WO2008110195A1 - Verfahren zur korrosionsschutzausrüstung metallischer substrate - Google Patents

Verfahren zur korrosionsschutzausrüstung metallischer substrate Download PDF

Info

Publication number
WO2008110195A1
WO2008110195A1 PCT/EP2007/010945 EP2007010945W WO2008110195A1 WO 2008110195 A1 WO2008110195 A1 WO 2008110195A1 EP 2007010945 W EP2007010945 W EP 2007010945W WO 2008110195 A1 WO2008110195 A1 WO 2008110195A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
groups
substrate
acids
coating
Prior art date
Application number
PCT/EP2007/010945
Other languages
English (en)
French (fr)
Inventor
Michael Dornbusch
Original Assignee
Basf Coatings Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Coatings Ag filed Critical Basf Coatings Ag
Priority to EP07856691A priority Critical patent/EP2118337A1/de
Priority to JP2009553012A priority patent/JP2010521583A/ja
Priority to US12/531,210 priority patent/US20100098842A1/en
Publication of WO2008110195A1 publication Critical patent/WO2008110195A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/088Autophoretic paints
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/53Treatment of zinc or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/04Electrophoretic coating characterised by the process with organic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/20Pretreatment

Definitions

  • Processes and coating compositions for the electroless corrosion protection coating of various metal substrates, in particular by autophore-dipcoating, are known. They offer the advantage of the simpler and cheaper process as well as the shorter process time. In particular, cavities in or edges on the substrates to be coated can be better coated with the electroless methods than with methods in which the application of electrical voltages is necessary.
  • chromium-free autophoretic coating compositions which ensure a very good corrosion protection comparable to chromium-containing coating compositions.
  • coating compositions containing salts of the lanthanide and the d-elements and an organic film-forming component turned out to be particularly suitable.
  • the autophoretic coating compositions described, for example, in WO-A-99/29927, WO-A-96/10461 and DE-A-37 27 382 have as disadvantages the tendency of the metal ions formed from the substrate to migrate through the deposited corrosion protection layer and the use of ecologically critical substances, in particular fluorides, on.
  • DE-A-10 2005 023 728 and DE-A-10 2005 023 729 describe coating compositions which excellently solve the aforementioned problems of metal ion migration and the use of ecologically critical substances.
  • the two-stage process for corrosion protection equipment of metallic substrates described in DE-A-10 2005 023 728 in which in a first stage the substrate is immersed in a bath of a corrosion inhibitor K, which causes a conversion on the substrate surface and in a second stage the substrate treated according to step (a) is immersed in a bath of an aqueous coating composition comprising a water-dispersible and / or water-soluble polymer P with covalently bonded ligands which form chelates with the metal ions liberated upon corrosion of the substrate and / or the substrate surface , as well as with crosslinking functional groups B, which can form covalent bonds with themselves, with further complementary functional groups B 'of the polymer P and / or with further functional groups B and / or B' on crosslinking agents V, has proven to be particular proved suitable.
  • WO-A-01/46495 the combination of a 2-stage pretreatment of metal substrates is described, which in the first stage, a pretreatment with a coating agent containing a compound of elements of the group MIb, IVb and / or lanthanides, and in a second Stage, the pretreatment with a coating composition comprising a reaction product of an epoxy-functional compound with phosphorus-, amine- and / or sulfur-containing compounds, with a subsequent lead-free electrodeposition coating.
  • the coating produced in this way should combine good corrosion protection with a high degree of eco friendliness.
  • fluorine-containing compounds which are ecologically critical are preferably used in the first pretreatment stage. Task and solution
  • the object of the invention to find an ecologically largely harmless process for anti-corrosion protection, in particular in the automotive sector, which can be applied to the substrate to be protected by means of a technically simple process.
  • the process should be feasible without fluoride-containing substances.
  • the method according to the invention should in particular lead to anticorrosive layers which largely prevent the migration of the metal ions formed from the substrate and which are deposited well on edges and in cavities of the substrate.
  • the influence of foreign metal ions should be kept as low as possible and an effective corrosion protection can be achieved with comparatively low use of material.
  • the method should provide corrosion protection layers which develop effective protection for as many different metal substrates as possible and are largely independent of the redox potential of the substrate to be coated.
  • a process for corrosion protection equipment of metallic substrates comprising as a first stage (I) a current-free pretreatment with an aqueous corrosion inhibitor K1, containing at least one compound (A1) with a lanthanide metal as a cation and / or a d Element metal with the exception of chromium as cation and / or a d-element metalate with the exception of chromium-containing metallates as anion and (A2) at least one acid capable of oxidation with the exception of phosphorous and / or chromium-containing acids, summarizes, preferably as a second stage (II), a further current-free pretreatment with an aqueous corrosion inhibitor K2, which a water-dispersible and / or water-soluble polymer P with covalently bonded ligands L, which form chelates with the metal ions liberated upon corrosion of the substrate and / or with the substrate surface, and with crosslinking functional groups B, which
  • the aqueous anticorrosive agent K1 described below is applied to the metallic substrate without electricity.
  • Current-free means in this case the absence of electrical currents by applying an electrical voltage.
  • the substrate Prior to the application of the aqueous corrosion inhibitor K1, the substrate is purified in a preferred embodiment of the invention, in particular oily and greasy residues, preferably detergents and / or alkaline cleaning agents are used.
  • cleaning with detergents and / or alkaline cleaning agents is followed by rinsing again with water before application of the coating composition according to the invention.
  • a mechanical cleaning of the surface for example with grinding media, and / or a chemical removal of the surface layers, for example with deoxidizing cleaning agents.
  • the aqueous corrosion inhibitor K1 has a pH of between 1 and 5 and contains at least one compound (A1) with a lanthanide metal as cation and / or a d-element metal with the exception of chromium as cation and / or a d-element metal. Elemental metalate with the exception of chromium-containing metalates as anion and (A2) at least one oxidation-capable acid with the exception of phosphorus-containing and / or chromium-containing acids.
  • the concentration of the compounds (A1) in the anticorrosive agent 10 "1 to 10 " 4 ITiOl / ! in particular 5 * 10 "1 to 10 " 3 mol / l.
  • the compound (A1) may have as its cationic component lanthanide metal cations and / or d-metal cations.
  • Preferred lanthanide metal cations are lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium and / or dysprosium cations. Very particular preference is given to lanthanum, cerium and praseodymium cations.
  • the lanthanide metal cations can be present in monovalent, trivalent and / or trivalent oxidation state, the trivalent oxidation state being preferred.
  • Preferred d-metal cations are titanium, vanadium, manganese, yttrium, zirconium, niobium, molybdenum, tungsten, cobalt, ruthenium, rhodium, palladium, osmium and / or iridium cations.
  • Excluded as d-element cation is the chromium cation in all oxidation states.
  • Very particular preference is given to vanadium, manganese, tungsten, molybdenum and / or yttrium cations.
  • the d-element cations can be present in one to six valent oxidation state, with a three to six-valent oxidation state being preferred.
  • the anions forming the compounds (A1) with the lanthanide metal cations and / or d-element cations are preferably selected in such a way that the abovementioned conditions for the solubility product LP are given.
  • Subgroup of the Periodic Table of the Elements and anions of oxidizing acids of the elements of V. and VI are preferred.
  • Main group of the Periodic Table of the Elements with the exception of anions of oxidizing acids of phosphorus and chromium are used, such as preferably nitrates, nitrites, sulfites and / or sulfates. Further possible as anions are halides except fluorides.
  • the lanthanide metal cations and / or d-element cations of the compounds (A1) can also be present as complexes with monodentate and / or polydentate potentially anionic ligands.
  • Preferred ligands are optionally functionalized terpyridines, optionally functionalized ureas and / or thioureas, optionally functionalized amines and / or polyamines, in particular EDTA, imines, in particular imin-functionalized pyridines, organosulfur compounds, in particular optionally functionalized thiols, thiocarboxylic acids, thioaldehydes, Thioketone, dithiocarbamates, sulfonamides, thiamides and particularly preferably sulfonates, optionally functionalized organoboron compounds, in particular boric acid esters, optionally functionalized polyalcohols, in particular carbohydrates and derivatives thereof and chitosans, optionally functionalized acids, in particular di- and / or oligofunctional acids, if appropriate functionalized carbenes, acetylacetonates, optionally functionalized acetylenes, optionally functionalized carboxylic acids, in particular carboxylic acids which are i
  • ligands phytic acid their derivatives and sulfonates, which are optionally functionalized.
  • the compounds (A1) contain d-element metallates as anions, which together with the d-element cations or also alone can form the compound (A1).
  • Preferred d-elements for the metallates are vanadium, manganese, zirconium, niobium, molybdenum and / or tungsten. Very particular preference is given to vanadium, manganese, tungsten and / or molybdenum. Excluded as d-element metalate are chromates in all oxidation states.
  • Particularly preferred d-element metalates are oxo anions, in particular tungstates, permanganates, vanadates and / or molybdates.
  • the preferred solubility product LP of such compounds is as described above.
  • Preferred cations of such compounds (A1) are ammonium ions which are optionally substituted by organic radicals, phosphonium ions and / or sulfonium ions, alkali metal cations, in particular lithium, sodium and / or potassium, alkaline earth metal cations, in particular magnesium and / or calcium.
  • Particularly preferred are the optionally substituted with organic radicals ammonium ions and the alkali metal cations, which ensure a particularly high solubility product LP of the compound (A1).
  • At least one acid capable of oxidation is used in such a way that the pH of the corrosion protection agent is between 1 and 5, preferably between 2 and 4.
  • Preferred acids (A2) are selected from Group of oxidizing mineral acids, such as in particular nitric acid, nitrous acid, sulfuric acid and / or sulfurous acid.
  • a buffer medium can be used, such as salts of medium-strong bases and weak acids, in particular ammonium acetate.
  • water is used for the corrosion inhibitor K1, preferably deionized and / or distilled water.
  • the substrate pretreated as above is contacted with the anticorrosion agent K1. This is preferably done by immersing or pulling through the substrate in or by a bath containing the corrosion inhibitor K1.
  • the residence times of the substrate in the anticorrosion agent K1 are preferably 1 second to 10 minutes, preferably 10 seconds to 8 minutes, and more preferably 30 seconds to 6 minutes.
  • the temperature of the bath containing the corrosion inhibitor K1 is preferably between 25 and 90 ° C., preferably between 30 and 80 ° C., more preferably between 35 and 70 ° C.
  • the wet film thickness of the layer produced with the coating agent K1 after autodeposition is between 5 and 900 nm, preferably between 15 and 750 nm, particularly preferably between 25 and 600 nm.
  • the layer of coating agent K1 is flashed off before the final electrodeposition coating or, if appropriate, before the preferred application of the corrosion inhibitor K2, ie for a period of 30 seconds to 30 minutes, preferably for a period of 1 minute to 25 minutes, temperatures between 25 and 120 0 C, preferably between 30 and 90 0 C exposed.
  • the aqueous anticorrosive agent K2 according to the invention which in a preferred embodiment of the invention is applied to the layer of corrosion inhibitor K1 applied in the first stage (I) of the process according to the invention, contains polymers P which carry ligands L which react with those in the corrosion of the Substrate released metal ions form chelates, and carry the crosslinking functional groups B, which can form covalent bonds with itself and / or with other functional groups B ', which may optionally be part of additional crosslinking V.
  • water-dispersible or water-soluble means that the polymers P in the aqueous phase form aggregates with an average particle diameter of ⁇ 50, preferably ⁇ 35 nm and particularly preferably ⁇ 20 nanometers or are dissolved in a molecularly disperse manner.
  • aggregates differ significantly in their average particle diameter of dispersion particles, as described for example in DE-A-37 27 382 or WO-A-96/10461.
  • Molecular dispersions of dissolved polymers P generally have molecular weights of ⁇ 100,000, preferably ⁇ 50,000, more preferably ⁇ 20,000 daltons.
  • the size of the aggregates consisting of polymer P is in a conventional manner by introducing hydrophilic groups HG am Polymer P accomplished.
  • the number of hydrophilic groups HG on the polymer P depends on the solvation capacity and the steric accessibility of the groups HG and can also be set by a person skilled in the art in a manner known per se.
  • Preferred hydrophilic groups HG on the polymer P are ionic groups such as in particular sulfate, sulfonate, sulfonium, phosphate, phosphonate, phosphonium, ammonium and / or carboxylate groups and nonionic groups, in particular hydroxyl, primary, secondary and / or tertiary amine, amide and / or oligo- or polyalkoxy substituents, such as preferably ethoxylated or propoxylated substituents, which may be etherified with further groups.
  • the hydrophilic groups HG may be identical to the ligands L and / or crosslinking functional groups B and B 'described below.
  • the number of hydrophilic groups HG on the polymer P depends on the solvation capacity and the steric accessibility of the groups HG and can also be set by a person skilled in the art in a manner known per se.
  • the abovementioned hydrophilic groups HG form a gradient in their concentration along the polymer backbone.
  • the gradient is defined by a slope in the spatial concentration of the hydrophilic groups along the polymer backbone.
  • Polymers P thus constructed are capable of forming micelles in the aqueous medium and have a surface activity on the surface of the substrate to be coated, that is, the interfacial energy of the coating composition according to the invention on the surface to be coated is reduced.
  • the gradient is preferably generated by suitable arrangement of monomeric units which make up the polymer and which hydrophilic groups and / or groups with which hydrophilic groups HG can be generated, are produced in a manner known per se.
  • polymer backbone of the polymers P it is generally possible to use any desired polymers, preferably those having molecular weights of from 1,000 to 50,000 daltons, more preferably having molecular weights of from 2,000 to 20,000 daltons.
  • the polymer backbone used are preferably polyolefins or poly (meth) acrylates, polyurethanes, polyalkyleneimines, polyvinylamines, polyalkyleneamines, polyethers, polyesters and polyalcohols which are in particular partially acetalated and / or partially esterified.
  • the polymers P can be linear, branched and / or dendritic.
  • Very particularly preferred polymer backbones are polyalkyleneimines, polyvinylamines, polyalcohols, poly (meth) acrylates and hyperbranched polymers, as described, for example, in WO-A-01/46296.
  • the polymers P are preferably stable to hydrolysis in the acidic pH range, in particular at pH values ⁇ 5, particularly preferably at pH values ⁇ 3.
  • Suitable ligands L are all groups or compounds which can form chelates with the metal ions released upon corrosion of the substrate. Preference is given to mono- and / or polydentate potentially anionic ligands. Particularly preferred ligands are L.
  • ureas and / or thioureas especially acylthioureas such as
  • Imines and imides in particular imin-functionalized pyridines, Oximes, preferably 1,2-dioximes such as functionalized diacetyldioxime,
  • Organosulfur compounds such as, in particular, optionally functionalized thiols such as thioethanol, thiocarboxylic acids, thio-aldehydes, thioketones, dithiocarbamates, sulfonamides, thioamides and particularly preferably sulfonates,
  • Organophosphorus compounds in particular phosphates, more preferably phosphoric acid esters of (meth) acrylates, and also phosphonates, particularly preferably vinylphosphonic acid and hydroxy-, amino- and amido-functionalized phosphonates,
  • organoboron compounds in particular boric acid esters,
  • optionally functionalized polyalcohols in particular carbohydrates and derivatives thereof, and chitosans, optionally functionalized acids, in particular di- and / or oligofunctional acids, or optionally functionalized (poly) carboxylic acids, in particular carboxylic acids, which are bonded to metal centers ionically and / or coordinately preferably (poly) methacrylates having acid groups or di- or oligofunctional acids,
  • Suitable crosslinking functional groups B on the polymer P are those which can form covalent bonds with themselves and / or with complementary functional groups B '.
  • the covalent bonds are preferably formed thermally and / or by the action of radiation. Particularly preferably, the covalent bonds are formed thermally.
  • the crosslinking functional Groups B and B ' cause the formation of an intermolecular network between the molecules of polymer P. Under the action of radiation crosslinking functional groups B and B', respectively, have activatable bonds, such as carbon-hydrogen, carbon-carbon, carbon Oxygen, carbon-nitrogen, carbon-phosphorus or carbon-silicon single or double bonds. In this case, carbon-carbon double bonds are particularly advantageous.
  • Particularly suitable carbon-carbon double bonds as groups B are
  • Thermally crosslinking functional groups B can form covalent bonds with themselves or preferably with complementary crosslinking functional groups B 1 under the influence of thermal energy.
  • Acid groups in particular carboxylic acid groups
  • Acid anhydride groups in particular carboxylic anhydride groups
  • Acid ester groups in particular carboxylic acid ester groups,
  • Ether groups more preferably carbamate groups
  • Particularly preferably isocyanate groups which are very particularly preferably reacted with blocking agents which deblockieren at the stoving temperatures of the coating compositions of the invention and / or are incorporated without deblocking in the forming network.
  • thermally crosslinking groups B and complementary groups B ' are particularly preferred:
  • Particularly preferred polymers P having a gradient of the hydrophilic groups along the polymer backbone contain copolymers PM, which can be prepared by single-stage or multistage radical copolymerization in an aqueous medium
  • olefinically unsaturated monomers (a1) and (a2) wherein (a1) in each case at least one monomer from the group consisting of oiefinisch unsaturated monomers (a11) having at least one hydrophilic group HG, olefinically unsaturated monomers (a12) having at least one Ligand group L and olefinically unsaturated monomers (a13) having at least one crosslinking group B.
  • radicals R 1 , R 2 , R 3 and R 4 are each independently hydrogen or substituted or unsubstituted alkyl, cycloalkyl, alkylcycloalkyl, cycloalkylalkyl, aryl, alkylaryl, cycloalkylaryl, arylalkyl or arylcycloalkyl radicals with the proviso that at least two of the variables R 1 , R 2 , R 3 and R 4 are substituted or unsubstituted aryl, arylalkyl or arylcycloalkyl radicals, in particular substituted or unsubstituted aryl radicals.
  • Suitable hydrophilic monomers (a11) contain at least one hydrophilic group (HG) which, as described above, preferably from the group consisting of sulfate, sulfonate, sulfonium, phosphate, phosphonate, phosphonium, ammonium and / or or carboxylate groups and hydroxyl, primary, secondary and / or tertiary amine, amide and / or oligo- or polyalkoxy substituents, such as preferably ethoxylated or propoxylated substituents, which may be etherified with further groups.
  • HG hydrophilic group
  • hydrophilic monomers (a11) are acrylic acid, methacrylic acid, ethacrylic acid, crotonic acid, maleic acid, fumaric acid or itaconic acid and salts thereof, preferably acrylic acid and methacrylic acid, olefinically unsaturated sulfonic, sulfuric, phosphoric or Phosphonic acids, their salts and / or their partial esters. Also suitable are olefinically unsaturated sulfonium and phosphonium compounds.
  • monomers (a11) which carry at least one hydroxyl group or hydroxymethylamino group per molecule and are essentially free from acid groups, such as in particular hydroxyalkyl esters of alpha, beta-olefinically unsaturated carboxylic acids, such as hydroxyalkyl esters of acrylic acid, methacrylic acid and ethacrylic acid, in which Hydroxyalkyl group contains up to 20 carbon atoms, preferably 2-hydroxyethyl, 2-hydroxypropyl, 3-hydroxypropyl, 3-hydroxybutyl, 4-hydroxybutyl acrylate, methacrylate, formaldehyde adducts of aminoalkyl esters of alpha, beta-olefinically unsaturated carboxylic acids and of alpha , beta-unsaturated carboxylic acid amides, such as N-methylol and N, N-dimethylol aminoethyl acrylate, - aminoethyl methacrylate, -acrylamide and -meth
  • Suitable amine-ring-containing monomers (a1) are: 2-aminoethyl acrylate and methacrylate, N-methyl- and N, N-dimethyl-aminoethyl acrylate, or allylamine.
  • monomers containing amide groups (a11) are preferred amino de of alpha, beta-olefinically unsaturated carboxylic acids such as (meth) acrylamide, preferably N-methyl - or N 1 N-dimethyl (meth) acrylamide, are used.
  • ethoxylated or propoxylated monomers (a11) it is preferred to use acrylic and / or methacrylic acid esters of polyethylene oxide and / or polypropylene oxide units whose chain length is preferably between 2 and 20 ethylene oxide or propylene oxide building blocks.
  • hydrophilic monomers (a11) care should be taken to avoid the formation of insoluble salts and polyelectrolyte complexes.
  • Suitable monomers (a12) are olefinically unsaturated monomers which have the above-described ligands L as substituents.
  • suitable monomers (a12) are esters and / or the amides of acrylic acid, methacrylic acid, ethacrylic acid, cro- tonic acid, maleic acid, fumaric acid or itaconic acid, in particular of acrylic and / or methacrylic acid, which have the ligands L in the ester and / or amide radical.
  • Preferred ligands L are optionally functionalized urea and / or thiourea subtituents, optionally functionalized amine and / or polyamine subtynes, imine and imide substituents, in particular imin-functionalized pyridines, oxime substituents, preferably 1,2-dioximes such as functionalized diacetyldioxime, Organosulfur substituents, in particular derivable from optionally functionalized thiols such as thioethanol, thiocarboxylic acids, thioaldehydes, thioketones, dithiocarbamates, sulfonamides, thioamides and particularly preferably sulfonates, organophosphorus substituents, in particular derivable from phosphates, more preferably phosphoric acid esters of (meth) acrylates, and phosphonates, vinylphosphonic acids and hydroxy-, amino- and amido-functionalized phosphonates, optionally functionalized
  • suitable monomers (a13) are olefinically unsaturated monomers which have the above-described crosslinking groups B and B 'as substituents.
  • suitable monomers (a13) are esters and / or the amides of acrylic acid, methacrylic acid, ethacrylic acid, crotonic acid, maleic acid, fumaric acid or itaconic acid, in particular of acrylic and / or methacrylic acid, which have the crosslinking groups B in the ester and / or amide radical.
  • Particularly preferred hydroxylating groups B and B ' are hydroxyl groups, and also, for example, mercapto and amino groups, aldehyde groups, azide groups, acid groups, in particular carboxylic acid groups, acid anhydride groups, in particular carboxylic anhydride groups, acid ester groups, especially carboxylic acid ester groups, ether groups, more preferably carbamate groups, for example urea groups.
  • Epoxide groups, and particularly preferably isocyanate groups which are very particularly preferably reacted with blocking agents which unblock at the stoving temperatures of the coating compositions of the invention and / or are incorporated without deblocking in the forming network.
  • the monomers (a11) are arranged in the polymer PM in such a way that the already described gradient of the hydrophilic groups HG results along the polymer main chain. This is generally due to the specific copolymerization parameters of the different monomers (a11), (a12), (a13), (a2) and (b) in the aqueous reaction medium.
  • the aforementioned monomers (a12) and (a13) are preferably randomly arranged along the main polymer chain. From the above performance of the exemplified monomers (a11), (a12) and (a13) it is apparent that the hydrophilic groups HG, the ligands L and the crosslinking groups B can be partially or completely identical. In this case, then also the ligands L and the crosslinking functional groups B usually have a gradient along the polymer main chain.
  • Examples of preferred olefinically unsaturated comonomers (a2) are (1) substantially acid group-free esters of olefinically unsaturated acids, such as (meth) acrylic acid, crotonic acid, ethacrylic acid, vinylphosphonic acid or vinylsulfonic acid alkyl or cycloalkyl esters having up to 20 carbon atoms in the alkyl radical, in particular methyl, ethyl, propyl , n-butyl, sec-butyl, hexyl,
  • olefinically unsaturated acids such as (meth) acrylic acid, crotonic acid, ethacrylic acid, vinylphosphonic acid or vinylsulfonic acid alkyl or cycloalkyl esters having up to 20 carbon atoms in the alkyl radical, in particular methyl, ethyl, propyl , n-butyl, sec-butyl, hexyl,
  • vinyl esters of alpha-branched monocarboxylic acids having 5 to 18 carbon atoms in the molecule such as the vinyl esters of Versatic® acid sold under the trademark VeoVa®; such as
  • vinylaromatic hydrocarbons such as styrene, vinyltoluene or alpha-alkylstyrenes, especially alpha-methylstyrene;
  • crosslinkers V with groups B and / or B 'thermally and / or by radiation-crosslinking groups in principle all crosslinkers known to the person skilled in the art are suitable. Preference is given to low molecular weight or oligomeric crosslinkers V having a molecular weight of ⁇ 20,000 daltons, more preferably ⁇ 10,000 daltons.
  • the backbone of the crosslinker V carrying the crosslinking groups B and / or B ' can be linear, branched and / or hyperbranched. Preference is given to branched and / or hyperbranched structures, in particular those as described, for example, in WO-A-01/46296.
  • the crosslinkers V are preferably stable to hydrolysis in the acidic pH range, in particular at pH values ⁇ 5, particularly preferably at pH values ⁇ 3.
  • crosslinkers V carry the above-described crosslinking groups B and / or B ', which are crosslinking with the crosslinking Groups of the polymer P react under the formation of covalent bonds. Very particular preference is given to crosslinkers V with groups B and / or B 'that crosslink thermally and, if appropriate, additionally by the action of radiation. In a further particularly preferred embodiment of the invention, the crosslinkers V carry in addition to the crosslinking groups B and / or B 'ligands L', which may be identical to and / or different from the ligands L of the polymer P.
  • Particularly suitable crosslinking functional groups B and B 'for the crosslinkers V are:
  • Azide groups acid anhydride groups, in particular carboxylic anhydride groups,
  • isocyanate groups which are very particularly preferably reacted with blocking agents which deblock at the stoving temperatures of the coating compositions of the invention and / or are incorporated into the forming network without deblocking,
  • Very particularly preferred crosslinkers V are branched and / or hyperbranched polyisocyanates which are at least partially blocked and additionally carry ligands L '.
  • water is used for the coating agent K2, preferably deionized and / or distilled water.
  • at least one acid capable of oxidation is used in such a way that the pH of the coating agent K2 is preferably between 1 and 5, preferably between 2 and 4.
  • Particularly preferred acids are selected from the group of oxidizing mineral acids, in particular nitric acid, nitrous acid, sulfuric acid and / or sulfurous acid.
  • a buffer medium can be used, such as, for example, salts of medium-strength bases and weak acids, in particular ammonium acetate.
  • the coating agent K2 contains at least one component KOS, which reduces the surface tension of the coating agent according to the invention during the autodeposition on the substrate surface and / or during the subsequent drying step.
  • the component KOS can be selected from the group of anionic, cationic and nonionic surface-active substances.
  • Amphiphilic substances which may be low molecular weight, oligomeric and / or polymeric, are preferably used. By “amphiphilic” it is to be understood that the substances have a hydrophilic and a hydrophobic structural component.
  • Low molecular weight means that the average molecular weights of the surface-active component KOS are up to 2000 daltons, particularly preferably up to 1000 daltons.
  • oligomer means that the surface-active component KOS has about 2 to 30, preferably 3 to 15, preferably repeating components and has an average molecular weight between about 200 and 4000 daltons, preferably between about 500 and 3000 daltons, and under "polymer” in that the surface-active component KOS has more than 10 preferably repeating building blocks and an average molecular weight of more than 500 daltons. preferably more than 1000 daltons.
  • the surface-active component KOS is different from the polymer P according to the invention.
  • alkylcarboxylic acid and its salts alpha-omega-dicarboxylic acids and their salts, alpha-omega-dialcohols, alpha-omega-diamines and -amides and their salts, alkylsulfonic acids and their salts are preferred as low-molecular substances Salts and alkylphosphoric acids and alkylphosphonic acids and their salts used.
  • oligomeric and / or polymeric surface-active substances it is preferred to use polyalkylene glycols, polyvinyl lactams, such as, for example, polyvinylpyrrolidone and polyvinyl caprolactam, polyvinylimidazoles, polyvinyl alcohols and polyvinyl acetate.
  • Adhesive and / or 1, 6-hexanediol are very particularly preferred as surface-active component KOS as low-molecular substances and poly (oligo) ethylene glycols and / or poly (oligo) propylene glycols as oligomeric and / or polymeric substances.
  • the proportion of the surface-active substance KOS in the coating agent K2 is preferably between 10 -4 and 5% by weight, preferably between 10 2 and 2% by weight, based on the coating agent K 2.
  • the coating agent K2 additionally contains a salt (S) which has lanthanide metal cations and / or d-metal cations as the cationic constituent.
  • S a salt which has lanthanide metal cations and / or d-metal cations as the cationic constituent.
  • Preferred lanthanide metal cations are lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium and / or dysprosium cations. Very particular preference is given to lanthanum, cerium and praseodymium cations.
  • the lanthanide metal cations can be present in mono-, di- and / or trivalent oxidation state, the trivalent oxidation state being preferred.
  • Preferred d-metal cations are titanium, vanadium, manganese, yttrium, zirconium, niobium, molybdenum, tungsten, cobalt, ruthenium, rhodium, palladium, osmium and / or iridium cations.
  • Excluded as d-element cation is the chromium cation in all oxidation states.
  • Very particular preference is given to vanadium, manganese, tungsten, molybdenum and / or yttrium cations.
  • the d-element cations can be present in one to six valent oxidation state, with a three to six valent oxidation state being preferred.
  • the lanthanide metal cations and / or d-element cations of the salt (S) can also be present as complexes with monodentate and / or polydentate potentially anionic ligands.
  • Preferred ligands are optionally functionalized terpyridines, optionally functionalized ureas and / or thioureas, optionally functionalized amines and / or polyamines, in particular EDTA, imines, in particular imin-functionalized pyridines, organosulfur compounds, in particular optionally functionalized thiols, thiocarboxylic acids, thioaldehydes, Thioketone, dithiocarbamates, sulfonamides, thioamides and particularly preferably sulfonates, optionally functionalized organoboron compounds, in particular boric acid esters, optionally functionalized polyalcohols, in particular carbohydrates and derivatives thereof and chitosans, optionally functionalized acids, in particular di- and / or oligofunctional acids, if appropriate functionalized carbenes, acetylacetonates, optionally functionalized acetylenes, optionally functionalized carboxylic acids, in particular carboxylic acids, which are
  • the substrates coated with the anticorrosion agent K1 are coated with the coating agent K2.
  • the substrate coated with the anticorrosive agent K1 can be dried or flashed off before application of the anticorrosion agent K2 as described above.
  • the coating closes with the corrosion inhibitor K2 directly to the coating with the anticorrosion agent K1, wherein after the application of the anticorrosive K1 preferably rinsed with preferably distilled water and blown dry with air, preferably with an inert gas, for example with nitrogen.
  • the coating is preferably carried out by immersing or pulling through the coated substrate in or through a bath containing the coating agent K2.
  • the residence times of the substrate in the coating agent K2 are preferably 1 second to 15 minutes, preferably 10 seconds to 10 minutes and more preferably 30 seconds to 8 minutes.
  • the temperature of the bath containing the coating composition according to the invention is preferably between 20 and 90 ° C., preferably between 25 and 80 ° C., more preferably between 30 and 70 ° C.
  • the wet film thickness of the layer produced with the coating agent K2 after autodeposition is between 5 and 1500 nm, preferably between 15 and 1250, particularly preferably between 25 and 1000 nm.
  • the composite of coating agent K1 and coating agent K2 is flashed off before the final electrodeposition coating, that is to say for a period of 30 seconds to 30 minutes, preferably for a period of 1 minute Temperatures between 25 and 120 0 C, preferably between 30 and 90 0 C exposed to 25 minutes.
  • cathodic electrodeposition coatings are suitable for the electrodeposition coating carried out in stage (III). It is preferred to use cathodically depositable electrodeposition paints which meet high ecological standards, such as, in particular, electrodeposition paints free of lead or chromium-containing anti-corrosive pigments, as described, for example, in EP-A-0 528 853.
  • binders for the cathodically depositable electrodeposition paints preference is given to using amine-modified epoxy resins in combination with crosslinkers, as described, for example, in DE-A-35 18 770, DE-A-35 18 732, EP-AO 102 501, DE-A-27 01 002, US-A-4,104,147, EP-A-004,090, EP-A-012463, US-A-4,031,050, US-A-3,922,253, US-A-4,101,486, US-A-4,038,232 and US -A-4,017,438.
  • the electrodeposition coatings can be applied without problems to the layers deposited according to step (I) or step (II).
  • the parameters for the electrophoretic deposition of electrodeposition coatings correspond to the technologically common parameters.
  • the layered composites prepared in the sequence of stages (I) and (III) or stages (I), (II) and (III) are generally at temperatures of 130 to 200 0 C, preferably at temperatures of 150 to 180 0 C. , burned for a period of 15 to 60 minutes, preferably for a period of 15 to 30 minutes.
  • Intensive crosslinking of the electrodeposition coating layer applied in step (III) and the layer of coating composition K2 applied in the preferred step (II) are carried out here.
  • the electrodeposition coating adheres excellently to the layers deposited according to stage (I) or stage (II).
  • the laminates have outstanding resistance to impact stress.
  • the resistance to corrosion is excellent and meets the requirements of the automotive industry to a high degree.
  • the layers applied in accordance with stage (III) can be used to apply, in particular, the layers customary in automotive OEM finishing, in the sequence of filler, basecoat and clearcoat, in a manner known per se.
  • the process according to the invention can be used on a wide range of substrates and is largely independent of the redox potential of the substrate.
  • Preferred substrate materials are zinc, iron, magnesium and aluminum, and their alloys, wherein the aforementioned metals are preferably present in the alloys to at least 20 wt .-%.
  • the substrates are formed as sheets, as used for example in the automotive industry, the construction industry and the mechanical engineering industry.
  • Production Example 3 Production of the Second Basin with the Corrosion Inhibitor K2
  • Example 2a In one liter of water in each case 3 g of the polymer component P are dissolved according to Example 2a and 2g of the crosslinker V according to Example 2b.
  • the substrate (sheet of galvanized steel) is cleaned for 5 minutes at 55 ° C in a cleaning solution (Ridoline C72 Fa. Henkel) and then rinsed with distilled water.
  • a cleaning solution Lidoline C72 Fa. Henkel
  • the rinsed with distilled water plate immediately immersed at 45 ° C for 4 minutes in the first basin of the corrosion inhibitor K1 according to Example 1a.
  • the coated sheet is rinsed with distilled water and blown dry with nitrogen.
  • the sheets are immersed for 5 minutes at 35 ° C. in the second basin of the corrosion inhibitor according to the invention according to Example 3a. It forms a non-visible to opalescent layer in the ⁇ / 4 range of visible light.
  • the coated sheet is rinsed with distilled water and blown dry with nitrogen. The sheet is then flashed for 2.5 minutes at 80 0 C.
  • Example 5 Coating of the Sheet Coated According to Example 4 with a Cathodic Electrocoat (Stage III)
  • the coated and conditioned sheet according to Example 4 is treated with a commercially available lead-free cathodic electrodeposition paint (Cathode guard ® 500 from BASF Coatings AG) at a bath temperature of 32 ° C and a deposition time of 120 seconds, and thereafter cured for 20 minutes at 175 0 C.
  • the thickness of the deposited and cured layer of cathodic electrodeposition paint is 19 to 20 ⁇ m.
  • a sheet coated with a commercially available phosphating agent (Gardobond 26S W42 MBZE3 from Chemetall) is also coated and cured with the above-mentioned lead-free electrodeposition paint according to the above-mentioned conditions.
  • the thickness of the deposited and cured layer of cathodic electrodeposition paint is also 19 to 20 microns.
  • Example 6 Rapid corrosion test with Harrison solution on the substrates coated according to Example 5
  • a Harrison solution (5 g NaCl + 35 g (NH 4 ) 2 SO 4 ) in 1000 ml demineralized water is used.
  • substrates here steel, galvanized steel or zinc alloys can be used.
  • On the coated with the above-mentioned layer samples (6 * 6 cm) is a plastic cylinder with a diameter of 48 mm and a height of 6 cm with an adhesive: Scrintec 600 silicone adhesive transparent, RTV 1 k oxime system (Ralicks, 46459 Rees) glued to the surface. In this cylinder, 70 ml of Harrison solution are added.
  • EIS electrochemical impedance measurement
  • the samples prepared in this way are weathered for a total of 20 cycles in a temperature range from 25 ° C. to 73 ° C. so that the maximum and the minimum temperature are run through within one hour.
  • the now dry cylinder is again filled with 30 ml Harrison solution, after 10 minutes residence time this solution is used to determine the possibly during weathering ions by means of ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry).
  • ICP-OES Inductively Coupled Plasma - Optical Emission Spectrometry
  • 70 ml of Harris solution is again introduced into the cylinder and a renewed EIS measurement is carried out.
  • a renewed weathering is carried out by the rapid test and then again taken an ICP-OES sample and made a further EIS measurement. The measurement is verified by a double determination.
  • the ICP-OES data are normalized to the area of the samples. These data give a linear progression. Due to the linearity of the corrosion kinetics, the different coatings can be compared by the slopes of the graph.
  • the ICP-OES data represent the resolution of the substrate per area and time and are therefore a direct measure of the corrosion rate that is possible with a particular coating.
  • the EIS measurements can also be used to measure the corrosion kinetics. By measurement at the defect, this is detected electrochemically, ie the oxide layer of the substrate is determined. Assuming that the same oxide growth is to be expected under the same weathering conditions, the capacitance is set according to: ⁇ ' n 0 ⁇ 0 J "A
  • the results of the corrosion tests show the improvement of the corrosion protection by the coating composition of the invention over a commercial corrosion inhibitor (phosphating).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Korrosionsschutzausrüstung metallischer Substrate, bei welchem in einer ersten Stufe (I) das Substrat beschichtet wird durch stromfreies Eintauchen in ein wässriges Bad eines Korrosionsschutzmittels K1 mit einem pH-Wert zwischen 1 und 5, enthaltend mindestens eine Verbindung mit einem Lanthanid-Metall als Kation und/oder einem d-Element-Metall mit Ausnahme von Chrom als Kation und/oder einem d-Element-Metallat mit Ausnahme von chromhaltigen Metallaten als Anion, sowie mindestens eine zur Oxidation befähigte Säure mit Ausnahme von phosphorhaltigen und/oder chromhaltigen Säuren, wobei eine Konversion an der Substratoberfläche bewirkt wird und in einer abschließende Stufe (III) eine weitere Beschichtung durch Abscheidung eines kathodischen Elektrotauchlacks durchgeführt wird.

Description

Verfahren zur Korrosionsschutzausrüstung metallischer Substrate
Verfahren und Beschichtungsmittel zur stromfreien Korrosionsschutzbe- Schichtung verschiedener Metallsubstrate, insbesondere durch autopho- retische Tauchlackierung, sind bekannt. Sie bieten den Vorteil des einfacheren und preiswerteren Prozesses sowie der kürzeren Prozeßzeit. Insbesondere lassen sich mit den stromfreien Verfahren Hohlräume in beziehungsweise Kanten an den zu beschichtenden Substraten besser beschichten als mit Verfahren, bei denen das Anlegen elektrischer Spannungen notwendig ist.
In jüngerer Zeit wurde die Entwicklung chromfreier autophoretischer Beschichtungsmittel angestrebt, die einen sehr guten, den chromhaltigen Beschichtungsmitteln vergleichbaren Korrosionsschutz gewährleisten. Dabei stellten sich Beschichtungsmittel enthaltend Salze der Lanthanid- sowie der d-Elemente sowie eine organische filmbildende Komponente als besonders geeignet heraus.
Die beispielsweise in der WO-A-99/29927, der WO-A-96/10461 und der DE-A-37 27 382 beschriebenen autophoretischen Beschichtungsmittel weisen jedoch als Nachteile die Tendenz der aus dem Substrat gebildeten Metallionen durch die abgeschiedene Korrosionsschutzschicht zu wandern sowie die Verwendung von ökologisch kritischen Substanzen, wie insbesondere Fluoriden, auf.
In DE-A-10 2005 023 728 und DE-A-10 2005 023 729 werden Beschichtungsmittel beschrieben, die die vorgenannten Probleme der Metallionenwanderung sowie der Verwendung ökologisch kritischer Substanzen ausgezeichnet lösen. Insbesondere das in DE-A-10 2005 023 728 beschriebene zweistufige Verfahren zur Korrosionsschutzausrüstung metallischer Substrate, bei welchem in einer ersten Stufe das Substrat in ein Bad eines Korrosionsschutzmittels K getaucht wird, welches eine Konversion an der Substratoberfläche bewirkt und in einer zweiten Stufe das gemäß Stufe (a) behandelte Substrat in ein Bad eines wäßrigen Beschichtungsmittels getaucht wird, enthaltend ein wasserdispergierba- res und/oder wasserlösliches Polymerisat P mit kovalent gebundenenen Liganden, welche mit den bei der Korrosion des Substrats freigesetzten Metallionen und/oder der Substratoberfläche Chelate bilden, sowie mit vernetzenden funktionellen Gruppen B, die mit sich selbst, mit weiteren komplementären funktionellen Gruppen B' des Polymerisats P und/oder mit weiteren funktionellen Gruppen B und/oder B' an Vernetzern V kova- lente Bindungen ausbilden können, hat sich als besonders geeignet er- wiesen.
Für spezielle Anwendungen, insbesondere im Automobilbau, haben sich jedoch die Korrosionsschutzbeschichtungen auf rein autophoreti- scher Basis als nicht ausreichend erwiesen, da der Korrosionsschutz, insbesondere nach Schlagbeanspruchung den hohen Anforderungen nicht völlig genügen kann.
In WO-A-01/46495 wird die Kombination einer 2-stufigen Vorbehandlung von Metallsubstraten beschrieben, welche in der ersten Stufe eine Vorbehandlung mit einem Beschichtungsmittel, enthaltend eine Verbindung von Elementen der Gruppe MIb, IVb und/oder Lanthaniden, und in einer zweiten Stufe die Vorbehandlung mit einem Beschichtungsmittel, enthaltend ein Reaktionsprodukt einer epoxyfunktionellen Verbindung mit phosphor-, amin- und/oder schwefelhaltigen Verbindungen umfasst, mit einer anschließenden bleifreien Elektrotauchlackierung. Die solchermaßen hergestellte Beschichtung soll einen guten Korrosionsschutz mit einer hohen Ökologiefreundlichkeit verbinden. Allerdings werden in der ersten Vorbehandlungsstufe vorzugsweise fluorhaltige Verbindungen eingesetzt, welche ökologisch kritisch sind. Aufgabe und Lösung
Im Lichte des vorgenannten Standes der Technik, war es die Aufgabe der Erfindung, ein ökologisch weitgehend unbedenkliches Verfahren zur Korrosionsschutzausrüstung, insbesondere im Automobilbereich, zu finden, welches mittels eines technisch einfach durchführbaren Prozesses auf das zu schützende Substrat aufgebracht werden kann. Insbesondere sollte das Verfahren ohne fluoridhaltige Substanzen durchführbar sein. Weiterhin sollte das erfindungsgemäße Verfahren insbesondere zu Korrosionsschutzschichten führen, die die Wanderung der aus dem Substrat gebildeten Metallionen weitgehend unterbinden und die gut an Kanten und in Hohlräume des Substrats abgeschiedenen werden. Desweiteren sollte der Einfluß von Fremdmetallionen möglichst gering gehalten werden und mit vergleichsweise geringem Materialeinsatz ein wirksamer Korrosionsschutz erzielt werden. Weiterhin sollte das Verfahren Korrosionsschutzschichten zur Verfügung stellen, die für möglichst viele unterschiedliche Metallsubstrate einen wirksamen Schutz entwickeln und weitgehend unabhängig vom Redoxpotential des zu beschich- tenden Substrats sind.
Im Lichte der vorgenannten Aufgaben wurde überraschenderweise ein Verfahren zur Korrosionsschutzausrüstung metallischer Substrate gefunden, umfassend als erste Stufe (I) eine stromfreie Vorbehandlung mit einem wäßrigen Korrosionsschutzmittel K1 , enthaltend mindestens eine Verbindung (A1 ) mit einem Lanthanid-Metall als Kation und/oder einem d-Element-Metall mit Ausnahme von Chrom als Kation und/oder einem d-Element-Metallat mit Ausnahme von chromhaltigen Metallaten als A- nion sowie (A2) mindestens eine zur Oxidation befähigte Säure mit Ausnahme von phosphorhaltigen und/oder chromhaltigen Säuren, um- fasst, vorzugsweise als zweite Stufe (II) eine weitere stromfreie Vorbehandlung mit einem wässrigen Korrosionsschutzmittel K2, welches ein wasserdispergierbares und/oder wasserlösliches Polymerisat P mit ko- valent gebundenenen Liganden L, welche mit den bei der Korrosion des Substrats freigesetzten Metallionen und/oder mit der Substratoberfläche Chelate bilden, sowie mit vernetzenden funktionellen Gruppen B, die mit sich selbst, mit weiteren funktionellen Gruppen B' des Polymerisats P und/oder mit weiteren funktionellen Gruppen B und/oder B' an Vernetzern V kovalente Bindungen ausbilden können, enthält, sowie als abschließende Stufe (III) eine weitere Beschichtung durch Abscheidung eines Elektrotauchlacks.
Beschreibung der Erfindung
Die erste Stufe (I) des erfindungsgemäßen Verfahrens
In der ersten Stufe (I) des erfindungsgemäßen Verfahrens wird das nachstehend beschriebene wässrige Korrosionsschutzmittel K1 stromfrei auf das metallische Substrat aufgebracht. Stromfrei bedeutet hierbei die Abwesenheit elektrischer Ströme durch Anlegen einer elektrischen Spannung.
Vor der Applikation des wässrigen Korrosionsschutzmittels K1 wird das Substrat in einer bevorzugten Ausführungsform der Erfindung gereinigt, insbesondere von öligen und fettigen Rückständen, wobei bevorzugt Detergenzien und/oder alkalische Reinigungsmittel zur Anwendung kommen. In einer weiteren bevorzugten Ausführung der Erfindung wird nach der Reinigung mit Detergenzien und/oder alkalischen Reinigungsmitteln vor der Applikation des erfindungsgemäßen Beschichtungsmit- tels nochmals mit Wasser nachgespült. Zur Entfernung von Ablagerungen und/oder chemisch modifizierter, insbesondere oxidierter, Schichten an der Oberfläche des Substrats kann in einer weiteren bevorzugten Ausführungsform der Erfindung vor dem Nachspülschritt noch eine mechanische Reinigung der Oberfläche, beispielsweise mit Schleifmedien, und/oder eine chemische Entfernung der Oberflächenschichten, beispielsweise mit deoxidierenden Reinigungsmitteln, erfolgen.
Das wässrige Korrosionsschutzmittel K1 weist einem pH-Wert zwischen 1 und 5 auf und enthält mindestens eine Verbindung (A1 ) mit einem Lanthanid-Metall als Kation und/oder einem d-Element-Metall mit Ausnahme von Chrom als Kation und/oder einem d-Element-Metallat mit Ausnahme von chromhaltigen Metallaten als Anion sowie (A2) mindestens zur Oxidation befähigten Säure mit Ausnahme von phosphorhalti- gen und/oder chromhaltigen Säuren.
Die Verbindung (A1 ) ist vorzugsweise in Wasser sehr gut löslich. Besonders bevorzugt sind Verbindungen (A1 ) [Kation]n[Anion]m (mit n,m >= 1 ) mit einem Löslichkeitsprodukt LP = [Kation]" *[Anion]m > 10'8 * mol(n+m)/l(n+m), ganz besonders bevorzugt Verbindungen (A1 ) mit einem Löslichkeitsprodukt LP > 10"6 * mol(n+m)/l(n+m). In einer ganz besonders bevorzugten Ausführungsform der Erfindung beträgt die Konzentration der Verbindungen (A1 ) im Korrosionsschutzmittel 10"1 bis 10"4 ITiOl/!, insbesondere 5*10"1 bis 10"3 mol/l.
Die Verbindung (A1 ) kann als kationischen Bestandteil Lanthanidmetall- kationen und/oder d-Metallkationen aufweisen. Bevorzugte Lantanidme- tallkationen sind Lanthan-, Cer-, Praseodym-, Neodym-, Promethium-, Samarium-, Europium- und/oder Dysprosiumkationen. Ganz besonders bevorzugt sind Lanthan-, Cer- und Praseodymkationen. Die Lanthanid- metallkationen können in ein-, zwei- und/oder dreiwertiger Oxidations- stufe vorliegen, wobei die dreiwertige Oxidationstufe bevorzugt ist. Bevorzugte d-Metallkationen sind Titan-, Vanadium-, Mangan-, Yttrium-, Zirkon-, Niob-, Molybdän-, Wolfram-, Kobalt-, Ruthenium-, Rhodium-, Palladium-, Osmium- und/oder Iridiumkationen. Als d-Elementkation ausgenommen ist das Chromkation in allen Oxidationsstufen. Ganz besonders bevorzugt sind Vanadium-, Mangan-, Wolfram-, Molybdän- und/oder Yttriumkationen. Die d-Elementkationen können in ein- bis sechswertiger Oxidationsstufe vorliegen, wobei eine drei- bis sechswer- tige Oxidationsstufe bevorzugt ist.
Die mit den Lanthanidmetallkationen und/oder d-Elementkationen die Verbindungen (A1 ) bildenden Anionen werden bevorzugt solchermaßen ausgewählt, daß die vorgenannten Bedingungen für das Löslichkeits- produkt LP gegeben sind. Bevorzugt werden Anionen oxidierender Säuren der Elemente der VI., VII. und VIII. Nebengruppe des Periodensystems der Elemente sowie Anionen oxidierender Säuren der Elemente der V. und VI. Hauptgruppe des Periodensystems der Elemente mit Ausnahme von Anionen oxidierender Säuren von Phosphor und Chrom eingesetzt, wie bevorzugt Nitrate, Nitrite, Sulfite und/oder Sulfate. Weiterhin möglich als Anionen sind Halogenide außer Fluoride.
In einer weiteren bevorzugten Ausführungsform der Erfindung können die Lanthanidmetallkationen und/oder d-Elementkationen der Verbindungen (A1 ) auch als Komplexe mit ein- und/oder mehrzähnigen potentiell anionischen Liganden vorliegen. Bevorzugte Liganden sind gegebenenfalls funktionalisierte Terpyridine, gegebenenfalls funktionalisierte Harnstoffe und/oder Thioharnstoffe, gegebenenfalls funktionalisierte A- mine und/oder Polyamine, wie insbesondere EDTA, Imine, wie insbesondere iminfunktionalisierte Pyridine, Organoschwefelverbindungen, wie insbesondere gegebenenfalls funktionalisierte Thiole, Thiocarbon- säuren, Thioaldehyde, Thioketone, Dithiocarbamate, Sulfonamide, Thi- oamide und besonders bevorzugt Sulfonate, gegebenenfalls funktionalisierte Organoborverbindungen, wie insbesondere Borsäureester, gegebenenfalls funktionalisierte Polyalkohole, wie insbesondere Kohlenhydrate und deren Derivate sowie Chitosane, gegebenenfalls funktionalisierte Säuren, wie insbesondere Di- und/oder oligofunktionelle Säuren, gegebenenfalls funktionalisierte Carbene, Acetylacetonate, gegebenenfalls funktionalisierte Acetylene, gegebenenfalls funktionalisierte Carbonsäuren, wie insbesondere Carbonsäuren, die ionisch und/oder koo- dinativ an Metallzentren gebunden werden können, sowie Phytinsäure und deren Derivate.
Ganz besonders bevorzugt sind als Liganden Phytinsäure, deren Derivate und Sulfonate, die gegebenenfalls funktionalisiert sind.
In einer besonders bevorzugten Ausführungsform der Erfindung enthalten die Verbindungen (A1 ) d-Element-Metallate als Anionen, die gemeinsam mit den d-Element-Kationen oder auch für sich allein die Verbindung (A1 ) bilden können. Bevorzugte d-Elemente für die Metallate sind Vanadium, Mangan, Zirkon, Niob, Molybdän und/oder Wolfram. Ganz besonders bevorzugt sind Vanadium, Mangan, Wolfram und/oder Molybdän. Als d-Element-Metallat ausgenommen sind Chromate in allen Oxidationsstufen. Besonders bevorzugte d-Element-Metallate sind Oxo- anionen, wie insbesondere Wolframate, Permanganate, Vanadate und/oder Molybdate.
Bilden die d-Element-Metallate für sich allein, das heißt ohne Lantha- nidmetallkationen und/oder d-Metallkationen, die Verbindung (A1 ), so gilt für das bevorzugte Löslichkeitsprodukte LP solcher Verbindungen das Vorgesagte. Bevorzugte Kationen solcher Verbindungen (A1 ) sind gegebenenfalls mit organischen Resten substituierte Ammoniumionen, Phosphoniumionen und/oder Sulfoniumionen, Alkalimetallkationen, wie insbesondere Lithium, Natrium und/oder Kalium, Erdalkalimetallkationen, wie insbesondere Magnesium und/oder Kalzium. Besonders bevorzugt sind die gegebenenfalls mit organischen Resten substituierten Ammoniumionen und die Alkalimetallkationen, die ein besonders hohes Löslichkeitsprodukt LP der Verbindung (A1 ) gewährleisten.
Als Komponente (A2) des Korrosionsschutzmittels K1 wird mindestens eine zur Oxidation befähigte Säure solchermaßen eingesetzt, daß der pH-Wert des Korrosionsschutzmittel zwischen 1 und 5, bevorzugt zwischen 2 und 4 liegt. Bevorzugte Säuren (A2) sind ausgewählt aus der Gruppe der oxidierenden Mineralsäuren, wie insbesondere Salpetersäure, salpetrige Säure, Schwefelsäure und/oder schweflige Säure. Zur Einstellung des pH-Werts kann, sofern nötig, ein Puffermedium eingesetzt werden, wie beispielsweise Salze mittelstarker Basen und schwacher Säuren, wie insbesondere Ammoniumacetat.
Als kontinuierliche Phase wird für das Korrosionsschutzmittel K1 Wasser verwendet, bevorzugt entionisiertes und/oder destilliertes Wasser.
Das wie oben stehend vorbehandelte Substrat wird mit dem Korrosions- Schutzmittel K1 in Kontakt gebracht. Dies erfolgt vorzugsweise durch Eintauchen oder Durchziehen des Substrats in beziehungsweise durch ein Bad, enthaltend das Korrosionsschutzmittel K1. Die Verweilzeiten des Substrats im Korrosionsschutzmittel K1 betragen vorzugsweise 1 Sekunde bis 10 Minuten, bevorzugt 10 Sekunden bis 8 Minuten und be- sonders bevorzugt 30 Sekunden bis 6 Minuten. Die Temperatur des Bads enthaltend das Korrosionsschutzmittel K1 liegt vorzugsweise zwischen 25 und 90 0C, bevorzugt zwischen 30 und 80 0C, besonders bevorzugt zwischen 35 und 70 0C.
Die Nassfilmdicke der mit dem Beschichtungsmittel K1 erzeugten Schicht beträgt nach der autophoretischen Applikation zwischen 5 und 900 nm, vorzugsweise zwischen 15 und 750 nm, besonders bevorzugt zwischen 25 und 600 nm.
Nach der Behandlung des Substrats mit dem Beschichtungsmittel K1 und vor der abschließenden Elektrotauchlackierung kann sich eine Trocknung der Schicht aus den Beschichtungsmittel K1 bei Temperaturen zwischen ca. 30 und 200 0C, insbesondere zwischen 100 und 180 0C durchgeführt, wobei die Trocknungsapparatur für die vorteilhafte Wir- kung des erfindungsgemäßen Beschichtungsmittel als weitgehend unkritisch angesehen werden kann. Besonders bevorzugt wird die Schicht aus Beschichtungsmittel K1 vor der abschließenden Elektrotauchlackierung beziehungsweise gegebenenfalls vor der bevorzugten Applikation des Korrosionsschutzmittels K2 abgelüftet, das heißt während eines Zeitraums von 30 Sekunden bis 30 Minuten, vorzugsweise während eines Zeitraums von 1 Minute bis 25 Minuten Temperaturen zwischen 25 und 120 0C, vorzugsweise zwischen 30 und 90 0C, ausgesetzt.
Die bevorzugte zweite Stufe (II) des erfindungsgemäßen Verfahrens
Das erfindungsgemäße wässrige Korrosionsschutzmittel K2, welches in einer bevorzugten Ausführungsform der Erfindung auf die in der ersten Stufe (I) des erfindungsgemäßen Verfahren aufgebrachte Schicht aus dem Korrosionsschutzmittel K1 aufgetragen wird, enthält Polymerisate P, die Liganden L tragen, welche mit den bei der Korrosion des Substrats freigesetzten Metallionen Chelate bilden, und die vernetzende funktionelle Gruppen B tragen, die mit sich selbst und/oder mit weiteren funktionellen Gruppen B', die gegebenenfalls Bestandteil zusätzlicher Vernetzer V sein könne, kovalente Bindungen ausbilden können.
Im Sinne der Erfindung wasserdispergierbar oder wasserlöslich bedeutet, daß die Polymerisate P in der wäßrigen Phase Aggregate mit einem mittleren Teilchendurchmesser von < 50, bevorzugt < 35 nm und besonders bevorzugt < 20 Nanometer ausbilden beziehungsweise moleku- lardispers gelöst sind. Damit unterscheiden sich solche Aggregate in ihrem mittleren Teilchendurchmesser maßgeblich von Dispersionsteilchen, wie sie beispielsweise in DE-A-37 27 382 oder WO-A-96/10461 beschrieben werden. Molekulardispers gelöste Polymerisate P weisen in der Regel Molekulargewichte von < 100.000, bevorzugt < 50.000, be- sonders bevorzugt < 20.000 Dalton auf.
Die Größe der Aggregate bestehend aus Polymerisat P wird in an sich bekannter Weise durch Einführung von hydrophilen Gruppen HG am Polymerisat P bewerkstelligt. Die Zahl der hydrophilen Gruppen HG am Polymerisat P hängt vom Solvatationsvermögen und der sterischen Zugänglichkeit der Gruppen HG ab und kann vom Fachmann ebenfalls in an sich bekannter Weise eingestellt werden. Bevorzugte hydrophile Gruppen HG am Polymerisat P sind ionische Gruppen wie insbesondere Sulfat-, Sulfonat-, Sulfonium-, Phosphat-, Phosphonat-, Phosphonium-, Ammonium- und/oder Carboxylatgruppen sowie nicht-ionische Gruppen, wie insbesondere Hydroxyl-, primäre, sekundäre und/oder tertiäre Amin- , Amidgruppen und/oder oligo- oder polyalkoxy-Substituenten, wie vor- zugsweise ethoxylierte oder propoxylierte Substituenten, welche mit weiteren Gruppen verethert sein können. Die hydrophilen Gruppen HG können mit den nachstehend beschriebenen Liganden L und/oder vernetzenden funktionellen Gruppen B bzw. B' identisch sein. Die Zahl der hydrophilen Gruppen HG am Polymerisat P hängt vom Solvatationsvermögen und der sterischen Zugänglichkeit der Gruppen HG ab und kann vom Fachmann ebenfalls in an sich bekannter Weise eingestellt werden.
In einer weiteren bevorzugten Ausführungsform der Erfindung bilden die oben genannten hydrophilen Gruppen HG einen Gradienten in ihrer Konzentration entlang des Polymerrückgrats. Der Gradient ist durch ein Gefälle in der räumlichen Konzentration der hydrophilen Gruppen entlang des Polymerrückgrats definiert. Solchermaßen aufgebaute Polymerisate P sind zur Micellbildung im wässrigen Medium befähigt und wei- sen eine Oberflächenaktivität an der Oberfläche des zu beschichtenden Substrats auf, das heißt, die Grenzflächenenergie des erfindungsgemäßen Beschichtungsmittels an der zu beschichtenden Oberfläche wird reduziert.
Der Gradient wird vorzugsweise durch geeignete Anordnung monome- rer Einheiten, welche das Polymer aufbauen und welche hydrophile Gruppen und/oder Gruppen, mit welchen hydrophile Gruppen HG erzeugt werden können, tragen, in an sich bekannter Weise erzeugt. Als Polymerrückgrat der Polymerisate P können allgemein an sich beliebige Polymerisate eingesetzt werden, vorzugsweise solche mit Molekulargewichten von 1.000 bis 50.000 Dalton, besonders bevorzugt mit Molekulargewichten von 2.000 bis 20.000 Dalton. Als Polymerrückgrat werden bevorzugt Polyolefine oder Poly(meth)acylate, Polyurethane, Polyalkylenimine, Polyvinylamine, Polyalkylenamine, Polyether, Polyester und Polyalkohole, welche insbesondere teilacetalisiert und/oder teil- verestert sind, eingesetzt. Die Polymerisate P können linear, verzweigt und/oder dendritisch aufgebaut sein. Ganz besonders bevorzugte Polymerrückgrate sind Polyalkylenimine, Polyvinylamine, Polyalkohole, Po- ly(meth)acrylate sowie hyperverzweigte Polymerisate, wie sie beispielsweise in WO-A-01/46296 beschrieben sind.
Die Polymerisate P sind vorzugsweise im sauren pH-Bereich hydrolysestabil, insbesondere bei pH-Werten < 5, besonders bevorzugt bei pH- Werten <3.
Als Liganden L sind alle Gruppen oder Verbindungen geeignet, welche mit den bei der Korrosion des Substrats freigesetzten Metallionen Che- late bilden können. Bevorzugt sind ein- und/oder mehrzähnige potentiell anionische Liganden. Besonders bevorzugte Liganden L sind
- gegebenenfalls funktionalisierte Harnstoffe und/oder Thio- harnstoffe, insbesondere Acylthioharnstoffe wie beispielsweise
Benzoylthioharnstoff,
- gegebenenfalls funktionalisierte Amine und/oder Polyamine, wie insbesondere EDTA,
- gegebenenfalls funktionalisierte Amide, insbesondere Carbon- säureamide
- Imine und Imide, wie insbesondere iminfunktionalisierte Pyridine, Oxime, bevorzugt 1 ,2-Dioxime wie funktionalisiertes Diacetyldio- xim,
- Organoschwefelverbindungen, wie insbesondere gegebenenfalls funktionalisierte Thiole wie Thioethanol, Thiocarbonsäuren, Thio- aldehyde, Thioketone, Dithiocarbamate, Sulfonamide, Thioamide und besonders bevorzugt Sulfonate,
- Organophosphorverbindungen, wie insbesondere Phosphate, besonders bevorzugt Phosphorsäureester von (Meth)acrylaten, sowie Phosphonate, besonders bevorzugt Vinylphosphonsäure und hydroxy-, amino- und amidofunktionalisierte Phosphonate,
- gegebenenfalls funktionalisierte Organoborverbindungen, wie insbesondere Borsäureester,
- gegebenenfalls funktionalisierte Polyalkohole, wie insbesondere Kohlenhydrate und deren Derivate sowie Chitosane, - gegebenenfalls funktionalisierte Säuren, wie insbesondere Di- und/oder oligofunktionelle Säuren, oder gegebenenfalls funktionalisierte (Poly)carbonsäuren, wie insbesondere Carbonsäuren, die ionisch und/oder koordinativ an Metallzentren gebunden werden können, bevorzugt (Poly)methacrylate mit Säuregruppen o- der di- oder oligofunktionelle Säuren,
- gegebenenfalls funktionalisierte Carbene,
- Acetylacetonate,
- gegebenenfalls funktionalisierte Acetylene, sowie
- Phytinsäure und deren Derivate.
Als vernetzende funktionelle Gruppen B am Polymerisat P sind solche geeignet, die mit sich selbst und/oder mit komplementären funktionellen Gruppen B' kovalente Bindungen ausbilden können. Bevorzugt werden die kovalenten Bindungen thermisch und/oder durch Einwirkung von Strahlung ausgebildet. Besonders bevorzugt werden die kovalenten Bindungen thermisch ausgebildet. Die vernetzenden funktionellen Gruppen B und B' bewirken die Ausbildung eines intermolekularen Netzwerks zwischen den Molekülen des Polymerisats P. Unter Einwirkung von Strahlung vernetzende funktionelle Gruppen B bzw. B' weisen aktivierbare Bindungen auf, wie beispielsweise Kohlen- stoff-Wasserstoff-, Kohlenstoff-Kohlenstoff-, Kohlenstoff-Sauerstoff-, Kohlenstoff-Stickstoff-, Kohlenstoff-Phosphor- oder Kohlenstoff-Silizium- Einfach- oder Doppelbindungen. Hierbei sind besonders Kohlenstoff- Kohlenstoff-Doppelbindungen vorteilhaft. Besonders gut geeignete Koh- lenstoff-Kohlenstoff-Doppelbindungen als Gruppen B sind
- besonders bevorzugt (Meth)acrylatgruppen
- Ethylacrylatgruppen
- Vinylether- und Vinylestergruppen
- Crotonat- und Cinnamatgruppen - Allylgruppen
- Dicyclopentadienylgruppen
- Norbornyl- und Isoprenylgruppen
- Isopropenyl- oder Butenylgruppen.
Thermisch vernetzende funktionelle Gruppen B können mit sich selbst oder vorzugsweise mit komplementären vernetzenden funktionellen Gruppen B1 unter Einwirkung von thermischer Energie kovalente Bindungen ausbilden. Besonders gut geeignete thermisch vernetzende funktionelle Gruppen B und B' sind
- besonders bevorzugt Hydroxylgruppen
- Mercapto- und Aminogruppen,
- Aldehydgruppen, - Azidgruppen,
- Säuregruppen, insbesondere Carbonsäuregruppen, - Säureanhydridgruppen, insbesondere Carbonsäureanhydridgruppen,
- Säureestergruppen, insbesondere Carbonsäureestergruppen,
- Ethergruppen, - besonders bevorzugt Carbamatgruppen,
- Harnstoffgruppen,
- Epoxidgruppen,
- besonders bevorzugt Isocyanatgruppen, welche ganz besonders bevorzugt mit Blockierungsmitteln umgesetzt sind, welche bei den Einbrenntemperaturen der erfindungsgemäßen Beschich- tungsmitteln deblockieren und/oder ohne Deblockierung in das sich bildende Netzwerk eingebaut werden.
Besonders bevorzugte Kombinationen aus thermisch vernetzenden Gruppen B und komplementären Gruppen B' sind:
- Hydroxylgruppen mit Isocyanat- und/oder Carbamatgruppen,
- Aminogruppen mit Isocyanat- und/oder Carbamatgruppen,
- Carbonsäuregruppen mit Epoxidgruppen.
Besonders bevorzugte Polymerisate P mit einem Gradienten der hydrophilen Gruppen entlang des Polymerrückgrats enthalten Mischpolymerisate PM, herstellbar durch ein- oder mehrstufige, radikalische Co- polymerisation im wässrigen Medium von
a) olefinisch ungesättigten Monomeren (a1 ) und (a2), wobei (a1 ) jeweils mindestens ein Monomer aus der Gruppe bestehend aus oiefinisch ungesättigten Monomeren (a11 ) mit mindestens einer hydrophilen Gruppe HG, olefinisch ungesättigten Mo- nomeren (a12) mit mindestens einer Ligandengruppe L und olefinisch ungesättigten Monomeren (a13) mit mindestens einer vernetzenden Gruppe B, umfasst und
b) mindestens einem von den olefinisch ungesättigten Mo- nomeren (a1 ) und (a2) verschiedenen olefinisch ungesättigten Monomer der allgemeinen Formel I
R1R2C=CR3R4 (I),
worin die Reste R1, R2, R3 und R4 jeweils unabhängig voneinander für Wasserstoffatome oder substituierte oder unsubstituierte Alkyl-, Cycloalkyl-, Alkylcycloalkyl-, Cycloalkylalkyl-, Aryl-, Alkylaryl-, Cycloalkylaryl- Arylalkyl- oder Arylcycloalkylreste stehen, mit der Maßgabe, daß mindestens zwei der Variablen R1, R2 , R3 und R4 für substituierte oder unsubstituierte Aryl-, Arylalkyl- oder Arylcycloalkylreste, insbesondere substituierte oder unsubstituierte Arylreste, stehen.
Geeignete hydrophile Monomere (a11 ) enthalten mindestens eine hydrophile Gruppe (HG), die, wie vorstehend beschrieben, bevorzugt aus der Gruppe, bestehend aus Sulfat-, Sulfonat-, Sulfonium-, Phosphat-, Phosphonat-, Phosphonium-, Ammonium- und/oder Carboxy- latgruppen sowie Hydroxyl-, primäre, sekundäre und/oder tertiäre Amin-, Amidgruppen und/oder oligo- oder polyalkoxy-Substituenten, wie vorzugsweise ethoxylierte oder propoxylierte Substituenten, welche mit weiteren Gruppen verethert sein können, ausgewählt sind. Beispiele gut geeigneter hydrophiler Monomere (a11 ) sind Acrylsäure, Methacrylsäure, Ethacrylsäure, Crotonsäure, Maleinsäure, Fumarsäure oder Itaconsäure und deren Salze, bevorzugt Acrylsäure und Methacrylsäure, olefinisch ungesättigte Sulfon-, Schwefel-, Phosphor- oder Phosphonsäuren, deren Salze und/oder deren Teilester. Weiterhin gut geeignet sind olefinisch unsgesättigte Sulfonium- und Phosphoniumver- bindungen. Weiterhin gut geeignet sind Monomere (a11 ), die mindestens eine Hydroxylgruppe oder Hydroxymethylaminogruppe pro Molekül tragen und im wesentlichen säuregruppenfrei sind, wie insbsondere Hydroxyalkylester von alpha, beta-olefinisch ungesättigten Carbonsäuren, wie Hydroxyalkylester der Acrylsäure, Methacrylsäure und Ethacryl- säure, in denen die Hydroxyalkylgruppe bis zu 20 Kohlenstoffatome enthält, wie bevorzugt 2-Hydroxyethyl-, 2-Hydroxypropyl-, 3- Hydroxypropyl-, 3-Hydroxybutyl-, 4-Hydroxybutylacrylat, -methacrylat, Formaldehydaddukte von Aminoalkylestern von alpha, beta-olefinisch ungesättigten Carbonsäuren und von alpha, beta-ungesättigten Carbon- säureamiden, wie N-Methylol- und N.N-Dimethylol-aminoethylacrylat, - aminoethylmethacrylat, -acrylamid und -methacrylamid. Als Amingrup- pen-haltige Monomere (a1 ) sind geeignet: 2-Aminoethylacrylat und - methacrylat, N-Methyl- und N,N-Dimethyl-aminoethylacrylat, oder AIIy- lamin. Als Amidgruppenhaltige Monomere (a11 ) werden bevorzugt Ami- de von alpha, beta-olefinisch ungesättigten Carbonsäuren, wie (Meth)Acrylsäureamid, bevorzugt N-Methyl - oder N1N- Dimethyl(meth)acrylsäureamid, eingesetzt. Als ethoxylierte oder propo- xylierte Monomere (a11 ) werden bevorzugt Acryl- und/oder Methacryl- säureester von Polyethylenoxid- und/oder Polypropylenoxid-Einheiten eingesetzt, deren Kettenlänge vorzugsweise zwischen 2 und 20 Ethy- lenoxid- oder Propylenoxid-Bausteinen beträgt. Bei der Auswahl der hydrophilen Monomere (a11 ) ist darauf zu achten, daß die Bildung unlöslicher Salze und Polyelektrolytkomplexe vermieden wird.
Beispiele gut geeigneter Monomere (a12) sind olefinisch ungesättigte Monomere, welche die vorstehend beschriebenen Liganden L als Sub- stituenten aufweisen. Beispiele geeigneter Monomerer (a12) sind Ester und/oder die Amide der Acrylsäure, Methacrylsäure, Ethacrylsäure, Cro- tonsäure, Maleinsäure, Fumarsäure oder Itaconsäure, insbesondere der Acryl- und/oder der Methacrylsäure, welche die Liganden L im Ester- und/oder Amidrest aufweisen. Als Liganden L werden bevorzugt gegebenenfalls funktionalisierte Harnstoff und/oder Thioharnstoffsubtituen- ten, gegebenenfalls funktionalisierte Amin- und/oder Polyaminsubtiuen- ten, Imin- und Imidsubstituenten, wie insbesondere iminfunktionalisierte Pyridine, Oximsubstituenten, bevorzugt 1 ,2-Dioxime wie funktionalisier- tes Diacetyldioxim, Organoschwefelsubstituenten, wie insbesondere ableitbar aus gegebenenfalls funktionalisierten Thiolen wie Thioethanol, Thiocarbonsäuren, Thioaldehyde, Thioketone, Dithiocarbamate, Sulfonamide, Thioamide und besonders bevorzugt Sulfonate, Orga- nophosphorsubstituenten, wie insbesondere ableitbar aus Phosphaten, besonders bevorzugt Phosphorsäureestern von (Meth)acrylaten, sowie Phosphonaten, besonders bevorzugt Vinylphosphonsäuren und hydro- xy-, amino- und amidofunktionalisierte Phosphonaten, gegebenenfalls funktionalisierte Organoborsubstituenten, wie insbesondere ableitbar von Borsäureestern, gegebenenfalls funktionalisierte Polyalkoholsubsti- tuenten, wie insbesondere ableitbar aus Kohlenhydraten und deren Derivaten sowie Chitosanen, gegebenenfalls funktionalisierte Säuresubsti- tuenten, wie insbesondere ableitbar aus di- und/oder oligofunktionellen Säuren, oder gegebenenfalls funktionalisierten (Poly)carbonsäuren, wie insbesondere Carbonsäuren, die ionisch und/oder koordinativ an Metallzentren gebunden werden können, bevorzugt (Poly)methacrylate mit Säuregruppen oder di- oder oligofunktionelle Säuren, Substutuenten mit gegebenenfalls funktionalisierten Carbene, Acetylacetonaten, gegebenenfalls funktionalisierte Acetylene, sowie Phytinsäuren und deren Derivate.
Beispiele gut geeigneter Monomerer (a13) sind olefinisch ungesättigte Monomere, welche die vorstehend beschriebenen vernetzenden Gruppen B bzw. B' als Substituenten aufweisen. Beispiele geeigneter Monomerer (a13) sind Ester und/oder die Amide der Acrylsäure, Methacryl- säure, Ethacrylsäure, Crotonsäure, Maleinsäure, Fumarsäure oder Ita- consäure, insbesondere der Acryl- und/oder der Methacrylsäure, welche die vernetzenden Gruppen B in Ester- und/oder Amidrest aufweisen. Als vernetzende Gruppen B bzw. B' werden besonders bevorzugt Hydro- xylgruppen, sowie beispielsweise Mercapto- und Aminogruppen, Aldehydgruppen, Azidgruppen, Säuregruppen, insbesondere Carbonsäuregruppen, Säureanhydridgruppen, insbesondere Carbonsäureanhydridgruppen, Säureestergruppen, insbesondere Carbonsäureestergruppen, Ethergruppen, besonders bevorzugt Carbamatgruppen, beispielsweise Harnstoffgruppen, Epoxidgruppen, sowie besonders bevorzugt Isocyanatgruppen, welche ganz besonders bevorzugt mit Blockierungsmitteln umgesetzt sind, welche bei den Einbrenntemperaturen der erfindungsgemäßen Beschichtungsmitteln deblockieren und/oder ohne Deblockierung in das sich bildende Netzwerk eingebaut werden.
Die Monomeren (a11 ) sind solchermaßen im Polymerisat PM angeordnet, dass sich der schon beschriebene Gradient der hydrophilen Gruppen HG entlang der Polymerhauptkette ergibt. Dies ergibt sich in der Regel durch die spezifischen Copolymerisationsparameter der unter- schiedlichen Monomeren (a11 ), (a12), (a13), (a2) und (b) im wässrigen Reaktionsmedium. Die vorgenannten Monomeren (a12) und (a13) sind vorzugsweise statistisch entlang der Polymerhauptkette angeordnet. Aus den vorstehenden Aufführung der beispielhaft genannten Monomeren (a11 ), (a12) und (a13) geht hervor, dass die hydrophilen Gruppen HG, die Liganden L sowie die vernetzenden Gruppen B teilweise oder völlig identisch sein können. In diesem Fall weisen dann auch die Liganden L und die vernetzenden funktionellen Gruppen B in der Regel einen Gradienten entlang der Polymerhauptkette auf.
Beispiele bevorzugter olefinisch ungesättigter Comonomere (a2) sind (1 ) im wesentlichen Säuregruppenfreien Ester olefinisch ungesättigter Säuren, wie (Meth)Acrylsäure-, Crotonsäure-, Ethacrylsäure-, Vinylphosphonsäure- oder Vinylsulfonsäurealkyl- oder - cycloalkylester mit bis zu 20 Kohlenstoffatomen im Alkylrest, ins- besondere Methyl-, Ethyl-, Propyl-, n-Butyl-, sec.-Butyl-, Hexyl-,
Ethylhexyl-, Stearyl- und Lauryl-, Cyclohexyl(meth)acrylat;
(2) Vinylester von in alpha-Stellung verzweigten Monocarbonsäuren mit 5 bis 18 Kohlenstoffatomen im Molekül, wie die Vinylester der Versatic ©-Säure, die unter der Marke VeoVa ® vertrieben werden; sowie
(3) vinylaromatischen Kohlenwasserstoffe, wie Styrol, Vinyltoluol o- der alpha-Alkylstyrole, insbesondere alpha-Methylstyrol;
Zur Herstellung der Mischpolymerisate PM sei auf die Lehren der DE-A- 198 58 708, der DE-A-102 06 983 und der DE-A-102 56 226 verwiesen.
Als Vernetzer V mit thermisch und/oder durch Einwirkung von Strahlung vernetzenden Gruppen B und/oder B' sind prinzipiell alle dem Fachmann bekannten Vernetzer geeignet. Bevorzugt sind niedermolekulare oder oligomere Vernetzer V mit einem Molekulargewicht von < 20.000 Dalton, besonders bevorzugt < 10.000 Dalton. Das die vernetzenden Gruppen B und/oder B' tragende Rückgrat der Vernetzer V kann linear, verzweigt und/oder hyperverzweigt aufgebaut sein. Bevorzugt sind verzweigte und/oder hyperverzweigte Strukturen, insbesondere solche, wie sie beispielsweise in WO-A-01/46296 beschrieben sind. Die Vernetzer V sind vorzugsweise im sauren pH-Bereich hydrolysestabil, insbesondere bei pH-Werten < 5, besonders bevorzugt bei pH- Werten <3.
Besonders bevorzugte Vernetzer V tragen die vorstehend beschriebenen vernetzenden Gruppen B und/oder B', welche mit den vernetzenden Gruppen des Polymerisats P unter der Ausbildung kovalenter Bindungen reagieren. Ganz besonders bevorzugt sind Vernetzer V mit thermisch und gegebenenfalls zusätzlich durch Einwirkung von Strahlung vernetzenden Gruppen B und/oder B'. In einer weiteren besonders bevorzugten Ausführungsform der Erfindung tragen die Vernetzer V zusätzlich zu den vernetzenden Gruppen B und/oder B' Liganden L', die identisch mit und/oder unterschiedlich von den Liganden L des Polymerisats P sein können. Besonders gut geeignete vernetzende funktionelle Gruppen B und B' für die Vernetzer V sind:
- insbesondere Hydroxylgruppen,
- insbesondere Aldehydgruppen,
- Azidgruppen, - Säureanhydridgruppen, insbesondere Carbonsäureanhydridgruppen,
- Carbamatgruppen,
- Harnstoffgruppen,
- insbesondere Isocyanatgruppen, welche ganz besonders bevor- zugt mit Blockierungsmitteln umgesetzt sind, welche bei den Einbrenntemperaturen der erfindungsgemäßen Beschichtungsmit- teln deblockieren und/oder ohne Deblockierung in das sich bildende Netzwerk eingebaut werden,
(Meth)acrylatgruppen, - Vinylgruppen
oder Kombinationen hiervon.
Ganz besonders bevorzugt als Vernetzer V sind verzweigte und/oder hyperverzweigte Polyisocyanate, die zumindest teilweise blockiert sind und die zusätzlich Liganden L' tragen. Als kontinuierliche Phase wird für das Beschichtungsmittel K2 Wasser verwendet, bevorzugt entionisiertes und/oder destilliertes Wasser. Als weitere bevorzugte Komponente wird mindestens eine zur Oxidation befähigte Säure solchermaßen eingesetzt, daß der pH-Wert des Beschich- tungsmittels K2 vorzugsweise zwischen 1 und 5, bevorzugt zwischen 2 und 4 liegt. Besonders bevorzugte Säuren sind ausgewählt aus der Gruppe der oxidierenden Mineralsäuren, wie insbesondere Salpetersäure, salpetrige Säure, Schwefelsäure und/oder schweflige Säure. Zur Einstellung des pH-Werts kann, sofern nötig, ein Puffermedium einge- setzt werden, wie beispielsweise Salze mittelstarker Basen und schwacher Säuren, wie insbesondere Ammoniumacetat.
In einer weiteren bevorzugten Ausführungsform der Erfindung enthält das Beschichtungsmittel K2 mindestens eine Komponente KOS, welche die Oberflächenspannung des erfindungsgemäßen Beschichtungsmit- tels bei der autophoretischen Abscheidung auf der Substratoberfläche und/oder beim nachfolgenden Trocknungsschritt reduziert. Die Komponente KOS kann aus der Gruppe der anionischen, kationischen und nichtionischen oberflächenaktiven Substanzen gewählt wer- den. Bevorzugt werden amphiphile Substanzen, welche niedermolekular, oligomer und/oder polymer sein können, eingesetzt. Unter „amphiphil" ist zu verstehen, dass die Substanzen eine hydrophile und eine hydrohobe Strukturkomponente aufweisen. Unter „niedermolekular" ist zu verstehen, dass die mittleren Molekulargewichte der oberflächen- aktiven Komponente KOS bis zu 2000 Dalton, besonders bevorzugt bis zu 1000 Dalton betragen, unter „oligomer", dass die oberflächenaktive Komponente KOS etwa 2 bis 30, bevorzugt 3 bis 15, vorzugsweise sich wiederholende Bausteine aufweist und ein mittleres Molekulargewicht zwischen etwa 200 und 4000 Dalton, bevorzugt zwischen etwa 500 und 3000 Dalton, aufweist sowie unter „polymer", dass die oberflächenaktive Komponente KOS mehr als 10 vorzugsweise sich wiederholende Bausteine und ein mittleres Molekulargewicht von mehr als 500 Dalton, be- vorzugt von mehr als 1000 Dalton, aufweist. Die oberflächenaktive Komponente KOS ist vom erfindungsgemäßen Polymerisat P verschieden.
Als oberflächenaktive Komponente KOS werden bevorzugt als nieder- molekulare Substanzen Alkylcarbonsäure und deren Salze, al- pha.omega-Dicarbonsäuren und deren Salze, alpha.omega-Dialkohole, alpha.omega-Diamine und -amide sowie deren Salze, Alkylsulfonsäu- ren und deren Salze sowie Alkylphosphorsäuren und Alkylphosphon- säuren sowie deren Salze eingesetzt. Als oligomere und/oder polymere obenflächenaktive Substanzen werden bevorzugt Polyalkylengykole, Polyvinyllactame, wie beispielsweise Polyvinylpyrolidon und Polyvinyl- caprolactam, Polyvinylimidazole, Polyvinylalkohole sowie Polyvinylace- tat verwendet. Ganz besonders bevorzugt als oberflächenaktive Komponente KOS sind als niedermolekulare Substanzen Adipinsäure und/oder 1 ,6-Hexandiol sowie als oligo- und/oder polymere Substanzen Poly(oligo)ethylenglykole und/oder Poly(oligo)propylenglykole. Der Anteil der oberflächenaktiven Substanz KOS am Beschichtungsmit- tel K2 beträgt vorzugsweise zwischen 10"4 und 5 Gew.-%, bevorzugt zwischen 10'2 und 2 Gew.-%, bezogen auf das Beschichtungsmittel K2.
In einer besonders bevorzugten Ausführungsform der Erfindung enthält das Beschichtungsmittel K2 zusätzlich ein Salz (S), welches als kationischen Bestandteil Lanthanidmetallkationen und/oder d-Metallkationen aufweist. Bevorzugte Lantanidmetallkationen sind Lanthan-, Cer-, Praseodym-, Neodym-, Promethium-, Samarium-, Europium- und/oder Dysprosiumkationen. Ganz besonders bevorzugt sind Lanthan-, Cer- und Praseodymkationen. Die Lanthanidmetallkationen können in ein-, zwei- und/oder dreiwertiger Oxidationsstufe vorliegen, wobei die dreiwertige Oxidati- onstufe bevorzugt ist. Bevorzugte d-Metallkationen sind Titan-, Vanadium-, Mangan-, Yttrium-, Zirkon-, Niob-, Molybdän-, Wolfram-, Kobalt-, Ruthenium-, Rhodium-, Palladium-, Osmium- und/oder Iridiumkationen. Als d-Elementkation ausgenommen ist das Chromkation in allen Oxida- tionsstufen. Ganz besonders bevorzugt sind Vanadium-, Mangan-, Wolfram-, Molybdän- und/oder Yttriumkationen. Die d-Elementkationen können in ein- bis sechswertiger Oxidationsstufe vorliegen, wobei eine drei- bis sechswertige Oxidationsstufe bevorzugt ist.
In einer ganz besonders bevorzugten Ausführungsform der Erfindung können die Lanthanidmetallkationen und/oder d-Elementkationen des Salzes (S) auch als Komplexe mit ein- und/oder mehrzähnigen potentiell anionischen Liganden vorliegen. Bevorzugte Liganden sind gegebenen- falls funktionalisierte Terpyridine, gegebenenfalls funktionalisierte Harnstoffe und/oder Thiohamstoffe, gegebenenfalls funktionalisierte Amine und/oder Polyamine, wie insbesondere EDTA, Imine, wie insbesondere iminfunktionalisierte Pyridine, Organoschwefelverbindungen, wie insbesondere gegebenenfalls funktionalisierte Thiole, Thiocarbonsäuren, Thi- oaldehyde, Thioketone, Dithiocarbamate, Sulfonamide, Thioamide und besonders bevorzugt Sulfonate, gegebenenfalls funktionalisierte Orga- noborverbindungen, wie insbesondere Borsäureester, gegebenenfalls funktionalisierte Polyalkohole, wie insbesondere Kohlenhydrate und deren Derivate sowie Chitosane, gegebenenfalls funktionalisierte Säuren, wie insbesondere Di- und/oder oligofunktionelle Säuren, gegebenenfalls funktionalisierte Carbene, Acetylacetonate, gegebenenfalls funktionalisierte Acetylene, gegebenenfalls funktionalisierte Carbonsäuren, wie insbesondere Carbonsäuren, die ionisch und/oder koodinativ an Metallzentren gebunden werden können, sowie Phytinsäure und deren Deri- vate.
Im bevorzugten zweiten Schritt (II) des Verfahrens werden die mit dem Korrosionsschutzmittels K1 beschichteten Substrate mit dem Beschich- tungsmittel K2 beschichtet. Dabei kann das mit dem Korrosionschutz- mittel K1 beschichtete Substrat vor Auftrag des Korrosionschutzmittels K2 wie oben beschrieben getrocknet oder abgelüftet werden. Vorzugsweise schließt sich die Beschichtung mit dem Korrosionsschutzmittel K2 direkt an die Beschichtung mit dem Korrosionsschutzmittel K1 an, wobei nach dem Auftrag des Korrosionschutzmittels K1 vorzugsweise mit bevorzugt destilliertem Wasser abgespült und mit Luft, bevorzugt mit einem Inertgas, beispielsweise mit Stickstoff, trockengeblasen wird. Die Beschichtung erfolgt vorzugsweise durch Eintauchen oder Durchziehen des beschichteten Substrats in beziehungsweise durch ein Bad, enthaltend das Beschichtungsmittel K2. Die Verweilzeiten des Substrats im Beschichtungsmittel K2 betragen vorzugsweise 1 Sekunde bis 15 Minuten, bevorzugt 10 Sekunden bis 10 Minuten und besonders bevorzugt 30 Sekunden bis 8 Minuten. Die Temperatur des Bads enthaltend das erfindungsgemäße Beschichtungsmittel liegt vorzugsweise zwischen 20 und 90 0C, bevorzugt zwischen 25 und 80 0C, besonders bevorzugt zwischen 30 und 70 0C.
Die Nassfilmdicke der mit dem Beschichtungsmittel K2 erzeugten Schicht beträgt nach der autophoretischen Applikation zwischen 5 und 1500 nm, vorzugsweise zwischen 15 und 1250, besonders bevorzugt zwischen 25 und 1000 nm.
Nach der Behandlung des Substrats mit dem Beschichtungsmittel K2 und vor der abschließenden Elektrotauchlackierung kann sich eine Trocknung des Verbunds aus Substrat und den Schichten aus den Beschichtungsmittel K1 sowie dem Beschichtungsmittel K2 bei Temperaturen zwischen ca. 30 und 200 0C, insbesondere zwischen 100 und 180 0C durchgeführt, wobei die Trocknungsapparatur für die vorteilhafte Wirkung des erfindungsgemäßen Beschichtungsmittel als weitgehend unkritisch angesehen werden kann.
Ganz besonders bevorzugt wird der Verbund aus Beschichtungsmittel K1 und Beschichtungsmittel K2 vor der abschließenden Elektrotauchla- ckierung abgelüftet, das heißt während eines Zeitraums von 30 Sekunden bis 30 Minuten, vorzugsweise während eines Zeitraum von 1 Minute bis 25 Minuten Temperaturen zwischen 25 und 120 0C, vorzugsweise zwischen 30 und 90 0C, ausgesetzt.
Die abschließende Elektrotauchlackierung (III) des erfindungsge- mäßen Beschichtungsverfahrens
Für die in Stufe (III) durchgeführte Elektrotauchlackierung sind prinzipiell alle kathodisch abscheidbaren Elektrotauchlacke geeignet. Bevorzugt werden kathodisch abscheidbare Elektrotauchlacke eingesetzt, welche hohen ökologischen Standards genügen, wie insbesondere von blei- oder chromhaltigen Korrosionsschutzpigmenten freie Elektrotauchlacke, wie sie beispielsweise in EP-A-O 528 853 beschrieben werden.
Als Bindemittel für die kathodisch abscheidbaren Elektrotauchlacke werden vorzugsweise aminmodifizierte Epoxyharze in Kombination mit Ver- netzern eingesetzt, wie sie beispielsweise in DE-A-35 18 770, DE-A-35 18 732, EP-A-O 102 501 , DE-A-27 01 002, US-A-4,104,147, EP-A-O 004 090, EP-A-O 012 463, US-A-4,031 ,050, US-A-3,922,253, US-A- 4,101 ,486, US-A-4,038,232 und US-A-4,017,438 beschrieben sind.
Die Elektrotauchlacke lassen sich problemlos auf den gemäß Stufe (I) bzw. Stufe (II) abgeschiedenen Schichten applizieren. Die Parameter für die elektrophoretische Abscheidung der Elektrotauchlackierungen entsprechen den technologisch gängigen Parametern.
Die in der Abfolge der Stufen (I) und (III) beziehungsweise der Stufen (I), (II) und (III) hergestellten Schichtverbunde werden im allgemeinen bei Temperaturen von 130 bis 200 0C, vorzugsweise bei Temperaturen von 150 bis 180 0C, während einer Zeitdauer von 15 bis 60 Minuten, vorzugsweise während einer Zeitdauer von 15 bis 30 Minuten, einge- brannt. Hierbei erfolgt eine intensive Vernetzung der in Stufe (III) aufgetragenen Elektrotauchlackschicht und der in der bevorzugten Stufe (II) aufgetragenen Schicht aus Beschichtungsmittel K2. Überraschenderweise haftet die Elektrotauchlackierung ausgezeichnet auf den gemäß Stufe (I) bzw, Stufe (II) abgeschiedenen Schichten. Die Schichtverbunde weisen darüber hinaus eine hervorragende Beständig- keit gegen Schlagbeanspruchung auf.
Die Beständigkeit gegen Korrosion ist ausgezeichnet und erfüllt die Anforderungen des Automobilbaus in hohem Maße.
Über die gemäß Stufe (III) aufgebrachte Schicht können insbesondere die bei der Automobilserienlackierung üblichen Schichten in der Reihenfolge Füller, Basislack und Klarlack in an sich bekannten Verfahren aufgebracht werden.
Das erfindungsgemäße Verfahren kann überraschenderweise auf einem großen Spektrum von Substraten zur Anwendung kommen und ist weitgehend vom Redoxpotential des Substrats unabhängig. Bevorzugte Substratmaterialien sind Zink, Eisen, Magnesium und Aluminium, sowie deren Legierungen, wobei die vorgenannten Metalle bevorzugt zu mindestens 20 Gew.-% in den Legierungen vorhanden sind. Vorzugsweise sind die Substrate als Bleche ausgeformt, wie sie beispielsweise in der Automobilindustrie, der Bauindustrie sowie der Maschinenbauindustrie zum Einsatz kommen.
Die im folgenden angeführten Beispiele sollen die Erfindung weiter ver- anschaulichen. Beispiele
Herstellbeispiel 1a: Herstellung des ersten Beckens mit dem Korrosionsschutzmittel K1 In einem Liter Wasser werden 1 ,77g (0,01 mol) Ammoniummolybdat- Tetrahydrat (A1 ) gelöst. Die Lösung wird mittels Salpetersäure (A2) auf einen pH = 2,5 eingestellt. Gegebenfalls wird zur Einstellung des vorgenannten pH-Werts mit wässriger Ammoniak -Lösung gegengepuffert.
Herstellbeispiel 2a: Synthese der Polymerkomponente P für das Korrosionschutzmittel K2
Es werden 5g (6,25*10"3 mol) eines Polyethylenimins mit einem mittleren Molekulargewicht Mw = 800 g/mol (Lupasol FG der Fa. BASF AG, Verhältnis von primären:sekundären:tertiären Aminogruppen (p-s-t): 1 :0,9:0,5) in 100g Ethanol unter Stickstoffatmosphäre vorgelegt und bei 750C innerhalb von 45 Minuten mit 10,7 g (0,066 mol) Benzoylisothiocy- anat gelöst in 86 g Ethanol versetzt. Man läßt noch 4h bei dieser Temperatur rühren und setzt das Produkt ohne weitere Reinigung ein.
Herstellbeispiel 2b: Synthese des Vernetzers V enthaltend das Salz S für das Korrosionsschutzmittel K2
Es werden 3,1g (0,008 mol) Cer(lll)chlorid Heptahydrat in 50 ml Wasser vorgelegt. Es wird eine Lösung aus 4,1g(0,025 mol) 4-Hydroxyzimtsäure und 1g (0,025 mol) Natronlauge in 50 ml Wasser hergestellt und mit Salzsäure auf pH=7,9 gebracht. Diese Lösung wird langsam zur Cer- Lösung gegeben, so daß der pH-Wert der Cer-Lösung nicht über 6 steigt. Der Niederschlag wird mit Ethanol und Wasser gewaschen. 1 ,7 g (0,003 mol) dieses Cer-Komplexes wird zusammen mit 9,1g (2,5% NCO-Gehalt) eines verzweigten und zu 75% mit Dimethylpyrazol blo- ckierten Polyisocyanats (Bayhydur VP LS 2319 der Fa. Bayer AG) in 80,1g Ethylacetat und 0,7 g einer OH-funktionellen Dipropylentriamins (Jeffcat-ZR 50 der Fa. Huntsmann) für fünf Stunden bei 4O0C zur Reaktion gebracht. Das Produkt wird ohne weitere Reinigung eingesetzt.
Herstellbeispiel 3: Herstellung des zweiten Beckens mit dem Kor- rosionsschutzmittel K2
In einem Liter Wasser werden jeweils 3g der Polymerkomponente P gemäß den Beispiel 2a und 2g des Vernetzers V gemäß Beispiel 2b gelöst. Die Lösung wird mittels Salpetersäure auf einen pH = 2,5 eingestellt. Gegebenfalls wird zur Einstellung des vorgenannten pH-Werts mit wäßriger Ammoniak-Lösung gegengepuffert.
Beispiel 4: Beschichtung des Substrats mit dem Korrosionsschutzmittel K1 (Stufe I) und Korrosionsschutzmittel K2 (Stufe II)
Das Substrat (Blech aus verzinktem Stahl) wird 5 Minuten bei 55°C in einer Reinigungslösung (Ridoline C72 der Fa. Henkel) gereinigt und danach mit destilliertem Wasser abgespült.
Anschließend wird das mit destilliertem Wasser abgespülte Blech sofort bei 45°C für 4 Minuten in das erste Becken des Korrosionsschutzmittels K1 gemäß Beispiel 1a eingetaucht. Danach wird das beschichtete Blech mit destilliertem Wasser abgespült und mit Stickstoff trockengeblasen. Direkt anschließend werden die Bleche für 5 Minuten bei 35°C in das zweite Becken des erfindungsgemäßen Korrosionsschutzmittels gemäß Beispiel 3a eingetaucht. Es bildet sich eine nicht sichtbare bis opaleszierende Schicht im λ/4-Bereich des sichtbaren Lichts aus. Danach wird das beschichtete Blech mit destilliertem Wasser abgespült und mit Stickstoff trockengeblasen. Das Blech wird danach für 2,5 Minuten bei 800C abgelüftet.
Beispiel 5: Beschichtung des gemäß Beispiel 4 beschichteten Blechs mit einem kathodischen Elektrotauchlack (Stufe III)
Das gemäß Beispiel 4 beschichtete und konditionierte Blech wird mit einem handelsüblichen bleifreien kathodischen Elektrotauchlack (Catho- guard ® 500 der Firma BASF Coatings AG) bei einer Badtemperatur von 32°C und einer Abscheidezeit von 120 Sekunden beschichtet und danach während 20 Minuten bei 175 0C ausgehärtet. Die Dicke der abgeschiedenen und ausgehärteten Schicht aus kathodischem Elektro- tauchlack beträgt 19 bis 20 μm.
Als Referenz wird ein mit einem handelsüblichen Phosphatierungsmittel (Gardobond 26S W42 MBZE3 der Firma Chemetall) beschichtetes Blech ebenfalls mit dem oben angeführten bleifreie Elektrotauchlack nach den oben angeführten Bedingungen beschichtet und ausgehärtet. Die Dicke der abgeschiedenen und ausgehärteten Schicht aus kathodischem Elektrotauchlack beträgt ebenfalls 19 bis 20 μm.
Beispiel 6: Schnellkorrosionstest mit Harrison-Lösung an den gemäß Beispiel 5 beschichteten Substraten Es wird eine Harrison Lösung (5g NaCL + 35g ( NH4 )2 SO4 ) in 1000ml vollentsalztem Wasser eingesetzt. Als Substrate können hier Stahl, verzinkter Stahl oder Zinklegierungen genutzt werden. Auf die mit der oben erläuterten Schicht beschichteten Proben (6*6 cm) wird ein Plastikzylinder mit einem Durchmesser von 48 mm und einer Höhe von 6 cm mit einem Kleber: Scrintec 600 Silikonkleber transparent, RTV 1 k Oxim- system (Firma Ralicks, 46459 Rees) auf die Oberfläche geklebt. In diesem Zylinder werden 70 ml Harrison Lösung gegeben. Mit diesen Proben wird eine elektrochemische Impedanzmessung (EIS) in einer 2- Elektrodenanordnung von 1 MHz bis 10OmHz mit einer Amplitude von 1 mV und offenem Potential durchgeführt mit einem Platinnetz als Gegenelektrode.
Die so präparierten Proben werden für insgesamt 20 Zyklen in einem Temperaturintervall von 25 0C bis 730C so bewittert, daß jeweils die maximale und die minimale Temperatur innerhalb von einer Stunde durch- laufen wird. Nach diesem wird der nun trockene Zylinder erneut mit 30 ml Harrison Lösung gefüllt, nach 10 Minuten Verweildauer wird diese Lösung zur Bestimmung der eventuell während der Bewitterung gelös- ten Ionen mittels ICP-OES (Inductively coupled Plasma - Optical Emission Spectrometry) verwendet. Anschließend wird wiederum 70 ml Har- rison Lösung in den Zylinder gegeben und eine erneute EIS Messung durchgeführt. Nach der EIS Messung wird eine erneute Bewitterung durch den Schnelltest durchgeführt und anschließend wiederum eine ICP-OES Probe genommen sowie eine weitere EIS-Messung vorgenommen. Die Messung wird durch eine Doppelbestimmung verifiziert.
Auswertung des Korrosionstests: a) ICP-OES Daten der Immersionslösung
Die ICP-OES Daten werden auf die Fläche der Proben normiert. Diese Daten ergeben einen linearen Verlauf. Aufgrund der Linearität der Korrosionskinetik, können die unterschiedlichen Beschichtungen durch die Steigungen des Graphen verglichen werden. Die ICP-OES Daten geben die Auflösung des Substrates pro Fläche und Zeit wieder und sind somit ein direktes Maß für die Korrosionsrate die bei einer jeweiligen Beschichtung möglich ist.
b) EIS Messungen
Die EIS Messungen können ebenfalls zur Messung der Korrosionskinetik herangezogen werden. Durch die Messung am Defekt wird dieser e- lektrochemisch erfaßt, d.h. die Oxidschicht des Substrates wird bestimmt. Unter der Voraussetzung, daß bei gleichen Bewitterungsbedin- gungen gleiches Oxidwachstum zu erwarten ist, stellt die Kapazität gemäß: ε 'n0J„ A
C =
ein Maß für die Fläche des frei gelegten Substrates dar, und diese wie- derum ein Maß für die Korrosionsrate. Je größer die Kapazität bzw. dessen Quadratwurzel ist, desto größer ist die Korrosionsrate. Die Quadratwurzel dieser Kapazität verhält sich annähernd linear zur reziproken Unterwanderung eines VDA-KWT Tests, so daß diese Werte als Maß für den Korrosionsschutz herangezogen werden können.
Auswertung des Korrosionstests:
Ergebnisse des Korrosionstests
Substrat Quadratwurzel der Kapazität
Verzinktes Stahlblech
Phosphatierung 26S W42 MBZE3 (Fa. Chemetall) Und Cathoguard ® 500 0,00172
Verzinktes Stahlblech beschichtet gemäß Beispiel 4 und Cathoguard ® 500 0,00163
Die Ergebnisse der Korrosionstests zeigen die Verbesserung des Korrosionsschutzes durch das erfindungsgemäße Beschichtungsmittels gegenüber einem handelsüblichen Korrosionsschutzmittel (Phosphatierung ).

Claims

Patentansprüche:
1. Verfahren zur Korrosionsschutzausrüstung metallischer Substrate, dadurch gekennzeichnet, daß
(I) in einer ersten Stufe das Substrat beschichtet wird durch stromfreies Eintauchen in ein wässriges Bad eines Korrosionsschutzmittels K1 mit einem pH-Wert zwischen 1 und 5, enthaltend mindestens (A1 ) eine Verbindung mit einem Lanthanid-Metall als Kation und/oder einem d-Element-Metall mit Ausnahme von Chrom als Kation und/oder einem d-Element-Metallat mit Ausnahme von chromhaltigen Metallaten als Anion sowie (A2) mindestens eine zur Oxidation befähigte Säure mit Aus- nähme von phosphorhaltigen und/oder chromhaltigen Säuren, wobei eine Konversion an der Substratoberfläche bewirkt wird und
(III) in einer abschließenden Stufe eine weitere Beschichtung durch Abscheidung eines kathodischen Elektrotauchlacks durchgeführt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Lanthanid-Metall- und/oder d-Element-Kationen enthaltende Verbindung (A1 ) mindestens eine Komponente aufweist, welche ausgewählt ist aus der Gruppe der Anionen oxidierender Säuren der Elemente der VI., VII. und VIII. Nebengruppe, der Elemente der V. und VI. Hauptgruppe des Periodensystems der Elemente, mit Ausnahme von Anionen phosphor- und/oder chromhaltiger
Säuren, der Halogenide, mit Ausnahme von Fluorid, und der po- tentiell anionischen komplexierenden ein- und/oder mehrzähni- gen Liganden.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass min- destens eine Komponente der Verbindung (A1 ) ein d-Element-
Metallat , wie insbesondere Wolframat, Permanganat, Vanadat und/oder Molybdat, ist.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekenn- zeichnet, daß die Säure (A2) ausgewählt ist aus der Gruppe der
Salpetersäure, der salpetrigen Säure, der Schwefelsäure und/oder der schwefligen Säure.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekenn- zeichnet, dass zwischen Stufe (I) und der abschließenden Stufe
(III) des Verfahrens eine weitere Beschichtungsstufe (II) erfolgt, in welcher das Substrat in ein Bad eines wässrigen Korrosionsschutzmittels K2 stromfrei getaucht wird, wobei K2 mindestens ein wasserdispergierbares und/oder wasserlösliches Polymerisat P mit kovalent gebundenenen Liganden L enthält, welche mit den bei der Korrosion des Substrats freigesetzten Metallionen und/oder der Substratoberfläche Chelate bilden, sowie mit vernetzenden funktionellen Gruppen B, die mit sich selbst, mit weiteren komplementären funktionellen Gruppen B' des Polymerisats P und/oder mit weiteren funktionellen Gruppen B und/oder B' an
Vernetzern V kovalente Bindungen ausbilden können.
6. Vefahren nach Anspruch 5, dadurch gekennzeichnet, dass das wässrige Korrosionsschutzmittel K2 zusätzlich ein Salz (S) ent- hält, welches als kationischen Bestandteil Lanthanidmetallkatio- nen und/oder d-Metallkationen aufweist.
7. Vefahren nach Anspruch 6, dadurch gekennzeichnet, dass die Lanthanidmetallkationen und/oder d-Metallkationen des Salzes (S) als Komplexe mit ein- und/oder mehrzähnigen Liganden vorliegen.
8. Verfahren nach Anspruch 5 bis 7, dadurch gekennzeichnet, dass die Vernetzer V kovalent gebundene Liganden L' aufweisen.
9. Verfahren nach einem der Ansprüche 5 bis 8, dadurch gekenn- zeichnet, dass die Liganden L ausgewählt sind aus der Gruppe
Harnstoffe, Amine, Amide, Imine, Imide, Pyridine, Organoschwe- felverbindungen, Organophosphorverbindungen, Organoborver- bindungen, Oxime, Acetylacetonate, Polyalkohole, Säuren, Phytinsäuren, Acetylene und/oder Carbene.
10. Verfahren nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, dass das Polymerisat P als Polymerrückgrat einen oder mehrere Bausteine ausgewählt aus der Gruppe Polyester, PoIy- acrylate, Polyurethane, Polyolefine, Polyalkohole, Polyvinylether, Polyvinylamine und Polyalkylenimin aufweist.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass in Stufe (I) die Verweilzeit des Substrats im wäßrigen Bad des Korrosionsschutzmittels K1 1 Sekunde bis 10 Minu- ten beträgt und die Temperatur des wässrigen Bads, enthaltend das Korrosionsschutzmittel K1 , zwischen 25 und 90 0C liegt.
12. Verfahren nach einem der Ansprüche 5 bis 11 , dadurch gekennzeichnet, dass in Stufe (II) die Verweilzeit des Substrats im wäß- rigen Bad des Korrosionsschutzmittels K2 1 Sekunde bis 15 Minuten beträgt und die Temperatur des wässrigen Bads enthaltend das Korrosionsschutzmittel K2 zwischen 25 und 90 0C liegt.
13. Verfahren nach einem der Ansprüche 5 bis 12, dadurch gekennzeichnet, dass die Dicke der in Stufe (II) mit dem Beschichtungs- mittel K2 erzeugten Schicht nach der autophoretischen Applikati- on zwischen 5 und 1500 nm beträgt.
14. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass in Stufe (I) die Schicht aus Beschichtungsmittel K1 vor der abschließenden Stufe (III) während eines Zeitraums von 30 Sekunden bis 30 Minuten, Temperaturen zwischen 25 und
120 0C, ausgesetzt wird.
15. Verfahren nach einem der Ansprüche 1 bis 4 und 14, dadurch gekennzeichnet, dass die Dicke der in Stufe (I) mit dem Be- Schichtungsmittel K1 erzeugten Schicht nach der autophoretischen Applikation zwischen 5 und 900 nm beträgt.
16. Verfahren nach einem der Ansprüche 5 bis 15, dadurch gekennzeichnet, dass in Stufe (II) der Verbund aus Beschichtungsmittel K1 und Beschichtungsmittel K2 vor der abschließenden Stufe (III) während eines Zeitraums von 30 Sekunden bis 30 Minuten, Temperaturen zwischen 25 und 120 0C, ausgesetzt wird.
17. Verfahren nach einem der Ansprüche 1 bis16, dadurch gekenn- zeichnet, dass nach Applikation der Elektrotauchlackierung der
Schichtverbund während eines Zeitraums von 15 bis 60 Minuten Temperaturen von 120 bis 200 0C ausgesetzt wird.
18. Verfahren nach einem der Ansprüche 1 bis 17, dadurch gekenn- zeichnet, daß das Substrat an der zu beschichtenden Oberfläche mindestens 20 Gew.-% eines Metalles enthält, das aus der Gruppe Fe, AI und/oder Zn ausgewählt ist.
PCT/EP2007/010945 2007-03-15 2007-12-13 Verfahren zur korrosionsschutzausrüstung metallischer substrate WO2008110195A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07856691A EP2118337A1 (de) 2007-03-15 2007-12-13 Verfahren zur korrosionsschutzausrüstung metallischer substrate
JP2009553012A JP2010521583A (ja) 2007-03-15 2007-12-13 金属製支持体の防蝕処理方法
US12/531,210 US20100098842A1 (en) 2007-03-15 2007-12-13 Process for corrosion-proofing metallic substrates

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007012406.8 2007-03-15
DE102007012406A DE102007012406A1 (de) 2007-03-15 2007-03-15 Verfahren zur Korrosionsschutzausrüstung metallischer Substrate

Publications (1)

Publication Number Publication Date
WO2008110195A1 true WO2008110195A1 (de) 2008-09-18

Family

ID=39212024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/010945 WO2008110195A1 (de) 2007-03-15 2007-12-13 Verfahren zur korrosionsschutzausrüstung metallischer substrate

Country Status (6)

Country Link
US (1) US20100098842A1 (de)
EP (1) EP2118337A1 (de)
JP (1) JP2010521583A (de)
CN (1) CN101636525A (de)
DE (1) DE102007012406A1 (de)
WO (1) WO2008110195A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010088946A1 (de) 2009-02-05 2010-08-12 Basf Coatings Ag Korrosionsstabile mehrschichtlackierung und verfahren zu deren herstellung
US10137476B2 (en) 2009-02-05 2018-11-27 Basf Coatings Gmbh Coating agent for corrosion-resistant coatings

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8241524B2 (en) * 2009-05-18 2012-08-14 Henkel Ag & Co. Kgaa Release on demand corrosion inhibitor composition
KR101866240B1 (ko) * 2011-04-12 2018-06-11 닛산 가가쿠 고교 가부시키 가이샤 하이퍼브랜치 폴리머 및 금속 미립자를 포함하는 무전해 도금 하지제
CN102702818A (zh) * 2012-06-12 2012-10-03 天长市巨龙车船涂料有限公司 一种防锈涂料
US9963786B2 (en) 2013-03-15 2018-05-08 Henkel Ag & Co. Kgaa Inorganic composite coatings comprising novel functionalized acrylics
CN103450866B (zh) * 2013-09-06 2015-11-25 中国海洋石油总公司 一种高温二氧化碳缓蚀剂
US20210371678A1 (en) * 2020-05-28 2021-12-02 Axalta Coating Systems Ip Co., Llc Electrocoating composition
US20210371679A1 (en) * 2020-05-28 2021-12-02 Axalta Coating Systems Ip Co., Llc Electrocoating composition
CN115449781B (zh) * 2022-08-15 2023-08-01 无锡茂源金属结构件有限公司 一种钢格栅防腐涂料及一种耐腐蚀钢格栅的表面处理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001046495A2 (en) * 1999-12-21 2001-06-28 Ppg Industries Ohio, Inc. Coated metal substrates and methods for preparing and inhibiting corrosion of the same
EP1571237A1 (de) * 2002-12-13 2005-09-07 Nihon Parkerizing Co., Ltd. Behandlungsfluid für die oberflächenbehandlung von metall und oberflächenbehandlungsverfahren
DE102005023728A1 (de) * 2005-05-23 2006-11-30 Basf Coatings Ag Lackschichtbildendes Korrosionsschutzmittel und Verfahren zu dessen stromfreier Applikation

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3799854A (en) 1970-06-19 1974-03-26 Ppg Industries Inc Method of electrodepositing cationic compositions
US3922253A (en) 1971-10-28 1975-11-25 Ppg Industries Inc Self-crosslinking cationic electrodepositable compositions
US4038232A (en) 1972-12-19 1977-07-26 Ppg Industries, Inc. Electrodepositable compositions containing sulfonium resins and capped polyisocyanates
US3964936A (en) * 1974-01-02 1976-06-22 Amchem Products, Inc. Coating solution for metal surfaces
US4017438A (en) 1974-12-16 1977-04-12 Ppg Industries, Inc. Ketimine-blocked primary amine group-containing cationic electrodepositable resins
US4101486A (en) 1975-03-26 1978-07-18 Ppg Industries, Inc. Cationic electrodepositable compositions
CA1111598A (en) 1976-01-14 1981-10-27 Joseph R. Marchetti Amine acide salt-containing polymers for cationic electrodeposition
AT356779B (de) * 1978-03-13 1980-05-27 Herberts & Co Gmbh Kathodisch abscheidbares waesseriges elektro- tauchlack-ueberzugsmittel
ZA796485B (en) 1978-12-11 1980-11-26 Shell Res Ltd Thermosetting resinous binder compositions,their preparation,and use as coating materials
DE3322766A1 (de) * 1982-09-07 1984-03-08 Basf Farben + Fasern Ag, 2000 Hamburg Hitzehaertbare bindemittelmischung
DE3518770A1 (de) 1985-05-24 1986-11-27 BASF Lacke + Farben AG, 4400 Münster Wasserverduennbare bindemittel fuer kationische elektrotauchlacke und verfahren zu ihrer herstellung
DE3518732A1 (de) * 1985-05-24 1986-11-27 BASF Lacke + Farben AG, 4400 Münster Wasserverduennbare bindemittel fuer kationische elektrotauchlacke und verfahren zu ihrer herstellung
DE3727382A1 (de) 1987-08-17 1989-03-02 Henkel Kgaa Addukte von carbonsaeuren und isocyanaten an epoxide, derartige addukte enthaltende waessrige dispersionen, verfahren zu ihrer herstellung und ihre verwendung in der autophoretischen beschichtung metallischer oberflaechen
DE3817469A1 (de) * 1988-05-21 1989-11-30 Hoechst Ag Harnstoffgruppen enthaltende dispersionspolymerisate auf basis ethylenisch ungesaettigter monomerer, verfahren zu ihrer herstellung und ihre verwendung
DE4015703A1 (de) 1990-05-16 1991-11-21 Basf Lacke & Farben Verfahren zum beschichten elektrisch leitfaehiger substrate und kathodisch abscheidbarer waessriger elektrotauchlack
US5196487A (en) * 1990-06-12 1993-03-23 Kansai Paint Company, Limited Corrosion preventive resin and photopolymerizable composition incorporating same
US5221371A (en) * 1991-09-03 1993-06-22 Lockheed Corporation Non-toxic corrosion resistant conversion coating for aluminum and aluminum alloys and the process for making the same
US5567761A (en) * 1993-05-10 1996-10-22 Guertin Bros. Coatings And Sealants Ltd. Aqueous two-part isocyanate-free curable, polyurethane resin systems
DE4409306A1 (de) * 1994-03-18 1995-09-21 Basf Ag Verfahren zur Modifizierung von Metalloberflächen
MX9702065A (es) 1994-09-30 1997-06-28 Henkel Corp Tratamiento para mejorar la resistencia a la corrosion de revestimientos autodepositados sobre superficies metalicas.
DE19754108A1 (de) 1997-12-05 1999-06-10 Henkel Kgaa Chromfreies Korrosionsschutzmittel und Korrosionsschutzverfahren
US6319987B1 (en) * 1998-08-31 2001-11-20 Ppg Industries Ohio, Inc. Thermosetting compositions containing hydroxyl-functional polymers prepared using atom transfer radical polymerization
DE19858708A1 (de) 1998-12-18 2000-06-21 Basf Coatings Ag Verfahren zur Herstellung eines polymeren Umsetzungsprodukts
US6569956B1 (en) 1999-12-22 2003-05-27 Basf Corporation Hyperbranched polyol macromolecule, method of making same, and coating composition including same
AUPQ633300A0 (en) * 2000-03-20 2000-04-15 Commonwealth Scientific And Industrial Research Organisation Process and solution for providing a conversion coating on a metallic surface ii
US20030082391A1 (en) * 2001-06-05 2003-05-01 Henkel Corporation Multilayer coatings for metal substrates
US7063895B2 (en) * 2001-08-01 2006-06-20 National Starch And Chemical Investment Holding Corporation Hydrophobically modified solution polymers and their use in surface protecting formulations
US6927271B2 (en) * 2002-01-10 2005-08-09 Basf Corporation Hydroxyl and carbamate functional resins
US6784248B2 (en) * 2002-02-15 2004-08-31 Ppg Industries Ohio, Inc. Thermosetting compositions containing alternating copolymers of isobutylene type monomers
DE10206983A1 (de) 2002-02-20 2003-09-04 Basf Coatings Ag Verfahren zur Herstellung wässriger Dispersionen von Blockmischpolymerisaten
US7388044B2 (en) * 2002-07-15 2008-06-17 Henkel Kommanditgesellschaft Auf Aktien Coatings with enhanced water-barrier and anti-corrosive properties
DE10236133A1 (de) * 2002-08-07 2004-02-26 Byk-Chemie Gmbh Verwendung von Gradientencopolymeren als Dispergiermittel zur Behandlung von Pigmenten und Feststoffen
DE10256226A1 (de) 2002-12-02 2004-06-17 Basf Coatings Ag Verfahren zur Herstellung von Mischpolymerisaten olefinisch ungesättigter Monomere
US7385012B2 (en) * 2003-11-03 2008-06-10 Ilypsa, Inc. Polyamine polymers
US7323511B2 (en) * 2004-01-21 2008-01-29 University Of Massachusetts Lowell Post-coupling synthetic approach for polymeric antioxidants
DE102005023729A1 (de) 2005-05-23 2006-11-30 Basf Coatings Ag Korrosionsschutzmittel und Verfahren zu dessen stromfreier Applikation
DE102009007633B4 (de) * 2009-02-05 2013-09-26 Basf Coatings Ag Mehrstufiges Verfahren zur Lackierung metallischer Substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001046495A2 (en) * 1999-12-21 2001-06-28 Ppg Industries Ohio, Inc. Coated metal substrates and methods for preparing and inhibiting corrosion of the same
EP1571237A1 (de) * 2002-12-13 2005-09-07 Nihon Parkerizing Co., Ltd. Behandlungsfluid für die oberflächenbehandlung von metall und oberflächenbehandlungsverfahren
DE102005023728A1 (de) * 2005-05-23 2006-11-30 Basf Coatings Ag Lackschichtbildendes Korrosionsschutzmittel und Verfahren zu dessen stromfreier Applikation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010088946A1 (de) 2009-02-05 2010-08-12 Basf Coatings Ag Korrosionsstabile mehrschichtlackierung und verfahren zu deren herstellung
DE102009007633A1 (de) 2009-02-05 2010-08-19 Basf Coatings Ag Korrosionsstabile Mehrschichtlackierung und Verfahren zu deren Herstellung
US20120128885A1 (en) * 2009-02-05 2012-05-24 Basf Coatings Gmbh Corrosion-resistant multilayer varnish and method for the production thereof
DE102009007633B4 (de) * 2009-02-05 2013-09-26 Basf Coatings Ag Mehrstufiges Verfahren zur Lackierung metallischer Substrate
US10137476B2 (en) 2009-02-05 2018-11-27 Basf Coatings Gmbh Coating agent for corrosion-resistant coatings

Also Published As

Publication number Publication date
CN101636525A (zh) 2010-01-27
EP2118337A1 (de) 2009-11-18
US20100098842A1 (en) 2010-04-22
DE102007012406A1 (de) 2008-09-18
JP2010521583A (ja) 2010-06-24

Similar Documents

Publication Publication Date Title
EP1883679B1 (de) Lackschichtbildendes korrosionsschutzmittel und verfahren zu dessen stromfreier applikation
EP2118337A1 (de) Verfahren zur korrosionsschutzausrüstung metallischer substrate
EP2133371B1 (de) Lackschichtbildendes Korrosionsschutzmittel mit guter Haftung und Verfahren zu dessen stromfreier Applikation
DE102009007633B4 (de) Mehrstufiges Verfahren zur Lackierung metallischer Substrate
WO2007020220A1 (de) Polymerzusammensetzung für den korrosionsschutz
WO2000071626A1 (de) Chromfreies korrosionsschutzmittel und korrosionsschutzverfahren
EP2094793A1 (de) LACKSCHICHTBILDENDES KORROSIONSSCHUTZMITTEL MIT VERMINDERTER RIßBILDUNG UND VERFAHREN ZU DESSEN STROMFREIER APPLIKATION
DE69612216T2 (de) Metallblech mit rostpreventiver organischer beschichtung, verfahren zu dessen herstellung und behandlungsflüssigkeit dafür
WO2010089017A1 (de) Beschichtungsmittel für korrosionsstabile lackierungen
EP1570109B1 (de) Verfahren zur beschichtung von metallsubstraten mit einem radikalisch polymerisierbaren berzugsmittel und beschichtete subst rate
EP2430101A1 (de) Anionische netzmittel zur stabilisierung selbstabscheidender zusammensetzungen enthaltend oxidische pigmente
WO2015090469A1 (de) Verfahren zur herstellung einer pigmentpaste, wässriger elektrotauchlack, verwendung desselben, verfahren zur kataphoretischen elektrotauchlackierung und beschichteter gegenstand
EP2691557A1 (de) Polymerer korrosionsinhibitor für metalloberflächen und dessen herstellung
WO2011138290A1 (de) Verfahren zur autophoretischen beschichtung, beschichtungsrnittel und mehrschichtlackierung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780052156.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07856691

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007856691

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009553012

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12531210

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE