WO2009091237A2 - Apparatus for cloud cover estimation and method thereof - Google Patents

Apparatus for cloud cover estimation and method thereof Download PDF

Info

Publication number
WO2009091237A2
WO2009091237A2 PCT/MY2009/000016 MY2009000016W WO2009091237A2 WO 2009091237 A2 WO2009091237 A2 WO 2009091237A2 MY 2009000016 W MY2009000016 W MY 2009000016W WO 2009091237 A2 WO2009091237 A2 WO 2009091237A2
Authority
WO
WIPO (PCT)
Prior art keywords
image
sky
processing unit
providing
image processing
Prior art date
Application number
PCT/MY2009/000016
Other languages
French (fr)
Other versions
WO2009091237A3 (en
Inventor
Lye Pin Chu
Hock Woon Hon
Ching Hau Chan
Sheau Wei Chau
Siu Jing Then
Original Assignee
Mimos Berhad
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mimos Berhad filed Critical Mimos Berhad
Publication of WO2009091237A2 publication Critical patent/WO2009091237A2/en
Publication of WO2009091237A3 publication Critical patent/WO2009091237A3/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/18Measuring inclination, e.g. by clinometers, by levels by using liquids
    • G01C9/24Measuring inclination, e.g. by clinometers, by levels by using liquids in closed containers partially filled with liquid so as to leave a gas bubble
    • G01C9/26Details
    • G01C9/28Mountings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology

Definitions

  • the present invention relates to the meteorological field, more particularly to an improved method for providing estimation in cloud cover based on the eighths (oktas) of the sky.
  • a relatively conventional example of a method is using the cloud chart to record the distribution over the sky for the purpose of weather forecasting.
  • the said chart recording is normally done manually, wherein a human observer is assigned to observe the hemispherical sky, technically referred as the celestial dome; and subsequently estimates the total fraction of the celestial dome covered by cloud of any thicknesses. As previously elucidated the value is rounded to the closest one-eighth or okta.
  • the recoding is done manually and in the form of hard copy of print out chart.
  • Such method may be reliable to an extent, however apart from being cumbersome and less time effective; it is technically understood however that human observers reporting sky conditions may cause discrepancies based on such subjective observations.
  • the present invention has been accomplished to significantly improve the conventional methods and systems. Accordingly, with the apparatus and method of the present invention, automated and reliable observation is a highly attainable goal.
  • the present invention discloses an apparatus (1) for use in automated cloud cover estimation within the sky; said apparatus comprise of : at least one means (2) for capturing images of the sky; at least one means (4) for providing alignment reference of the apparatus (1) for facing north; means (6) for providing leveling reference for said apparatus (1) ; said reference is for positioning the apparatus (1) in a geocentric manner; a base comprising a motorized actuating means for providing alignment and leveling of said apparatus (10); said base (10) is further providing at least three degrees of orientation; an image processing unit (12) for processing the captured images and providing output based on the images captured; wherein the apparatus (1) is leveled and aligned to face north; wherein the apparatus (1) is connected to the image processing unit (12) .
  • the invention further discloses a method for providing automated estimation of cloud cover within the sky, said method comprise of:
  • an apparatus for the hemispherical sky image capture and a method for processing the said hemispherical sky images to attain estimated cloud cover in okta is provided.
  • the essential embodiments or components comprise of a hemispherical sky camera (2), a compass (4), a level bubble (6), a housing (8) and an alignment and leveling base (10) .
  • a hemispherical sky camera (2) a compass (4), a level bubble (6), a housing (8) and an alignment and leveling base (10) .
  • the hemispherical sky camera (2) primary function is to capture the hemispherical view of the sky, whereby that said camera (2) preferably producing a circular image.
  • the said camera (2) is preferably formed in hemispherical shape and may be configured to capture multi- temporal circular images .
  • the captured images may be stored within the camera (2).
  • the camera (2) is fixed to north direction and preferably leveled to horizon with suitable means provided by the present invention.
  • the compass (4) is for providing alignment of the camera (2) for facing the north direction.
  • the level bubble (6) is for providing leveling reference in order for the apparatus of the present invention to be positioned in a geocentric manner.
  • the housing (8) of the present invention functions primarily to accommodate a few components, said components comprise of the camera (2), the compass (4) and the leveling and alignment base (10) in suitable manner.
  • This embodiment serves as the primary reference base for the apparatus of the present invention.
  • Another essential embodiment of the present invention is the alignment and leveling base means (10) .
  • the main function of this embodiment is for providing three degrees of rotational freedom or orientation, said rotational movement may comprise roll, pitch and yaw for the apparatus of the present invention.
  • the said movements are preferably provided, but not limiting to, by a motorized actuating means.
  • the apparatus of the present invention can be leveled to horizon and aligned to the north geographical direction.
  • the apparatus of the present invention is shown in Figure 1.
  • the camera (2) is positioned on the top of the alignment and leveling base (10) and adjacent to the compass (4) and level bubble (6).
  • the apparatus of the present invention is accordingly connected with an image processing unit (12) , whereby said image processing unit may be hosted by a server or web based.
  • the apparatus (1) is configured to provide image input to the image processing unit (12) .
  • the apparatus (1) may be connected to a grounded power provider, and is facing geographically north.
  • the said apparatus (1) may also be connected to a networked computer for providing the image processing unit (12) .
  • the image processing unit (12) functions in accordance with the following steps.
  • the images are forwarded (step 101) from the apparatus (1) to the image processing unit proceeds to provide or convert the cloud -enhanced color to grayscale (step 102) .
  • step 103 binary image is generated for a fractionated region masking, preferably okta region masking in the following step (step 104) .
  • the percentage count and rounding up is accordingly performed (step 105) .
  • an output is generated and may be displayed for user's observation.
  • the input from the apparatus (1) is processed immediately and there may be provided a real-time display for further observation.
  • the present invention provides an apparatus and method thereof for providing automated and thus immediate result in regards to the cloud cover estimation technology.
  • the present invention may be modified in light of the above teachings. It is therefore understood that, within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

The invention accordingly provides an apparatus and method for facilitating in estimating the cloud cover within the sky. The observation method is conducted automatically and is able to provide reliable output.

Description

Apparatus for Cloud Cover Estimation and Method Thereof
Field of Invention
The present invention relates to the meteorological field, more particularly to an improved method for providing estimation in cloud cover based on the eighths (oktas) of the sky.
Background of Invention
In the meteorological field of the emergent world, the visibility of the cloud within the sky is typically observed by way of an observer or a plurality of observers located at a suitable meteorological station and obtains readings in oktas or in tenths. Comprehendingly, these are visual estimates which are normally given at the closest value. The said observers play a significant role in providing reliable information on the cloud cover and thus sky conditions. It is technically understood however that human observers reporting sky conditions may cause discrepancies based on such subjective observations.
A relatively conventional example of a method is using the cloud chart to record the distribution over the sky for the purpose of weather forecasting. The said chart recording is normally done manually, wherein a human observer is assigned to observe the hemispherical sky, technically referred as the celestial dome; and subsequently estimates the total fraction of the celestial dome covered by cloud of any thicknesses. As previously elucidated the value is rounded to the closest one-eighth or okta. Suitably, the recoding is done manually and in the form of hard copy of print out chart. Such method may be reliable to an extent, however apart from being cumbersome and less time effective; it is technically understood however that human observers reporting sky conditions may cause discrepancies based on such subjective observations.
In order to prevail over the shortcomings of the conventional methods and systems in addition to the scientific challenges within the meteorological field, experts of the respective industry are constantly developing solutions to increase and thus improve the efficiency of identifying and thus determine cloud cover within the sky.
At present, much effort have been directed toward improving the visibility capability of the apparatus or equipment during the day or at night, increasing the system sensitivity in the event that there are other interruptions within the sky, for instance fog and the like and improving the tactical aspect of the equipment.
Nonetheless, great majorities of the known in the art systems have their own drawbacks, be it in the method of operation or are prohibitively expensive. For instance, currently there is great dependence on human observers, wherein information collected is in the form of media hardcopies, and thus the availability of updated data depends substantially on the operators and the human observers of the system. In addition, most of these methods, although economical, may not be configured as real-time application.
Therefore, there is a need in the prior art for automated, real- time and a more enhanced cloud cover estimation method or system to facilitate efficiency in response to cloud distribution over the sky.
Recognizing the aforementioned shortcomings, the present invention has been accomplished to significantly improve the conventional methods and systems. Accordingly, with the apparatus and method of the present invention, automated and reliable observation is a highly attainable goal.
It is therefore the primary object of the present invention to provide an apparatus and method thereof for efficient estimation of cloud cover within the sky.
It is therefore another object of the present invention to provide an apparatus and method thereof which is configured to allow automated and thus real-time data observation in regards to cloud cover within the sky. It is further object of the present invention to provide an apparatus and method thereof for cloud cover observation and estimation which is highly reliable and economical.
It is yet another object of the present invention to provide an apparatus and method thereof which is time-effective and economical .
Summary of Invention
The present invention discloses an apparatus (1) for use in automated cloud cover estimation within the sky; said apparatus comprise of : at least one means (2) for capturing images of the sky; at least one means (4) for providing alignment reference of the apparatus (1) for facing north; means (6) for providing leveling reference for said apparatus (1) ; said reference is for positioning the apparatus (1) in a geocentric manner; a base comprising a motorized actuating means for providing alignment and leveling of said apparatus (10); said base (10) is further providing at least three degrees of orientation; an image processing unit (12) for processing the captured images and providing output based on the images captured; wherein the apparatus (1) is leveled and aligned to face north; wherein the apparatus (1) is connected to the image processing unit (12) . The invention further discloses a method for providing automated estimation of cloud cover within the sky, said method comprise of:
a) preparing the apparatus as claimed in Claim 1;
b) aligning and leveling the said apparatus (1) facing in a geocentric manner and facing north;
c) capturing images of the cloud within the sky;
d) providing image input to image processing unit (12) ; wherein the said image processing unit (12);
e) converting the said image to a discolored image;
f) generating a binary image;
g) performing fractionated masking of the image;
h) performing fractionated percentage count and rounding up;
i) obtaining an output based on the input from step h) . Brief Description of the Drawings
The invention will be more understood by reference to the description below taken in conjunction with the accompanying drawings herein:
Detailed Description of the Present Invention
In addition to the drawings, further understanding of the object, construction, characteristics and functions of the invention, a detailed description with reference to the embodiments is given in the following.
In accordance to the preferred embodiments of the present invention there is provided an apparatus for the hemispherical sky image capture and a method for processing the said hemispherical sky images to attain estimated cloud cover in okta.
In regards to the apparatus of the present invention, the essential embodiments or components comprise of a hemispherical sky camera (2), a compass (4), a level bubble (6), a housing (8) and an alignment and leveling base (10) . Each element which collaboratively forms the present invention will be described herewith, in accordance to the presently preferred embodiments of the present invention.
Referring to Figure 1, the hemispherical sky camera (2) primary function is to capture the hemispherical view of the sky, whereby that said camera (2) preferably producing a circular image. As shown in Figure 1, the said camera (2) is preferably formed in hemispherical shape and may be configured to capture multi- temporal circular images . Suitably, the captured images may be stored within the camera (2). In accordance with the preferred embodiment of the present invention, the camera (2) is fixed to north direction and preferably leveled to horizon with suitable means provided by the present invention.
The compass (4) is for providing alignment of the camera (2) for facing the north direction. The level bubble (6) is for providing leveling reference in order for the apparatus of the present invention to be positioned in a geocentric manner.
The housing (8) of the present invention functions primarily to accommodate a few components, said components comprise of the camera (2), the compass (4) and the leveling and alignment base (10) in suitable manner. This embodiment serves as the primary reference base for the apparatus of the present invention. Another essential embodiment of the present invention is the alignment and leveling base means (10) . The main function of this embodiment is for providing three degrees of rotational freedom or orientation, said rotational movement may comprise roll, pitch and yaw for the apparatus of the present invention. The said movements are preferably provided, but not limiting to, by a motorized actuating means. With this embodiment, the apparatus of the present invention can be leveled to horizon and aligned to the north geographical direction.
The apparatus of the present invention is shown in Figure 1. The camera (2) is positioned on the top of the alignment and leveling base (10) and adjacent to the compass (4) and level bubble (6). The apparatus of the present invention is accordingly connected with an image processing unit (12) , whereby said image processing unit may be hosted by a server or web based. In this connection, the apparatus (1) is configured to provide image input to the image processing unit (12) .
During installation, the apparatus (1) may be connected to a grounded power provider, and is facing geographically north. The said apparatus (1) may also be connected to a networked computer for providing the image processing unit (12) . Upon completion of installation, the apparatus (1) runs automatically. The image processing unit (12) functions in accordance with the following steps. Upon captured the images in circular form with predetermined pixels and lines, the images are forwarded (step 101) from the apparatus (1) to the image processing unit proceeds to provide or convert the cloud -enhanced color to grayscale (step 102) . In the subsequent step, (step 103) binary image is generated for a fractionated region masking, preferably okta region masking in the following step (step 104) . Upon completion of okta region masking, the percentage count and rounding up is accordingly performed (step 105) . Finally an output is generated and may be displayed for user's observation.
It is understood that the input from the apparatus (1) is processed immediately and there may be provided a real-time display for further observation.
From the foregoing, it would be appreciated that the present invention provides an apparatus and method thereof for providing automated and thus immediate result in regards to the cloud cover estimation technology. The present invention may be modified in light of the above teachings. It is therefore understood that, within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.

Claims

Claims
1. An apparatus (1) for use in automated cloud cover estimation within the sky; said apparatus comprise of :
at least one means (2) for capturing images of the sky;
at least one means (4) for providing alignment reference of the apparatus (1) for facing north;
means (6) for providing leveling reference for said apparatus (1) ; said reference is for positioning the apparatus (1) in a geocentric manner;
a base comprising a motorized actuation means for providing alignment and leveling of said apparatus (10) for at least three degrees of orientation;
an image processing unit (12) for processing the captured images and providing output based on the images captured;
wherein the apparatus (1) is leveled and aligned to face north;
wherein the apparatus (1) is connected to the image processing unit (12) .
2. An apparatus as claimed in Claim 1 wherein the means for capturing images within the sky is a hemispherical camera (2) .
3. An apparatus as claimed in Claim 1 wherein the means for providing alignment reference of the apparatus (1) in facing north is a compass (4).
4. An apparatus as claimed in Claim 1 wherein the means for aligning the apparatus (1) in a geocentric manner is a level bubble (6) .
5. An apparatus as claimed in Claim 1 wherein the image processing unit (12) is a hosted by a server.
6. An apparatus as claimed in Claim 1 wherein the image processing unit (12) is provided in a computer.
7. An apparatus as claimed in Claim 1 wherein the image is in circular form.
8. An apparatus as claimed in Claim 1 wherein the three degrees orientation is roll, pitch and yaw.
9. A method for providing automated estimation of cloud cover within the sky, said method comprise of: a) preparing the apparatus as claimed in Claim 1;
b) aligning and leveling the said apparatus (1) facing in a geocentric manner and facing north;
c) capturing images of the cloud within the sky;
d) providing image input to image processing unit (12) ; wherein the said image processing unit (12) ;
e) converting the said image to a discolored image;
f) generating a binary image;
g) performing fractionated masking of the image;
h) performing fractionated percentage count and rounding up;
ii) obtaining an output based on the input from step h) .
10. The method as claimed in Claim 9, wherein the discolored image formation is preferably in grayscale.
PCT/MY2009/000016 2008-01-18 2009-01-16 Apparatus for cloud cover estimation and method thereof WO2009091237A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MYPI20080103A MY179512A (en) 2008-01-18 2008-01-18 Apparatus for cloud cover estimation and method thereof
MYPI20080103 2008-01-18

Publications (2)

Publication Number Publication Date
WO2009091237A2 true WO2009091237A2 (en) 2009-07-23
WO2009091237A3 WO2009091237A3 (en) 2009-10-15

Family

ID=40885827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MY2009/000016 WO2009091237A2 (en) 2008-01-18 2009-01-16 Apparatus for cloud cover estimation and method thereof

Country Status (2)

Country Link
MY (1) MY179512A (en)
WO (1) WO2009091237A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011124720A3 (en) * 2010-04-09 2012-03-22 Siemens Concentrated Solar Power Ltd. Clouds managing system for a solar field, method for operating the clouds management system and solar field with the clouds managing system
US8750566B2 (en) 2012-02-23 2014-06-10 General Electric Company Apparatus and method for spatially relating views of sky images acquired at spaced apart locations
RU2525625C2 (en) * 2012-07-16 2014-08-20 Федеральное государственное бюджетное учреждение науки Институт мониторинга климатических и экологических систем Сибирского отделения Российской академии наук (ИМКЭС СО РАН) Method of determining cloud amount
US8923567B2 (en) 2011-12-19 2014-12-30 General Electric Company Apparatus and method for predicting solar irradiance variation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2507973B2 (en) * 1993-09-29 1996-06-19 日本電気株式会社 Automatic cloud amount evaluation device
US6133990A (en) * 1999-01-29 2000-10-17 Cambridge Management Advanced Systems Corp. Method for determining presence and distribution of clouds
US6208938B1 (en) * 1997-09-19 2001-03-27 Cambridge Management Advanced Systems Corporation Apparatus and method for monitoring and reporting weather conditions
JP3593567B2 (en) * 2002-05-14 2004-11-24 独立行政法人情報通信研究機構 Night cloud amount measuring method and night cloud amount measuring device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05333160A (en) * 1992-05-29 1993-12-17 Sony Corp Cloud amount measuring method and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2507973B2 (en) * 1993-09-29 1996-06-19 日本電気株式会社 Automatic cloud amount evaluation device
US6208938B1 (en) * 1997-09-19 2001-03-27 Cambridge Management Advanced Systems Corporation Apparatus and method for monitoring and reporting weather conditions
US6133990A (en) * 1999-01-29 2000-10-17 Cambridge Management Advanced Systems Corp. Method for determining presence and distribution of clouds
JP3593567B2 (en) * 2002-05-14 2004-11-24 独立行政法人情報通信研究機構 Night cloud amount measuring method and night cloud amount measuring device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CAZORLA, A. ET AL.: 'Development of a Sky Imager for Cloud Cover Assessment' J. OPT. SOC. AM. A vol. 25, no. 1, January 2008, pages 29 - 39 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011124720A3 (en) * 2010-04-09 2012-03-22 Siemens Concentrated Solar Power Ltd. Clouds managing system for a solar field, method for operating the clouds management system and solar field with the clouds managing system
US8923567B2 (en) 2011-12-19 2014-12-30 General Electric Company Apparatus and method for predicting solar irradiance variation
US8750566B2 (en) 2012-02-23 2014-06-10 General Electric Company Apparatus and method for spatially relating views of sky images acquired at spaced apart locations
RU2525625C2 (en) * 2012-07-16 2014-08-20 Федеральное государственное бюджетное учреждение науки Институт мониторинга климатических и экологических систем Сибирского отделения Российской академии наук (ИМКЭС СО РАН) Method of determining cloud amount

Also Published As

Publication number Publication date
WO2009091237A3 (en) 2009-10-15
MY179512A (en) 2020-11-09

Similar Documents

Publication Publication Date Title
Xiang et al. Mini-unmanned aerial vehicle-based remote sensing: Techniques, applications, and prospects
US10795056B2 (en) Local weather forecast
CN108965687B (en) Shooting direction identification method, server, monitoring method, monitoring system and camera equipment
US9530235B2 (en) Aligning panoramic imagery and aerial imagery
CN112164015A (en) Monocular vision autonomous inspection image acquisition method and device and power inspection unmanned aerial vehicle
US20080074494A1 (en) Video Surveillance System Providing Tracking of a Moving Object in a Geospatial Model and Related Methods
CN110930428B (en) Target tracking method and device, electronic equipment and storage medium
CN114240868A (en) Unmanned aerial vehicle-based inspection analysis system and method
WO2021149484A1 (en) Image generation device, image generation method, and program
KR100904078B1 (en) A system and a method for generating 3-dimensional spatial information using aerial photographs of image matching
WO2009091237A2 (en) Apparatus for cloud cover estimation and method thereof
US9571801B2 (en) Photographing plan creation device and program and method for the same
JP2014199640A (en) Shadow removal method and device of aerial or satellite photograph
Weissling et al. EISCAM—Digital image acquisition and processing for sea ice parameters from ships
KR20120121163A (en) System For Providing Real Time Ocean Spatial Data Using Web 3D And The Method Thereof
WO2022107620A1 (en) Data analysis device and method, and program
CN109068098B (en) Unmanned aerial vehicle video monitoring system for enhancing picture display
WO2011129473A1 (en) Automatic sky state observation system and method
US6850184B1 (en) Forecasted radar mosaics
KR20180119238A (en) Augmented reality used navigation control system and method
JP2016118994A (en) Monitoring system
CN112668397A (en) Fire real-time detection and analysis method and system, storage medium and electronic equipment
US10823881B2 (en) Cloud forecast using sequential images
KR101381292B1 (en) Apparatus and method for controlling a satellite system
KR20100042711A (en) System and method for automatic observing of sky climatic conditions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09702180

Country of ref document: EP

Kind code of ref document: A2

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09702180

Country of ref document: EP

Kind code of ref document: A2