WO2008116351A1 - Procédé de synthétisation d'une lumière à température de couleur inférieure et dispositif d'éclairage - Google Patents

Procédé de synthétisation d'une lumière à température de couleur inférieure et dispositif d'éclairage Download PDF

Info

Publication number
WO2008116351A1
WO2008116351A1 PCT/CN2007/001524 CN2007001524W WO2008116351A1 WO 2008116351 A1 WO2008116351 A1 WO 2008116351A1 CN 2007001524 W CN2007001524 W CN 2007001524W WO 2008116351 A1 WO2008116351 A1 WO 2008116351A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
low
wavelength
peak wavelength
color
Prior art date
Application number
PCT/CN2007/001524
Other languages
English (en)
French (fr)
Inventor
Ben Fan
Original Assignee
He Shan Lide Electronic Enterprise Company Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by He Shan Lide Electronic Enterprise Company Ltd. filed Critical He Shan Lide Electronic Enterprise Company Ltd.
Publication of WO2008116351A1 publication Critical patent/WO2008116351A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item

Definitions

  • the invention relates to a method for synthesizing LED lights, in particular to a method for synthesizing low-color warm light.
  • the invention relates to a luminaire, in particular to a low-color warm light illuminating device.
  • LED from English LIGHT EMITTING DIODE abbreviation, meaning LED.
  • the simplest structure of a light-emitting diode includes a P-type semiconductor, an N-type semiconductor, and a PN junction formed therebetween. When a current is passed through the diode, at the PN junction, charge carriers are generated, that is, electrons and Holes, electrons and holes combine to release energy in the form of photons.
  • LED lamps Compared with ordinary white tungsten lamps, fluorescent lamps and other white lamps, LED lamps have the advantages of long life, power saving, durability, reliability, fast response, low waste heat and suitable for mass production.
  • single-wavelength LED lighting can only be used for a specific decorative occasion, and it is not versatile. Therefore, it is a goal pursued by the industry peers to develop mixed-light LED lamps suitable for various occasions.
  • Mixing light uses a variety of single-wavelength light to mix together to produce the chromaticity required for different occasions.
  • Color-temperature light such as white light, white light, amber light, etc., is similar to using a variety of colors to call up a specific color on the palette. s color.
  • the current methods for manufacturing mixed LEDs in the LED market can be as follows:
  • the red, green and blue light-emitting diodes are packaged in a light bulb, and the external circuit is used to adjust the power of the three primary color light-emitting diodes, so that white light or white light can be mixed.
  • the LED light of this structure needs to be respectively three
  • the power of the LEDs is independently controlled, which makes the design of the peripheral circuits very complicated and extremely costly.
  • Confirmation 3 Use a UV-emitting diode to cover the red, green and blue phosphors on the outside of the LED.
  • the above technical solution has a common disadvantage that the color temperature of the emitted light is relatively low, and it is biased toward cold light. There is no low-color warm warm light emitted by the illuminant such as a micro tungsten lamp or a high-pressure sodium lamp. Warm and warm feeling.
  • One technical problem to be solved by the present invention is to provide a method of synthesizing low-color warm light which can provide warm light of low color temperature and can be realized by a device which is low in cost, energy-saving and long in life.
  • Another technical problem to be solved by the present invention is to provide a low-color warm light-emitting device using the above method.
  • the technical problem is solved by the following technical solution: First, the first wavelength light is emitted by the LED element, and the peak wavelength thereof is 460 ⁇ 500 ⁇ ; Absorbing a portion of the first wavelength light and exciting a second wavelength light having a peak wavelength of 580-630 nm ; the unabsorbed portion of the first wavelength light is mixed with the second wavelength light to form a low-color warm light.
  • a low-color warm light emitting device wherein the outer casing is a package colloid, an electrode holder is disposed in the encapsulant, an LED component is mounted on the electrode holder, and the LED component is covered with a phosphor that can be excited by the light emitted by the 'LED component.
  • the LED element has an emission peak wavelength of 460 to 500 nm ; and the phosphor has an excitation light peak wavelength of 580 to 630 nm.
  • the light mixing and color temperature of the mixed light of the present invention are very similar to those of the miniature tungsten filament lamp, but the light effect is nearly 10 times that of the miniature tungsten filament lamp, which greatly achieves energy saving. Effect.
  • the present invention uses only one LED component, which saves cost compared with the LED lamp using three wafers, and simplifies the control circuit; the LED component has an emission peak wavelength of 460 to 500 nm ; the release energy is low, and the phosphor is not easily aged. , will not produce harmful substances to the human body, health and environmental protection.
  • the beneficial effects of the present invention are: low color temperature, low cost, energy saving, environmental protection and long life.
  • the present invention can be further improved by the following technical solutions: the LED element has an emission peak wavelength of 470 to 480 nm, and the excited peak wavelength of the phosphor is 600 ⁇ 3 nm, and the test indicates that the LED element of the parameter is selected.
  • the color temperature of the low-color warm light synthesized by the combination of the phosphor and the phosphor is 1900K ⁇ 2100K, and the position on the CIE map is mainly concentrated in the following coordinate range: (0. 8, 0. 39), (0. 8, 0. 43), (0. 53, 0. 44), (0. 53, 0. 41).
  • the LED has an emission peak wavelength of 480 to 490 nm, and the excited peak wavelength of the phosphor is 610 ⁇ 3 nm.
  • the test shows that the LED element and the phosphor of the parameter are combined to form a color temperature of low-color warm light.
  • the positions on the CIE map are mainly concentrated in the following coordinate ranges: (0. 48, 0. 39), (0. 48, 0. 43), (0. 53, 0. 44), ( 0. 53, 0. 41).
  • the LED element has an emission peak wavelength of 470 to 480 ran, and the phosphor has a peak wavelength of 590 ⁇ 3 nm.
  • the test indicates that the LED element and the phosphor of the parameter are combined to form a low-color warm light.
  • the color temperature is 2100 ⁇ 2300 ⁇ , and the position on the 3 ⁇ 4 CIE diagram is mainly concentrated in the following coordinate range ⁇ ' (0. 48, 0. 39) , (0. 48, 0. 43) , (0. 53, 0: 44) , ( 0. 53, 0. 41).
  • the LED element has an emission peak wavelength of 480 to 495 nm, and the phosphor has an excitation peak wavelength of 600.
  • the test shows that the color temperature of the low-color warm light synthesized by the combination of the LED element and the phosphor of this parameter is 2100 ⁇ 2300 ⁇ , and the position on the CIE diagram is mainly concentrated in the following coordinate range: (0. 48, 0. 39), (0. 48, 0. 43), (0. 53, 0. 44), (0. 53, 0. 41).
  • the LED element has an emission peak wavelength of 460 to 470 nm, and the phosphor has an excitation peak wavelength of 590 ⁇ 3 nm.
  • the test shows that the color temperature of the low-color warm light synthesized by the combination of the LED element and the phosphor of this parameter is about 2100K, and the coordinate range on the CIE diagram is mainly: (0. 43, 0. 36), (0 . 43, 0. 34), (0. 51, 0. 40), (0. 51, 0. 34)
  • the cup body is disposed in the encapsulant, and the LED component is disposed in the cup body, so that the wafer can be conveniently fixed before packaging, facilitating the subsequent packaging process, and improving the mass production capability.
  • the inner wall of the cup constitutes a collecting cup, which allows the light energy to be concentrated in one direction.
  • the phosphor concentrates in the cup to cover the LED element, which saves the use of phosphor.
  • Figure 1 is a schematic view of the structure of the present invention
  • Figure 2 is a second schematic view of the structure of the present invention
  • Figure 3 is a third schematic view of the structure of the present invention.
  • Figure 4 is a fourth schematic view of the structure of the present invention.
  • Figure 5 is the position of the warm white light emitted by the present invention on the CIE diagram
  • Figure 6 is a schematic illustration of the light mixing process of the present invention.
  • a low-color warm light emitting device the outer casing of which is an epoxy or other plastic encapsulant 1 having an LED element 4 in the encapsulant 1 supported by an electrode holder 2 and connected to an external power source for peaking
  • the wavelength range is: the first wavelength light B of 460 ⁇ 500 nm; the LED element is covered with the phosphor 5, and the chemical composition of the main component is A 2 Si0 4: Eu 2+ , D, wherein A is: Sr, Ca One of Mg, Zn, Cd, I elements, D is one of F, CI, Br, I, P, S, N elements, which absorbs the first wavelength light B emitted by the LED element 4, and excites
  • the second wavelength light R having a peak wavelength in the range of 590 to 630 nm.
  • the current passes through the LED element 4 to emit the first wavelength light B, part of the first wavelength light B passes through the phosphor 5, and part of the first wavelength light B is absorbed by the phosphor 5 to excite the second wavelength light R.
  • the second wavelength light R is mixed with the first wavelength light B passing through the phosphor 5 to form a low-color warm light W.
  • the principle of the light mixing is as shown in FIG. 6.
  • the range of low-color warm light emitted by LED lamps using the above technical schemes on the CIE map is mainly: (0.43, 0.33), (0.43, 0. 38), (0. 54, 0. 33 ), (0. 54, 0. 44) is the range shown in the area a in Fig. 5, and the color temperature is between 1600 ⁇ 2500 ⁇ .
  • This range of mixed light is a slightly orange-colored low-color warm light, giving a warm feeling, especially suitable for homes or street lamps and other occasions that need to express this warm color.
  • the LED element 4 and the phosphor 5 in the above wavelength range are selected as a combination of low-color warm light which can produce different color hues and color temperatures.
  • the color temperature range of the low-color warm light of the two kinds of light is about 1900 ⁇ 2100 ⁇
  • the positions on the CIE map are mainly concentrated in the following coordinate ranges: (0.48, 0. 39), (0. 48, 0.43), (0. 53, 0. 4), (0. 53, 0.41), that is, the map In area c of 5, the light color of this area is beige, which is especially suitable for transportation. It is used to replace the existing rice bubble color miniature tungsten filament lamp in the production of the beautiful lamp.
  • the color temperature range of the low-color warm light of the two kinds of light is approximately: 1900 ⁇ 2100 ⁇ , at CIE
  • the positions on the graph are mainly concentrated in the following coordinate ranges: (0. 8, 0. 39), (0. 48, 0. 43), (0. 53, 0. 44), (0. 53, 0. 41 ), that is, the area c in Figure 5, the light color of the area is beige, which is especially suitable for the use of the existing rice bubble color miniature tungsten lamp in the production of the beautiful lamp.
  • the color temperature range of the low-color warm light of the two kinds of light is about 2100 ⁇ 2300 ⁇
  • the positions on the CIE diagram are mainly concentrated in the following coordinate ranges: (0. 8, 0. 39), (0. 48, 0. 43), (0. 53, 0. 44), (0. 53, 0 41), which is the area c in Figure 5, the color of the area is champagne, which is especially suitable for the replacement of the existing champagne-colored miniature tungsten lamp in the production of the lamp.
  • the temperature range of the low color warm light of the two kinds of light is about 2100 ⁇ 2300 ⁇
  • the positions on the CIE diagram are mainly concentrated in the following coordinate ranges: (0, 48, 0. 39), (0. 48, 0. 43), (0. 53, 0.44), (0. 53, 0. 41 ), that is, area c in Figure 5, 'the color of the area is champagne, which is especially suitable for the replacement of the existing champagne-colored miniature tungsten lamp in the production of the beautiful lamp.
  • the low-color warm light of the two kinds of light is mainly concentrated on the following coordinates on the CIE diagram.
  • the color temperature range is: 2100K or so, ie In the area b of Figure 5, the color of the area is similar to the color temperature of the high-pressure sodium lamp (about 2000), so this technical solution is particularly suitable for use in the manufacture of street lamps, replacing the existing high-pressure sodium lamp bulbs.
  • the position range of the above light on the CIE diagram in the present invention is a target map measured by testing a plurality of samples and then using a fast spectrum analyzer, taking into account the discreteness of the values and other factors in the production process.
  • the range is not strictly absolute, but is determined by the concentration of test results and representative values, so the color of the finished product measured by the above technical solution is not excluded. As a result, a small amount is dispersed outside the position on the CIE map.
  • the LED element 4 may be directly encapsulated with the electrode holder 2 and then encapsulated with a colloid such as epoxy; or a cup 21 may be soldered or directly punched at the top end of the electrode holder 2, and the LED element 4 is placed in the Cup body 21 Then, the gold wire is electrically connected to the electrode holder 2, which can enhance the integration of the electrode holder 2 and the LED element, and effectively protect the LED element 4.
  • a colloid such as epoxy
  • the cup body 21 can be designed in a trumpet shape, and then a reflective material is disposed on the inner wall of the cup body 21, or the inner wall of the cup body 21 is directly smoothed to have a reflective function, so that the inner wall of the cup body 21 constitutes a collecting cup, so that Allows light to be concentrated in one direction.
  • the phosphor can be injected into the cup body 21 to cover the LED element 4, and then packaged.
  • the phosphor 5 may be pre-mixed into the encapsulant.
  • the phosphor 5 is dispersed in the encapsulant 1 and encapsulates the LED together with the encapsulant 1 .
  • changing the structure of the top end 11 of the encapsulant 1 can also cause the light emitted by the present invention to have different directions.
  • FIG. 1 when the top end 11 of the encapsulant 1 is designed in a circular arc shape, the light emitted by the point source in the encapsulant 1 is refracted by the arc-shaped top end 11 to obtain f-guided parallel light; As shown in FIG. 1 , when the top end 11 of the encapsulant 1 is designed in a circular arc shape, the light emitted by the point source in the encapsulant 1 is refracted by the arc-shaped top end 11 to obtain f-guided parallel light; As shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Description

合成低色温光的方法及发光装置
技术领域
本发明涉及一种 LED灯光的合成方法, 特别涉及一种合成低色温暖光的方法。 本发明涉及还涉及一种灯具, 特别涉及一种低色温暖光发光装置。
背景技术
LED来自英文 LIGHT EMITTING DIODE的縮写, 意为发光二极管。 最简单的发光二极 管的结构包括, P-型半导体、 N-型半导体及两者之间所形成的 PN结, 当电流通过二极管 时, 在上述 PN结处, 便产生电荷载子, 即电子与空穴, 电子与空穴结合并以光子的形式 释放出能量, 在 PN结处加入特定的化学物, 则可使二极管发出特定颜色的光, 如加入氮 化铟镓(InGaN)可产生第一波长光, 加入氮化镓 (GaN)可产生绿光等, 将发光二极管 封装, 并从封装体内引出发光二极管的正负两极以连接电源即构成 LED灯。 与普通的微 型钨丝灯, 荧光灯等白光灯相比, LED灯有寿命长、 省电、 耐用、 牢靠、 反应快、 低废 热和适合于批量生产等优点。
但是, 单一波长的 LED灯光只能用于某种特定的装饰场合, 不具有通用性, 因此开 发出适于各种场合的混光 LED灯, 一直是业内同行追求的目标。 混光即利用多种单一波 长的光混合在一起而发出不同的场合所需色度, 色温的光线如白光, 类白光, 琥珀色光 等, 类似于用多种颜色在调色板上调出特定的颜色。 具体来说目前 LED市场上制造混光 LED的方法可以有以下几种:
1、 将红、绿、蓝三基色发光二极管封装在一个灯泡内, 外加电路调整三基色发光二极 管的的功率, 即可混出白光或类白光, 采用这种结构的 LED灯需要分别对三个发光 二极管的功率进行独立控制, 这样就使得***电路的设计非常复杂, 成本极高。
2、 使用第一波长光和第二波长光二极管, 然后在两发光二极管外覆盖黄色荧光粉, 第 一波长光二极管发出的第一波长光照射到黄色荧光粉上后,一部分第一波长光穿过 黄色荧光粉, 一部分留在荧光粉内激发黄光, 所述第一波长光、黄光和第二波长光 二极管发出的第二波长光混合成白光或类白光。采用这种结构的 LED灯, 由于第一 波长光和第二波长光二极管两者所需的工作电压差别较大,若两者用串联连接则需 要较高的总电压, 不利于使用; 若用并联则需要在其中一个二极管上串联电阻, 这 样就增加了制程工艺复杂程度, 增加产品成本。
确认本 3、 使用一个发紫外线二极管' 在该发光二极管外覆盖红、 绿、 蓝三色荧光粉, 利用紫 外线照射到红、 绿、 蓝三色荧光粉上产生红、 绿、 蓝三色光混合成白光或类白光, 由于紫外线激发红、绿、蓝三色荧光粉后会放出比较大的能量, 促进了荧光粉的老 化, 降低产品的寿命, 更为严重的是紫外线激发红、 绿、蓝三色荧光粉后还会释放 出对人体有害的物质。
此外, 以上技术方案还有一个共同的缺点是, 其发出光的色温较髙, 偏向于冷光, 没有如微型钨丝灯或高压钠灯等热至发光体所发出的低色温暖光暖光给人温暖温馨的感 觉。
发明内容
本发明要解决的一个技术问题是: 提供一种合成低色温暖光的方法, 其可提供低色 温的暖光光线, 且可使用成本低廉、 节能和寿命长的装置来实现。
本发明要解决的另一个技术问题是:提供一种采用上述方法的低色温暖光发光装置。 对于本发明一种合成低色温暖光的方法来说, 其技术问题是通过下述技术方案来解 决的: 先由 LED元件发出第一波长光, 其峰值波长为 460〜500ηπι; 再用荧光粉吸收一部 分所述第一波长光并激发出第二波长光, 其峰值波长为 580~630nm; 所述第一波长光的 未被吸收部分与第二波长光混合成低色温暖光。
对于本发明一种低色温暖光发光装置来说, 其技术问题是通过下述技术方案来解决 的: ' ■'
一种低色温暖光发光装置, 外壳为封装胶体, 封装胶体内设有电极支架, 电极支架 上安装有 LED元件, LED元件外覆盖有可受该' LED元件所发的光激发的荧光粉,所述 LED 元件的发光峰值波长为 460〜500nm; 所述荧光粉的受激发光峰值波长为 580〜630nm。
以下为本发明与微型钨丝灯的一些实验测试参数:
Figure imgf000004_0001
由上表可见, 本发明的混光与微型钨丝灯的灯光相比在 CIE图上的坐标和色温都非 常相近, 但光效却是微型钨丝灯的将近 10倍,大大的达到了节能的效果。此外本发明仅 使用了一颗 LED元件, 与使用三颗晶片的 LED灯相比节省了成本, 简化了控制电路; LED 元件的发光峰值波长为 460〜500nm; 释放能量较低, 荧光粉不易老化, 不会产生对人体 有害物质, 健康环保.
综上所述, 本发明的有益效果是: 色温低, 成本低, 节能, 环保和寿命长等优点。 此外, 本发明还可以通过以下技术方案做进一步改进- 所述 LED元件的发光峰值波长为 470〜480nm, 所述荧光粉的受激发峰值波长为 600 士 3nm,测试表明,选取该参数的 LED元件和荧光粉为组合所合成的低色温暖光的色温为 1900K〜2100K,在 CIE图上的位置主要集中在以下坐标范围内: (0. 8, 0. 39), (0. 8, 0. 43), (0. 53, 0. 44), (0. 53, 0. 41)。
所述 LED元件的发光峰值波长为 480〜490nm, 所述荧光粉的受激发峰值波长为 610 ±3nm,测试表明, 选取该参数的 LED元件和荧光粉为组合所合成的低色温暖光的色温为 1900K〜2100K, 在 CIE 图上的位置主要集中在以下坐标范围内: (0. 48, 0. 39 ) , (0. 48, 0. 43) , (0. 53, 0. 44) , (0. 53, 0. 41)。
所述 LED元件的发光峰值波长为 470〜480ran,所述荧光粉的受激发光峰值波长为 590 士 3nm,测试表明,选取该参数的 LED元件和荧光粉为组合所合成的低色温暖光的色温为 2100Γ2300Κ, ¾ CIE图上的位置主要集中在以下坐标范围内 ·' (0. 48, 0. 39) , (0. 48, 0. 43) , (0. 53, 0: 44) , (0. 53, 0. 41) 。
所述 LED元件的发光峰值波长为 480〜495nm, 所述荧光粉的受激发峰值波长为 600
±3nm,测试表明,选取该参数的 LED元件和荧光粉为组合所合成的低色温暖光的色温为 2100Γ2300Κ,在 CIE图上的位置主要集中在以下坐标范围内: (0. 48, 0. 39) , (0. 48, 0. 43) , (0. 53, 0. 44) , (0. 53, 0. 41 )。
所述 LED元件的发光峰值波长为 460〜470nm, 所述荧光粉的受激发峰值波长为 590 ±3nm。测试表明,釆用该参数的 LED元件和荧光粉为组合所合成的低色温暖光的色温为 2100K左右, 在 CIE图上的坐标范围主要为: (0. 43, 0. 36), (0. 43, 0. 34), (0. 51, 0. 40), (0. 51, 0. 34)
所述封装胶体内的设置一杯体, 所述 LED元件设置在所述杯体内, 这样就可以方便 在封装前将晶片固定, 便于后续封装工序的进行, 提髙量产能力。 所述杯体内壁构成聚光杯, 这样可以使得光能集中在一个方向射出。
所述荧光粉集中在所述杯体内覆盖所述 LED元件, 这样可以节约荧光粉的使用。 附图说明
下面结合附图和实施例对本发明做进一步说明,
图 1是本发明的结构示意图之一;
图 2是本发明的结构示意图之二 ·,
图 3是本发明的结构示意图之三;
图 4是本发明的结构示意图之四;
图 5是本发明发出的暖白光在 CIE图上的位置;
图 6是本发明的混光过程示意图。
具体实施方式:
参考图 1, 一种低色温暖光发光装置, 其外壳为环氧树脂或其他塑料的封装胶体 1, 封装胶体 1内有」 LED元件 4, 由电极支架 2支撑并连接外部电源, 其发出峰值波长范:: 围为 460〜500nm的第一波长光 B; 所述 LED元件 上覆盖荧光粉 5, 主要成分的化学式 为 A2Si04: Eu2+, D,其中, A为: Sr, Ca, Mg, Zn, Cd, I元素之一, D为 F, CI, Br, I, P, S, N元素之一, 其可吸收所述 LED元件 4所发出第一波长光 B, 并激发出峰值波长 范围为 590〜630nm的第二波长光 R。 电极支架 2接通电源后, 电流通过 LED元件 4发出 第一波长光 B,部分第一波长光 B穿过荧光粉 5,部分第一波长光 B被荧光粉 5吸收激发 出第二波长光 R, 该第二波长光 R与穿过荧光粉 5的第一波长光 B混合成低色温暖光 W, 混光原理如图 6所示。 实验表明, 釆用上述技术方案的 LED灯发出的低色温暖光在 CIE 图上的范围主要为: (0.43, 0. 33) , (0.43, 0. 38), (0. 54, 0. 33),(0. 54, 0. 44)即图 5中 a区所示的范围, 色温约为 1600Γ2500Κ之间。 此范围的混光是略偏橘红色的低色 温暖光, 给人一种温馨的感觉, 特别适合于家居或路灯等需要表达该种暖色调的场合。
在上述波长范围内的 LED元件 4和荧光粉 5中, 选取不同的发光峰值波长的 LED元 件 4和荧光粉 5作为组合能产生不同色调和色温的低色温暖光。
例如: 当选用 LED元件 4的发光峰值波长为 470〜480nra, 荧光粉 5的受激发峰值波 长为 600±3nm为组合时, 两种光混合成的低色温暖光的色温范围约为: 1900Γ2100Κ, 在 CIE图上的位置主要集中在以下坐标范围内: (0.48, 0. 39) , (0. 48, 0.43), (0. 53, 0. 4), (0. 53, 0.41) , 即图 5中的 c区, 该区域的光色呈现为米泡色, 特别适合运 用于美耐灯的制作中取代现有的米泡色的微型钨丝灯。
当选用 LED元件 4的发光峰值波长为 480〜490nm,荧光粉 5的受激发峰值波长为 610 ±3nm为组合时, 两种光混合成的低色温暖光的色温范围约为: 1900Γ2100Κ, 在 CIE图 上的位置主要集中在以下坐标范围内: (0. 8, 0. 39), (0. 48, 0. 43), (0. 53, 0. 44), (0. 53, 0. 41 ) , 即图 5中的 c区, 该区域的光色呈现为米泡色, 特别适合运用于美耐 灯的制作中取代现有的米泡色的微型钨丝灯。
当选用 LED元件 4的发光峰值波长为 470〜480nm,荧光粉 5的受激发光峰值波长为 590±3nm的为组合时, 两种光混合成的低色温暖光的色温范围约为: 2100Γ2300Κ, 在 CIE图上的位置主要集中在以下坐标范围内: (0. 8, 0. 39), (0. 48, 0. 43) , (0. 53, 0. 44) , (0. 53, 0. 41 ), 即图 5中的 c区, 该区域的光色呈现为香槟色, 特别适合运用于美耐灯 的制作中取代现有的香槟色的微型钨丝灯。
当选用 LED元件 4的发光峰值波长为 480〜495nra,荧光粉 5的受激发峰值波长为 600 ±3nm的为组合时, 两种光混合成的低色温暖光色的温范围约为: 2100Γ2300Κ, 在 CIE 图上的位置主要集中在以下坐标范围内: (0, 48, 0. 39), (0. 48, 0. 43), (0. 53, 0.44), (0. 53, 0. 41) , 即图 5中的 c区,'该区域的光色呈现为香槟色, 特别适合运 用于美耐灯的制作中取代现有的香槟色的微型钨丝灯。
而当选用 LED元件 的发光峰值波长为 460〜470nm, 荧光粉 5的受激发峰值波长为 590±3nm为组合时, 两种光混合成的低色温暖光主要集中在 CIE图上的以下坐标之间 - (0. 3, 0. 36) , (0. 43, 0. 34), (0. 51, 0. 40) , (0. 51, 0. 34) , 色温范围为: 2100K左右, 即图 5中的 b区, 该区域的光色与高压钠灯的色温 (2000 左右)相近, 所 以本技术方案特别适合应用在路灯的制造中, 取代现有的高压钠灯灯泡。
需要说明的是, 本发明中上述的光在 CIE图上的位置范围, 是通过测试多个样品然 后用快速光谱分析仪测得的一个打靶图, 考虑到数值的离散性和制作过程中其他因素对 光色的影响, 所说的范围并不是严格绝对的, 而是采用测试结果比较集中和有代表性的 数值来圈定的, 所以并不排除采用上述技术方案制作的成品所测得的光色结果有少量分 散在所述 CIE图上的位置之外。
所述 LED元件 4可以在与电极支架 2直接电连接后用环氧树脂等胶体封装; 也可以 在电极支架 2的顶端焊接或直接冲压出一个杯体 21,所述 LED元件 4放置在所述杯体 21 内, 再用金线与电极支架 2电连接, 这样可以增强电极支架 2与 LED元件 的一体性, 起到有效的保护 LED元件 4的作用。
所述杯体 21可以设计成喇叭状, 然后在杯体 21内壁上设置反光材料, 或直接将杯 体 21内壁打磨光滑至具有反光功能, 从而使杯体 21的内壁构成聚光杯, 这样可以使得 光能集中在一个方向射出。
在上述 LED元件 放置在所述杯体 21中后,可紫跟着往杯体 21内注入荧光粉 5覆 盖 LED元件 4, 然后再封装。 当然, 也可以将所述荧光粉 5预先混入封装胶液中, 在 LED 元件 4与电极支架 2与被封装时, 荧光粉 5就会分散封装胶体 1中与封装胶体 1一起包 覆所述 LED元件 4, 如图 4所示。
此外,逋过改变封装胶体 1顶端 11的结构还可以使本发明发出的光具有不同的方向。 例如, 如图 1所示, 将所述封装胶体 1的顶端 11设计成圆弧状时, 封装胶体 1内点光源 发射的光经该圆弧状的顶端 11折射后可获 f导平行光; 又如图 3所示, 当所述封装胶体 1 的顶端 11设计成内凹状时, 封装胶体 1内点光源发射的光经该内凹状的顶端 11 射后 可获得发散光; 如图' 4所示, 戶方述封装胶体 1的顶端 11设计成平头时, 封装胶体 1内 点光源发射的光经该内平头顶端 11折射后可获得一定程度的发散光。

Claims

权利要求
1、 一种合成低色温暖光的方法,其特征在于:先由 LED元件 (4)发出第一波长光 (B), 其峰值波长为 460〜500nm; 再用荧光粉(5)吸收一部分所述第一波长光 (B)并 激发出第二波长光 (R), 其峰值波长为 580〜630nm; 所述第一波长光 (B)的未 被吸收部分与第二波长光(R)混合成低色温暖光 ( ) 。
2、 根据权利要求 1所述的一种合成低色温暖光的方法, 其特征在于: 所述第一波长 光(B)的峰值波长为 470〜480nm,所述第二波长光 (R)的峰值波长为 600士 3nra。
3、 根据权利要求 1所述的一种合成低色温暖光的方法, 其特征在于: 所述第一波长 光(B)的峰值波长为 480〜490nm,所述第二波长光 (R)的峰值波长为 610±3nm。
4、 根据权利要求 1所述的一种合成低色温暖光的方法, 其特征在于: 所述第一波长 光(B)的峰值波长为 470〜480 ,所述第二波长光(R)的峰值波长为 590±3nm。
5、 根据权利要求 1所述的一种合成低色温暖光的方法, 其特征在于: 所述第一波长 光(B)的峰值波长为 480〜495nra,所述第二波长光(R)的峰值波长为 600±3nm。
6、 根据权利要求 1所述的一种合成低色温暖光的方法, 其特征在于: 所述第一波长 光 (B)的峰值波长为 460〜470nm,所述第二波长光 (R)的峰值波长为 590±3皿。
7、 根据权利要求 1至 6所述的任何一种合成低色温暖光的方法, 其特征在于: 所述 荧光粉 (5) 的主要成分的化学式为 A2Si04: Έι D, 其中, A为: Sr, Ca, Mg, Zn, Cd, I元素之一, D为 F, CI, Br, I, P, S, N元素之一。
8、 一种采用权利荽求 1所述方法的低色温暖光发光'装置,外壳为封装胶体(1 ),封 装胶体 (ΐ) 内设有电极支架 (2), 电极支架 (2)上安装有 LED元件 (4) , LED 元件(4)外覆盖有可受该 LED元件 (4)所发的光激发的荧光粉(5), 其特征在 于: 所述 LED元件 (4)的发光峰值波长为 460〜500nra; 所述荧光粉(5)的受激 发光峰值波长为 580〜630nm。 ' '
9、 根据权利要求 8所述的一种低色温暖光发光装置,其特征在于:所述 LED元件 (4) 的发光峰值波长为 470〜480nm;所述荧光粉 (5)的受激发峰值波长为 600土 3nm。
10、 根据权利要求 8所述的一种低色温暖光发光装置,其特征在于:所述 LED元件(4) 的发光峰值波长为 480〜490nm;所述荧光粉(5)的受激发峰值波长为 610±3nm。
11、 根据权利要求 8所述的一种低色温暖光发光装置,其特征在于:所述 LED元件(4) 的发光峰值波长为 470〜480nm;所述荧光粉 (5)的受激发光峰值波长为 590土 3nm。
12、 根据权利要求 8所述的一种低色温暖光发光装置,其特征在于:所述 LED元件(4) 的发光峰值波长为 480〜495nm;所述荧光粉 (5)的受激发峰值波长为 600±3ran。
13、 根据权利要求 8所述的一种低色温暖光发光装置,其特征在于:所述 LED元件 (4) 的发光峰值波长为 460〜470nm;所述荧光粉 (5)的受激发峰值波长为 590±3nm。
14、 根据权利要求 8所述的一种低色温暖光发光装置,其特征在于:所述电极支架 (2) 上设置一杯体 (21) , 所述 LED元件 (4)设置在所述杯体(21) 内。
15、 根据权利要求 14所述的一种低色温暖光发光装置, 其特征在于: 所述杯体 (21) 与电极支架 (2)为一体结构。
16、 根据权利要求 15所述的一种低色温暧光发光装置, 其特征在于: 所述杯体(21) 内壁构成聚光杯。
17、 根据权利要求 14至 16所述的任何一种低色温暖光发光装置, 其特征在于: 所述 荧光粉(5)集中在所述杯体 (21) 内覆盖所述 LED元件 (4)。
18、 根据权利要求 8至 16所述的任何一种低色温暖光发光装置,其特征在于:所述荧 光粉 (5)混合在封装胶体(1) 内。
19、 根据权利要求 8至 16所述的任何一种低色温暖光发光装置,其特征在于:所述封 装胶体 (1)的顶端 (11)具有外凸圆弧或锥形内凹或平的结构。
20、 根据权利要求 17所述的一种低色温暖光发光装置,其特征在于:所述封装胶体 ( 1 ) 的顶端(11)具有外凸圆弧或锥形内凹或平的结构。
21、 稂据权利要求 18所述的一种低色温暖光发光装置,其特征在于:所述封装胶体 (1) 的顶端(11)具有外凸圆弧或锥形内凹或平的结构。
22、 根据权利要求 8'至 16所述的任何一种低色温暖光发光装置,其特征在于:所述荧 光粉 (5)的主要成分的化学式为 A2Si04: Eu2+, D, 其中, A为: Sr, Ca, Mg, Zn, Cd, I元素之一, D为 F, Cl, Br, I, P, S, N元素之一。
PCT/CN2007/001524 2007-03-26 2007-05-10 Procédé de synthétisation d'une lumière à température de couleur inférieure et dispositif d'éclairage WO2008116351A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200710027316.X 2007-03-26
CN200710027321 2007-03-26
CN200710027316 2007-03-26
CN200710027321.0 2007-03-26

Publications (1)

Publication Number Publication Date
WO2008116351A1 true WO2008116351A1 (fr) 2008-10-02

Family

ID=39788020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/001524 WO2008116351A1 (fr) 2007-03-26 2007-05-10 Procédé de synthétisation d'une lumière à température de couleur inférieure et dispositif d'éclairage

Country Status (1)

Country Link
WO (1) WO2008116351A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6509651B1 (en) * 1998-07-28 2003-01-21 Sumitomo Electric Industries, Ltd. Substrate-fluorescent LED
US6603258B1 (en) * 2000-04-24 2003-08-05 Lumileds Lighting, U.S. Llc Light emitting diode device that emits white light
CN1633718A (zh) * 2001-09-03 2005-06-29 松下电器产业株式会社 半导体发光元件、发光装置及半导体发光元件的制造方法
US20050194604A1 (en) * 2004-03-02 2005-09-08 Fujikura Ltd., National Institute For Material Science Light emitting device and a lighting apparatus
CN1906269A (zh) * 2004-07-13 2007-01-31 株式会社藤仓 荧光体及使用该荧光体的发出电灯色光的电灯色光发光二极管灯
CN1927996A (zh) * 2006-09-08 2007-03-14 北京宇极科技发展有限公司 一种荧光粉材料及其制备方法和白光led电光源
CN101047219A (zh) * 2007-04-04 2007-10-03 鹤山丽得电子实业有限公司 一种发粉红色光的发光二极管
CN101050850A (zh) * 2007-03-26 2007-10-10 鹤山丽得电子实业有限公司 一种合成低色温暖光的方法和采用该方法的发光装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6509651B1 (en) * 1998-07-28 2003-01-21 Sumitomo Electric Industries, Ltd. Substrate-fluorescent LED
US6603258B1 (en) * 2000-04-24 2003-08-05 Lumileds Lighting, U.S. Llc Light emitting diode device that emits white light
CN1633718A (zh) * 2001-09-03 2005-06-29 松下电器产业株式会社 半导体发光元件、发光装置及半导体发光元件的制造方法
US20050194604A1 (en) * 2004-03-02 2005-09-08 Fujikura Ltd., National Institute For Material Science Light emitting device and a lighting apparatus
CN1906269A (zh) * 2004-07-13 2007-01-31 株式会社藤仓 荧光体及使用该荧光体的发出电灯色光的电灯色光发光二极管灯
CN1927996A (zh) * 2006-09-08 2007-03-14 北京宇极科技发展有限公司 一种荧光粉材料及其制备方法和白光led电光源
CN101050850A (zh) * 2007-03-26 2007-10-10 鹤山丽得电子实业有限公司 一种合成低色温暖光的方法和采用该方法的发光装置
CN101047219A (zh) * 2007-04-04 2007-10-03 鹤山丽得电子实业有限公司 一种发粉红色光的发光二极管

Similar Documents

Publication Publication Date Title
CN105814699B (zh) 具有高显色性的白光发光装置
TWI535067B (zh) 照明裝置
TW201943102A (zh) 用於失活微生物之多光發射器
JP2009524247A5 (zh)
TWI260799B (en) Multi-wavelength white light light-emitting diode
US8039849B2 (en) LED module
JP2010129583A (ja) 照明装置
JP2008034188A (ja) 照明装置
JP6223479B2 (ja) 固体発光体パッケージ、発光デバイス、可撓性ledストリップ及び照明器具
TW200905906A (en) Wavelength converting system
US7851990B2 (en) Method for generating low color temperature light and light emitting device adopting the same
CN100508228C (zh) 一种白光led灯的制造方法及采用该方法的led灯
US20130242532A1 (en) Luminaire
TW201245634A (en) Lighting device, lamp and method for lighting the same
KR102193591B1 (ko) 광대역 발광 장치
JP2009260319A (ja) 照明装置
TWM380580U (en) White LED device
KR101872253B1 (ko) 발광 소자 패키지, 발광 장치 및 조명 장치
JP6712768B2 (ja) 発光装置及び照明装置
JP2013069881A (ja) 照明装置
CN101022102A (zh) 一种可发白光的led灯
JP2009064999A (ja) 低色温度光を生成する方法及びその方法を用いた光放出装置
WO2008116351A1 (fr) Procédé de synthétisation d'une lumière à température de couleur inférieure et dispositif d'éclairage
TW201250174A (en) LED lighting device
US9054278B2 (en) Lighting apparatuses and driving methods regarding to light-emitting diodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07721097

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07721097

Country of ref document: EP

Kind code of ref document: A1