)は、本実施形態におけるブレーズ形状の設計方法を示す図である。
 図3(a)および(b)の縦軸は位相φ、横軸は光軸12(図2(a))からの距離rである。これらの図に示される曲線は、回折格子による位相のシフト量を示し、距離rを変数とする位相多項式f(r)で表現される。2πだけ異なる位相φは光学的には等価であるため、実際の回折格子の断面は、位相φのシフト量が0~2πの範囲に収まるように曲線を変換することによって得られる。図3(a)及び(b)には、矢印の先に「形状変換」によって得られるブレーズ形状を記載している。ブレーズ形状は、距離rの増加に伴って位相φが0から2πまで単調に増加する複数の部分(輪帯領域)から構成されている。距離rがゼロよりも大きな領域では、複数の位置で位相φがゼロとなる。位相φがゼロとなる部分は輪帯領域の境界であり、その部分に段差が存在する。図3(a)からわかるように、距離rが大きくなるほど、輪帯領域の幅(隣接する段差の間隔)は狭くなっている。
 図3(a)の曲線を示す位相多項式f(r)は、光路差を示す多項式を2π/λ倍することによって得られる。この光路差は、以下の多項式F(r)によって与えられる。
Figure JPOXMLDOC01-appb-M000002
 ここで、a1、a2、a3・・・は、それぞれ、1次、2次、3次・・・の係数である。
 位相多項式f(r)は、上記のF(r)を用いて、以下の数式2で表すことができる。
Figure JPOXMLDOC01-appb-M000003
 ここで、λは設計波長(典型的には可視光域の中心波長)である。従来の設計では、図3(a)に示すように、光軸12に最も近い段差が位置する距離r1は、他の輪帯領域の幅よりも大きく、半径r1の凹部が光軸12を中心に形成されている。
 このような形状を有する回折格子上に樹脂から形成された光学調整層を、例えばパッド印刷法によって形成すると、光軸12の近傍において光学調整層の表面に凹部が形成されやすい。
 本実施形態では、光路差が下記のF´(r)によって規定される。
Figure JPOXMLDOC01-appb-M000004
 ここで、αは距離rに依存しない定数項である。位相多項式f´(r)は、以下の数式3によって表される。
Figure JPOXMLDOC01-appb-M000005
 f´(r)は、f(r)に定数項2πα/λを加えたものである。f(0)=0であるので、f´(0)=2πα/λが成立する。本実施形態では、αの大きさを3λ/8以上7λ/8以下に調整することにより、f´(0)を3/4π以上7/4π以下の大きさに設定する。すなわち、本実施形態における回折格子は、光軸12(r=0)上において、2πの位相差(=設計中心波長)に対して3/8以上7/8以下の割合の高さを有することになる。
 この位相多項式f´(r)に対して形状変換を行うことにより、全ての距離rにおいて位相を0~2πの範囲内に調整する。この形状変換によって得られるブレーズ波形は、図3(b)に示すように、光軸12の近傍における凹部の半径が小さい。言い換えると、光軸12に最も近い段差が位置する距離r1は、本実施形態では、図3(a)に示す従来例に比べて小さくなる。
 このように位相多項式f´(r)が、距離rに依存しない定数項2πα/λを含むことにより、図3(b)に示すように光軸12から最も近い段差までの距離r1を短くすることができる。その結果、このような回折格子を覆う樹脂からなる光学調整層を、例えばパッド印刷法によって形成しても、光学調整層の表面形状が適切に維持される。また、このような回折光学素子を多数生産すると、この光学調整層の表面形状が揃った均一な形状の回折光学素子が生産され得る。
 図4(a)は本実施形態にかかる設計により形成した回折光学素子を示す図であり、図4(b)は、従来の設計により形成した回折光学素子を示す図である。
 従来の設計によれば、図4(b)に示すように光軸12から最も近い段差18bまでの距離rbが長くなるため、光軸12の近傍の光学調整層15にディップ15bが発生して回折光学素子の光学特性を損なうこととなる。
 一方、本実施形態では、図4(a)に示すように光軸12から最も近い段差18aまでの距離raが短くなるため、光軸12の近傍において光学調整層15の表面15aは、レンズ基体11の第1表面11aに平行な形状を有し、白色光を高効率で集光することができる。さらに、光軸近傍の光学調整層の厚さのばらつきを減らすことができるため、光学特性のばらつきの少ない白色回折光学素子を量産性よく作製することができる。
 図5は、光学調整層15として好適に使用される樹脂材料19の一例を示す図である。樹脂材料19は、樹脂母材19aに無機粒子19bを分散した構造を有している。樹脂母材19aは、例えば光硬化樹脂から形成され、無機粒子19bは、例えば無機ナノ粒子から構成される。無機粒子19bは、酸化ジルコニウム、酸化アルミニウムおよび酸化イットリウムからなる群から選ばれた少なくとも1つの材料からなる形成されていてもよい。
 このような構成を採用することにより、高屈折率低波長分散の光学調整層を量産性よく回折格子上に形成することができ、高信頼性の回折光学素子を実現することができる。
 次に、(数式3)の位相多項式における定数項2πα/λの数値範囲の重要性について、白色回折光学素子の試作結果を基に具体的に説明する。
 図6は、本発明の実施例である白色回折光学素子30の模式的な断面を示す。図6に示すように、白色回折光学素子30は、レンズ基体31と、このレンズ基体31に形成された回折格子33を覆う光学調整層35とを備えている。レンズ基体31の第1表面31aは、光線(図示せず)が光軸32に沿って進む方向に向かって凸状の非球面形状を有している。
 図6に示すように、レンズ基体31の第1表面31aに対向する第2表面31bは、光軸32に沿って進む方向に向かって凹状の非球面形状を有している。白色回折光学素子30は樹脂材料34から形成されており、レンズ基体31は第1材料34aから形成されている。また、光学調整層35は第2材料34bから形成されている。第1材料34aは、ポリカーボネート系樹脂、ポリスチレン系樹脂およびフルオレン系ポリエステル樹脂から選ばれる少なくとも1つの材料からなる。
 本実施形態におけるレンズ基体31の第1材料34aは、d線屈折率が1.585でアッベ数28のポリカーボネートである。一方、光学調整層35の第2材料34bは、d線屈折率が1.623でアッベ数42のアクリル系紫外線硬化樹脂を主成分とする樹脂に直径3nm~10nmの酸化ジルコニウムのナノ粒子を分散させたものである。この光学調整層35には、ナノ粒子の分散性を高めるため、樹脂系の分散剤や、紫外線硬化開始剤なども含有されている。
 回折格子33の段差36の高さは15μmである。可視波長域である400~700nmにおいて、本実施形態の1次回折効率は95%以上となる。光学調整層35は、膜厚30μmで非球面形状に沿って膜厚がほぼ一定となるように形成されている。
 図6に示す白色回折光学素子30の回折格子33の形状は、前述の(数式2)の位相多項式f(r)で表される。なお、(数式2)においてFは光路差多項式、fは位相多項式、rは光軸から半径方向の距離、λは設計波長であり、a1、a2、a3・・・はサフィックスの次数の係数である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1は、白色回折光学素子30のレンズ数値データ、表2は非球面係数、表3はレンズ基体の第2表面面の回折係数を示している。白色回折光学素子30の設計中心波長はλ=550nmであり、波長400nm~波長700nmまでの波長範囲をカバーしている。
 回折格子の輪帯領域は、第2表面31bの有効半径511.5μmの中に20本存在する。光軸から数えて第n番目の段差に対して、光軸からの半径方向の距離をrnとすると、rnおよび近接する光軸よりの段差との距離は、以下の表4に示すようになる。
Figure JPOXMLDOC01-appb-T000004
 これらのデータにより設計された白色回折光学素子30のレンズの撮像性能指標であるMTFは設計上、空間周波数80lp/mm、画角0°において、61.4%である。
 次に、白色回折光学素子30の回折格子33の形状を規定する位相多項式におけるαの値を所定の範囲で変化させた。光学調整層の表面形状を評価したところ、αの値が所望の範囲内から外れた場合には、図7に示すように、レンズ中央部で光学調整層35にすり鉢状の凹みが形成された。図7に示すように、凹部の最も深い位置における光学調整層の厚さと理想厚さ(設計厚さ)とズレ量をδとし、凹部の直径をWとする。
 以下の表5は、αの値と、光軸から半径方向の距離、およびレンズのMTFの評価結果との関係を示している。
Figure JPOXMLDOC01-appb-T000005
 表5からわかるように、例えばαが3λ/8のとき、光軸から最も近い回折格子の段差と光軸との距離r1は108.3μmであり、δは3μm、幅Wは140μmであった。なお、膜厚Tは30μm、回折格子の段差dは15μmであった。
 αが3λ/8以上であれば、光学調整層に形成される凹部は小さく、問題がない。
 なお、α>7λ/8のときは、光軸から1番目の段差までの距離が小さすぎるため、金型加工が困難となり、回折格子を試作することができなかった。αがλに近づくほど、今度は1番目の段差と2番目の段差の間隔が広がるため、光学調整層に凹みができやすく、撮像性能の劣化が生じやすい。
 以上の結果から、3λ/8≦α≦7λ/8の範囲において、良好な撮像性能が得られることがわかる。なお、このときのr=0での回折段差の高さをdとすると、d・α/λがr=0での輪帯領域の高さを示している。これをd0とすると、d0は、3d/8≦d0≦7d/8の関係を満足する。また、αのより好ましい範囲は、λ/2≦α≦7λ/8であり、このときのr=0での輪帯領域の高さd0は、d/2≦d0≦7d/8の関係を満足する。
 なお、図7におけるδが3μmよりも小さければ、撮像性能の劣化は少なく、実用上問題ないことも実験により判明した。また、δ≧3μmであっても、下記の数式4におけるβが0.1以下であれば、同様に撮像性能の劣化は少なく、実用上問題ないこともわかった。
Figure JPOXMLDOC01-appb-M000006
 なお、数式4における△rnは、光軸から(n-1)番目の段差とn番目の段差との間の距離であり、△rn=rn-rn-1で与えられる。なお、r0=0とする。
 (第2の実施形態)
 次に、図8(a)から(c)、および図9(a)から(c)を参照しながら、図1の回折光学素子10における光学調整層15を形成する方法の一例を説明する。図8(a)から(c)、および図9(a)から(c)は、本実施形態にかかる回折光学素子10の製造方法を模式的に示す工程断面図である。
 まず、図8(a)に示すように、上面に凹部20aを有する版20を用意し、この版20の凹部20aに、例えばディスペンサ21から液体状の樹脂材料19を流し込む。樹脂材料19は平面状に伸ばされ、ほぼ均一な厚さに調整する。本実施形態では、図5に示す樹脂材料19の樹脂母材19aに例えばUV硬化樹脂などの光硬化樹脂を使用し、無機粒子19bには例えば酸化ジルコニウム材料からなる無機ナノ粒子を使用している。
 次に、図8(b)に示すパッド22を版20上の樹脂材料19に接近させ、パッド22の主面に樹脂材料19を付着させる。
 一方、回折格子13が形成されたレンズ基体11を用意し、図8(c)に示す固定治具23にレンズ基体11を固定する。このとき、レンズ基体11の回折格子13が形成された面は、固定治具23から上方に露出した状態にある。本実施形態では、レンズ基体11が例えばポリオレフィン系の樹脂材料から形成され、レンズ基体11の回折格子13は、図4(a)に示す断面構成を有している。
 次に、主面に樹脂材料19が付着した状態のパッド22を固定治具23の上方に配置し、レンズ基体11の回折格子13が形成された面に樹脂材料19を押し付ける。このとき、レンズ基体11に対して樹脂材料19を押し付ける位置を調整して光学特性が良好となるようにする。
 次に、図9(a)に示すように、パッド22の弾力を利用してレンズ基体11の回折格子13を隙間なく覆い、かつ密着するように樹脂材料19を押し付け、それによって光学調整層15を形成する。
 パッド22を固定治具23から引き離した後、固定治具23に固定された状態で回折光学素子10を定乾炉に配置する。定乾炉では、100から150℃程度の乾燥した雰囲気24の中に回折光学素子10を配置し、12時間程度の乾燥を行う。こうして、光学調整層15および回折格子13の境界面での密着性を良くするとともに、レンズ基体11および光学調整層15を構成している樹脂材料を安定化させる。
 本実施形態では、レンズ基体11の屈折率に比べて光学調整層15の屈折率は大きくなる。乾燥が終わった後、図9(c)に示すようにUV光源25から回折光学素子10にUV光25aを照射する。こうして、樹脂母材19aを含む光学調整層15の全体が硬化される。
 本実施形態の方法によれば、レンズ基体11に形成された回折格子13の断面が図4(a)に示す構造を有しているため、光学調整層15の中央部が窪まず、適切な形状の光学調整層15を得ることができる。
 本発明は、高集光効率の白色回折光学素子を実現することができるので、薄型化・軽量化が可能で、低コスト化・高信頼性の確保などができ量産性に富む回折光学素子とすることができる。従って、本発明の回折光学素子を使用することにより、携帯情報機器や情報家電等の電子機器の薄型化・小型化・軽量化をさらに進め、製造コストの低減・信頼性の向上を図れる。

Claims (10)

  1.  非球面の表面上にブレーズ型の回折格子が設けられたレンズ基体と、
     前記回折格子を覆う光学調整層と、
    を有する回折光学素子であって、
     前記レンズ基体は第1材料から形成され、かつ、前記光学調整層は前記第1材料よりも屈折率が高い第2材料から形成されており、
     前記回折格子は、光軸を中心として同心円状に配列された複数の輪帯領域を有し、前記レンズ基体における前記非球面の表面に対する各輪帯領域の高さは、それぞれ、前記光軸からの距離rの増加関数によって表現されており、
     前記増加関数は、距離rを変数とする位相多項式で表現され、前記位相多項式は、距離r=0のときに3/4π以上7/4πの大きさを有する、回折光学素子。
  2.  前記回折格子の段差の高さをdとするとき、距離r=0の位置における前記輪帯領域の高さd0は、3d/8≦d0≦7d/8の範囲内にある請求項1に記載の回折光学素子。
  3.  前記第1材料は第1樹脂材料から構成され、前記第2材料は第2の樹脂材料から構成されている請求項1に記載の回折光学素子。
  4.  前記第2材料は、前記第2樹脂材料中に分散された微粒子を含んでいる請求項3に記載の回折光学素子。
  5.  前記微粒子は無機粒子であり、前記第2の樹脂は光硬化樹脂である請求項4に記載の回折光学素子。
  6.  前記無機粒子は、酸化ジルコニウム、酸化アルミニウム、および酸化イットリウムからなる群から選択された少なくとも1つの材料から形成されている請求項5に記載の回折光学素子。
  7.  前記第1材料は、ポリカーボネート系樹脂、ポリスチレン系樹脂、およびフルオレン系ポリエステル樹脂からなる群から選択された少なくとも1つの材料である請求項3に記載の回折光学素子。
  8.  前記非球面の表面は、光線が前記光軸に沿って進む方向の先に向かって凸状である請求項1に記載の回折光学素子。
  9.  前記レンズ基体のうち、前記回折格子が設けられていない面は、光線が前記光軸に沿って進む方向の先に向かって凹状の非球面形状である請求項8に記載の回折光学素子。
  10.  非球面の表面上にブレーズ型の回折格子が設けられたレンズ基体であって、第1樹脂材料から形成されたレンズ基体を用意する工程と、
     前記第1樹脂材料よりも屈折率の高い第2樹脂材料から形成された光学調整層を、パッド印刷法により、前記回折格子上に形成する工程と、
    を含む回折光学素子の製造方法であって、
     前記回折格子は、光軸を中心として同心円状に配列された複数の輪帯領域を有し、前記レンズ基体における前記非球面の表面に対する各輪帯領域の高さは、それぞれ、前記光軸からの距離rの増加関数によって表現されており、
     前記増加関数は、距離rを変数とする位相多項式で表現され、前記位相多項式は、距離r=0のときに3/4π以上7/4πの大きさを有する、回折光学素子の製造方法。
PCT/JP2009/000319 2008-02-06 2009-01-28 回折光学素子およびその製造方法 WO2009098846A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/529,207 US8149510B2 (en) 2008-02-06 2009-01-28 Diffractive optical element and method of making the same
JP2009521038A JP4378433B2 (ja) 2008-02-06 2009-01-28 回折光学素子およびその製造方法
CN2009800002165A CN101965529B (zh) 2008-02-06 2009-01-28 衍射光学元件及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008026508 2008-02-06
JP2008-026508 2008-02-06

Publications (1)

Publication Number Publication Date
WO2009098846A1 true WO2009098846A1 (ja) 2009-08-13

Family

ID=40951927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000319 WO2009098846A1 (ja) 2008-02-06 2009-01-28 回折光学素子およびその製造方法

Country Status (4)

Country Link
US (1) US8149510B2 (ja)
JP (1) JP4378433B2 (ja)
CN (1) CN101965529B (ja)
WO (1) WO2009098846A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011086654A1 (ja) * 2010-01-13 2011-07-21 パナソニック株式会社 回折格子レンズとその製造方法、およびそれを用いた撮像装置
WO2012140851A1 (ja) * 2011-04-13 2012-10-18 株式会社ニコン 光学素子の製造方法および光学素子
WO2013175801A1 (ja) * 2012-05-25 2013-11-28 パナソニック株式会社 回折光学素子およびその製造方法
JP2013254200A (ja) * 2012-05-11 2013-12-19 Canon Inc 複合型光学素子およびその製造方法
WO2018135136A1 (ja) * 2017-01-18 2018-07-26 日本板硝子株式会社 光学部品および光学部品の製造方法
WO2019053785A1 (ja) * 2017-09-12 2019-03-21 オリンパス株式会社 レンズユニットの製造方法及びレンズユニット
JP2020056896A (ja) * 2018-10-02 2020-04-09 キヤノン株式会社 回折光学素子とその製造方法、樹脂組成物、光学機器

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120182618A1 (en) * 2010-08-19 2012-07-19 Panasonic Corporation Diffraction grating lens and imaging device using same
JP5683172B2 (ja) * 2010-08-30 2015-03-11 キヤノン株式会社 回折光学素子及び光学系
JP5787508B2 (ja) * 2010-11-11 2015-09-30 キヤノン株式会社 回折光学素子及び光学系
JP5773668B2 (ja) * 2011-02-03 2015-09-02 キヤノン株式会社 積層型回折光学素子
US9366791B2 (en) 2011-02-21 2016-06-14 Canon Kabushiki Kaisha Diffractive optical element and manufacturing method for the same
JP5180411B2 (ja) * 2011-05-30 2013-04-10 パナソニック株式会社 回折光学素子およびその製造方法
WO2012176388A1 (ja) * 2011-06-20 2012-12-27 パナソニック株式会社 回折光学素子
CN102645738B (zh) * 2012-04-23 2014-07-30 南京德朔实业有限公司 激光测距仪及适用其接收光线的聚光镜
TWI627449B (zh) * 2016-04-15 2018-06-21 中央研究院 曲面繞射光柵、光譜儀及曲面繞射光柵製造方法
US11179802B2 (en) * 2016-07-14 2021-11-23 Mitsubishi Electric Corporation Laser machining head and laser machining apparatus
CN112882143A (zh) * 2021-01-26 2021-06-01 维沃移动通信有限公司 微棱镜、摄像模组和电子设备
CN115980997A (zh) * 2022-12-19 2023-04-18 中国科学院光电技术研究所 一种宽波段折衍混合镜头设计方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142614A (ja) * 1997-11-13 1999-05-28 Olympus Optical Co Ltd レリーフ型回折光学素子、レリーフ型回折光学素子製造用の型、及び、レリーフ型回折光学素子を用いた光学系
WO2006040902A1 (ja) * 2004-10-08 2006-04-20 Pioneer Corporation 回折光学素子、対物レンズモジュール、光ピックアップ及び光情報記録再生装置
WO2007132787A1 (ja) * 2006-05-15 2007-11-22 Panasonic Corporation 回折撮像レンズと回折撮像レンズ光学系及びこれを用いた撮像装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5257132A (en) * 1990-09-25 1993-10-26 The United States Of America As Represented By The United States Department Of Energy Broadband diffractive lens or imaging element
US5847877A (en) * 1994-09-12 1998-12-08 Olympus Optical Co., Ltd. Diffractive optical element
JP3717555B2 (ja) 1994-09-12 2005-11-16 オリンパス株式会社 回折光学素子
CN2632707Y (zh) * 2003-01-20 2004-08-11 杨国光 微光学眼镜片
WO2005117001A1 (ja) * 2004-05-27 2005-12-08 Konica Minolta Opto, Inc. 対物光学系、光ピックアップ装置、及び光ディスクドライブ装置
JP2006012394A (ja) 2004-05-27 2006-01-12 Konica Minolta Opto Inc 光学系、光ピックアップ装置、及び光ディスクドライブ装置
CN1306284C (zh) * 2004-12-30 2007-03-21 浙江大学 提供非球面度的衍/折混合光学元件及其设计方法
CN101253425B (zh) 2005-08-29 2012-06-20 松下电器产业株式会社 衍射光学元件及制造方法、使用衍射光学元件的摄像装置
JP2007291195A (ja) 2006-04-24 2007-11-08 Matsushita Electric Ind Co Ltd コンポジット材料、およびこれを用いた光学部品

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142614A (ja) * 1997-11-13 1999-05-28 Olympus Optical Co Ltd レリーフ型回折光学素子、レリーフ型回折光学素子製造用の型、及び、レリーフ型回折光学素子を用いた光学系
WO2006040902A1 (ja) * 2004-10-08 2006-04-20 Pioneer Corporation 回折光学素子、対物レンズモジュール、光ピックアップ及び光情報記録再生装置
WO2007132787A1 (ja) * 2006-05-15 2007-11-22 Panasonic Corporation 回折撮像レンズと回折撮像レンズ光学系及びこれを用いた撮像装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8649095B2 (en) 2010-01-13 2014-02-11 Panasonic Corporation Diffraction grating lens and method of producing the same, and imaging device in which the same is used
CN102227654A (zh) * 2010-01-13 2011-10-26 松下电器产业株式会社 衍射光栅透镜及其制造方法和使用它的摄像装置
US20120243096A1 (en) * 2010-01-13 2012-09-27 Panasonic Corporation Diffraction grating lens and method of producing the same, and imaging device in which the same is used
WO2011086654A1 (ja) * 2010-01-13 2011-07-21 パナソニック株式会社 回折格子レンズとその製造方法、およびそれを用いた撮像装置
WO2012140851A1 (ja) * 2011-04-13 2012-10-18 株式会社ニコン 光学素子の製造方法および光学素子
JP2012218394A (ja) * 2011-04-13 2012-11-12 Nikon Corp 光学素子の製造方法および光学素子
US9557455B2 (en) 2011-04-13 2017-01-31 Nikon Corporation Optical element
JP2013254200A (ja) * 2012-05-11 2013-12-19 Canon Inc 複合型光学素子およびその製造方法
WO2013175801A1 (ja) * 2012-05-25 2013-11-28 パナソニック株式会社 回折光学素子およびその製造方法
WO2018135136A1 (ja) * 2017-01-18 2018-07-26 日本板硝子株式会社 光学部品および光学部品の製造方法
WO2019053785A1 (ja) * 2017-09-12 2019-03-21 オリンパス株式会社 レンズユニットの製造方法及びレンズユニット
JP2020056896A (ja) * 2018-10-02 2020-04-09 キヤノン株式会社 回折光学素子とその製造方法、樹脂組成物、光学機器
JP7224834B2 (ja) 2018-10-02 2023-02-20 キヤノン株式会社 回折光学素子、樹脂組成物、光学機器

Also Published As

Publication number Publication date
US20100110548A1 (en) 2010-05-06
US8149510B2 (en) 2012-04-03
CN101965529A (zh) 2011-02-02
JP4378433B2 (ja) 2009-12-09
JPWO2009098846A1 (ja) 2011-05-26
CN101965529B (zh) 2012-01-25

Similar Documents

Publication Publication Date Title
JP4378433B2 (ja) 回折光学素子およびその製造方法
US7957063B2 (en) Diffractive optical device, optical system using the diffractive optical device and method for manufacturing diffractive optical device
US8154803B2 (en) Diffractive optical element with improved light transmittance
JP4630393B2 (ja) 回折レンズ、およびこれを用いた撮像装置
US8451539B2 (en) Optical element having transmitting layers with respective blazed surfaces and Abbe numbers
WO2007026597A1 (ja) 回折光学素子とその製造方法、及びこれを用いた撮像装置
JP4547467B1 (ja) 回折光学素子
JPWO2004113971A1 (ja) 光学素子
WO2005031404A1 (ja) 回折光学素子及び回折光学素子の製造方法
JP2008242186A (ja) 回折光学素子及びそれを用いた光学系
JP5596859B2 (ja) 回折光学素子
JP4815029B2 (ja) 回折レンズ、およびこれを用いた撮像装置
JP2010128303A (ja) 回折光学素子、光学系及び光学機器
JP5091369B2 (ja) 回折格子レンズおよびそれを用いた撮像装置
JP2003262713A (ja) 回折光学素子及び回折光学素子の製造方法
CN112188063B (zh) 摄像装置及电子设备
JPH07113907A (ja) 回折光学素子
JP2013205534A (ja) 回折光学素子及びその製造方法並びに回折光学素子を用いた光学系
CN112882143A (zh) 微棱镜、摄像模组和电子设备
JP2018025650A (ja) 回折光学素子およびそれを有する光学系、撮像装置
JP2003227913A (ja) 回折光学素子
JP2012220705A (ja) 回折光学素子およびその製造方法
JP3450677B2 (ja) 複合型回折光学素子の製造方法
JP2005107299A (ja) 回折光学素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980000216.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009521038

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12529207

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09708365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09708365

Country of ref document: EP

Kind code of ref document: A1