WO2008135016A1 - Exhaust gas duct and fuel cell system - Google Patents

Exhaust gas duct and fuel cell system Download PDF

Info

Publication number
WO2008135016A1
WO2008135016A1 PCT/DE2008/000721 DE2008000721W WO2008135016A1 WO 2008135016 A1 WO2008135016 A1 WO 2008135016A1 DE 2008000721 W DE2008000721 W DE 2008000721W WO 2008135016 A1 WO2008135016 A1 WO 2008135016A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
exhaust gas
main exhaust
branch
lambda probe
Prior art date
Application number
PCT/DE2008/000721
Other languages
German (de)
French (fr)
Inventor
Johannes EICHSTÄDT
Marco Mühlner
Original Assignee
Enerday Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enerday Gmbh filed Critical Enerday Gmbh
Publication of WO2008135016A1 publication Critical patent/WO2008135016A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/0447Concentration; Density of cathode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/20Sensor having heating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04037Electrical heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to an exhaust system and a fuel cell system.
  • the handling of exhaust gases plays a major role in many technical fields.
  • the exhaust gas composition especially the oxygen content in the exhaust gas, is measured. This information is useful in terms of pollutant emissions and the control of the upstream of the exhaust system.
  • the invention consists in an exhaust system with a main exhaust gas line, a branching off from the main exhaust branch first branch line and a branch of the main exhaust gas branch second branch line, both lead to a arranged outside the main exhaust line lambda probe, wherein, based on the flow direction of the exhaust gas the main exhaust branch, the first branch line branches off from the main exhaust branch upstream of the second branch line. In this way, a forced flow of the combustion exhaust gas to the outside of the
  • Main exhaust gas arranged arranged lambda probe, whereby the area around the lambda probe and the lambda probe are no longer influenced in an excessive manner by the temperature of the exhaust gases.
  • the lambda probe can be positioned in this way in almost any location.
  • the arrangement of the branch lines at different flow coordinates of the main exhaust line corresponds to the arrangement of a Prandtl pitot tube, that is, a fluidic measuring instrument for determining a back pressure.
  • the lambda probe is assigned a heating device. The heater brings the lambda probe to operating temperature. This is generally higher than the temperature of the exhaust gas, which is passed via the branch line to the lambda probe. Consequently, the exhaust gas can cause no increase in temperature of the lambda probe and thus no distortion of the measurement results due to temperature effects.
  • branch lines lead to a measuring volume which is delimited by a housing receiving the lambda probe.
  • the branch lines can be separable from the housing components or also formed integrally with the housing.
  • branch lines are directly connected to each other and record the lambda probe.
  • the branch lines then represent a uniform tube, which simultaneously provides the measurement volume for the lambda probe.
  • the invention further relates to a fuel cell system with an exhaust system according to the invention.
  • the monitoring of the exhaust gas values is particularly useful, and because of the short pathways in a compact system, it is particularly advantageous if measures are available which avoid influencing the lambda measurement by the temperature of the exhaust gases.
  • Figure 1 is a schematic representation of an inventive exhaust system.
  • a fuel cell system 24 is shown with an adjoining main exhaust line 10. This is supplied, in particular, with exhaust gas 26 from an afterburner arranged in the fuel cell system 24. Exhaust gases can also be introduced directly into the main exhaust line 10 from other components of the fuel cell system 24 From the main exhaust line 10 branches off a first branch line 12, which is arranged upstream of a second branch line 14 also branching off from the main exhaust line 10.
  • the branch lines 12, 14 lead to a measuring volume 20 in which a lambda probe 16 equipped with a heating device 18.
  • the measuring volume is bounded by a housing 22.
  • the heating device 18 is heated via an electrical line 28, and the lambda probe 16 is connected to an electrical measuring line 30 Heating line 28 and the measuring line 30 to an electronic control unit 32 which is associated with the fuel cell system 24 and controls various functions of the fuel cell system 24 on the basis of inputs and measurement data or regulates.
  • an electronic control unit 32 which is associated with the fuel cell system 24 and controls various functions of the fuel cell system 24 on the basis of inputs and measurement data or regulates.
  • the lambda probe is arranged directly in the main exhaust line
  • it is provided in the context of the present invention to position the lambda probe in a measurement volume 20 is arranged outside of the main exhaust pipe 10. Between the branch points of the branch lines 12, 14 in the main exhaust line 10 is a pressure difference.
  • This pressure difference ensures that an exhaust gas portion 34 is supplied to the measurement volume 20, wherein this portion cools on the way to the measurement volume 20 to a temperature which is not higher than the temperature impressed by the heater 18 of the lambda probe 16. Consequently, the partial exhaust gas stream 34 does not lead to an increase in temperature of the lambda probe 16, so that there is no falsification of the measurement voltage supplied by the lambda probe 16 to the electronic control unit 32.
  • first branch line 14 second branch line
  • control unit 34 partial exhaust gas flow

Abstract

The invention relates to an exhaust gas duct comprising a main exhaust gas line (10), a first branch line (12) branching off the main exhaust gas line, and a second branch line (14) branching off the main exhaust gas line, both leading to a lambda sensor (16) located outside the main exhaust gas line, wherein, relative to the flow direction of the exhaust gas through the main exhaust gas line, the first branch line (12) branches off the main exhaust gas line (10) upstream of the second branch line (14). The invention further relates to a fuel cell system.

Description

Abgasführung und BrennstoffzellensystemExhaust system and fuel cell system
Die Erfindung betrifft eine Abgasführung und ein Brennstoffzellensystem.The invention relates to an exhaust system and a fuel cell system.
Die Handhabung von Abgasen spielt in vielen technischen Gebieten eine große Rolle. Insbesondere wird vielfach die Ab- gasZusammensetzung, speziell der Sauerstoffgehalt im Abgas, gemessen. Diese Information ist im Hinblick auf die Schadstoffemission und die Steuerung beziehungsweise Regelung der dem Abgasstrang vorgeordneten Systeme nützlich.The handling of exhaust gases plays a major role in many technical fields. In particular, in many cases the exhaust gas composition, especially the oxygen content in the exhaust gas, is measured. This information is useful in terms of pollutant emissions and the control of the upstream of the exhaust system.
Allerdings begegnet man bei der Sauerstoffmessung mit der Lambdasonde Problemen, da die Sondenspannung von verschiedenen Parametern abhängt, die sich als Störgrößen erweisen können. Dabei ist insbesondere die Temperatur im Bereich der Lambdasonde kritisch, da diese direkt linear in den ge- messenen Spannungswert eingeht. Dies ist ein geringes Problem bei Systemen, die eine nahezu konstante beziehungsweise relativ niedrige Abgastemperatur liefern. Schwankt die Abgastemperatur jedoch beträchtlich und insbesondere bis auf hohe Werte, so wird das Ergebnis der Lambdamessung in nicht mehr hinnehmbarer Weise verfälscht. Eine große Schwankungsbreite bei der Abgastemperatur und hohe Temperaturen des Abgases können insbesondere dann auftreten, wenn die Abgas- führung vergleichsweise kurz ist, so dass die Lambdasonde relativ nah an der Wärmequelle im System angeordnet ist. Dies ist insbesondere bei kompakt bauenden Brennstoffzel- lensystemen der Fall, wo nur ein vergleichsweise kurzer Abgasstrang vorliegt, der im Allgemeinen an einen exotherm arbeitenden Nachbrenner anschließt. Der Erfindung liegt die Aufgabe zugrunde, die Verfälschung der Lambdamessung aufgrund von Temperatureffekten zu vermeiden.However, oxygen measurement using the lambda probe encounters problems because the probe voltage depends on various parameters that can prove to be disturbances. In particular, the temperature in the area of the lambda probe is critical, since it assumes a linear direct response to the measured voltage value. This is a minor problem in systems that provide near constant or relatively low exhaust gas temperatures. However, if the exhaust gas temperature fluctuates considerably and in particular up to high values, then the result of the lambda measurement is unacceptably falsified. A large fluctuation range in the exhaust gas temperature and high temperatures of the exhaust gas can occur in particular when the exhaust gas guide is comparatively short, so that the lambda probe is arranged relatively close to the heat source in the system. This is the case in particular in the case of compact fuel cell systems where only a comparatively short exhaust gas line is present, which generally follows an exothermic afterburner. The invention has for its object to avoid the falsification of the Lambdamessung due to temperature effects.
Diese Aufgabe wird mit den Merkmalen der unabhängigen Ansprüche gelöst.This object is achieved with the features of the independent claims.
Vorteilhafte Ausführungsformen der Erfindung sind in den abhängigen Ansprüchen angegeben.Advantageous embodiments of the invention are indicated in the dependent claims.
Die Erfindung besteht in einer Abgasführung mit einem Hauptabgassträng, einer von dem Hauptabgasstrang abzweigenden ersten Abzweigleitung und einer von dem Hauptabgas- sträng abzweigenden zweiten Abzweigleitung, die beide zu einer außerhalb des Hauptabgasstrang angeordneten Lambda- sonde führen, wobei, bezogen auf die Strömungsrichtung des Abgases durch den Hauptabgasstrang, die erste Abzweigleitung stromaufwärts der zweiten Abzweigleitung von dem Hauptabgasstrang abzweigt. Auf diese Weise wird eine ZwangsStrömung des Verbrennungsabgases zu der außerhalb desThe invention consists in an exhaust system with a main exhaust gas line, a branching off from the main exhaust branch first branch line and a branch of the main exhaust gas branch second branch line, both lead to a arranged outside the main exhaust line lambda probe, wherein, based on the flow direction of the exhaust gas the main exhaust branch, the first branch line branches off from the main exhaust branch upstream of the second branch line. In this way, a forced flow of the combustion exhaust gas to the outside of the
HauptabgasStrangs angeordneten Lambdasonde erzeugt, wobei der Bereich um die Lambdasonde und die Lambdasonde selbst dann nicht mehr in übermäßiger Weise durch die Temperatur der Abgase beeinflusst werden. Die Lambdasonde kann auf diese Weise an nahezu beliebigen Orten positioniert werden. Die Anordnung der Abzweigleitungen an verschiedenen Strömungskoordinaten des Hauptabgasstrangs entspricht der Anordnung eines Prandtlschen Staurohrs, das heißt eines strömungstechnischen Messinstrumentes zur Bestimmung eines Staudruckes. Nützlicherweise ist vorgesehen, dass der Lambdasonde eine Heizeinrichtung zugeordnet ist. Die Heizeinrichtung bringt die Lambdasonde auf Betriebstemperatur. Diese liegt im Allgemeinen höher als die Temperatur des Abgases, welches über die Abzweigleitung zur Lambdasonde geleitet wird. Folglich kann das Abgas keine Temperaturerhöhung der Lambdasonde und somit keine Verfälschung der Messergebnisse aufgrund von Temperatureffekten mehr bewirken.Main exhaust gas arranged arranged lambda probe, whereby the area around the lambda probe and the lambda probe are no longer influenced in an excessive manner by the temperature of the exhaust gases. The lambda probe can be positioned in this way in almost any location. The arrangement of the branch lines at different flow coordinates of the main exhaust line corresponds to the arrangement of a Prandtl pitot tube, that is, a fluidic measuring instrument for determining a back pressure. Usefully, it is provided that the lambda probe is assigned a heating device. The heater brings the lambda probe to operating temperature. This is generally higher than the temperature of the exhaust gas, which is passed via the branch line to the lambda probe. Consequently, the exhaust gas can cause no increase in temperature of the lambda probe and thus no distortion of the measurement results due to temperature effects.
Es kann vorgesehen sein, dass die Abzweigleitungen zu einem Messvolumen führen, das durch ein die Lambdasonde aufnehmendes Gehäuse begrenzt ist. Die Abzweigleitungen können dabei von dem Gehäuse trennbare Bauteile sein oder auch einstückig mit dem Gehäuse ausgebildet vorliegen.It can be provided that the branch lines lead to a measuring volume which is delimited by a housing receiving the lambda probe. The branch lines can be separable from the housing components or also formed integrally with the housing.
Ebenfalls ist es möglich, dass die Abzweigleitungen direkt miteinander verbunden sind und die Lambdasonde aufnehmen. Die Abzweigleitungen stellen dann ein einheitliches Rohr dar, das gleichzeitig das Messvolumen für die Lambdasonde zur Verfügung stellt.It is also possible that the branch lines are directly connected to each other and record the lambda probe. The branch lines then represent a uniform tube, which simultaneously provides the measurement volume for the lambda probe.
Die Erfindung betrifft weiterhin ein BrennstoffZeilensystem mit einer erfindungsgemäßen Abgasführung. Bei Brennstoff- Zeilensystemen ist die Überwachung der Abgaswerte besonders nützlich, und aufgrund der kurzen Wege bei kompakten System ist es vom besonderen Vorteil, wenn Maßnahmen zur Verfügung stehen, die eine Beeinflussung der Lambdamessung durch die Temperatur der Abgase vermeiden.The invention further relates to a fuel cell system with an exhaust system according to the invention. In fuel-line systems, the monitoring of the exhaust gas values is particularly useful, and because of the short pathways in a compact system, it is particularly advantageous if measures are available which avoid influencing the lambda measurement by the temperature of the exhaust gases.
Die Erfindung wird nun mit Bezug auf die begleitende Zeichnung anhand einer bevorzugten Ausführungsform beispielhaft erläutert. Es zeigt :The invention will now be described by way of example with reference to the accompanying drawing with reference to a preferred embodiment. It shows :
Figur 1 eine schematische Darstellung einer erfindungsge- mäßen Abgasführung.Figure 1 is a schematic representation of an inventive exhaust system.
Es ist ein Brennstoffzellensystem 24 mit" einem daran anschließenden Hauptabgasstrang 10 dargestellt. Dieser wird insbesondere von einem in dem Brennstoffzellensystem 24 an- geordneten Nachbrenner mit Abgas 26 beliefert. Abgase können auch von anderen Komponenten des Brennstoffzellensys- tems 24 direkt in den Hauptabgasstrang 10 eingebracht werden, beispielsweise von einem Reformer oder von einem Brennstoffzellenstapel . Von dem Hauptabgassträng 10 zweigt eine erste Abzweigleitung 12 ab, die stromaufwärts von einer ebenfalls von dem Hauptabgassträng 10 abzweigenden zweiten Abzweigleitung 14 angeordnet ist. Die Abzweigleitungen 12, 14 führen zu einem Messvolumen 20, in dem eine mit einer Heizeinrichtung 18 ausgestatte Lambdasonde 16 an- geordnet ist. Das Messvolumen wird von einem Gehäuse 22 begrenzt. Die Heizeinrichtung 18 wird über eine elektrische Leitung 28 beheizt, und die Lambdasonde 16 steht mit einer elektrischen Messleitung 30 in Verbindung. Nützlicherweise führen die Heizleitung 28 und die Messleitung 30 zu einer elektronischen Steuereinheit 32, die dem Brennstoffzellensystem 24 zugeordnet ist und verschiedene Funktionen des Brennstoffzellensystems 24 auf der Grundlage von Eingaben und Messdaten steuert beziehungsweise regelt. Im Gegensatz zu herkömmlichen Systemen, bei denen die Lambdasonde direkt im Hauptabgasstrang angeordnet ist, ist im Rahmen der vorliegenden Erfindung vorgesehen, die Lambdasonde in einem Messvolumen 20 zu positionieren, wobei dieses Messvolumen außerhalb des HauptabgasStrangs 10 angeordnet ist. Zwischen den Abzweigstellen der Abzweigleitungen 12, 14 im Hauptabgasstrang 10 liegt eine Druckdifferenz vor. Diese Druckdifferenz sorgt dafür, dass ein Abgasanteil 34 dem Messvolumen 20 zugeführt wird, wobei sich dieser Anteil auf dem Weg zum Messvolumen 20 auf eine Temperatur abkühlt, die nicht höher ist, als die durch die Heizeinrichtung 18 der Lambdasonde 16 aufgeprägte Temperatur. Folglich führt der Teilabgasstrom 34 nicht zu einer Temperaturerhöhung der Lambdasonde 16, so dass es auch nicht zu einer Verfälschung der von der Lambdasonde 16 an die elektronische Steuereinheit 32 gelieferten Messspannung kommt.A fuel cell system 24 is shown with an adjoining main exhaust line 10. This is supplied, in particular, with exhaust gas 26 from an afterburner arranged in the fuel cell system 24. Exhaust gases can also be introduced directly into the main exhaust line 10 from other components of the fuel cell system 24 From the main exhaust line 10 branches off a first branch line 12, which is arranged upstream of a second branch line 14 also branching off from the main exhaust line 10. The branch lines 12, 14 lead to a measuring volume 20 in which a lambda probe 16 equipped with a heating device 18. The measuring volume is bounded by a housing 22. The heating device 18 is heated via an electrical line 28, and the lambda probe 16 is connected to an electrical measuring line 30 Heating line 28 and the measuring line 30 to an electronic control unit 32 which is associated with the fuel cell system 24 and controls various functions of the fuel cell system 24 on the basis of inputs and measurement data or regulates. In contrast to conventional systems in which the lambda probe is arranged directly in the main exhaust line, it is provided in the context of the present invention to position the lambda probe in a measurement volume 20, this measurement volume is arranged outside of the main exhaust pipe 10. Between the branch points of the branch lines 12, 14 in the main exhaust line 10 is a pressure difference. This pressure difference ensures that an exhaust gas portion 34 is supplied to the measurement volume 20, wherein this portion cools on the way to the measurement volume 20 to a temperature which is not higher than the temperature impressed by the heater 18 of the lambda probe 16. Consequently, the partial exhaust gas stream 34 does not lead to an increase in temperature of the lambda probe 16, so that there is no falsification of the measurement voltage supplied by the lambda probe 16 to the electronic control unit 32.
Die in der vorstehenden Beschreibung, in den Zeichnungen sowie in den Ansprüchen offenbarten Merkmale der Erfindung können sowohl einzeln als auch in beliebiger Kombination für die Verwirklichung der Erfindung wesentlich sein. The features of the invention disclosed in the foregoing description, in the drawings and in the claims may be essential to the realization of the invention both individually and in any combination.
Bezugszeichenliste :List of reference numbers:
10 HauptabgasStrang10 main exhaust gas flow
12 erste Abzweigleitung 14 zweite Abzweigleitung12 first branch line 14 second branch line
16 Lambdasonde16 lambda probe
18 Heizeinrichtung18 heating device
20 Messvolumen20 measuring volumes
22 Gehäuse 24 BrennstoffZeilensystem22 housing 24 fuel cell system
26 Abgas 28 Leitung26 Exhaust 28 line
30 Leitung30 line
32 Steuereinheit 34 Teilabgasstrom 32 control unit 34 partial exhaust gas flow

Claims

ANSPRUCHE
1. Abgasführung mit einem Hauptabgasstrang (10), einer von dem Hauptabgasstrang abzweigenden ersten Abzweigleitung (12) und einer von dem Hauptabgasstrang abzweigenden zweiten Abzweigleitung (14), die beide zu einer außerhalb des Hauptabgassträng angeordneten Lambdasonde (16) führen, wo- bei, bezogen auf die Strömungsrichtung des Abgases durch den Hauptabgasstrang, die erste Abzweigleitung (12) stromaufwärts der zweiten Abzweigleitung (14) von dem Hauptabgasstrang (10) abzweigt.An exhaust system comprising a main exhaust line (10), a first branch line (12) branching off from the main exhaust line and a second branch line (14) branching off from the main exhaust line, both leading to a lambda probe (16) arranged outside the main exhaust line, wherein With respect to the flow direction of the exhaust gas through the main exhaust line, the first branch line (12) branches off from the main exhaust line (10) upstream of the second branch line (14).
2. Abgasführung nach Anspruch 1, dadurch gekennzeichnet, dass der Lambdasonde (16) eine Heizeinrichtung (18) zugeordnet ist.2. Exhaust system according to claim 1, characterized in that the lambda probe (16) is associated with a heating device (18).
3. Abgasführung nach Anspruch 1 oder 2, dadurch gekenn- zeichnet, dass die Abzweigleitungen (12, 14) zu einem Messvolumen (20) führen, das durch ein die Lambdasonde (16) aufnehmendes Gehäuse (22) begrenzt ist.3. The exhaust system according to claim 1 or 2, characterized in that the branch lines (12, 14) lead to a measuring volume (20) which is bounded by a lambda probe (16) receiving the housing (22).
4. Abgasführung nach Anspruch 1 oder 2, dadurch gekenn- zeichnet, dass die Abzweigleitungen direkt miteinander verbunden sind und die Lambdasonde aufnehmen.4. exhaust system according to claim 1 or 2, characterized in that the branch lines are directly connected to each other and record the lambda probe.
5. BrennstoffZeilensystem mit einer Abgasführung nach einem der vorhergehenden Ansprüche . 5. fuel line system with an exhaust system according to one of the preceding claims.
PCT/DE2008/000721 2007-05-02 2008-04-28 Exhaust gas duct and fuel cell system WO2008135016A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007020561A DE102007020561A1 (en) 2007-05-02 2007-05-02 Exhaust system and fuel cell system
DE102007020561.0 2007-05-02

Publications (1)

Publication Number Publication Date
WO2008135016A1 true WO2008135016A1 (en) 2008-11-13

Family

ID=39758815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2008/000721 WO2008135016A1 (en) 2007-05-02 2008-04-28 Exhaust gas duct and fuel cell system

Country Status (2)

Country Link
DE (1) DE102007020561A1 (en)
WO (1) WO2008135016A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3614535A1 (en) * 1986-04-29 1987-11-05 Comuna Metall Vorrichtungs U M Internal combustion engine with exhaust emission control
US4943493A (en) * 1989-04-21 1990-07-24 International Fuel Cells Corporation Fuel cell power plant
EP0478644A1 (en) * 1989-06-20 1992-04-08 Emitec Emissionstechnologie Process and device for generating heat through the flameless burning of a fuel in a gas current.
AT1571U1 (en) * 1996-09-13 1997-07-25 Avl Verbrennungskraft Messtech ARRANGEMENT FOR SAMPLING
EP0908721A1 (en) * 1997-10-10 1999-04-14 Heraeus Electro-Nite International N.V. Method of determining exhaust gas temperature and the air/fuel ratio lambda and sensor arrangement for carrying out the method
US6779339B1 (en) * 2003-05-02 2004-08-24 The United States Of America As Represented By The Environmental Protection Agency Method for NOx adsorber desulfation in a multi-path exhaust system
JP2005034835A (en) * 2003-06-23 2005-02-10 Hitachi Ltd Catalyst structure and fuel cell equipped with catalyst
DE102005051358A1 (en) * 2005-10-25 2007-04-26 Volkswagen Ag Exhaust gas mass determining method for use in e.g. diesel engine, involves determining mass of exhaust gas in channel, from ratio of mass of pumped oxygen to difference of lambda values in channel before and after oxygen pumping

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004016568A1 (en) * 2004-03-31 2005-10-27 J. Dittrich Elektronic Gmbh & Co. Kg Detecting residual gas in fuel gases for fuel cell, especially to detect oxygen as potential cause of explosion, using pump probe and fuel gas circuit with inlet for external atmosphere
DE102004017883B4 (en) * 2004-04-13 2006-12-21 Audi Ag Exhaust system for an internal combustion engine of a vehicle, in particular of a motor vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3614535A1 (en) * 1986-04-29 1987-11-05 Comuna Metall Vorrichtungs U M Internal combustion engine with exhaust emission control
US4943493A (en) * 1989-04-21 1990-07-24 International Fuel Cells Corporation Fuel cell power plant
EP0478644A1 (en) * 1989-06-20 1992-04-08 Emitec Emissionstechnologie Process and device for generating heat through the flameless burning of a fuel in a gas current.
AT1571U1 (en) * 1996-09-13 1997-07-25 Avl Verbrennungskraft Messtech ARRANGEMENT FOR SAMPLING
EP0908721A1 (en) * 1997-10-10 1999-04-14 Heraeus Electro-Nite International N.V. Method of determining exhaust gas temperature and the air/fuel ratio lambda and sensor arrangement for carrying out the method
US6779339B1 (en) * 2003-05-02 2004-08-24 The United States Of America As Represented By The Environmental Protection Agency Method for NOx adsorber desulfation in a multi-path exhaust system
JP2005034835A (en) * 2003-06-23 2005-02-10 Hitachi Ltd Catalyst structure and fuel cell equipped with catalyst
DE102005051358A1 (en) * 2005-10-25 2007-04-26 Volkswagen Ag Exhaust gas mass determining method for use in e.g. diesel engine, involves determining mass of exhaust gas in channel, from ratio of mass of pumped oxygen to difference of lambda values in channel before and after oxygen pumping

Also Published As

Publication number Publication date
DE102007020561A1 (en) 2008-11-06

Similar Documents

Publication Publication Date Title
DE602005004815T2 (en) METHOD AND DEVICE FOR ESTIMATING TEMPERATURE OF EXHAUST GASES ON ENTRY INTO A POST-TREATMENT SYSTEM POSTED INTO A SYSTEM FOR TREATING THESE GASES
EP2874039B1 (en) Control method for a heat transfer system and heat transfer system
DE112008001378T5 (en) A system for estimating a state of a fuel cell within a plane and method for estimating a state of a fuel cell within a plane
EP0989373B1 (en) Device for producing a predetermined relative humidity in the air
DE112017006085T5 (en) Temperature estimation for sensor
WO2002103312A1 (en) Method and device for measuring a temperature variable in a mass flow pipe
EP1959115A2 (en) Method to control one or more firing temperatures of a gas turbine and method for determination of the water content in the working fluid of a gas turbine
DE10135646A1 (en) Apparatus and method for reducing Stichoxiden in the exhaust gas of an internal combustion engine
WO2008135016A1 (en) Exhaust gas duct and fuel cell system
EP1432655B1 (en) Fuel cell system with a mass flow sensor
DE102006019723A1 (en) Measuring sensor system for detecting exhaust gas parameter, has unit for attaching to exhaust duct of turbine and possesses probe pipe, where pipe has temperature measuring device that is provided for detecting exhaust temperature in duct
EP2848934A1 (en) Method and sensor for determining fuel characteristics of gas mixtures
EP3182118B1 (en) Method and measuring device for determining gas properties using correlation
DE102018203936A1 (en) Exhaust system for an internal combustion engine and corresponding internal combustion engine
DE102021202555A1 (en) Method for operating a fuel cell system, electronic control unit and fuel cell system
EP3290681B1 (en) Method for operating an exhaust gas recycle system
EP0855556B1 (en) Device and method for controlling the rotational speed of a motor
DE10301603B4 (en) Method for metering ammonia or an ammonia-releasing reagent into an exhaust gas
DE102015203636B3 (en) A system and method for determining a local temperature of exhaust gas flowing in an exhaust conduit
EP1813787B1 (en) Method and device for examining exhaust gases in diesel engines
DE102022103558A1 (en) Device and method for lambda control of Otto engines and motor vehicles
WO2008083645A1 (en) Method for operating a reformer, reforming system and fuel cell system
DE102022209100A1 (en) Method for operating a drive device for a motor vehicle and corresponding drive device
AT525357A4 (en) Test unit for flow or consumption measurement on a test object
DE102007010057B4 (en) Flow Sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08757982

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 08757982

Country of ref document: EP

Kind code of ref document: A1