WO2009076893A1 - 射频环回测试方法及***和环回测试本振提供方法及装置 - Google Patents

射频环回测试方法及***和环回测试本振提供方法及装置 Download PDF

Info

Publication number
WO2009076893A1
WO2009076893A1 PCT/CN2008/073425 CN2008073425W WO2009076893A1 WO 2009076893 A1 WO2009076893 A1 WO 2009076893A1 CN 2008073425 W CN2008073425 W CN 2008073425W WO 2009076893 A1 WO2009076893 A1 WO 2009076893A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
local oscillator
communication system
clock signal
loopback test
Prior art date
Application number
PCT/CN2008/073425
Other languages
English (en)
French (fr)
Inventor
Yusheng Xue
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2009076893A1 publication Critical patent/WO2009076893A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J7/00Automatic frequency control; Automatic scanning over a band of frequencies
    • H03J7/02Automatic frequency control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/06Testing, supervising or monitoring using simulated traffic

Definitions

  • the embodiments of the present invention belong to the field of mobile communications, and particularly belong to a radio frequency loopback test method and system, and a loopback test local oscillator providing method and apparatus. Background technique
  • the transmitter and receiver of the communication system automatically detect and locate the fault through the RF loopback test method in the air interface (no service) state. At this time, a special loopback is added to the transmitter and receiver circuits.
  • the local oscillator circuit is tested, and the transmitted signal modulated into a fixed pattern is mixed to an uplink frequency corresponding to the receiving frequency band, and the error is compared after demodulation and decoding in the receiver, thereby determining between the transmitter and the receiver. Is the channel faulty? RF loopback testing is a basic function of the GSM base station system.
  • the loopback test local oscillator circuit is implemented by a separate phase locked loop (hereinafter referred to as PLL), and the reference source used by the PLL and the radio frequency PLL used in other transmitters and receivers.
  • the reference source is the same.
  • the frequency of the loopback test local oscillator circuit is the duplex interval of the frequency division duplex communication system, specifically: the duplex interval is 45MHz in the GSM900 (Global System for Mobile Communications, GSM for short) and GSM850 systems, in the DCS1800 (Digital Cellular System (DCS for short)
  • the system has a duplex interval of 95 MHz.
  • PCS1900 Personal Communications Service, PCS for short
  • the duplex interval is 80 MHz.
  • the loopback test local oscillator circuit is an independent auxiliary circuit. In order not to affect the spurious index and power consumption of the communication system, the loopback test local oscillator circuit is not connected to the power supply under normal circumstances, when the loopback test local oscillator circuit is started. When the communication system first turns on the loopback test local oscillator circuit, and then loops back to test the PLL setting parameters of the local oscillator circuit, and waits for the loopback test to test the PLL of the local oscillator circuit, and then initiates loopback test for error statistics. .
  • the loopback test local oscillator circuit occupies a large area of printed circuit board (PCB), thereby increasing the design cost. Thereby, the manufacturing cost of the communication system is indirectly increased.
  • PCB printed circuit board
  • the PLL of the loopback test local oscillator circuit includes components such as a voltage controlled oscillator (Vol tage Control led Osc il la tor, hereinafter referred to as VC0), a phase detector (hereinafter referred to as PD), and a buffer amplifier, and these When components are running on the network, they also have their own failure rate, which increases the failure rate accordingly.
  • VC0 Vol tage Control led Osc il la tor
  • PD phase detector
  • buffer amplifier buffer amplifier
  • the RF loopback test needs to occupy the idle traffic channel. Therefore, the time required to occupy the traffic channel should be shortened as much as possible to minimize the impact on the traffic channel.
  • the loopback test must be given when the loopback test local oscillator circuit is started. The vibration circuit is powered on, and waits for the loopback test to lock the PLL of the local oscillator circuit, and then performs error statistics, thereby reducing the speed of the RF loopback test. Therefore, in the ⁇ ) ⁇ system, the loopback test local oscillator circuit is always powered on during the RF loopback test period, so there is a hidden trouble of spurious interference to other time slots. Summary of the invention
  • Embodiments of the present invention provide a radio frequency loopback test method and apparatus, and a loopback test local oscillator providing method and apparatus, to solve the independent loopback test in the RF loopback test process in the prior art, and provide a duplex interval frequency. Signals lead to high cost defects.
  • An embodiment of the present invention provides a radio frequency loopback test method, including: selecting a certain clock signal as a local oscillator in a communication system, where the local oscillator and the communication system have the same duplex interval frequency;
  • the embodiment of the present invention further provides a radio frequency loopback test system, including: a transmitting end, configured to select a certain clock signal as a local oscillator in a communication system, where the local oscillator and the communication system have the same duplex interval frequency, and the debugging is performed.
  • the signal is mixed to the receiver operating frequency point and sent; the receiving end is configured to receive the debugging signal sent by the transmitting end, and perform error comparison.
  • the embodiment of the present invention further provides a loopback test local oscillator providing method, including: selecting a certain clock signal as a local oscillator in a communication system, wherein the local oscillator and the communication system have the same duplexing frequency.
  • the embodiment of the present invention further provides a loopback test local oscillator providing apparatus, including: a first selecting module, configured to select a certain clock signal in a communication system; and a local oscillator generating module, configured to generate the clock signal
  • a loopback test local oscillator providing apparatus including: a first selecting module, configured to select a certain clock signal in a communication system; and a local oscillator generating module, configured to generate the clock signal
  • the local oscillator and the communication system have the same duplex frequency.
  • the transmission signal is mixed into the working frequency of the receiver by selecting a clock signal, thereby overcoming the independent loopback test in the prior art RF loopback test, and the local oscillator circuit provides a duplex interval.
  • the frequency signal causes high material cost, high manufacturing cost, high failure rate and defects of spurious interference.
  • the selected clock signal is used as the local oscillator at the transmitting end, so that the selected local oscillator and the communication system have the same duplex interval frequency, and after the debug signal is sent according to the local oscillator, the receiving is performed.
  • the terminal realizes the RF loopback test by comparing the error signals sent by the transmitting end, and reduces the material cost, manufacturing cost and failure rate caused by the independent loopback test local oscillator circuit in the prior art, and also eliminates Spurious interference.
  • a local oscillator for the RF loopback test is provided by selecting a clock signal having the same frequency as the duplex interval of the communication system in the communication system, so that the RF loopback test can be implemented.
  • the clock frequency signal is selected by the first selection module.
  • the local oscillator generating module generates a local oscillator according to the clock frequency signal, and provides a local oscillator for the RF loopback test, so that the RF loopback test can be implemented.
  • FIG. 1 is a flowchart of a first embodiment of a radio frequency loopback testing method according to the present invention
  • FIG. 2 is a flowchart of a second embodiment of a radio frequency loopback test method according to the present invention.
  • FIG. 3 is a flowchart of a third embodiment of a radio frequency loopback testing method according to the present invention.
  • FIG. 4 is a flowchart of a fourth embodiment of a radio frequency loopback testing method according to the present invention.
  • FIG. 5 is a schematic structural diagram of a first embodiment of a radio frequency loopback test system according to the present invention.
  • FIG. 6 is a flow chart of a first embodiment of a loopback test local oscillator providing apparatus according to the present invention.
  • FIG. 7 is a flow chart of a second embodiment of a loopback test local oscillator providing apparatus according to the present invention.
  • FIG. 8 is a flow chart of a third embodiment of a loopback test local oscillator providing apparatus according to the present invention.
  • FIG. 9 is a flow chart of a first embodiment of a loopback test local oscillator providing method according to the present invention.
  • FIG. 10 is a flow chart of a second embodiment of a loopback test local oscillator providing method according to the present invention.
  • FIG. 11 is a flow chart of a third embodiment of a loopback test local oscillator providing method according to the present invention. detailed description
  • FIG. 1 it is a flowchart of the first embodiment of the RF loopback testing method of the present invention.
  • the RF loopback testing method is as follows:
  • Step 1 01 Select a certain clock signal as a local oscillator in the communication system, and the local oscillator and the communication system have the same duplex frequency;
  • Step 1 02 Mix the debug signal to the working frequency of the receiver according to the local oscillator, and send the debug signal by using a transmitter carrier signal;
  • Step 103 Receive the debug signal, and perform error comparison on the debug signal.
  • the radio frequency loopback test method in the embodiment of the present invention overcomes the prior art through independent loopback by selecting a clock signal having the same duplex interval frequency as the local oscillator and providing a duplex interval frequency signal in the communication system. Test the local oscillator circuit to provide the duplex interval frequency signal and cause the material cost to be too high, the miniaturization design causes the communication system to be too expensive to manufacture, the failure rate is too high, and the spurious interference is flawed.
  • the independent loopback test local oscillator circuit is avoided, thereby effectively reducing the material cost and communication of the detection communication system.
  • the manufacturing cost of the system also reduces the failure rate and eliminates the spurious interference.
  • each of the foregoing steps may be implemented by a software processing and a digital signal processing (hereinafter referred to as DSP) algorithm.
  • DSP digital signal processing
  • the second embodiment of the radio frequency loopback test method of the present invention is based on the first embodiment of the radio frequency loopback test method of the present invention.
  • the RF loopback test method is as follows:
  • Step 201 Select a certain clock signal in the communication system
  • Step 202 Perform higher harmonics on the clock signal to generate a higher harmonic signal, where the higher harmonic signal is the same as the duplex interval frequency of the communication system;
  • Step 203 using a higher harmonic signal as a local oscillator, and mixing the debug signal to a working frequency of the receiver;
  • Step 204 Send the debugging signal by using a carrier carrier signal.
  • Step 205 Receive the debugging signal, and perform error comparison on the debugging signal.
  • the radio frequency loopback test method of the embodiment of the invention further improves the selectivity of selecting a clock frequency in the communication system by performing a higher harmonic method on the clock frequency.
  • the duplex interval is 45 ⁇ , so the clock signal with a frequency of 15 MHz can be selected and its 3rd harmonic can be obtained to obtain a duplex interval frequency signal with a frequency of 45 MHz.
  • the frequency of 5 MHz can also be selected.
  • the clock signal, and its 9th harmonic results in a duplex interval frequency signal with a frequency of 45MHz.
  • the third embodiment of the radio frequency loopback test method of the present invention is based on the first embodiment of the radio frequency loopback test method of the present invention.
  • the RF loopback test method is as follows:
  • Step 301 Select a certain clock signal from a frequency difference between a duplex interval frequency of the communication system and a clock signal within an adjustable range of a working frequency of the transmitter or the receiver;
  • Step 302 Adjust a working frequency of the transmitter or the receiver, so that a duplex frequency of the communication system is equal to a frequency of the clock signal.
  • Step 303 The clock signal is used as a local oscillator, and the debug signal is mixed to a working frequency of the receiver.
  • Step 304 Send the debug signal by using a transmitter carrier signal.
  • Step 305 Receive the debugging signal, and perform error comparison on the debugging signal.
  • the radio frequency loopback test method of the embodiment of the invention further improves the selectivity of selecting a clock frequency in the communication system by adjusting the working frequency of the transmitter or the receiver.
  • the duplex interval is 95 ⁇ , so the clock signal with a frequency of 104MHz can be selected, and the working frequency of the transmitter can be increased by 9MHz, so that debugging information can be sent, and the bit error rate of the communication system can be finally tested;
  • Other clock signals can be selected and the bit error rate of the communication system can be finally tested by adjusting the operating frequency of the transmitter or receiver.
  • the operating frequency of the transmitter or the receiver can be adjusted by changing the frequency division ratio of the phase locked loop.
  • the step of restoring the working frequency of the transmitter or the receiver may be added, so that the communication system can directly enter the state of the operational service after the RF loopback test. Effectively reduce the loss caused by the RF loopback test to the operation of the communication system.
  • FIG. 4 it is a flowchart of the fourth embodiment of the radio frequency loopback testing method of the present invention.
  • the fourth embodiment of the radio frequency loopback testing method of the present invention is based on the first embodiment of the radio frequency loopback testing method of the present invention.
  • the RF loopback test method is as follows:
  • Step 401 Select a certain clock signal in the communication system.
  • Step 402 Perform higher harmonics on the clock signal to generate a higher harmonic signal, and the frequency difference between the higher harmonic signal and the duplex interval frequency of the communication system may be at a transmitter or receiver operating frequency.
  • the adjustment range Within the adjustment range;
  • Step 403 Adjust a working frequency of the transmitter or the receiver, so that a duplex frequency of the communication system is equal to a frequency of the higher harmonic signal.
  • Step 404 The higher harmonic signal is used as a local oscillator, and the debug signal is mixed to a working frequency of the receiver.
  • Step 405 Send the debugging signal by using a carrier carrier signal.
  • Step 406 Receive the debugging signal, and perform error comparison on the debugging signal.
  • the RF loopback test method of the embodiment of the present invention further improves the selectivity of selecting a clock frequency in a communication system by performing a method of performing harmonics on a clock frequency and a method of adjusting a frequency of a transmitter or a receiver. It is a preferred embodiment of the RF loopback test method of the embodiment of the present invention.
  • the step of stopping the mixing of the clock signal to the working frequency of the receiver and the step of restoring the working frequency of the transmitter or the receiver may be added.
  • the communication system can directly enter the state of the operational service, effectively reducing the loss caused by the RF loopback test to the operation of the communication system.
  • the reference clock of the radio frequency PLL on the single board is utilized.
  • the clock signal close to the duplex interval frequency is used as a loopback test local oscillator in the RF loopback test method, for example, a GSM receiver transmitter uses a 52 MHz reference signal, where a 52 MHz reference clock signal can be used or can be used.
  • the 2nd harmonic signal which is 104MHz, is the loopback test local oscillator in the RF loopback test.
  • the difference from the duplex interval frequency is changed by the software in the loopback test slot to change the working frequency of the transmitter or receiver. To compensate.
  • 52MHz reference clock is split all the way, through the triode buffer amplification, LC low-pass filter or band-pass filter to extract the 52MHz or 104MHz signal with the required level to do the loopback test local oscillator in the RF loopback test method.
  • the receiver RF local oscillator signal is locked to the operating frequency minus X MHz, or the transmitter RF local oscillator signal is locked to the operating frequency plus X MHz, or the receiver local oscillator signal and The transmitter RF local oscillator signal frequency changes simultaneously.
  • the purpose is to keep the IF frequency of the transmitter or receiver unchanged.
  • the duplex interval frequency of the transmitter and receiver is equal to the loopback test local oscillator in the RF loopback test method.
  • Table 1 shows the X values of different communication bands of GSM. According to the table, what kind of clock frequency should be used in different systems and the operating frequency change of the transmitter or receiver can be calculated.
  • FIG. 5 it is a schematic structural diagram of a first embodiment of an RF loopback test system according to the present invention.
  • the frequency loopback test system includes:
  • the transmitting end 501 is configured to select a certain clock signal as a local oscillator in the communication system, wherein the local oscillator and the communication system have the same duplexing frequency, and the debugging signal is mixed to the working frequency of the receiver, and is sent; the receiving end 502 And configured to receive the debugging signal sent by the transmitting end, and perform error comparison.
  • the selected clock signal is used as the local oscillator at the transmitting end, so that the selected local oscillator and the communication system have the same duplex interval frequency, and after the debugging signal is sent according to the local oscillator,
  • the receiving end performs the RF loopback test by comparing the error signals sent by the transmitting end, and reduces the material cost, manufacturing cost and failure rate caused by the independent loopback test local oscillator circuit in the prior art. Eliminates the potential for spurious interference.
  • FIG. 6 is a flowchart of a first embodiment of a loopback test local oscillator providing apparatus according to the present invention, the ring
  • the back test local oscillator providing device includes: a transmitting end, configured to select a certain clock signal as a local oscillator in the communication system, so that the clock signal is the same as the duplex interval frequency of the communication system, and the transmitting end specifically includes:
  • a first selection module 601, configured to select a certain clock signal in the communication system
  • the local oscillator generating module 603 is configured to generate the local oscillator by the clock signal, where the local oscillator and the communication system have the same duplex frequency.
  • the local oscillator generating module After the first selection module selects a certain clock frequency in the communication system, the local oscillator generating module generates a local oscillator according to the clock frequency selected by the first selection module, so that the generated local oscillator is generated. It is the same as the duplex frequency of the communication system, and thus provides the local oscillator for the loopback test, thereby realizing the loopback test.
  • a higher harmonic module 602 is added between the first selection module and the local oscillator generating module, that is, the higher harmonic module 602 is configured to receive the first selection.
  • the clock signal of the module is subjected to higher harmonics of the clock signal to generate a higher harmonic signal.
  • the local oscillator generating module 603 is configured to generate the local oscillator by the higher harmonic signal.
  • the first selection module selects a certain clock frequency in the communication system, performs high-order harmonics through the high-order harmonic module, and generates a local oscillator according to the high-order harmonic signal, providing a loopback test.
  • the local oscillator in turn, enables loopback testing and improves the selectivity of the selection module to select the clock signal.
  • the loopback test local oscillator providing apparatus includes:
  • a second selection module 701 configured to select a certain clock signal from a clock signal having a frequency difference between a duplex interval frequency of the communication system within an adjustable range of a transmitter or a receiver operating frequency point;
  • the adjusting module 702 is configured to adjust a working frequency of the transmitter or the receiver, so that a communication system duplex interval frequency is equal to a frequency of the clock signal;
  • the local oscillator generating module 603 is configured to generate a local oscillator by the clock signal selected by the second selection module.
  • the loopback test local oscillator providing device after the second selection module selects the clock signal, adjusts the working frequency of the transmitter or the receiver through the adjustment module, so that the duplex interval frequency of the communication system and the clock signal selected by the selection module are The frequency is the same, and then the local oscillator generating module generates a local oscillator according to the clock signal selected by the selected module, provides a loopback test local oscillator, and can implement the loopback test, and can improve the selectivity of the selection module to select the clock signal.
  • the loopback test local oscillator providing apparatus includes:
  • a first selection module 601, configured to select a certain clock signal in the communication system
  • a higher harmonic module 602 configured to perform higher harmonics on the clock signal to generate a higher harmonic signal, and the frequency difference between the higher harmonic signal and the communication system duplex interval frequency is at the transmitter or
  • the working frequency of the receiver can be adjusted within the range;
  • the adjusting module 702 is configured to adjust a working frequency of the transmitter or the receiver, so that a communication system duplex interval frequency is equal to a frequency of the higher harmonic signal;
  • the local oscillator generating module 603 is configured to generate the local oscillator by the higher harmonic signal.
  • the loopback test local oscillator providing device selects a certain clock signal through the first selection module, and the clock signal is brought close to the duplex interval frequency of the communication system through the high harmonic module, and then the transmitter is adjusted through the adjustment module. Or the working frequency of the receiver to change the duplex interval frequency of the communication system, so that the duplex interval frequency of the communication system is the same as the clock signal after the higher harmonics, and finally the local oscillator generating module generates the local oscillator according to the higher harmonic signal.
  • the method provides a loopback test local oscillator, and can improve the selectivity of selecting a clock signal for selecting a module, thereby implementing a loopback test, which reduces the material cost caused by the prior art loopback test local oscillator circuit, Manufacturing costs and failure rates, but also eliminate spurious interference.
  • FIG. 9 it is a flowchart of a first embodiment of a loopback test local oscillator providing method according to the present invention.
  • the loopback test local oscillator providing method is specifically as follows: Step 901: Select a certain clock signal in the communication system.
  • Step 902 Perform higher harmonics on the clock signal to generate a higher harmonic signal, where the higher harmonic signal is the same as the duplex interval frequency of the communication system;
  • Step 903 The higher harmonic signal is used as a local oscillator.
  • the method of selecting a clock frequency in the communication system is further improved by performing a high-order harmonic method on the clock frequency.
  • the duplex interval is 45MHz, so the clock signal with a frequency of 15MHz can be selected and its 3rd harmonic can be obtained to obtain a duplex interval frequency signal with a frequency of 45MHz.
  • a clock with a frequency of 5MHz can also be selected.
  • the signal, and its 9th harmonic results in a duplex interval frequency signal with a frequency of 45MHz.
  • the loopback test local oscillator provides a method for overcoming the independent loop in the prior art by selecting a clock signal having the same duplex frequency as the communication system and providing a duplex interval frequency signal in the communication system. Backtesting the defect that the local oscillator circuit provides the duplex cost signal and the material cost is too high, the manufacturing system is over-constructed due to the miniaturization design, the defect rate is too high, and the defect of spurious interference
  • the independent loopback test local oscillator circuit is avoided, thereby effectively reducing the material cost of detecting the communication system and The manufacturing cost of the communication system also reduces the failure rate and discharges spurious interference.
  • the foregoing steps may be implemented by software processing and DSP algorithms.
  • FIG. 10 a flowchart of a second embodiment of a method for providing a loopback test local oscillator according to the present invention, a method for providing a loopback test local oscillator according to the present invention, a second embodiment of the loopback test local oscillator providing method according to the present invention Based on the improvement, the loopback test local oscillator provides the following methods:
  • Step 1001 Select a certain clock signal from a frequency difference between a duplex interval frequency of the communication system and a clock signal within a range adjustable by a transmitter or a receiver operating frequency point;
  • Step 1002 Adjust a working frequency of the transmitter or the receiver, so that a duplex interval frequency of the communication system is equal to a frequency of the clock signal.
  • Step 1003 The clock signal is used as a local oscillator.
  • the loopback test local oscillator providing method further improves the selectivity of selecting a clock frequency in the communication system by adjusting the working frequency of the transmitter or the receiver.
  • the duplex interval is 95 ⁇ , so the clock signal with a frequency of 104MHz can be selected, and the working frequency of the transmitter can be increased by 9MHz, so that debugging information can be sent, and the bit error rate of the communication system can be finally tested;
  • Other clock signals can be selected and the bit error rate of the communication system can be finally tested by adjusting the operating frequency of the transmitter or receiver.
  • the working frequency of the transmitter or the receiver is adjusted by changing the frequency dividing ratio of the phase locked loop.
  • FIG. 11 a flowchart of a third embodiment of a method for providing a loopback test local oscillator according to the present invention, a loopback test local oscillator providing method of the present invention, a third embodiment, a loopback test local oscillator providing method according to the present invention, a first embodiment Based on the improvement, the loopback test local oscillator provides the following methods:
  • Step 11 01. Select a certain clock signal in the communication system
  • Step 11 02 Perform higher harmonics on the clock signal to generate a higher harmonic signal, and the frequency difference between the higher harmonic signal and the duplex interval frequency of the communication system is at a transmitter or receiver operating frequency. Adjustable range;
  • Step 11 03 Adjust a working frequency of the transmitter or the receiver, so that a duplex frequency of the communication system is equal to a frequency of the higher harmonic signal;
  • the higher harmonic signal is used as a local oscillator.
  • the loopback test local oscillator providing method of the embodiment of the invention further improves the selection of the clock frequency in the communication system by the method of performing higher harmonics on the clock frequency and the method of adjusting the working frequency of the transmitter or the receiver.
  • the present invention is a preferred embodiment of the loopback test local oscillator providing method of the present invention.
  • the operating frequency of the transmitter or receiver is adjusted by changing the frequency dividing ratio of the phase locked loop.
  • the foregoing program may be stored in a computer readable storage medium, and when executed, the program includes the steps of the foregoing method embodiment; and the foregoing storage medium includes: R0M, RAM , a variety of media that can store program code, such as a disk or an optical disk.

Landscapes

  • Monitoring And Testing Of Transmission In General (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

射频环回测试方法及***和环回测试本振提供方法及装置 本申请要求于 2007 年 12 月 14 日提交中国专利局、 申请号为 200710179572.0,发明名称为"射频环回测试方法及***和环回测试本振提供 方法及装置"的中国专利申请的优先权, 其全部内容通过引用结合在本申请 中。 技术领域
本发明实施例属于移动通信领域, 尤其属于一种射频环回测试方法及系 统和环回测试本振提供方法及装置。 背景技术
为了便于维护网络, 通信***的发射机和接收机在空口 (无业务)状态 下 , 通过射频环回测试方法来自动检测和定位故障 , 此时在发射机和接收机 电路中增设专门的环回测试本振电路, 并且将调制成固定码型的发射信号混 频到接收频段对应的上行频点, 在接收机中完成解调、 解码后进行误码比较, 从而判断发射机和接收机之间的信道是否有故障。 射频环回测试是 GSM基站 ***的基本功能。
现有技术中, 环回测试本振电路通过一个独立的锁相环(Phase Locked Loop, 以下简称为 PLL) 实现, 并且该 PLL使用的参考源和用在其它发射机 和接收机中的射频 PLL参考源相同。 环回测试本振电路的频率为频分双工通 信***的双工间隔, 具体为: 在 GSM900 ( Global System for Mobile Communications,简称为 GSM)和 GSM850***中双工间隔为 45MHz,在 DCS1800 ( Digital Cellular System, 简称为 DCS ) ***中双工间隔为 95MHz, 在 PCS1900 ( Personal Communications Service, 简称为 PCS ) ***中双工间 隔为 80MHz。 环回测试本振电路是一个独立的辅助电路, 为了不影响通信***的杂散 指标和用电量, 在通常情况下环回测试本振电路不接通电源, 当启动环回测 试本振电路时, 通信***首先给环回测试本振电路接通电源, 然后给环回测 试本振电路的 PLL设置参数, 并等待环回测试本振电路的 PLL锁定后, 启动 环回测试进行误码统计。
现有技术通过增设专门的环回测试本振电路来判断发射机和接收机之间 的信道是否有故障, 并且环回测试本振电路需要一个独立的锁相环, 因此物 料成本会有所增加。
发射机和接收机不断地向小型化设计方向发展时 , 环回测试本振电路占 用了较大的印刷电路板 ( Pr inted Ci rcui t Board, 以下简称为 PCB ) 面积, 因此提高了设计成本, 从而间接提高了通信***的制造成本。
环回测试本振电路的 PLL 包括压控振荡器 ( Vol tage Control led Osc i l la tor , 以下简称为 VC0 ) 、 鉴相器( Phase Detector , 以下简称为 PD ) 和緩冲放大器等元器件, 并且这些元器件在网络上运行时, 也有本身的故障 率, 因此相应地提高了故障率。
射频环回测试需要占用空闲的业务信道, 因此要尽量缩短占用业务信道 的时间, 这样才能最小化对业务信道的影响, 但是在现有技术启动环回测试 本振电路时必须给环回测试本振电路接通电源, 并等待环回测试本振电路的 PLL锁定后, 进行误码统计, 从而降低了射频环回测试的速度。 所以在 Ή)ΜΑ ***中 , 射频环回测试周期内一直给环回测试本振电路接通电源, 因此存在 对其它时隙形成杂散干扰的隐患。 发明内容
本发明实施例提供一种射频环回测试方法及装置和环回测试本振提供方 法及装置, 以解决现有技术中射频环回测试过程中独立的环回测试本振电路 提供双工间隔频率信号而导致成本高的缺陷。 本发明实施例提供了一种射频环回测试方法, 包括: 在通信***中选择 某一时钟信号作为本振, 所述本振与通信***双工间隔频率相同;
根据所述本振将调试信号混频到接收机工作频点, 并发送; 对所述调试 信号进行误码比较。
本发明实施例还提供了一种射频环回测试***, 包括: 发射端, 用于在 通信***中选择某一时钟信号作为本振, 所述本振与通信***双工间隔频率 相同, 将调试信号混频到接收机工作频点, 并发送; 接收端, 用于接收所述 发射端发送的所述调试信号, 进行误码比较。
本发明实施例还提供了一种环回测试本振提供方法, 包括: 在通信*** 中选择某一时钟信号作为本振, 所述本振与通信***双工间隔频率相同。
本发明实施例还提供了一种环回测试本振提供装置, 包括: 第一选择模 块, 用于在通信***中选择某一时钟信号; 本振生成模块, 用于将所述时钟 信号生成本振, 所述本振与通信***双工间隔频率相同。
本发明实施例的一个技术方案, 通过选择时钟信号将发射信号混频到接 收机工作频点中, 从而克服了现有技术射频环回测试过程中独立的环回测试 本振电路提供双工间隔频率信号而导致的物料成本高、 制造成本高、 故障率 高和存在杂散干扰隐患的缺陷。
本发明实施例的一个技术方案, 在发射端通过选择时钟信号作为本振, 使得所选择的本振和通信***的双工间隔频率相同, 并且根据所述本振将调 试信号发送之后, 在接收端通过对发射端发送的调试信号进行误码比较, 实 现了射频环回测试, 同时降低了现有技术通过独立的环回测试本振电路引起 的物料成本、 制造成本和故障率, 而且还消除了杂散干扰隐患。
本发明实施例的一个技术方案, 通过在通信***中选择一个与通信*** 双工间隔频率相同的时钟信号的方法, 提供了用于射频环回测试的本振, 使 得可以实现射频环回测试。
本发明实施例的一个技术方案, 通过第一选择模块选择时钟频率信号之 后, 本振生成模块根据所述时钟频率信号生成本振的方法, 提供了用于射频 环回测试的本振, 使得可以实现射频环回测试。 附图说明
图 1为本发明射频环回测试方法第一实施例的流程图;
图 2为本发明射频环回测试方法第二实施例的流程图;
图 3为本发明射频环回测试方法第三实施例的流程图;
图 4为本发明射频环回测试方法第四实施例的流程图;
图 5为本发明射频环回测试***第一实施例结构示意图;
图 6为本发明环回测试本振提供装置第一实施例流程图;
图 7为本发明环回测试本振提供装置第二实施例流程图;
图 8为本发明环回测试本振提供装置第三实施例流程图;
图 9为本发明环回测试本振提供方法第一实施例流程图;
图 10为本发明环回测试本振提供方法第二实施例流程图;
图 11为本发明环回测试本振提供方法第三实施例流程图。 具体实施方式
下面通过附图和实施例, 对本发明的技术方案做进一步的详细描述。 本发明射频环回测试方法第一实施例
如图 1所示, 为本发明射频环回测试方法第一实施例的流程图, 射频环 回测试方法具体如下:
步骤 1 01、 在通信***中选择某一时钟信号作为本振, 所述本振与通信 ***双工间隔频率相同;
步骤 1 02、 根据所述本振将调试信号混频到接收机工作频点, 用发射机 载波信号, 发送所述调试信号;
步骤 103、 接收所述调试信号, 对所述调试信号进行误码比较。 本发明实施例射频环回测试方法, 在通信***中通过选择与通信***双 工间隔频率相同的时钟信号作为本振, 并提供双工间隔频率信号, 克服了现 有技术中通过独立的环回测试本振电路提供双工间隔频率信号而导致的物料 成本过高的缺陷、 小型化设计而导致的通信***制造成本过高的缺陷、 故障 率过高的缺陷和存在杂散干扰隐患的缺陷, 实现了通过利用通信***中现有 的时钟信号资源给射频环回测试过程提供双工间隔频率信号, 避免了使用独 立的环回测试本振电路, 从而有效降低了检测通信***的物料成本和通信系 统的制造成本, 同时还降低了故障率, 并排出了杂散干扰隐患。
在本发明实施例射频环回测试方法中, 上述各个步骤可以通过软件处理 和数字信号处理(Dig i ta l S i gna l Proces sor , 以下简称为 DSP ) 算法来实 现。
本发明射频环回测试方法第二实施例
如图 2所示, 为本发明射频环回测试方法第二实施例的流程图, 本发明 射频环回测试方法第二实施例在本发明射频环回测试方法第一实施例基础上 进行了细化 , 射频环回测试方法具体如下:
步骤 201、 在通信***中选择某一时钟信号;
步骤 202、 对所述时钟信号进行高次谐波, 生成高次谐波信号, 所述高 次谐波信号与通信***双工间隔频率相同;
步骤 203、 将高次谐波信号作为本振, 将调试信号混频到接收机工作频 点;
步骤 204、 用发射机载波信号, 发送所述调试信号;
步骤 205、 接收所述调试信号, 对所述调试信号进行误码比较。
本发明实施例射频环回测试方法,通过对时钟频率进行高次谐波的方法, 进一步提高了通信***中选择时钟频率的可选性。例如在 GSM900通信***中 双工间隔为 45ΜΗζ , 因此可以选择频率为 15MHz的时钟信号, 并对其 3次谐 波, 从而得到频率为 45MHz的双工间隔频率信号; 还可以选择频率为 5MHz的 时钟信号, 并对其 9次谐波, 从而得到频率为 45MHz的双工间隔频率信号。 本发明射频环回测试方法第三实施例
如图 3所示, 为本发明射频环回测试方法第三实施例的流程图, 本发明 射频环回测试方法第三实施例在本发明射频环回测试方法第一实施例基础上 进行了细化 , 射频环回测试方法具体如下:
步骤 301、 与通信***双工间隔频率之间的频率差在发射机或接收机工 作频点可调整范围内的时钟信号中, 选择某一时钟信号;
步骤 302、 调整所述发射机或接收机的工作频点, 使得通信***双工间 隔频率等于所述时钟信号的频率;
步骤 303、 将所述时钟信号作为本振, 将调试信号混频到接收机工作频 点;
步骤 304、 用发射机载波信号, 发送所述调试信号;
步骤 305、 接收所述调试信号, 对所述调试信号进行误码比较。
本发明实施例射频环回测试方法, 通过调整发射机或接收机的工作频点 的方法, 进一步提高了通信***中选择时钟频率的可选性。 例如在 DCS1800 通信***中双工间隔为 95ΜΗζ , 因此可以选择频率为 104MHz的时钟信号, 并 将发射机的工作频点提高 9MHz , 这样就可以发送调试信息, 最终测试通信系 统误码率; 或者还可以选择其它时钟信号, 并通过调整发射机或接收机的工 作频点, 最终测试通信***误码率。
在本发明实施例射频环回测试方法中, 可以通过改变锁相环的分频比来 调整发射机或接收机的工作频点。
在本发明实施例射频环回测试方法中, 步骤 305之后可以增加恢复所述 发射机或接收机的工作频点的步骤, 这样通信***经过射频环回测试之后, 可以直接进入运营业务的状态, 有效降低了射频环回测试给通信***运营带 来的损失。
本发明射频环回测试方法第四实施例 如图 4所示, 为本发明射频环回测试方法第四实施例的流程图, 本发明 射频环回测试方法第四实施例在本发明射频环回测试方法第一实施例基础上 进行了细化 , 射频环回测试方法具体如下:
步骤 401、 在通信***中选择某一时钟信号;
步骤 402、 对所述时钟信号进行高次谐波, 生成高次谐波信号, 所述高 次谐波信号和通信***双工间隔频率之间的频率差在发射机或接收机工作频 点可调整范围内;
步骤 403、 调整所述发射机或接收机的工作频点, 使得通信***双工间 隔频率等于所述高次谐波信号的频率;
步骤 404、 将所述高次谐波信号作为本振, 将调试信号混频到接收机工 作频点;
步骤 405、 用发射机载波信号, 发送所述调试信号;
步骤 406、 接收所述调试信号, 对所述调试信号进行误码比较。
本发明实施例射频环回测试方法, 通过对时钟频率进行高次谐波的方法 和通过调整发射机或接收机的工作频点的方法, 进一步提高了通信***中选 择时钟频率的可选性,是本发明实施例射频环回测试方法的一个较佳实施例。
在本发明实施例射频环回测试方法中, 步骤 406之后可以增加停止将所 述时钟信号混频到接收机工作频点的步骤和恢复所述发射机或接收机的工作 频点的步骤, 这样通信***经过射频环回测试之后, 可以直接进入运营业务 的状态, 有效降低了射频环回测试给通信***运营带来的损失。
Figure imgf000009_0001
表 1
在本发明实施例射频环回测试方法中, 利用单板上射频 PLL的参考时钟 或其与双工间隔频率比较接近的时钟信号做射频环回测试方法中的环回测试 本振, 例如某 GSM收发射机釆用 52MHz参考信号, 在这里可以使用 52MHz参 考时钟信号或者可以使用其 2次谐波信号, 即为 104MHz , 做射频环回测试中 的环回测试本振 , 此时与双工间隔频率的差异通过软件在环回测试时隙更改 发射机或接收机的工作频点来补偿。 具体为: 52MHz 参考时钟分出一路, 通 过三极管緩冲放大、 LC 低通滤波器或带通滤波器提取出电平满足要求的 52MHz或 104MHz信号做射频环回测试方法中的环回测试本振, 在射频环回测 试时隙, 接收机射频本振信号锁定为工作频点减去 X MHz , 或者发射机射频 本振信号锁定为工作频点加上 X MHz , 或者是接收机本振信号和发射机射频 本振信号频率同时改变。 目的是保持发射机或接收机中频频率不变, 发射机 和接收机的双工间隔频率等于射频环回测试方法中的环回测试本振。 表 1为 GSM不同通信频段的 X值, 可以根据该表计算出不同***中应该釆用什么样 的时钟频率和发射机或接收机的工作频点改变量。
本发明射频环回测试***第一实施例
如图 5所示, 为本发明射频环回测试***第一实施例结构示意图, 该频 环回测试***包括:
发射端 501 , 用于在通信***中选择某一时钟信号作为本振, 所述本振 与通信***双工间隔频率相同, 将调试信号混频到接收机工作频点, 并发送; 接收端 502 , 用于接收所述发射端发送的所述调试信号, 进行误码比较。 本发明实施例射频环回测试***,在发射端通过选择时钟信号作为本振, 使得所选择的本振和通信***的双工间隔频率相同, 并且根据所述本振将调 试信号发送之后, 在接收端通过对发射端发送的调试信号进行误码比较, 实 现了射频环回测试, 同时降低了现有技术通过独立的环回测试本振电路引起 的物料成本、 制造成本和故障率, 而且还消除了杂散干扰隐患。
本发明环回测试本振提供装置第一实施例
如图 6所示, 为本发明环回测试本振提供装置第一实施例流程图, 该环 回测试本振提供装置包括: 发射端, 用于在通信***中选择某一时钟信号作 为本振, 使得所述时钟信号与通信***双工间隔频率相同, 所述发射端具体 包括:
第一选择模块 601 , 用于在通信***中选择某一时钟信号;
本振生成模块 603 , 用于将所述时钟信号生成本振, 所述本振与通信系 统双工间隔频率相同。
本发明实施例环回测试本振提供装置, 通过第一选择模块在通信***中 选择某一时钟频率之后, 本振生成模块根据第一选择模块选择的时钟频率生 成本振, 使得生成的本振与通信***双工间隔频率相同, 进而提供了用于环 回测试的本振, 进而实现可以实现环回测试。
进一步的, 在本发明实施例环回测试本振提供装置中, 在第一选择模块 和本振生成模块之间增加高次谐波模块 602 , 即高次谐波模块 602用于接收 第一选择模块的时钟信号, 并对所述时钟信号进行高次谐波, 生成高次谐波 信号; 此时相应地, 本振生成模块 603用于将所述高次谐波信号生成本振。 这样的话, 第一选择模块在通信***中选择某一时钟频率之后, 通过高次谐 波模块对其进行高次谐波, 并根据高次谐波信号生成本振的方法, 提供了环 回测试本振, 进而可以实现环回测试, 并且可以提高选择模块选择时钟信号 的可选性。
本发明环回测试本振提供装置第二实施例
如图 7所示, 为本发明环回测试本振提供装置第二实施例流程图, 该环 回测试本振提供装置包括:
第二选择模块 701 , 用于与通信***双工间隔频率之间的频率差在发射 机或接收机工作频点可调整范围内的时钟信号中, 选择某一时钟信号;
调整模块 702 , 用于调整所述发射机或接收机的工作频点, 使得通信系 统双工间隔频率等于所述时钟信号的频率;
本振生成模块 603 , 用于将所述第二选择模块选择的时钟信号生成本振。 本发明实施例环回测试本振提供装置,第二选择模块选择时钟信号之后, 通过调整模块调整发射机或接收机的工作频点, 使得通信***双工间隔频率 与通过选择模块选择的时钟信号的频率相同 , 然后本振生成模块根据选择模 块选择的时钟信号生成本振的方法, 提供了环回测试本振, 进而可以实现环 回测试, 并且可以提高选择模块选择时钟信号的可选性。
本发明环回测试本振提供装置第三实施例
如图 8所示, 为本发明环回测试本振提供装置第三实施例流程图, 该环 回测试本振提供装置包括:
第一选择模块 601 , 用于在通信***中选择某一时钟信号;
高次谐波模块 602 , 用于对所述时钟信号进行高次谐波, 生成高次谐波 信号, 所述高次谐波信号和通信***双工间隔频率之间的频率差在发射机或 接收机工作频点可调整范围内;
调整模块 702 , 用于调整所述发射机或接收机的工作频点, 使得通信系 统双工间隔频率等于所述高次谐波信号的频率;
本振生成模块 603 , 用于将所述高次谐波信号生成本振。
本发明实施例环回测试本振提供装置, 通过第一选择模块选择某一时钟 信号之后, 通过高次谐波模块使得时钟信号接近通信***双工间隔频率, 然 后再通过调整模块调整述发射机或接收机的工作频点, 以改变通信***双工 间隔频率, 使得通信***双工间隔频率与经过高次谐波后的时钟信号相同, 最后本振生成模块根据高次谐波信号生成本振的方法,提供了环回测试本振, 并且可以提高选择模块选择时钟信号的可选性, 进而可以实现环回测试, 降 低了现有技术通过独立的环回测试本振电路引起的物料成本、 制造成本和故 障率, 而且还消除了杂散干扰隐患。
本发明环回测试本振提供方法第一实施例
如图 9所示, 为本发明环回测试本振提供方法第一实施例流程图, 环回 测试本振提供方法具体如下: 步骤 901、 在通信***中选择某一时钟信号;
步骤 902、 对所述时钟信号进行高次谐波, 生成高次谐波信号, 所述高 次谐波信号与通信***双工间隔频率相同;
步骤 903、 所述高次谐波信号作为本振。
在本发明实施例环回测试本振提供方法中, 通过对时钟频率进行高次谐 波的方法, 进一步提高了通信***中选择时钟频率的可选性。 例如在 GSM900 通信***中双工间隔为 45MHz , 因此可以选择频率为 15MHz 的时钟信号, 并 对其 3次谐波, 从而得到频率为 45MHz的双工间隔频率信号; 还可以选择频 率为 5MHz的时钟信号, 并对其 9次谐波, 从而得到频率为 45MHz的双工间隔 频率信号。
本发明实施例环回测试本振提供方法, 在通信***中通过选择与通信系 统双工间隔频率相同的时钟信号, 并提供双工间隔频率信号的方法, 克服了 现有技术中通过独立的环回测试本振电路提供双工间隔频率信号而导致的物 料成本过高的缺陷、 小型化设计而导致的通信***制造成本过高的缺陷、 故 障率过高的缺陷和存在杂散干扰隐患的缺陷, 实现了通过利用通信***中现 有的时钟信号资源给射频环回测试过程提供双工间隔频率信号, 避免了使用 独立的环回测试本振电路, 从而有效降低了检测通信***的物料成本和通信 ***的制造成本, 同时还降低了故障率, 并排出了杂散干扰隐患。
在本发明实施例射频环回测试方法中, 上述各个步骤可以通过软件处理 和 DSP算法来实现。
本发明环回测试本振提供方法第二实施例
如图 10所示, 为本发明环回测试本振提供方法第二实施例流程图, 本发 明环回测试本振提供方法第二实施例在本发明环回测试本振提供方法第一实 施例的基础上进行了改进, 该环回测试本振提供方法具体如下:
步骤 1001、 与通信***双工间隔频率之间的频率差在发射机或接收机工 作频点可调整范围内的时钟信号中, 选择某一时钟信号; 步骤 1002、 调整所述发射机或接收机的工作频点, 使得通信***双工间 隔频率等于所述时钟信号的频率;
步骤 1003、 所述时钟信号作为本振。 本发明实施例环回测试本振提供方法, 通过调整发射机或接收机的工作 频点的方法, 进一步提高了通信***中选择时钟频率的可选性。 例如在 DCS1800通信***中双工间隔为 95ΜΗζ , 因此可以选择频率为 104MHz的时钟 信号, 并将发射机的工作频点提高 9MHz , 这样就可以发送调试信息, 最终测 试通信***误码率; 或者还可以选择其它时钟信号, 并通过调整发射机或接 收机的工作频点, 最终测试通信***误码率。 在本发明实施例环回测试本振 提供方法中,通过改变锁相环的分频比调整所述发射机或接收机的工作频点。
本发明环回测试本振提供方法第三实施例
如图 11所示, 为本发明环回测试本振提供方法第三实施例流程图, 本发 明环回测试本振提供方法第三实施例在本发明环回测试本振提供方法第一实 施例的基础上进行了改进, 该环回测试本振提供方法具体如下:
步骤 11 01、 在通信***中选择某一时钟信号;
步骤 11 02、 对所述时钟信号进行高次谐波, 生成高次谐波信号, 所述高 次谐波信号和通信***双工间隔频率之间的频率差在发射机或接收机工作频 点可调整范围内;
步骤 11 03、 调整所述发射机或接收机的工作频点, 使得通信***双工间 隔频率等于所述高次谐波信号的频率;
步骤 11 04、 所述高次谐波信号作为本振。
本发明实施例环回测试本振提供方法, 通过对时钟频率进行高次谐波的 方法和通过调整发射机或接收机的工作频点的方法, 进一步提高了通信*** 中选择时钟频率的可选性, 是本发明环回测试本振提供方法的一个较佳实施 例。
在本发明实施例环回测试本振提供方法中, 通过改变锁相环的分频比调 整所述发射机或接收机的工作频点。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述 的存储介质包括: R0M、 RAM, 磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要 求
1、 一种射频环回测试方法, 其特征在于包括:
在通信***中选择某一时钟信号作为本振, 所述本振与通信***双工间 隔频率相同;
根据所述本振将调试信号混频到接收机工作频点, 并发送;
对所述调试信号进行误码比较。
2、根据权利要求 1所述的射频环回测试方法, 其特征在于所述在通信系 统中选择某一时钟信号作为本振具体为:
在通信***中选择某一时钟信号;
对所述时钟信号进行高次谐波, 生成高次谐波信号;
将所述高次谐波信号作为本振。
3、根据权利要求 1所述的射频环回测试方法, 其特征在于所述在通信系 统中选择某一时钟信号作为本振具体为:
与通信***双工间隔频率之间的频率差在发射机或接收机工作频点可调 整范围内的时钟信号中, 选择某一时钟信号;
调整所述发射机或接收机的工作频点, 使得通信***双工间隔频率等于 所述时钟信号的频率;
将所述时钟信号作为本振。
4、根据权利要求 1所述的射频环回测试方法, 其特征在于所述在通信系 统中选择某一时钟信号作为本振具体为:
在通信***中选择某一时钟信号;
对所述时钟信号进行高次谐波, 生成高次谐波信号, 所述高次谐波信号 和通信***双工间隔频率之间的频率差在发射机或接收机工作频点可调整范 围内;
调整所述发射机或接收机的工作频点, 使得通信***双工间隔频率等于 所述高次谐波信号的频率; 将所述高次谐波信号作为本振。
5、根据权利要求 3或 4所述的射频环回测试方法, 其特征在于所述调整 所述发射机或接收机的工作频点具体为: 通过改变锁相环的分频比调整所述 发射机或接收机的工作频点。
6、 一种射频环回测试***, 其特征在于包括:
发射端, 用于在通信***中选择某一时钟信号作为本振, 所述本振与通 信***双工间隔频率相同, 将调试信号混频到接收机工作频点, 并发送; 接收端, 用于接收所述发射端发送的所述调试信号, 进行误码比较。
7、 一种环回测试本振提供方法, 其特征在于包括:
在通信***中选择某一时钟信号作为本振, 所述本振与通信***双工间 隔频率相同。
8、根据权利要求 7所述的环回测试本振提供方法, 其特征在于所述在通 信***中选择某一时钟信号作为本振具体为:
在通信***中选择某一时钟信号;
对所述时钟信号进行高次谐波, 生成高次谐波信号, 所述高次谐波信号 与通信***双工间隔频率相同;
所述高次谐波信号作为本振。
9、根据权利要求 7所述的环回测试本振提供方法, 其特征在于所述在通 信***中选择某一时钟信号作为本振具体为:
与通信***双工间隔频率之间的频率差在发射机或接收机工作频点可调 整范围内的时钟信号中, 选择某一时钟信号;
调整所述发射机或接收机的工作频点, 使得通信***双工间隔频率等于 所述时钟信号的频率;
所述时钟信号作为本振。
10、 根据权利要求 7所述的环回测试本振提供方法, 其特征在于所述在 通信***中选择某一时钟信号作为本振具体为: 在通信***中选择某一时钟信号;
对所述时钟信号进行高次谐波, 生成高次谐波信号, 所述高次谐波信号 和通信***双工间隔频率之间的频率差在发射机或接收机工作频点可调整范 围内;
调整所述发射机或接收机的工作频点, 使得通信***双工间隔频率等于 所述高次谐波信号的频率;
所述高次谐波信号作为本振。
11、 一种环回测试本振提供装置, 其特征在于包括:
第一选择模块, 用于在通信***中选择某一时钟信号;
本振生成模块, 用于将所述时钟信号生成本振, 所述本振与通信***双 工间隔频率相同。
12、根据权利要求 11所述的环回测试本振提供装置, 其特征在于所述装 置进一步包括:
高次谐波模块, 用于接收第一选择模块的时钟信号, 并对所述时钟信号 进行高次谐波, 生成高次谐波信号;
则所述本振生成模块用于将所述高次谐波信号生成本振。
13、根据权利要求 11所述的环回测试本振提供装置, 其特征在于所述装 置进一步包括:
第二选择模块, 用于与通信***双工间隔频率之间的频率差在发射机或 接收机工作频点可调整范围内的时钟信号中, 选择某一时钟信号;
调整模块, 用于调整所述发射机或接收机的工作频点, 使得通信***双 工间隔频率等于所述时钟信号的频率;
则所述本振生成模块用于将所述第二选择模块选择的时钟信号生成本 振。
14、根据权利要求 11所述的环回测试本振提供装置, 其特征在于所述装 置进一步包括: 高次谐波模块, 用于对所述时钟信号进行高次谐波, 生成高次谐波信号, 所述高次谐波信号和通信***双工间隔频率之间的频率差在发射机或接收机 工作频点可调整范围内;
调整模块, 用于调整所述发射机或接收机的工作频点, 使得通信***双 工间隔频率等于所述高次谐波信号的频率;
则所述本振生成模块用于将所述高次谐波信号生成本振。
PCT/CN2008/073425 2007-12-14 2008-12-10 射频环回测试方法及***和环回测试本振提供方法及装置 WO2009076893A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2007101795720A CN101184313B (zh) 2007-12-14 2007-12-14 射频环回测试方法及***和环回测试本振提供方法及装置
CN200710179572.0 2007-12-14

Publications (1)

Publication Number Publication Date
WO2009076893A1 true WO2009076893A1 (zh) 2009-06-25

Family

ID=39449348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/073425 WO2009076893A1 (zh) 2007-12-14 2008-12-10 射频环回测试方法及***和环回测试本振提供方法及装置

Country Status (2)

Country Link
CN (1) CN101184313B (zh)
WO (1) WO2009076893A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113746698A (zh) * 2021-08-31 2021-12-03 云境商务智能研究院南京有限公司 一种随机网络攻击下网络化***故障检测滤波器设计方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101184313B (zh) * 2007-12-14 2013-08-14 华为技术有限公司 射频环回测试方法及***和环回测试本振提供方法及装置
CN103281098B (zh) * 2013-05-16 2015-07-29 海能达通信股份有限公司 用于tdma***的多时隙收发信机及多时隙通信方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1433201A (zh) * 2002-01-11 2003-07-30 罗姆股份有限公司 电话装置
CN1525653A (zh) * 2003-02-27 2004-09-01 义隆电子股份有限公司 单一石英振荡器射频发射机***
CN2724306Y (zh) * 2004-08-18 2005-09-07 中兴通讯股份有限公司 一种射频自动测试装置
US20060233112A1 (en) * 2005-03-23 2006-10-19 Frank Demmerle Controllable frequency divider circuit, transmitter/receiver with a controllable frequency divider circuit, and a method for carrying out a loop-back test
CN101184313A (zh) * 2007-12-14 2008-05-21 华为技术有限公司 射频环回测试方法及***和环回测试本振提供方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5521904A (en) * 1993-12-07 1996-05-28 Telefonaktiebolaget Lm Ericsson Method and apparatus for testing a base station in a time division multiple access radio communications system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1433201A (zh) * 2002-01-11 2003-07-30 罗姆股份有限公司 电话装置
CN1525653A (zh) * 2003-02-27 2004-09-01 义隆电子股份有限公司 单一石英振荡器射频发射机***
CN2724306Y (zh) * 2004-08-18 2005-09-07 中兴通讯股份有限公司 一种射频自动测试装置
US20060233112A1 (en) * 2005-03-23 2006-10-19 Frank Demmerle Controllable frequency divider circuit, transmitter/receiver with a controllable frequency divider circuit, and a method for carrying out a loop-back test
CN101184313A (zh) * 2007-12-14 2008-05-21 华为技术有限公司 射频环回测试方法及***和环回测试本振提供方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113746698A (zh) * 2021-08-31 2021-12-03 云境商务智能研究院南京有限公司 一种随机网络攻击下网络化***故障检测滤波器设计方法

Also Published As

Publication number Publication date
CN101184313A (zh) 2008-05-21
CN101184313B (zh) 2013-08-14

Similar Documents

Publication Publication Date Title
KR100197360B1 (ko) 위상 동기 루프의 루프 대역폭을 제어하는 장치 및 방법
US7103342B2 (en) System and method for reducing the effects of clock harmonic frequencies
JP4607868B2 (ja) 多重チャネル受信器における自動周波数制御処理
JPH07221667A (ja) デジタル無線電話機において異なる周波数の信号を発生する方法
TWI487301B (zh) 使用數位控制石英振盪器與射頻相位鎖定迴圈之混和自動頻率控制設備及其方法
US9748930B2 (en) Fast filter calibration apparatus
CN1048604C (zh) 响应射频信道间隔,操作锁相环频率合成器的装置和方法
JP2000106531A (ja) 干渉波検出装置及び干渉波検出方法
CN104185267A (zh) 用于确定电子设备的参考时钟的频率的方法和装置
TW201405277A (zh) 電子裝置和時脈產生方法
WO2009076893A1 (zh) 射频环回测试方法及***和环回测试本振提供方法及装置
US10122477B2 (en) Transmitter performance calibration systems and methods
KR100190149B1 (ko) 위상 동기 루프를 위한 에라 억압회로 및 그 방법
EP2717480B1 (en) Radio transceiver having frequency synthesizer
WO2020046503A1 (en) Apparatus and method for generating an oscillation signal, mobile communication systems, and mobile device
KR20000028992A (ko) 자동 주파수 제어 범위 확장을 위한 방법 및 장치
US20040127161A1 (en) Mobile communication unit with self-diagnostic capability
JPH08505755A (ja) 位相ロック・ループの要素を動作可能にする装置および方法
KR20040071297A (ko) 송수신기, 디지털 합성기 구동형 위상 동기 루프, 디지털합성기, 위상 동기 루프, 무선 통신 시스템, 휴대용 유닛,네트워크 유닛 및 신호 송수신 방법
JP2006173922A (ja) 放送信号受信装置及び放送信号受信方法
US11870451B1 (en) Frequency synthesizer using voltage-controlled oscillator (VCO) core of wideband synthesizer with integrated VCO
KR20020078413A (ko) 이동통신 단말기의 스퓨리어스 제거장치
CN105763188B (zh) 改善发射机射频指标的方法和装置
CN118054798A (zh) 通信方法、通信设备及存储介质
JP2008236519A (ja) 無線送受信機、無線送信機、無線受信機、及び制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08862531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08862531

Country of ref document: EP

Kind code of ref document: A1