WO2008123566A1 - 炭酸基含有水酸化マグネシウム粒子およびその製造方法 - Google Patents

炭酸基含有水酸化マグネシウム粒子およびその製造方法 Download PDF

Info

Publication number
WO2008123566A1
WO2008123566A1 PCT/JP2008/056630 JP2008056630W WO2008123566A1 WO 2008123566 A1 WO2008123566 A1 WO 2008123566A1 JP 2008056630 W JP2008056630 W JP 2008056630W WO 2008123566 A1 WO2008123566 A1 WO 2008123566A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium hydroxide
magnesium
ions
surface area
specific surface
Prior art date
Application number
PCT/JP2008/056630
Other languages
English (en)
French (fr)
Inventor
Tomoko Tachifuji
Original Assignee
Kyowa Chemical Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Chemical Industry Co., Ltd. filed Critical Kyowa Chemical Industry Co., Ltd.
Priority to KR1020097015942A priority Critical patent/KR101354837B1/ko
Priority to EP08739740.2A priority patent/EP2135845A4/en
Priority to US12/450,610 priority patent/US9346683B2/en
Priority to JP2009509287A priority patent/JP5202514B2/ja
Priority to CN200880010937XA priority patent/CN101652323B/zh
Publication of WO2008123566A1 publication Critical patent/WO2008123566A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide
    • C01F5/22Magnesium hydroxide from magnesium compounds with alkali hydroxides or alkaline- earth oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • C01F5/06Magnesia by thermal decomposition of magnesium compounds
    • C01F5/08Magnesia by thermal decomposition of magnesium compounds by calcining magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/24Magnesium carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Definitions

  • the present invention C_ ⁇ 3 magnesium hydroxide synthesized BET specific surface area is greater in the presence of ion particles, and a method for producing the same.
  • Magnesium hydroxide particles have been known for a long time, pharmaceutical, industrial and agricultural documents
  • antacids and laxatives are used for pharmaceuticals, and are used as flame retardants, flue gas desulfurization agents, wastewater neutralizers, ceramic raw materials, and sintering aids for industrial use. In agriculture, it is used as a bitter soil fertilizer to neutralize acidic soil and supplement minerals.
  • a typical method for producing magnesium hydroxide particles is a seawater method in which seawater reacts with slaked lime.
  • the seawater because it contains C 0 3 ions of approximately 0. Lg / L in C 0 2 conversion, the C a C_ ⁇ 3 Adding without pretreatment slaked lime mixed as produced impurities. Therefore, seawater is usually used for the reaction after decarboxylation.
  • Other methods include reacting with Mg source as bitter and caustic soda as alkali source, hydrating MgO, and reacting magnesium salt with ammonia to crystallize magnesium hydroxide crystals. .
  • the C a C 0 3 or M g C_ ⁇ 3 CO 3 ions to generate impurities such as disliked, tended to be excluded only from the reaction system possible.
  • Magnesium carbonate is a soda ash method in which a magnesium salt solution and sodium carbonate are reacted, a carbon dioxide method in which a magnesium salt solution and ammonium carbonate solution are reacted, and a carbon dioxide method in which carbon dioxide gas is allowed to act on magnesium hydroxide. It is manufactured by.
  • Patent Document 1 magnesium hydroxide particles and amorphous caustic acid are heated in an aqueous medium to form magnesium kainate on the surface of the magnesium hydroxide particles to produce magnesium hydroxide particles having a large specific surface area.
  • a method is disclosed.
  • the specific surface area of the magnesium hydroxide particles obtained by this production method is large because of the non-reactive amorphous kaic acid that appears to remain partially unreacted with the magnesium silicate formed only on the surface. Presumably due to the influence of both, it is difficult to say that the specific surface area of magnesium hydroxide particles has increased.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-40616 Disclosure of Invention
  • magnesium hydroxide particles having a large BET method specific surface area can obtain magnesium hydroxide particles having a large BET method specific surface area by adding divalent anions that inhibit crystal growth of magnesium hydroxide particles. I had the idea that it might be. Based on this idea, when magnesium salt solution and an alkaline substance were reacted in the presence of C0 3 ions, it was found that magnesium hydroxide particles having a BET specific surface area larger than before were obtained. Completed the invention.
  • x and m satisfy the following conditions.
  • grains represented by these is provided.
  • a fired product obtained by firing the magnesium hydroxide particles at 400 ° C. or higher.
  • FIG. 1 is an X-ray diffraction image of the magnesium hydroxide particles obtained in Example 6.
  • FIG. 2 is an X-ray diffraction image of the magnesium hydroxide particles obtained in Comparative Example 1.
  • FIG. 3 is an X-ray diffraction image of the basic magnesium carbonate particles obtained in Comparative Example 4.
  • FIG. 4 is a differential thermal analysis curve (DTA) of the magnesium hydroxide particles obtained in Example 6.
  • FIG. 5 is a differential thermal analysis curve (DTA) of the magnesium hydroxide particles obtained in Comparative Example 3.
  • FIG. 6 is a differential thermal analysis curve (DTA) of the basic magnesium carbonate particles obtained in Comparative Example 4.
  • DTA differential thermal analysis curve
  • the magnesium hydroxide particles of the present invention have the following formula (1)
  • composition represented by these.
  • 0.02 ⁇ x ⁇ 0.7 is satisfied.
  • X preferably satisfies 0.04 ⁇ 0.6, more preferably 0.006 ⁇ x ⁇ 0.3.
  • m satisfies 0 ⁇ m ⁇ l. m preferably satisfies 0 ⁇ m ⁇ 0.5.
  • the BET specific surface area of the magnesium hydroxide particles of the present invention is 80 to 40 OmV g.
  • the lower limit of the BET specific surface area of the magnesium hydroxide particles of the present invention is 8 Om 2 Zg, preferably 10 Om 2 Zg, more preferably 12 Om 2 Zg.
  • the upper limit of the BET specific surface area is 400 m 2 / g, preferably 350 m 2 / g, and more preferably 300 m 2 / g.
  • the BET specific surface area of the magnesium hydroxide particles of the present invention is preferably 80 to 350 m 2 Zg.
  • the magnesium hydroxide particle of the present invention contains about 0.75 to 23 wt% of C0 3 ion in terms of CO 2 in the particle, but is characteristic of magnesium hydroxide in X-ray diffraction images and differential thermal analysis (DTA). And the BET specific surface area is 80 to 40 Om 2 Zg. C ⁇ The higher the content of 3 ions, the more hindered the crystal growth of magnesium hydroxide particles and the higher the BET specific surface area of the resulting magnesium hydroxide particles.
  • the present invention includes a fired product obtained by firing the magnesium hydroxide particles at 400 ° C. or higher.
  • Magnesium hydroxide particles of the present invention have a decomposition temperature slightly lower than that of conventional magnesium hydroxide particles, so that magnesium oxide can be obtained at 370 or higher.
  • the firing temperature is 400 ° C or higher. I like it.
  • Magnesium hydroxide particles of the present invention in the presence of C0 3 ions, and Mg ions It can be produced by contacting OH ions with water.
  • Mg ions are preferably used in the form of an aqueous solution of magnesium salt.
  • Magnesium salts include magnesium chloride (including bitter juice from which Ca has been removed), magnesium sulfate, magnesium nitrate, magnesium acetate, and the like.
  • the magnesium salt aqueous solution preferably contains no Ca ions as much as possible.
  • C a ions present in the reaction system since yield a C a C_ ⁇ 3 reacts with C 0 3 ions added for the purpose of crystal growth inhibition hydroxide ⁇ magnesium particle.
  • O ions are preferably used in the form of an aqueous solution of alkali metal hydroxide, ammonium hydroxide or the like.
  • alkali metal hydroxide caustic soda is preferable.
  • C_ ⁇ 3 ions in the production method of the present invention carbonates aqueous solutions, such as alkali metal carbonates and ammonium Niumu, or can be supplied from the form of co 2 gas, controlling the existence ratio of OH ions and CO 3 ions In order to do so, it is preferable to use a carbonate solution.
  • the abundance ratio upon reaction with ⁇ _H ions C_ ⁇ 3 ion is the main point. Because since the chemical composition of the water the magnesium oxide particles of the present invention is determined by the existence ratio of ⁇ _H ions C_ ⁇ 3 ions. When there are a lot of CO 3 ions, magnesium carbonate is naturally generated, and its presence is confirmed by X-ray diffraction images and differential thermal analysis (DTA), and the specific surface area of the generated magnesium hydroxide particles is reduced.
  • DTA differential thermal analysis
  • C ⁇ 3 ions are incorporated together with OH ions when the magnesium hydroxide particles are formed, thereby inhibiting the crystal growth of the magnesium hydroxide particles. Therefore, CO 3 ions are added after the magnesium hydroxide particles are formed.
  • magnesium hydroxide particles having a high BET specific surface area as in the present invention cannot be obtained. Therefore, it is important to provide a stable supply of H ions and CO 3 ions at a certain ratio. ⁇ It is preferable to prepare a mixed solution of 3 ions and use it for the reaction.
  • the mixed solution of OH ions C_ ⁇ 3 ions such as mixed aqueous solution of mixed aqueous solution and ammonia and carbon Anmoniumu between caustic soda and carbonated soda and the like, sodium hydroxide and carbonic acid in terms of yield of the magnesium hydroxide particles A mixed aqueous solution with soda is preferred.
  • the magnesium hydroxide particles of the present invention can be obtained by continuously and continuously adding OH ions and CO 2 gas to a magnesium salt aqueous solution with stirring.
  • reaction temperature is preferably 0 to 100 ° C, more preferably 10 to 80. (Reaction time) F
  • reaction time is preferably within 120 minutes, more preferably within 60 minutes.
  • Magnesium hydroxide particles of the present invention are, for example, an aqueous solution of a magnesium salt (Mg I on), and a mixed aqueous solution of caustic soda (OH ion) and sodium carbonate (C_ ⁇ 3 ions), continuously feeding to a reaction vessel,
  • the product can be continuously extracted from the reaction tank by a continuous stirring tank anti-J heart (c on ti nu nu sstirred tank reaction).
  • the residence time in this reaction is preferably within 120 minutes, more preferably within 60 minutes.
  • the aqueous solution of the magnesium salt in the reaction vessel can be prepared by a batch reaction adding a mixed aqueous solution of caustic soda ( ⁇ H ion) and sodium carbonate (C0 3 ions).
  • magnesium hydroxide particles obtained by the reaction contain C 1 ions and S0 4 ions as impurities. May be.
  • the content of C 1 ions is preferably 0.5 wt% or less and 0.3 wt% or less.
  • the content of S O 4 ions is preferably 2 wt% or less and 1.5 wt% or less. If it is better to reduce these impurities depending on the use of magnesium hydroxide particles, these impurities can be halved by further washing the magnesium hydroxide particles obtained by the reaction with an emulsified or alkaline solution. The following can be eliminated and reduced.
  • a caustic soda diluted aqueous solution or a sodium carbonate diluted aqueous solution is preferable.
  • Power that can reduce impurities even by heat treatment Heating and aging reduces the specific surface area power that characterizes the present invention.
  • the magnesium hydroxide particles of the present invention have extremely excellent filterability despite a large BET specific surface area. It is estimated that for the synthesized cohesive secondary particle size compared to the conventional magnesium hydroxide particles without adding a C_ ⁇ 3 ions are larger summer, performed quickly and easily dehydrated and cleaning of reaction slurry be able to. (Filtration, dehydration, drying, powdered rice cake)
  • the slurry product obtained by the reaction is preferably filtered, washed with water or an aqueous alkali diluted solution, and dried. Drying can be performed by shelf hot air drying, spray drying, or the like. In this case, drying is preferably performed at 80 to 250 ° C. in order to remove water. It is also possible to vacuum dry without replacing the moisture with an organic solvent. Since shelf-type hot-air dried products and vacuum-dried products are lumps, it is preferable to grind them into powders according to the purpose of use.
  • Example 1 Example 1
  • Reaction slurry of Example 1 1. Filter 30 L, wash with 1 L of water, and then continue to pass 0.02 mo 1ZL of sodium carbonate dilute aqueous solution 2 L, then add 1 L of water. After washing with water, it was dewatered and dried at 105 with a shelf dryer for 16 hours. The dried product was pulverized in a mortar and passed through a wire mesh with an opening of 150 m to obtain 97 g of a white powder having a BET specific surface area of 90 m 2 Zg.
  • Reaction slurry of Example 5 1. Filter 80 L, wash with 1 L of water, and then continue to pass 0.04 mo 1 ZL of dilute aqueous solution of 1 L of caustic soda into 1 L of water. After washing with water, it was dewatered and dried at 105 ° C for 16 hours in a shelf dryer. The dried product was pulverized in a mortar and passed through a wire mesh with a mesh opening of 150 to obtain 96 g of a white powder having a BET specific surface area of 177 m 2 / g.
  • Example 7 (alkali cleaning) Reaction slurry of Example 5 1.
  • Filter 80 L wash with 1 L of water, and then continue to pass 0.02 mo 1 / L of sodium carbonate diluted aqueous solution 2 L, and further into 1 L of water. After washing with water, it was dewatered and dried at 105 ° C for 16 hours in a shelf dryer.
  • the dried product was pulverized in a mortar, and passed through a wire mesh having an opening of 150 m to obtain 98 g of white powder having a specific surface area of 197 m 2 Zg.
  • Example 8 The reaction slurry of Example 8 was filtered, and 0 L was filtered and washed with 0.5 L of water, followed by 0.04 mo 1 ZL of aqueous sodium hydroxide solution diluted with 1 L, and further, 0. The water was washed with 5 L of water, dehydrated, and dried at 105 ° C for 16 hours with a shelf dryer. The dried product was pulverized in a mortar and passed through a wire mesh with an opening of 150 m to obtain 46 g of a white powder having a BET specific surface area of 2 16 m 2 / g.
  • Example 11 (alkali cleaning) 4. React slurry of Example 10 4. Filter 65 L, wash with 1 L of water, and then pass 0.02 mo 1 ZL of dilute aqueous sodium carbonate solution with 2 L. The water was washed with 1 L of water, dehydrated, and dried at 105 ° C for 16 hours with a shelf dryer. The dried product was ground in a mortar, passed through a wire mesh of mesh opening 0.99 m, to obtain a BET specific surface area of 249 ⁇ 2 / ⁇ white powder 100 g of.
  • Magnesium hydroxide having a BET specific surface area of 249 m 2 Zg in Example 11 was calcined at 400 ° C. for 2 hours.
  • Magnesium hydroxide having a BET specific surface area of 177 m 2 / g in Example 6 was calcined at 750 ° C. for 2 hours.
  • Magnesium hydroxide having a BET specific surface area of 37 m 2 / g in Comparative Example 2 was calcined at 400 ° C. for 2 hours.
  • the magnesium hydroxide of Comparative Example 3 having a BET specific surface area of 58 m 2 Z g was calcined at 400 ° C. for 2 hours.
  • Magnesium hydroxide having a BET specific surface area of 58 m 2 Zg in Comparative Example 3 was calcined at 750 ° C. for 2 hours.
  • Example;! -14 and Comparative Examples 1 to 8 were analyzed by the following method.
  • Table 1 shows the composition analysis and BET specific surface area measurement results
  • Fig. 1 to 3 show the structural analysis using an X-ray diffractometer
  • the magnesium hydroxide particles of the present invention have a large BET method specific surface area. According to the production method of the present invention, magnesium hydroxide particles having a large BET method specific surface area can be produced.
  • the acid magnesium (baked product) obtained by firing the magnesium hydroxide particles of the present invention has a high BET method specific surface area.
  • the magnesium hydroxide particles of the present invention have a very high BET specific surface area compared to conventional magnesium hydroxide basic magnesium carbonate. for that reason In addition to adsorbents and neutralizers, it can be used in a wide variety of applications, including various fillers, ceramic materials, food additives, and antacids. Also wash with a dilute aqueous solution.
  • Magnesium oxide obtained by firing the magnesium hydroxide particles of the present invention with reduced C 1 has a higher BET specific surface area than magnesium oxide obtained by firing conventional magnesium hydroxide. A wide range of uses can be expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本発明の目的は、BET法比表面積が80m2/g以上である水酸化マグネシウム粒子およびその製造方法を提供することにある。本発明は、下記式(1) Mg(OH)2-x(CO3)0.5x・mH2O  (1)    但し、式中xおよびmは下記の条件を満足する。 0.02≦x≦0.7   0≦m≦1   で表され、BET法による比表面積が80~400m2/gである水酸化マグネシウム粒子およびその製造方法である。

Description

炭酸基含有水酸化マグネシゥム粒子およびその製造方法 技術分野
本発明は、 C〇3イオンの存在下で合成した B E T法比表面積が大きい水酸化 マグネシウム粒子およびその製造方法に関する。 明
背景技術
細 1
水酸化マグネシウム粒子は古くから知られており、 医薬用、 工業用および農業 書
用として広い分野で使用されている。 例えば、 医薬用としては制酸剤や緩下剤な ど、 工業用としては難燃剤、 排煙脱硫剤、 排水中和剤、 セラミックス原料および 焼結助剤などに利用されている。 農業用では酸性土壌の中和やミネラル補給のた めに苦土肥料として利用されている。
水酸化マグネシウム粒子の代表的な製造方法として、 海水と消石灰とを反応さ せる海水法が挙げられる。 しかし、 海水中には C 02換算で約 0 . l g /Lの C 03イオンが含まれているため、 前処理なしで消石灰を加えると C a C〇3が生成 し不純物として混入する。 そこで、 通常、 海水は脱炭酸処理をしてから反応に使 用されている。 他には M g源に苦汁、 アルカリ源に苛性ソーダを用いて反応する 方法、 M g〇を水和する方法、 マグネシウム塩とアンモニアを反応して水酸化マ グネシゥム結晶を晶析する方法などがある。 これらの従来の水酸化マグネシウム の製造方法では、 C a C 03や M g C〇 3等の不純物を生成させる C O 3イオンは 嫌われ、 出来るだけ反応系から除外される傾向にあった。
一方、 炭酸マグネシウムは、 マグネシウム塩溶液と炭酸ナトリウムとを反応さ せるソ一ダ灰法、 マグネシウム塩溶液と炭酸アンモニゥム溶液とを反応させる炭 安法、 水酸化マグネシゥムに炭酸ガスを作用させる炭酸ガス法などにより製造さ れている。 これらの方法は、 炭酸マグネシウムを得ることを目的にしているため に多量の C〇 3イオンが投入されて、最終生成物の化学式は( 3〜 5 ) M g C O 3 · Mg (OH) 2 · (3〜7) H2〇となり、 水酸化マグネシウムとは異なる塩基性一 炭酸マグネシウム特有の X線回折像を示すとともにその B E T法比表面積が 80 m2Zgを超えることはない。
特許文献 1には、水酸化マグネシウムと非晶質ケィ酸とを水性媒体中で加熱し、 水酸化マグネシウム粒子の表面にケィ酸マグネシウムを形成させ、 比表面積が大 きい水酸化マグネシウム粒子を製造する方法が開示されている。 しかしながら、 この製法で得られた水酸化マグネシウム粒子の比表面積が大きいのは、 表面にの み形成されたケィ酸マグネシウム塩と一部未反応で残留していると思われる非晶 質ケィ酸の両者の影響と推定され、 水酸化マグネシウム粒子の比表面積が大きく なったとは言い難い。
(特許文献 1) 特開 2003—40616号公報 発明の開示
本発明の目的は、 BET法比表面積が大きい水酸化マグネシゥム粒子およびそ の製造方法を提供することにある。 また本発明は、 水酸化マグネシウム粒子を焼 成した B E T法比表面積が大きい焼成物を提供することにある。
本発明者らは、 水酸化マグネシウム粒子が生成する過程において、 水酸化マグ ネシゥム粒子の結晶成長を阻害する二価ァニオンを添加することによって、 BE T法比表面積が大きい水酸化マグネシウム粒子が得られるのではないかという着 想を持った。 この着想の下に、 マグネシウム塩溶液とアルカリ物質とを C03ィ オンの存在下で反応させたところ、 従来と比べて B E T法比表面積が大きい水酸 化マグネシウム粒子が得られることを見出し、 本発明を完成した。
即ち本発明は、 下記式 (1)
Mg (OH) 2_x (C03) o. 5χ -mH20 (1)
但し、 式中 xおよび mは下記の条件を満足する。
0. 02≤x≤0. 7
0≤m≤ 1
で表され、 BET法による比表面積が 80〜400m2Zgである水酸化マグネ シゥム粒子である。 一 また本発明によれば、 C〇3イオンの存在下で、 Mgイオンと OHイオンとを 水中で接触させることからなる下記式 (1)
Mg (OH) 2x (C03) 0. 5x -mH20 (1)
但し式中 xおよび mは下記の条件を満足する。
0. 02≤x≤0. 7
0≤m≤ 1
で表される水酸化マグネシウム粒子の製造方法が提供される。
さらに本発明によれば、 上記水酸化マグネシウム粒子を 400°C以上で焼成し て得られる焼成物が提供される。
以下、 本発明についてさらに詳細に説明する。 図面の簡単な説明
図 1は、 実施例 6で得られた水酸化マグネシウム粒子の X線回折像である。 図 2は、 比較例 1で得られた水酸化マグネシウム粒子の X線回折像である。 図 3は、比較例 4で得られた塩基性炭酸マグネシゥム粒子の X線回折像である。 図 4は、 実施例 6で得られた水酸化マグネシウム粒子の示差熱分析曲線 (DT A) である。
図 5は、 比較例 3で得られた水酸化マグネシウム粒子の示差熱分析曲線 (DT A) である。
図 6は、比較例 4で得られた塩基性炭酸マグネシゥム粒子の示差熱分析曲線 (D TA) である。 発明を実施するための最良の形態
〈水酸化マグネシゥム粒子〉
本発明の水酸化マグネシウム粒子は、 下記式 (1)
Mg (OH) 2_x (C〇3) o.5x - mH20 (1)
で表される組成を有する。 式中 は、 0. 02≤x≤0. 7を満足する。 Xは、 好ましくは 0. 04≤ ≤0. 6、 より好ましくは 0. 06≤x≤0. 3を満足する。
式中 mは、 0≤m≤lを満足する。 mは、 好ましくは 0≤m≤0. 5を満足す る。
(BET法比表面積)
本発明の水酸化マグネシウム粒子の BET法比表面積は、 80〜40 OmV gである。 本発明の水酸化マグネシウム粒子の BET法比表面積の下限は 8 Om 2Zgであり、 好ましくは 10 Om2Zgであり、 より好ましくは 12 Om2Zg である。 一方、 BET法比表面積の上限は 400m2/gであり、 好ましくは 3 50m2/gであり、 より好ましくは 300m2/gである。 本発明の水酸化マグ ネシゥム粒子の BET法比表面積は、 好ましくは 80〜350m2Zgである。 本発明の水酸化マグネシウム粒子は、粒子中に C03イオンを CO 2換算で約 0. 75〜23wt %含有していながら、 X線回折像や示差熱分析 (DTA) では水 酸化マグネシウム特有の特徴を示し、 かつ BET法比表面積が 80〜40 Om2 Zgである。 C〇3イオンの含有量が多いほど、 水酸化マグネシウム粒子の結晶 成長は阻害され、 得られる水酸化マグネシウム粒子の BET法比表面積は大きく なる。 しかし、 C〇2含有量が 23wt%を超えると、 X線回折像や示差熱分析 (DTA) で炭酸マグネシウムの生成が確認されるとともに、 今度は C〇3ィォ ンが炭酸マグネシウムを結晶成長させる方向に働き、 BET法比表面積が低下し てしまうため好ましくない。
〈焼成物〉
本発明は、 上記水酸化マグネシウム粒子を 400°C以上で焼成して得られる焼 成物を包含する。 本発明の水酸化マグネシウム粒子は従来の水酸化マグネシウム 粒子より分解温度がやや低いため 370 以上であれば酸化マグネシウムが得ら れるが、 酸化マグネシウムの安定性を考慮すると焼成温度は 400°C以上が好ま しい。
〈水酸化マグネシゥム粒子の製造方法〉
本発明の水酸化マグネシウム粒子は、 C03イオンの存在下で、 Mgイオンと OHイオンとを水中で接触させることにより製造することができる。
(M gイオン)
本発明の製造方法において M gイオンは、 マグネシウム塩の水溶液の形態で用 いること力 S好ましい。 マグネシウム塩として、 塩化マグネシウム (C aを除去し た苦汁を含む)、硫酸マグネシウム、硝酸マグネシウム、酢酸マグネシウム等が挙 げられる。
本発明では水酸化マグネシウム粒子の結晶成長を阻害する目的で C O 3イオン を添加するため、 マグネシウム塩の水溶液は、 C aイオンを可能な限り含まない ものが好ましい。 反応系に C aイオンが存在すると、 水酸^マグネシウム粒子の 結晶成長阻害の目的で添加した C 03イオンと反応して C a C〇3を生じるから である。 また二価のァニオンである S〇4イオンにも C〇3イオンと同様に水酸化 マグネシゥム粒子の結晶成長を阻害する作用があるので、 マグネシゥム塩の水溶 液が硫酸マグネシウム水溶液の場合、 苛性ソーダと硫酸マグネシウム水溶液のみ で反応してもある程度比表面積が大きい水酸化マグネシウム粒子力 S得られる。 し かし、 C O 3イオンを添加するとさらに格段に比表面積を大きくすることができ る。
(〇Hイオン)
本発明の製造方法において〇Hイオンは、 アルカリ金属水酸化物、 水酸化アン モニゥム等の水溶液の形態で用いることが好ましい。 アル力リ金属水酸化物とし て、 苛性ソーダが好ましい。
(c o 3イオン)
本発明の製造方法において C〇3イオンは、 アルカリ金属炭酸塩や炭酸アンモ ニゥム等の炭酸塩類水溶液、 または c o 2ガスの形態から供給可能であるが、 O Hイオンと C O 3イオンの存在比率を制御するためには炭酸塩類水溶液力好まし い。
本発明の製造方法においては、 アルカリ金属炭酸塩の存在下で、 マグネシウム 塩水溶液と、 アル力リ金属水酸化物の水溶液とを接触させることが好ましい。
(〇Hイオン ZC 03イオン) 本発明の製造方法は、 〇Hイオンと C〇 3イオンとの反応時における存在比率 が要点となる。 なぜなら〇Hイオンと C〇3イオンの存在比率により本発明の水 酸化マグネシウム粒子の化学組成が決定するからである。 CO 3イオンが多いと 当然のことながら炭酸マグネシウムを生じ、 その存在が X線回折像や示差熱分析 (DTA) で確認されるとともに、 生成した水酸化マグネシウム粒子の比表面積 の低下を招く。本発明者らの研究によれば、 2 (OH): C〇3=99 : 1-65 : 35の範囲のモル比であれば、 水酸化マグネシウム粒子の比表面積を大きくし、 かつ X線回折像や示差熱分析 (DTA) において水酸化マグネシウム粒子の特徴 が得られること力 S見出された。 モル比は、 2 (OH) : CO 3= 98 : 2〜 70 : 30であることが好ましく、 2 (OH): C03=97 : 3〜75 : 25であるこ とがさらに好ましい。
C〇 3イオンは、 水酸化マグネシゥム粒子が生成する際に OHイオンとともに 取り込まれることによつて水酸化マグネシウム粒子の結晶成長を阻害するため、 水酸化マグネシウム粒子が生成した後に CO 3イオンを添加しても本発明のよう な高い BET法比表面積を有する水酸化マグネシウム粒子は得られない。 従って 〇Hイオンと CO 3イオンとを一定の比率で安定して供給することが大切であり、 そのためには、 〇11ィォンと。〇3ィォンの混合溶液を調製して反応に用いるこ とが好ましい。 OHイオンと C〇3イオンの混合溶液としては、 苛性ソーダと炭 酸ソーダとの混合水溶液やアンモニアと炭酸アンモニゥムとの混合水溶液などが 挙げられるが、 水酸化マグネシウム粒子の収率の面で苛性ソーダと炭酸ソーダと の混合水溶液の方が好ましい。
またマグネシウム塩水溶液に撹拌下、 OHイオンと CO 2ガスとを同時に連続 注加しても、 本発明の水酸化マグネシウム粒子が得られる。 この場合には、 CO 2ガス濃度と流量を制御し、 〇Hイオンと CO 3イオンとの反応系における存在比 率を一定に保持すること力 S肝要である。
(反応温度)
反応温度は、 好ましくは 0〜100°C、 より好ましくは 10〜 80でである。 (反応時間) フ
反応時間は、 好ましくは 120分以内、 より好まし は 60分以内である。 (反応形式)
本発明の水酸化マグネシウム粒子は例えば、 マグネシウム塩の水溶液 (Mgィ オン) と、 苛性ソーダ (OHイオン) および炭酸ソーダ (C〇3イオン) の混合 水溶液とを、 反応槽に連続して供給し、 反応槽から連続して生成物を抜き出す、 続摸拌槽反 J心 (c on t i nuou s s t i r r e d t ank r e a c t i on) により製造することができる。 この反応における滞留時間は、 好まし くは 120分以内、 より好ましくは 60分以内である。
また、 反応槽中のマグネシウム塩の水溶液 (Mgイオン) に、 苛性ソーダ (〇 Hイオン) および炭酸ソーダ (C03イオン) の混合水溶液を添加するバッチ反 応によっても製造することができる。
(アルカリ洗浄)
原料のマグネシゥム塩溶液として、 塩化マグネシゥム ( C aを除去した苦汁を 含む) や硫酸マグネシウムを用いた場合、 反応により得られた水酸化マグネシゥ ム粒子には不純物として C 1イオンや S04イオンが含まれる場合がある。 C 1 イオンの含有量は、 好ましくは 0. 5wt%以下、 0. 3wt%以下である。 S 〇4イオンの含有量は、 好ましくは 2wt%以下、 1. 5wt%以下である。 水酸化マグネシウム粒子の用途により、 これらの不純物が少ない方が良い場合 には、 反応により得られた水酸ィ匕マグネシウム粒子をさらに乳化洗浄もしくはァ ルカリ希釈水溶液で洗浄することによりこれらの不純物を半分以下に除去削減す ることができる。 洗浄用のアルカリ希釈水溶液としては、 苛性ソーダ希釈水溶液 もしくは炭酸ソ一ダ希釈水溶液が好ましい。 加熱処理によっても不純物を削減で きる力 加熱熟成すると本発明の特徴である比表面積力 氐下する。
また本発明の水酸化マグネシウム粒子は、 BET法比表面積が大きいにも関わ らず極めて優れた濾過性を有している。 これは C〇3イオンを添加せずに合成し た従来の水酸化マグネシウム粒子と比べると凝集二次粒子径が大きくなつている ためと推測され、 速やかかつ容易に反応スラリーの脱水や洗浄を行なうことがで きる。 (ろ過、 脱水、 乾燥、 粉碎)
反応により得られたスラリー生成物は、 ろ過した後、 水やアルカリ希釈水溶液 で洗浄し、 乾燥することが好ましい。 乾燥は、 棚式熱風乾燥、 スプレー乾燥等で 行なうことができる。 この場合の乾燥は水を除去するために、 80〜250°Cで 行うことが好ましい。 また水分を有機溶剤で置換して熱をかけずに真空乾燥する こともできる。 棚式熱風乾燥物や真空乾燥物は塊状なので、 使用目的に応じて粉 砕し粉体化することが好ましい。 実施例
以下の実施例に基づき本発明を具体的に説明する。
実施例 1
1. 5mo 1/Lの Ca除去精製苦汁 6. 67 Lと総アルカリ濃度を 3. ON に調製した苛性ソーダと炭酸ソーダとのアル力リ混液( 2 N a〇H: N a 2 C O 3 = 99 : 1 (モル比)) 6. 40Lを撹拌条件下で、 反応温度 40°C、 滞留時間 1 5分で連続注加反応を行った。 得られた反応スラリー約 13Lのうち 2. 30L を濾過し、 2 Lの水にて通水洗浄後、 脱水し、 棚式乾燥機にて 105°Cで 16時 間乾燥した。 乾燥物を乳鉢で粉碎し、 目開き 150 xmの金網を通して、 BET 法比表面積 85m2/gの白色粉末 98 gを得た。 得られた水酸化マグネシウム 粒子は、 式 (1) において、 Xが 0. 045で、 mが 0· 11の粒子であった。 また得られた水酸化マグネシウムには、苦汁由来の不純物として S〇4—および C 1一イオンが含有していた。
実施例 2 (アルカリ洗浄)
実施例 1の反応スラリー 2. 30 Lを濾過し、 1 Lの水にて通水洗浄後、 続け て 0. 02 mo 1ZLの炭酸ソーダ希釈水溶液 2 Lを通水し、 さらに、 1Lの水 にて通水洗浄後、 脱水し、 棚式乾燥機にて 105でで 16時間乾燥した。 乾燥物 を乳鉢で粉砕し、 目開き 150 mの金網を通して、 BET法比表面積 90m2 Zgの白色粉末 97 gを得た。
実施例 3 1. 5mo 1ZLの Ca除去精製苦汁 6. 67 Lと総アルカリ濃度を 3. ON に調製した苛性ソーダと炭酸ソーダとのアルカリ混液 (2NaOH: Na2C03 = 98 : 2 (モル比)) 6. 40Lを撹拌条件下で、 反応温度 40°C、 滞留時間 1 5分で連続注加反応を行つた。 得られた反応スラリー約 13Lのうち 2. 30L を濾過し、 2 Lの水にて通水洗浄後、 脱水し、 棚式乾燥機にて 105°Cで 16時 間乾燥した。 乾燥物を乳鉢で粉砕し、 目開き 150 zmの金網を通して、 BET 法比表面積 115m2/gの白色粉末 97 gを得た。
実施例 4 (アルカリ洗浄)
実施例 3の反応スラリー 2. 30Lを濾過し、 1Lの水にて通水洗浄後、 続け て 0. 02mo 1ZLの炭酸ソ一ダ希釈水溶液 2Lを通水し、 さらに、 1Lの水 にて通水洗浄後、 脱水し、 棚式乾燥機にて 105°Cで 時間乾燥した。 乾燥物 を乳鉢で粉碎し、 目開き 150 Atmの金網を通して、 :6£丁法比表面積123m 2/gの白色粉末 99 gを得た。
実施例 5
1. 5 mo 1 /Lの C a除去精製苦汁 6. 67 Lと総アルカリ濃度を 6. 5N に調製した苛性ソーダと炭酸ソ一ダとのアルカリ混液 (2NaOH: Na2C〇3 = 94 : 6 (モル比)) 2. 95 Lを撹拌条件下で、 反応温度 40°C、 滞留時間 1 5分で連続注加反応を行った。 得られた反応スラリー約 9. 5Lのうち 1. 80 Lを濾過し、 2Lの水にて通水洗浄後、 脱水し、 棚式乾燥機にて 105°Cで 16 時間乾燥した。 乾燥物を乳鉢で粉砕し、 目開き 150 の金網を通して、 BE T法比表面積 19 imSZgの白色粉末 97 gを得た。
実施例 6 (アルカリ洗浄)
実施例 5の反応スラリー 1. 80 Lを濾過し、 1 Lの水にて通水洗浄後、 続け て 0. 04mo 1 ZLの苛性ソーダ希釈水溶液 2 Lを通水し、 さらに、 1 Lの水 にて通水洗浄後、 脱水し、 棚式乾燥機にて 105°Cで 16時間乾燥した。 乾燥物 を乳鉢で粉砕し、 目開き 150 の金網を通して、 BET法比表面積 177m 2/gの白色粉末 96 gを得た。
実施例 7 (アルカリ洗浄) 実施例 5の反応スラリー 1. 80Lを濾過し、 1Lの水にて通水洗浄後、 続け て 0. 02 mo 1/Lの炭酸ソーダ希釈水溶液 2 Lを通水し、 さらに、 1Lの水 にて通水洗浄後、 脱水し、 棚式乾燥機にて 105°Cで 16時間乾燥した。 乾燥物 を乳鉢で粉碎し、 目開き 150 mの金網を通して、 8£丁法比表面積197m 2Zgの白色粉末 98 gを得た。
実施例 8
1. 5mo 1ZLの硫酸マグネシウム水溶液 1. 2 Lを 40°Cまで加熱し、 そ こに総アル力リ濃度を 3. 0 Nに調製した苛性ソーダと炭酸ソ一ダとのアル力リ 混液 (2Na〇H: Na2C〇3=90 : 10 (モル比)) 1. 13Lを撹拌下添 加し、 40°Cで 30分反応を行った。得られた反応スラリー約 2. 3Lのうち 1. 0Lを濾過し、 1Lの水にて通水洗浄後、 脱水し、 棚式乾燥機にて 105°Cで 1 6時間乾燥した。 乾燥物を乳鉢で粉碎し、 目開き 150 imの金網を通して、 B ET法比表面積 229m2Zgの白色粉末 46 gを得た。
実施例 9 (アルカリ洗浄)
実施例 8の反応スラリー 1. 0Lを濾過し、 0. 5 Lの水にて通水洗浄後、 続 けて 0. 04 m o 1 ZLの苛性ソーダ希釈水溶液 1 Lを通水し、 さらに、 0. 5 Lの水にて通水洗浄後、 脱水し、 棚式乾燥機にて 105°Cで 16時間乾燥した。 乾燥物を乳鉢で粉砕し、 目開き 150 mの金網を通して、 BET法比表面積 2 16m2/gの白色粉末 46 gを得た。
実施例 10
1.5 m o 1 ZLの硫酸マグネシウム水溶液 6.67Lと総アル力リ濃度を 1. ONに調製した苛性ソーダと炭酸ソーダとのアルカリ混液 (2NaOH: Na2 C03=90 : 10 (モル比)) 17. 0Lを撹拌条件下で、 反応温度 25°C、 滞 留時間 8分で連続注加反応を行った。 得られた反応スラリー約 23. 5Lのうち 4. 65Lを濾過し、 2Lの水にて通水洗浄後、脱水し、棚式乾燥機にて 105°C で 16時間乾燥した。乾燥物を乳鉢で粉砕し、目開き 150 mの金網を通して、 BET法比表面積 256m2/gの白色粉末 100 gを得た。
実施例 11 (アルカリ洗浄) 実施例 10の反応スラリー 4. 65 Lを濾過し、 1 Lの水にて通水洗浄後、 続 けて 0. 02 m o 1 ZLの炭酸ソ一ダ希釈水溶液 2 Lを通水し、 さらに、 1 Lの 水にて通水洗浄後、 脱水し、 棚式乾燥機にて 105°Cで 16時間乾燥した。 乾燥 物を乳鉢で粉砕し、 目開き 150 mの金網を通して、 BET法比表面積 249 πι2/^の白色粉末 100 gを得た。
実施例 12
1.5mo 1/Lの酢酸マグネシウム水溶液 6.67Lと総アル力リ濃度を 1. ONに調製した苛性ソーダと炭酸ソーダとのアルカリ混液 (2Na〇H: Na2 C03=90 : 10 (モル比)) 18. 0Lを撹拌条件下で、 反応温度 25°C、 滞 留時間 8分で連続注加反応を行った。 得られた反応スラリー約 24. 5Lのうち 4. 55Lを濾過し、 1Lの水にて通水洗浄後、 続けて 0. 02mo lZLの炭 酸ソ一ダ希釈水溶液 2 Lを通水し、 さらに、 1Lの水にて通水洗浄後、 脱水し、 棚式乾燥機にて 105°Cで 16時間乾燥した。 乾燥物を乳鉢で粉砕し、 目開き 1 50 の金網を通して、 BET法比表面積 25 lm2Zgの白色粉末 97 gを 得た。
実施例 13 (焼成物)
実施例 11の BET法比表面積が 249m2Zgの水酸化マグネシウムを 40 0°Cで 2時間焼成した。
実施例 14 (焼成物)
実施例 6の BET法比表面積が 177 m2/gの水酸化マグネシウムを 75 0°Cで 2時間焼成した。
比較例 1
1. 5mo 1/Lの Ca除去精製苦汁 6. 67 Lと総アルカリ濃度を 6. 5N の苛性ソーダ 2. 95Lを撹拌条件下で、 反応温度 40°C、 滞留時間 15分で連 続注加反応を行った。 得られた反応スラリー約 9. 5Lのうち 1. 80Lを濾過 し、 2 Lの水にて通水洗浄後、 脱水し、 棚式乾燥機にて 105°Cで 16時間乾燥 した。 乾燥物を乳鉢で粉碎し、 目開き 150 ηιの金網を通して、 BET法比表 面積 40m2Zgの白色粉末 98 gを得た。 比較例 2
協和化学工業 (株) 製 水酸化マグネシウム 「キスマ SD」 を用いた。 BET 法比表面積は 37m2Zgであった。
比較例 3
協和化学工業 (株) 製 水酸化マグネシウム 「キスマ F」 を用いた。 BET法 比表面積は 58m2Zgであった。
比較例 4
協和化学工業 (株) 製 軽質塩基性炭酸マグネシウム 「ケタ」 を用いた。 BE T法比表面積は 26m2/gであった。
比較例 5 (焼成物)
比較例 2の BET法比表面積が 37m2/gの水酸化マグネシウムを 400°C で 2時間焼成した。
比較例 6 (焼成物)
比較例 3の B E T法比表面積が 58 m 2 Z gの水酸化マグネシゥムを 400 °C で 2時間焼成した。
比較例 7 (焼成物)
比較例 3の BET法比表面積が 58 m2Zgの水酸化マグネシウムを 750°C で 2時間焼成した。
実施例;!〜 14および比較例 1〜 Ίについて次の方法により分析を行った。 組 成分析および B E T法比表面積の測定結果を表 1に、 X線回折装置による構造解 析を図 1〜 3に、 示差熱天秤による熱分析曲線を図 4〜 6に示す。
( 1 ) 炭酸塩 (C02); J I S R9101 水酸化ナトリゥム溶液一塩酸滴定 法
(2) 硫酸塩 (S04)、 塩ィ匕物 (C 1) ;蛍光 X線分析装置 (リガク R I X20 00)
(3) BET法比表面積;液体窒素吸着法装置 (ュアサアイォニクス NOVA2 000)
(4) X線構造解析;自動 X線回折装置 (リガク R I NT2200 V) (5) 熱分析;示差熱天秤 (ブルカー AXS TG-DTA2000 SA)
表 1
Figure imgf000015_0001
発明の効果
本発明の水酸化マグネシウム粒子は、 B E T法比表面積が大きい。 本発明の製 造方法によれば、 B E T法比表面積が大きい水酸化マグネシウム粒子を製造する ことができる。 本発明の水酸化マグネシウム粒子を焼成して得られる酸ィ匕マグネ シゥム (焼成物) は、 高い B E T法比表面積を有する。 産業上の利用可能性
本発明の水酸化マグネシクム粒子は、 従来の水酸化マグネシゥムゃ塩基性炭酸 マグネシウムと比較すると極めて高い B E T法比表面積を有している。 そのため 吸着剤や中和剤としてはもちろん、 各種フィラーやセラミック素材、 食品添加物 や制酸剤等多岐にわたる利用が期待できる。 またアル力リ希薄水溶液で洗浄して
C 1を低減した本発明の水酸化マグネシウム粒子を焼成して得られる酸化マグネ シゥムは、 従来の水酸化マグネシウムを焼成して得られる酸化マグネシウムより も高い B E T法比表面積を有しているため、 多岐にわたる利用が期待できる。

Claims

1. 下記式 ( 1 )
Mg (OH) 2_x (C03) o. 5X -mH20 (1)
但し、 式中 xおよび mは下記の条件を満足する。
0. 02≤x≤0. 7
0≤m≤ 1
で表され、 BET法による比表面積が 80〜400m2Zgである水酸化マグネ シゥム粒子。
2. 0. 04≤x≤0. 6を満足する請求項 1記載の水酸化マグネシウム粒子。
3. BET法による比表面積が 80〜350 m2Zgである請求項 1記載の水 酸化マグネシウム粒子。
4. 請求項 1に記載の水酸化マグネシウム粒子を 400°C以上で焼成して得ら れる焼成物。
5. C〇3イオンの存在下で、 Mgイオンと OHイオンとを水中で接触させる ことからなる下記式 (1)
Mg (OH) 2_x (C03) o. 5x -mH20 (1)
但し式中 xおよび mは下記の条件を満足する。
0. 02≤x≤0. 7
0≤m≤l
で表される水酸化マグネシゥム粒子の製造方法。
6. 2 (OH): C03=99 : 1〜65 : 35のモル比で接触させる請求項 5 記載の製造方法。
7 . 塩化マグネシウム、 硫酸マグネシウム、 硝酸マグネシウムまたは酢酸マグ ネシゥム由来の M gイオンを用いる請求項 5記載の製造方法。
8 . アルカリ金属水酸化物または水酸化アンモニゥム由来の OHイオンを用い る請求項 5記載の製造方法。
9 . アルカリ金属炭酸塩または炭酸アンモニゥム由来の C〇3イオンを用いる 請求項 5記載の製造方法。
1 0 . アルカリ金属炭酸塩の存在下で、 マグネシウム塩水溶液と、 アルカリ金 属水酸化物の水溶液とを、 接触させる請求項 5記載の製造方法。
1 1 . 得られた粒子をアル力リ希薄水溶液で洗浄する工程を含む請求項 5記載 の製造方法。
PCT/JP2008/056630 2007-04-02 2008-03-27 炭酸基含有水酸化マグネシウム粒子およびその製造方法 WO2008123566A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020097015942A KR101354837B1 (ko) 2007-04-02 2008-03-27 탄산기 함유 수산화마그네슘 입자 및 그 제조 방법
EP08739740.2A EP2135845A4 (en) 2007-04-02 2008-03-27 PARTICLES FROM CARBON GROUP-BASED MAGNESIUM HYDROXIDE AND MANUFACTURING METHOD THEREFOR
US12/450,610 US9346683B2 (en) 2007-04-02 2008-03-27 Carbonate radical-containing magnesium hydroxide particle and manufacturing method thereof
JP2009509287A JP5202514B2 (ja) 2007-04-02 2008-03-27 炭酸基含有水酸化マグネシウム粒子およびその製造方法
CN200880010937XA CN101652323B (zh) 2007-04-02 2008-03-27 含碳酸基的氢氧化镁颗粒及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007096013 2007-04-02
JP2007-096013 2007-04-02

Publications (1)

Publication Number Publication Date
WO2008123566A1 true WO2008123566A1 (ja) 2008-10-16

Family

ID=39831035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/056630 WO2008123566A1 (ja) 2007-04-02 2008-03-27 炭酸基含有水酸化マグネシウム粒子およびその製造方法

Country Status (7)

Country Link
US (1) US9346683B2 (ja)
EP (1) EP2135845A4 (ja)
JP (1) JP5202514B2 (ja)
KR (1) KR101354837B1 (ja)
CN (1) CN101652323B (ja)
TW (1) TWI402216B (ja)
WO (1) WO2008123566A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158675A1 (ja) * 2010-06-15 2011-12-22 協和化学工業株式会社 複合水酸化マグネシウム、その製造方法および吸着剤
JP2012020885A (ja) * 2010-07-12 2012-02-02 Kyowa Chem Ind Co Ltd 増粘剤
WO2012050144A1 (ja) 2010-10-13 2012-04-19 協和化学工業株式会社 食用油用脱酸剤およびそれを用いた使用済み食用油の再生方法
WO2012124827A1 (ja) 2011-03-17 2012-09-20 協和化学工業株式会社 錠剤成形用結合剤
JP2015124318A (ja) * 2013-12-26 2015-07-06 東ソー株式会社 クロロスルホン化ポリオレフィン組成物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106573197B (zh) * 2014-04-10 2019-08-23 剑桥碳捕集有限公司 活化硅酸盐矿物质的方法和体系
KR101885843B1 (ko) 2016-09-12 2018-08-06 주식회사 단석산업 합성 하이드로마그네사이트 입자 및 그의 제조방법
CN115491477B (zh) * 2021-06-18 2024-01-12 协和化学工业株式会社 退火隔离剂的制备方法以及退火隔离剂和方向性电磁钢板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735126B2 (ja) * 1976-07-26 1982-07-27
JPH02111625A (ja) * 1988-10-20 1990-04-24 Kyowa Chem Ind Co Ltd 高活性高分散性水酸化マグネシウムおよびその製造方法
JPH0397618A (ja) * 1989-09-11 1991-04-23 Tokuyama Soda Co Ltd 塩基性炭酸マグネシウム及びその製造方法
JP3048255B2 (ja) * 1991-05-17 2000-06-05 株式会社トクヤマ 無機複合粒子及びその製造方法
JP2003040616A (ja) 2001-07-26 2003-02-13 Mizusawa Ind Chem Ltd アルカリ土類金属塩基性ケイ酸塩粒子、その製法及び用途
JP2003306325A (ja) * 2002-02-13 2003-10-28 Nittetsu Mining Co Ltd 塩基性炭酸マグネシウム及びその製造方法、並びに該塩基性炭酸マグネシウムを含有する組成物又は構造体
JP2007022902A (ja) * 2005-06-17 2007-02-01 Ube Ind Ltd 潜晶質マグネシア及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH640200A5 (en) * 1979-04-04 1983-12-30 Sulzer Ag Process for producing magnesium oxide from an aqueous magnesium sulphate solution
JPS5735126A (en) 1980-08-07 1982-02-25 Hitachi Ltd Fuel feeder for internal combustion engine
JPS6011223A (ja) * 1983-06-27 1985-01-21 Kyowa Chem Ind Co Ltd 繊維状酸化マグネシウム及びその製法
SU1404459A1 (ru) * 1986-06-03 1988-06-23 Всесоюзный Научно-Исследовательский Институт Теплоизоляционных И Акустических Строительных Материлов И Изделий Способ получени гидроксида магни
DE69935666T2 (de) * 1998-12-14 2007-12-06 Kyowa Chemical Industry Co. Ltd., Takamatsu Magnesiumhydroxid teilchen, verfahren zur herstellung derselben und harz diese enthaltend
EP1475351B1 (en) * 2002-02-13 2018-05-23 Nittetsu Mining Co., Ltd. Basic magnesium carbonate, process for producing the same and utilization thereof
DE10304314A1 (de) * 2003-02-04 2004-08-12 Kali-Umwelttechnik Gmbh Verfahren zur Herstellung von Magnesiumhydroxid mit definierter Partikelgröße und Partikelform

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735126B2 (ja) * 1976-07-26 1982-07-27
JPH02111625A (ja) * 1988-10-20 1990-04-24 Kyowa Chem Ind Co Ltd 高活性高分散性水酸化マグネシウムおよびその製造方法
JPH0397618A (ja) * 1989-09-11 1991-04-23 Tokuyama Soda Co Ltd 塩基性炭酸マグネシウム及びその製造方法
JP3048255B2 (ja) * 1991-05-17 2000-06-05 株式会社トクヤマ 無機複合粒子及びその製造方法
JP2003040616A (ja) 2001-07-26 2003-02-13 Mizusawa Ind Chem Ltd アルカリ土類金属塩基性ケイ酸塩粒子、その製法及び用途
JP2003306325A (ja) * 2002-02-13 2003-10-28 Nittetsu Mining Co Ltd 塩基性炭酸マグネシウム及びその製造方法、並びに該塩基性炭酸マグネシウムを含有する組成物又は構造体
JP2007022902A (ja) * 2005-06-17 2007-02-01 Ube Ind Ltd 潜晶質マグネシア及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ARDIZZONE S. ET AL.: "Acid/base and surface features of pure phase magnesia powders", COLLOIDS AND SURFACES A, 20 December 1998 (1998-12-20), pages 9 - 17, XP008119825 *
See also references of EP2135845A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158675A1 (ja) * 2010-06-15 2011-12-22 協和化学工業株式会社 複合水酸化マグネシウム、その製造方法および吸着剤
CN102892710A (zh) * 2010-06-15 2013-01-23 协和化学工业株式会社 复合氢氧化镁、其制造方法及吸附剂
JP5656298B2 (ja) * 2010-06-15 2015-01-21 協和化学工業株式会社 複合水酸化マグネシウム、その製造方法および吸着剤
JP2012020885A (ja) * 2010-07-12 2012-02-02 Kyowa Chem Ind Co Ltd 増粘剤
WO2012050144A1 (ja) 2010-10-13 2012-04-19 協和化学工業株式会社 食用油用脱酸剤およびそれを用いた使用済み食用油の再生方法
WO2012124827A1 (ja) 2011-03-17 2012-09-20 協和化学工業株式会社 錠剤成形用結合剤
JP5835849B2 (ja) * 2011-03-17 2015-12-24 協和化学工業株式会社 圧縮成形物およびその製造方法
JP2015124318A (ja) * 2013-12-26 2015-07-06 東ソー株式会社 クロロスルホン化ポリオレフィン組成物

Also Published As

Publication number Publication date
JP5202514B2 (ja) 2013-06-05
US9346683B2 (en) 2016-05-24
EP2135845A1 (en) 2009-12-23
TWI402216B (zh) 2013-07-21
JPWO2008123566A1 (ja) 2010-07-15
KR101354837B1 (ko) 2014-01-22
US20100098781A1 (en) 2010-04-22
CN101652323A (zh) 2010-02-17
CN101652323B (zh) 2011-09-07
TW200904757A (en) 2009-02-01
KR20100014349A (ko) 2010-02-10
EP2135845A4 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
WO2008123566A1 (ja) 炭酸基含有水酸化マグネシウム粒子およびその製造方法
JP5499217B2 (ja) 沈降炭酸カルシウムを得る方法
US5445804A (en) Process for the manufacture of pure amorphous silica from rocks
WO2016065950A1 (zh) 一种碱式氯化锌的制备方法
CN101700899A (zh) 一种高纯片状氢氧化镁的生产制备工艺
CN109665549A (zh) 一种利用二氧化碳制备钙铝水滑石的工艺
ZA200105624B (en) Lime treatment.
US20210292180A1 (en) Active high purity magnesium oxide and its production method
JP4249115B2 (ja) 炭酸ストロンチウム微粒子の製造方法
US20110044876A1 (en) Low temperature metal oxide synthesis
KR102082873B1 (ko) 고순도 수산화마그네슘의 제조방법
US20070009423A1 (en) Apparatus and Methods For Producing Calcium Chloride, and Compositions and Products Made Therefrom
JP2675465B2 (ja) 含水炭酸カルシウムおよびその製造方法
JP5537238B2 (ja) 高純度カルシウム塩溶液の製造方法
CN114314618B (zh) 碳酸镁复盐晶体、含镁无定型碳酸盐及活性氧化镁的制备方法
RU2275331C2 (ru) ГИДРАТИРОВАННЫЙ ГИДРОКСОАЛЮМИНАТ ФОРМУЛЫ Mg6Al2(OH)18·4H2O И СПОСОБ ЕГО ПОЛУЧЕНИЯ
RU2747639C1 (ru) Способ получения монокалийфосфата
JPH09221318A (ja) 針状結晶の塩基性塩化マグネシウムの製造法
RU2690808C9 (ru) Активный высокочистый оксид магния и способ его производства
CN117165789A (zh) 一种钨化学气相沉积生产废气的资源化利用方法
CN111573704A (zh) 一种高纯度纳米氢氧化钙的制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880010937.X

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08739740

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097015942

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2009509287

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12450610

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 5897/CHENP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2008739740

Country of ref document: EP