WO2008123575A1 - Vapor deposition material and optical thin film obtained from the same - Google Patents

Vapor deposition material and optical thin film obtained from the same Download PDF

Info

Publication number
WO2008123575A1
WO2008123575A1 PCT/JP2008/056643 JP2008056643W WO2008123575A1 WO 2008123575 A1 WO2008123575 A1 WO 2008123575A1 JP 2008056643 W JP2008056643 W JP 2008056643W WO 2008123575 A1 WO2008123575 A1 WO 2008123575A1
Authority
WO
WIPO (PCT)
Prior art keywords
vapor deposition
lanthanum
niobium
deposition material
film
Prior art date
Application number
PCT/JP2008/056643
Other languages
French (fr)
Japanese (ja)
Inventor
Shuhei Takahashi
Kaneo Kosaka
Hitoshi Okada
Original Assignee
Fuji Titanium Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Titanium Industry Co., Ltd. filed Critical Fuji Titanium Industry Co., Ltd.
Priority to KR1020097022512A priority Critical patent/KR101462294B1/en
Priority to JP2009509292A priority patent/JP5358430B2/en
Priority to CN2008800077082A priority patent/CN101636518B/en
Publication of WO2008123575A1 publication Critical patent/WO2008123575A1/en
Priority to HK10103623.7A priority patent/HK1138334A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0688Cermets, e.g. mixtures of metal and one or more of carbides, nitrides, oxides or borides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/221Ion beam deposition
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings

Definitions

  • the present invention relates to a vapor deposition material for forming an optical thin film on a substrate and an optical thin film formed using the same, and in particular, an optical thin film that transmits the visible and near-ultraviolet regions and has a high refractive index.
  • the present invention relates to an evaporation material for forming and an optical thin film formed using the same. Background technology
  • the optical thin film refers to a thin film formed by applying the interference phenomenon of light generated in a film having a thickness of about the wavelength of light to give functions such as antireflection and increased reflection.
  • Such an optical thin film is formed by providing a single layer film or a laminated film of about two to a hundred layers on a base material based on a pre-designed film configuration that expresses a desired optical function.
  • optical functions such as antireflection, increased reflection, light filtering in a narrow wavelength band, polarization control, and the like can be imparted to optical members such as camera lenses and spectacle lenses.
  • a vacuum deposition method as a vacuum deposition method, but a vacuum deposition method that is excellent in terms of cost is often used as a film formation rate.
  • a film is formed on a substrate by vaporizing the evaporation material loaded in a vessel such as a boat or a crucible in a vacuum by a heating means such as resistance heating or electron beam heating.
  • vacuum deposition may be further divided into resistance heating deposition and electron beam deposition.
  • the electron beam evaporation method is often used because, in principle, a material having a high melting point or a low vapor pressure can be deposited.
  • the vapor deposition material is a vapor deposition source used to form a film in the vacuum vapor deposition method. Generally, it is classified as a high refractive index material, a medium refractive index material, and a low refractive index material according to the degree of the refractive index of the formed film.
  • the refractive index of the film formed by changing the film formation conditions is set to a desired value. Specifically, the refractive index is lower than the material. It is possible to form a film having For example, if a film formation condition is set so that a medium refractive index film is intentionally formed using a high refractive material (relaxation is reduced), the obtained film is equivalent to the medium refractive index.
  • the packing density is small and it is easy to absorb moisture in the atmosphere. Therefore, the refractive index fluctuation is large, and it takes a long time for the fluctuation to settle.
  • the refractive index of the film is usually determined not by setting the film forming conditions but by selecting and combining appropriate materials.
  • High refractive index materials are composed of oxides of titanium, niobium, or tantalum, or these oxides. Multi-component oxides and binary oxides of titanium and zirconium are known.
  • the “multi-element oxide” refers to a mixed oxide, composite oxide, solid solution oxide, or the like containing two or more metal elements.
  • the film formed using titanium, niobium, or tantalum-based materials does not have a problem with light transmission in the visible region, but has a large absorption in the near-ultraviolet wavelength region and is used in the near-ultraviolet region. It is difficult to apply to optical members.
  • the vapor deposition material is a material in which the material solid is directly vaporized without melting (sublimation property), the material is melted and soon vaporizes (semi-melting property) material, melting It can be classified into three types of materials that vaporize after passing through the state (melting property). Of these, the fusible material can make the vapor deposition process the most stable.
  • the above-mentioned binary oxide of titanium and zirconium is a sublimable or semi-meltable material, and it is difficult to form a uniform and homogeneous film using this. Therefore, if a multi-component material having a composition in which a predetermined amount of an additive that does not absorb in the near-ultraviolet region is added to the above-described titanium, niobium, or tantalum-based material, the possibility of solving the above-described problems remains. It can be said that.
  • multi-component materials generally do not evaporate according to the composition of the materials (ratio of each component) due to the different vapor pressures of each component when the vacuum deposition method is used. That is, the composition of the evaporated vapor does not necessarily match the composition of the material. Therefore, the composition of the material changes with the deposition time and the number of depositions, and the composition of the formed film also changes.Therefore, it is often difficult to produce a film having a desired characteristic many times in succession. . This means that it is necessary to reduce the number of times the material is replenished as much as possible so that the vapor deposition material once loaded in the container is used up, as in the case of a film forming operation with a large number of film layers such as a light fill.
  • vapor deposition that is performed a plurality of times after the vapor deposition material is once loaded in the container and then replenished is referred to as “continuous vapor deposition”.
  • continuous vapor deposition Even a meltable material is not suitable for continuous vapor deposition in the case of a multi-component material whose material composition changes with the vapor deposition time and the number of vapor depositions.
  • a multi-element film can be formed by using a plurality of heating evaporation sources and evaporating the vapor deposition material as each element component independently (multi-element vapor deposition).
  • multi-source deposition is rarely used except for research purposes because it is difficult to optimize the deposition conditions to obtain the desired film composition and the cost is high.
  • Patent Documents 1 and 2 disclose binary oxides of titanium and lanthanum
  • Patent Document 3 discloses binary oxides of titanium and samarium.
  • the material of Patent Document 1 can only form a film having a refractive index of about 2.1 at the maximum, which is sufficient as the refractive index of a high refractive index material. It was not so high. Furthermore, although there is no absorption in the wavelength range from the near ultraviolet (short wavelength) to the near infrared (long wavelength) through the visible part (transparent), the shortest wavelength without absorption is approximately 3 60 close to the visible part. nm.
  • Patent Documents 2 and 3 can form a film having a refractive index higher than 2.1, as in Patent Document 1, the shortest wavelength without absorption is still close to the visible region. It was 0 nm, and it was not possible to transmit light in the near ultraviolet region sufficiently (no absorption). Thus, a deposition material for forming a film having a refractive index higher than 2.1 and transmitting light in the near ultraviolet region as well as the visible region has not been known so far.
  • electron beam vapor deposition is mainly used in vacuum vapor deposition.
  • Film formation by electron beam vapor deposition using a meltable vapor deposition material is generally performed as follows. First, as a pretreatment, the molten material is melted by electron beam heating to form a molten pool. Next, a film is formed on the substrate by irradiating the molten pool again with an electron beam to generate material vapor.
  • the melt pool is continuously irradiated with the electron beam during film formation, even if the meltable material is the same, (1) the heat from the beam is appropriately diffused from the beam irradiation point to the entire melt pool to maintain a smooth evaporation surface. Because of easy control of evaporation rate As a result, a material that can easily form a film having desired characteristics. (2) Heat concentrates only in the vicinity of the beam irradiation point, and the molten pool deforms into a concave shape or the like with the deposition time and is smooth. Since the evaporation surface cannot be maintained, it is difficult to control the evaporation rate, and there are materials that require frequent replenishment.
  • Patent Documents 1 to 3 correspond to the latter (2), and if continuous deposition is performed so as to reduce the replenishment frequency of the material as much as possible, the deposition operation is performed to avoid concentration of heat.
  • special measures such as film formation while changing the irradiation position of the electron beam appropriately were necessary.
  • the heat distribution state given to the molten pool was likely to fluctuate, and eventually it was difficult to control the evaporation rate.
  • a multi-component deposition material that can easily form a desired high-refractive-index film without special measures for electron beam operation has not been known so far.
  • Patent Document 1 Japanese Patent No. 2 7 2 0 9 5 9
  • Patent Document 2 Japanese Patent Laid-Open No. 2 0 0 2-2 2 6 9 6 7
  • Patent Document 3 Japanese Patent Laid-Open No. 2 0 0 0-1 8 0 6 0 4
  • the object of the present invention is to eliminate all of the above-mentioned problems, that is, it is meltable and can be continuously evaporated, and the evaporation rate can be easily controlled even if the electron beam evaporation method is used.
  • An evaporation material for forming an optical thin film capable of transmitting light in a wider wavelength range than that of the prior art, particularly in the near ultraviolet region, and having a high refractive index, and an optical thin film obtained by using the vapor deposition material The object is to provide a method for producing a thin film.
  • the present inventors have come to focus on vapor deposition materials composed of binary oxides of niobium and lanthanum.
  • composition of the vapor generated from the vapor deposition material by this combination of components is not necessarily determined simply by the vapor pressure of each component as conventionally known.
  • the present inventors have found that the above-described problems can be solved only in the vapor deposition materials having the composition ratios described above and optical thin films formed using these materials, and have completed the present invention. Disclosure of the invention
  • the present invention relates to the following inventions.
  • a vapor deposition material composed of a binary oxide of niobium and lanthanum, or in addition to metal niobium and / or metal lanthanum, wherein the molar ratio of niobium and lanthanum in the vapor deposition material is 25: 7 Vapor deposition material, wherein 5 to 90:10.
  • a method for producing an optical thin film characterized by being formed by a vacuum vapor deposition method using the vapor deposition material described in the above 1 to 4.
  • the vapor deposition material of the present invention is composed of a binary oxide of niobium and lanthanum, and the molar ratio of the niobium and lanthanum is 25:75 to 90:10.
  • binary oxide of niobium and lanthanum means a mixture of niobium oxide and lanthanum oxide, a composite oxide of niobium and lanthanum, a mixture of two or more of these composite oxides, niobium and A mixture of lanthanum oxide and niobium oxide, a mixture of niobium and lanthanum oxide and lanthanum oxide, a solid solution oxide of niobium and lanthanum, etc., composed of niobium, lanthanum and oxygen Refers to all substances.
  • lanthanum oxide, niobium oxide, and complex oxides of niobium and lanthanum are acid Lanthanum (III) (L a 2 0 3 ), niobium oxide (V) (Nb 2 0 5 ), L a 3 Nb 0 7 , L aNb 0 4 , L aNb 3 0 9 , L aNb 5 0 14 , L a other conventional chemically most stable oxides in an atmosphere such as N b 7 ⁇ L 9, L nitrous oxide lanthanum like A_ ⁇ , Ya Nb0 2, Nb 2 ⁇ 3, niobium suboxide as NbO
  • a sub-oxide such as a composite oxide in a sub-oxidation state such as LaNb 7 12 may be used.
  • suboxide vapor deposition materials are materials having a lower oxygen content. Desorption of oxygen gas is unlikely to occur during melting as a treatment. Therefore, it is easy to control the atmospheric pressure in the vapor deposition apparatus during vapor deposition, and it is easy to form a film having desired characteristics.
  • the nitrous oxide evaporation material of the present invention other L ANB 7 ⁇ 12 already described, Nb_ ⁇ + L ANb_ ⁇ 4, Nb_ ⁇ 2 + L ANb_ ⁇ 4 and Nb_ ⁇ 2 + L a 3 Nb0 7 + L the aNb0 binary oxides of structure such as 4 can be exemplified.
  • the second vapor deposition material of the present invention is a vapor deposition material comprising a) a binary oxide of niobium and lanthanum, and b) metal niobium and / or metal lanthanum, the mole of niobium and lanthanum in the vapor deposition material.
  • the ratio is 25:75 to 90:10.
  • the definition of “binary oxide of niobium and lanthanum” is as described above.
  • Nb + L a 2 ⁇ 3, L a + Nb 2 ⁇ 5, Nb + L a + Nb 2 0 5, Nb + L aO, Nb + L aNb0 4, Nb + L aNb 7 0 12, Nb + La 3 Nb0 7 + L aNb0 43 ⁇ 4 Nb + L a 3 NbO y + laNb 7 ⁇ 12, N b + N b O 2 + L a 3 N B_ ⁇ 9 + L a N the b O 4 and N b + N b O + Nb_ ⁇ 2 + L a 3 Nb_ ⁇ 9 + L ANb_ ⁇ 4 can be exemplified.
  • metal-containing vapor deposition material such a vapor deposition material containing niobium metal and / or metal lanthanum is referred to as a “metal-containing vapor deposition material”. Since the metal-containing vapor deposition material is also a material having a smaller oxygen content like the suboxide vapor deposition material, it is easy to form a film having desired characteristics for the reasons described above.
  • the vapor deposition material of the present invention does not impair the effects of the present invention described above. That is, up to 5 mo 1% of the binary oxides of niobium and lanthanum does not prevent the addition of materials other than niobium and lanthanum oxides. Examples of such materials include aluminum oxide, gadolinium oxide, dysprosium oxide, ytterbium oxide, and the like.
  • a material in which the molar ratio of niobium and lanthanum is outside the range of 25:75 to 90:10 is not suitable for continuous deposition because the molar ratio varies greatly with the deposition time and the number of depositions.
  • the variation in the refractive index and the optical wavelength range of the film successively formed by continuous vapor deposition becomes extremely small.
  • a film having certain characteristics over a long period of time and many times can be produced, which is preferable.
  • the refractive index variation can be suppressed to about 0.01.
  • the form of the vapor deposition material of the present invention is not particularly limited, but it is preferable that the vapor deposition material has a shape of a molded body such as a granule or evening bullet rather than the raw material powder itself or a mixture. This is because powders are not handled well during vapor deposition, and material splashing is likely to occur, making it difficult to form a film with desired optical characteristics.
  • the size of the molded body is about 0.1 to 10 mm because replenishment of the material during continuous vapor deposition is difficult.
  • L a 2 0 3 and L a O such containing chromatic ratio of lanthanum oxide is not more than 5% by weight.
  • Lanthanum oxide is highly hygroscopic, and when the content exceeds 5% by weight, it reacts with the moisture in the air and has a lower density of lanthanum hydroxide. This is because if it is chemically transformed into a molded body, sintered body, or melt, it expands and collapses into a powder.
  • a vapor deposition material containing a large amount of lanthanum hydroxide as well as this powder is used for vapor deposition as it is, not only will splash of the material occur during heating, but also significant moisture will be released, and the formed film will be lost. A physical defect occurs and it is not preferable from the viewpoint of maintenance of the vapor deposition apparatus.
  • the vapor deposition material of the present invention can be produced, for example, by the following method.
  • niobium oxide (V) and lanthanum oxide (III) powders are used as starting materials, mixed at a predetermined ratio, and the resulting mixture powder is granulated and / or molded.
  • a molded body having a size of about 0.1 to 10 mm can be produced and then fired at a predetermined temperature in the air, in a vacuum, or in an inert gas such as argon.
  • argon inert gas such as argon.
  • a melt it can be produced by melting the mixture powder or its molded body at a predetermined temperature.
  • the optimum firing temperature and melting temperature differ depending on the molar ratio of niobium and lanthanum constituting the vapor deposition material, but if the firing temperature is approximately 900 to 1700 t: It is appropriate that the melting temperature is approximately 1 3 5 0 to 1 90 0.
  • niobium oxide is used as a starting material.
  • metal niobium and metal or lanthanum metal may be used.
  • a metal and an oxide can be chemically reacted at the time of firing or melting, and a suboxide deposition material can be produced.
  • niobium oxide and / or lanthanum oxide may be used as a starting material instead of niobium oxide (V) and / or lanthanum oxide (I I I).
  • it can also be produced by deoxygenating a vapor deposition material produced using only niobium oxide (V) and lanthanum oxide (I I I) as starting materials. Examples of the deoxygenation method include heat treatment under a reducing gas such as hydrogen.
  • the composition of the starting material is sub-oxidation. This is the same as the case of the material vapor deposition material. However, the manufacturing conditions different from those for the suboxide deposition material are applied (for example, the firing temperature is slightly lowered or the firing time is shortened at the time of firing), so that the metal itself remains. To complete the manufacturing. In this way, a metal-containing vapor deposition material can be produced.
  • niobium and lanthanum can be produced by adding niobium metal and Z or metal lanthanum to the vapor deposition material of the binary oxide of niobium and lanthanum, and in some cases further firing or melting.
  • vapor deposition material of the present invention By using the vapor deposition material of the present invention described above, it is possible to transmit not only the entire visible light region but also the near ultraviolet region, which is a shorter wavelength region than 360 nm, and is refracted in the vicinity of a wavelength of 450 nm.
  • An optical thin film having a high refractive index of about 2.15 to 2.35, preferably about 2.20 to 2.35 can be formed.
  • the method for producing an optical thin film of the present invention is characterized in that it is formed by a vacuum deposition method using the vapor deposition material of the present invention.
  • the “vacuum evaporation method” in the present invention includes an ion plating method and an ion assist method in which an auxiliary means for film formation processing is added to this method.
  • the heat given to the material by the beam is appropriately diffused from the beam irradiation point to the entire material, and the evaporation surface is kept smooth even after the evaporation time, so the evaporation rate is easy. Can be controlled.
  • an optical thin film having desired characteristics can be easily produced.
  • the replenishment frequency of the vapor deposition material can be made lower, continuous vapor deposition can be performed for a longer time and many times.
  • the desired optical thin film can be obtained even if the electron beam irradiation position is fixed during film formation, for example, without requiring any special measures for electron beam operation. Can be easily manufactured.
  • the irradiation position of the electron beam at this time is preferably the central portion of the container, for example, when a vapor deposition material is loaded into a cylindrical container.
  • the evaporation rate is easily controlled and continuous evaporation can be achieved by configuring the evaporation material with a specific element combination of niobium and lanthanum. be able to.
  • FIG. 1 is an X-ray diffraction pattern of the vapor deposition material obtained in Example 1.
  • FIG. 2 is a photograph showing the state of the molten pool after film formation in Example 1.
  • FIG. 3 is a photograph showing the state of the molten pool after completion of film formation in Comparative Example 3.
  • FIG. 4 is a photograph showing the state of the molten pool after completion of film formation in Comparative Example 4.
  • the molar ratio of niobium and lanthanum is 37.5: 62.5
  • the powder mixture is granulated into granules of 1 to 3 mm, and fired at 1300 ° C for 4 hours in the atmosphere.
  • a granular deposition material was obtained.
  • the material was identified by X-ray diffraction pattern shown in Figure 1 and L a 3 Nb_ ⁇ 7 and L aNb0 4.
  • the was loaded evaporation material copper hearth liner (crucible) was set in a commercially available vacuum deposition instrumentation ⁇ , was evacuated to the interior of the apparatus to 1.
  • OX 10- 3 P a the deposition material by electron beam heating Melted to form a molten pool.
  • the total pressure by introducing oxygen to be 1.0X 10- 2 P a again, an electron beam is irradiated only to the center portion of the molten pool, to generate material vapor
  • a set 300 in the apparatus in advance Films were formed on the substrate that had been heated to a thickness of 0.9 nmZ seconds until the physical film thickness reached 250 nm. This film formation is performed without replacing the deposition material while replacing only the base material. I went twice.
  • the refractive index at a wavelength of 4 ⁇ 0 nm was determined by a spectrophotometer, and the molar ratio of niobium to lanthanum was determined by ICP-MS composition analysis.
  • the results are shown in Tables 1 and 2.
  • the refractive index and the molar ratio are uniform regardless of the number of depositions, and no absorption was observed from 285 nm to the visible region. As this 285 nm, when the wavelength is shortened from the visible region side to the ultraviolet region side, the light absorption of the film begins to occur, and the wavelength at which the spectral transmittance begins to drop rapidly, Called the “shortest transmission wavelength”.
  • Fig. 2 shows a photograph of the vapor deposition material (molten pool) after the film formation described above. Even though the electron beam was irradiated only at the center of the melt pool, a smooth evaporation surface was maintained. I understand that
  • the method for calculating the refractive index at a wavelength of 450 nm is as follows. Measure the spectral transmittance with a commercially available spectrophotometer to obtain a spectral curve.
  • the SELLME I ER dispersion formula is a formula often used for the purpose of obtaining the relationship between the wavelength of light and the refractive index, and is expressed by the following formula.
  • is the refractive index
  • is the wavelength
  • ⁇ and ⁇ are coefficients that determine the relationship between wavelength and refractive index.
  • SQL represents calculating the square root of the above [] part.
  • niobium oxide (V), lanthanum oxide (III) and metal niobium in a weight ratio of 45.5: 46.5: 8.0 (molar ratio of niobium to lanthanum is 60.0: 40.0).
  • V niobium oxide
  • III lanthanum oxide
  • metal niobium in a weight ratio of 45.5: 46.5: 8.0 (molar ratio of niobium to lanthanum is 60.0: 40.0).
  • the material was identified by X-ray diffraction pattern with L ANb_ ⁇ 4 and NbO.
  • the refractive index and the shortest transmission wavelength at a wavelength of 4 ⁇ 0 nm were obtained.
  • the molar ratio of Abu to lanthanum was determined. The results are shown in Tables 1 and 2. The refractive index and the molar ratio were uniform regardless of the number of film formation, and the shortest transmission wavelength was 305 nm.
  • Niobium oxide (V) and lanthanum oxide (III) powders were mixed at a weight ratio of 80.3: 19.7 (molar ratio of niobium and lanthanum was 83.3: 16.7), and the powder mixture was formed into a 1 to 3 mm tablet. And was fired in the atmosphere for 1200 x 4 hours to obtain an evening bullet-like vapor deposition material.
  • the material was identified as LaNb 5 0 14 from the X-ray diffraction pattern.
  • the refractive index at the wavelength of 450 nm, the shortest transmission wavelength, and the molar ratio of niobium to lanthanum were determined for each film obtained by forming a film in the same manner as in Example 1. .
  • the results are shown in Tables 1 and 2.
  • the refractive index and the molar ratio were uniform regardless of the number of depositions, and the shortest transmission wavelength was 330 nm.
  • niobium oxide (V) and lanthanum oxide (III) in a weight ratio of 25.9: 74.1 (molar ratio of niobium and lanthanum is 30.0: 70.0). Then, it was calcined in the atmosphere at 1500 ° C for 4 hours to obtain a granular deposition material.
  • the material was identified by X-ray diffraction pattern as L a 3 Nb_ ⁇ 7 and L ANb_ ⁇ 4.
  • the refractive index at the wavelength of 450 nm, the shortest transmission wavelength, and the molar ratio of niobium to lanthanum were determined for each film obtained by forming a film in the same manner as in Example 1. .
  • the results are shown in Tables 1 and 2.
  • the refractive index and the molar ratio were uniform regardless of the number of film formation, and the shortest transmission wavelength was 270 nm.
  • the refractive index at the wavelength of 450 nm, the shortest transmission wavelength, and the molar ratio of niobium to lanthanum were determined for each film obtained by forming a film in the same manner as in Example 1. .
  • the results are shown in Tables 1 and 2.
  • the refractive index and the molar ratio were uniform regardless of the number of film formation, and the shortest transmission wavelength was 290 nm.
  • V niobium oxide
  • lanthanum oxide
  • metal niobium in a weight ratio of 26.8: 68.5: 4.7 (molar ratio of niobium to lanthanum is 37.5: 62.5).
  • V niobium oxide
  • lanthanum oxide
  • metal niobium in a weight ratio of 26.8: 68.5: 4.7 (molar ratio of niobium to lanthanum is 37.5: 62.5).
  • the material was identified from the X-ray diffraction pattern as L a 3 Nb0 7, L a N B_ ⁇ 4 and N b.
  • the refractive index at the wavelength of 450 nm, the shortest transmission wavelength, and the molar ratio of niobium to lanthanum were determined for each film obtained by forming a film in the same manner as in Example 1. .
  • the results are shown in Tables 1 and 2.
  • the refractive index and the molar ratio were uniform regardless of the number of film formation, and the shortest transmission wavelength was 290 nm.
  • Niobium oxide (V), lanthanum oxide (III), and metal niobium powder were mixed at a weight ratio of 53.3: 21.8: 24.9 (molar ratio of niobium to lanthanum was 83.3: 16.7). Molded into 1 to 3 mm evening bullets and fired in vacuum at 1300 ° C for 3 hours to obtain evening bullet-like deposition materials. The material was identified as L aNb 3 09 , LaNb 0 4 , Nb 0 2 , NbO and Nb from the X-ray diffraction pattern.
  • the refractive index at the wavelength of 450 nm and the shortest transmission wavelength were obtained for each film obtained by forming the film in the same manner as in Example 1.
  • the molar ratio of Abu to lanthanum was determined. The results are shown in Tables 1 and 2.
  • the refractive index and the molar ratio were uniform regardless of the number of depositions, and the shortest transmission wavelength was 335 nm.
  • Niobium oxide (V) and lanthanum oxide (III) powders were mixed at a weight ratio of 90.4: 9.6 (the molar ratio of niobium and lanthanum was 92.3: 7.7).
  • the refractive index at the wavelength of 450 nm, the shortest transmission wavelength, and the molar ratio of niobium to lanthanum were determined for each film obtained by forming a film in the same manner as in Example 1. .
  • the results are shown in Tables 1 and 2.
  • the refractive index decreases and the molar ratio also changes, and even though the shortest transmission wavelength is 365 nm, it can sufficiently transmit light in the near ultraviolet region. It was not.
  • the powder mixture is granulated into 1 to 3 mm granules, and calcined in the atmosphere at 1500t: x4 hours to deposit condylar particles Obtained material.
  • the material was identified from its X-ray diffraction pattern L a 3 N b O 7 ⁇ beauty L a 2 ⁇ 3 (lanthanum oxide). Increased mass was observed due to moisture absorption. The granules did not collapse. The content of lanthanum oxide calculated from the increased mass was 2.5% by weight.
  • the refractive index at the wavelength of 450 nm, the shortest transmission wavelength, and the molar ratio of niobium to lanthanum were determined for each film obtained by forming a film in the same manner as in Example 1. .
  • the results are shown in Tables 1 and 2.
  • the shortest transmission wavelength is 260 nm, which sufficiently transmits the near-ultraviolet region, the refractive index increased and the molar ratio changed as the number of film formations increased. Comparative Example 3
  • Titanium oxide (IV), lanthanum oxide (III) and titanium metal powder were mixed at a weight ratio of 29.3: 68.2: 2.5 (molar ratio of titanium to lanthanum was 50.0: 50.0).
  • Granulated vapor-deposited material was obtained by granulating into ⁇ 3mm granules and firing in vacuum at 1700 ° CX for 5 hours.
  • a film was formed in the same manner as in Example 1 except that the number of film formation was one.
  • Fig. 3 shows a photograph of the vapor deposition material after the film formation, and it can be seen that the position irradiated with the electron beam is greatly recessed. The center of the dent is dug deep enough to reach the bottom of the hearth liner (the distance between the center surface and the hearth liner bottom is about 3mm) Continuous deposition was impossible at all.
  • Niobium oxide (V) and yttrium oxide (III) powders were mixed at a weight ratio of 44.0: 56.0 (molar ratio of niobium and yttrium was 40.0: 60.0). And then fired in vacuum for 1700 x 4 hours to obtain a granular deposition material.
  • a film was formed in the same manner as in Example 1 except that the number of film formation was one.
  • Fig. 4 shows a photograph of the vapor deposition material after the completion of the above film formation, but the position where the electron beam was irradiated was greatly recessed despite the fact that the film was formed only once. It can be seen that a part of the bottom is exposed. As in Comparative Example 3, continuous vapor deposition was not possible at all.
  • Comparative Example 5 A granular deposition material was obtained in the same manner as in Example 4 except that it was calcined at 120 ° C. for 4 hours in the air. The material was identified by X-ray diffraction pattern with L a N b 0 4, L a 3 N B_ ⁇ 7 and L a 2 ⁇ 3. An increase in mass was observed due to moisture absorption, and the granules collapsed and turned into powder one day after production. When the content of lanthanum oxide was calculated from the increased mass, it was 6.3% by weight.
  • the powdered copper hearth liner loaded with deposited material was set in a vacuum deposition apparatus available on the market, it was evacuated to the interior of the apparatus to 1. 0 X 1 0- 3 P a, was heated to a higher electron beam However, the material was scattered violently, so the film formation was interrupted.
  • the vapor deposition material which has the following characteristics, the optical thin film formed using it, and the manufacturing method of the optical thin film can be provided.
  • Evaporation rate can be easily controlled even using electron beam evaporation. That is, the heat generated by the beam diffuses moderately from the beam irradiation point * f to the entire molten pool and maintains a smooth evaporation surface, so that the evaporation rate can be easily controlled, resulting in uniform desired characteristics. A film can be easily formed.
  • An optical thin film having a high refractive index can be formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Disclosed is a vapor deposition material composed of a two-component oxide of niobium and lanthanum, or a vapor deposition material composed of the two-component oxide and niobium metal and/or lanthanum metal. This vapor deposition material is characterized in that the molar ratio between niobium and lanthanum is from 25:75 to 90:10. Also disclosed is an optical thin film obtained from such a vapor deposition material.

Description

明 細 書 蒸着材料及びそれより得られる光学薄膜 技術分野  Description: Vapor deposition material and optical thin film obtained from it
本発明は、 基材上に光学薄膜を形成するための蒸着材料及びそれを用いて形成 される光学薄膜に関し、 特に、 可視及び近紫外域を透過させ、 かつ、 高屈折率を 有する光学薄膜を形成するための蒸着材料及びそれを用いて形成される光学薄膜 に関する。 . 背景技術  The present invention relates to a vapor deposition material for forming an optical thin film on a substrate and an optical thin film formed using the same, and in particular, an optical thin film that transmits the visible and near-ultraviolet regions and has a high refractive index. The present invention relates to an evaporation material for forming and an optical thin film formed using the same. Background technology
本明細書において光学薄膜とは、 光の波長程度の厚みをもつ膜において発生す る光の干渉現象を応用し、 反射防止や増反射等の機能を付与させるよう形成した 薄膜のことをいう。  In this specification, the optical thin film refers to a thin film formed by applying the interference phenomenon of light generated in a film having a thickness of about the wavelength of light to give functions such as antireflection and increased reflection.
このような光学薄膜は、 所望の光学的機能を発現させるベく予め設計された膜 構成に基づき、 基材上に単層膜、 あるいは二〜百層程度の積層膜を設けることに より形成される。 これにより、 カメラレンズ、 眼鏡レンズ等の光学部材に対し、 反射防止、 増反射、 狭波長帯域の光フィルタリング、 偏光制御等の光学的機能を 付与することができる。 このような光学薄膜の形成方法には、 真空蒸着法ゃスパ ッ夕法があるが、 成膜速度ゃコストの点で優れた真空蒸着法が用いられることが 多い。 真空蒸着法では、 ボートやるつぼ等の容器に装填された蒸着材料を真空中 で抵抗加熱や電子ビーム加熱等の加熱手段により気化することで、 基材上に膜を 形成する。 その加熱手段に応じて、 真空蒸着法は、 さらに抵抗加熱蒸着法と電子 ビーム蒸着法とに区分されることがある。 うち、 電子ビーム蒸着法は、 原理的に 高融点や低蒸気圧の材料をも蒸着させることができるため、 よく用いられている。 なお、 蒸着材料とは、 真空蒸着法において成膜するのに用いられる蒸着源のこと をいい、 形成される膜の屈折率における高低の程度に応じて、 高屈折率材料、 中 屈折率材料、 及び低屈折率材料と分類されることが一般的である。 Such an optical thin film is formed by providing a single layer film or a laminated film of about two to a hundred layers on a base material based on a pre-designed film configuration that expresses a desired optical function. The Thereby, optical functions such as antireflection, increased reflection, light filtering in a narrow wavelength band, polarization control, and the like can be imparted to optical members such as camera lenses and spectacle lenses. As a method for forming such an optical thin film, there is a vacuum deposition method as a vacuum deposition method, but a vacuum deposition method that is excellent in terms of cost is often used as a film formation rate. In the vacuum evaporation method, a film is formed on a substrate by vaporizing the evaporation material loaded in a vessel such as a boat or a crucible in a vacuum by a heating means such as resistance heating or electron beam heating. Depending on the heating means, vacuum deposition may be further divided into resistance heating deposition and electron beam deposition. Among them, the electron beam evaporation method is often used because, in principle, a material having a high melting point or a low vapor pressure can be deposited. The vapor deposition material is a vapor deposition source used to form a film in the vacuum vapor deposition method. Generally, it is classified as a high refractive index material, a medium refractive index material, and a low refractive index material according to the degree of the refractive index of the formed film.
一方、 ある特定の屈折率材料のみを用いた場合であっても、 成膜条件の変更に よって形成される膜の屈折率を所望の値に設定する、 具体的には材料よりも低い 屈折率を有する膜とすることは可能である。 例えば、 高屈折材料を用い、 意図的 に中屈折率の膜が形成されるよう成膜条件を設定した場合 (緻密性を緩める) で あれば、 得られた膜は中屈折率相当であっても、 その充填密度は小さく大気中の 水分を吸収しやすくなり、 そのため屈折率の変動が大きく、 またその変動が収ま るまでに長時間を要することとなる。 その点で、 膜の屈折率は、 成膜条件の設定 によってではなく、 適当な材料の選択 ·組み合わせによって決定されるのが通常 である。  On the other hand, even when only a specific refractive index material is used, the refractive index of the film formed by changing the film formation conditions is set to a desired value. Specifically, the refractive index is lower than the material. It is possible to form a film having For example, if a film formation condition is set so that a medium refractive index film is intentionally formed using a high refractive material (relaxation is reduced), the obtained film is equivalent to the medium refractive index. However, the packing density is small and it is easy to absorb moisture in the atmosphere. Therefore, the refractive index fluctuation is large, and it takes a long time for the fluctuation to settle. In this respect, the refractive index of the film is usually determined not by setting the film forming conditions but by selecting and combining appropriate materials.
高屈折率材料、 特に屈折率が 2. 1以上であって可視域を透過させる膜を形成 することができる材料としては、 チタン、 ニオブまたはタンタルの酸化物、 ある いはこれらの酸化物から構成される多元系酸化物や、 チタンとジルコニウムの二 元系酸化物が公知である。 なお、 本明細書において 「多元系酸化物」 とは、 ニ以 上の金属元素が含まれる混合酸化物、 複合酸化物や固溶体酸化物等のことをいう。 しかしな力 Sら、 チタン、 ニオブまたはタンタル系の材料を用いて形成した膜は、 可視域における光透過性には問題がないものの近紫外波長域では吸収が大きく、 近紫外域においても使用される光学部材には適用することが難しい。  High refractive index materials, especially materials that have a refractive index of 2.1 or more and can form a film that transmits the visible region, are composed of oxides of titanium, niobium, or tantalum, or these oxides. Multi-component oxides and binary oxides of titanium and zirconium are known. In the present specification, the “multi-element oxide” refers to a mixed oxide, composite oxide, solid solution oxide, or the like containing two or more metal elements. However, the film formed using titanium, niobium, or tantalum-based materials does not have a problem with light transmission in the visible region, but has a large absorption in the near-ultraviolet wavelength region and is used in the near-ultraviolet region. It is difficult to apply to optical members.
また、 蒸着材料は、 その材料がもつ融点および蒸気圧に応じて、 材料固体が溶 融を経ずに直接気化する (昇華性) 材料、 溶融して間もなく気化する (半溶融 性) 材料、 溶融状態を経た後気化する (溶融性) 材料の三種類に分類することが できる。 これらのうち、 蒸着過程を最も安定なものとすることができるのは溶融 性材料である。 溶融によって容器の内壁を铸型とした柱状の溶融プールが形成さ れることにより平滑な蒸発面が得られ、 その蒸発面によって材料蒸気の発生速度 (蒸発速度) を制御しやすくなり、 均一かつ均質な膜を形成させやすくなるため である。 In addition, depending on the melting point and vapor pressure of the material, the vapor deposition material is a material in which the material solid is directly vaporized without melting (sublimation property), the material is melted and soon vaporizes (semi-melting property) material, melting It can be classified into three types of materials that vaporize after passing through the state (melting property). Of these, the fusible material can make the vapor deposition process the most stable. By forming a column-shaped molten pool with the inner wall of the container shaped like a bowl by melting, a smooth evaporation surface is obtained, and the evaporation surface makes it easy to control the generation rate (evaporation rate) of the material vapor, making it uniform and homogeneous Easy to form a thick film It is.
上記したチタンとジルコニウムとの二元系酸化物は、 昇華性ないし半溶融性の 材料であり、 これを用いては均一かつ均質な膜を形成させることが難しい。 そこで、 近紫外域に吸収のない添加物を上記したチタン、 ニオブまたはタン夕 ル系の材料に所定量添加した組成の多元系材料とすれば、 上記した課題を解決す る可能性が残されているといえる。  The above-mentioned binary oxide of titanium and zirconium is a sublimable or semi-meltable material, and it is difficult to form a uniform and homogeneous film using this. Therefore, if a multi-component material having a composition in which a predetermined amount of an additive that does not absorb in the near-ultraviolet region is added to the above-described titanium, niobium, or tantalum-based material, the possibility of solving the above-described problems remains. It can be said that.
しかしながら、 多元系材料は、 真空蒸着法を用いた場合、 各成分の蒸気圧が異 なることに起因し、 材料の組成 (各成分の比) 通りには蒸発しないのが一般的で ある。 すなわち蒸発した蒸気の組成は、 材料の組成とは必ずしも一致しない。 よ つて、 蒸着時間や蒸着回数とともにその材料組成が変化し、 伴って形成された膜 組成も変化するため、 所望の特性を有する膜を多数回連続して作製することが困 難な場合が多い。 このことは、 光フィル夕一等の膜層数が多い成膜操作の様に、 容器に一度装填した蒸着材料をなるベく使い尽くすよう、 材料の補給回数を極力 少なくすることが必要とされる場合に特にいえることである。 なお、 本明細書で は、 一度容器に蒸着材料を装填した後、 次に補給するまでになされる複数回に亘 る蒸着を 「連続蒸着」 と呼ぶ。 なお、 溶融性材料であっても、 蒸着時間や蒸着回 数とともにその材料組成が変化するような多元系材料の場合は、 連続蒸着に適さ ない。  However, multi-component materials generally do not evaporate according to the composition of the materials (ratio of each component) due to the different vapor pressures of each component when the vacuum deposition method is used. That is, the composition of the evaporated vapor does not necessarily match the composition of the material. Therefore, the composition of the material changes with the deposition time and the number of depositions, and the composition of the formed film also changes.Therefore, it is often difficult to produce a film having a desired characteristic many times in succession. . This means that it is necessary to reduce the number of times the material is replenished as much as possible so that the vapor deposition material once loaded in the container is used up, as in the case of a film forming operation with a large number of film layers such as a light fill. This is especially true when In the present specification, vapor deposition that is performed a plurality of times after the vapor deposition material is once loaded in the container and then replenished is referred to as “continuous vapor deposition”. Even a meltable material is not suitable for continuous vapor deposition in the case of a multi-component material whose material composition changes with the vapor deposition time and the number of vapor depositions.
一方、 多元系の膜は、 複数の加熱蒸発源を用い、 各元素成分となる蒸着材料を 独立して蒸発させることにより形成すること (多元蒸着) も可能である。 しかし ながら、 多元蒸着は、 所望の膜組成を得るための蒸着条件の最適化が難しく、 ま たコストも高いため、 研究用途以外ではほとんど用いられていないのが実情であ る。  On the other hand, a multi-element film can be formed by using a plurality of heating evaporation sources and evaporating the vapor deposition material as each element component independently (multi-element vapor deposition). However, multi-source deposition is rarely used except for research purposes because it is difficult to optimize the deposition conditions to obtain the desired film composition and the cost is high.
したがって、 光学薄膜に係る多くの文献には様々な多元系膜の例示がされてい るものの、 真空蒸着法を用いた場合、 実際上、 連続蒸着により一定した特性を有 する多元系の膜を作製することは容易でない。 近年、 特許文献 1及び 2ではチタン及びランタンの二元系酸化物、 特許文献 3 ではチタン及びサマリウムの二元系酸化物が開示されている。 これらは、 いずれ も上掲した課題が解決された、 すなわち、 近紫外域での吸収のない膜を形成する ことができ、 溶融性を有し、 連続蒸着が可能な高屈折率材料であるとされている。 ただし、 これらの材料であっても、 それを用いて形成される光学薄膜の特性、 さ らには材料が成膜時に示す挙動の面において、 以下に掲げる課題が残されている。 まず、 第 1の課題として光学薄膜の特性において、 特許文献 1の材料では、 最 大でも 2. 1程度の屈折率の膜しか形成することができず、 高屈折率材料の屈折 率としては十分に高い値とはいえなかった。 さらには、 近紫外 (短波長) から可 視部を通じて近赤外 (長波長) に亘る波長領域において吸収がない (透明) とい いながら、 吸収のない最短波長は可視部に近い約 3 6 0 n mであった。 また、 特 許文献 2及び 3の材料では、 屈折率では 2. 1を超える高い膜を形成することが できるものの、 特許文献 1と同様、 吸収のない最短波長はやはり可視部に近い約 3 6 0 n mであり、 十分に近紫外域の光を透過させる (吸収がない) ことはでき なかった。 このように、 屈折率が 2 . 1を超える程度に高く、 可視域のみならず 近紫外域の光を透過させる膜を形成するための蒸着材料はこれまで知られていな かった。 Therefore, although many documents relating to optical thin films exemplify various multi-element films, in the case of using the vacuum evaporation method, a multi-element film having practically constant characteristics is produced by continuous evaporation. It is not easy to do. In recent years, Patent Documents 1 and 2 disclose binary oxides of titanium and lanthanum, and Patent Document 3 discloses binary oxides of titanium and samarium. These are all high-refractive-index materials that solve the above-mentioned problems, that is, can form a film that does not absorb in the near-ultraviolet region, have meltability, and can be continuously deposited. Has been. However, even with these materials, the following problems remain in terms of the characteristics of the optical thin film formed using the materials, and the behavior of the materials at the time of film formation. First, as a first problem, in the characteristics of optical thin films, the material of Patent Document 1 can only form a film having a refractive index of about 2.1 at the maximum, which is sufficient as the refractive index of a high refractive index material. It was not so high. Furthermore, although there is no absorption in the wavelength range from the near ultraviolet (short wavelength) to the near infrared (long wavelength) through the visible part (transparent), the shortest wavelength without absorption is approximately 3 60 close to the visible part. nm. In addition, although the materials of Patent Documents 2 and 3 can form a film having a refractive index higher than 2.1, as in Patent Document 1, the shortest wavelength without absorption is still close to the visible region. It was 0 nm, and it was not possible to transmit light in the near ultraviolet region sufficiently (no absorption). Thus, a deposition material for forming a film having a refractive index higher than 2.1 and transmitting light in the near ultraviolet region as well as the visible region has not been known so far.
さらに、 第 2の課題として、 材料が成膜時に示す挙動における問題点を成膜方 法と併せて以下に述べる。 特許文献 1〜3の蒸着材料のいずれも、 真空蒸着のう ちでも電子ビーム蒸着が主として用いられている。 溶融性の蒸着材料を用いた電 子ビーム蒸着による成膜は、 一般的に次のようにされる。 まず、 前処理として蒸 着材料を電子ビーム加熱により溶融することによって溶融プールを形成する。 次 いで、 その溶融プールに再度電子ビームを照射し材料蒸気を発生させることによ り、 基材上に膜を形成する。 成膜時において電子ビームを溶融プールに照射し続 けた際、 同じ溶融性材料であっても、 (1 ) ビームによる熱がビーム照射点から 溶融プール全体に適度に拡散し平滑な蒸発面を保っため、 蒸発速度を容易に制御 することができ、 結果的に所望の特性を有する膜を容易に形成することができる 材料、 (2 ) ビーム照射点近傍にのみ熱が集中し蒸着時間とともに溶融プールが 凹状等に変形し平滑な蒸発面を保てなくなるため、 蒸発速度の制御が難しくなり、 また、 頻繁な補給が余儀なくされる材料、 とがある。 特許文献 1〜3の材料は、 いずれも後者 (2 ) に該当し、 材料の補給頻度をなるベく低減させるように連続 蒸着させようとすれば、 熱の集中を回避するために蒸着操作中に電子ビームの照 射位置を適宜変更しながら成膜する等の特別な対策が必要であった。 また、 たと えこのような対策を講じたとしても、 溶融プールに与えられている熱分布状態が 変動しやすく、 結局、 蒸発速度を制御することが難しかった。 以上のように、 電 子ビーム操作上の特別な対策をしなくとも、 所望の高屈折率の膜を容易に形成さ せることができる多元系の蒸着材料は、 これまで知られていなかった。 In addition, as a second problem, the problems in the behavior of materials during film formation are described below together with the film formation method. In any of the vapor deposition materials of Patent Documents 1 to 3, electron beam vapor deposition is mainly used in vacuum vapor deposition. Film formation by electron beam vapor deposition using a meltable vapor deposition material is generally performed as follows. First, as a pretreatment, the molten material is melted by electron beam heating to form a molten pool. Next, a film is formed on the substrate by irradiating the molten pool again with an electron beam to generate material vapor. When the melt pool is continuously irradiated with the electron beam during film formation, even if the meltable material is the same, (1) the heat from the beam is appropriately diffused from the beam irradiation point to the entire melt pool to maintain a smooth evaporation surface. Because of easy control of evaporation rate As a result, a material that can easily form a film having desired characteristics. (2) Heat concentrates only in the vicinity of the beam irradiation point, and the molten pool deforms into a concave shape or the like with the deposition time and is smooth. Since the evaporation surface cannot be maintained, it is difficult to control the evaporation rate, and there are materials that require frequent replenishment. The materials in Patent Documents 1 to 3 correspond to the latter (2), and if continuous deposition is performed so as to reduce the replenishment frequency of the material as much as possible, the deposition operation is performed to avoid concentration of heat. In addition, special measures such as film formation while changing the irradiation position of the electron beam appropriately were necessary. Moreover, even if such measures were taken, the heat distribution state given to the molten pool was likely to fluctuate, and eventually it was difficult to control the evaporation rate. As described above, a multi-component deposition material that can easily form a desired high-refractive-index film without special measures for electron beam operation has not been known so far.
【特許文献 1】 特許 2 7 2 0 9 5 9号公報  [Patent Document 1] Japanese Patent No. 2 7 2 0 9 5 9
【特許文献 2】 特開 2 0 0 2 - 2 2 6 9 6 7号公報  [Patent Document 2] Japanese Patent Laid-Open No. 2 0 0 2-2 2 6 9 6 7
【特許文献 3】 特開 2 0 0 0— 1 8 0 6 0 4号公報  [Patent Document 3] Japanese Patent Laid-Open No. 2 0 0 0-1 8 0 6 0 4
本発明の目的は、 上記した問題点をすベて解消した、 すなわち、 溶融性であつ て連続蒸着が可能であり、 電子ビーム蒸着法を用いたとしても蒸発速度を容易に 制御することができ、 従来よりも広い波長範囲、 特に近紫外域の光を透過させる ことができ、 かつ、 高屈折率を有する光学薄膜を成膜するための蒸着材料、 それ を用いて得られる光学薄膜及びその光学薄膜の製造方法を提供することにある。 本発明者らは、 様々な成分の組合せの蒸着材料について鋭意検討した結果、 二 ォブ及びランタンの二元系酸化物から成る蒸着材料に着目するに至った。 さらに、 この成分の組合せによる蒸着材料から生成する蒸気の組成は、 従来から知られて いるような単に各成分の蒸気圧によって必ずしも決定されるわけではないことが 明らかとなり、 特定範囲のニオブとランタンの組成比から構成される蒸着材料及 びそれらを用いて形成した光学薄膜においてのみ、 上記した問題点をすベて解消 することができることを見出し、 本発明を完成するに至った。 発明の開示 The object of the present invention is to eliminate all of the above-mentioned problems, that is, it is meltable and can be continuously evaporated, and the evaporation rate can be easily controlled even if the electron beam evaporation method is used. An evaporation material for forming an optical thin film capable of transmitting light in a wider wavelength range than that of the prior art, particularly in the near ultraviolet region, and having a high refractive index, and an optical thin film obtained by using the vapor deposition material The object is to provide a method for producing a thin film. As a result of intensive studies on vapor deposition materials having various combinations of components, the present inventors have come to focus on vapor deposition materials composed of binary oxides of niobium and lanthanum. Furthermore, it becomes clear that the composition of the vapor generated from the vapor deposition material by this combination of components is not necessarily determined simply by the vapor pressure of each component as conventionally known. The present inventors have found that the above-described problems can be solved only in the vapor deposition materials having the composition ratios described above and optical thin films formed using these materials, and have completed the present invention. Disclosure of the invention
本発明は、 以下の発明に係る。  The present invention relates to the following inventions.
1 . ニオブ及びランタンの二元系酸化物、 又はこれに加えるに金属ニオブ及び 又は金属ランタンとから成る蒸着材料であって、 該蒸着材料中のニオブとラン夕 ンのモル比が 2 5 : 7 5〜9 0 : 1 0であることを特徴とする蒸着材料。  1. A vapor deposition material composed of a binary oxide of niobium and lanthanum, or in addition to metal niobium and / or metal lanthanum, wherein the molar ratio of niobium and lanthanum in the vapor deposition material is 25: 7 Vapor deposition material, wherein 5 to 90:10.
2 . ニオブとランタンのモル比が 3 5 : 6 5〜6 0 : 4 0である上記 1に記載の 蒸着材料。  2. The vapor deposition material according to 1 above, wherein the molar ratio of niobium and lanthanum is 35:65 to 60:40.
3 . 焼結体または溶融体である上記 1または 2に記載の蒸着材料。  3. The vapor deposition material according to 1 or 2 above, which is a sintered body or a melt.
4 . 酸化ランタンの含有率が 5重量%以下である上記 1〜3のいずれかに記載の 蒸着材料。 4. The vapor deposition material according to any one of 1 to 3 above, wherein the content of lanthanum oxide is 5% by weight or less.
5 . 上記 1〜4に記載の蒸着材料を用い、 真空蒸着法によって形成することを特 徴とする光学薄膜の製造方法。  5. A method for producing an optical thin film characterized by being formed by a vacuum vapor deposition method using the vapor deposition material described in the above 1 to 4.
6 . 真空蒸着法が電子ビーム蒸着法である上記 5に記載の光学薄膜の製造方法。 7 . 成膜中において電子ビームの照射位置を固定する上記 6に記載の光学薄膜の 製造方法。  6. The method for producing an optical thin film as described in 5 above, wherein the vacuum vapor deposition method is an electron beam vapor deposition method. 7. The method for producing an optical thin film as described in 6 above, wherein the irradiation position of the electron beam is fixed during film formation.
8 . 上記 5〜 7に記載の製造方法により得られた光学薄膜。  8. An optical thin film obtained by the production method described in 5 to 7 above.
本発明の蒸着材料は、 ニオブ及びランタンの二元系酸化物から成り、 該ニオブ とランタンのモル比が 2 5 : 7 5〜9 0 : 1 0であることを特徴としている。 こ こに、 「ニオブ及びランタンの二元系酸化物」 とは、 酸化ニオブと酸化ランタン との混合物、 ニオブ及びランタンの複合酸化物、 この複合酸化物が二種以上混合 された混合物、 ニオブ及びランタンの複合酸化物と酸化ニオブとの混合物、 ニォ ブ及びラン夕ンの複合酸化物と酸化ランタンとの混合物、 ニオブ及びラン夕ンの 固溶体酸化物、 等、 ニオブ及びランタン並びに酸素から構成されるすべての物質 をいう。  The vapor deposition material of the present invention is composed of a binary oxide of niobium and lanthanum, and the molar ratio of the niobium and lanthanum is 25:75 to 90:10. Here, “binary oxide of niobium and lanthanum” means a mixture of niobium oxide and lanthanum oxide, a composite oxide of niobium and lanthanum, a mixture of two or more of these composite oxides, niobium and A mixture of lanthanum oxide and niobium oxide, a mixture of niobium and lanthanum oxide and lanthanum oxide, a solid solution oxide of niobium and lanthanum, etc., composed of niobium, lanthanum and oxygen Refers to all substances.
ここでの酸化ランタン、 酸化ニオブやニオブ及びランタンの複合酸化物は、 酸 化ランタン (III) (L a 203)、 酸化ニオブ (V) (Nb 205) や L a3Nb07、 L aNb〇4、 L aNb39、 L aNb514、 L a N b 7〇 L 9のような通常の 雰囲気において化学的に最も安定な酸化物の他、 L a〇のような亜酸化ランタン、 Nb02、 Nb23、 NbOのような亜酸化ニオブや L aNb712のような亜 酸化状態の複合酸化物、 といった亜酸化物であってもよい。 このような亜酸化物、 あるいは亜酸化物を含む蒸着材料 (以下、 まとめて 「亜酸化物蒸着材料」 とい う。) は、 酸素含有率がより小さい材料であるため、 成膜時及びその前処理とし ての溶融時に酸素ガスの脱離が生じにくい。 そのため、 蒸着中における蒸着装置 内の雰囲気圧力を制御しやすく、 所望の特性を有する膜を形成させ易い。 本発明 における亜酸化物蒸着材料としては、 既述した L aNb712の他、 Nb〇 + L aNb〇4、 Nb〇2 + L aNb〇4や Nb〇2 + L a3Nb07 + L aNb04の ような構成の二元系酸化物を例示することができる。 Here, lanthanum oxide, niobium oxide, and complex oxides of niobium and lanthanum are acid Lanthanum (III) (L a 2 0 3 ), niobium oxide (V) (Nb 2 0 5 ), L a 3 Nb 0 7 , L aNb 0 4 , L aNb 3 0 9 , L aNb 5 0 14 , L a other conventional chemically most stable oxides in an atmosphere such as N b 7 〇 L 9, L nitrous oxide lanthanum like A_〇, Ya Nb0 2, Nb 23, niobium suboxide as NbO A sub-oxide such as a composite oxide in a sub-oxidation state such as LaNb 7 12 may be used. Such suboxides or vapor deposition materials containing suboxides (hereinafter collectively referred to as “suboxide vapor deposition materials”) are materials having a lower oxygen content. Desorption of oxygen gas is unlikely to occur during melting as a treatment. Therefore, it is easy to control the atmospheric pressure in the vapor deposition apparatus during vapor deposition, and it is easy to form a film having desired characteristics. The nitrous oxide evaporation material of the present invention, other L ANB 712 already described, Nb_〇 + L ANb_〇 4, Nb_〇 2 + L ANb_〇 4 and Nb_〇 2 + L a 3 Nb0 7 + L the aNb0 binary oxides of structure such as 4 can be exemplified.
本発明の第二の蒸着材料は、 a) ニオブ及びランタンの二元系酸化物と、 b) 金属ニオブ及び 又は金属ランタンとから成る蒸着材料であって、 該蒸着材料中 のニオブとランタンのモル比が 25 : 75〜90 : 10であることを特徴として いる。 ここでの 「ニオブ及びランタンの二元系酸化物」 の定義は、 前記したとお りである。 このような第二の蒸着材料の構成としては、 Nb + L a23、 L a + Nb25、 Nb+L a+Nb 205, Nb +L aO, Nb + L aNb04, Nb + L aNb7012, Nb+La3Nb07 + L aNb0 Nb + L a3NbOy + LaNb712、 N b +N b O 2 + L a 3 N b〇 9 + L a N b O 4や N b +N b O + Nb〇2 + L a3Nb〇9 + L aNb〇4を例示することができる。 なお、 以下 において、 このような金属ニオブ及び/又は金属ランタンを含有している蒸着材 料を 「金属含有蒸着材料」 と呼称する。 金属含有蒸着材料も、 亜酸化物蒸着材料 と同様に酸素含有率がより小さい材料であるため、 前記した理由から、 所望の特 性を有する膜を形成させ易い。 The second vapor deposition material of the present invention is a vapor deposition material comprising a) a binary oxide of niobium and lanthanum, and b) metal niobium and / or metal lanthanum, the mole of niobium and lanthanum in the vapor deposition material. The ratio is 25:75 to 90:10. Here, the definition of “binary oxide of niobium and lanthanum” is as described above. The structure of such second deposition material, Nb + L a 23, L a + Nb 25, Nb + L a + Nb 2 0 5, Nb + L aO, Nb + L aNb0 4, Nb + L aNb 7 0 12, Nb + La 3 Nb0 7 + L aNb0 4¾ Nb + L a 3 NbO y + laNb 7 〇 12, N b + N b O 2 + L a 3 N B_〇 9 + L a N the b O 4 and N b + N b O + Nb_〇 2 + L a 3 Nb_〇 9 + L ANb_〇 4 can be exemplified. Hereinafter, such a vapor deposition material containing niobium metal and / or metal lanthanum is referred to as a “metal-containing vapor deposition material”. Since the metal-containing vapor deposition material is also a material having a smaller oxygen content like the suboxide vapor deposition material, it is easy to form a film having desired characteristics for the reasons described above.
なお、 本発明の蒸着材料は、 既述した本発明の効果を損なわない程度、 すなわ ちニオブ及びランタンの二元系酸化物に対して 5 m o 1 %までであれば、 ニオブ 及びラン夕ンの酸化物以外の材料が添加されることを妨げるものではない。 この ような材料としては、 酸化アルミニウム、 酸化ガドリニウム、 酸化ジスプロシゥ ム、 酸化イッテルビウム等を挙げることができる。 Note that the vapor deposition material of the present invention does not impair the effects of the present invention described above. That is, up to 5 mo 1% of the binary oxides of niobium and lanthanum does not prevent the addition of materials other than niobium and lanthanum oxides. Examples of such materials include aluminum oxide, gadolinium oxide, dysprosium oxide, ytterbium oxide, and the like.
ニオブとランタンのモル比が 2 5 : 7 5〜9 0 : 1 0の範囲を外れる材料は、 この蒸着時間や蒸着回数に伴うモル比の変化が大きいため、 連続蒸着に適さない。 また、 ニオブのモル分率が 9 0モル%を超える材料では十分に近紫外域の光を透 過させることが難しく、 一方、 2 5モル%を下回る材料では十分に高い屈折率の 膜を形成することが難しい。  A material in which the molar ratio of niobium and lanthanum is outside the range of 25:75 to 90:10 is not suitable for continuous deposition because the molar ratio varies greatly with the deposition time and the number of depositions. In addition, it is difficult to transmit light in the near-ultraviolet region sufficiently with a material having a niobium mole fraction exceeding 90 mol%, while a material having a sufficiently high refractive index is formed with a material less than 25 mol%. Difficult to do.
さらには、 ニオブとランタンのモル比が 3 5 : 6 5〜6 0 : 4 0であれば、 連 続蒸着によって逐次形成される膜の屈折率及び光波長域の変動が極めて小さくな り、 より長時間及び多数回にわたり一定の特性を有する膜を作製することができ 好適である。 特に、 屈折率の変動は 0 . 0 1程度に抑えることができる。  Furthermore, when the molar ratio of niobium and lanthanum is 35:65 to 60:40, the variation in the refractive index and the optical wavelength range of the film successively formed by continuous vapor deposition becomes extremely small. A film having certain characteristics over a long period of time and many times can be produced, which is preferable. In particular, the refractive index variation can be suppressed to about 0.01.
また、 本発明の蒸着材料は、 その形態を特に限定するものではないが、 原料粉 体そのものや混合物よりは、 顆粒や夕ブレット等の成型体の形状としたものが望 ましい。 粉体であると蒸着時における材料の取り扱いが良くない上、 材料のスプ ラッシュ (飛散) が起こり易く、 所望の光学特性の膜を形成することが難しくな るためである。 また成型体のサイズは、 0 . 1〜 1 0 mm程度のものであると連 続蒸着時における材料の補給がしゃすいため望ましい。 さらには、 成型体の焼成 を経て得られる焼結体や粉体あるいは成型体の溶融を経て得られる溶融体である ことが望ましい。 焼成を経ていない成型体では、 その見かけ密度が十分に大きく ないために蒸着時の材料の溶融によって著しくかさが減少し、 材料の補給を頻繁 に行わなければならなくなるためである。  Further, the form of the vapor deposition material of the present invention is not particularly limited, but it is preferable that the vapor deposition material has a shape of a molded body such as a granule or evening bullet rather than the raw material powder itself or a mixture. This is because powders are not handled well during vapor deposition, and material splashing is likely to occur, making it difficult to form a film with desired optical characteristics. In addition, it is desirable that the size of the molded body is about 0.1 to 10 mm because replenishment of the material during continuous vapor deposition is difficult. Furthermore, it is desirable to be a sintered body obtained by firing the molded body, a melt obtained by melting the powder or the molded body. This is because a molded body that has not been fired has an apparent density that is not sufficiently high, so that the material is remarkably reduced by melting of the material during vapor deposition, and the material must be replenished frequently.
さらに、 本発明の蒸着材料は、 L a 203や L a Oといった酸化ランタンの含 有率が 5重量%以下であることが望ましい。 酸化ランタンは吸湿性が大きく、 含 有率が 5重量%を超えると、 空気中の水分と反応してより低密度の水酸化ラン夕 ンに化学変化し、 成型体、 焼結体あるいは溶融体であれば、 それが膨張し崩れて 粉状になってしまうためである。 このような粉状のみならず水酸化ランタンが多 く含まれる蒸着材料をそのまま蒸着に用いれば、 加熱の際に材料のスプラッシュ が発生するだけでなく著しい水分の放出が起こり、 形成された膜に物理的欠陥が 生じ、 かつ、 蒸着装置の保守の点からも好ましくない。 Further, the vapor deposition material of the present invention, it is preferable L a 2 0 3 and L a O such containing chromatic ratio of lanthanum oxide is not more than 5% by weight. Lanthanum oxide is highly hygroscopic, and when the content exceeds 5% by weight, it reacts with the moisture in the air and has a lower density of lanthanum hydroxide. This is because if it is chemically transformed into a molded body, sintered body, or melt, it expands and collapses into a powder. If a vapor deposition material containing a large amount of lanthanum hydroxide as well as this powder is used for vapor deposition as it is, not only will splash of the material occur during heating, but also significant moisture will be released, and the formed film will be lost. A physical defect occurs and it is not preferable from the viewpoint of maintenance of the vapor deposition apparatus.
本発明の蒸着材料は、 例えば次のような方法で製造することができる。  The vapor deposition material of the present invention can be produced, for example, by the following method.
焼結体であれば、 出発原料として酸化ニオブ (V) 及び酸化ランタン (I I I ) の粉体を用い、 それらを所定の比率で混合し、 得られる混合物粉体を造粒及 び/または成型することにより 0 . 1〜 1 0 mm程度のサイズの成型体とした後、 大気中、 真空中あるいはアルゴン等の不活性ガス中で所定の温度で焼成すること により製造することができる。 また、 溶融体であれば、 混合物粉体あるいはその 成型体を所定の温度で溶融することにより製造することができる。 なお、 焼成温 度及び溶融温度は、 蒸着材料を構成するニオブとランタンのモル比によってもそ の最適な温度が異なってくるが、 焼成温度であれば概ね 9 0 0〜 1 7 0 0 t:、 溶 融温度であれば概ね 1 3 5 0〜 1 9 0 0でとするのが適当である。  In the case of a sintered body, niobium oxide (V) and lanthanum oxide (III) powders are used as starting materials, mixed at a predetermined ratio, and the resulting mixture powder is granulated and / or molded. Thus, a molded body having a size of about 0.1 to 10 mm can be produced and then fired at a predetermined temperature in the air, in a vacuum, or in an inert gas such as argon. In the case of a melt, it can be produced by melting the mixture powder or its molded body at a predetermined temperature. Note that the optimum firing temperature and melting temperature differ depending on the molar ratio of niobium and lanthanum constituting the vapor deposition material, but if the firing temperature is approximately 900 to 1700 t: It is appropriate that the melting temperature is approximately 1 3 5 0 to 1 90 0.
なお、 亜酸化物蒸着材料を製造する場合には、 出発原料として酸化ニオブ  When manufacturing suboxide deposition materials, niobium oxide is used as a starting material.
(V) 及び Zまたは酸化ランタン (I I I) に加えて金属ニオブ及びノまたは金属 ランタンを用いればよい。 このような構成の原料とすれば、 焼成あるいは溶融時 において金属と酸化物とを化学反応させることができ、 亜酸化物蒸着材料を製造 することができる。 あるいは、 出発原料として酸化ニオブ (V) 及び/または酸 化ランタン (I I I) に代えて亜酸化ニオブ及び または亜酸化ランタンを用いて もよい。 また、 酸化ニオブ (V) 及び酸化ランタン (I I I) のみを出発原料とし て用いて製造した蒸着材料を脱酸素化することによつても製造することができる。 脱酸素化の方法としては、 例えば水素等の還元性ガス下での加熱処理を挙げるこ とができる。  In addition to (V) and Z or lanthanum oxide (I I I), metal niobium and metal or lanthanum metal may be used. By using a raw material having such a structure, a metal and an oxide can be chemically reacted at the time of firing or melting, and a suboxide deposition material can be produced. Alternatively, niobium oxide and / or lanthanum oxide may be used as a starting material instead of niobium oxide (V) and / or lanthanum oxide (I I I). Further, it can also be produced by deoxygenating a vapor deposition material produced using only niobium oxide (V) and lanthanum oxide (I I I) as starting materials. Examples of the deoxygenation method include heat treatment under a reducing gas such as hydrogen.
また、 金属含有蒸着材料を製造する場合においても、 出発原料の構成は亜酸化 物蒸着材料の場合と同様である。 ただし、 亜酸化物蒸着材料の場合とは異なる製 造条件を適用する (例えば、 焼成時において、 焼成温度をやや低めに、 あるいは 焼成時間を短めとする) ことにより、 金属自体を残存させた状態で製造を完了さ せる。 このようにして金属含有蒸着材料を製造することができる。 なお、 ニオブ 及びラン夕ンのニ元系酸化物の蒸着材料に金属ニオブ及び Zまたは金属ランタン を添加し、 場合によってはさらに焼成あるいは溶融することによつても製造する ことができる。 In addition, when manufacturing metal-containing vapor deposition materials, the composition of the starting material is sub-oxidation. This is the same as the case of the material vapor deposition material. However, the manufacturing conditions different from those for the suboxide deposition material are applied (for example, the firing temperature is slightly lowered or the firing time is shortened at the time of firing), so that the metal itself remains. To complete the manufacturing. In this way, a metal-containing vapor deposition material can be produced. In addition, niobium and lanthanum can be produced by adding niobium metal and Z or metal lanthanum to the vapor deposition material of the binary oxide of niobium and lanthanum, and in some cases further firing or melting.
以上に述べた本発明の蒸着材料を用いることにより、 可視光全域はもとより 3 6 0 n mより短波長域である近紫外域をも透過させることができ、 かつ、 波長 4 5 0 n m付近において屈折率 2. 1 5〜 2. 3 5、 好ましくは 2. 2 0〜 2. 3 5程 度の高屈折率を有する光学薄膜を形成することができる。  By using the vapor deposition material of the present invention described above, it is possible to transmit not only the entire visible light region but also the near ultraviolet region, which is a shorter wavelength region than 360 nm, and is refracted in the vicinity of a wavelength of 450 nm. An optical thin film having a high refractive index of about 2.15 to 2.35, preferably about 2.20 to 2.35 can be formed.
一方、 本発明の光学薄膜の製造方法は、 本発明の蒸着材料を用い、 真空蒸着法 によって形成することを特徴とする。 本発明での 「真空蒸着法」 には、 この方法 に成膜加工上の補助手段が追加されたイオンプレーティング法やイオンアシスト 法も含まれる。 本発明の蒸着材料のような高融点の材料を蒸着させるには、 真空 蒸着のうちでも電子ビーム蒸着法を採用することが好適である。 また、 電子ビー ム蒸着法を用いたとしても、 ビームによって材料に与えられる熱がビーム照射点 から材料全体に適度に拡散し、 蒸着時間を経ても平滑な蒸発面を保っため、 蒸発 速度を容易に制御することができる。 その結果、 所望の特性を有する光学薄膜を 容易に製造することができる。 また、 蒸着材料の補給頻度をより低くすることが できるため、 より長時間及び多数回にわたり連続蒸着させることができる。 さら に、 本発明の蒸着材料を用いた場合は、 電子ビーム操作上の特別な対策を必要と しなくとも、 例えば、 成膜中において電子ビームの照射位置を固定したとしても、 所望の光学薄膜を容易に製造することができる。 なお、 このときの電子ビームの 照射位置は、 例えば蒸着材料を円筒型の容器に装填する場合であれば、 その容器 の中心部であることが好適である。 このように、 電子ビーム蒸着法を用いたとしても蒸発速度を容易に制御し、 か つ、 連続蒸着させることは、 蒸着材料をニオブとランタンという特定の元素の組 合せで構成することにより達成することができる。 図面の簡単な説明 On the other hand, the method for producing an optical thin film of the present invention is characterized in that it is formed by a vacuum deposition method using the vapor deposition material of the present invention. The “vacuum evaporation method” in the present invention includes an ion plating method and an ion assist method in which an auxiliary means for film formation processing is added to this method. In order to deposit a high melting point material such as the deposition material of the present invention, it is preferable to employ the electron beam deposition method among the vacuum depositions. Even if the electron beam evaporation method is used, the heat given to the material by the beam is appropriately diffused from the beam irradiation point to the entire material, and the evaporation surface is kept smooth even after the evaporation time, so the evaporation rate is easy. Can be controlled. As a result, an optical thin film having desired characteristics can be easily produced. Moreover, since the replenishment frequency of the vapor deposition material can be made lower, continuous vapor deposition can be performed for a longer time and many times. Furthermore, when the vapor deposition material of the present invention is used, the desired optical thin film can be obtained even if the electron beam irradiation position is fixed during film formation, for example, without requiring any special measures for electron beam operation. Can be easily manufactured. Note that the irradiation position of the electron beam at this time is preferably the central portion of the container, for example, when a vapor deposition material is loaded into a cylindrical container. In this way, even if the electron beam evaporation method is used, the evaporation rate is easily controlled and continuous evaporation can be achieved by configuring the evaporation material with a specific element combination of niobium and lanthanum. be able to. Brief Description of Drawings
図 1は実施例 1で得られた蒸着材料の X線回折パターンである。  FIG. 1 is an X-ray diffraction pattern of the vapor deposition material obtained in Example 1.
図 2は実施例 1における成膜終了後の溶融プールの状態を示す写真である。 図 3は比較例 3における成膜終了後の溶融プールの状態を示す写真である。 図 4は比較例 4における成膜終了後の溶融プールの状態を示す写真である。 発明を実施するための最良の形態  FIG. 2 is a photograph showing the state of the molten pool after film formation in Example 1. FIG. 3 is a photograph showing the state of the molten pool after completion of film formation in Comparative Example 3. FIG. 4 is a photograph showing the state of the molten pool after completion of film formation in Comparative Example 4. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明の実施例について説明するが、 本発明はこれに限定されるもので はない。  Examples of the present invention will be described below, but the present invention is not limited thereto.
実施例 1 Example 1
酸化ニオブ (V) と酸化ランタン (ΙΠ) の粉体を重量比 32. 9 : 67. 1 Niobium oxide (V) and lanthanum oxide (ΙΠ) powders by weight ratio 32. 9: 67. 1
(ニオブとランタンのモル比は、 37. 5 : 62. 5) で混合し、 その粉体混合物 を l〜3mmの顆粒状に造粒し、 大気中で 1300 °C X 4時間焼成することによ り、 顆粒状の蒸着材料を得た。 当該材料は図 1に示す X線回折パターンから L a 3Nb〇7及び L aNb04と同定された。 (The molar ratio of niobium and lanthanum is 37.5: 62.5), the powder mixture is granulated into granules of 1 to 3 mm, and fired at 1300 ° C for 4 hours in the atmosphere. As a result, a granular deposition material was obtained. The material was identified by X-ray diffraction pattern shown in Figure 1 and L a 3 Nb_〇 7 and L aNb0 4.
この蒸着材料を装填した銅製のハースライナー (るつぼ) を市販の真空蒸着装 置内にセットし、 装置内を 1. OX 10— 3P aになるまで排気した後、 蒸着材料 を電子ビーム加熱により溶融し溶融プールを形成した。 次いで、 全圧が 1.0X 10— 2P aになるように酸素を導入し、 再度、 電子ビームを溶融プールの中心 部にのみ照射し、 材料蒸気を発生させ、 予め装置内にセットし 300でに加熱し ていた基材上に、 成膜速度 0.9 nmZ秒で物理的膜厚が 250 nmになるまで 成膜した。 この成膜を基材のみを交換しつつ蒸着材料は一切補給することなく 4 回行った。 得られた各々の膜について、 波長 4 δ 0 nmにおける屈折率を分光光 度計により、 また、 ニオブとランタンのモル比を I CP— MS組成分析により求 めた。 結果を表 1〜2に示すが、 成膜回数によらず屈折率及びモル比は一様であ り、 また、 いずれの膜も 285 nmから可視域までに吸収は認められなかった。 この 285 nmのように、 可視域側から紫外域側に波長を短くしていったときに 膜の光吸収が起こり始め、 分光透過率が急激に下降の一途をたどり始めるときの 波長を、 以降 「最短透過波長」 と呼ぶ。 一方、 図 2には上記の成膜終了後の蒸着 材料 (溶融プール) の写真を示すが、 溶融プールの中心部にのみ電子ビームを照 射したにもかかわらず、 平滑な蒸発面が保たれていることが分かる。 The was loaded evaporation material copper hearth liner (crucible) was set in a commercially available vacuum deposition instrumentation置内, was evacuated to the interior of the apparatus to 1. OX 10- 3 P a, the deposition material by electron beam heating Melted to form a molten pool. Then, the total pressure by introducing oxygen to be 1.0X 10- 2 P a, again, an electron beam is irradiated only to the center portion of the molten pool, to generate material vapor, a set 300 in the apparatus in advance Films were formed on the substrate that had been heated to a thickness of 0.9 nmZ seconds until the physical film thickness reached 250 nm. This film formation is performed without replacing the deposition material while replacing only the base material. I went twice. For each of the obtained films, the refractive index at a wavelength of 4 δ 0 nm was determined by a spectrophotometer, and the molar ratio of niobium to lanthanum was determined by ICP-MS composition analysis. The results are shown in Tables 1 and 2. The refractive index and the molar ratio are uniform regardless of the number of depositions, and no absorption was observed from 285 nm to the visible region. As this 285 nm, when the wavelength is shortened from the visible region side to the ultraviolet region side, the light absorption of the film begins to occur, and the wavelength at which the spectral transmittance begins to drop rapidly, Called the “shortest transmission wavelength”. On the other hand, Fig. 2 shows a photograph of the vapor deposition material (molten pool) after the film formation described above. Even though the electron beam was irradiated only at the center of the melt pool, a smooth evaporation surface was maintained. I understand that
なお、 波長 450 nmにおける屈折率の算出方法は、 次のとおりである。 ,市販の分光光度計により分光透過率を測定し、 分光曲線を得る。  The method for calculating the refractive index at a wavelength of 450 nm is as follows. Measure the spectral transmittance with a commercially available spectrophotometer to obtain a spectral curve.
•その分光曲線と SELLME I ERの分散式を用い、 屈折率を算出する。 'なお、 S ELLME I ERの分散式は、 光の波長と屈折率との関係を求める目 的でよく使われる式であり、 次式で表される。  • Use the spectral curve and SELLME ER dispersion formula to calculate the refractive index. 'The SELLME I ER dispersion formula is a formula often used for the purpose of obtaining the relationship between the wavelength of light and the refractive index, and is expressed by the following formula.
- n = SQRT[l +A/ (1 +Β/λ2) ] -n = SQRT [l + A / (1 + Β / λ 2 )]
• ここで、 ηは屈折率、 λは波長であり、 Αと Βは波長と屈折率との関係を決定 する係数である。 また 「SQRT」 は、 上式 [ ] 部の平方根を計算することを 表す。  • where η is the refractive index, λ is the wavelength, and Α and Β are coefficients that determine the relationship between wavelength and refractive index. “SQRT” represents calculating the square root of the above [] part.
実施例 2 Example 2
酸化ニオブ (V)、 酸化ランタン (III) 及び金属ニオブの粉体を重量比 45. 5 : 46. 5 : 8.0 (ニオブとランタンのモル比は、 60.0 : 40.0) で混合 し、 その粉体混合物を 1〜 3mmの夕ブレット状に成型し、 真空中で 1600°C X4時間焼成することにより、 夕ブレット状の蒸着材料を得た。 当該材料は X線 回折パターンから L aNb〇4及び NbOと同定された。 Mix powders of niobium oxide (V), lanthanum oxide (III) and metal niobium in a weight ratio of 45.5: 46.5: 8.0 (molar ratio of niobium to lanthanum is 60.0: 40.0). Was molded into an evening bullet of 1 to 3 mm and fired in vacuum at 1600 ° C. for 4 hours to obtain an evening bullet-shaped vapor deposition material. The material was identified by X-ray diffraction pattern with L ANb_〇 4 and NbO.
この蒸着材料を用い、 実施例 1と同様の方法で成膜することにより得られた 各々の膜について、 波長 4 δ 0 nmにおける屈折率及び最短透過波長、 並びに二 ォブとランタンのモル比を求めた。 結果を表 1〜2に示すが、 成膜回数によらず 屈折率及びモル比は一様であり、 最短透過波長は 305 nmであった。 For each film obtained by using this vapor deposition material and forming the film in the same manner as in Example 1, the refractive index and the shortest transmission wavelength at a wavelength of 4δ 0 nm were obtained. The molar ratio of Abu to lanthanum was determined. The results are shown in Tables 1 and 2. The refractive index and the molar ratio were uniform regardless of the number of film formation, and the shortest transmission wavelength was 305 nm.
実施例 3 Example 3
酸化ニオブ (V) と酸化ランタン (III) の粉体を重量比 80.3 : 19. 7 (ニオブとランタンのモル比は、 83.3 : 16.7) で混合し、 その粉体混合物 を l〜3mmのタブレツト状に成型し、 大気中で 1200 X 4時間焼成するこ とにより、 夕ブレット状の蒸着材料を得た。 当該材料は X線回折パターンから L aNb5014と同定された。 Niobium oxide (V) and lanthanum oxide (III) powders were mixed at a weight ratio of 80.3: 19.7 (molar ratio of niobium and lanthanum was 83.3: 16.7), and the powder mixture was formed into a 1 to 3 mm tablet. And was fired in the atmosphere for 1200 x 4 hours to obtain an evening bullet-like vapor deposition material. The material was identified as LaNb 5 0 14 from the X-ray diffraction pattern.
この蒸着材料を用い、 実施例 1と同様の方法で成膜することにより得られた 各々の膜について、 波長 450 nmにおける屈折率及び最短透過波長、 並びに二 ォブとランタンのモル比を求めた。 結果を表 1〜2に示すが、 成膜回数によらず 屈折率及びモル比は一様であり、 最短透過波長は 330 nmであった。  Using this vapor deposition material, the refractive index at the wavelength of 450 nm, the shortest transmission wavelength, and the molar ratio of niobium to lanthanum were determined for each film obtained by forming a film in the same manner as in Example 1. . The results are shown in Tables 1 and 2. The refractive index and the molar ratio were uniform regardless of the number of depositions, and the shortest transmission wavelength was 330 nm.
実施例 4 Example 4
酸化ニオブ (V) と酸化ランタン (III) の粉体を重量比 25.9 : 74. 1 (ニオブとランタンのモル比は、 30.0 : 70.0) で混合し、 その粉体混合物 を l〜3mmの顆粒状に造粒し、 大気中で 1500 °C X 4時間焼成することによ り、 顆粒状の蒸着材料を得た。 当該材料は X線回折パターンから L a3Nb〇7 及び L aNb〇4と同定された。 Mix the powder of niobium oxide (V) and lanthanum oxide (III) in a weight ratio of 25.9: 74.1 (molar ratio of niobium and lanthanum is 30.0: 70.0). Then, it was calcined in the atmosphere at 1500 ° C for 4 hours to obtain a granular deposition material. The material was identified by X-ray diffraction pattern as L a 3 Nb_〇 7 and L ANb_〇 4.
この蒸着材料を用い、 実施例 1と同様の方法で成膜することにより得られた 各々の膜について、 波長 450 nmにおける屈折率及び最短透過波長、 並びに二 ォブとランタンのモル比を求めた。 結果を表 1〜2に示すが、 成膜回数によらず 屈折率及びモル比は一様であり、 最短透過波長は 270 nmであった。  Using this vapor deposition material, the refractive index at the wavelength of 450 nm, the shortest transmission wavelength, and the molar ratio of niobium to lanthanum were determined for each film obtained by forming a film in the same manner as in Example 1. . The results are shown in Tables 1 and 2. The refractive index and the molar ratio were uniform regardless of the number of film formation, and the shortest transmission wavelength was 270 nm.
実施例 5 Example 5
酸化ニオブ (V)、 酸化ランタン (III) 及び酸化アルミニウムの粉体を重量比 44.3 : 54.3 : 1.4 (ニオブとランタンのモル比は、 50.0 : 50.0) で混合し、 その粉体混合物を 1〜 3mmの顆粒状に造粒し、 大気中で 1500°C X 4時間焼成することにより、 顆粒状の蒸着材料を得た。 当該材料は X線回折パ ターンから L aNb〇4と同定された。 なお、 酸化アルミニウムは微量のために 同定されなかったものと考えられる。 Mix powders of niobium oxide (V), lanthanum oxide (III) and aluminum oxide at a weight ratio of 44.3: 54.3: 1.4 (molar ratio of niobium and lanthanum is 50.0: 50.0). Granulated into 1500 ° C in the atmosphere X 4 hours baking was performed to obtain a granular deposition material. The material was identified by X-ray diffraction pattern with L ANb_〇 4. In addition, it is considered that aluminum oxide was not identified due to its small amount.
この蒸着材料を用い、 実施例 1と同様の方法で成膜することにより得られた 各々の膜について、 波長 450 nmにおける屈折率及び最短透過波長、 並びに二 ォブとランタンのモル比を求めた。 結果を表 1〜2に示すが、 成膜回数によらず 屈折率及びモル比は一様であり、 最短透過波長は 290 nmであった。  Using this vapor deposition material, the refractive index at the wavelength of 450 nm, the shortest transmission wavelength, and the molar ratio of niobium to lanthanum were determined for each film obtained by forming a film in the same manner as in Example 1. . The results are shown in Tables 1 and 2. The refractive index and the molar ratio were uniform regardless of the number of film formation, and the shortest transmission wavelength was 290 nm.
実施例 6 Example 6
酸化ニオブ (V)、 酸化ランタン (ΠΙ) 及び金属ニオブの粉体を重量比 26. 8 : 68. 5 : 4.7 (ニオブとランタンのモル比は、 37.5 : 62.5) で混合 し、 その粉体混合物を l〜3mmの夕ブレットに成型し、 真空中で 1300t:x 3時間焼成することにより、 夕ブレット状の蒸着材料を得た。 当該材料は X線回 折パターンから L a3Nb07、 L a N b〇4及び N bと同定された。 Mix powders of niobium oxide (V), lanthanum oxide (ΠΙ), and metal niobium in a weight ratio of 26.8: 68.5: 4.7 (molar ratio of niobium to lanthanum is 37.5: 62.5). Was molded into 1 to 3 mm evening bullets and fired in vacuum for 1300 t: x 3 hours to obtain evening bullet-like vapor deposition materials. The material was identified from the X-ray diffraction pattern as L a 3 Nb0 7, L a N B_〇 4 and N b.
この蒸着材料を用い、 実施例 1と同様の方法で成膜することにより得られた 各々の膜について、 波長 450 nmにおける屈折率及び最短透過波長、 並びに二 ォブとランタンのモル比を求めた。 結果を表 1〜2に示すが、 成膜回数によらず 屈折率及びモル比は一様であり、 最短透過波長は 290 nmであった。  Using this vapor deposition material, the refractive index at the wavelength of 450 nm, the shortest transmission wavelength, and the molar ratio of niobium to lanthanum were determined for each film obtained by forming a film in the same manner as in Example 1. . The results are shown in Tables 1 and 2. The refractive index and the molar ratio were uniform regardless of the number of film formation, and the shortest transmission wavelength was 290 nm.
実施例 7 Example 7
酸化ニオブ (V)、 酸化ランタン (III) 及び金属ニオブの粉体を重量比 53. 3 : 21.8 : 24.9 (ニオブとランタンのモル比は、 83.3 : 16.7) で混 合し、 その粉体混合物を l〜3mmの夕ブレットに成型し、 真空中で 1300°C X 3時間焼成することにより、 夕ブレット状の蒸着材料を得た。 当該材料は X線 回折パターンから L aNb 309、 LaNb04、 Nb02、 NbO及び Nbと同 定された。 Niobium oxide (V), lanthanum oxide (III), and metal niobium powder were mixed at a weight ratio of 53.3: 21.8: 24.9 (molar ratio of niobium to lanthanum was 83.3: 16.7). Molded into 1 to 3 mm evening bullets and fired in vacuum at 1300 ° C for 3 hours to obtain evening bullet-like deposition materials. The material was identified as L aNb 3 09 , LaNb 0 4 , Nb 0 2 , NbO and Nb from the X-ray diffraction pattern.
この蒸着材料を用い、 実施例 1と同様の方法で成膜することにより得られた 各々の膜について、 波長 450 nmにおける屈折率及び最短透過波長、 並びに二 ォブとランタンのモル比を求めた。 結果を表 1〜2に示すが、 成膜回数によらず 屈折率及びモル比は一様であり、 最短透過波長は 335 nmであった。 Using this vapor deposition material, the refractive index at the wavelength of 450 nm and the shortest transmission wavelength were obtained for each film obtained by forming the film in the same manner as in Example 1. The molar ratio of Abu to lanthanum was determined. The results are shown in Tables 1 and 2. The refractive index and the molar ratio were uniform regardless of the number of depositions, and the shortest transmission wavelength was 335 nm.
比較例 1 Comparative Example 1
酸化ニオブ (V) と酸化ランタン (III) の粉体を重量比 90.4 : 9.6 (二 ォブとランタンのモル比は、 92.3 : 7.7) で混合し、 その粉体混合物を 1〜 Niobium oxide (V) and lanthanum oxide (III) powders were mixed at a weight ratio of 90.4: 9.6 (the molar ratio of niobium and lanthanum was 92.3: 7.7).
3mmの顆粒状に造粒し、 大気中で 1300t:x4時間焼成することにより、 顆 粒状の蒸着材料を得た。 当該材料は X線回折パターンから L a N b 50ェ 4及び N b25と同定された。 It was granulated into 3mm granules and fired in air for 1300t: x4 hours to obtain condylar deposition material. The material was identified by X-ray diffraction pattern with L a N b 5 0 E 4 and N b 25.
この蒸着材料を用い、 実施例 1と同様の方法で成膜することにより得られた 各々の膜について、 波長 450 nmにおける屈折率及び最短透過波長、 並びに二 ォブとランタンのモル比を求めた。 結果を表 1〜2に示すが、 成膜回数を重ねる に連れ屈折率は低下、 またモル比も変化しており、 最短透過波長も 365 nmと 近紫外域の光を十分に透過するとはいえないものであった。  Using this vapor deposition material, the refractive index at the wavelength of 450 nm, the shortest transmission wavelength, and the molar ratio of niobium to lanthanum were determined for each film obtained by forming a film in the same manner as in Example 1. . The results are shown in Tables 1 and 2. As the number of depositions increases, the refractive index decreases and the molar ratio also changes, and even though the shortest transmission wavelength is 365 nm, it can sufficiently transmit light in the near ultraviolet region. It was not.
比較例 2 Comparative Example 2
酸化ニオブ (V) と酸化ランタン (III) の粉体を重量比 16.9 : 83. 1 Niobium (V) oxide and lanthanum oxide (III) powder weight ratio 16.9: 83.1
(ニオブとランタンのモル比は、 20 : 80) で混合し、 その粉体混合物を 1〜 3 mmの顆粒状に造粒し、 大気中で 1500t:x4時間焼成することにより、 顆 粒状の蒸着材料を得た。 当該材料はその X線回折パターンから L a 3 N b O 7及 び L a23 (酸化ランタン) と同定された。 吸湿により質量の増加が見られた 力 顆粒体が崩れることはなかった。 また、 その増加質量から酸化ランタンの含 有率を算出したところ、 2. 5重量%であった。 (Molar ratio of niobium and lanthanum is 20:80), the powder mixture is granulated into 1 to 3 mm granules, and calcined in the atmosphere at 1500t: x4 hours to deposit condylar particles Obtained material. The material was identified from its X-ray diffraction pattern L a 3 N b O 7及beauty L a 23 (lanthanum oxide). Increased mass was observed due to moisture absorption. The granules did not collapse. The content of lanthanum oxide calculated from the increased mass was 2.5% by weight.
この蒸着材料を用い、 実施例 1と同様の方法で成膜することにより得られた 各々の膜について、 波長 450 nmにおける屈折率及び最短透過波長、 並びに二 ォブとランタンのモル比を求めた。 結果を表 1〜2に示すが、 最短透過波長は 2 60 nmと近紫外域を十分に透過するものの、 成膜回数を重ねるに連れ屈折率は 増加、 またモル比も変化した。 比較例 3 Using this vapor deposition material, the refractive index at the wavelength of 450 nm, the shortest transmission wavelength, and the molar ratio of niobium to lanthanum were determined for each film obtained by forming a film in the same manner as in Example 1. . The results are shown in Tables 1 and 2. Although the shortest transmission wavelength is 260 nm, which sufficiently transmits the near-ultraviolet region, the refractive index increased and the molar ratio changed as the number of film formations increased. Comparative Example 3
以下、 本発明の蒸着材料のニオブ原料をチタン原料に換えた場合の比較例を示 す。  Hereinafter, a comparative example in which the niobium raw material of the vapor deposition material of the present invention is replaced with a titanium raw material will be shown.
酸化チタン (IV)、 酸化ランタン (III) 及び金属チタンの粉体を重量比 29. 3 : 68.2 : 2.5 (チタンとランタンのモル比は、 50.0 : 50.0) で混合 し、 その粉体混合物を 1〜 3mmの顆粒状に造粒し、 真空中で 1700°CX 5時 間焼成することにより、 顆粒状の蒸着材料を得た。  Titanium oxide (IV), lanthanum oxide (III) and titanium metal powder were mixed at a weight ratio of 29.3: 68.2: 2.5 (molar ratio of titanium to lanthanum was 50.0: 50.0). Granulated vapor-deposited material was obtained by granulating into ~ 3mm granules and firing in vacuum at 1700 ° CX for 5 hours.
この蒸着材料を用い、 成膜回数が 1回であること以外は実施例 1と同様の方法 で成膜した。 図 3には上記の成膜終了後の蒸着材料の写真を示すが、 電子ビーム を照射した位置が大きく凹んでいることが分かる。 1回しか成膜していないにも 拘らず、 凹みの中心部はハースライナーの底に到達しそうな程度に深く掘られて おり (中心部の面とハースライナー底面との距離が約 3mm)、 連続蒸着は全く 不可能であった。  Using this vapor deposition material, a film was formed in the same manner as in Example 1 except that the number of film formation was one. Fig. 3 shows a photograph of the vapor deposition material after the film formation, and it can be seen that the position irradiated with the electron beam is greatly recessed. The center of the dent is dug deep enough to reach the bottom of the hearth liner (the distance between the center surface and the hearth liner bottom is about 3mm) Continuous deposition was impossible at all.
比較例 4 Comparative Example 4
以下、 本発明の蒸着材料のランタン原料をイットリウム原料に換えた場合の比 較例を示す。  Hereinafter, a comparative example in which the lanthanum raw material of the vapor deposition material of the present invention is replaced with an yttrium raw material will be shown.
酸化ニオブ (V) と酸化イットリウム (III) の粉体を重量比 44.0 : 56. 0 (ニオブとイットリウムのモル比は、 40.0 : 60.0) で混合し、 その粉体 混合物を 1〜 3mmの顆粒状に造粒し、 真空中で 1700 X4時間焼成するこ とにより、 顆粒状の蒸着材料を得た。  Niobium oxide (V) and yttrium oxide (III) powders were mixed at a weight ratio of 44.0: 56.0 (molar ratio of niobium and yttrium was 40.0: 60.0). And then fired in vacuum for 1700 x 4 hours to obtain a granular deposition material.
この蒸着材料を用い、 成膜回数が 1回であること以外は実施例 1と同様の方法 で成膜した。 図 4には上記の成膜終了後の蒸着材料の写真を示すが、 1回しか成 膜していないにも拘らず、 電子ビームを照射した位置が大きく凹んでおり、 さら にはハースライナーの底部の一部が露出していることが分かる。 比較例 3と同様、 連続蒸着は全く不可能であった。  Using this vapor deposition material, a film was formed in the same manner as in Example 1 except that the number of film formation was one. Fig. 4 shows a photograph of the vapor deposition material after the completion of the above film formation, but the position where the electron beam was irradiated was greatly recessed despite the fact that the film was formed only once. It can be seen that a part of the bottom is exposed. As in Comparative Example 3, continuous vapor deposition was not possible at all.
比較例 5 大気中で 1 2 0 0で X 4時間焼成すること以外は実施例 4と同様の方法により、 顆粒状の蒸着材料を得た。 当該材料は X線回折パターンから L a N b 04、 L a 3 N b〇7及び L a 23と同定された。 吸湿により質量の増加が見られ、 顆粒体 は、 作製から一日後、 崩れて粉状に変化した。 その増加質量から酸化ランタンの 含有率を算出したところ、 6 . 3重量%であった。 Comparative Example 5 A granular deposition material was obtained in the same manner as in Example 4 except that it was calcined at 120 ° C. for 4 hours in the air. The material was identified by X-ray diffraction pattern with L a N b 0 4, L a 3 N B_〇 7 and L a 23. An increase in mass was observed due to moisture absorption, and the granules collapsed and turned into powder one day after production. When the content of lanthanum oxide was calculated from the increased mass, it was 6.3% by weight.
この粉状の蒸着材料を装填した銅製のハースライナーを市販の真空蒸着装置内 にセットし、 装置内を 1 . 0 X 1 0—3 P aになるまで排気した後、 電子ビームに より加熱したところ、 材料は激しく飛散したため、 成膜を中断した。 The powdered copper hearth liner loaded with deposited material was set in a vacuum deposition apparatus available on the market, it was evacuated to the interior of the apparatus to 1. 0 X 1 0- 3 P a, was heated to a higher electron beam However, the material was scattered violently, so the film formation was interrupted.
【表 1】  【table 1】
屈折率 λ = 4 5 0 n m  Refractive index λ = 4 5 0 n m
成膜回数  Number of film formation
1 2 3 4  1 2 3 4
1 2. 23 2. 23 2. 24 2. 23  1 2. 23 2. 23 2. 24 2. 23
2 2. 30 2. 29 2. 30 2. 29  2 2. 30 2. 29 2. 30 2. 29
実 3 2. 35 2. 33 2. 34 2. 32  Actual 3 2. 35 2. 33 2. 34 2. 32
施 4 2. 16 2. 19 2. 18 2. 17  Out 4 2. 16 2. 19 2. 18 2. 17
 "
例 o 2. 26 2. 27 2. 27 2. 26  Example o 2. 26 2. 27 2. 27 2. 26
6 2. 25 2. 25 2. 24 2. 25  6 2. 25 2. 25 2. 24 2. 25
7 2. 33 2. 34 2. 35 2. 32  7 2. 33 2. 34 2. 35 2. 32
1 2. 45 2. 40 2. 37 2. 37  1 2. 45 2. 40 2. 37 2. 37
比 2 2. 06 2. 09 2. 13 2. 12  Ratio 2 2. 06 2. 09 2. 13 2. 12
較 3 連続蒸着不可能  3 Continuous deposition is not possible
例 4 連続蒸着不可能  Example 4 Continuous deposition is not possible
o 材料飛散により成膜中断 【表 2】 o Deposition of film due to material scattering [Table 2]
Figure imgf000020_0001
産業上の利用可能性
Figure imgf000020_0001
Industrial applicability
本発明によれば、 以下の特徴を有する蒸着材料、 それを用いて形成される光学 薄膜及びその光学薄膜の製造方法を提供することができる。  ADVANTAGE OF THE INVENTION According to this invention, the vapor deposition material which has the following characteristics, the optical thin film formed using it, and the manufacturing method of the optical thin film can be provided.
1 . 溶融性であって連続蒸着が可能である。  1. It is meltable and can be continuously deposited.
2 . 電子ビーム蒸着法を用いたとしても、 蒸発速度を容易に制御することができ る。 即ち、 ビームによる熱がビーム照 *f点から溶融プール全体に適度に拡散し平 滑な蒸発面を保っため、 蒸発速度を容易に制御することができ、 結果的に均一な 所望の特性を有する膜を容易に形成することができる。  2. Evaporation rate can be easily controlled even using electron beam evaporation. That is, the heat generated by the beam diffuses moderately from the beam irradiation point * f to the entire molten pool and maintains a smooth evaporation surface, so that the evaporation rate can be easily controlled, resulting in uniform desired characteristics. A film can be easily formed.
3 . 従来よりも広い波長範囲、 特に近紫外域の光を透過させることができる。 3. It can transmit light in a wider wavelength range than in the past, especially in the near ultraviolet region.
4. 高屈折率を有する光学薄膜を成膜することができる。 4. An optical thin film having a high refractive index can be formed.

Claims

請求の範囲 The scope of the claims
1 . ニオブ及びランタンの二元系酸化物から成り、 該ニオブとランタン のモル比が 2 5 : 7 5〜9 0 : 1 0であることを特徴とする蒸着材料。 1. A vapor deposition material comprising a binary oxide of niobium and lanthanum, wherein the molar ratio of niobium and lanthanum is 25:75 to 90:10.
2 . a ) ニオブ及びランタンの二元系酸化物と、 b ) 金属ニオブ及び Z 又は金属ラン夕ンとから成る蒸着材料であって、 該蒸着材料中のニオブとラン夕 ンのモル比が 2 5 : 7 5〜9 0 : 1 0であることを特徴とする蒸着材料。  2. a vapor deposition material comprising a) a binary oxide of niobium and lanthanum and b) metal niobium and Z or metal lanthanum, wherein the molar ratio of niobium and lanthanum in the vapor deposition material is 2 Vapor deposition material characterized in that 5:75 to 90:10.
3 . ニオブとランタンのモル比が 3 5 : 6 5〜6 0 : 4 0である請求の 範囲第 1又は 2項に記載の蒸着材料。  3. The vapor deposition material according to claim 1 or 2, wherein the molar ratio of niobium to lanthanum is 35:65 to 60:40.
4. 焼結体または溶融体である請求の範囲第 1〜 3項のいずれかに記載 の蒸着材料。  4. The vapor deposition material according to any one of claims 1 to 3, which is a sintered body or a melt.
5 . 酸化ラン夕ンの含有率が 5重量%以下である請求の範囲第 1〜 4項 のいずれかに記載の蒸着材料。  5. The vapor deposition material according to any one of claims 1 to 4, wherein the content of lanthanum oxide is 5% by weight or less.
6 . 請求の範囲第 1〜 5項のいずれかに記載の蒸着材料を用い、 真空蒸 着法によって形成することを特徴とする光学薄膜の製造方法。  6. A method for producing an optical thin film, wherein the vapor deposition material according to any one of claims 1 to 5 is used, and the vapor deposition method is used.
7 . 真空蒸着法が電子ビーム蒸着法である請求の範囲第 6項に記載の光 学薄膜の製造方法。  7. The method for producing an optical thin film according to claim 6, wherein the vacuum evaporation method is an electron beam evaporation method.
8 . 成膜中において電子ビームの照射位置を固定する請求の範囲第 7項 に記載の光学薄膜の製造方法。  8. The method for producing an optical thin film according to claim 7, wherein the irradiation position of the electron beam is fixed during film formation.
9 . 請求の範囲第 6〜 8項に記載の製造方法により得られた光学薄膜。  9. An optical thin film obtained by the production method according to any one of claims 6 to 8.
PCT/JP2008/056643 2007-03-30 2008-03-27 Vapor deposition material and optical thin film obtained from the same WO2008123575A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020097022512A KR101462294B1 (en) 2007-03-30 2008-03-27 Vapor deposition material and optical thin film obtained from the same
JP2009509292A JP5358430B2 (en) 2007-03-30 2008-03-27 Vapor deposition material and optical thin film obtained therefrom
CN2008800077082A CN101636518B (en) 2007-03-30 2008-03-27 Vapor deposition material and optical thin film obtained from the same
HK10103623.7A HK1138334A1 (en) 2007-03-30 2010-04-14 Vapor deposition material and optical thin film obtained from the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007091541 2007-03-30
JP2007-091541 2007-03-30

Publications (1)

Publication Number Publication Date
WO2008123575A1 true WO2008123575A1 (en) 2008-10-16

Family

ID=39831041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/056643 WO2008123575A1 (en) 2007-03-30 2008-03-27 Vapor deposition material and optical thin film obtained from the same

Country Status (6)

Country Link
JP (1) JP5358430B2 (en)
KR (1) KR101462294B1 (en)
CN (1) CN101636518B (en)
HK (1) HK1138334A1 (en)
TW (1) TWI382101B (en)
WO (1) WO2008123575A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105506737B (en) * 2015-12-28 2018-02-09 常州瞻驰光电科技有限公司 A kind of non-stoichiometric niobium oxide polycrystalline Coating Materials and its growing technology
CN110078504B (en) * 2019-04-26 2020-10-30 清华大学 In-situ synthesized pseudo-binary complex phase rare earth niobate ceramic and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180604A (en) * 1998-12-17 2000-06-30 Oputoron:Kk High refractive index optical thin film material and optical thin film using therewith
JP2002226967A (en) * 2000-12-29 2002-08-14 Merck Patent Gmbh Vapor deposition material for producing optical layer with high refractive index, and method for manufacturing the same
JP2005031297A (en) * 2003-07-10 2005-02-03 Asahi Techno Glass Corp Transparent substrate with antireflection film for liquid crystal display device
JP2006195301A (en) * 2005-01-17 2006-07-27 Konica Minolta Opto Inc Optical element
JP2006519923A (en) * 2003-02-19 2006-08-31 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Vapor deposition material for producing high refractive index optical layers

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6327087B1 (en) * 1998-12-09 2001-12-04 Canon Kabushiki Kaisha Optical-thin-film material, process for its production, and optical device making use of the optical-thin-film material
JP2005154885A (en) * 2003-03-26 2005-06-16 Mitsubishi Heavy Ind Ltd Material for thermal barrier coating
KR100997068B1 (en) * 2003-10-21 2010-11-30 우베 마테리알즈 가부시키가이샤 Magnesium oxide for vapor deposition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180604A (en) * 1998-12-17 2000-06-30 Oputoron:Kk High refractive index optical thin film material and optical thin film using therewith
JP2002226967A (en) * 2000-12-29 2002-08-14 Merck Patent Gmbh Vapor deposition material for producing optical layer with high refractive index, and method for manufacturing the same
JP2006519923A (en) * 2003-02-19 2006-08-31 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Vapor deposition material for producing high refractive index optical layers
JP2005031297A (en) * 2003-07-10 2005-02-03 Asahi Techno Glass Corp Transparent substrate with antireflection film for liquid crystal display device
JP2006195301A (en) * 2005-01-17 2006-07-27 Konica Minolta Opto Inc Optical element

Also Published As

Publication number Publication date
JPWO2008123575A1 (en) 2010-07-15
KR20090127365A (en) 2009-12-10
KR101462294B1 (en) 2014-11-14
JP5358430B2 (en) 2013-12-04
CN101636518B (en) 2011-06-08
TW200848530A (en) 2008-12-16
HK1138334A1 (en) 2010-08-20
CN101636518A (en) 2010-01-27
TWI382101B (en) 2013-01-11

Similar Documents

Publication Publication Date Title
JP5169888B2 (en) Composite tungsten oxide target material and manufacturing method thereof
EP3360855B1 (en) Method for preparing ceramics, ceramics thus obtained and uses thereof, particularly as a target for cathode sputtering
JPH11504987A (en) High refractive index optical coating materials and methods for mixed oxides
TWI627292B (en) Cu-ga-in-na target
KR20060054000A (en) Vapour-deposition material for the production of layers of high refractive index
WO2008123575A1 (en) Vapor deposition material and optical thin film obtained from the same
US20190169739A1 (en) An interference coating or its part consisting layers with different porosity
Shah et al. Evaporation: Processes, bulk microstructures, and mechanical properties
JP2011074479A (en) Target for ion plating for producing zinc oxide-based transparent conductive thin film, and zinc oxide-based transparent conductive thin film
TW588113B (en) Vapour-deposition material for the production of high-refractive-index optical layers, and process for the production of the vapour-deposition material
KR20050102661A (en) Vaporizing material for producing highly refractive optical layers
EP3090072B1 (en) Multi-layer assembly and method of coating
JP2010106307A (en) Vapor deposition raw material and method of preparing the same
CN1030864C (en) Evaporating material and method of producing optical thin film utilizing the same
JP6736066B2 (en) Deposition method
JPH07331412A (en) Optical parts for infrared ray and their production
JPS6128027B2 (en)
CN101178440A (en) LaTiO3 evaporation material for high refractivity optical film, method of producing the same and use
JP2009062237A (en) Forming material for optical thin film and method of forming optical thin film
WO2015037462A1 (en) Production method for silicon oxide sintered body, and silicon oxide sintered body
JP3160309B2 (en) Thin film formation method
JP2010180431A (en) Vapor deposition material, optical thin film and production method therefor
JP2001003157A (en) Film forming material of optical thin film and film forming method
Pesonen Rare Earth Fluoride Thin Films
Oliveira et al. Influence of substrate temperature on microstructure of zirconium silicon nitride thin films deposited by reactive magnetron sputtering

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880007708.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08722928

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009509292

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20097022512

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 08722928

Country of ref document: EP

Kind code of ref document: A1