WO2009007591A2 - Procede et systeme de gestion de coupures d'alimentation electrique a bord d'un aeronef - Google Patents

Procede et systeme de gestion de coupures d'alimentation electrique a bord d'un aeronef Download PDF

Info

Publication number
WO2009007591A2
WO2009007591A2 PCT/FR2008/051140 FR2008051140W WO2009007591A2 WO 2009007591 A2 WO2009007591 A2 WO 2009007591A2 FR 2008051140 W FR2008051140 W FR 2008051140W WO 2009007591 A2 WO2009007591 A2 WO 2009007591A2
Authority
WO
WIPO (PCT)
Prior art keywords
duration
capacitor
signal
circuit
power supply
Prior art date
Application number
PCT/FR2008/051140
Other languages
English (en)
Other versions
WO2009007591A3 (fr
Inventor
David Rousset
Laurent Peyras
Arnaud Davy
Original Assignee
Airbus France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus France filed Critical Airbus France
Priority to BRPI0812759A priority Critical patent/BRPI0812759A2/pt
Priority to EP08806072A priority patent/EP2165246A2/fr
Priority to US12/666,917 priority patent/US8417995B2/en
Priority to JP2010514059A priority patent/JP5345143B2/ja
Priority to CN2008801050941A priority patent/CN101796469B/zh
Priority to CA2692300A priority patent/CA2692300C/fr
Publication of WO2009007591A2 publication Critical patent/WO2009007591A2/fr
Publication of WO2009007591A3 publication Critical patent/WO2009007591A3/fr

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/28Supervision thereof, e.g. detecting power-supply failure by out of limits supervision
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/30Means for acting in the event of power-supply failure or interruption, e.g. power-supply fluctuations

Definitions

  • the invention relates to a system for managing the cuts in the power supply network of avionic equipment. This system is used to determine if the power cuts are short-lived or long-lasting and to turn off the on-board computer when the cut is long-lasting. The invention also relates to a method implemented by this system.
  • the invention has applications in the field of aeronautics and, in particular, in the field of management of the electrical power on board an aircraft.
  • short power cuts There are short power cuts. These short cuts have a duration of less than 5 seconds. Like the transparent cuts, these short cuts are related to the behavior of the power supply network. They are detected in flight. - There are also long cuts, whose duration is greater than 5 seconds. These long cuts occur on the ground when the aircraft is in the maintenance phase. These long cuts are used by the maintenance agents to repair, check or test certain equipment of the aircraft.
  • the on-board computer turns off during the moment when it is not powered electrically.
  • the computer must be restarted very quickly, that is to say, it must be able to perform as soon as the power is restored.
  • the onboard computer also turns off during the moment when it is not powered electrically.
  • the onboard computer must perform a series of tests, when it is back on, to check the general operation of the equipment.
  • the aircraft is on the ground, in the maintenance phase, the computer can restart slowly by performing a series of tests, called self-tests.
  • the timer (or timer, in English terms) must be electrically powered by the internal battery for the duration of a short break, about 5 seconds. If the power supply reappears before the end of the 5 seconds, then the computer restarts according to the fast procedure (without self-tests), the avionics equipment recommences on the power supply network, the time counter is reset and the internal battery is recharged.
  • a long cutoff information is saved in a non-volatile memory.
  • This memorization of the long cutoff information makes it possible to switch off the computer permanently for the duration of the long break, which makes it possible to reduce somewhat the power consumption of the equipment.
  • this storage of the information in the non-volatile memory requires a permanent supply of said non-volatile memory as well as a programmable electronic component that manages this storage.
  • the programmable component is relatively energy-intensive.
  • the invention proposes a system and a method for measuring the duration of the break. supply through the discharge of a capacitor. During this discharge, the capacitor does not need to be electrically powered, which makes it possible to turn off the computer during the entire duration of the power failure. This measurement of the duration by discharge of a capacitor makes it possible to dispense with any internal power source.
  • the invention relates to a method for managing an electrical power failure on board an aircraft, characterized in that it comprises the following operations:
  • the method of the invention may also include one or more of the following characteristics:
  • the capacitor is recharged as soon as an active switching signal is received at the input of a switch connected in series with the capacitor.
  • the active switching signal is issued almost immediately when the duration of the cut is less than the threshold time.
  • the active switching signal is emitted upon receipt of an end of backup signal.
  • the measurement of the discharge time is obtained by comparing a value of the voltage at the terminals of the capacitor with the value of a reference voltage.
  • the invention also relates to a system for managing a power cut on board an aircraft
  • Management system for an electrical power failure on board an aircraft characterized in that it comprises:
  • the system of the invention may comprise one or more of the characteristics following:
  • the measuring circuit comprises a capacitor connected, on the one hand, to an input of a comparator and, on the other hand, to an auxiliary supply source via a switch.
  • the management circuit comprises a programmable component able to receive an output signal from the measuring circuit, to transmit a backup signal to a central unit, to receive a signal for the end of the backup of the central unit, and to transmit a switching signal to the measuring circuit, the transmitted signals depending on the received signals.
  • the measurement circuit and the management circuit are mounted on an electrical supply card of an on-board computer, the management circuit being able to communicate with a central unit.
  • the invention also relates to an aircraft comprising a system as described above. Brief description of the drawings
  • FIG. 1 diagrammatically represents the electronic circuit of the invention for managing a power supply interruption without an internal power supply.
  • FIG. 2 represents a chronogram of the various signals encountered inside the electronic circuit of FIG. 1.
  • the invention proposes a system and a method making it possible to manage power supply interruptions on board an aircraft so that the computer can be extinguished completely as soon as a power outage occurs. of the power supply network occurs, while allowing a measure of the duration of this power cut and, if necessary, a backup of the long cutoff information.
  • the method of the invention proposes, when a power failure is detected, to measure the duration of the cut.
  • the measurement of the duration of the break is obtained by measuring the discharge time of a capacitor.
  • the discharge time of the capacitor is determined from the value of the voltage across this capacitor. This voltage value is compared with a reference voltage corresponding to a discharge duration of 5 seconds.
  • the comparison of the voltages is equivalent to comparing the duration of the cutoff with a threshold duration, this threshold duration being for example 5 seconds.
  • the capacitor voltage When the value of the capacitor voltage is greater than the reference voltage, it means that the cutoff is short. On the contrary, when the value of the capacitor voltage is lower than the reference voltage, it means that the cutoff is long. When a duration of less than 5 seconds is detected, the capacitor is recharged immediately in order to be able to measure the duration of a possible new break.
  • the long cut information is saved as will be described later.
  • the capacitor is only recharged after receiving an end of backup command.
  • FIG. 1 An example of an electronic circuit for carrying out the method of the invention is shown in FIG. 1.
  • This electronic circuit is mounted on a power supply card 1 of the aircraft's on-board computer.
  • This electronic circuit comprises a circuit 2 for detecting a power failure.
  • This detection circuit 2 is conventional, in accordance with the prior art. It will not be described in more detail in this application.
  • This detection circuit 2 comprises an input 21 from the power supply network; it therefore receives the voltage of 28 Volts of the network.
  • This detection circuit 2 also has an input 22 connected to ground.
  • This circuit 2 is able to detect the presence, on its input 21, of a voltage of 28V. When no 28V voltage is detected, it means that there is a power failure in the network. In other words, the detection circuit 2 detects the power cuts. When the end of a break is detected, it sends a cutoff information to a circuit 3 information management.
  • This information management circuit 3 comprises a programmable electronic component 31 incorporating a plurality of functionalities. This programmable component 31 is capable of receiving different information signals and transmitting signals of command, based on the signals received. This programmable component is a logical component that receives and transmits logic signals that can be active or inactive. The logic signals may have binary values 0 or 1. In the remainder of the description, it will be considered that an active logic signal has a binary value 1 and an inactive logic signal has a binary value 0, it being understood that the binary values can to be reversed.
  • the programmable component 31 is connected by a switching output 32 to a circuit 4 for measuring the duration of the power failure.
  • This measuring circuit 4 comprises a capacitor 41, able to charge energy and to discharge this energy later.
  • the capacitor 41 is connected in series to a power source 44, for example an auxiliary source (Vaux).
  • Vaux auxiliary source
  • This auxiliary power source 44 has the role of charging under certain conditions the capacitor when the power network is not cut. The conditions of charge and discharge of the capacitor will be defined later.
  • the capacitor 41 is connected to this auxiliary power source 44 via a switch 42 acting under the effect of the switching signal 32 (COM) transmitted by the programmable component 31. It is also connected, directly , to a voltage comparator 43.
  • This voltage comparator 43 receives, on a first input 431, a reference voltage Vref and, on a second input 432, the discharge voltage of the capacitor 41, also called the residual voltage of the capacitor. It thus compares the voltage across the capacitor 41 with the reference voltage Vref.
  • the comparator 43 has an output 433 connected to an input of the programmable component 31. This output 433 sends an information signal 33 (LEVEL) corresponding to the result of the comparison of the voltages.
  • the signal transmitted at the output of the comparator 43 is a binary signal that can be active or inactive. When the capacitor voltage is higher than the reference voltage, the LEVEL signal is inactive (it is at 0). On the contrary, when the voltage of the capacitor is lower than the reference voltage, the signal LEVEL is active (it is at 1). This LEVEL signal 33 is transmitted to an input of the programmable component 31. As a function of this signal, the programmable component 31 transmits, immediately or later depending on the case, a switching signal COM active at the switch 42 of the measuring circuit 4.
  • the programmable component 31 forces its output from switching 32 to 0.
  • the switch 42 remains open. As long as the switch is open, the capacitor 41 discharges. The voltage across the capacitor 41 is then compared, by the comparator 43, with the reference voltage Vref.
  • This reference voltage Vref can be, for example, 1 volt.
  • the LEVEL signal obtained at the output 433 of the comparator 43 is at 0.
  • the programmable component 31 sends, to the card 5 of the central unit of the onboard computer, called the CPU card, a signal 34 of long cutout LPF (Long Power Failure, in English terms) to 0.
  • This inactive state of the signal LPF means that the cut was short.
  • This LPF signal (active or inactive) is obtained by resetting the computer, that is to say by releasing the reset key of the computer.
  • the programmable component 31 sends a switching signal COM at 1.
  • the switch 42 closes.
  • the capacitor 41 is then recharged by the auxiliary source 44. As soon as the capacitor is recharged, the system is ready to measure the duration of the next break.
  • the capacitor has a capacity of the order of 10 microfarads.
  • the capacity of the capacitor is chosen according to the cut-off time to be measured. For example, for a duration of 5 seconds, a capacitor of 10 microfarads can be used.
  • the LEVEL signal obtained at the output 433 of the comparator 433 is at 1.
  • the programmable component 31 sends, to the CPU 5 board, a long LPF cut signal at 1.
  • This signal LPF active means that the power cut was long.
  • the COM signal of the programmable component 31 remains inactive.
  • the capacitor 41 remains unloaded. If a new power failure occurs, as the capacitor is not recharged, the system will always indicate that it is a long break. In other words, the long cutoff information is saved by the measuring circuit 4 because it can not make a measurement after said long break has been taken into account.
  • the long cutoff information When the long cutoff information has been taken into account by the CPU board, it sends a RLPF (Reload Long Power Failure) long signal to the programmable component 31.
  • This signal RLPF means, for the programmable component 31, that the long cutoff information has been taken into account and that the self-tests have been performed.
  • This RLPF signal therefore means that the backup of the long break information is complete and that said long break information can be cleared.
  • the programmable component 31 On receipt of this signal RLPF, the programmable component 31 emits a signal COM at 1.
  • the switch 42 closes, which allows the capacitor 41 to recharge from the auxiliary source 44. The system is then ready again to measure a next break.
  • the capacitor is charged and then remains charged.
  • the power supply of the capacitor stops and the capacitor is discharged.
  • the discharge time of the capacitor provides information on the duration of the power failure.
  • the capacitor is recharged almost immediately after the end of the break.
  • the cut is long, the long cutoff information is saved by the measuring circuit itself. The capacitor is then recharged as soon as the central unit 5 signals that the self-tests have been carried out.
  • the central unit 5 knows that the cut is long and that self-tests must be performed when restarting the computer. Indeed, receiving an active LPF signal means that the cut is long. The restart of the computer can therefore be performed with the necessary self-tests after a maintenance phase. Not receiving any LPF signal (ie an inactive LPF signal) means either that there is no power failure or that the power supply cutoff is short and that, therefore, the calculator must restart as soon as possible after resumption of the power supply. Throughout the duration of the long break, the measuring circuit is open and the capacitor discharged. There is no other measure of power failure possible during this time. After long shutdown, the measuring circuit is closed only after receiving the signal RLPF which allows to recharge the capacitor until the next power failure.
  • FIG. 2 shows an example of a timing diagram showing different signals of the circuit of FIG. 1, during a long cut and during a short cut.
  • Channel 1 of the timing diagram shows the grid voltage
  • Channel 2 shows the supply voltage of the programmable component
  • Channel 3 shows the reset pulse of the computer
  • Channel 4 shows the signal RLPF of long cutoff acknowledgment
  • channel 5 shows the output signal LEVEL of the comparator
  • channel 6 shows the switching signal COM.
  • Each of these 6 channels shows a signal after a short cut (between t0 and t3), during and after a long break (between t3 and t6) and after acknowledgment (from t6), that is to say after the CPU has returned an end of backup order of the long cut information.
  • the mains voltage goes up to a 28 volt level (at t1).
  • the programmable component (channel 2) recovers a supply voltage from the 28 Volts, just after the end of the power failure. It is then powered by the voltage of 28 volts.
  • the computer is reset (channel 3), that is to say that the computer restarts.
  • the RLPF signal is inactive, as is the LEVEL signal.
  • the switching signal COM (channel 6) goes to the active state, t2, that is to say at the moment when the computer is reset.
  • the network voltage decreases to 0.
  • the supply voltage of the programmable component decreases to 0. All other channels in the timing diagram are also 0.
  • the long break ends.
  • the network voltage goes back to 28 volts.
  • the supply voltage of the programmable component returns to its active level.
  • the computer is reset (channel 3).
  • the LEVEL signal goes to the active state.
  • the COM signal is at O.
  • an RLPF signal is sent.
  • the LEVEL signal then goes back to O and the COM signal goes to 1.
  • the programmable component is preferably selected so as to ensure that its outputs are low or high during the power-up phase, thereby ensuring that the rise of power supply does not control the switch through the switching signal.
  • the network voltage is at 28 Volts constant.
  • the supply voltage of the programmable component is also high.
  • the reset reset signal of the computer is at 1, which means that the computer is powered and working properly.
  • the RLPF signal returns to O, as does the LEVEL signal.
  • the switching signal COM remains at 1.
  • the programmable component of the system of the invention can be a simple component without a meter. It can be a modern component, for example, a power sequencer, relatively inexpensive and reliable compared to the low-power components of the prior art.
  • the power supply card on which is mounted the electronic circuit of Figure 1 is relatively small and light.
  • This power supply card requires a supply current, and in particular a starting current, low compared to the prior art due to a reserve of energy of reduced capacity.
  • the system of the invention requires no non-volatile memory or management of a low power mode, which simplifies its architecture.
  • the long duration information is not stored on a memory but is intrinsically saved by the capacitor in the discharge phase.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Sources (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

L'invention concerne un procédé de gestion d'une coupure d'alimentation électrique à bord d'un aéronef, comportant les opérations suivantes : - détection d'une coupure d'alimentation électrique, - mesure d'une durée de la coupure d'alimentation par mesure d'un temps de décharge d'un condensateur (41 ) et comparaison de cette durée mesurée avec une durée seuil, - sauvegarde d'une information de coupure longue lorsque la durée de la coupure est supérieure à une durée seuil L'invention concerne également un système mettant en œuvre ce procédé et comportant : - un circuit de détection (2) d'une coupure d'alimentation électrique, - un circuit de mesure (4) d'une durée de la coupure d'alimentation, et - un circuit de gestion (3) d'informations apte à gérer des émissions de signaux en fonction de la durée mesurée de la coupure d'alimentation.

Description

Procédé et système de gestion de coupures d'alimentation électrique à bord d'un aéronef
Domaine de l'invention L'invention concerne un système pour gérer les coupures du réseau d'alimentation électrique d'un équipement avionique. Ce système permet de déterminer si les coupures d'alimentation électrique sont de courte durée ou de longue durée et d'éteindre le calculateur de bord lorsque la coupure est de longue durée. L'invention concerne également un procédé mis en œuvre par ce système.
L'invention trouve des applications dans le domaine de l'aéronautique et, en particulier, dans le domaine de la gestion de l'alimentation électrique à bord d'un aéronef.
Etat de la technique A bord d'un aéronef, il existe généralement plusieurs sources d'alimentation électriques qui permettent d'alimenter les différents équipements à bord de l'aéronef et, en particulier, le calculateur de bord. Ces sources d'alimentation électrique fournissent généralement une tension de 28 Volts. Ces différentes sources d'alimentation peuvent se remplacer l'une l'autre, par exemple, lorsque l'une de ces sources est défaillante. Ces différentes sources d'alimentation sont généralement connectées en réseau au moyen d'un système d'aiguillage. Il est ainsi possible de passer d'une source d'alimentation à une autre source d'alimentation en fonction des besoins de l'équipement avionique. Cependant, lors d'un changement de sources d'alimentation, une coupure de l'alimentation électrique peut survenir au sein dudit réseau d'alimentation. Cette coupure d'alimentation peut être de plusieurs types :
- Il existe des coupures d'alimentation dites transparentes. Ces coupures sont d'une durée inférieure à 200 millisecondes. Elles sont liées au comportement du réseau d'alimentation électrique et se produisent généralement en vol.
- Il existe des coupures d'alimentation courtes. Ces coupures courtes ont une durée inférieure à 5 secondes. Comme les coupures transparentes, ces coupures courtes sont liées au comportement du réseau d'alimentation électrique. Elles sont détectées en vol. - Il existe également des coupures longues, dont la durée est supérieure à 5 secondes. Ces coupures longues se produisent au sol, lorsque l'aéronef est en phase de maintenance. Ces coupures longues sont utilisées par les agents de maintenance pour réparer, vérifier ou tester certains équipements de l'aéronef.
Lors d'une coupure courte, le calculateur de bord s'éteint pendant l'instant où il n'est pas alimenté électriquement. Toutefois, l'aéronef étant en vol, le calculateur doit pouvoir redémarrer très rapidement, c'est-à-dire qu'il doit pouvoir être performant dès que l'alimentation électrique est rétablie. Lors d'une coupure longue, le calculateur de bord s'éteint également pendant l'instant où il n'est pas alimenté électriquement. Cependant, dans ce cas, le calculateur de bord doit effectuer une série de tests, lors de sa remise sous tension, pour vérifier le fonctionnement général de l'équipement. L'aéronef étant au sol, en phase de maintenance, le calculateur peut redémarrer lentement en effectuant une série de tests, appelés auto-tests.
On comprend donc que, lors d'une coupure d'alimentation électrique dans un aéronef, il est important de savoir s'il s'agit d'une coupure transparente ou courte ou bien s'il s'agit d'une coupure longue pour commander le redémarrage du calculateur en conséquence. Les coupures courtes et les coupures transparentes nécessitant un même redémarrage rapide du calculateur, elles seront traitées de façon identique dans la suite de la description et appelées indistinctement « coupures courtes ».
Dans le cas d'une coupure longue, il est important de sauvegarder une information de coupure longue, c'est-à-dire une information spécifiant que la coupure d'alimentation électrique est d'une durée longue et qu'elle entraînera un redémarrage du calculateur avec auto-tests. Il faut donc mémoriser cette information de coupure longue jusqu'à ce qu'elle soit prise en compte par le système, c'est-à-dire jusqu'au redémarrage du calculateur. Actuellement, lorsqu'une coupure du réseau d'alimentation survient, l'équipement avionique passe dans un mode d'initialisation et un compteur de temps est déclenché. Pendant cette coupure, l'équipement avionique fonctionne sur une source d'alimentation interne à l'équipement, par exemple, une batterie. Cette batterie ne peut fournir qu'une quantité limitée d'électricité. Aussi, pour limiter la consommation électrique, seules certaines fonctionnalités de l'équipement sont alimentées. L'équipement fonctionne alors dans un mode de faible consommation.
L'une de ces fonctionnalités est la mesure du temps écoulé jusqu'à la fin de la coupure d'alimentation. Ainsi, le compteur de temps (ou timer, en termes anglo-saxons) doit pouvoir être alimenté électriquement par la batterie interne pendant toute la durée d'une coupure courte, soit environ 5 secondes. Si l'alimentation électrique réapparaît avant la fin des 5 secondes, alors le calculateur redémarre suivant la procédure rapide (sans auto-tests), l'équipement avionique recommute sur le réseau d'alimentation, le compteur de temps est réinitialisé et la batterie interne est rechargée.
Si l'alimentation électrique ne réapparaît pas avant la fin des 5 secondes, alors une information de coupure longue est sauvegardée dans une mémoire non volatile. Cette mémorisation de l'information de coupure longue permet d'éteindre le calculateur définitivement pendant toute la durée de la coupure longue, ce qui permet de diminuer quelque peu la consommation électrique de l'équipement. Toutefois, cette mémorisation de l'information dans la mémoire non volatile nécessite une alimentation permanente de ladite mémoire non volatile ainsi que d'un composant électronique programmable qui gère cette mémorisation. Or, le composant programmable est relativement gourmand en énergie.
On comprend alors que, dans le procédé actuel, certaines fonctionnalités de l'équipement comme le compteur de temps et le composant programmable doivent être alimentés par la batterie interne pendant une durée de 5 secondes, ce qui entraîne une consommation électrique relativement importante par rapport à la capacité de la batterie interne. En outre, cette batterie interne a un encombrement non négligeable, encombrement d'autant plus important que sa capacité est élevée.
Par ailleurs, le système de gestion des coupures du réseau d'alimentation de l'art antérieur présente une architecture complexe du point de vue de la gestion de l'énergie et de la commutation (switching, en termes anglo-saxons).
Exposé de l'invention
L'invention a justement pour but de remédier aux inconvénients des techniques exposées précédemment. A cette fin, l'invention propose un système et un procédé permettant de mesurer la durée de la coupure d'alimentation au travers de la décharge d'un condensateur. Pendant cette décharge, le condensateur n'a pas besoin d'être alimenté électriquement, ce qui permet de pouvoir éteindre le calculateur durant toute la durée de la coupure électrique. Cette mesure de la durée par décharge d'un condensateur permet de se passer de toute source d'alimentation interne.
De façon plus précise l'invention concerne un procédé de gestion d'une coupure d'alimentation électrique à bord d'un aéronef, caractérisé en ce qu'il comporte les opérations suivantes :
- détection d'une coupure d'alimentation électrique, - mesure d'une durée de la coupure d'alimentation par mesure d'un temps de décharge d'un condensateur et comparaison de cette durée mesurée avec une durée seuil,
- sauvegarde d'une information de coupure longue lorsque la durée de la coupure est supérieure à une durée seuil. Le procédé de l'invention peut comporter également une ou plusieurs de caractéristiques suivantes :
- le condensateur est rechargé dès qu'un signal de commutation actif est reçu à l'entrée d'un interrupteur connecté en série avec le condensateur.
- le signal de commutation actif est émis quasi immédiatement lorsque la durée de la coupure est inférieure à la durée seuil.
- lorsque la durée de la coupure est supérieure à la durée seuil, le signal de commutation actif est émis à réception d'un signal de fin de sauvegarde.
- la mesure du temps de décharge est obtenue par comparaison d'une valeur de la tension aux bornes du condensateur avec la valeur d'une tension de référence.
L'invention concerne également un système de gestion d'une coupure d'alimentation électrique à bord d'un aéronef,
Système de gestion d'une coupure d'alimentation électrique à bord d'un aéronef, caractérisé en ce qu'il comporte :
- un circuit de détection d'une coupure d'alimentation électrique,
- un circuit de mesure d'une durée de la coupure d'alimentation apte à mesurer un temps de décharge d'un condensateur et à comparer cette durée mesurée avec une durée seuil, et - un circuit de gestion d'informations apte à gérer des émissions de signaux pour qu'une information de coupure longue soit sauvegardée lorsque la durée de la coupure est supérieure à la durée seuil Le système de l'invention peut comporter une ou plusieurs des caractéristiques suivantes :
- le circuit de mesure comporte un condensateur connecté, d'une part, à une entrée d'un comparateur et, d'autre part, à une source d'alimentation auxiliaire par l'intermédiaire d'un interrupteur. - le circuit de gestion comporte un composant programmable apte à recevoir une information de sortie du circuit de mesure, à transmettre un signal de sauvegarde à une unité centrale, à recevoir un signal de fin de sauvegarde de l'unité centrale, et à transmettre un signal de commutation au circuit de mesure, les signaux transmis dépendant des signaux reçus. - le circuit de mesure et le circuit de gestion sont montés sur une carte d'alimentation électrique d'un calculateur de bord, le circuit de gestion étant apte à communiquer avec une unité centrale.
L'invention concerne également un aéronef comportant un système tel que décrit précédemment. Brève description des dessins
La figure 1 représente schématiquement le circuit électronique de l'invention pour gérer une coupure d'alimentation électrique sans source d'alimentation interne.
La figure 2 représente un chronogramme des différents signaux rencontrés à l'intérieur du circuit électronique de la figure 1.
Description détaillée de modes de réalisation de l'invention L'invention propose un système et un procédé permettant de gérer les coupures d'alimentation électrique à bord d'un aéronef de façon à ce que le calculateur puisse être éteint complètement dès qu'une coupure du réseau d'alimentation survient, tout en permettant une mesure de la durée de cette coupure et, si besoin, une sauvegarde de l'information de coupure longue.
Le procédé de l'invention propose, lorsqu'une coupure d'alimentation est détectée, de mesurer la durée de la coupure. La mesure de la durée de la coupure est obtenue en mesurant le temps de décharge d'un condensateur. Le temps de décharge du condensateur est déterminé à partir de la valeur de la tension aux bornes de ce condensateur. Cette valeur de tension est comparée à une tension de référence correspondant à une durée de décharge de 5 secondes. La comparaison des tensions équivaut à comparer la durée de la coupure avec une durée seuil, cette durée seuil étant par exemple de 5 secondes.
Lorsque la valeur de la tension du condensateur est supérieure à la tension de référence, cela signifie que la coupure est courte. Au contraire, lorsque la valeur de la tension du condensateur est inférieure à la tension de référence, cela signifie que la coupure est longue. Lorsqu'une durée inférieure à 5 secondes est détectée, le condensateur est rechargé immédiatement afin de pouvoir mesurer la durée d'une éventuelle nouvelle coupure.
Lorsqu'une durée supérieure à 5 secondes est détectée, l'information de coupure longue est sauvegardée de la façon qui sera décrite ultérieurement. Le condensateur n'est rechargé qu'après réception d'une commande de fin de sauvegarde.
Un exemple de circuit électronique permettant de mettre en œuvre le procédé de l'invention est représenté sur la figure 1. Ce circuit électronique est monté sur une carte d'alimentation 1 du calculateur de bord de l'aéronef. Ce circuit électronique comporte un circuit 2 de détection d'une coupure d'alimentation électrique. Ce circuit de détection 2 est classique, conforme à l'art antérieur. Il ne sera donc pas décrit de façon plus détaillée dans la présente demande. Ce circuit de détection 2 comporte une entrée 21 provenant du réseau d'alimentation électrique ; il reçoit donc la tension électrique de 28 Volts du réseau. Ce circuit de détection 2 comporte aussi une entrée 22 reliée à la masse.
Ce circuit 2 est apte à détecter la présence, sur son entrée 21 , d'une tension de 28V. Lorsqu'aucune tension de 28V n'est détectée, cela signifie qu'il y a une coupure d'alimentation électrique dans le réseau. Autrement dit, le circuit de détection 2 détecte les coupures d'alimentation. Lorsque la fin d'une coupure est détectée, il envoie une information de coupure à un circuit 3 de gestion des informations. Ce circuit 3 de gestion des informations comporte un composant électronique programmable 31 intégrant une pluralité de fonctionnalités. Ce composant programmable 31 est apte à recevoir différents signaux d'information et à émettre des signaux de commande, en fonction des signaux reçus. Ce composant programmable est un composant logique qui reçoit et émet des signaux logiques pouvant être actifs ou inactifs. Les signaux logiques peuvent avoir des valeurs binaires 0 ou 1. Dans la suite de la description, on considérera qu'un signal logique actif a une valeur binaire 1 et un signal logique inactif a une valeur binaire 0, étant entendu que les valeurs binaires peuvent être inversées.
Le composant programmable 31 est relié, par une sortie de commutation 32 à un circuit 4 de mesure de la durée de la coupure d'alimentation. Ce circuit de mesure 4 comporte un condensateur 41 , apte à charger de l'énergie et à décharger cette énergie ultérieurement. Pour cela, le condensateur 41 est connecté en série à une source d'alimentation 44, par exemple une source auxiliaire (Vaux). Cette source d'alimentation auxiliaire 44 a pour rôle de charger sous certaines conditions le condensateur lorsque le réseau d'alimentation n'est pas coupé. Les conditions de charge et de décharge du condensateur seront définies ultérieurement.
Le condensateur 41 est relié à cette source d'alimentation auxiliaire 44 par l'intermédiaire d'un interrupteur 42 agissant sous l'effet du signal de commutation 32 (COM) transmis par le composant programmable 31. Il est connecté également, de façon directe, à un comparateur de tension 43.
Ce comparateur de tension 43 reçoit, sur une première entrée 431 , une tension de référence Vref et, sur une seconde entrée 432, la tension de décharge du condensateur 41 , appelée aussi tension résiduelle du condensateur. Il compare ainsi la tension aux bornes du condensateur 41 avec la tension de référence Vref.
Le comparateur 43 comporte une sortie 433 reliée à une entrée du composant programmable 31. Cette sortie 433 envoie un signal d'information 33 (LEVEL) correspondant au résultat de la comparaison des tensions. Le signal émis à la sortie du comparateur 43 est un signal binaire pouvant être actif ou inactif. Lorsque la tension du condensateur est supérieure à la tension de référence, le signal LEVEL est inactif (il est à 0). Au contraire, lorsque la tension du condensateur est inférieure à la tension de référence, le signal LEVEL est actif (il est à 1 ). Ce signal LEVEL 33 est transmis à une entrée du composant programmable 31. En fonction de ce signal, le composant programmable 31 transmet, immédiatement ou ultérieurement selon les cas, un signal de commutation COM actif à l'interrupteur 42 du circuit de mesure 4.
De façon plus précise, après une coupure, dès que le circuit de détection 2 détecte la présence d'une tension fonctionnelle de 28 Volts (ce qui correspond à la fin de la coupure d'alimentation), le composant programmable 31 force sa sortie de commutation 32 à O. L'interrupteur 42 reste ouvert. Tant que l'interrupteur est ouvert, le condensateur 41 se décharge. La tension aux bornes du condensateur 41 est alors comparée, par le comparateur 43, avec la tension de référence Vref. Cette tension de référence Vref peut être, par exemple, de 1 Volt.
Si la tension aux bornes du condensateur est supérieure à la tension de référence Vref, alors on considère que la coupure d'alimentation était courte, c'est-à-dire inférieure à 5 secondes. Dans ce cas, le signal LEVEL obtenu en sortie 433 du comparateur 43 est à 0. Lorsque le composant programmable 31 reçoit ce signal LEVEL à 0, il envoie, à la carte 5 d'unité centrale du calculateur de bord, appelée carte CPU, un signal 34 de coupure longue LPF (Long Power Failure, en termes anglo-saxons) à 0. Cet état inactif du signal LPF signifie que la coupure était courte. Ce signal LPF (actif ou inactif) est obtenu en réinitialisant le calculateur, c'est-à-dire en relâchant la touche reset du calculateur. Lorsque le signal LEVEL est à 0, le composant programmable 31 émet un signal de commutation COM à 1. Lorsque le signal COM est à 1 , l'interrupteur 42 se ferme. Le condensateur 41 est alors rechargé par la source auxiliaire 44. Dès que le condensateur est rechargé, le système est prêt à mesurer la durée de la prochaine coupure.
Dans un mode de réalisation de l'invention, le condensateur a une capacité de l'ordre de 10 microfarads. En effet, la capacité du condensateur est choisie en fonction de la durée de coupure à mesurer. Par exemple, pour une durée de 5 secondes, on peut utiliser un condensateur de 10 microfarads.
Si la tension aux bornes du condensateur est inférieure à la tension de référence Vref, alors on considère que la coupure d'alimentation était longue. Dans ce cas, le signal LEVEL obtenu en sortie 433 du comparateur 433 est à 1. A réception du signal LEVEL à 1 , le composant programmable 31 envoie, à la carte CPU 5, un signal de coupure longue LPF à 1. Ce signal LPF actif signifie que la coupure d'alimentation a été longue. Pendant ce temps, le signal COM du composant programmable 31 reste inactif. Le condensateur 41 reste donc déchargé. Si une nouvelle coupure d'alimentation intervient, comme le condensateur n'est pas rechargé, le système indiquera toujours qu'il s'agit d'une coupure longue. Autrement dit, l'information de coupure longue est sauvegardée par le circuit de mesure 4 car celui-ci ne peut effectuer une mesure qu'après que la dite coupure longue ait été prise en compte.
Lorsque l'information de coupure longue a été prise en compte par la carte CPU, celle-ci envoie un signal 35 de fin de coupure longue RLPF (Reload Long Power Failure, en termes anglo-saxons) vers le composant programmable 31. Ce signal RLPF signifie, pour le composant programmable 31 , que l'information de coupure longue a été prise en compte et que les auto-tests ont été effectués. Ce signal RLPF signifie, par conséquent, que la sauvegarde de l'information de coupure longue est terminée et que ladite information de coupure longue peut être effacée. A réception de ce signal RLPF, le composant programmable 31 émet un signal COM à 1. A réception de ce signal COM, l'interrupteur 42 se referme, ce qui permet au condensateur 41 de se recharger auprès de la source auxiliaire 44. Le système est alors à nouveau prêt pour mesurer une prochaine coupure.
Ainsi, tant qu'il y a une alimentation électrique, le condensateur se charge puis reste chargé. Lorsqu'une coupure survient, l'alimentation du condensateur s'interrompt et le condensateur se décharge. La durée de décharge du condensateur renseigne sur la durée de la coupure d'alimentation. Lorsque la coupure est courte, le condensateur est rechargé presque immédiatement après la fin de la coupure. Lorsque la coupure est longue, l'information de coupure longue est sauvegardée par le circuit de mesure lui-même. Le condensateur est ensuite rechargé dès que l'unité centrale 5 signale que les auto-tests ont été effectués.
De cette façon, l'unité centrale 5 sait que la coupure est longue et que des auto-tests doivent être effectués lors du redémarrage du calculateur. En effet, la réception d'un signal LPF actif signifie que la coupure est longue. Le redémarrage du calculateur peut donc être réalisé avec les auto-tests nécessaires après une phase de maintenance. Le fait de ne pas recevoir de signal LPF (c'est-à-dire un signal LPF inactif) signifie, soit qu'il n'y a pas de coupure d'alimentation électrique, soit que la coupure d'alimentation électrique est courte et que, par conséquent, le calculateur doit redémarrer dès que possible après reprise de l'alimentation électrique. Pendant toute la durée de la coupure longue, le circuit de mesure est ouvert et le condensateur déchargé. Il n'y a donc pas d'autre mesure de coupure d'alimentation possible pendant ce temps. Après coupure longue, le circuit de mesure n'est fermé qu'après la réception du signal RLPF ce qui permet de recharger le condensateur jusqu'à la prochaine coupure d'alimentation.
Sur la figure 2, on a représenté un exemple de chronogramme montrant différents signaux du circuit de la figure 1 , lors d'une coupure longue et lors d'une coupure courte. La voie 1 du chronogramme montre la tension de réseau, la voie 2 montre la tension d'alimentation du composant programmable, la voie 3 montre l'impulsion de réinitialisation du calculateur, la voie 4 montre le signal RLPF d'acquittement de coupure longue, la voie 5 montre le signal LEVEL de sortie du comparateur et la voie 6 montre le signal de commutation COM.
Chacune de ces 6 voies montre un signal après une coupure courte (entre tO et t3), pendant et après une coupure longue (entre t3 et t6) et après acquittement (à partir de t6), c'est-à-dire après que l'unité centrale ait retourné un ordre de fin de sauvegarde de l'information de coupure longue.
A tO, après une coupure courte, la tension de réseau (voiel ) remonte jusqu'à un palier de 28 Volts (à t1 ). Le composant programmable (voie 2) récupère une tension d'alimentation issue du 28 Volts, juste après la fin de la coupure d'alimentation. Il est alors realimenté par la tension de 28 Volts. Après quelques instants, à t2, le calculateur est réinitialisé (voie 3), c'est-à- dire que le calculateur redémarre. Le signal RLPF est inactif, de même que le signal LEVEL. Le signal de commutation COM (voie 6) passe à l'état actif, à t2, c'est-à-dire à l'instant où le calculateur est réinitialisé.
A t3, commence une coupure longue. La tension de réseau (voie 1 ) diminue jusqu'à 0. De même, avec un léger décalage temporel, la tension d'alimentation du composant programmable (voie 2) diminue jusqu'à 0. Toutes les autres voies du chronogramme sont également à 0. A t4, la coupure longue se termine. La tension de réseau repasse à 28 Volts. Avec un léger décalage temporel, la tension d'alimentation du composant programmable repasse à son niveau actif. Quelques instants après, à t5, le calculateur est réinitialisé (voie 3). A t4, au moment où le composant programmable est réalimenté, le signal LEVEL passe à l'état actif. Tant que le signal LEVEL est actif, le signal COM est à O. A l'instant t6, un signal RLPF est envoyé. Le signal LEVEL repasse alors à O et le signal COM passe à 1.
Dans l'invention, le composant programmable est choisi, de préférence, de façon à garantir que ses sorties sont au niveau bas ou au niveau haut durant la phase de montée d'alimentation, ce qui permet de s'assurer que la montée d'alimentation ne commande pas l'interrupteur au travers du signal de commutation.
Après acquittement, c'est-à-dire après que l'unité centrale ait envoyé un signal RLPF de fin de sauvegarde de l'information de coupure longue, la tension de réseau est à 28 Volts constante. La tension d'alimentation du composant programmable est également à son niveau haut. Le signal reset de réinitialisation du calculateur est à 1 , ce qui signifie que le calculateur est alimenté et qu'il fonctionne correctement. Le signal RLPF repasse à O, de même que le signal LEVEL. Le signal de commutation COM reste à 1.
On comprend de ce qui précède que le composant programmable du système de l'invention peut être un composant simple, sans compteur. Ce peut être un composant moderne, par exemple, un séquenceur d'alimentation, relativement peu coûteux et fiable par rapport aux composants à faible consommation de l'art antérieur.
De plus, avec l'invention, la carte d'alimentation sur laquelle est montée le circuit électronique de la figure 1 est relativement petite et peu lourde. Cette carte d'alimentation nécessite un courant d'alimentation, et notamment un courant de démarrage, faible par rapport à l'art antérieur du fait d'une réserve d'énergie de capacité réduite.
En outre, le système de l'invention ne nécessite aucune mémoire non- volatile, ni aucune gestion d'un mode faible consommation, ce qui simplifie son architecture. En effet, dans l'invention, l'information de durée longue n'est pas mémorisée sur une mémoire mais est sauvegardée intrinsèquement par le condensateur en phase de décharge.

Claims

REVENDICATIONS
1 - Procédé de gestion d'une coupure d'alimentation électrique à bord d'un aéronef, caractérisé en ce qu'il comporte les opérations suivantes :
- détection d'une coupure d'alimentation électrique,
- mesure d'une durée de la coupure d'alimentation par mesure d'un temps de décharge d'un condensateur (41 ) et comparaison de cette durée mesurée avec une durée seuil, - sauvegarde d'une information de coupure longue lorsque la durée de la coupure est supérieure à la durée seuil.
2 - Procédé selon la revendication 1 , caractérisé en ce que le condensateur (41 ) est rechargé dès qu'un signal de commutation (32) actif est reçu à l'entrée d'un interrupteur (42) connecté en série avec le condensateur.
3 - Procédé selon la revendication 2, caractérisé en ce que le signal de commutation (32) actif est émis quasi immédiatement lorsque la durée de la coupure est inférieure à la durée seuil.
4 - Procédé selon la revendication 2 ou 3, caractérisé en ce que, lorsque la durée de la coupure est supérieure à la durée seuil, le signal de commutation (32) actif est émis à réception d'un signal de fin de sauvegarde (34).
5 - Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la mesure du temps de décharge est obtenue par comparaison d'une valeur de la tension aux bornes du condensateur (41 ) avec la valeur d'une tension de référence (Vref).
6 - Système de gestion d'une coupure d'alimentation électrique à bord d'un aéronef, caractérisé en ce qu'il comporte :
- un circuit de détection (2) d'une coupure d'alimentation électrique, - un circuit de mesure (4) d'une durée de la coupure d'alimentation apte à mesurer un temps de décharge d'un condensateur (41 ) et à comparer cette durée mesurée avec une durée seuil, et
- un circuit de gestion (3) d'informations apte à gérer des émissions de signaux pour qu'une information de coupure longue soit sauvegardée lorsque la durée de la coupure est supérieure à la durée seuil.
7 - Système selon la revendication 6, caractérisé en ce que le circuit de mesure comporte un condensateur (41 ) connecté, d'une part, à une entrée d'un comparateur (43) et, d'autre part, à une source d'alimentation (44) par l'intermédiaire d'un interrupteur (42).
8 - Système selon la revendication 6 ou 7, caractérisé en ce que le circuit de gestion (3) comporte un composant programmable (31 ) apte :
- à recevoir une information de sortie du circuit de mesure, - à transmettre un signal de sauvegarde à une unité centrale,
- à recevoir un signal de fin de sauvegarde de l'unité centrale, et
- à transmettre un signal de commutation au circuit de mesure, les signaux transmis dépendant des signaux reçus.
9 - Système selon l'une quelconque des revendications 6 à 8, caractérisé en ce que le circuit de mesure (4) et le circuit de gestion (3) sont montés sur une carte d'alimentation électrique d'un calculateur de bord, le circuit de gestion étant apte à communiquer avec une unité centrale (5).
10 - Aéronef, caractérisé en ce qu'il comporte le système de gestion d'une coupure d'alimentation électrique selon l'une quelconque des revendications 6 à 9.
PCT/FR2008/051140 2007-06-29 2008-06-24 Procede et systeme de gestion de coupures d'alimentation electrique a bord d'un aeronef WO2009007591A2 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BRPI0812759A BRPI0812759A2 (pt) 2007-06-29 2008-06-24 método e sistema de gestão de cortes de alimentação elétrico à bordo de uma aeronave
EP08806072A EP2165246A2 (fr) 2007-06-29 2008-06-24 Procede et systeme de gestion de coupures d'alimentation electrique a bord d'un aeronef
US12/666,917 US8417995B2 (en) 2007-06-29 2008-06-24 Method and system for managing electrical power supply outages on board an aircraft
JP2010514059A JP5345143B2 (ja) 2007-06-29 2008-06-24 航空機の機中の停電管理方法及びシステム
CN2008801050941A CN101796469B (zh) 2007-06-29 2008-06-24 飞行器上的管理供电中断的方法和***
CA2692300A CA2692300C (fr) 2007-06-29 2008-06-24 Procede et systeme de gestion de coupures d'alimentation electrique a bord d'un aeronef

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0756176A FR2918188B1 (fr) 2007-06-29 2007-06-29 Procede et systeme de gestion de coupures d'alimentation electrique a bord d'un aeronef
FR0756176 2007-06-29

Publications (2)

Publication Number Publication Date
WO2009007591A2 true WO2009007591A2 (fr) 2009-01-15
WO2009007591A3 WO2009007591A3 (fr) 2009-03-19

Family

ID=39048904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/051140 WO2009007591A2 (fr) 2007-06-29 2008-06-24 Procede et systeme de gestion de coupures d'alimentation electrique a bord d'un aeronef

Country Status (9)

Country Link
US (1) US8417995B2 (fr)
EP (1) EP2165246A2 (fr)
JP (1) JP5345143B2 (fr)
CN (1) CN101796469B (fr)
BR (1) BRPI0812759A2 (fr)
CA (1) CA2692300C (fr)
FR (1) FR2918188B1 (fr)
RU (1) RU2010102947A (fr)
WO (1) WO2009007591A2 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4837152B1 (ja) * 2011-02-14 2011-12-14 三菱電機株式会社 プログラマブルコントローラ
RU2492119C2 (ru) * 2011-09-21 2013-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана" (МГТУ им. Н.Э. Баумана) Беспилотный летательный аппарат
US20170307672A9 (en) * 2013-01-29 2017-10-26 Smart Drilling And Completion, Inc. Stable grounding system to avoid catastrophic electrical failures in fiber-reinforced composite aircraft
US9389665B1 (en) * 2015-06-19 2016-07-12 Rockwell Collins, Inc. Power warning monitor system and method
CN105826981B (zh) * 2016-05-11 2019-01-29 Tcl移动通信科技(宁波)有限公司 一种基于移动终端的充电设备重连配置方法及***
CN110160216B (zh) * 2019-05-07 2021-12-21 重庆海尔空调器有限公司 一种用电设备的控制方法、控制装置及用电设备
CN112436503B (zh) * 2020-12-01 2022-12-13 陕西航空电气有限责任公司 一种飞机高压直流供电***中的高压直流汇流条功率控制方法
US11682535B2 (en) 2021-03-12 2023-06-20 Essex Industries, Inc. Rocker switch
EP4309200A1 (fr) 2021-03-15 2024-01-24 Essex Industries, Inc. Commutateur à cinq positions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313564A (ja) * 1995-05-19 1996-11-29 Diamond Electric Mfg Co Ltd 停電時間検出回路
DE29705503U1 (de) * 1996-03-29 1997-06-05 Siemens AG, 80333 München Mikrocontroller mit verminderter Betriebsspannung
EP1160650A2 (fr) * 2000-06-02 2001-12-05 Robert Bosch Gmbh Dispositif et méthode d'identification de redémarrage à chaud d'un Calculateur

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1241288B (it) * 1990-11-20 1993-12-29 Sgs Thomson Microelectronics Dispositivo di reset per microprocessore, in particolare in applicazioni automobilistiche
US5929604A (en) * 1997-06-18 1999-07-27 Ericsson, Inc. Battery-discharge-protection system for electronic accessories used in vehicles containing a battery
US7308614B2 (en) * 2002-04-30 2007-12-11 Honeywell International Inc. Control sequencing and prognostics health monitoring for digital power conversion and load management
RU51250U1 (ru) 2005-09-19 2006-01-27 Общество с ограниченной ответственностью "Авионика-Вист" Бортовой вычислитель

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313564A (ja) * 1995-05-19 1996-11-29 Diamond Electric Mfg Co Ltd 停電時間検出回路
DE29705503U1 (de) * 1996-03-29 1997-06-05 Siemens AG, 80333 München Mikrocontroller mit verminderter Betriebsspannung
EP1160650A2 (fr) * 2000-06-02 2001-12-05 Robert Bosch Gmbh Dispositif et méthode d'identification de redémarrage à chaud d'un Calculateur

Also Published As

Publication number Publication date
US20110047399A1 (en) 2011-02-24
RU2010102947A (ru) 2011-08-10
US8417995B2 (en) 2013-04-09
EP2165246A2 (fr) 2010-03-24
CA2692300A1 (fr) 2009-01-15
JP2010531774A (ja) 2010-09-30
CN101796469A (zh) 2010-08-04
FR2918188B1 (fr) 2009-12-04
CA2692300C (fr) 2015-04-21
WO2009007591A3 (fr) 2009-03-19
FR2918188A1 (fr) 2009-01-02
JP5345143B2 (ja) 2013-11-20
BRPI0812759A2 (pt) 2019-09-24
CN101796469B (zh) 2013-08-07

Similar Documents

Publication Publication Date Title
CA2692300C (fr) Procede et systeme de gestion de coupures d'alimentation electrique a bord d'un aeronef
CA2594826C (fr) Procede de chargement equilibre d'une batterie lithium-ion ou lithium polymere
EP1079525B1 (fr) Système de commande d'un interrupteur bidirectionnel à deux transistors
EP2363940B1 (fr) Système et procédé d'alimentation en courant continu d'un système électrique
EP2924837B1 (fr) Dispositif de gestion des causes de déclenchement dans un déclencheur électronique
FR2631168A1 (fr) Dispositif pour charger des accumulateurs
FR2873209A1 (fr) Procede et dispositif pour la determination de parametres de fonctionnement d'une batterie
EP2187227B1 (fr) Système à sécurité intrinsèque et module de test, notamment pour une utilisation dans un système de signalisation ferroviaire
EP2363939B1 (fr) Ensemble électrique et procédé d'alimentation sans interruption en courant alternatif d'une installation
EP3358307B1 (fr) Procédé de gestion d'une alimentation auxiliaire d'un compteur et compteur, programme et moyen de stockage correspondants
EP2395594B1 (fr) Dispositif et procédé d'alimentation pour système de communication sans fil et ensemble capteur comportant un tel dispositif
EP3220471B1 (fr) Procédé de charge d'une batterie d'accumulateurs électrochimiques et dispositif de pilotage de la charge
EP0009606B1 (fr) Dispositif de commande de charge d'une batterie d'accumulateurs
EP3258569B1 (fr) Système d'alimentation comprenant une unité de gestion principale et une unité de gestion de réserve
FR2965626A1 (fr) Systeme de gestion d'un dispositif photovoltaique
EP1102158B1 (fr) Dispositif et procédé de contrôle de l'état de fonctionnement d'un système électronique en "zone grise"
FR3058271A1 (fr) Procede et systeme de controle de charge d'une batterie d'un equipement electrique
EP3185389B1 (fr) Dispositif et appareil électrique de génération d'une tension électrique à destination d'une unité de traitement d'informations, système électronique de traitement d'informations associé
EP3979282A1 (fr) Dispositif de communication pour un appareil de commutation électrique
FR3117274A1 (fr) Procédé d’équilibrage
FR3112868A1 (fr) Ensemble comportant un automate programmable, une alimentation externe et une source d’alimentation principale
FR2965423A1 (fr) Dispositif d'optimisation de la gestion d'energie pour reseau de bord de vehicule comprenant un ou une pluralite de dispositifs de maintien de tension
WO2002001696A1 (fr) Dispositif d'alimentation d'un appareil electronique
FR2777396A1 (fr) Dispositif et procede d'alimentation electrique securisee pour systeme de reproduction audiovisuelle
FR2795251A1 (fr) Dispositif d'alimentation de microprocesseur de vehicule automobile a resistance accrue aux chutes d'alimentation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880105094.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08806072

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2008806072

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2692300

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010514059

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010102947

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 12666917

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0812759

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20091229