WO2008117891A1 - 水晶振動子片およびその製造方法 - Google Patents

水晶振動子片およびその製造方法 Download PDF

Info

Publication number
WO2008117891A1
WO2008117891A1 PCT/JP2008/056537 JP2008056537W WO2008117891A1 WO 2008117891 A1 WO2008117891 A1 WO 2008117891A1 JP 2008056537 W JP2008056537 W JP 2008056537W WO 2008117891 A1 WO2008117891 A1 WO 2008117891A1
Authority
WO
WIPO (PCT)
Prior art keywords
etching mask
etching
crystal
manufacturing
axis
Prior art date
Application number
PCT/JP2008/056537
Other languages
English (en)
French (fr)
Inventor
Akiko Katoh
Takashi Moriya
Original Assignee
Citizen Holdings Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co., Ltd. filed Critical Citizen Holdings Co., Ltd.
Priority to JP2009506392A priority Critical patent/JP4593674B2/ja
Priority to US12/532,979 priority patent/US8347469B2/en
Priority to CN2008800099043A priority patent/CN101657965B/zh
Publication of WO2008117891A1 publication Critical patent/WO2008117891A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5607Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating tuning forks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02149Means for compensation or elimination of undesirable effects of ageing changes of characteristics, e.g. electro-acousto-migration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/21Crystal tuning forks
    • H03H9/215Crystal tuning forks consisting of quartz
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/026Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the tuning fork type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making

Definitions

  • the present invention relates to a crystal resonator element and a method for manufacturing the same, and more particularly to a crystal oscillator element having a structure that suppresses occurrence of leakage vibration that is out-of-plane vibration and a method for manufacturing the same.
  • the tuning-fork type crystal unit used for the vibration gai mouth has a step of cutting a crystal unit piece of a desired shape from a crystal wafer, a step of forming an electrode for oscillating the crystal unit piece, and an electrode is formed. It is manufactured by a process such as mounting a quartz crystal piece on a container. In particular, the process of cutting out the crystal unit from the crystal wafer is important because the shape of the crystal unit determines the vibration and greatly affects the performance of the device.
  • FIG. 8 is a diagram showing the crystal axes of the crystal resonator element.
  • the crystal unit piece is composed of a Z plate that is touched by a plane perpendicular to the Z axis of the crystal, or a quartz wafer that is rotated 0 to 10 ° around the X axis from the Z plate. Processed from zero.
  • the crystal axes of the crystal wafer after rotating around the X axis are X, Y 'and Z'. That is, the main surface of the quartz wafer 100 is the XY ′ plane.
  • FIG. 9 is a schematic view of the crystal resonator element 110 cut out from the crystal wafer 100.
  • Fig. 9 (a) is a schematic front view of the crystal resonator element 110
  • Fig. 9 (b) is a diagram showing an example of the A-A 'cross section in Fig. 9 (a).
  • the crystal resonator element 1 1 0 includes a support part 1 1 1, a base part 1 1 2, and a vibration leg 1 1 3.
  • the vibrating part is the vibrating leg 1 1 3.
  • the vibrating legs 1 1 3 have the X axis in the width direction, the Y ′ axis in the longitudinal direction, and the Z ′ axis in the thickness direction.
  • FIG. 10 is a diagram showing a method for manufacturing a crystal resonator element.
  • FIG. 10 shows a cross section of the vibration leg of the crystal resonator element.
  • the photoresists 20 l a and 2 0 1 b are developed.
  • the metal corrosion resistant films 2 0 0 a and 2 0 0 b are patterned using the resist pattern formed by development as a mask, and an etching mask for crystal etching is used. 2 0 7 a and 2 0 7 b are formed.
  • the photoresist is removed.
  • the quartz wafer 10 0 1 with the etching masks 2 0 7 a and 2 0 7 b formed on both the front and back sides is hooked.
  • the portion of the crystal not covered with the etching masks 2 0 7 a and 2 0 7 b is dissolved from both sides, as shown in FIG. 10 (e).
  • a crystal resonator element 1 1 0 as shown in FIG. 9A is obtained.
  • a method for manufacturing a crystal resonator piece in which an etching mask is patterned on only one surface, the other entire surface is covered with a metal corrosion-resistant film, and etching is performed from one surface (see, for example, Patent Document 1).
  • the law is known (for example, see Patent Document 2).
  • FIG. 12 is a diagram for explaining the vibration direction of the crystal resonator element.
  • Fig. 1 2 (a) is a perspective view of the crystal unit piece
  • Fig. 1 2 (b) is a diagram showing an example of the vibration direction in the section A-A 'in Fig. 1 2 (a).
  • 2 (c) is a diagram showing another example of the vibration direction in the section AA ′ in FIG. 12 (a).
  • Fig. 1 2 (a) when using a tuning-fork crystal unit for a vibrating gyroscope, bending vibration in the X-axis direction was applied to the driving vibration, and bending vibration in the Z'-axis direction was applied to the angular velocity. Use as a detection vibration in case. Therefore, in the state where no angular velocity is applied, vibration in the Z'-axis direction should not occur as shown in Fig. 12 (b). However, in the sound or quartz crystal manufactured by the conventional manufacturing method, even when the angular velocity is not actually applied, the vibration component in the Z′-axis direction is observed as shown in Fig. 12 (c). There was a case. The vibration component in the Z′-axis direction resulting from this oblique vibration is called leakage vibration and cannot be distinguished from detection vibration. There was a problem of worsening sex.
  • the vibration of the tuning-fork type crystal unit is generated by using bending vibration in the X-axis direction.
  • the impedance increased and the characteristics deteriorated.
  • This oblique vibration is thought to be affected by the residue of the crystal formed when the crystal resonator piece is manufactured by etching. Quartz has etching anisotropy, and the etching rate varies depending on the crystal direction.
  • FIG. 9 (b) is a cross-sectional view when etching is performed for a short time
  • FIG. 9 (c.) Is a cross-sectional view when etching is performed for a long time.
  • Leakage vibration resulting from this oblique vibration occurs relatively frequently when manufactured by a conventional manufacturing method. For this reason, it was necessary to suppress diagonal vibration and reduce leakage vibration.
  • Non-Patent Document 1 There is also a document analyzing the relationship between the direction of the principal axis of the cross section of the quartz crystal piece and the oblique vibration (for example, see Non-Patent Document 1).
  • the terms “main axis of the cross section” or “main axis” will be used, but they shall refer to the main axis passing through the centroid of the cross section of the vibrating leg.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 5 2-0 3 5 5 92 (page 3, Fig. 4) )
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2000-062 1 7 4 9 7 (Page 5, Figure)
  • Non-Patent Document 1 Motohiro Fujiyoshi et al. Journal of the Institute of Electrical, Information and Communication Engineers C V o 1. J 8 7-C N o. 9 P P 7 1 2-7 1 9 Disclosure of Invention
  • the cross section of the vibration leg here is the cross section perpendicular to the longitudinal direction of the vibrator (the cross section ⁇ _ ⁇ 'in Fig. 9 (a)), which corresponds to the X — ⁇ ' plane of the crystal.
  • the main axis of the cross section In general, when considering bending of beams, the main axis of the cross section is often considered.
  • the main axis of the cross section consists of two orthogonal axes, and if a bending force is applied to the beam in the same direction as one of the main axes, the beam bends in the same direction as the bending force.
  • a bending force is applied in a direction different from the main axis, the beam bends in a direction different from the direction in which the bending force is applied.
  • the bending force is applied by the piezoelectric effect in the X-axis direction. Therefore, if one of the main axes is in the same direction as the X axis, vibration will occur in the X axis direction and no leakage vibration will occur. On the other hand, if the direction of the main axis deviates from the X-axis direction and tilts in the ⁇ direction, the direction in which the bending force is applied and the direction of the main axis do not match. Occurs.
  • the direction of the main axis is determined by the cross-sectional shape of the beam (vibrating leg).
  • the symmetry axis and the axis perpendicular to it are the principal axes of the section.
  • the cross section is rectangular, the bisector of each side is the main axis.
  • one of the main axes is X Must be parallel to the axis.
  • FIG. 13 is an enlarged cross-sectional view of FIG. 10 (e), showing the formation of residues on the vibrating legs of the quartz crystal piece.
  • the ⁇ X side side of the crystal axis of the crystal is the first side
  • the + X side side is the second side.
  • the second side surface in the case of etching for a relatively short time is the main surface of the vibrator, that is, the surface 1 1 3 a and the back surface 1 1 3 b. Residue is formed at an angle of about 2 ° to the deep and about 22 ° in the deep part. The depth varies depending on the etching time, but the front surface 1 1 3 a side and the back surface 1 1 3 b side follow the same tendency. Also, as shown in Fig. 13 (b), when etching is continued for a relatively long time, the 22 ° part disappears and only the 2 ° angle residue remains. Since the residue formed on the first side is very small, there are few examples mentioned. However, as shown in Figs.
  • the residue is formed when observed in detail. It is formed at an angle of about 1 ° to the axis.
  • the residue shape on the first side is not much different over time. Etching is performed from the edges of the etching masks 2 0 7 a and 2 0 7 b. At first glance, the front side and back side do not affect each other until they penetrate, and they proceed independently.
  • the cross section of the vibrating legs 1 1 3 of the quartz crystal piece after etching has a vertically symmetrical shape with an axis of symmetry parallel to the X axis.
  • the cross section of the vibrating leg 11 13 of the quartz crystal piece has a main axis 300 parallel to the X axis.
  • the direction in which the bending force is applied and the direction of the main axis are both in the X-axis direction, and therefore, there is no leakage vibration.
  • the cross section of the vibrating leg 1 1 3 of the quartz crystal resonator element has an asymmetric shape, and when the direction of the main axis is calculated, the main axis 3 0 0 a is not parallel to the X axis. In this case, the direction in which the bending force is applied and the direction of the main shaft are different, so that the vibration becomes oblique and leakage vibration is generated.
  • FIG. 14 (b) when a misalignment a occurs in the etching masks 2 0 7 a and 2 0 7 b, the surface 1 appears on the cross section of the vibrating leg 1 1 3 as shown in FIG. 15 (a). A displacement a occurs between 1 3 a and the back 1 1 3 b.
  • Figure 15 (b) shows the deviation angle of the main axis at this time.
  • the main axis Xa which is close to the X-axis, is the deviation angle a (°) (r ⁇ 90) from the two main axes.
  • FIG. 16 shows the relationship between the positional deviation a of the etching masks 2 0 7 a and 2 0 7 b and the deviation angle a (°) of the main axis X a from the X axis.
  • the positional deviation a between the etching mask 20 07 a on the front surface and the etching mask 20 07 b on the back surface is a horizontal axis
  • the deviation angle r (°) of the main axis X a from the X axis is the vertical axis. did.
  • the misalignment a of the etching masks 2 0 7 a and 2 0 7 b is positive when the etching mask force on the front surface and the etching mask ⁇ on the back surface are also on the X side, and a is positive when the counterclockwise displacement is positive.
  • a is positive when the counterclockwise displacement is positive.
  • both ends of the back surface 1 1 3 b are simultaneously displaced by a in the same direction with respect to both ends of the front surface 1 1 3 a. As a result, the leakage vibration is strengthened.
  • the conventional method has a problem in that it is difficult to stably obtain a crystal resonator element with less leakage vibration in which the direction of the principal axis of the vibration leg section is substantially parallel to the X axis as described above.
  • An object of the present invention is to provide a crystal resonator piece and a method for manufacturing such a crystal resonator piece that can solve the above-described problems in the prior art.
  • Another object of the present invention is to provide a crystal resonator element in which occurrence of leakage vibration is suppressed (leakage output relative value is low) and such a manufacturing method.
  • the present invention provides a vibration leg with a cross-sectional shape that is not symmetrical.
  • the cross-sectional shape of the vibrating leg is not symmetric by devising the shape of the etching mask on the front surface and the etching mask on the back surface in the process of etching from the front and back surfaces of the quartz wafer using the etching mask.
  • it is to provide a crystal resonator element having a main axis substantially parallel to the X axis, capable of being manufactured more stably than before, and suppressing the occurrence of leakage vibration, and a method for manufacturing the same.
  • a method for manufacturing a quartz crystal resonator element according to the present invention includes:
  • An etching mask is formed and a second etching mask is formed on the back surface of the crystal wafer and immersed in an etching solution to dissolve the portion of the crystal not covered by the first etching mask and the second etching mask. And forming a vibrating leg, wherein in the second etching mask, the length of the first protrusion protruding from a position corresponding to the first end of the first etching mask is The first residue formed on the first side surface is set to be constant regardless of a positional deviation between the first etching mask and the second etching mask, and the first and second etchings are performed.
  • the second side surface side is such that one of two principal axes passing through a centroid that is mechanically orthogonal to the cross section perpendicular to the longitudinal direction of the vibrating leg is formed substantially parallel to the front surface or the back surface of the crystal wafer. It is characterized by adjusting the second residue formed on the surface.
  • the second etching mask on the second side surface side protrudes from a position corresponding to the second end portion of the first etching mask.
  • the length of the protruding portion is set so that the second residue is formed on the second side surface side when the first etching mask and the second etching mask are not misaligned. Is preferred.
  • the width of the first etching mask is formed to be smaller than the width of the second etching mask, and the thickness of the crystal wafer 8 is increased.
  • t the difference between the first end of the first etching mask and the first end of the second etching mask on the first side, where the etching angle on the first side is ⁇ K ⁇ b>
  • Etching mask and 2 etching mask are preferably formed on the wafer 8
  • the alignment accuracy of the first etching mask and the second etching mask is p, the first end of the first etching mask and the first etching mask 2 The difference between the first end of the Enge mask and btxtana + k and k>
  • the width of the first etching mask is smaller than the width of the second etching mask, and the thickness of the crystal wafer is t, 1
  • the etching angle on the side surface is ⁇
  • the difference between the second end of the first etching mask and the second end of the second etching mask on the second side is c ⁇
  • the first etching mask and the second etching mask are preferably formed on the quartz wafer so as to satisfy the relationship of txtan.
  • the width of the first etching mask is smaller than the width of the second etching mask, and the thickness of the crystal wafer is t,
  • the etching angle on the second side surface is defined as follows: On the second side surface, the difference C between the second end portion of the first etching mask and the second end portion of the second etching mask is c It is preferable that the first etching mask and the second etching mask are formed on the crystal wafer so as to satisfy the relationship of 0.7 ⁇ t X tan ⁇ .
  • a crystal resonator element includes a front surface and a back surface that are formed in substantially parallel and different widths, and a first side surface and a second side surface formed between the front surface and the back surface.
  • the vibration leg includes: a first residue disposed on the first side surface and formed uniformly on one slope; and a second residue disposed on the second side surface, wherein the vibration BC 2 residue is adjusted so that one of the two main axes passing through the centroid that is mechanically orthogonal to the cross section orthogonal to the longitudinal direction of the leg is formed substantially parallel to the front surface or the back surface. It is characterized by that.
  • the crystal resonator element according to the present invention is processed by etching from both front and back surfaces of a crystal wafer and has a vibration leg, and the vibration legs It has a front and back surfaces of different sizes, a first side surface formed by one slope, and a second side surface formed by a plurality of slopes, and the width of the surface is smaller than the width of the back surface.
  • the crystal resonator element according to the present invention has a convex shape in which the second side surface has two or more slopes and a ridge line constituted by the two or more slopes.
  • the difference A in the width direction between the front surface and the back surface of the first side surface is always constant, and
  • the difference B in the width direction between the front and back surfaces of the second side is adjusted so that one of the main axes of the cross section of the vibrating leg is parallel to the X axis.
  • the drive vibration vibrates parallel to the main surface of the vibrator, not in the diagonal direction, and does not generate leakage vibration in the Z'-axis direction.
  • both A and B have variations during manufacturing, but in the present invention, only B is affected by the manufacturing variations, and leakage vibration caused by misalignment between the front and back of the etching mask.
  • the crystal resonator element according to the present invention is preferably used for a vibration gyro.
  • the SZN of the vibration gyro can be improved and the temperature characteristics can be stabilized.
  • the second etching mask is formed larger than the first etching mask, the first etching mask protrudes from a position corresponding to one end of the first etching mask, and the other end of the second etching mask.
  • a second protrusion protruding from a corresponding position b being the first protrusion amount of the first protrusion, t being the thickness of the crystal wafer, and the etching angle on the first side face (3 ⁇ 4, the first being 2
  • the amount of the second protrusion of the protrusion is c, and satisfies the relationship of b> t X ta ⁇ ⁇ and c ⁇ t X tan H.
  • the residue on the first side is Z 'When formed at an angle with respect to the axis, the backside etching mask is made longer than txtana compared to the frontside etching mask, so the slope obtained by etching is only the slope etched from the surface.
  • the first side the residue on the second side is formed with an angle larger than the Z 'axis and a, so that the second protrusion c is smaller than txtana.
  • Balances with residue on the first side, and one of the main axes is parallel to the X axis, eliminating leakage vibration If the misalignment of the front and back of the etching mask occurs, the same pattern is used on the front and back using the conventional method. If used, both the first and second side surfaces will shift and the displacement will be added to increase the leakage vibration.However, in the present invention, only the second side surface will be affected by the displacement. Can be suppressed to about half.
  • the first protrusion amount b t X tan ⁇ + It is preferable to satisfy the relationship of k and k> p.
  • the residue on the first side is formed at an angle ⁇ with the Z ′ axis.
  • the alignment accuracy of the etching mask on the front and back surfaces of the manufacturing process is soil P, even if there is a misalignment of P, the value of the mask offset amount k of the etching mask on the back surface is the alignment accuracy p Since it is set to a value larger than the value, one slope is etched from the surface on the first side, and a constant residue is always formed on the first side.
  • the crystal resonator element manufactured by the manufacturing method according to the present invention for the vibration gyro.
  • S Z N of the vibration gyro can be improved and temperature characteristics can be stabilized.
  • the side surface of the vibration leg that is affected by the positional deviation between the etching mask on the front surface and the etching mask on the back surface is only one side of the conventional vibration leg. It became possible to suppress it in half.
  • FIG. 1A to FIG. 1E are process diagrams showing a manufacturing process of a crystal resonator element according to an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining a cross section of a vibrating leg for having a main axis substantially parallel to the X axis.
  • FIG. 3 is a diagram showing the size of the etching mask in the manufacturing process of the crystal resonator element.
  • FIG. 4 is a diagram showing a cross-sectional shape of a vibrating leg of a crystal resonator element according to the present invention.
  • FIG. 5 is a diagram showing the cross-sectional shape of the vibrating leg of the resonator element actually manufactured by the manufacturing method according to the present invention.
  • Figure 6 shows the relative leakage output value of the quartz crystal piece and the position of the etching mask. It is a figure which shows the relationship with displacement.
  • Figure 7 shows the relationship between the leak output relative value of the quartz crystal piece and the frequency.
  • Figure 8 shows a crystal wafer
  • FIG. 9 (a) shows a front view of the crystal unit piece
  • Fig. 9 (b) shows an example of the AA 'cross-sectional view of Fig. 9 (a)
  • Fig. 9 (c) shows Fig. 9 (a
  • FIG. 8B is a diagram showing another example of the AA ′ cross-sectional view of FIG.
  • FIGS. 10 (a) to 10 (e) are cross-sectional process diagrams illustrating the manufacturing process of the crystal resonator element according to the prior art.
  • FIG. 11 is a cross-sectional view of a conventional quartz resonator element vibrating leg Fig. 1 2 (a) shows a perspective view of the quartz resonator, and Fig. 1 2 (b) shows AA in Fig. 1 2 (a)
  • FIG. 12 (c) is a diagram showing the vibration direction in another example of the AA ′ sectional view of FIG. 12 ().
  • FIG. 13 (a) is a cross-sectional view showing an example of a crystal etching residue
  • FIG. 13 (b) is a cross-sectional view showing another example of the crystal etching residue
  • FIG. 14 (a) is a cross-sectional view showing an example in which there is no displacement of the etching mask
  • FIG. 14 (b) is a cross-sectional view showing another example of the displacement of the etching mask.
  • Fig. 15 (a) is a diagram showing the displacement between the front and back surfaces of the cross section of the vibrating leg
  • Fig. 15 (b) is the deviation angle of the main axis of the cross section of the vibrating leg in Fig. 15 (a).
  • FIG. 16 is a diagram showing the relationship between the positional deviation between the etching mask on the front surface and the etching mask on the back surface and the deviation angle of the main shaft in the manufacturing process of the crystal resonator element.
  • Fig. 1 (a) shows a state in which metal corrosion-resistant films 2 0 0 a and 2 0 0 b are formed on both sides of a quartz wafer 10 0 adjusted to a thickness of t by sputtering, vapor deposition or clinging. ing.
  • metal corrosion resistant films 200, 0a, 200b, Cr can be used for the base layer, and Au can be used for the upper layer.
  • photoresists 2 O 1 a and 2 0 1 b are formed on the surfaces of the metal corrosion resistant films 2 0 0 a and 2 0 0 b, respectively.
  • a double-sided alignment device (not shown) is used using two face masks, a front face mask 20 0 2 and a back face mask 2 0 4.
  • the front and back sides of photomasks 2 0 2 and 2 0 4, and &: 1 are aligned, and photo resist 2 0 1 a and 2 0 1 b are exposed.
  • the fores resists 2 0 1 a and 2 0 1 b are developed, and the metal corrosion resistant films 2 0 0 a and 2 0 0 b are patterned into a vibrator shape using the obtained pattern as a mask.
  • the metal masks of metal corrosion resistant films 20 07a and 20 07b are formed.
  • the photoresists 2 0 1a and 20 0 lb are etched metal corrosion resistant films.
  • 2 07 b may be peeled off immediately after forming, or may be moved to the next step with the fist resist attached and peeled off later.
  • FIG. 1 (c) a quartz wafer 100 (see FIG. 1 (c)) on which an etching mask made of a metal corrosion resistant etching mask 20 7a and 2 07b is formed is immersed in an etching solution containing hydrofluoric acid.
  • Metal corrosion resistant film 2 0 7 a, 2 0 7 Dissolve the crystal part not covered by b.
  • FIG. 1 (d) shows only the cross-sectional shape of the vibrating legs 3 1 3 of the crystal unit piece.
  • the etching mask 2 0 7 a for the metal corrosion resistant film is shown.
  • 2 0 7 b is peeled off to form a crystal resonator piece.
  • the overall shape of the formed crystal resonator element is the same as that shown in Fig. 9 (a).
  • Fig. 1 (e) the force indicating the direction of the crystal axis (+ X, Y ', + Z).
  • the direction of the crystal axis is shown in Fig. 1 (a) to Fig. 1 ( The same is true for e).
  • FIG. 2 is a diagram for explaining a cross section of a vibrating leg for having a main axis substantially parallel to the X axis.
  • the direction of the main axis of the vibration leg cross section is determined by the cross-sectional shape of the vibration leg. Specifically, if the cross-sectional synergistic moment with respect to a Cartesian coordinate system with the horizontal axis parallel to the X-axis with the centroid of the cross-section of the vibrating leg as the origin is almost zero, the vibrating leg cross-section has a principal axis that is substantially parallel to the X-axis. It will be. Therefore, based on the cross section 10 of the vibrating leg shown in FIG. 2, a method of designing the cross section of the vibrating leg aimed at in the present invention will be described below.
  • the cross section of the vibrating leg 10 is the first part 1 1 of the center rectangle, the second part 1 2 of the triangle on the left side of the figure, the third part 13 of the triangle on the right side of the figure, the lower right part of the figure Divide the fourth part of the approximate parallelogram.
  • the left part of the cross section of the vibration leg is etched at an angle ⁇ in the etching process. Therefore, if the lower etching mask 2 0 7 b is set so as to protrude sufficiently from the upper etching mask 2 0 7 a, the second part 1 will be left as a residue on the first side 3 0 3 side on the left side of the vibrating leg. 2 is formed. Since the second portion 12 is determined by the apex angle ⁇ , the second portion 12 can always be manufactured to have the same cross section regardless of the accuracy error of the alignment apparatus.
  • the right part of the vibration leg cross section shows the angle in the etching process.
  • cross section 1 0 ⁇ the centroid of the i, second part 1 a 2 a centroid ⁇ 2, and ⁇ 4 centroid of the fourth portion 1 4.
  • the length of the base of the first part is d
  • the height is t
  • the length of the base of the second part 12 is A
  • the base of the fourth part 14 is B.
  • the coordinate axes for calculation are set as a rectangular coordinate system with the centroid L as the origin and the horizontal axis parallel to the X axis, and this coordinate system is called this coordinate system. I will decide.
  • the height from the bottom of the centroid O i of the cross section 10 is as shown in the figure Can be approximated by t 2.
  • the cross-sectional synergistic moment M i 3 relating to this coordinate system is zero.
  • B 0.7 A
  • the cross-sectional synergistic moment of section 10 ⁇ ⁇ 0 is zero, and the ideal crystal unit piece with the main axis of the vibrating leg section being approximately parallel to the X-axis It becomes.
  • the upper etching mask 20 7 a and the lower etching mask 20 7 b cannot always be arranged so as to be shifted by B.
  • the vibration leg can be manufactured within the accuracy error range of the alignment device centering on B. can do.
  • the left and right sides of the vibrating leg are formed independently, affected by the alignment error between the first and second sides, and the main axis of the vibrating leg cross section is almost the same as the X axis. It has become possible to prevent a significant shift from the parallel state.
  • the deviation amount on the left side of the upper etching mask 2 0 7 a and the lower etching mask 2 0 7 b in the drawing is sufficiently larger than A (A + The accuracy error of the alignment tool)) and the upper etching mask 20 7 a and the lower etching mask 2 0 7 b are designed so that the deviation on the right side of the figure is B Yes. That is, in the present invention, the above-mentioned points are taken into consideration, and the position of the front face mask 20 2 and the rear face face mask 20 4 in FIG. 1B is adjusted. This design makes it possible to dramatically increase the frequency of producing an ideal quartz crystal piece in which the main axis of the vibration leg cross section is almost parallel to the X axis.
  • FIG. 3 is a partially enlarged view of the quartz wafer 100 showing the state where the photoresists 20 1 a and 20 l b are peeled off.
  • the width of the vibration leg pattern of the back photomask 20 4 described above is set wider than the vibration leg pattern of the front photomask 20 02. It is. Therefore, as shown in FIG. 3, the width of the etching mask 2 0 7 b on the back surface is formed larger than the width of the etching mask 2 0 7 a on the front surface, and the crystal axis of the crystal of the etching mask 2 0 7 b
  • a first protrusion b is formed on the first side surface, which is an end on the X side
  • a second protrusion c is formed on the second side surface, which is an end on the + X side.
  • the value of the first protrusion b is set to a value obtained by adding A to the accuracy error of the alignment device or more to A, that is, a value greater than t X t a ⁇ ⁇ + ⁇ . That is, b> t x t a n + ⁇ is set.
  • the mask offset amount on the first side surface of the etching mask 20 7 b on the back surface is set to k
  • the value of the angle ⁇ is approximately 1 °
  • the value of the mask offset k is 2 m
  • the value of the mask offset amount k is larger than p when the accuracy of the double-sided aligner to be used is p, that is, by setting k> p, the etching mask on the front surface 2 0 7 a and the back surface Even if a misalignment with the etching mask 2 0 7 b occurs, the first side surface is not affected by the misalignment, and a single slope is formed on the first side surface. A constant residue is always formed.
  • c t X 0. 0 1 2.
  • FIG. 4 is a diagram showing the cross-sectional shape of the vibrating leg of the crystal resonator element.
  • the vibration leg 3 1 3 of the quartz crystal piece manufactured by the manufacturing method according to the present invention has a front surface 2 2 2 and a back surface 2 2 0 having different widths, and one inclined surface.
  • “ld” of the front surface 2 2 2 is set to be smaller than the width e of the back surface 2 2 0.
  • the surface 2 2 2 on the first side surface 2 1 0 side A 2 the difference in the width direction between the end 2 2 2 a of the first side 2 1 0 side back surface 2 2 0 end 2 2 0 a and the second side 2 1 2 side surface 2 2 2 '2 2 2 b and 2nd side 2 1 2 side back surface 2 2 0's end 2 2 0 b width direction difference B', 1st side 2 1 0 side etching angle
  • a 'of the vibration leg 3 13 of the actually manufactured quartz crystal piece has almost the same value as the design value A (see Fig. 2).
  • B ′ of the vibration legs 3 1 3 of the actually manufactured quartz crystal will vary within the range of the precision soil P of the double-sided aligner with respect to the design value B (see Fig. 2).
  • FIG. 5 is a diagram obtained by tracing the cross-sectional shape of the vibrating leg of the resonator element actually manufactured by the manufacturing method according to the present invention.
  • FIG. 6 is a diagram showing the relationship between the leakage vibration of the crystal resonator element and the positional deviation a from the set value between the etching mask on the front surface and the etching mask on the back surface.
  • the data in Fig. 6 is the result of measuring the leakage output that actually results from the leakage vibration corresponding to the displacement a.
  • the vertical axis is the relative value of the leakage vibration output
  • the horizontal axis is the amount of displacement (zm) from the set value between the etching mask on the front surface and the etching mask on the back surface.
  • the white circle shows the relative leakage output value of the quartz crystal piece manufactured by the conventional method
  • the black circle shows the relative leakage output value of the quartz crystal piece manufactured by the manufacturing method shown in Fig. 1.
  • the leakage output resulting from the leakage vibration of the quartz crystal piece in this embodiment was about half that of the conventional case.
  • the first side surface is composed of one inclined surface. Therefore, if the wafer thickness t is constant, the difference A ′ in the width direction between the front and back surfaces is Always constant. Still, the difference B ′ between the front and back surfaces of the second side surface is adjusted so that one of the main axes of the cross section of the vibrating leg is substantially parallel to the X axis. Therefore, the direction in which the bending force is applied due to the piezoelectric effect is the same as the main axis of the cross section, so the drive vibration vibrates parallel to the main surface of the vibrator, not diagonally, causing leakage vibration in the Z′-axis direction. Does not occur. In the conventional method, both A 'and B' vary during production. In the invention, only B 'is affected by the manufacturing variation, and the leakage vibration caused by the front and back position shift can be reduced to about half.
  • Figure 7 shows the relationship between the leak output relative value of the quartz crystal piece and the frequency.
  • the data in Fig. 7 shows the actual leakage output relative values of the quartz crystal piece manufactured by the conventional method (44 examples) and the quartz crystal piece manufactured by the manufacturing method shown in Fig. 1 (32 examples). Measured and shows the frequency (%) within the range of the specified leak output relative value.
  • the method for measuring the leak output relative value will be explained using a two-leg tuning-fork type quartz vibrating jack as an example.
  • the drive leg is provided with a predetermined electrode to drive vibration in the X-axis direction
  • the other is the detection leg
  • the detection leg detects vibration in the Z′-axis direction.
  • a predetermined electrode for detection is provided.
  • the oscillation condition of the driving leg is satisfied and self-excited oscillation is performed.
  • the detection leg performs in-plane bending vibration to move in the X-axis direction so as to balance the momentum.
  • the detection leg is provided with a detection electrode so as to detect vibration in the Z ′ width direction
  • the detection signal can be measured by amplifying the signal from the electrode.
  • the detected vibration component in the Z′-axis direction that occurs when the drive leg is self-excited and the angular velocity around the Y′-axis is not applied so that Coriolica does not work is leakage vibration.
  • the leakage output can be measured by amplifying the signal from the detection electrode due to leakage vibration.
  • the quartz resonator piece manufactured by the manufacturing method shown in Fig. 1 is more likely to show a low leakage output relative value. That is, the quartz crystal manufactured by the manufacturing method shown in FIG. It can be understood that the moving piece can be manufactured more frequently if the spindle is more horizontal than the X axis.
  • the misalignment of the etching mask occurs due to the accuracy of the double-sided alignment device that places the photomask, both the first and second sides of the crystal unit are affected. There was a problem that the relative value of leakage output of the crystal resonator piece was increased.
  • the first side surface is always axed so as to have a predetermined shape even if the etching mask is displaced. Yes. That is, the residue on the first side is set to be constant.
  • the second projecting portion C is set so that the second side surface balanced with the first side surface is formed when the etching mask is not displaced. In other words, when no misalignment of the etching mask occurred, a residue that was perfectly balanced with the residue on the first side surface was formed on the second side surface.
  • the leak output relative value can be kept small.
  • the manufacturing method according to the present invention can drastically improve the manufacturing efficiency of crystal resonator pieces that meet a standard with a low leakage output relative value. It became.
  • SZN of the vibration gyro can be improved and the temperature characteristics can be stabilized.
  • the etching angle ⁇ on the first side surface is about 1 °.
  • the etching angle ⁇ varies depending on the cutting angle of the crystal wafer, the etching conditions, etc. 1 It is preferable to determine the protrusion amount b.
  • the first etching mask was provided on the crystal surface (the + Z plane of the crystal crystal axis), and the second etching mask was provided on the back surface (one surface of the crystal crystal axis). Even if the second etching mask is provided and the first etching mask is provided on the back surface, the effect of the present invention is exhibited.
  • a two-leg tuning fork type crystal resonator element has been described as an example, but the present invention can be applied to, for example, a 1, 3, 4, and 5-leg tuning fork type other than a two-leg tuning fork type.
  • the present invention is not limited to this embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

本発明の目的は、漏れ振動の発生が抑制された水晶振動子片及びそのような製造方法を提供することである。本発明に係る水晶振動子片の製造方法は、水晶ウェハの表面に第1エッチングマスクを形成し且つ水晶ウェハの裏面に第2エッチングマスクを形成し、エッチング溶液によって浸漬して、第1エッチングマスクと第2エッチングマスクに覆われていない部分の水晶を溶解することによって振動脚を形成するステップを有し、第2エッチングマスクにおいて、第1エッチングマスクの第1端部に対応する位置から突出した第1突出部の長さが、第1エッチングマスクと第2エッチングマスクの位置ずれに拘らず、前記第1側面側に形成される前記第1残渣を一定にするように設定され、第1及び第2エッチングマスクは、振動脚の長手方向に直交する断面に力学的に直交する図心を通る2つの主軸の内の一方が水晶ウェハの表面又は裏面と略平行に形成されるように、第2側面側に形成される第2残渣を調整することを特徴とする。

Description

明 細 書 水晶振動子片およびその製造方法 技術分野
本発明は、 水晶振動子片およびその製造方法に関し、 特に面外振 動である漏れ振動発生を抑制する構造をもった水晶振動子片および その製造方法に関する。 背景技術
振動ジャィ口に利用される音叉型の水晶振動子は、 水晶ウェハか ら所望の形状の水晶振動子片を切り出す工程、 水晶振動子片を発振 させるための電極を形成する工程、 電極が形成された水晶振動子片 を容器に実装する工程などによって製造される。 特に、 水晶振動子 片の形状が振動を決定しデバイスの性能に大きく影響するため、 水 晶ゥェ八から水晶振動子片を切り出す工程は重要である。
図 8は、 水晶振動子片の結晶軸を示す図である。
水晶振動子片は、 図 8に示すように、 水晶の Z軸に垂直な面で力 ッ トされた Z板や、 Z板から X軸回りに 0 〜 1 0 ° 回転させた水晶 ウェハ 1 0 0などから加工される。 X軸周りに回転させた後の水晶 ウェハの結晶軸は X、 Y ' 、 Z ' となる。 即ち、 水晶ウェハ 1 0 0 の主面は X— Y '面ということになる。
図 9は水晶ウェハ 1 0 0から切り出された水晶振動子片 1 1 0の 概略図である。
図 9 ( a ) は水晶振動子片 1 1 0の正面概略図であり、 図 9 ( b ) は図 9 ( a ) における A— A '断面図の一例を示す図であり、 図 9 ( c ) は図 9 ( a ) における A— A '断面図の他の例を示す図で ある。
水晶振動子片 1 1 0は、 支持部 1 1 1、 基部 1 1 2、 および振動 脚 1 1 3から構成されている。 振動する部分は振動脚 1 1 3である 。 振動脚 1 1 3は、 X軸を幅方向に、 Y '軸を長手方向に、 Z '軸 を厚み方向に持つ。
水晶ウェハ 1 0 0からこの水晶振動子片 1 1 0を切り出す工程に は、 小型の水晶振動子片を精度よく安価に大量生産できる、 フォ ト リソグラフィ とゥエツ トエッチングを利用した方法が用いられてい る。
図 1 0は、 水晶振動子片の製造方法を示す図である。 なお、 図 1 0では、 水晶振動子片の振動脚断面を示している。
最初に、 図 1 0 ( a ) に示す所望の板厚に調整された水晶ウェハ 1 0 0の両面に、 図 1 0 ( b ) に示すように、 水晶用のエッチング 液に耐性のある金属耐食膜 2 0 0 a及び 2 0 0 と、 金属耐食膜 2 0 0 a及び 2 0 0 b上に配置されたフォ トレジス ト 2 0 1 a及び 2 0 1 bを形成する。
次に、 図 1 0 ( c ) に示すように、 お互いに向かい合わせたとき に正確に重なる振動子パターンがそれぞれ描画された 2枚のフォ ト マスク 2 0 5及び 2 0 6 を用いて、 フォ トレジス ト 2 0 1 a及び 2 0 1 bを露光する。
次に、 フォ トレジス ト 2 0 l a及び 2 0 1 bを現像する。 次に、 図 1 0 ( d ) に示すように、 現像によって形成されたレジス トパ夕 —ンをマスクとして金属耐食膜 2 0 0 a及び 2 0 0 bをパターニン グし、 水晶エッチング用のエッチングマスク 2 0 7 a及び 2 0 7 b を形成する。
次に、 フォ トレジス トを剥離する。 次に、 表裏両面にエッチング マスク 2 0 7 a及び 2 0 7 bの形成された水晶ウェハ 1 0 1 をフッ 酸系のエッチング液に浸漬して、 図 1 0 ( e ) に示すように、 エツ チングマスク 2 0 7 a及び 2 0 7 bに覆われていない部分の水晶を 表裏両側から溶解する。 その後、 エッチングマスク 2 0 7 a及び 2 0 7 bを除去すると、 図 9 ( a ) に示すような水晶振動子片 1 1 0 が得られる。
また、 エッチングマスクを片面のみにパターニングし、 他の全面 を金属耐食膜で覆っておき、 片面からエッチングする水晶振動子片 の製造方法が知られている (例えば、 特許文献 1参照) 。
さらに、 図 1 1 に示すように、 エッチングマスクの裏面パターン 2 0 7 dを表面パターン 2 0 7 cよりも幅広く し、 表面パターン 2 0 7 c を基準パターンとしてエッチングする水晶振動子片の製造方 法が知られている (例えば、 特許文献 2参照) 。
図 1 2は、 水晶振動子片の振動方向を説明するための図である。 図 1 2 ( a ) は、 水晶振動子片の斜視図であり、 図 1 2 ( b) は 図 1 2 ( a ) における A— A '断面における振動方向の一例を示す 図であり、 図 1 2 ( c ) は図 1 2 ( a ) における A— A '断面にお ける振動方向の他の例を示す図である。
図 1 2 (a)に示すように、 音叉型水晶振動子を振動ジャイロ用と して用いる場合には、 X軸方向の屈曲振動を駆動振動、 Z '軸方向 の屈曲振動を角速度がかかった場合の検出振動として利用する。 そ のため、 角速度がかかっていない状態では、 図 1 2 ( b ) に示すよ うに、 Z '軸方向の振動は発生しないはずである。 しかしながら、 従来の製造方法で製作した音又型水晶振動子においては、 実際には 角速度がかかっていない場合にも、 図 1 2 ( c ) に示すように、 Z '軸方向の振動成分が観測される場合があった。 この斜め振動から 出る Z '軸方向の振動成分は漏れ振動と呼ばれ、 検出振動と区別す ることができないため、 ジャイロの S / Nを悪化させたり、 温度特 性を悪化させたりするという問題があった。
また、 通常用途の音叉型水晶振動子の場合も、 音叉型水晶振動子 の振動は、 X軸方向の屈曲振動を利用して発生させており、 Z '方 向成分を含んだ斜め振動はクリスタルインピーダンス上昇をもたら し、 特性の悪化を招く という問題があった。
この斜め振動は、 水晶振動子片をエッチングで製造する際に形成 される水晶の残渣が影響を与えていると考えられる。 水晶にはエツ チング異方性があり、 結晶の方向によってエッチング速度が異なる
。 そのために、 エッチング後の水晶振動子片の振動脚 1 1 3の側面 は、 均一にエッチングされずに残渣が残る。 例えば、 図 9 ( b ) 及 び ( c ) に示したように、 水晶振動子片 1 1 0の振動脚の断面形状 は正確な長方形とならず Y ' - Z '面の + X側および一 X側の側面 に三角形またはその他の形状の残渣を伴う。 なお、 図 9 ( b ) は短 時間のエッチングの場合の断面図であり、 図 9 ( c .) は長時間エツ チングをした場合の断面図である。
前述のような残渣があると、 図 1 2 ( b )に示すように本来、 X軸 方向のみに振動させているはずの駆動振動が、 残渣のでき方によつ てバランスが崩れ、 図 1 2 ( c )に示すように、 Z '軸方向の成分を 伴って斜め方向に振動する。 このため漏れ振動を発生する。
この斜め振動からくる漏れ振動は、 従来技術の製造方法によって 製造した場合には、 比較的多く発生する。 このため、 斜め振動を抑 制し漏れ振動を小さくする必要があった。
また、 水晶振動子片の断面の主軸の方向と斜め振動の関係につい て解析した文献もある (例えば、 非特許文献 1参照) 。 なお、 これ 以降でも、 「断面の主軸」 又は 「主軸」 という用語を用いるが、 そ れらは振動脚断面の図心を通る主軸を指すものとする。
特許文献 1 : 特開昭 5 2 — 0 3 5 5 9 2号公報 (第 3頁、 図 4 )
特許文献 2 : 特開 2 0 0 6— 2 1 7 4 9 7号公報 (第 5頁、 図
1 )
非特許文献 1 : 藤吉基弘ら 電気情報通信学会論文誌 C V o 1 . J 8 7 - C N o . 9 P P 7 1 2 - 7 1 9 発明の開示
ここで、 振動脚断面における、 残渣と斜め振動との関係について 考察する。 ここでいう振動脚断面とは、 振動子の長手方向に垂直な 断面 (図 9 ( a ) における Α_Α '断面) のことであり、 水晶の X — Ζ '面にあたる。
一般にも、 梁などの曲げについて考える場合、 断面の主軸がよく 考慮される。 断面の主軸は、 直交する 2本の軸からなり、 梁に主軸 の一方と同方向に曲げ力をかけると、 梁は曲げ力と同方向に曲がる 。 一方、 主軸と異なる方向に曲げ力をかけた場合には、 梁は曲げ力 がかけられた方向とは異なった方向に曲がる。
水晶振動子の場合、 圧電効果によって曲げ力がかかるのは、 X軸 方向である。 よって、 主軸の一方が X軸と同じ方向であれば、 振動 は. X軸方向に起こり、 漏れ振動は発生しない。 一方、 主軸の方向が X軸方向から外れて Ζ '方向に傾く と、 曲げ力のかかる方向と主軸 の方向が一致しないため、 振動は Ζ '軸成分を含んだ斜め振動とな り、 漏れ振動が発生する。
主軸の方向は、 その梁 (振動脚) の断面形状によって決まる。 単 純な例では、 対称軸を持つ断面に関しては、 その対称軸およびそれ と垂直な軸がその断面の主軸である。 例えば、 長方形の断面ならば 、 各辺の 2等分線がそれぞれ主軸である。
漏れ振動のない水晶振動子を得ようとする場合、 主軸の一方が X 軸に平行である必要がある。
ここで、 従来例のように水晶振動子片を製造した場合に主軸の一 方が X軸に平行な振動子片が得られるのかどうか考察する。 前述の ように、 水晶振動子片をウエッ トエッチングで製造すると、 振動脚 側面には必ず残渣が残る。 そのため、 この残渣のでき方によって断 面の主軸の方向が決定される。 水晶振動子片の断面の主軸を考える には、 まず残渣がどのようにできるかを考える必要がある。
残渣の形状は、 エッチングの時間や条件によって異なるため、 一 概に言うことはできないが、 概ね同じような傾向をたどるので、 こ こでは発明者の行った実験条件から観察できた結果に基づき残渣の でき方を説明する。
図 1 3は、 図 1 0 ( e ) の拡大断面図で、 水晶振動子片の振動脚 における残渣の形成状態を示すものである。 ここでは、 簡単のため に、 一本の振動脚のみを記し、 水晶の結晶軸の— X側の側面を第 1 側面、 + X側の側面を第 2側面とする。
図 1 3 ( a )に示すように、 比較的短時間のエッチングの場合の第 2側面は、 振動子主面、 即ち表面 1 1 3 a、 裏面 1 1 3 bから浅い 部分では Z '軸に対して約 2 ° 、 深い部分では約 2 2 ° の角度を成 して残渣が形成される。 深さはエッチングの時間によって異なるが 、 表面 1 1 3 a側、 裏面 1 1 3 b側とも同じ傾向をたどる。 また、 図 1 3 ( b )に示すように、 比較的長時間エッチングを続けると、 2 2 ° の部分はなくなり、 2 ° の角度を成した残渣のみが残る。 第 1 側面に形成される残渣はごく小さいので言及された例は少ないのだ が、 図 1 3 ( a ) 及び ( b ) に示すように、 詳細に観察すると残渣 は形成されており、 Z '軸に対して約 1 ° の角度を成して形成され る。 この第 1側面の残渣形状は、 時間による差はあまりない。 エツ チングは、 エッチングマスク 2 0 7 a及び 2 0 7 bの端部からス夕 一卜し、 貫通するまでは表面側、 裏面側で互いに影響を及ぼさず、 独立して進行する。
前述の図 1 0に示す従来の表裏両面からエッチングをする方法で 水晶振動子片を製造した場合について、 以下のような点を指摘する ことができる。
図 1 4 ( a ) に示すように、 水晶ウェハに形成された表面のエツ チングマスク 2 0 7 aと、 裏面のエッチングマスク 2 0 7 bとの位 置が正確に合っている場合には、 エッチング後の水晶振動子片の振 動脚 1 1 3の断面は、 X軸に平行な対称軸をもった上下対称形とな る。 即ち、 水晶振動子片の振動脚 1 1 3の断面は、 X軸に平行な主 軸 3 0 0を持つ。 この場合、 曲げ力のかかる方向と主軸の方向が共 に X軸方向であって、 一致しているため、 漏れ振動は起こらない。 一方、 水晶ウェハに形成された表面のエッチングマスク 2 0 7 a と、 裏面のエッチングマスク 2 0 7 bの位置が X軸方向でずれて形 成されてしまった場合には、 図 1 4 ( b ) に示すように、 水晶振動 子片の振動脚 1 1 3の断面は、 非対称形状となり、 主軸の方向を計 算すると、 主軸 3 0 0 aは X軸に平行とはならない。 この場合、 曲 げ力のかかる方向と主軸の方向が異なるので斜め振動となり、 漏れ 振動を発生してしまう。
図 1 4 (b )に示すように、 エッチングマスク 2 0 7 a及び 2 0 7 bに位置ずれ aが起こると、 図 1 5 ( a ) に示すように振動脚 1 1 3の断面に表面 1 1 3 aと裏面 1 1 3 bとに位置ずれ aが発生する 。 このときの主軸のずれ角を、 図 1 5 (b)に示す。 図 1 5 (b)にお いて、 2本ある主軸のうち X軸に近い主軸 X aの X軸からの ずれ角ァ (° ) ( r < 9 0 ) とし、 従来の製法で作製した場合におけ るエッチングマスク 2 0 7 a及び 2 0 7 bの位置ずれ aと、 主軸 X aの X軸からのずれ角ァ (° )との関係を図 1 6 に示す。 図 1 6では、 表面のエッチングマスク 2 0 7 aと裏面のエツチン グマスク 2 0 7 bとの位置ずれ aを横軸に 、 主軸 X aの X軸からの ずれ角 r (° )を縦軸とした。 エッチングマスク 2 0 7 a及び 2 0 7 bの位置ずれ aは、 表面のエツチングマスク力 裏面のエッチングマ スクょ Όも一 X側にあるときを正とし、 ァは反時計回りのずれを正 とした 図 1 6のグラフから分かるように 、 位置ずれ aとずれ角ァ の間には 、 大きさ、 方向ともに相関がある
しかも表面のエッチングマスク 2 0 7 aと裏面のエッチングマス ク 2 0 7 bとの位置ずれ aが起こると、 図 1 5 ( a ) に示すように
、 振動脚 1 1 3の断面に表面 1 1 3 aの両端に対して裏面 1 1 3 b の両端がそれぞれ同時に同方向に aだけずれることになり、 足しあ わせの関係で主軸の方向ずれを増強し、 漏れ振動を強める結果とな つている。
この対策として、 エッチング工程において、 十分な特性を得られ る程度に漏れ振動を小さく しょうとするならば、 表面のエッチング マスクと、 裏面のェッチングマスクとの位置合わせをサブミクロン レべルで行い、 図 1 4 ( a )に示すよ な上下対称の水晶振動子片を 製造する必要がある しかし、 %n度の両面ァライメン卜露光装置 を用いても表裏の位置合わせ精度には限界があり、 歩留まりが悪い という問題があつた
また、 片面からェ Vチンクを行つた場合や、 図 1 1 に示した表面 パ夕ーンを基準にしてェッチングした場合には、 表面のエッチング マスクと、 裏面のェッチングマスクとの位置ずれという概念はない のだが、 一方の側面にできる残渣と他方の側面にできる残渣の角度 が異なるために、 対称形状にはならず、 主軸の方向を計算すると、
X軸に平行な主軸は持たない。 よって斜め振動となり漏れ振動を発 生する。 この方法は、 常に一定の振動子片が製造できるため、 共振 周波数を安定させる目的としては有効であるが、 漏れ振動の少ない 振動子片を得るという目的には適さない。
このように、 従来の方法では振動脚断面の主軸の方向が X軸に略 平行な漏れ振動の少ない水晶振動子片を安定的に得ることが、 上述 のように難しいという問題があった。
本発明の目的は、 上述した従来技術における問題を解決すること を可能とした水晶振動子片及びそのような水晶振動子片の製造方法 を提供することである。
また、 本発明の目的は、 漏れ振動の発生が抑制された (漏れ出力 相対値が低い) 水晶振動子片及びそのような製造方法を提供するこ とである。
さらに、 本発明は、 振動脚の断面形状が対称型ではないながらも
、 X軸に略平行な主軸を持つ水晶振動子片及びそのような製造方法 を提供することである。
さらに、 本発明は、 水晶ウェハの表裏両面からエッチングマスク を用いてエッチングする工程において、 表面のエッチングマスク及 び裏面のエッチングマスクの形状を工夫することにより、 振動脚の 断面形状が対称型ではないながらも、 X軸に略平行な主軸を持ち、 従来に比べて安定して製造することが可能で漏れ振動の発生が抑制 された水晶振動子片及びその製造方法を提供することである。
本発明に係る水晶振動子片の製造方法は、 水晶ウェハの表面に第
1エッチングマスクを形成し且つ前記水晶ウェハの裏面に第 2エツ チングマスクを形成し、 エッチング溶液によって浸漬して、 前記第 1エッチングマスクと前記第 2エッチングマスクに覆われていない 部分の水晶を溶解することによって前記振動脚を形成するステップ を有し、 前記第 2エッチングマスクにおいて、 前記第 1エッチング マスクの第 1端部に対応する位置から突出した第 1突出部の長さが 、 前記第 1 エッチングマスクと前記第 2エッチングマスクの位置ズ レに拘らず、 前記第 1側面側に形成される前記第 1残渣を一定にす るように設定され、 前記第 1及び第 2エッチングマスクは前記振動 脚の長手方向に直交する断面に力学的に直交する図心を通る 2つの 主軸の一方が前記水晶ウェハの表面又は裏面と略平行に形成される ように、 前記第 2側面側に形成される第 2残渣を調整することを特 徵とする。
さ らに、 本発明に係る水晶振動子片の製造方法では、 前記第 2側 面側の前記第 2エッチングマスクにおいて、 前記第 1 エッチングマ スクの第 2端部に対応する位置から突出した第 2突出部の長さが、 前記第 1 エッチングマスクと前記第 2エッチングマスクの位置ズレ が発生しなかった場合に、 前記第 2側面側に前記第 2残渣が形成さ れるように設定されることが好ましい。
さ らに、 本発明に係る水晶振動子片の製造方法では、 前記第 1 ェ ツチングマスクの幅は前記第 2エッチングマスクの幅と比較して小 さく形成され、 前記水晶ゥェ八の厚さを t 、 前記第 1側面側のエツ チング角度を αとした場合に、 前記第 1側面側において、 前記第 1 エッチングマスクの第 1端部と前記第 2エッチングマスクの第 1端 部との差 bカ^ b〉 t x t a n o!の関係を満足するように、 前記第
1 エッチングマスク及び前記 2ェッチングマスクが前記ゥェ八上 に形成されることが好ましい
さ らに、 本発明に係る水晶振動子片の製造方法では、 前記第 1 ェ ツチングマスクと前記第 2ェッチング スクの位置あわせ精度を p とすると、 前記第 1 エツチング スクの第 1端部と前記第 2ェッナ ングマスクの第 1端部との差 bが 、 b t x t a n a + k及び k >
Pの関係を満足するように、 前記第 1 ェッチングマスク及び前記第
2エッチングマスクが前記水晶ゥェ八上に形成されることが好まし い。
さらに、 本発明に係る水晶振動子片の製造方法では、 前記第 1 ェ ツチングマスクの幅は前記第 2エッチングマスクの幅と比較して小 さく形成され、 前記水晶ウェハの厚さを t 、 前記第 1側面側のエツ チング角度を α とした場合に、 前記第 2側面側において、 前記第 1 エッチングマスクの第 2端部と前記第 2エッチングマスクの第 2端 部との差じが、 c < t x t a n ひの関係を満足するように、 前記第 1 エッチングマスク及び前記第 2エッチングマスクが前記水晶ゥェ ハ上に形成されることが好ましい。
さ らに、 本発明に係る水晶振動子片の製造方法では、 前記第 1 ェ ソチングマスクの幅は前記第 2エッチングマスクの幅と比較して小 さ <形成され 前記水晶ゥェハの厚さを t 、 前記第 2側面側のェッ チング角度を とした場合に 刖記第 2側面側において、 前記第 1 ェッチング スクの第 2端部と前記第 2エッチングマスクの第 2端 部との差 Cが c = 0 . 7 X t X t a n αの関係を満足するように 記第 1 ェッチングマスク及び前記第 2エッチングマスクが前記 水晶ウェハ上に形成されることが好ましい。
本発明に係る水晶振動子片は、 互いに幅が異な Ό且つ略平行に形 成された表面及び裏面と、 前記表面及び 記裏面との間に形成され た第 1側面及び第 2側面とを備えた振動脚と 、 刖記第 1側面側に配 置され、 一つの斜面で一定に形成された第 1残渣と 、 前記第 2側面 側に配置された第 2残渣と、 を有し、 前記振動脚の長手方向に直交 する断面に力学的に直交する図心を通る 2 の主軸の一方が前記表 面又は前記裏面と略平行に形成されるよ Όに刖 BC 2残渣が調整さ れていることを特徴とする。
本発明に係る水晶振動子片は、 水晶ウェハの表裏両面からエッチ ングにより加工され且つ振動脚を有し、 前記振動脚は、 互いに幅の 大きさが異なる表面及び裏面と、 一つの斜面で形成される第 1の側 面及び複数の斜面で形成される第 2の側面とを備え、 表面の幅を裏 面の幅に比較して小さく設定し、 前記第 1の側面側の表面の端部と 前記第 1の側面側の裏面の端部との幅方向の差を A、 第 2の側面側 の表面の端部と第 2の側面側の裏面の.端部との幅方向の差を B、 第 1の側面側のエッチング角度を α、 水晶ウェハの厚さを t とし、 A = t X t a n α及び B < Aの関係を満たし、 前記振動脚の長手方向 に直交する断面に力学的な直交する 2つの図心を通る主軸の一方が 、 前記表面と略平行に形成されていることを特徴とする。
さらに、 本発明に係る水晶振動子片は、 第 2の側面が二つ以上の 斜面と、 該二つ以上の斜面で構成する稜線を有し、 凸状の形状をな すことが好ましい。
上記の構成によれば、 第 1側面は一つの斜面で構成されているの でウェハの厚さ tが一定ならば第 1側面の表面と裏面の幅方向の差 Aは常に一定であり、 また第 2側面側の表面と裏面の幅方向の差 B は、 振動脚断面の主軸の一方が X軸と平行になるように調節されて おり、 圧電効果により曲げ力のかかる方向が、 断面の主軸の一方と 同じ方向になるため、 駆動振動は振動子主面に対して斜めとならず 平行に振動し、 Z '軸方向への漏れ振動を発生しない。 従来の方法 では A、 B共に製造時のばらつきが生じたが、 本発明では製造時の ばらつきの影響を受けるのは Bだけであり、 エッチングマスクの表 裏位置合わせずれに起因して生じる漏れ振動が約半分に低減できる さらに、 本発明に係る水晶振動子片は、 振動ジャイロに用いるこ とが好ましい。
本発明に係る水晶振動子片を振動ジャイロに用いれば、 振動ジャ イロの S Z Nを向上させ、 温度特性を安定化させることができる。 本発明に係る水晶ウェハを表裏両面からのエッチングマスクを用 いてエッチングにより加工する水晶振動子片の製造方法は、 前記第
2エッチングマスクは、 前記第 1エッチングマスクより大きく形成 され、 前記第 2エッチングマスクには前記第 1エッチングマスクの 一方の端部に対応する位置から突出した第 1突出部と、 他方の端部 に対応する位置から突出した第 2突出部とを有し、 前記第 1突出部 の第 1突出量を b、 前記水晶ウェハの厚みを t 、 第 1側面側のエツ チング角を(¾、 前記第 2突出部の第 2突出量を c とし、 b〉 t X t a η α及び c < t X t a n ひの関係を満たすことを特徴とする。 上記の構成によれば、 第 1側面の残渣が Z '軸に対して角度ひで 形成されるとき、 裏面エッチングマスクを表面エッチングマスクに 比べて t x t a n aよりも長く しておくので、 エッチングによって 得られる斜面は表面からエッチングされた斜面だけになる。 そのた め、 第 1側面には常に一定の形状の残渣が安定して形成される。 ま た、 第 2側面の残渣は Z '軸と aよりも大きい角度をもって形成さ れるため、 t x t a n aよりも小さい第 2突出量 cのときに第 1側 面の残渣とバランスをとり主軸の一方が X軸と平行になり、 漏れ振 動がなくなる。 ェツチングマスクの表裏の位置ずれが起きた場合、 従来の方法で表裏に同一のパターンを使用すると第 1側面および第 2側面がどちらもずれ、 ずれが足しあわされて漏れ振動が増大する が、 本発明の場合では位置ずれの影響を受けるのは第 2側面のみと なるため、 漏れ振動を約半分に抑制することができる。
さらに、 本発明に係る水晶振動子片の製造方法では、 マスクオフ セッ ト量を k、 マスクの位置合わせ精度を土 pとするとき、 前記第 1突出量 bが、 b = t X t a n α + k及び k〉 p の関係を満たすこ とが好ましい。
上記構成によれば、 第 1側面の残渣は Z '軸と角度 αで形成され 、 製造工程の表面と裏面のエッチングマスクの位置合わせ精度が土 Pである場合、 Pの位置ずれがあった場合にも、 裏面のエッチング マスクのマスクオフセッ ト量 kの値が位置合わせ精度 pの値より大 きい値に設定されているため、 第 1側面には表面からエッチングさ れた一つの斜面が形成され、 第 1側面には常に一定の残渣が形成さ
れる。
さらに、 本発明に係る製造方法で製造した水晶振動子片を振動ジ ャイロに用いることが好ましい。
上記構成によれば、 振動ジャイ ロの S Z Nを向上させ、 温度特性 を安定化させることができる。
本発明によれば、 表面のエッチングマスクと裏面のエッチングマ スクとの位置ずれの影響を受ける振動脚の側面が従来では両側であ つたのに対し、 片側のみとなるため、 漏れ振動を従来の約半分に抑 制することが可能となった。 図面の簡単な説明
図 1 ( a ) 〜図 1 ( e ) は、 本発明の実施形態における水晶振動 子片の製造工程を示した工程図である。
図 2は、 X軸に略平行な主軸を有するための振動脚断面を説明す るための図である。
図 3は、 水晶振動子片の製造工程におけるエッチングマスクの大 きさを示す図である。
図 4は、 本発明に係る水晶振動子片の振動脚の断面形状を示した 図である。
図 5は、 本発明に係る製造方法によって、 実際に製造された振動 子片の振動脚の断面形状を卜レースした図である。
図 6は、 水晶振動子片の漏れ出力相対値とエッチングマスクの位 置ずれとの関係を示す図である。
図 7は、 水晶振動子片の漏れ出力相対値と頻度の関係を示した図 である。
図 8は、 水晶ウェハを表した図である。
図 9 ( a ) は水晶振動子片の正面図を示し、 図 9 ( b ) は図 9 ( a ) の AA '断面図の一例を示す図であり、 図 9 ( c ) は図 9 ( a ) の AA '断面図の他の例を示す図である。
図 1 0 ( a ) 〜図 1 0 ( e ) は、 従来技術における水晶振動子片 の製造工程を示す断面工程図である。
図 1 1は、 従来技術における水晶振動子片振動脚の断面図である 図 1 2 ( a ) は水晶振動子の斜視図を示し、 図 1 2 ( b ) は図 1 2 ( a ) の AA '断面図の一例における振動方向を示した図であり 、 図 1 2 ( c ) は図 1 2 ( ) の AA '断面図の他の例における振 動方向を示した図である。
図 1 3 ( a ) は水晶エッチング残渣の一例を示す断面図であり、 図 1 3 ( b ) は水晶エッチング残渣の他の例を示す断面図である。 図 1 4 ( a ) はエッチングマスクのずれがない一例を示す断面図 であり、 図 1 4 ( b ) はエッチングマスクずれの他の例を示す断面 図である。
図 1 5 ( a ) は振動脚の断面における表面と裏面と位置ずれを表 した図であり、 図 1 5 ( b ) は、 図 1 5 ( a ) における振動脚の断 面の主軸のずれ角を示す図である。
図 1 6は、 水晶振動子片の製造工程における表面のエッチングマ スクと裏面のエッチングマスクとの位置ずれと、 主軸のずれ角との 関係を表した図である。 発明を実施するための最良の形態
以下、 本発明に係る水晶振動子片及びその製造方法について図面 を用いて説明を行う。 但し、 本発明の技術的範囲はそれらの実施の 形態に限定されず、 特許請求の範囲に記載された発明とその均等物 に及ぶ点に留意されたい。
最初に、 図 1 を用いて、 本発明に係る水晶振動子片の製造方法に ついて説明する。
図 1 ( a ) は、 板厚を t に調整した水晶ウェハ 1 0 0の両面に、 金属耐食膜 2 0 0 a、 2 0 0 bをスパッ夕や蒸着やめつきなどで形 成した状態を示している。 金属耐食膜 2 0 0 a、 2 0 0 bには下地 層に C r , 上層に A uなどを用いることができる。 さらに、 この金 属耐食膜 2 0 0 a、 2 0 0 bの表面に、 それぞれフォ トレジス ト 2 O l a , 2 0 1 bを形成する。
次に、 1 ( b ) に示すように、 表面用フ才 卜マスク 2 0 2、 裏 面用フォ hマスク 2 0 4の 2枚のフォ 卜マスクを用い、 両面ァライ メン ト装置 (不図示) によってフォ トマスク 2 0 2 、 2 0 4の表裏 位 ■&: 1 置合わせし、 フォ トレジス ト 2 0 1 a 、 2 0 1 bを露光す る。 次に 、 フォ 卜レジス 卜 2 0 1 a、 2 0 1 bを現像し、 得られた パターンをマスクとして金属耐食膜 2 0 0 a 、 2 0 0 bを振動子形 状にパ夕一ニングし、 図 1 ( c ) に示すように 、 金属耐食膜のエツ チンダマスク 2 0 7 a、 2 0 7 bを形成する なお 、 フォ 卜レジス 卜 2 0 1 a 、 2 0 l bは、 金属耐食膜のエツチングマスク 2 0 7 a
, 2 0 7 bを形成後直ぐに剥離しても良いし 、 フ才 トレジス トを付 けたまま次の工程に移り、 後で剥離しても良い。
次に、 金属耐食膜のエッチングマスク 2 0 7 a、 2 0 7 bからな るエッチングマスクを形成した水晶ウェハ 1 0 0 (図 1 ( c ) 参照 ) を、 フッ酸を含むエッチング液に浸漬し、 金属耐食膜 2 0 7 a、 2 0 7 bに覆われていない部分の水晶を溶解する。 なお、 図 1 ( d ) では、 水晶振動子片の振動脚 3 1 3の断面形状のみを示している 次に、 図 1 ( e ) に示すように、 金属耐食膜のエッチングマスク 2 0 7 a、 2 0 7 bを剥離して、 水晶振動子片を形成する。 また、 形成された水晶振動子片の全体形状は図 9 ( a ) と同様である。 な お、 図 1 ( e ) に、 水晶ウェハの結晶軸 ( + X、 Y '、 + Z ). の方 向を示している力 、 結晶軸の方向は、 図 1 ( a ) 〜図 1 ( e ) にお いて全て同じである。
図 2は、 X軸に略平行な主軸を有するための振動脚断面を説明す るための図である。
振動脚断面の主軸の方向は、 振動脚の断面形状によって定まる。 具体的には、 振動脚の断面の図心を原点として横軸が X軸に平行な 直角座標系に関する断面相乗モーメントがほぼ 0であれば、 振動脚 断面は X軸に略平行な主軸を有することとなる。 そこで、 図 2に示 す振動脚の断面 1 0に基づいて、 本発明で目指す振動脚の断面の設 計方法について以下に説明する。
まず、 振動脚の断面 1 0を、 中央部の長方形の第 1部分 1 1、 図 中左側の三角形の第 2部分 1 2、 図中右側の三角形の第 3部分 1 3 、 図中右下の近似平行四辺形の第 4部分 1 4に分ける。
振動脚断面の図中左側の部分はエッチング工程において、 角度 α でエッチングされる。 したがって、 下側のエッチングマスク 2 0 7 bを上側のエッチングマスク 2 0 7 aより充分に張り出すように設 定すると、 振動脚の左側に第 1側面 3 0 3側の残渣として第 2部分 1 2が形成される。 なお、 第 2部分 1 2は、 頂角 αによって決定さ れるため、 ァライメント装置の精度誤差に拘らず、 常に同じ断面を 有するように製造することができる。 振動脚断面の図中右側の部分は、 エッチング工程において、 角度
;6でエッチングされる。 すると、 振動脚の右側に第 2側面側の残渣 (第 3部分 1 3 +第 4部分 1 4 ) が形成される。 なお、 振動脚断面 の図中右側の部分では、 上側のエッチングマスク 2 0 7 aと下側の エッチングマスク 2 0 7 bの位置関係が、 ァライメント装置の精度 誤差によって変化するため、 常に同じ残渣ができるとは限らない。 次に、 第 1部分 1 1〜第 4部分 1 4を有する振動脚の断面 1 0の 図心を原点として、 横軸が X軸に平行な直角座標系における断面相 乗モーメントを計算により求める。
ここで、 断面 1 0の図心を〇 i 、 第 2部分 1 2の図心を〇 2 、 第 4部分 1 4の図心を〇4 とする。 また、 第 1部分の底辺の長さを d 、 高さを t 、 第 2部分 1 2の底辺の長さを A、 第 4部分 1 4の底辺 の長さを B.とする。 さらに、 計算のための座標軸 (横軸 x、 縦軸 y ) を、 図心〇 L を原点として、 横軸が X軸に平行な直角座標系を設 定し、 この座標系を本座標系という ことにする。
また、 第 2部分 1 2 と第 4部分 1 4の面積は、 断面 1 0の面積に 比較し非常に小さいので、 断面 1 0の図心 O i の底辺からの高さは 、 図に示すように t 2 と近似することができる。
第 1部分 1 1の部分は本座標系の横軸 Xに対して上下対象である ので、 本座標系に関する断面相乗モーメント M t ! は 0である。 第 2部分 1 2の図心〇 2 を原点とした、 横軸が X軸に平行な直角 座標系に関する断面相乗モーメント 2 'は (A 2 t 2 / 7 2 ) である。 これを、 から〇 2 までの横方向の距離を d 2、 縦方 向の距離を t Z6と近似し、 公知の平行軸の定理を適用すると、 第 2部分 1 2の本座標系における断面相乗モーメント 2 は、 (A 2 t 2 Z7 2) + (A t 2 d Z 2 4 ) となる。 ここで、 (A 2 t 2 / 7 2 ) は (A t 2 d / 2 4 ) に対して絶対値が非常に小さいので 、 M 1 2 = A t 2 dZ 2 4と近似することができる。
第 3部分 1 3の部分は本座標系の横軸 Xに対して上下対象である ので、 本座標系に関する断面相乗モーメント M i 3 は 0である。 第 4部分 1 4の図心〇 4 を原点とした、 横軸が X軸に平行な直角 座標系に関する断面相乗モーメント M i 4 'は (B t 3 t a η β / 9 6 ) である。 これを、 〇 j から 04 までの横方向の距離を d Z 2 、 縦方向の距離を t 4と近似し、 公知の平行軸の定理を適用する と、 第 4部分 1 4の本座標系における断面相乗モーメント ^!ェ 4 は 、 (B t 3 t a n )S / 9 6 ) - ( B t 2 d / 1 6 ) となる。 ここで 、 ( B t 3 t a n )8 / 9 6 ) は (B t 2 d / 1 6 ) に対して絶対値 が非常に小さいので、 M L 4 = - B t 2 d Z 1 6 と近似することが できる。
断面 1 0の全体の本座標系に関する断面相乗モーメント M i 。 は
、 M! , + U! 2 + M! 3 + M! 4 であることから、 M i 。 = (A t 2 d / 2 4 ) - (B t 2 d / 1 6 ) とすることができる。 即ち、 (A t 2 ά / 2 4 ) = (B t 2 d / 1 6 ) となるような A及び Bの 値を選択すれば、 断面 1 0の断面相乗モーメント M i 。 は、 ほぼゼ 口となり、 振動脚断面の主軸が X軸と略平行となる理想的な水晶振 動子片となる。
前述したように、 上記の条件より A及び Bの関係を求めると、 B = ( 1 6 / 2 4 ) XAとなり、 B = 0. 7 Aと近似することができ る。 即ち、 B = 0. 7 Aと設定した場合には、 断面 1 0の断面相乗 モーメント ί^^ 0 はゼロとなり、 振動脚断面の主軸が X軸と略平行 となる理想的な水晶振動子片となる。
ところで、 前述したように、 下側のエッチングマスク 2 0 7 bを 上側のエッチングマスク 2 0 7 aより充分に張り出すように設定す ることによって、 ァライメント装置の精度誤差に拘らず、 常に A = t X t a n ひとなるように製造することができる。
一方、 ァライメント装置の精度誤差のため、 上側のエッチングマ スク 2 0 7 aと下側のエッチングマスク 2 0 7 bとが、 常に Bだけ ズレるように配置することはできない。
しかしながら、 上側の工ツチングマスク 2 0 7 aと下側のエッチ ングマスク 2 0 7 bとが Bだけズレるように設計することによって 、 Bを中心としてァライメン卜装置の精度誤差範囲内で振動脚を製 造することができる。 即ち、 従来にように、 振動脚の残渣が左右そ れぞれ独自に形成され、 第 1の側面と第 2の側面のァライメント誤 差の影響を受け、 振動脚断面の主軸が X軸とほぼ平行な状態から大 きくずれてしまうことを防止することができるようになった。
以上詳述したように、 本発明では、 上側のエッチングマスク 2 0 7 aと下側のエッチングマスク 2 0 7 bの図中左側のずれ量が Aよ り充分大きな値となるよフに (A +ァライメン卜装置の精度誤差分 以上を追加した値) とし 、 上側のエッチングマスク 2 0 7 aと下側 のエッチングマスク 2 0 7 bの図中右側のずれ量が Bとなるように 設計している。 即ち、 本発明では、 上記の点を考慮して図 1 ( b ) における表面用フォ ト スク 2 0 2及び裏面用フォ 卜 スク 2 0 4 の位置合わせを行っている 。 このように設計することによつて、 振 動脚断面の主軸が X軸とほぼ平行となる理想的な水晶振動子片の製 造頻度を格段に上げることが可能となった。
また、 B = 0 . 7 A = 0 . 7 t x t a n aと近似することができ 、 Bの値も頂度 aの関数として取り扱うことが可能となる。
図 3は、 フォ トレジス ト 2 0 1 a 、 2 0 l bを剥離した状態を示 す水晶ウェハ 1 0 0の部分拡大図である。
前述の裏面用フォ トマスク 2 0 4の振動脚のパターンは、 表面用 フォ トマスク 2 0 2の振動脚パターンに比べて、 幅が大きく設定さ れている。 したがって、 図 3に示すように、 裏面のエッチングマス ク 2 0 7 bの幅は、 表面のエッチングマスク 2 0 7 aの幅に対して 大きく形成され、 エッチングマスク 2 0 7 bの水晶の結晶軸 4 0 0 における一 X側の端部である第 1側面側には第 1突出部 b、 + X側 の端部である第 2側面側には第 2突出部 cが形成されている。
図 3に示すように、 表面のエッチングマスク 2 0 7 aの— X側の 端部を通り Z ' 軸と平行な直線 3 0 2 と、 水晶ウェハ 1 0 0がエツ チングされる面 3 0 3 との角度を α、 水晶ウェハの板厚を t とする 。 すると、 前述したように、 第 1突出部 bの値は、 Aにァライメン ト装置の精度誤差分以上を追加した値、 即ち t X t a η α + ρより も大きい値に設定する。 即ち、 b > t x t a n ひ + ρと設定する。 また、 第 2突出部 cの値は前述した Bの値となるように設定する。 B = 0. 7 Aと近似できることから、 0 < c <A、 又は 0 < c < t X t a n ひとなる。
本実施形態においては、 裏面のエッチングマスク 2 0 7 bの第 1 側面側のマスクオフセッ ト量を kとし、 第 1突出部 bを、 b = t x t a n a + kと設定した。 ここで、 角度 αの値はおおよそ 1 ° であ るから、 マスクオフセッ ト量 kの値を 2 mとし、 第 1突出部 b [ u m] の値を、 b [ u m] = t [ /z m] X 0. 0 1 7 + 2 mとし た。 マスクオフセッ ト量 kの値は、 使用する両面ァライナーの精度 土 pのとき、 pより大きい値、 即ち、 k〉 pと設定しておく ことに より、 表面のエッチングマスク 2 0 7 aと裏面のエッチングマスク 2 0 7 bとの位置ずれが起きた場合にも第 1側面は位置ずれの影響 を受けず、 第 1側面には表面からエッチングされた一つの斜面が形 成され、 第 1側面には常に一定の残渣が形成されるようになってい る。
また、 裏面のエッチングマスク 2 0 7 bの第 2突出部 cの値を c = 0. 7 A = 0. 7 X t X t a n aと設定した。 ここで、 角度ひの 値はおおよそ 1 ° であるから、 c = t X 0. 0 1 2 とした。
図 4は、 水晶振動子片の振動脚の断面形状を示した図である。 本発明に係る製造方法によって製造された水晶振動子片の振動脚 3 1 3は、 図 4に示す様に、 互いに幅の大きさが異なる表面 2 2 2 及び裏面 2 2 0 と、 一つの斜面で形成される第 1の側面 2 1 0及び 二つの斜面 2 3 2、 2 3 4と二つの斜面で構成する稜線 2 3 0 を有 し凸状の形状をなす第 2の側面 2 1 2 とを備えている。 また、 表面 2 2 2の "l dは裏面 2 2 0の幅 eに比較して小さく設定されている 。 ここで、 振動脚 3 1 3において、 第 1の側面 2 1 0側の表面 2 2 2の端部 2 2 2 aと第 1の側面 2 1 0側の裏面 2 2 0の端部 2 2 0 aとの幅方向の差を A '、 第 2の側面 2 1 2側の表面 2 2 2の端部 2 2 2 bと第 2の側面 2 1 2側の裏面 2 2 0の端部 2 2 0 bとの幅 方向の差を B '、 第 1の側面 2 1 0側のエッチング角度をひ、 水晶 ウェハの厚さを t とする。
すると、 図 2を用いて説明したように、 実際に製造された水晶振 動子片の振動脚 3 1 3の A 'は、 設計値の A (図 2参照) とほぼ同 じ値を有する。 また、 実際に製造された水晶振動子の振動脚 3 1 3 の B 'は、 設計値 B (図 2参照) 対して、 両面ァライナ一の精度土 Pの範囲内で変化することとなる。 また、 実際に製造された水晶振 動子の振動脚 3 1 3では、 前述したように、 A ' = t X t a n o;、 B ' <A '、 の関係を、 少なく とも満足しているはずである。
さらに、 水晶のエッチング量は、 第 2側面の残渣が Z '軸に対し て 2 2 ° および 2 ° で形成される短時間エッチングの場合でも (図 1 3 ( a ) ) 、 Z '軸に対して 2 ° のみで形成される長時間エッチ ングの場合 (図 1 3 ( b ) ) のいずれでも、 第 1側面が一つの斜面 で構成されているならば、 本発明の効果を発揮することができる。 図 5は、 本発明に係る製造方法によって、 実際に製造された振動 子片の振動脚の断面形状をトレースした図である。
図 5の例では、 d = 1 3 4 m、 t = 1 6 0 m、 角度 α = 1 ° 、 A ' = 2. 9 rn, B ' = 2. であった。 また、 図 5に示 す水晶振動子の主軸のずれは、 一 0. 0 7 ° であり、 漏れ出力相対 値は 0. 0 9であった。
ここで、 t X t a n o! - 2. 7 2であるので、 A ' = t X t a n α及び B 'ぐ Α 'を満足していると考えられる。
図 6は、 水晶振動子片の漏れ振動と、 表面のエッチングマスクと 裏面のエッチングマスクとの間の設定値からの位置ずれ aとの関係 を示す図である。
図 6のデータは、 実際に位置ずれ aに対応する漏れ振動から来る 漏れ出力を測定した結果である。 縦軸は、 漏れ振動出力の相対値、 横軸は、 表面のエッチングマスクと裏面のエッチングマスクとの間 の設定値からの位置ずれ量 ( zm) である。 また、 白丸は従来の方 法によって製造された水晶振動子片の漏れ出力相対値を示し、 黒丸 は図 1 に示す製造方法によって製造された水晶振動子片の漏れ出力 相対値を示す。 図 6に示すように、 本実施形態における水晶振動子 片の漏れ振動から来る漏れ出力は、 従来の場合の約半分であった。 以上のように、 本実施形態の水晶振動子片は、 第 1側面は一つの 斜面で構成されているので、 ウェハの厚さ tが一定ならば表面と裏 面の幅方向の差 A 'は常に一定である。 まだ、 第 2側面の表面と裏 面の差 B 'は、 振動脚断面の主軸の一方が X軸と略平行になるよう に調節されている。 したがって、 圧電効果により曲げ力のかかる方 向が、 断面の主軸と同じになるため、 駆動振動は振動子主面に対し て斜めとならず平行に振動し、 Z ' 軸方向への漏れ振動を発生しな い。 従来の方法では A '及び B 'が共に製造時にばらついたが、 本 発明では製造時のばらつきの影響を受けるのは B 'だけであり、 表 裏の位置ずれに起因して生じる漏れ振動が約半分に低減できる。
図 7は、 水晶振動子片の漏れ出力相対値と頻度の関係を示した図 である。
図 7のデータは、 従来の方法によって製造された水晶振動子片 ( 4 4例) 及び図 1 に示す製造方法によって製造された水晶振動子片 ( 3 2例) の漏れ出力相対値を実際に測定し、 所定の漏れ出力相対 値の範囲内での頻度 (%) を示したものである。
漏れ出力相対値の測定方法について、 2脚音叉型水晶振動ジャィ 口を例に取り説明する。
まず、 一方を駆動脚とし、 駆動脚には X軸方向に駆動振動を,行わ せるための所定の電極を設け、 また、 他方を検出脚とし、 検出脚に は Z '軸方向の振動を検出するように検出用の所定の電極を設ける 次に、 駆動脚の発振条件を満足させて、 自励発振させる。 駆動脚 が X軸方向に動く とき、 検出脚は運動量をバランスさせるように一 X軸方向に動くように面内屈曲振動を行う。
ここで、 検出脚は、 Z '幅方向の振動を検出するように検出電極 が設けてあるので、 その電極からの信号を増幅して検出信号を測定 することが出来るようになつている。 そして、 駆動脚を自励発振さ せ、 コリオリカが働かないように Y '軸回りの角速度を与えない状 態にしたときに発生する Z '軸方向の検出振動成分が漏れ振動であ り、 この漏れ振動による検出電極からの信号を増幅して漏れ出力を 測定することができる。
図 7 に示されるように、 図 1 に示す製造方法によって製造された 水晶振動子片の方が、 低い漏れ出力相対値を示す頻度が高いことが 理解できる。 即ち、 図 1 に示す製造方法によって製造された水晶振 動子片の方が、 主軸が X軸とより水平となるものが頻度高く製造で きることが理解できる。
従来の製造方法では、 フォ トマスクを配置する両面ァライメント 装置の精度の問題によって、 エッチングマスクの位置ずれが発生す ると、 水晶振動子片の第 1側面と第 2側面の両方が影響を受け、 水 晶振動子片の漏れ出力相対値が大きくな てしまうという問題があ つた。 これに対して、 本発明では 、 まず 、 第 1突出部 bを充分に取 ることによって、 エッチングマスクの位置ずれが発生しても、 第 1 側面が常に所定の形状になるように ax している 。 即ち 、 第 1側面 側の残渣が一定になるように設定されてい ■ώ。
次に、 本発明では、 第 2突出部 Cが、 ェッチングマスクの位置ず れが発生しない場合に、 第 1側面とバランスが取れた第 2側面が形 成されるように設定している。 即ち、 エッチングマスクの位置ずれ が発生しなかった場合には、 第 1側面側の残渣と完全にバランスが 取れた残渣が第 2側面側に形成されるように設定した。
エッチングマスクの位置ずれが発生しない場合に、 第 1の側面と バランスが取れた第 2側面が形成されるように設計上の目標値とし て設定しておく と、 '実際の製造工程においてエッチングマスクの位 置ずれが多少発生した場合においても漏れ出力相対値を小さく抑え ることができる。
すなわちエッチングマスクの位置ずれが発生した場合には、 実際 の B 'が変化して、 第 2側面側の残渣は最適値から変動することと なる。 しかしながら、 第 1側面側の残渣は常に一定であるので、 第 2側面側の残渣の変動による影響しか受けないので、 漏れ出力相対 値を従来より小さくすることが可能となった。 さらに、 第 2側面側 の残渣の変動は、 最適なポイント (理想値 B ) を中心にして、 両面 ァライメン卜装置の精度誤差の範囲内 (土 P ) に対応することとな るので、 軽微である。 したがって、 本発明の前述した 2つの工夫点 に基づいて、 本発明に係る製造方法では、 漏れ出力相対値の低い、 規格に合った水晶振動子片の製造効率を飛躍的に向上させることが 可能となった。
また、 本発明の水晶振動子片を振動ジャイロに用いることにより 、 振動ジャイロの S Z Nを向上させ、 温度特性を安定化させること ができる。
なお、 上述の説明においては、 第 1側面のエッチング角 αは約 1 ° としたが、 エッチング角 αは水晶ウェハのカッ ト角やエッチング 条件などにより異なるため、 それらの条件にあわせて Α及び第 1突 出量 bを決定することが好ましい。
なお、 第 2突出量 cの値については、 各種基本条件、 例えばゥェ ハカッ ト角、 エッチング液組成、 温度などが変更された場合には、 多少異なる。 これは、 αの値や;8の値が変化して上記で B = 0 . 7 Aと示した近似から外れる場合があるためである。 前述したように 第 2突出量は c = 0 . 7 X t X t a n ひ と近似したが、 実施形態に おいて説明した Z板水晶振動子片の実用範囲に'おいては、 a値や J3 値の変化を考慮すると、 第 2突出量 cは、
0 . 6 5 x t x t a n a < c < 0 . 7 5 X t X t a η α の範囲となる。 近似した第 2突出量の c値が適切であるかを確認 するために、 図 7で示したような漏れ出力相対値と頻度の関係を求 め、 漏れ出力相対値ゼロ付近に頻度の山が来ているかを確認する。 このとき、 頻度の山がゼロ付近からずれていた場合には、 上記範囲 内で c値を変化させ、 適切な第 2突出量 cの値を用いるようにする 。 ただし、 各種条件を大きく変更した場合は、 上述の範囲にとどま らず適切な第 2突出量 cの値は変化する。 その場合も、 上述した手 法によって適切な第 2突出量 cの値を求めて用いるとよい。 また、 上述の基本条件の変更は C の値を多少変化させるが、 基本条件の製 造時ばらつき程度では C の値を変化させるほどには至らず、 常に一 定の第 2突出量 c となる。
本実施例では、 水晶の表面 (水晶結晶軸の + Z面) に第 1 エッチ ングマスクを設け、 裏面 (水晶結晶軸の一 面) に第 2エッチング マスクを設けた例を用いたが、 表面に第 2エッチングマスクを設け 、 裏面に第 1 エッチングマスクを設けても、 本発明の効果は発揮さ れる。
以上、 本実施形態においては 2脚音叉型の水晶振動子片を例に説 明したが、 2脚音又型以外の例えば 1 、 3 、 4、 5脚音叉型でも本 発明を適用することができ、 本発明は本実施形態に限定されるもの ではない。

Claims

1 . 第 1側面と第 2側面を有する振動脚を含む水
造方法であって、
水曰曰ウェハの表面に第 1 エッチングマスクを形成し且つ刖 ti水晶 ゥェ八の裏面に第 2エツチングマスクを形成し、
ェッチング溶液によつて浸漬して、 前記第 1 エツチングマスクと 前記第 2エッチングマスクに覆われていない部分の水晶を溶解する とによつて前記振動脚を形成すのる、 ステツプを有し、
刖記第 2エッチングマスクにおいて範、 前記第 1 エッチングマスク の第 1端部に対応する位置から突出した第囲 1突出部の長さ力 s、 fu記 第 1 ェツチングマスクと前記第 2エッチングマスクの位置ズレに拘 らず 、 前記第 1側面側に形成される前記第 1残渣を一定にするよう に設定され、
前記第 1及び第 2エッチングマスクは、 前記振動脚の長手方向に 直交する断面に力学的に直交する図心を通る 2つの主軸の一方が前 記水晶ウェハの表面又は裏面と略平行に形成されるように、 前記
2側面側に形成される第 2残渣を調整する、
ことを特徴とする水晶振動子片の製造方法。
2 . 前記第 2側面側の前記第 2エッチングマスクにおいて、 前記 第 1 エッチングマスクの第 2端部に対応する位置から突出した第 2 突出部の長さが、 前記第 1 エッチングマスクと前記第 2エッチング マスクの位置ずれが発生しなかった場合に、 前記第 2側面側に前記 第 2残渣が形成されるように設定される、 請求項 1 に記載の水晶振 動子の製造方法。
3 . 前記第 1 エッチングマスクの幅は前記第 2ェッチンダマスク の幅と比較して小さく形成され、 前記水晶ウェハの厚さを t 、 刖記 第 1側面側のエッチング角度を αとした場合に、 前記第 1側面側に おいて、 前記第 1 エッチングマスクの第 1端部と前記第 2エツチン グマスクの第 1端部との差 bカ^
b > t X t a n a
の関係を満足するように、 前記第 1 エッチングマスク及び前記第 2 エッチングマスクが前記ウェハ上に形成される、 請求項 1 又は 2 に 記載の水晶振動子片の製造方法。
4 . 前記第 1 エッチングマスクと前記第 2エッチングマスクの位 置あわせ精度を P とすると、 前記第 1 エッチングマスクの第 1端部 と前記第 2エッチングマスクの第 1端部との差 bが、
b = t X t a n a + k
k > p
の関係を満足するように、 前記第 1 エッチングマスク及び前記第 2 エッチングマスクが前記水晶ゥェ八上に形成される、 請求項 3 に記 載の水晶振動子片の製造方法。
5 . 前記第 1 エッチングマスクの幅は前記第 2エッチングマスク の幅と比較して小さく形成され、 刖記水晶ウェハの厚さを t 、 前記 第 1側面側のエッチング角度をひとした場合に、 前記第 2側面側に おいて、 前記第 1 エッチングマスクの第 2端部と前記第 2エツチン グマスクの第 2端部との差 c力
c < t X t a n
の関係を満足するように、 前記第 1 エッチングマスク及び前記第 2 エッチングマスクが前記水晶ウェハ上に形成される、 請求項 1 4 の何れか一項に記載の水晶振動子片の製造方法。
6 . 前記第 1 エッチングマスクの幅は前記第 2エッチングマスク の幅と比較して小さく形成され、 前記水晶ウェハの厚さを t 、 前記 第 2側面側のエッチング角度を aとした場合に、 前記第 2側面側に おいて、 前記第 1エッチングマスクの第 2端部と前記第 2エツチン グマスクの第 2端部との差 cカ^
c = 0 . 7 X t X t a η α
の関係を満足するように、 前記第 1エッチングマスク及び前記第 2 エッチングマスクが前記水晶ウェハ上に形成される、 請求項 5に記 載の水晶振動子片の製造方法。
7 . 水晶ウェハの表裏両面からエッチングにより加工された水晶 振動子片であって、
互いに幅が異なり且つ略平行に形成された表面及び裏面と、 前記表面及び前記裏面との間に形成された第 1側面及び第 2側面 とを備えた振動脚と、
前記第 1側面側に配置され、 一つの斜面で一定に形成された第 1 残渣と、
前記第 2側面側に配置された第 2残渣と、 を有し、
前記振動脚の長手方向に直交する断面に力学的に直交する図心を 通る 2つの主軸の一方が前記表面又は前記裏面と略平行に形成され るように、 前記第 2残渣が調整されている、
ことを特徴とする水晶振動子片。
PCT/JP2008/056537 2007-03-26 2008-03-26 水晶振動子片およびその製造方法 WO2008117891A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009506392A JP4593674B2 (ja) 2007-03-26 2008-03-26 水晶振動子片およびその製造方法
US12/532,979 US8347469B2 (en) 2007-03-26 2008-03-26 Crystal oscillator piece and method for manufacturing the same
CN2008800099043A CN101657965B (zh) 2007-03-26 2008-03-26 水晶振子片及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007079283 2007-03-26
JP2007-079283 2007-03-26

Publications (1)

Publication Number Publication Date
WO2008117891A1 true WO2008117891A1 (ja) 2008-10-02

Family

ID=39788618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/056537 WO2008117891A1 (ja) 2007-03-26 2008-03-26 水晶振動子片およびその製造方法

Country Status (4)

Country Link
US (1) US8347469B2 (ja)
JP (1) JP4593674B2 (ja)
CN (1) CN101657965B (ja)
WO (1) WO2008117891A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107534422A (zh) * 2015-04-22 2018-01-02 追踪有限公司 具有更好声音效果的电声器件

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009035155A1 (ja) * 2007-09-13 2009-03-19 Citizen Holdings Co., Ltd. 水晶振動子片およびその製造方法
JP4908614B2 (ja) * 2009-06-12 2012-04-04 日本電波工業株式会社 水晶振動子の製造方法
JP2016085190A (ja) * 2014-10-29 2016-05-19 セイコーエプソン株式会社 振動素子、振動素子の製造方法、電子デバイス、電子機器、および移動体
JP6582501B2 (ja) * 2015-04-02 2019-10-02 セイコーエプソン株式会社 振動素子、振動子、電子機器および移動体
JP6384702B2 (ja) * 2016-06-21 2018-09-05 株式会社村田製作所 水晶振動素子、水晶振動子、及び水晶振動素子の製造方法
JP2022079131A (ja) * 2020-11-16 2022-05-26 セイコーエプソン株式会社 振動デバイス及び振動デバイスの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005277482A (ja) * 2004-03-23 2005-10-06 Citizen Watch Co Ltd 水晶振動子の製造方法および振動ジャイロ
JP2006214779A (ja) * 2005-02-02 2006-08-17 Citizen Watch Co Ltd 振動体の製造方法
JP2006217497A (ja) * 2005-02-07 2006-08-17 Seiko Instruments Inc 水晶振動片の製造方法および水晶振動子、発振器及び電子機器
JP2006269738A (ja) * 2005-03-24 2006-10-05 Nippon Dempa Kogyo Co Ltd 水晶振動子の金属パターン形成方法、外形加工方法及び露光装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11238728A (ja) * 1997-12-16 1999-08-31 Fujitsu Ltd 半導体デバイスの製造の際に使用される熱処理治具及びその製造法
JP3703773B2 (ja) * 2002-03-28 2005-10-05 株式会社ヒューモラボラトリー 水晶振動子の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005277482A (ja) * 2004-03-23 2005-10-06 Citizen Watch Co Ltd 水晶振動子の製造方法および振動ジャイロ
JP2006214779A (ja) * 2005-02-02 2006-08-17 Citizen Watch Co Ltd 振動体の製造方法
JP2006217497A (ja) * 2005-02-07 2006-08-17 Seiko Instruments Inc 水晶振動片の製造方法および水晶振動子、発振器及び電子機器
JP2006269738A (ja) * 2005-03-24 2006-10-05 Nippon Dempa Kogyo Co Ltd 水晶振動子の金属パターン形成方法、外形加工方法及び露光装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107534422A (zh) * 2015-04-22 2018-01-02 追踪有限公司 具有更好声音效果的电声器件

Also Published As

Publication number Publication date
JP4593674B2 (ja) 2010-12-08
JPWO2008117891A1 (ja) 2010-07-15
CN101657965B (zh) 2012-12-19
CN101657965A (zh) 2010-02-24
US20100084948A1 (en) 2010-04-08
US8347469B2 (en) 2013-01-08

Similar Documents

Publication Publication Date Title
JP5100753B2 (ja) 水晶振動子片およびその製造方法
WO2008117891A1 (ja) 水晶振動子片およびその製造方法
JP4714770B2 (ja) 音叉型圧電振動片及び音叉型圧電振動片の製造方法
JP5059399B2 (ja) 圧電振動片の製造方法、圧電振動片および圧電デバイス
JP4778548B2 (ja) 圧電フレーム、圧電デバイス及び圧電フレームの製造方法
JP5528337B2 (ja) 水晶振動子の製造方法
JP2006017569A (ja) 角速度センサ及びその製造方法
JP2010226639A (ja) 水晶振動子およびその水晶振動子の製造方法
JP2010154513A (ja) 水晶振動子の製造方法
JP3952811B2 (ja) 圧電振動片、圧電振動片の製造方法および圧電デバイス
JP2007306471A (ja) 水晶振動子及びその製造方法ならびに物理量センサー
JP2009152988A (ja) 圧電振動片、圧電デバイス及びそれらの製造方法
JP4545744B2 (ja) 水晶デバイス及び水晶デバイスの製造方法
JP2007142795A (ja) 圧電振動片の製造方法およびアライメントマーカーの形成方法
JP2011220922A (ja) 水晶振動子の製造方法
JP2010283425A (ja) 水晶振動子及びその水晶振動子の製造方法
JP2006078467A (ja) 水晶デバイスとその製造方法
JP5936396B2 (ja) 水晶振動子
JP2005277482A (ja) 水晶振動子の製造方法および振動ジャイロ
JP2013038483A (ja) 音叉型振動片の製造方法、音叉型振動片、振動子及び電子デバイス
JP2023013474A (ja) 振動素子の製造方法
JP2024049886A (ja) 振動素子の製造方法
JP2008157845A (ja) 水晶振動子の製造方法
JP2013141055A (ja) 振動片の製造方法
JP2008072463A (ja) 水晶振動子片の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880009904.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08739648

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009506392

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12532979

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08739648

Country of ref document: EP

Kind code of ref document: A1