WO2009000895A2 - Pompe de circulation de fluide a court-circuit integre - Google Patents

Pompe de circulation de fluide a court-circuit integre Download PDF

Info

Publication number
WO2009000895A2
WO2009000895A2 PCT/EP2008/058198 EP2008058198W WO2009000895A2 WO 2009000895 A2 WO2009000895 A2 WO 2009000895A2 EP 2008058198 W EP2008058198 W EP 2008058198W WO 2009000895 A2 WO2009000895 A2 WO 2009000895A2
Authority
WO
WIPO (PCT)
Prior art keywords
pump
opening
duct
outlet
flange
Prior art date
Application number
PCT/EP2008/058198
Other languages
English (en)
Other versions
WO2009000895A3 (fr
Inventor
Stéphane TONDELLI
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Publication of WO2009000895A2 publication Critical patent/WO2009000895A2/fr
Publication of WO2009000895A3 publication Critical patent/WO2009000895A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/0009Special features
    • F04B43/0018Special features the periphery of the flexible member being not fixed to the pump-casing, but acting as a valve

Definitions

  • the present invention relates to a fluid circulation pump.
  • the invention finds an advantageous application in the field of exhaust gas recovery and overfeeding of internal combustion engines, particularly diesel engines and direct injection gasoline engines.
  • fluid is understood to mean both the exhaust gas and the intake air or a mixture of exhaust gas and intake air.
  • the invention is not limited to these types of fluid, but extends to any fluid, whether liquid or gaseous.
  • Exhaust Gas Recovery at least a portion of the exhaust gas formed is taken from the exhaust manifold and mixed with the intake air upstream of the intake manifold. This mixture is then introduced into the combustion chamber of the engine.
  • the presence of exhaust gas in the gas mixture has the effect of reducing the combustion temperature in the chamber, and as the formation of NOx is highly temperature dependent, it is understood that the recirculation of the exhaust gas helps to reduce the amount of nitrogen oxides formed. This effect increases with the amount of exhaust gas mixed with the intake air.
  • a recovery duct is disposed between an exhaust duct downstream of the exhaust manifold and an inlet duct upstream of the distributor. intake.
  • the circulation of the exhaust gases in the recovery duct is simply the result of the pressure difference existing between the inlet and the outlet of the duct.
  • An adjustable valve called a "metering device”
  • metering device is placed on the intake duct. upstream of the outlet of the recovery duct.
  • the metering device closes, a pressure drop is created at the outlet, which increases the pressure difference between the inlet and the outlet of the recovery duct, resulting in a simultaneous increase in the flow rate of the exhaust gas recovered.
  • closing the dispenser also has the effect of reducing the amount of air intake and limiting the power available, it is then necessary to find a compromise between power and pollution.
  • the air intake duct comprises a double inlet adjustable valve into which also leads the exhaust gas recovery duct.
  • This adjustable valve is capable of varying in varying proportions the composition of the air / exhaust gas mixture at the outlet of the valve, which is connected to the inlet distributor by means of a centrifugal pump.
  • this known architecture makes it possible to satisfy both the power requirements and the reduction of the quantity of nitrogen oxides formed by adapting to the mode of operation of the engine the composition of the mixture supplied by the valve and the flow rate of ia. pump.
  • the architecture described in the aforementioned US patent also provides a short circuit intended mainly to bypass the pump when it does not work, for example at high speed when a supercharging is not necessary, in order to avoid pressure losses. which could appear in the intake circuit due to the passage of the pump.
  • the pumps used to circulate exhaust gases in known EGR architectures, such as the one just described are mostly centrifugal pumps.
  • this type of pump has a certain number of drawbacks which limit its performance.
  • the centrifugal pumps are sensitive to the aggressive acid environment due to the presence in the exhaust gases of nitrogen oxides NOx but also of sulfur oxides which, in contact with the ambient humidity, are likely to form acids, nitric or sulfuric.These acidic products then attack the metal parts of the pumps.
  • the exhaust gas loaded with soot can foul the blades of the pumps which are known that the operating clearances are very low and sensitive to fouling.
  • the temperature excursion of the centrifugal pumps is relatively low, less than 18O 0 C output, this because of their poor mechanical strength and the possibility of creep.
  • an object of the invention is to provide a fluid circulation pump, which would improve the performance of said architecture compared to known architectures centrifugal pumps, and avoid the disadvantages associated with the presence of a short circuit reported to the pump itself.
  • said pump is a vibrating membrane pump comprising a pump body, in which which is provided said membrane, and short circuit means of said pump body.
  • the pump according to the invention further comprises switching means adapted to select for said fluid a path passing through said short-circuit means or a path passing through said pump body.
  • Vibrating membrane pumps are described in International Application No. 97/29282.
  • FIG. 1a is an exploded perspective view of a vibrating membrane pump according to the aforementioned international application.
  • FIG. 1b is a side view of the vibrating membrane pump of FIG. 1a,
  • the pump of Figures 1a and 1b consists of a pump body 10 consisting of two flanges 31, 32 of rigid revolution between which is housed a deformable membrane 33 disk-shaped.
  • This membrane is made for example of elastomer.
  • the gases enter the pump body via a peripheral inlet orifice 27 and escape through an axial outlet orifice 29 formed on a 31 of said flanges.
  • a motor member not shown, generates a cylindrical and symmetrical distribution of periodic excitation forces 34 applied to the peripheral end 35 of the membrane 33 on the side of the inlet orifice 27.
  • the membrane 33 then becomes the support of concentric waves which move from the edge 35 towards the center, this displacement being accompanied by the damping of the waves and the propulsion of the fluid.
  • diaphragm pumps being made of a plastic material, they are much more resistant to the aggressive acidic environment than centrifugal pumps which are mainly metallic, and they also have a lower sensitivity to temperature.
  • the soot particles for example can pass through the pump without being held there, which avoids any risk of fouling. There is therefore no need to use particle filtration systems. (particulate filters, etc.).
  • This advantage is increased by the fact that the oscillatory movement of the membrane can give the pump a self-cleaning character. It is even possible under these conditions to provide cleaning cycles.
  • the moving parts of the diaphragm pumps have a low inertia, which means that the power to be developed at startup, or peak power, is lower.
  • the withdrawal of power from the on-board network when the pump is put into service therefore does not affect the power supply to other parts of the vehicle.
  • the vibrating membrane pumps have a shorter response time, of the order of a few tens of milliseconds, with all the advantages that this represents in the transient regime.
  • the vibrating membrane pump which has just been described with reference to FIGS. 1a and 1b is thus completed, according to the invention, by means of short circuit of the pump body, integrated with the pump itself with all the advantages. cost and mounting resulting from it since the pump, object of the invention, can be implemented in all engine architectures without having to instail a specific short circuit outside the pump.
  • the fluid can thus pass through the pump, either through the short circuit or through the body.
  • Said pump may further comprise switching means adapted to select for said fluid a path passing through said short-circuit means or a path passing through said pump body.
  • the pump body comprises: two flanges, in particular of revolution, between which is housed the vibrating membrane,
  • Said short-circuit means comprise a central opening made in the second flange, and said switching means comprise a shutter means controllable from said central opening.
  • said controllable shutter means is a valve adapted to close said central opening.
  • said controllable shutter means is a piston movable in translation, adapted to close said central opening.
  • the pump body comprises:
  • Said shorting means comprises a space for the passage of gases, formed between said outlet opening and said outlet opening, and said switching means comprise a controllable shutter means of said passage space.
  • said controllable shutter means is a movable tubular in translation, adapted to connect said outlet opening to the outlet orifice of the first flask.
  • the pump body comprises: two flanges, in particular of revolution, between which the vibrating membrane is housed,
  • Said short-circuit means comprise a gas passage space between said inlet opening and the second outlet opening, and in that said switching means comprise controllable means for alternately closing the first and second outlet openings.
  • said chamber may also be provided with inlet and / or outlet ducts, respectively in communication with said inlet and / or outlet orifices.
  • the gas circulation pump according to the invention can easily be integrated into various engine architectures.
  • the invention relates to an architecture for recovering exhaust gas in an internal combustion engine, which is remarkable in that it comprises a circulation pump according to the invention for at least the said exhaust gases.
  • said vibrating membrane pump is placed on an exhaust gas recovery pipe arranged between an exhaust pipe engine and an air intake duct.
  • the architecture which is the subject of the invention is not limited to exhaust gas recovery alone, it can also be used to supercharge the engine, in which case it is provided by the invention that the vibrating diaphragm pump is able to increase the mass flow of intake gas into the engine.
  • an exhaust gas recovery duct being arranged between a duct engine exhaust and an air intake duct, said vibrating membrane pump is placed on said intake duct downstream of the outlet of the recovery duct in the intake duct.
  • the invention applies quite advantageously to engines having a turbocharger, the vibrating membrane pump being arranged in series with a compressor of a turbocharger.
  • said pump is placed downstream of said compressor, said recovery duct opening out of said exhaust duct upstream of the turbine of the turbocharger.
  • said pump is placed upstream of said compressor, said recovery duct opening out of said exhaust duct downstream of the turbine of the turbocharger.
  • Figure 2 is a side view of a first embodiment of a fluid circulation pump according to the invention.
  • FIG. 3 is a variant of the embodiment of FIG. 2.
  • Figure 4 is a side view of a second embodiment of a fluid circulation pump according to the invention.
  • Figure 5a is a side view of a third embodiment of a fluid circulation pump according to the invention, in the pumping position;
  • Figure 5b is a side view of the circulation pump of Figure 5a, in the short-circuit position.
  • Figure 6 is a diagram of an exhaust gas recovery architecture including a fluid circulation pump according to the invention.
  • FIG. 7a is a diagram of a first exhaust gas recovery architecture with supercharging including a fluid circulation pump according to the invention.
  • FIG. 7b is a diagram of a second supercharged exhaust gas recovery architecture including a fluid circulation pump according to the invention.
  • Figure 8a is a diagram of a first architecture comprising a fluid circulation pump according to the invention in series with a compressor of a turbocharger.
  • Figure 8b is a diagram of a second architecture comprising a fluid circulation pump according to the invention in series with a compressor of a turbocharger.
  • FIG. 2 shows a fluid circulation pump comprising a vibrating membrane pump body 33 similar to that previously described with reference to FIGS. 1a and 1b.
  • said pump body 10 is disposed in a chamber 60 having a fluid inlet opening 62 opening on the second flange 32 of the pump body 10.
  • An outlet opening 61 of the chamber 60 is located substantially in the extension of the outlet orifice 29 of the first flange 31 of the pump body 10.
  • the circulation pump shown in FIG. 2 further comprises short circuit means of the pump body 10 which, coupled to switching means, make it possible to select for the circulating fluid in the pump a path crossing the body of the pump. pump, ie a path avoiding the pump body by passing through said short-circuiting means In the embodiment of FIG.
  • said short-circuiting means comprise a central opening 70 made in the second flange 32
  • said means switching means comprise a controllable shutter means constituted, in the example of Figure 2, by a valve 71 adapted to close said central opening 70.
  • the left part of Figure 2 corresponds to the case where the pump is active.
  • the shut-off valve 71 is closed so that the fluid entering the chamber 60 is forced to enter the pump body through the inlet port 27 and exit through the chamber outlet opening 61 via the outlet port 29 of the pump body 10.
  • the right part of FIG. 2 corresponds to the case where the pump is short-circuited.
  • the shutoff valve 71 is open, allowing most of the fluid entering the chamber 60 to pass directly through the pump body through the central opening 70, avoiding the propulsion effect of the pump. Vibration membrane 33.
  • the overall pressure drop of the pump between the inlet and outlet ducts of the chamber 60 is therefore lower in this configuration than if the fiuid were to pass inside the pump body.
  • FIG. 3 illustrates a variant of the pump of FIG. 2 in which said controllable switching means is constituted by a piston 72 movable in translation capable of closing off the central opening 70.
  • the piston 72 moves in a bore 73 and has holes 74 so that, when the pump is active (right part of Figure 3), the piston is brought against the second flange 32 to close the central opening 70 and to penetrate the fluid entering the opening 62 of the chamber 60 into the pump body through the inlet port 27.
  • the piston 72 is disengaged from the second flange 32 so as to extend the inlet opening 62.
  • the fluid entering the chamber 60 is thus forced to pass through the holes 73 of the piston 72 and the central opening 70 to exit directly from the chamber 60 through the outlet orifice 29 of the pump body 10 and the outlet opening 61 of the room.
  • FIGS. 2 and 3 realizes the short circuit of the pump body 10 by direct axial passage of said pump body.
  • FIGS. 4 and 5a and 5b which will now be presented proceed bypassing the pump body.
  • the outlet orifice 29 of the first flange 31 and the outlet opening 61 of the chamber 60 are arranged so as to clear a passage space 63 for the fluid circulating in the chamber. 60.
  • This passage space is a means of short-circuiting the pump body 10 when necessary.
  • the switching between the active mode and the short-circuited mode of the pump is performed by a tubing 80 movable in translation, able to connect the outlet port 29 of the pump body 10 to the outlet opening 61 of the chamber 60 .
  • the chamber 60 has a lateral inlet opening 62 opening on the peripheral inlet port 27 of the pump body, a first fluid outlet opening 61 is located in the extension of the outlet orifice 29 of the first flange 31 and a second outlet opening 64.
  • the means for short-circuiting the pump is provided by a space 90 for passage of the fluid between the inlet opening 62 and the second opening. 64 output. Switching between the path passing through the pump body and the short-circuiting path is achieved by controllable valves 91, 92 for alternately closing the outlet openings 64, 61 of the chamber 60.
  • FIG. 5a shows the configuration active pump in which the valve 91 is closed and the valve 92 open. The fluid entering the chamber 60 through the inlet opening 62 penetrates through the inlet orifice 27 into the pump body 10 where it benefits from the propulsion effect of the membrane 33 and then exits through the orifice 29 output and the opening 61 output. In the short-circuited mode of the pump, shown in FIG. 5b, the valve 92 is closed and the valve 91 open. The fluid can thus avoid the pump cops directly through the passage space 90 between the inlet opening 62 and the second outlet opening 64.
  • FIG. 6 shows an architecture for recovering exhaust gas in an internal combustion engine 100, comprising an air intake duct 20 connecting an air inlet 200 to an inlet distributor 110, and a 30 exhaust duct for driving the gases exhaust system leaving an exhaust manifold 120 to an outlet 300.
  • an exhaust gas recovery duct 40 is disposed between the exhaust duct 30 and the intake duct 20.
  • a vibrating membrane pump 1 is placed on the recovery duct 40.
  • an exhaust gas flow control valve 41 is connected in series with the pump body 10 to the recovery conduit 40 in order to adjust the amount of gas recovered.
  • a recovered exhaust gas cooling circuit 21 is installed on the inlet duct 20 upstream of the inlet distributor 110.
  • FIG. 6 also shows the presence of a metering device 50 placed on the inlet duct 20 upstream of the outlet of the recovery duct 40 in the intake duct 20.
  • the role of this metering device 50 is to allow the adjustment of the mass flow rate of the air supplied to the input splitter 110 of the motor 100.
  • a short-circuit 11 is placed in parallel with the pump body, a switching valve 12 making it possible to select for the circulation of the exhaust gases, ie the path passing through the pump body 10. , or the path through the short circuit 11. This avoids the pressure drops due to the pump 1 when it does not work.
  • the functions of the valves 41 and 12 could be realized by a single valve.
  • FIGS. 7a and 7b illustrate two architectures where the pump
  • the pump 1 can also be used to supercharge the motor by increasing the mass flow rate of the air at the inlet, this simultaneously or separately from the recovery function.
  • the pump 1 is placed on the intake duct 20 downstream of the outlet of the recovery duct 40 in the intake circuit 20.
  • a control valve 41 is placed on the recovery duct 40 in order to be able to vary the flow rate of the recovered gases, and thus to modify at will the quantity of the admitted gases and their proportion. It is thus possible to adapt the operation of the pump according to the operating phases of the motor.
  • FIGS. 7a and 7b show more specifically two architectures in which a short-circuit 11 is placed in parallel with the pump body, a switching valve 12 making it possible to choose a flow path for the gases passing through the pump body 10 or short circuit 11.
  • the main function of the short circuit 11 is to avoid pressure drops across the pump 10 when it is stopped, and to prevent the return of gases to the inlet when it is running.
  • the exhaust gas recovery duct 40 opens into said air intake duct 20 upstream of the short-circuit 11.
  • the exhaust gas recovery duct 40 opens in the air intake duct 20 upstream of the pump body 10, in the path passing through the pump.
  • Figures 8a and 8b relate to so-called “series" architectures where the diaphragm pump 1 is arranged in series with the compressor 410 of the turbocharger 400.
  • the pump 1 is placed downstream of the compressor 410, whereas the recovery duct 40 opens out from the exhaust duct 30 upstream of the turbine 420, that is to say say in an area of high pressure, and in the intake duct 20 downstream of the compressor 410, also in a high pressure zone, hence the name of "high pressure” given to this architecture.
  • a cooler 22 can be placed between the turbocharger 400 and the pump 1.
  • the pump 1 is placed upstream of the compressor 410, whereas the recovery conduit 40 opens out of the exhaust pipe 30. downstream of the turbine 42O 1 that is to say in a low pressure zone, and in the inlet duct 20 upstream of the compressor 410, also in a low pressure zone, hence the name "low pressure "given to this architecture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

Pompe de circulation de fluide. Selon l'invention, iadite pompe est une pompe à membrane vibrante (33) comprenant un corps (10) de pompe, des moyens (70) de court-circuit dudit corps (10) de pompe. Des moyens (71 ) de commutation sont aptes à sélectionner pour ledit fluide un trajet traversant lesdits moyens de court-circuit ou un trajet traversant ledit corps (10) de pompe. Application à la récupération des gaz d'échappement et la suraiimentation des moteurs à combustion interne, (Figure 2)

Description

POMPE DE CIRCULATION DE FLUIDE A COURT-CIRCUIT INTEGRE
La présente invention concerne une pompe à circulation de fluide. L'invention trouve une application avantageuse dans le domaine de la récupération des gaz d'échappement et la suraiimentation des moteurs à combustion interne, particulièrement les moteurs diesel et les moteurs à essence à injection directe.
Dans ce contexte, on entend par « fluide » aussi bien les- gaz d'échappement que l'air d'admission ou encore un mélange de gaz d'échappement et d'air d'admission. Bien entendu, l'invention n'est pas limitée à ces types de fiuide, mais s'étend à tout fluide, qu'il soit liquide ou gazeux. La plupart des moteurs à combustion interne, et plus spécialement !es moteurs diesel et les moteurs à injection directe, produisent des oxydes d'azote, désignés ensemble NOx, dont les effets sur l'environnement sont particulièrement néfastes.
Un moyen connu pour limiter la production d'oxydes d'azote consiste à recycler les gaz d'échappement. Selon cette technique, appelée EGR pour «
Exhaust Gas Recovery », au moins une partie des gaz d'échappement formés est prélevée sur le collecteur d'échappement et mélangée à l'air d'admission en amont du répartiteur d'admission. Ce mélange est alors introduit dans la chambre de combustion du moteur. La présence de gaz d'échappement dans le mélange gazeux a pour effet de diminuer ia température de combustion dans la chambre, et, comme la formation des NOx est fortement dépendante de la température, on comprend que la mise en recircuiation des gaz d'échappement contribue à réduire la quantité d'oxydes d'azote formés. Cet effet augmente avec la quantité de gaz d'échappement mélangés à l'air d'admission.
Dans certaines architectures d'EGR connues, un conduit de récupération est disposé entre un conduit d'échappement en aval du collecteur d'échappement et un conduit d'admission en amont du répartiteur d'admission. La circulation des gaz d'échappement dans le conduit de récupération résulte simplement de ia différence de pression existant entre l'entrée et la sortie du conduit, Une vanne réglable, appelée « doseur », est placée sur le conduit d'admission d'air en amont de la sortie du conduit de récupération. Lorsque le doseur se ferme, une chute de pression est créée en sortie, ce qui augmente Ia différence de pression entre l'entrée et la sortie du conduit de récupération, d'où une augmentation simultanée du débit des gaz d'échappement récupérés. Cependant, la fermeture du doseur a également pour conséquence de réduire la quantité d'air à l'admission et de limiter la puissance disponible, il est alors nécessaire de trouver un compromis entre puissance et pollution.
Le brevet américain n° 6,062,026 fournit une solution à cette difficulté. Selon l'architecture décrite dans ce brevet, le conduit d'admission d'air comprend une vanne ajustable à double entrée dans laquelle débouche également ie conduit de récupération des gaz d'échappement. Cette vanne ajustable est capable de faire varier dans des proportions variables ia composition du mélange air/gaz d'échappement en sortie de la vanne, laquelle est reliée au répartiteur d'admission par l'intermédiaire d'une pompe centrifuge. On comprend que cette architecture connue permet de satisfaire à la fois aux besoins de puissance et de réduction de la quantité d'oxydes d'azote formés en adaptant au mode de fonctionnement du moteur la composition du mélange fournie par la vanne et le débit de ia pompe. En particulier, il est possible, notamment à bas régime, de suralimenter le moteur au moyen de la pompe centrifuge en fermant la vanne aux gaz d'échappement et en l'ouvrant à l'air d'admission.
L'architecture décrite dans le brevet américain précité prévoit également un court-circuit destiné principalement à contourner la pompe quand elle ne fonctionne pas, par exemple à haut régime quand une suralimentation n'est pas nécessaire, ceci afin d'éviter les pertes de charge qui pourraient apparaître dans le circuit d'admission du fait de la traversée de la pompe. Les pompes utilisées pour faire circuler les gaz d'échappement dans les architectures EGR connues, comme celle qui vient d'être décrite, sont pour la plupart des pompes centrifuges. Or, ce type de pompes présente un certain nombre d'inconvénients qui en limitent (es performances. En particulier, les pompes centrifuges sont sensibles à l'environnement acide agressif dû à la présence dans les gaz d'échappement des oxydes d'azote NOx mais également d'oxydes de soufre qui, en contact avec l'humidité ambiante, sont susceptibles de former des acides, nitrique ou sulfurique. Ces produits acides attaquent alors les parties métalliques des pompes.
De même, les gaz d'échappement chargés de suies peuvent encrasser les aubages des pompes dont on sait que les jeux de fonctionnement sont très faibles et sensibles à l'encrassement.
De plus, l'excursion en température des pompes centrifuges est relativement faible, inférieure à 18O0C en sortie, ceci à cause de leur mauvaise tenue mécanique et à la possibilité de fluage.
Enfin, le temps de réponse assez long, de l'ordre de quelques centaines de millisecondes, de ce type de pompes est pénalisant lors des régimes transitoires du moteur, car il faut alors pouvoir faire varier très rapidement le taux de gaz d'échappement récupérés et/ou la quantité et le débit d'air à i'admission.
On notera par ailleurs que le court-circuit de pompe décrit dans le brevet américain n° 6,062,026 est un organe extérieur à la pompe elle-même qui nécessite donc un montage spécifique et coûteux à la fois en temps et en matériel.
Aussi, un but de l'invention est de proposer une pompe de circulation de fluide, qui permettrait d'améliorer les performances de ladite architecture par rapport aux architectures connues à pompes centrifuges, et d'éviter les inconvénients liés à la présence d'un court-circuit rapporté à la pompe proprement dite.
Ce but est atteint, conformément à l'invention, du fait que ladite pompe est une pompe à membrane vibrante comprenant un corps de pompe, dans lequel est prévue ladite membrane, et des moyens de court-circuit dudit corps de pompe.
La pompe selon l'invention comporte en outre des moyens de commutation aptes à sélectionner pour ledit fluide un trajet traversant lesdits moyens de court-circuit ou un trajet traversant ledit corps de pompe.
Les pompes à membrane vibrante sont décrites dans la demande internationale n° 97/29282.
La figure 1a est une vue en perspective éclatée d'une pompe à membrane vibrante conforme à la demande internationale précitée. La figure 1b est une vue de côté de !a pompe à membrane vibrante de la figure 1a,
La pompe des figures 1a et 1b se compose d'un corps 10 de pompe constitué de deux flasques 31 , 32 de révolution rigides entre lesquels est logée une membrane déformable 33 en forme de disque. Cette membrane est réalisée par exemple en élastomère, Les gaz pénètrent dans le corps 10 de pompe par un orifice 27 d'entrée périphérique et s'en échappent par un orifice 29 de sortie axial ménagé sur un 31 desdits flasques.
Un organe moteur, non représenté, engendre une distribution cylindrique et symétrique de forces 34 d'excitation périodique appliquées à l'extrémité périphérique 35 de la membrane 33 du côté de l'orifice 27 d'entrée.
La membrane 33 devient alors le support d'ondes concentriques qui se déplacent depuis le bord 35 vers le centre, ce déplacement s'accompagnant de l'amortissement des ondes et de la propulsion du fluide.
Les avantages de ce type de pompe sont multiples. En premier lieu, on retiendra que les pompes à membrane étant réalisées dans un matériau plastique, elles résistent beaucoup mieux à l'environnement acide agressif que (es pompes centrifuges principalement métalliques. Elles présentent également une sensibilité moins importante à la température. D'autre part, ies jeux de fonctionnement étant plus grands, les particules de suie par exemple peuvent traverser la pompe sans y être retenues, ce qui évite tout risque d'encrassement 11 n'y a donc pas de nécessité à utiliser des systèmes de filtration de particules (filtres à particules, etc.). Cet avantage est augmenté du fait que le mouvement oscillatoire de la membrane peut conférer à ia pompe un caractère auto-nettoyant. Il est même possible dans ces conditions de prévoir des cycies de nettoyage.
On notera également que les pièces en mouvement des pompes à membrane présentent une faible inertie, ce qui se traduit par le fait que la puissance à développer au démarrage, ou puissance de pic, est plus faible. Le prélèvement de puissance sur le réseau de bord à la mise en service de la pompe n'affecte donc pas l'alimentation électrique d'autres organes du véhicule. De même, les pompes à membrane vibrante ont un temps de réponse plus court, de l'ordre de quelques dizaines de milliseconde, avec tous les avantages que cela représente en régime transitoire.
Enfin, sur le plan mécanique, les pompes à membrane comportent moins de pièces, ce qui en améliore la fiabilité. La pompe à membrane vibrante qui vient d'être décrite en regard des figures 1a et 1b est donc complétée, selon l'invention, par des moyens de court-circuit du corps de pompe, intégrés à la pompe elle-même avec tous les avantages de coût et montage qui en découlent puisque la pompe, objet de l'invention, peut être implémentée dans toutes architectures de moteur sans avoir à instailer un court-circuit spécifique, extérieur à la pompe. Le fluide peut ainsi traversé la pompe, soit à travers le court-circuit, soit à travers le corps. On dispose ainsi d'une solution où, lorsque la membrane est inactive, le fluide peut traverser la pompe sans avoir à passer par le corps de pompe, ce qui permet, notamment, de diminuer les pertes de charges. Ladite pompe pourra en outre comprendre des moyens de commutation aptes à sélectionner pour ledit fluide un trajet traversant lesdits moyens de court-circuit ou un trajet traversant ledit corps de pompe.
Selon un premier mode de réalisation de l'invention, le corps de pompe comprend : - deux flasques, notamment de révolution, entre lesquels est logée la membrane vibrante,
- un orifice d'entrée périphérique,
- un orifice de sortie axial ménagé sur un premier flasque, et ledit corps de pompe est disposé dans une chambre présentant une ouverture d'entrée débouchant sur un deuxième flasque et une ouverture de sortie prolongeant ledit orifice de sortie du premier flasque. Lesdits moyens de court-circuit comprennent une ouverture centrale pratiquée dans le deuxième flasque, et lesdits moyens de commutation comprennent un moyen d'obturation commandable de ladite ouverture centrale.
Dans un premier exemple de mise en œuvre, ledit moyen d'obturation commandable est une vanne apte à obturer ladite ouverture centrale.
Dans un deuxième exemple de mise en œuvre, ledit moyen d'obturation commandable est un piston mobile en translation, apte à obturer ladite ouverture centrale.
Selon un deuxième mode de réalisation de l'invention, le corps de pompe comprend :
- deux flasques, notamment de révolution, entre lesquels est logée la membrane vibrante,
- un orifice d'entrée périphérique,
- un orifice de sortie axiai ménagé sur un premier flasque, et ledit corps de pompe est disposé dans une chambre présentant une ouverture d'entrée débouchant sur un deuxième flasque et une ouverture de sortie coaxiale à ladite orifice de sortie du premier flasque. Llesdits moyens de court-circuit comprennent un espace pour le passage des gaz, ménagé entre ladite ouverture de sortie et ladite ouverture de sortie, et lesdits moyens de commutation comprennent un moyen d'obturation commandable dudit espace de passage. Dans un exemple de mise en œuvre particulier, ledit moyen d'obturation commandable est une tubulure mobile en translation, apte à relier ladite ouverture de sortie à l'orifice de sortie du premier fiasque.
Selon un troisième mode de réalisation de l'invention, le corps de pompe comprend : - deux flasques, notamment de révolution, entre lesquels est logée la membrane vibrante,
- un orifice d'entrée périphérique,
- un orifice de sortie axial ménagé sur un premier flasque, et ledit corps de pompe est disposé dans une chambre présentant une ouverture d'entrée latérale débouchant sur ledit orifice d'entrée périphérique, une première ouverture de sortie prolongeant ledit orifice de sortie du premier flasque et une deuxième ouverture de sortie. Lesdits moyens de court-circuit comprennent un espace de passage des gaz entre ladite ouverture d'entrée et la deuxième ouverture de sortie, et en ce que lesdits moyens de commutation comprennent des moyens commandables d'obturation alternée des première et deuxième ouvertures de sortie.
Dans ces différents modes de réalisation , ladite chambre pourra également être munie de conduits d'entrée et/ou de sortie, respectivement en communication avec lesdits orifices d'entrée et/ou de sortie.
Comme cela a été mentionné plus haut, la pompe de circulation de gaz selon l'invention peut être facilement intégrée à diverses architectures de moteur. En particulier, l'invention concerne une architecture de récupération de gaz d'échappement dans un moteur à combustion interne, remarquable en ce qu'elle comprend une pompe de circulation selon l'invention pour au moins lesdits gaz d'échappement.
Selon un premier type d'architecture où la pompe à membrane est dédiée à la seule fonction de récupération des gaz d'échappement, ladite pompe è membrane vibrante est placée sur un conduit de récupération des gaz d'échappement disposé entre un conduit d'échappement du moteur et un conduit d'admission d'air.
Cependant, l'architecture, objet de l'invention, n'est pas limitée à (a seule récupération des gaz d'échappement. Elle peut en effet être également utilisée pour réaliser une suralimentation du moteur. Dans ce cas, il est prévu par i'invention que la pompe à membrane vibrante est apte à augmenter le débit massique de gaz d'admission dans le moteur.
Selon un deuxième type d'architecture où !a pompe à membrane est susceptible d'assurer à la fois les fonctions de récupération des gaz d'échappement et de suralimentation du moteur, un conduit de récupération des gaz d'échappement étant disposé entre un conduit d'échappement du moteur et un conduit d'admission d'air, ladite pompe à membrane vibrante est placée sur ledit conduit d'admission en aval du débouché du conduit de récupération dans le conduit d'admission.
Enfin, l'invention s'applique de manière tout à fait avantageuse aux moteurs disposant d'un turbocompresseur, la pompe à membrane vibrante étant disposée en série avec un compresseur d'un turbocompresseur.
Dans une première forme de mise en oeuvre, ladite pompe est placée en aval dudit compresseur, ledit conduit de récupération débouchant dudit conduit d'échappement en amont de la turbine du turbocompresseur.
Dans une deuxième forme de mise en œuvre, ladite pompe est placée en amont dudit compresseur, ledit conduit de récupération débouchant dudit conduit d'échappement en aval de la turbine du turbocompresseur.
La description qui va suivre en regard des dessins annexés, donnés à titre d'exemples non limitatifs, fera bien comprendre en quoi consiste l'invention et comment elle peut être réalisée. La figure 2 est une vue de côté d'un premier mode de réalisation d'une pompe de circulation de fluide conforme à l'invention.
La figure 3 est une variante du mode de réalisation de la figure 2.
La figure 4 est une vue de côté d'un deuxième mode de réalisation d'une pompe de circulation de fluide conforme à l'invention. La figure 5a est une vue de côté d'un troisième mode de réalisation d'une pompe de circulation de fluide conforme à l'invention, en position de pompage;
La figure 5b est une vue de côté de la pompe de circulation de la figure 5a, en position de court-circuit. La figure 6 est un schéma d'une architecture de récupération de gaz d'échappement incluant une pompe de circulation de fluide conforme à l'invention.
La figure 7a est un schéma d'une première architecture de récupération de gaz d'échappement avec suralimentation incluant une pompe de circulation de fluide conforme à l'invention.
La figure 7b est un schéma d'une deuxième architecture de récupération de gaz d'échappement avec suralimentation incluant une pompe de circulation de fluide conforme à l'invention. La figure 8a est un schéma d'une première architecture comprenant une pompe de circulation de fluide conforme à l'invention en série avec un compresseur d'un turbocompresseur.
La figure 8b est un schéma d'une deuxième architecture comprenant une pompe de circulation de fluide conforme à l'invention en série avec un compresseur d'un turbocompresseur.
Sur la figure 2 est représentée une pompe de circulation de fluide comprenant un corps 10 de pompe à membrane vibrante 33 analogue à celui qui a été précédemment décrit en référence aux figures 1 a et 1b. Comme le montre la figure 2, ledit corps 10 de pompe est disposé dans une chambre 60 présentant une ouverture 62 d'entrée du fluide débouchant sur le deuxième flasque 32 du corps 10 de pompe. Une ouverture 61 de sortie de Ia chambre 60 est situé sensiblement dans le prolongement de l'orifice 29 de sortie du premier flasque 31 du corps 10 de pompe. La pompe de circulation représentée sur la figure 2 comporte en outre des moyens de court-circuit du corps 10 de pompe qui, couplés à des moyens de commutation, permettent de sélectionner pour le fluide en circulation dans la pompe soit un trajet traversant le corps de pompe, soit un trajet évitant ie corps de pompe en traversant iesdits moyens de court-circuit Dans le mode de réalisation de la figure 2, Iesdits moyens de court- circuit comprennent une ouverture centrale 70 pratiquée dans ie deuxième flasque 32, tandis que Iesdits moyens de commutation comprennent un moyen d'obturation commandable, constitué, dans l'exemple de la figure 2, par une vanne 71 apte à obturer ladite ouverture centrale 70.- La partie gauche de la figure 2 correspond au cas où la pompe est active. La vanne 71 d'obturation est fermée de sorte que le fluide entrant dans Ia chambre 60 est contraint de pénétrer dans le corps 10 de pompe par l'orifice 27 d'entrée et de ressortir par l'ouverture 61 de sortie de ia chambre via l'orifice 29 de sortie du corps 10 de pompe. La partie droite de la figure 2 correspond au cas où Ia pompe est mise en court-circuit. La vanne 71 d'obturation est ouverte, laissant ia plus grande partie du fluide entrant dans la chambre 60 traverser directement le corps 10 de pompe par l'ouverture centrale 70 en évitant l'effet de propulsion de la membrane vibrante 33. La perte de charge globale de la pompe entre les conduits d'entrée et de sortie de la chambre 60 est donc plus faibie dans cette configuration que si le fiuide devait passer a l'intérieur du corps 10 de pompe.
La figure 3 illustre une variante de la pompe de la figure 2 dans laquelle ledit moyen de commutation commandable est constitué par un piston 72 mobile en translation apte à obturer l'ouverture centrale 70. A cet effet, le piston 72 se déplace dans un alésage 73 et comporte des trous 74 de manière à ce que, lorsque la pompe est active (partie droite de la figure 3), le piston est amené contre le deuxième flasque 32 afin d'obturer l'ouverture centrale 70 et de faire pénétrer le fluide entrant par l'ouverture 62 de la chambre 60 dans le corps 10 de pompe par l'orifice 27 d'entrée.
Par contre, lorsque la pompe doit être court-cîrcuitée (partie gauche de la figure 3), le piston 72 est dégagé du deuxième flasque 32 de manière à prolonger l'ouverture 62 d'entrée. Le fluide entrant dans la chambre 60 est donc contraint de traverser les trous 73 du piston 72 et l'ouverture centrale 70 pour sortir directement de Ia chambre 60 par l'orifice 29 de sortie du corps 10 de pompe et l'ouverture 61 de sortie de ia chambre.
Le mode de réalisation montré sous deux variantes aux figures 2 et 3 réalise le court-circuit du corps 10 de pompe par traversée axiale directe dudit corps de pompe.
Les modes de réalisation des figures 4 et 5a et 5b qui vont maintenant être présentés procèdent par contournement du corps de pompe.
Dans le mode de réalisation illustré à la figure 4, l'orifice 29 de sortie du premier flasque 31 et l'ouverture 61 de sortie de la chambre 60 sont disposés de manière à dégager un espace 63 de passage pour le fluide circulant dans la chambre 60. Cet espace de passage constitue un moyen permettant de court-circuiter le corps 10 de pompe lorsque cela est nécessaire. La commutation entre le mode actif et le mode court-circuité de la pompe est effectuée par une tubulure 80 mobile en translation, apte à relier l'orifice 29 de sortie du corps 10 de pompe à l'ouverture 61 de sortie de Ia chambre 60.
Lorsque la pompe est active (partie gauche de la figure 4), la tubulure 80 obture l'espace 63 de passage, ie fluide entrant dans la chambre 60 doit alors pénétrer dans Ie corps 10 de pompe par l'orifice 27 d'entrée. Par contre, un court-circuit de la pompe (partie droite de la figure 4) par contournement du corps 10 de pompe est obtenu en dégageant ia tubulure 80 de l'espace 63 de passage du fluide.
Selon le mode de réalisation des figures 5a et 5b, la chambre 60 présente une ouverture 62 d'entrée latérale débouchant sur l'orifice 27 d'entrée périphérique du corps 10 de pompe, une première ouverture 61 de sortie du fluide est située dans le prolongement de l'orifice 29 de sortie du premier flasque 31 et une deuxième ouverture 64 de sortie.
Comme on peut le voir sur les figures 5a et 5b, le moyen de mise en court-circuit de la pompe est réalisé par un espace 90 de passage du fluide entre l'ouverture 62 d'entrée et la deuxième ouverture. 64 de sortie. La commutation entre le trajet traversant le corps 10 de pompe et le trajet le court-circuitant est obtenue par des vannes 91, 92 commandables permettant d'obturer alternativement les ouvertures 64, 61 de sortie de la chambre 60. La figure 5a montre la configuration active de la pompe dans laquelle la vanne 91 est fermée et la vanne 92 ouverte. Le fluide entrant dans la chambre 60 par l'ouverture 62 d'entrée pénètrent par l'orifice 27 d'entrée dans le corps 10 de pompe où il bénéficie de l'effet de propulsion de la membrane 33 puis en ressort par l'orifice 29 de sortie et l'ouverture 61 de sortie. Dans le mode court-circuité de la pompe, représenté sur Ia figure 5b, la vanne 92 est fermée et Ja vanne 91 ouverte. Le fluide peut donc éviter le cops 10 de pompe en traversant directement l'espace 90 de passage entre l'ouverture 62 d'entrée et ia deuxième ouverture 64 de sortie.
De manière pratique, il est possible de ne réaliser qu'une seule ouverture de sortie en reliant en aval les ouvertures 61 et 64.
On va maintenant décrire diverses architectures de moteurs a combustion interne induant une pompe de circulation de fluide conforme à l'invention.
Sur la figure 6 est représentée une architecture de récupération de gaz d'échappement dans un moteur 100 à combustion interne, comprenant un conduit 20 d'admission d'air reliant une entrée 200 d'air à un répartiteur 110 d'entré, et un conduit 30 d'échappement destiné à conduire les gaz d'échappement sortant d'un collecteur 120 d'échappement vers une sortie 300.
Comme on peut le voir sur l'architecture de la figure 6, un conduit 40 de récupération des gaz d'échappement est disposé entre le conduit 30 d'échappement et le conduit 20 d'admission. De manière à pouvoir augmenter le débit massique des gaz récupérés et étendre les possibilités de récupération du moteur en gaz d'échappement, une pompe 1 à membrane vibrante est placée sur le conduit 40 de récupération. En outre, une vanne 41 de contrôle de débit des gaz d'échappement est montée en série avec le corps 10 de pompe sur le conduit 40 de récupération, ceci afin de pouvoir ajuster Ia quantité de gaz récupérés. Eventuellement, un circuit 21 de refroidissement des gaz d'échappement récupérés est installé sur le conduit 20 d'admission en amont du répartiteur 110 d'entrée.
On observe également sur la figure 6 !a présence d'un doseur 50 placé sur le conduit 20 d'admission en amont du débouché du conduit 40 de récupération dans ie conduit 20 d'admission. Le rôle de ce doseur 50 est de permettre le réglage du débit massique de l'air fourni au répartiteur 110 d'entrée du moteur 100.
Enfin, comme le montre la figure 6, un court-circuit 11 est placé en parallèle avec le corps 10 pompe, une vanne 12 de commutation permettant de sélectionner pour la circulation des gaz d'échappement, soit le trajet traversant le corps 10 de pompe, soit le trajet traversant le court-circuit 11. On évite ainsi les pertes de charge dues à la pompe 1 lorsque celle-ci ne fonctionne pas. Bien entendu, les fonctions des vannes 41 et 12 pourraient être réalisées par une vanne unique.
Dans l'architecture de la figure 6, le circuit de récupération est indépendant du fonctionnement du moteur, la pompe 1 étant uniquement destinée à la récupération des gaz d'échappement, A l'inverse, les figures 7a et 7b illustrent deux architectures où la pompe
1 peut également être utilisée pour suralimenter le moteur en augmentant ie débit massique de l'air à l'admission, ceci simultanément ou séparément de la fonction de récupération. A cet effet, ia pompe 1 est placée sur Ie conduit 20. d'admission en aval du débouché du conduit 40 de récupération dans le circuit 20 d'admission.
Comme dans l'exemple de la figure 6, une vanne 41 de contrôle est placée sur le conduit 40 de récupération afin de pouvoir faire varier le débit des gaz récupérés, et donc de modifier à volonté la quantité des gaz admis et leur proportion. On peut ainsi adapter ie fonctionnement de la pompe selon les phases de fonctionnement du moteur.
Les figures 7a et 7b montrent plus précisément deux architectures dans lesquelles un court-circuit 11 est placé en parallèle avec le corps 10 de pompe, une vanne 12 de commutation permettant de choisir un trajet de circulation des gaz traversant le corps 10 de pompe ou le court-circuit 11.
Comme cela a été mentionné plus haut, la principale fonction du court- circuit 11 est d'éviter les pertes de charge à travers la pompe 10 lorsqu'elle est à l'arrêt, et d'empêcher le retour des gaz vers l'admission lorsqu'elle est en marche.
Sur la figure 7a, le conduit 40 de récupération des gaz d'échappement débouche dans ledit conduit 20 d'admission d'air en amont du court-circuit 11. Sur la figure 7b, le conduit 40 de récupération des gaz d'échappement débouche dans le conduit 20 d'admission d'air en amont du corps 10 de pompe, sur le trajet traversant la pompe. Cette seconde configuration a l'avantage de permettre l'intégration du corps 10 de pompe, du court-circuit 1 1 , de la vanne 12 de commutation et de la vanne 41 de contrôle dans un composant unique 1.
La suite de ia description s'adresse spécifiquement aux moteurs équipés d'un turbocompresseur 400.
Les figures 8a et 8b se rapportent à des architectures dites « série » où la pompe 1 à membrane est disposée en série avec le compresseur 410 du turbocompresseur 400.
Plus particulièrement, dans ['architecture de la figure 8a, la pompe 1 est placée en aval du compresseur 410, tandis que le conduit 40 de récupération débouche du conduit 30 d'échappement en amont de la turbine 420, c'est-à- dire dans une zone de haute pression, et dans le conduit 20 d'admission en aval du compresseur 410, également dans une zone de haute pression, d'où le nom de « haute pression » donnée à cette architecture.
Un refroidisseur 22 peut être placé entre le turbocompresseur 400 et la pompe 1. Dans ['architecture de la figure 8b, la pompe 1 est placée en amont du compresseur 410, tandis que le conduit 40 de récupération débouche du conduit 30 d'échappement en aval de la turbine 42O1 c'est-à-dire dans une zone de basse pression, et dans le conduit 20 d'admission en amont du compresseur 410, également dans une zone de basse pression, d'où le nom de « basse pression » donnée à cette architecture.

Claims

REVENDICATIONS
1. Pompe de circulation de fluide, caractérisée en ce que ladite pompe (1) est une pompe à membrane vibrante (33) comprenant un corps (10) de pompe, dans lequel est prévue iadite membrane, et des moyens de court-circuit dudit corps (10) dθ pompe.
2. Pompe selon la revendication 1 , comportant en outre des moyens de commutation aptes à sélectionner pour ledit fluide un trajet traversant lesdits moyens de court-circuit ou un trajet traversant ledit corps (10) de pompe.
3. Pompe selon la revendication 2, caractérisée en ce que, le corps (10) de pompe comprenant ;
- deux flasques (31 , 32) entre lesquels est logée la membrane vibrante (33), - un orifice (27) d'entrée périphérique,
- un orifice (29) de sortie axial ménagé sur un premier flasque (31), ledit corps (10) de pompe est disposé dans une chambre (60) présentant une ouverture (62) d'entrée débouchant sur un deuxième flasque (32) et une ouverture (61 ) de sortie prolongeant ledit orifice (29) de sortie du premier flasque (31), en ce que lesdits moyens de court-circuit comprennent une ouverture centrale (70) pratiquée dans le deuxième flasque (32), et en ce que lesdits moyens de commutation comprennent un moyen (71 , 72) d'obturation commandablθ de ladite ouverture centrale (70).
4. Pompe selon la revendication 3, dans laquelle ledit moyen d'obturation commandable est une vanne (71 ) apte à obturer ladite ouverture centrale (70).
5. Pompe selon la revendication 3, dans laquelle ledit moyen d'obturation commandable est un piston mobile (72) en translation, apte à obturer ladite ouverture centrale (70).
6. Pompe selon la revendication 1 , caractérisée en ce que, le corps (10) de pompe comprenant :
- deux flasques (31 , 32) entre lesquels est logée la membrane vibrante (33),
- un orifice (27) d'entrée périphérique, - un orifice (29) de sortie axial ménagé sur un premier flasque (31 ), ledit corps (10) de pompe est disposé dans une chambre (60) présentant une ouverture (62) d'entrée débouchant sur un deuxième fiasque (32) et une ouverture (61 ) de sortie coaxiaie audit orifice (29) de sortie du premier flasque (31 ), en ce que lesdits moyens de court-circuit comprennent un espace (63) pour le passage des gaz, ménagé entre ledit orifice (29) de sortie et ladite ouverture (61 ) de sortie, et en ce que lesdits moyens de commutation comprennent un moyen d'obturation commandable (80) dudit espace de passage.
7. Pompe selon la revendication 6, dans laquelle ledit moyen d'obturation commandabie est une tubulure mobile (80) en translation, apte à relier ladite ouverture (61 ) de sortie à l'orifice (29) de sortie du premier flasque (31 ).
8. Pompe selon la revendication 2, caractérisée en ce que, ie corps (10) de pompe comprenant : - deux flasques (31 , 32) entre lesquels est logée la membrane vibrante (33),
- un orifice (27) d'entrée périphérique,
- un orifice (29) de sortie axial ménagé sur un premier flasque (31), ledit corps (10) de pompe est disposé dans une chambre (60) présentant une ouverture (62) d'entrée latérale débouchant sur ladite ouverture (27) d'entrée périphérique, une première ouverture (61) de sortie prolongeant ledit orifice (29) de sortie du premier flasque (31 ) et une deuxième ouverture (64) de sortie, en ce que iesdits moyens de court-circuit comprennent un espace (90) de passage des gaz entre ladite ouverture (62) d'entrée et la deuxième ouverture (64) de sortie, et en ce que lesdits moyens de commutation comprennent des moyens commandables (91 , 92) d'obturation alternée des première (61) et deuxième (64) ouvertures de sortie.
9. Architecture de récupération de gaz d'échappement dans un moteur (100) à combustion interne, caractérisée en ce qu'elle comprend une pompe (1 ) de circulation selon l'une quelconque des revendications 1 à 7 pour au moins fesdits gaz d'échappement.
10. Architecture seion la revendication 9, dans laquelle ladite pompe (1) à membrane vibrante (33) est placée sur un conduit (40) de récupération des gaz d'échappement disposé entre un conduit (30) d'échappement du moteur et un conduit (20) d'admission d'air.
11 , Architecture selon la revendication 9, dans laquelle la pompe (1) à membrane vibrante est apte à augmenter le débit massique de gaz d'admission dans le moteur (100).
12, Architecture selon la revendication 11 , dans laquelle, un conduit (40) de récupération des gaz d'échappement étant disposé entre un conduit (30) d'échappement du moteur et un conduit (20) d'admission d'air, ladite pompe (1 ) à membrane vibrante est placée sur ledit conduit (20) d'admission en aval du débouché du conduit (40) de récupération dans le conduit (20) d'admission.
13, Architecture selon la revendication 12, dans laquelle ledit conduit (40) de récupération des gaz d'échappement débouche dans ledit conduit (20) d'admission d'air en amont des moyens de court-circuit (11 ),
14. Architecture selon la revendication 12, dans laquelle ledit conduit (40) de récupération des gaz d'échappement débouche dans ledit conduit (20) d'admission d'air en amont de la pompe (1) sur le trajet traversant la pompe.
15. Architecture selon l'une quelconque des revendications 12 à 14, dans laquelle la pompe (1) à membrane vibrante est disposée en série avec un compresseur (410) d'un turbocompresseur (400).
16. Architecture selon la revendication 15, dans laquelle ladite pompe (1 ) est placée en aval dudit compresseur (410), ledit conduit (40) de récupération débouchant dudit conduit (30) d'échappement en amont de la turbine (420) du turbocompresseur.
17. Architecture selon la revendication 15, dans laquelle ladite pompe (1) est placée en amont dudit compresseur (410), iedit conduit (40) de récupération débouchant dudit conduit (30) d'échappement en aval de la turbine (420) du turbocompresseur.
PCT/EP2008/058198 2007-06-27 2008-06-26 Pompe de circulation de fluide a court-circuit integre WO2009000895A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0704593 2007-06-27
FR0704593A FR2918128B1 (fr) 2007-06-27 2007-06-27 Pompe de circulation de fluide a court-circuit integre.

Publications (2)

Publication Number Publication Date
WO2009000895A2 true WO2009000895A2 (fr) 2008-12-31
WO2009000895A3 WO2009000895A3 (fr) 2009-06-11

Family

ID=39095384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/058198 WO2009000895A2 (fr) 2007-06-27 2008-06-26 Pompe de circulation de fluide a court-circuit integre

Country Status (2)

Country Link
FR (1) FR2918128B1 (fr)
WO (1) WO2009000895A2 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3021074B1 (fr) * 2014-05-14 2016-05-27 Saint Gobain Performance Plastics France Pompe a membrane

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0412856A1 (fr) * 1989-08-11 1991-02-13 POMPES SALMSON Société Anonyme à directoire dite: Dispositif de propulsion d'un fluide
WO1997029282A1 (fr) * 1996-02-12 1997-08-14 Drevet Jean Baptiste Circulateur de fluide a membrane vibrante
EP1523038A2 (fr) * 2003-10-07 2005-04-13 Samsung Electronics Co., Ltd. Dispositif miniature pour amener de l'air
WO2005119062A1 (fr) * 2004-05-26 2005-12-15 Viacor Circulateur de fluide a membrane rigide
FR2893991A1 (fr) * 2005-11-30 2007-06-01 Jean Baptiste Drevet Circulateur a membrane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0412856A1 (fr) * 1989-08-11 1991-02-13 POMPES SALMSON Société Anonyme à directoire dite: Dispositif de propulsion d'un fluide
WO1997029282A1 (fr) * 1996-02-12 1997-08-14 Drevet Jean Baptiste Circulateur de fluide a membrane vibrante
EP1523038A2 (fr) * 2003-10-07 2005-04-13 Samsung Electronics Co., Ltd. Dispositif miniature pour amener de l'air
WO2005119062A1 (fr) * 2004-05-26 2005-12-15 Viacor Circulateur de fluide a membrane rigide
FR2893991A1 (fr) * 2005-11-30 2007-06-01 Jean Baptiste Drevet Circulateur a membrane

Also Published As

Publication number Publication date
FR2918128B1 (fr) 2017-06-09
WO2009000895A3 (fr) 2009-06-11
FR2918128A1 (fr) 2009-01-02

Similar Documents

Publication Publication Date Title
EP2954183B1 (fr) Dispositif d'orientation des gaz d'échappement
FR2999652A1 (fr) Circuit de carburant d'une turbomachine
FR2864994A1 (fr) Moteur a combustion interne suralimente par turbocompresseur
EP1941149A1 (fr) Circuit d'alimentation en au moins un fluide d'un moteur suralimente et procede pour alimenter en au moins un fluide un tel moteur
WO2010012919A1 (fr) Moteur a combustion interne suralimente equipe d'un circuit de recirculation de gazes d'echappement flexible et procede de mise en action du moteur
WO2014096620A1 (fr) Circuit de carburant d'une turbomachine
EP2954189A1 (fr) Système de suralimentation des gaz d'admission et de recirculation des gaz d'échappement d'un moteur et procédé de commande associé
FR2983252A1 (fr) Vanne de controle pour systeme de recirculation des gaz d'echappement d'un moteur a combustion interne
WO2009000895A2 (fr) Pompe de circulation de fluide a court-circuit integre
FR2927131A1 (fr) Pompe a membrane
FR2934647A1 (fr) Dispositif de filtration pour gaz d'echappement
FR3041033A1 (fr) Ligne d'echappement et circuit d'air pour moteur de vehicule automobile permettant une integration optimisee du circuit de recirculation des gaz d'echappement
EP3234335A1 (fr) Vanne comportant des moyens d'actionnement entre deux conduits d'entrée
FR2927364A1 (fr) Moteur a combustion interne suralimente equipe d'un conduit de recirculation d'air et/ou de gaz aerodynamiquement optimise
EP3480439A1 (fr) Circuit d'admission d'air pour moteur à allumage commandé avec plenum intégré à la culasse
FR2917789A1 (fr) Architecture et procede de recuperation de gaz d'echappement
FR3067061B1 (fr) Systeme d'alimentation d'un moteur a combustion interne
FR3062684A1 (fr) Culasse comprenant un ensemble d'injection de gaz d'echappement
FR2922960A1 (fr) Systeme de reinjection de gaz de carter et echangeur de chaleur mis en oeuvre dans ledit systeme
FR2925581A1 (fr) Systeme et procede d'injection de carburant dans le circuit d'echappement d'un moteur a combustion interne.
EP2602467A1 (fr) Procédé de recirculation d'air dans un moteur thermique
FR3019230A1 (fr) Moteur a combustion equipe d'un prechauffage des gaz d'echappement recycles
FR2990726A1 (fr) Doseur deux voies et applications dudit doseur
EP4256189A1 (fr) Ensemble pour turbomachine d'aeronef comprenant une vanne passive de contournement d'un echangeur de chaleur carburant / huile
FR3055027A3 (fr) By-pass double clapet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08774373

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08774373

Country of ref document: EP

Kind code of ref document: A2