WO2008107562A2 - Separation method - Google Patents

Separation method Download PDF

Info

Publication number
WO2008107562A2
WO2008107562A2 PCT/FR2008/000094 FR2008000094W WO2008107562A2 WO 2008107562 A2 WO2008107562 A2 WO 2008107562A2 FR 2008000094 W FR2008000094 W FR 2008000094W WO 2008107562 A2 WO2008107562 A2 WO 2008107562A2
Authority
WO
WIPO (PCT)
Prior art keywords
loop
pressure
charge
injection
valve
Prior art date
Application number
PCT/FR2008/000094
Other languages
French (fr)
Other versions
WO2008107562A3 (en
Inventor
Wieslaw Majewski
Original Assignee
Novasep
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novasep filed Critical Novasep
Publication of WO2008107562A2 publication Critical patent/WO2008107562A2/en
Publication of WO2008107562A3 publication Critical patent/WO2008107562A3/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N30/22Injection in high pressure liquid systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/14Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to the introduction of the feed to the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/18Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns
    • B01D15/1814Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns recycling of the fraction to be distributed
    • B01D15/1821Simulated moving beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/18Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns
    • B01D15/1814Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns recycling of the fraction to be distributed
    • B01D15/1857Reactive simulated moving beds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N30/20Injection using a sampling valve
    • G01N2030/202Injection using a sampling valve rotary valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed
    • G01N2030/328Control of physical parameters of the fluid carrier of pressure or speed valves, e.g. check valves of pumps

Definitions

  • the present invention relates to a process for separating compounds from a mixture.
  • special attention should be paid to injecting the mixture to be separated into the device. Indeed, a poor injection can decrease the resolution and decrease the performance of the process.
  • the used eluent is under pressure and contains a compound that is gaseous at ambient pressure and temperature, uncontrolled changes of state should also be avoided.
  • US 2003/0034307 discloses a charge injection method in a chromatography column traversed by a high pressure mobile phase.
  • the mobile phase is the sum of two separate streams.
  • the first stream comprises a mixture of highly compressed gas, compressed liquid or a supercritical fluid.
  • the second stream comprises a relatively incompressible liquid.
  • the method includes injecting a charge into the second stream with a single injection valve at a point between pumping the second stream and mixing the first and second streams.
  • US-B-6 428 702 discloses a charge injection method in a stream containing a mixture of highly compressible gas, compressible liquid or supercritical fluid, and a relatively incompressible liquid.
  • the method comprises a step in which the flow contained in an injection loop of a multipoint injection valve is prevented from relaxing in the environment through an injection point by placing a control valve between the loop and the injection point.
  • the method also includes diverting the stream from the injection loop to a reject collection system.
  • the control valve prevents the contents of the loop from relaxing in the environment through the injection point which is a syringe; the content of the loop relaxes through the reject collection system. Then, for the loading of the loop which is carried out at atmospheric pressure, the user can safely inject a new charge through the control valve.
  • the loop when the loop is put in the injection position, it goes from a low pressure to a high pressure, the content of the loop can then be compressed brutally and induce a mixture of a loop that would be partially filled.
  • the invention proposes a process for separating compounds from a charge in a chromatography device comprising a charge loop characterized in that the loop is movable between a charge charging position and a charge injection position in a the device and is maintained at a pressure above atmospheric pressure in the different positions.
  • the loop is maintained at a pressure substantially greater than atmospheric pressure, preferably greater than 2 bar, more preferably greater than 5 bar in the different positions.
  • the loop is maintained at a pressure substantially greater than or equal to the pressure of the device in the different positions.
  • the loop is maintained at a pressure greater than the pressure of the device when it is in the loading position.
  • the method is in a chromatography device comprising a charge loop, a charging duct, a loop discharge duct and a pressure controller on the discharge duct, characterized in that it includes the following steps:
  • the method is in a chromatography device comprising a charge injection member between the charge loop and an eluent pump, characterized in that it comprises the following steps:
  • the method further comprises a step of separating the charge in the chromatography device.
  • the fluid is deflected through the charge channel when the loop is in the injection position by means of at least one multi-way valve.
  • a 6-way valve or a set of valves having at least two channels is used.
  • the separation process in a chromatography device is a multicolumn process.
  • the separation process in a chromatography device is a process chosen from the VariCol, Simulated Mobile Bed or steady-state recycling or Cyclojet® processes.
  • the process uses an eluent containing at least carbon dioxide, in the form of gas, of dissolved, liquid or supercritical gases.
  • FIG. 5 an injection loop implemented within a set of three-way valves
  • FIG. 6, a variant of a chromatography device of FIG. 1.
  • the invention relates to a process for separating compounds from a charge in a chromatography device, the device comprising a charging loop.
  • the charge loop is movable between a charge charging position and a charge injection position in the device.
  • the loop is maintained at a pressure greater than the atmospheric pressure in the device in the different positions.
  • FIG. 1 shows a chromatography device.
  • the device 10 comprises a chromatography column 12 and inlet ducts 14 and outlet ducts 16 of the column.
  • the conduit 14 allows the introduction of the eluent and a charge into the column 12 and the conduit 16 allows the evacuation from the column of the fluid containing at least partially separated compounds.
  • the outlet duct 16 may be connected to the inlet duct 14 so as to circulate the fluid again in the column 12 if for example the separation of the compounds is incomplete.
  • the recycling is represented by the dashed lines 21 in FIG. 1.
  • the outlet duct 16 may comprise fraction collection members 17. The fractions contain the at least partially separated compounds.
  • the device 10 may comprise a column 12 or a set of chromatographic columns or sections of chromatographic columns containing a stationary or adsorbent phase, the columns are connected in series.
  • the column or columns can be mounted in an open loop; the column (s) can be mounted in a closed loop, the column (s) having an input and an output, the output of a column being connected to a subsequent column entry.
  • the device will be described in a nonlimiting manner with a column.
  • the eluent can be a liquid or a gas, or a mixture of liquid (s) and or gas at atmospheric pressure; more generally, the eluent is a fluid.
  • the eluent can be an incompressible liquid.
  • the eluent can be a supercritical eluent.
  • a supercritical state is a state characterized by either a pressure and a temperature respectively greater than the pressure and critical temperature of the body in the case of a pure body, or by a pressure and a temperature respectively greater than the pressure and the temperature.
  • the invention makes it possible to maintain in a homogeneous state any eluent containing at least one pure body which is gaseous at ambient pressure and temperature (ie 25 ° C. and an atmosphere).
  • the maintenance of pressure by virtue of the invention also makes it possible to keep a variety of different fluid mixtures and therefore of different eluents homogeneous.
  • Figure 1 also shows a six-way charge injection valve.
  • the valve 20 allows the injection of charge in the device 10.
  • the valve 20 can inject a fresh charge into the device during operation; charge injection takes place during the separation of the compounds from the charge. This makes it possible to avoid interrupting the operation of the device and to waste time in the process of separating the compounds.
  • the six-way valve 20 is actuated to move to different loading and charge injection positions.
  • the supply of the device 10 in eluent fluid is not shown in Figure 1 but is performed before the channel 101.
  • FIGS 2 and 3 show more precisely an example of the valve 20.
  • the valve 20 comprises channels 22, 24, 26 ensuring the circulation of the fluid in the valve.
  • the valve 20 also has a charge injection loop 28.
  • the charge injection loop 28 is a reservoir of fluid to be injected.
  • the valve 20 has orifices 30, 32, 34, 36, 38, 40 connecting the channels to each other and the valve 20 to a charging duct 42, to a discharge duct 44 and to the chromatography device 10.
  • the permutation of the valve 20 allows the driving of the orifices and channels to different positions, to put the valve 20 in different positions.
  • the advantage of such a valve 20 is to allow the injection of fresh feed in a simple manner.
  • FIG. 2 shows the injection valve 20 in the loading position; the injection loop 28 can then be loaded with a load volume.
  • the loading orifice 30 of the valve 20 is connected to the loading conduit 42.
  • the charging conduit 42 includes a charge pump 46 from a charging container 48.
  • the discharge port 32 of the valve 20 is connected to the discharge conduit 44, through which the contents of the loop 28 can be discharged into a collection tank 50.
  • the orifice 30 is connected to the orifice 32 via the channel 22, the loading injection loop 28 and the channel 24. In this position of the valve 20, the fresh charge can be introduced into the charge injection loop 28 in the vessel 48.
  • a fluid - preferably eluent from a previous circulation of the fluid through the loop - present in the loop 28 charge injection is evacuated to the waste collection bin 50 and is replaced by the fresh load.
  • all the fluid present in the loop is not necessarily evacuated in full. It suffices to evacuate a volume of fluid corresponding to the volume of charge to be injected, the invention can thus indifferently work with a loop 28 of charge injection partially or completely filled.
  • FIG. 2 shows that the operation of the device 10 is not interrupted. Indeed, the orifices 36 and 38 of the valve 20 ensure the connection of the valve 20 to the device 10 and the circulation of the fluid in the device via the loop, and via the channel 26 in particular.
  • the fluid circulates in ducts 101 and 102 of the device via the channel 26 of the loop, along the arrow 52 in the duct 101 and along the arrow 54 in the duct 102.
  • Figure 3 shows the injection valve 20 in the injection position; the charge is then injected into the device.
  • the valve 20 has undergone a permutation allowing a switching of the orifices and channels of the valve 20.
  • the channel 22 is interposed between the charging conduit 42 and the evacuation conduit 44, via the orifices 30 and 32.
  • the charge injection loop 28 is placed between the conduits 101 and 102 of the device 10. More specifically, the orifice 38 connects the valve 20 to the conduit 101 and the orifice 36 connects the valve 20 to the conduit 102
  • the ducts 101 and 102 are connected within the valve by the channel 26, the charge injection loop 28 and by the channel 24.
  • the fluid circulating in the device 10 makes it possible to inject the charge into the device; the fluid enters the valve 20 by pushing the charge present in the charge injection loop 28 out of the valve 20 to the device 10. More specifically, the charge is interposed in the device 10; indeed, the entire load is pushed substantially a block in the device. This avoids the dilution of the load in the device as is the case when an injection in the device using an injection pump. In these latter cases, the charge being injected into the circulating fluid, the charge is then distributed and diluted in the fluid. In contrast to this, the invention allows the charge to enter the device without being diluted upon injection; the charge injection is more precise and the separation is more efficient.
  • the valve 20, and in particular the loop 28, is maintained at a pressure greater than atmospheric pressure. This ensures that the loop 28 is at a pressure closer to the pressure in the device; this makes it possible to reduce the pressure differences between the pressure of the loop and the pressure in the device. This improves injection and separation; likewise, it makes it possible to protect the equipment for implementing the separation process.
  • the pressure in the loop is substantially greater than atmospheric pressure, for example greater than 2 bar, or even greater than 5 bar.
  • the pressure in the loop is greater than or equal to the pressure of the chromatography device in the different positions (for example at a pressure greater than or equal to 60 bars, or even greater than or equal to 70 bars).
  • the loop 28 is maintained under pressure during the loading and injection steps. In all cases, this improves injection and separation; likewise, it makes it possible to protect the equipment for implementing the separation process.
  • the separation by chromatography of compounds of a charge is carried out in the device at high pressures.
  • a pressure greater than 73 bar in the case of a supercritical separation operating with CO2, a pressure greater than 73 bar.
  • the charge is loaded in a loop at atmospheric pressure; when the loop of this document is permuted into the injection position in the device operating between 100 and 600 bar, a sudden rise in pressure occurs within the loop. This produces a compression of the loop which implies an entry of eluent and a risk of dilution of the charge to be treated.
  • the loop is switched to the loading position at atmospheric pressure, an expansion of the fluid present in the loop results in a sudden increase in the volume of fluid.
  • the valve 20, and in particular the loop 28, is maintained at a pressure substantially greater than the atmospheric pressure, preferably greater than or equal to the pressure of the device. So, when the loop is switched from the loading position (FIG. 2) to the injection position (FIG. 3), the increase in pressure is minimized or even canceled in the valve 20, which reduces or avoids the risk of dilution and renders the precise charge injection. Similarly, when the loop is switched from the injection position ( Figure 3) to the loading position ( Figure 2), there is no return to atmospheric pressure in the valve 20 which avoids a relaxation of the fluid and an unpleasant explosion sensation for the operator.
  • a control device 58 makes it possible to maintain a pressure in the valve 20 (and in particular in the loop 28) substantially greater than the atmospheric pressure, preferably greater than or equal to the pressure in the device 10 during the loading and injection.
  • the pressure controller 58 is on the exhaust duct 44.
  • the pressure of the valve 20 is controlled.
  • the pressure controller 58 may be a valve, a calibrated valve, an overflow or even a pressure regulating valve.
  • Figure 1 shows the valve 20 in the loading position.
  • the 102 of the device are interconnected, the fluid being circulated in the device; during the circulation of the fluid, and in particular the elution of the fluid along the column 12, the valve 20 is loaded.
  • the charge injection loop 28 is connected on the one hand to the loading duct 42 and on the other hand to the exhaust duct 44.
  • the pressure controller 58 provides control of the pressure in the loop. The loop is then switched to the injection position so that the charge injection loop 28 is connected to the conduits 101 and 102; the fresh charge is interposed in the circulating fluid in the device.
  • the method makes it possible to control the pressure in the loop when the loop is in the loading position. For example, it avoids a sudden relaxation of the fluid of the loop and a sudden increase in the volume of the fluid, resulting in an uncomfortable explosion sensation for the operator.
  • the method comprises a loading step by the loading pipe 42 of the loop which is in the loading position; in particular, the charge injection loop 28 connects the conduits 42 and 44. During the pumping of the charge to be treated in the injection loop 28, the pressure rises, until it reaches the control pressure imposed by the pressure controller 58.
  • the loop is discharged through the exhaust duct 44 of the loop in the loading position; the method also comprises a step of controlling the pressure of the valve 20 by the pressure controller 58 of the exhaust duct.
  • the loop is placed at a pressure too low, for example atmospheric, through the exhaust duct 44; in particular, it is avoided that the charge injection loop 28 is put at a lower pressure.
  • the device is thus protected against risks of projection in the exhaust duct 44.
  • the channel 26 is interposed between the ducts 101 and 102 and is traversed by the fluid circulating in the device; this channel 26 is then at the pressure of the device.
  • the entire loop is at a pressure substantially greater than the atmospheric pressure, preferably greater than or equal to the pressure of the device.
  • the method makes it possible to control the pressure of the loop when the loop is in the injection position.
  • the injection loop 28 is interposed between the conduits 101 and 102 of the device; the loop is therefore at the pressure of the device.
  • the channel 22 which is filled with fluid - preferably eluent - at the pressure of the device, is between the conduits 42 and 44; the pressure controller 58 makes it possible to control the pressure in the channel 22, and in particular, the pressure controller 58 prevents atmospheric pressure being exerted on the channel 22.
  • the pressure of the injection loop 28 can be controlled by the pressure controller 58 by using a device composed of several automatic two-way valves 201 to 206.
  • the valves 202, 204 and 206 are open and the valves valves 201, 203 and 205 are closed, the charge injection loop 28 is in the loading position.
  • the valves 202, 204 and 206 are closed and the valves 201, 203 and 205 are open, and the fluid circulating in the device 10 according to the arrows 52 and 54 makes it possible to inject the charge into the device, the loop of charge injection 28 is in position.
  • the pressure in the device is then regulated either by the chromatographic device located after the channel 54 or by the pressure controller 58.
  • the pressure of the injection loop 28 can be controlled by the pressure controller 58 by using a device composed of several 3-way automatic valves 301 to 304.
  • the pressure in the device is then regulated either by the device chromatograph located after the channel 54 is by the pressure controller 58.
  • the loop can be in the loading position when the valves 301 and 302 are switched to the loop 28 (the valves 304 and 303 are switched so as to connect the conduits 101 and 102 to each other); the loop may be in the injection position when the valves 303 and 304 are switched to the loop 28 (the valves 301 and 302 being switched so as to connect the conduits 42 and 44 together).
  • Figures 2 to 5 are illustrative of the principle of the invention and does not in any way restrict the technology of automatic valves presented. Indeed, the invention is relevant that at least one multi-way valve, for example a 6-way valve, a set of 3-way valves or a set of 2-way valves, or even combinations of different valve technologies, is used. .
  • the positions of the loop are not limited to two.
  • An advantage of maintaining the loop at a pressure higher than the atmospheric pressure is that it is possible to use a loop of a larger volume than the volume of charge to be injected without having or limiting a compression phenomenon at the moment of the putting the injection loop online.
  • the pressure of the loop being maintained at a pressure substantially greater than atmospheric pressure, preferably greater than or equal to the pressure of the device during loading and injection, there is therefore a limitation see cancellation of the pressure increase that occurs during the injection; there is therefore a control of the compression of the content of the loop at the time of setting in the injection position.
  • a loop comprising a larger volume can be used.
  • a loop having a volume for example between 1 ml and 10 ml. This makes it possible to inject variable volumes of charge during the operation of the device, while using the same loop.
  • the pump 46 can be used to pump a volume corresponding to the volume of charge to be injected; this reduces the load times of the loop.
  • the pump 46 can pump smaller volumes than the volume to charge to inject, the loop being loaded in several pumping cycles; the charging time is longer, but the pump can be less expensive.
  • the charge injection loop 28 is a pressure-resistant volume large enough to hold the charge to be treated.
  • the charge injection loop 28 must also make it possible to avoid the dispersion of the load in the loop when the latter is partially filled.
  • the charge injection loop 28 may be chosen from, without being limiting, a tube whose length is at least ten times greater than the diameter, wound in a coil or a volume preferably of tubular geometry. filled with a packing which limits the dispersion when the charge injection loop 28 is partially filled.
  • FIG. 6 shows a variant of the device 10 of FIG. 1.
  • FIG. 6 shows another way of injecting the charge into the device 10.
  • the device comprises an injection device 60.
  • the member 60 makes it possible to inject the charge into the device; the member 60 may be a manual injection member.
  • the injection member 60 may be disposed between the pump 46 and the loop 28 of the charge injection valve 20.
  • the pump 46 of the device 10 no longer pumps the charge but a liquid solvent from a reservoir 62. 60 allows the injection of the charge into the solvent. This makes it possible to prevent the conduit between the pump 46 and the loop 28 of the injection valve 20 from being filled with charge; on the contrary, the member 60 allows to inject into the device 10 only the desired amount of charge.
  • a 6-way injection valve can be used as an example of injection member 60.
  • the member 60 comprises a volume 64; in the loading position of the member 60, a desired quantity of charge is introduced into the volume 64 of the member 60, possibly manually.
  • the load is for example introduced using a syringe 70.
  • the member 60 is then permuted so as to place the volume 64 in the injection position in the conduit that leads to the loop 28 of the valve 20. injection.
  • the pump 46 circulates the solvent in the volume 64 so as to direct the charge to the loop 28 of the injection valve 20 whose operation is described above.
  • the member 60 is then placed again in the loading position.
  • a 6-way valve as an injection member makes it possible to manually inject the charge securely into the injection valve 20 which is kept under pressure as described above. Furthermore, the member 60 also prevents the passage of the load in the pump 46, which prevents contamination of the load.
  • the member 60 finds a particular interest in testing the column 12 of the device 10.
  • the member 60 makes it possible to manually and occasionally inject one or a few quantities of filler to test the efficiency of the column 12 or certain elution conditions. Once the test is carried out, the member 60 can be removed (and the pump 46 pumps the load again) or left in the position of FIG.
  • the device comprises in some cases an actuator for changing the position of the loop.
  • the actuator is electric or pneumatic.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

The invention relates to a method for separating compounds in the load of a chromatography device comprising a load loop, characterised in that the loop is movable between a load loading position and a load injection position into the device, and is maintained under a pressure higher than the atmospheric pressure in the different positions. The invention is used for preventing a pressure variation that would be detrimental to the device and the separation method.

Description

PROCEDE DE SEPARATION SEPARATION METHOD
La présente invention concerne un procédé de séparation de composés d'un mélange. Lors de la séparation de composés d'un mélange dans un dispositif de chromatographie, il convient de porter une attention particulière à l'injection du mélange à séparer dans le dispositif. En effet, une mauvaise injection peut diminuer la résolution et diminuer les performances du procédé. Dans le cas où l'éluant utilisé est sous pression et contient un composé qui est gazeux à pression et température ambiante, il convient également d'éviter les changements d'états non contrôlés.The present invention relates to a process for separating compounds from a mixture. When separating compounds from a mixture in a chromatography device, special attention should be paid to injecting the mixture to be separated into the device. Indeed, a poor injection can decrease the resolution and decrease the performance of the process. In the case where the used eluent is under pressure and contains a compound that is gaseous at ambient pressure and temperature, uncontrolled changes of state should also be avoided.
Le document US 2003/0034307 décrit un procédé d'injection de charge dans une colonne de chromatographie traversée par une phase mobile à haute pression. La phase mobile est la somme de deux flux séparés. Le premier flux comprend un mélange de gaz hautement compressé, de liquide compressé ou d'un fluide supercritique. Le deuxième flux comprend un liquide relativement incompressible. Le procédé comprend l'injection d'une charge dans le deuxième flux avec une unique valve d'injection en un point entre le pompage du deuxième flux et le mélange des premiers et deuxième flux.US 2003/0034307 discloses a charge injection method in a chromatography column traversed by a high pressure mobile phase. The mobile phase is the sum of two separate streams. The first stream comprises a mixture of highly compressed gas, compressed liquid or a supercritical fluid. The second stream comprises a relatively incompressible liquid. The method includes injecting a charge into the second stream with a single injection valve at a point between pumping the second stream and mixing the first and second streams.
Le document US-B-6 428 702 décrit un procédé d'injection de charge dans un flux contenant un mélange de gaz hautement compressible, de liquide compressible ou de fluide supercritique, et un liquide relativement incompressible. Le procédé comprend une étape au cours de laquelle le flux contenu dans une boucle d'injection d'une valve d'injection multipoint est empêché de se détendre dans l'environnement à travers un point d'injection en plaçant une valve de contrôle entre la boucle et le point d'injection. Le procédé comprend aussi la dérivation du flux depuis la boucle d'injection vers un système de collecte de rejet. Ainsi, lorsque la boucle est basculée en mode de chargement, la valve de contrôle empêche le contenu de la boucle de se détendre dans l'environnement au travers du point d'injection qui est une seringue ; le contenu de la boucle se détend au travers du système de collecte de rejet. Ensuite, pour le chargement de la boucle qui est réalisé à pression atmosphérique, l'utilisateur peut injecter de manière sécurisée une nouvelle charge au travers de la valve de contrôle.US-B-6 428 702 discloses a charge injection method in a stream containing a mixture of highly compressible gas, compressible liquid or supercritical fluid, and a relatively incompressible liquid. The method comprises a step in which the flow contained in an injection loop of a multipoint injection valve is prevented from relaxing in the environment through an injection point by placing a control valve between the loop and the injection point. The method also includes diverting the stream from the injection loop to a reject collection system. Thus, when the loop is switched to loading mode, the control valve prevents the contents of the loop from relaxing in the environment through the injection point which is a syringe; the content of the loop relaxes through the reject collection system. Then, for the loading of the loop which is carried out at atmospheric pressure, the user can safely inject a new charge through the control valve.
Toutefois ces dispositifs présentent l'inconvénient de présenter des variations de pressions préjudiciables pour le déroulement de la séparation.However, these devices have the disadvantage of presenting pressure variations detrimental to the course of the separation.
En effet lorsque la boucle est mise en position d'injection, elle passe d'une basse pression à une haute pression, le contenu de la boucle peut alors être comprimé brutalement et induire un mélangeage d'une boucle qui serait partiellement remplie.Indeed, when the loop is put in the injection position, it goes from a low pressure to a high pressure, the content of the loop can then be compressed brutally and induce a mixture of a loop that would be partially filled.
Il y a un besoin pour un dispositif et un procédé dans lesquels on évite ou l'on limite cette variation de pression. Pour cela l'invention propose un procédé de séparation de composés d'une charge dans un dispositif de chromatographie comprenant une boucle de charge caractérisé en ce que la boucle est mobile entre une position de chargement de charge et une position d'injection de charge dans le dispositif et est maintenue à une pression supérieure à la pression atmosphérique dans les différentes positions.There is a need for a device and method in which this pressure variation is avoided or limited. For this purpose, the invention proposes a process for separating compounds from a charge in a chromatography device comprising a charge loop characterized in that the loop is movable between a charge charging position and a charge injection position in a the device and is maintained at a pressure above atmospheric pressure in the different positions.
Selon une variante, la boucle est maintenue à une pression sensiblement supérieure à la pression atmosphérique, de préférence supérieure à 2 bars, de préférence encore supérieur à 5 bars dans les différentes positions.According to a variant, the loop is maintained at a pressure substantially greater than atmospheric pressure, preferably greater than 2 bar, more preferably greater than 5 bar in the different positions.
Selon une variante, la boucle est maintenue à une pression sensiblement supérieure ou égale à la pression du dispositif dans les différentes positions.According to a variant, the loop is maintained at a pressure substantially greater than or equal to the pressure of the device in the different positions.
Selon une variante, la boucle est maintenue à une pression supérieure à la pression du dispositif lorsqu'elle est en position de chargement.According to one variant, the loop is maintained at a pressure greater than the pressure of the device when it is in the loading position.
Selon une variante, le procédé est dans un dispositif de chromatographie comprenant une boucle de charge, un conduit de chargement, un conduit d'évacuation de la boucle ainsi qu'un contrôleur de pression sur le conduit d'évacuation, caractérisé en ce qu'il comprend les étapes suivantes :According to one variant, the method is in a chromatography device comprising a charge loop, a charging duct, a loop discharge duct and a pressure controller on the discharge duct, characterized in that it includes the following steps:
- évacuation par le conduit d'évacuation de la boucle en position de chargement,- evacuation through the exhaust duct of the loop in the loading position,
- contrôle de la pression de la boucle par le contrôleur de pression du conduit d'évacuation. Selon une variante, le procédé est dans un dispositif de chromatographie comprenant un organe d'injection de charge entre la boucle de charge et une pompe d'éluant, caractérisé en ce qu'il comporte les étapes suivantes :- control of the pressure of the loop by the pressure controller of the exhaust duct. According to one variant, the method is in a chromatography device comprising a charge injection member between the charge loop and an eluent pump, characterized in that it comprises the following steps:
- introduction de la charge dans l'organe d'injection ;introduction of the charge into the injection member;
- permutation de l'organe en position d'injection vers la boucle ; - circulation de Péluant dans l'organe d'injection.- permutation of the body in the injection position to the loop; - Circulation of the eluent in the injection member.
Selon une variante, un éluant supercritique ou subcritique est utilisé.Alternatively, a supercritical or subcritical eluent is used.
Selon une variante, le procédé comprend en outre une étape de séparation de la charge dans le dispositif de chromatographie.Alternatively, the method further comprises a step of separating the charge in the chromatography device.
Selon une variante, le fluide est dévié à travers le canal de charge lorsque la boucle est en position d'injection au moyen d'au moins une vanne à plusieurs voies.According to a variant, the fluid is deflected through the charge channel when the loop is in the injection position by means of at least one multi-way valve.
Selon une variante, on utilise une vanne à 6 voies ou un ensemble de vannes possédant au moins 2 voies.According to one variant, a 6-way valve or a set of valves having at least two channels is used.
Selon une variante, le procédé de séparation dans un dispositif de chromatographie est un procédé multicolonnes. Selon une variante, le procédé de séparation dans un dispositif de chromatographie est un procédé choisi parmi les procédés VariCol, Lit Mobile Simulé ou steady-state recycling ou Cyclojet ®. Selon une variante, le procédé utilise un éluant contenant au moins du dioxyde de carbone, à l'état de gaz, de gaz dissous, liquide ou supercritique.According to one variant, the separation process in a chromatography device is a multicolumn process. According to one variant, the separation process in a chromatography device is a process chosen from the VariCol, Simulated Mobile Bed or steady-state recycling or Cyclojet® processes. According to one variant, the process uses an eluent containing at least carbon dioxide, in the form of gas, of dissolved, liquid or supercritical gases.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit des modes de réalisation de l'invention, donnés à titre d'exemple uniquement et en références aux dessins qui montrent :Other features and advantages of the invention will appear on reading the following detailed description of the embodiments of the invention, given by way of example only and with reference to the drawings which show:
- figure 1, un dispositif de chromatographie ;- Figure 1, a chromatography device;
- figures 2 et 3, une boucle d'injection mise en œuvre au sein d'une vanne six voies en diverses positions ;- Figures 2 and 3, an injection loop implemented within a six-way valve in various positions;
- figure 4, une boucle d'injection mise en œuvre au sein d'un ensemble de vannes deux voies ;- Figure 4, an injection loop implemented within a set of two-way valves;
- figure 5, une boucle d'injection mise en œuvre au sein d'un ensemble de vannes trois voiesFIG. 5, an injection loop implemented within a set of three-way valves
- figure 6, une variante du un dispositif de chromatographie de la figure 1. L'invention se rapporte à un procédé de séparation de composés d'une charge dans un dispositif de chromatographie, le dispositif comprenant une boucle de charge.FIG. 6, a variant of a chromatography device of FIG. 1. The invention relates to a process for separating compounds from a charge in a chromatography device, the device comprising a charging loop.
La boucle de charge est mobile entre une position de chargement de charge et une position d'injection de charge dans le dispositif. La boucle est maintenue à une pression supérieure à la pression atmosphérique dans le dispositif dans les différentes positions.The charge loop is movable between a charge charging position and a charge injection position in the device. The loop is maintained at a pressure greater than the atmospheric pressure in the device in the different positions.
Ceci permet d'assurer que la boucle est à une pression supérieure à la pression atmosphérique et ainsi, lors du changement de position, d'éviter un phénomène de compression préjudiciable au dispositif ainsi qu'un risque de mélangeage interne à la boucle préjudiciable au procédé de séparation.This makes it possible to ensure that the loop is at a pressure greater than the atmospheric pressure and thus, during the change of position, to avoid a phenomenon of compression that is detrimental to the device as well as a risk of internal mixing with the loop detrimental to the process. of seperation.
La figure 1 montre un dispositif 10 de chromatographie. Le dispositif 10 comprend une colonne 12 de chromatographie et des conduits d'entrée 14 et de sortie 16 de la colonne. Le conduit 14 permet l'introduction de l'éluant et d'une charge dans Ia colonne 12 et le conduit 16 permet l'évacuation depuis la colonne du fluide contenant des composés au moins partiellement séparés. Il est envisageable que le conduit 16 de sortie puisse être relié au conduit 14 d'entrée de sorte à faire à nouveau circuler le fluide dans la colonne 12 si par exemple la séparation des composés est incomplète. Le recyclage est représenté par les pointillés 21 sur la figure 1. Le conduit 16 de sortie peut comporter des organes de collecte 17 de fractions. Les fractions contiennent les composés au moins partiellement séparés.Figure 1 shows a chromatography device. The device 10 comprises a chromatography column 12 and inlet ducts 14 and outlet ducts 16 of the column. The conduit 14 allows the introduction of the eluent and a charge into the column 12 and the conduit 16 allows the evacuation from the column of the fluid containing at least partially separated compounds. It is conceivable that the outlet duct 16 may be connected to the inlet duct 14 so as to circulate the fluid again in the column 12 if for example the separation of the compounds is incomplete. The recycling is represented by the dashed lines 21 in FIG. 1. The outlet duct 16 may comprise fraction collection members 17. The fractions contain the at least partially separated compounds.
Le dispositif 10 peut comporter une colonne 12 ou un ensemble de colonnes chromatographiques ou tronçons de colonnes chromatographiques contenant une phase stationnaire ou adsorbant, les colonnes sont montées en série. La ou les colonnes peuvent être montées en boucle ouverte ; la ou les colonnes peuvent être montées en boucle fermée, la ou les colonnes ayant une entrée et une sortie, la sortie d'une colonne étant reliée à une entrée suivante de colonne. Dans la suite, on décrira le dispositif de manière non limitative avec une colonne.The device 10 may comprise a column 12 or a set of chromatographic columns or sections of chromatographic columns containing a stationary or adsorbent phase, the columns are connected in series. The column or columns can be mounted in an open loop; the column (s) can be mounted in a closed loop, the column (s) having an input and an output, the output of a column being connected to a subsequent column entry. In the following, the device will be described in a nonlimiting manner with a column.
La chromatographie est réalisée grâce à un éluant ou phase mobile permettant le déplacement de la charge à séparer le long du dispositif, et plus spécifiquement le long de la colonne. L'éluant peut être un liquide ou un gaz, ou un mélange de liquide(s) et ou de gaz à pression atmosphérique ; plus généralement, l'éluant est un fluide. L'éluant peut être un liquide incompressible. L'éluant peut être un éluant supercritique. On appelle état supercritique un état caractérisé soit par une pression et une température respectivement supérieures à la pression et à la température critique du corps dans le cas d'un corps pur, soit par une pression et une température respectivement supérieures à la pression et à la température critique du mélange dans le cas d'un éluant formé d'un mélange. Les fluides supercritiques ont des propriétés remarquables par rapport aux liquides notamment une plus faible viscosité et une plus grande diffusivité, ce qui améliore la séparation par chromatographie. La chromatographie peut également être appliquée à des fluides dits « non- supercritique » appelés « subcritique » c'est à dire dans un état caractérisé soit par une pression supérieure à la pression critique et par une température inférieure à la température critique dans le cas d'un corps pur, soit par une pression supérieure aux pressions critiques de chacun des composants du mélange dans le cas d'un éluant formé d'un mélange (à ce sujet, référence est faite à la revue Informations Chimie 321 , Octobre 1990, pages 166 à 177, article de Michel PERRUT « les fluides supercritiques, applications en abondance »).Chromatography is performed by means of an eluent or mobile phase allowing the displacement of the charge to be separated along the device, and more specifically along the column. The eluent can be a liquid or a gas, or a mixture of liquid (s) and or gas at atmospheric pressure; more generally, the eluent is a fluid. The eluent can be an incompressible liquid. The eluent can be a supercritical eluent. A supercritical state is a state characterized by either a pressure and a temperature respectively greater than the pressure and critical temperature of the body in the case of a pure body, or by a pressure and a temperature respectively greater than the pressure and the temperature. critical temperature of the mixture in the case of an eluent formed of a mixture. Supercritical fluids have remarkable properties in relation to liquids, in particular a lower viscosity and a greater diffusivity, which improves the separation by chromatography. Chromatography can also be applied to so-called "non-supercritical" fluids called "subcritical" that is to say in a state characterized by either a pressure greater than the critical pressure and a temperature below the critical temperature in the case of a pure body, either by a pressure greater than the critical pressures of each of the components of the mixture in the case of an eluent formed of a mixture (on this subject, reference is made to the journal Information Chimie 321, October 1990, pages 166 to 177, article by Michel PERRUT "supercritical fluids, applications in abundance").
Plus généralement encore, l'invention permet de maintenir dans un état homogène tout éluant contenant au moins un corps pur qui est gazeux à pression et température ambiante (soit 25°C et une atmosphère). Le maintien de pression grâce à l'invention permet également de garder homogène une diversité de mélanges de fluides et donc d 'éluant potentiels différents.More generally still, the invention makes it possible to maintain in a homogeneous state any eluent containing at least one pure body which is gaseous at ambient pressure and temperature (ie 25 ° C. and an atmosphere). The maintenance of pressure by virtue of the invention also makes it possible to keep a variety of different fluid mixtures and therefore of different eluents homogeneous.
La figure 1 montre aussi une vanne six voies 20 d'injection de charge. La vanne 20 permet l'injection de charge dans le dispositif 10. En particulier la vanne 20 permet d'injecter une charge fraîche dans le dispositif en cours de fonctionnement; l'injection de charge a lieu pendant la séparation des composés de la charge. Ceci permet d'éviter d'interrompre le fonctionnement du dispositif et de perdre du temps dans le processus de séparation des composés. La vanne six voies 20 est actionnée pour passer dans différentes positions de chargement et d'injection de charge. L'alimentation du dispositif 10 en fluide éluant n'est pas représentée sur la figure 1 mais s'effectue avant le canal 101.Figure 1 also shows a six-way charge injection valve. The valve 20 allows the injection of charge in the device 10. In particular the valve 20 can inject a fresh charge into the device during operation; charge injection takes place during the separation of the compounds from the charge. This makes it possible to avoid interrupting the operation of the device and to waste time in the process of separating the compounds. The six-way valve 20 is actuated to move to different loading and charge injection positions. The supply of the device 10 in eluent fluid is not shown in Figure 1 but is performed before the channel 101.
Les figures 2 et 3 montrent plus précisément un exemple de la vanne 20. La vanne 20 comporte des canaux 22, 24, 26 assurant la circulation du fluide dans la vanne. La vanne 20 comporte aussi une boucle 28 d'injection de charge. La boucle 28 d'injection de charge est un réservoir de fluide à injecter. La vanne 20 comporte des orifices 30, 32, 34, 36, 38, 40 connectant les canaux entre eux ainsi que la vanne 20 à un conduit de chargement 42, à un conduit d'évacuation 44 et au dispositif 10 de chromatographie. La permutation de la vanne 20 permet l'entraînement des orifices et canaux vers des positions différentes, permettant de mettre la vanne 20 dans différentes positions. L'avantage d'une telle vanne 20 est de permettre l'injection de charge fraîche de manière simple.Figures 2 and 3 show more precisely an example of the valve 20. The valve 20 comprises channels 22, 24, 26 ensuring the circulation of the fluid in the valve. The valve 20 also has a charge injection loop 28. The charge injection loop 28 is a reservoir of fluid to be injected. The valve 20 has orifices 30, 32, 34, 36, 38, 40 connecting the channels to each other and the valve 20 to a charging duct 42, to a discharge duct 44 and to the chromatography device 10. The permutation of the valve 20 allows the driving of the orifices and channels to different positions, to put the valve 20 in different positions. The advantage of such a valve 20 is to allow the injection of fresh feed in a simple manner.
La figure 2 montre la vanne 20 d'injection dans la position de chargement ; la boucle 28 d'injection peut être alors chargée avec un volume de charge. L'orifice 30 de chargement de la vanne 20 est relié au conduit 42 de chargement. Le conduit 42 de chargement comporte une pompe 46 de pompage de charge depuis un récipient 48 de charge. L'orifice 32 d'évacuation de la vanne 20 est relié au conduit 44 d'évacuation, par lequel le contenu de la boucle 28 peut être évacué dans un bac 50 de collecte. Dans la position de la figure 2, l'orifice 30 est relié à l'orifice 32 par l'intermédiaire du canal 22, de la boucle d'injection 28 de charge et du canal 24. Dans cette position de la vanne 20, de la charge fraîche peut être introduite dans la boucle 28 d'injection par pompage de charge dans le récipient 48. Un fluide - de préférence de l'éluant issu d'une circulation précédente du fluide au travers de la boucle - présent dans la boucle 28 d'injection de charge est évacué vers le bac 50 de collecte de déchet et est remplacé par la charge fraîche. Toutefois, tout le fluide présent dans la boucle n'est pas nécessairement évacué en totalité. 11 suffit d'évacuer un volume de fluide correspondant au volume de charge à injecter, l'invention peut ainsi indifféremment travailler avec une boucle 28 d'injection de charge partiellement ou totalement remplie. Pendant l'opération de chargement de la boucle 28 d'injection, la figure 2 montre que le fonctionnement du dispositif 10 n'est pas interrompu. En effet, les orifices 36 et 38 de la vanne 20 assurent la connexion de la vanne 20 au dispositif 10 et la circulation du fluide dans le dispositif via la boucle, et via le canal 26 en particulier. Le fluide circule dans des conduits 101 et 102 du dispositif via le canal 26 de la boucle, selon la flèche 52 dans le conduit 101 et selon la flèche 54 dans le conduit 102.Figure 2 shows the injection valve 20 in the loading position; the injection loop 28 can then be loaded with a load volume. The loading orifice 30 of the valve 20 is connected to the loading conduit 42. The charging conduit 42 includes a charge pump 46 from a charging container 48. The discharge port 32 of the valve 20 is connected to the discharge conduit 44, through which the contents of the loop 28 can be discharged into a collection tank 50. In the position of FIG. 2, the orifice 30 is connected to the orifice 32 via the channel 22, the loading injection loop 28 and the channel 24. In this position of the valve 20, the fresh charge can be introduced into the charge injection loop 28 in the vessel 48. A fluid - preferably eluent from a previous circulation of the fluid through the loop - present in the loop 28 charge injection is evacuated to the waste collection bin 50 and is replaced by the fresh load. However, all the fluid present in the loop is not necessarily evacuated in full. It suffices to evacuate a volume of fluid corresponding to the volume of charge to be injected, the invention can thus indifferently work with a loop 28 of charge injection partially or completely filled. During the loading operation of the injection loop 28, FIG. 2 shows that the operation of the device 10 is not interrupted. Indeed, the orifices 36 and 38 of the valve 20 ensure the connection of the valve 20 to the device 10 and the circulation of the fluid in the device via the loop, and via the channel 26 in particular. The fluid circulates in ducts 101 and 102 of the device via the channel 26 of the loop, along the arrow 52 in the duct 101 and along the arrow 54 in the duct 102.
La figure 3 montre la vanne 20 d'injection dans la position d'injection ; la charge est alors injectée dans le dispositif. Pour cela, la vanne 20 a subi une permutation permettant une commutation des orifices et des canaux de la vanne 20. On voit que le canal 22 est intercalé entre le conduit 42 de charge et le conduit 44 d'évacuation, via les orifices 30 et 32. Aussi, la boucle d'injection 28 de charge est placée entre les conduits 101 et 102 du dispositif 10. Plus précisément, l'orifice 38 connecte la vanne 20 au conduit 101 et l'orifice 36 connecte la vanne 20 au conduit 102. Les conduits 101 et 102 sont reliés au sein de la vanne par le canal 26, la boucle d'injection de charge 28 et par le canal 24. Ainsi, le fluide en circulation dans le dispositif 10 selon les flèches 52 et 54 permet d'injecter la charge dans le dispositif; le fluide pénètre dans la vanne 20 en poussant la charge présente dans la boucle d'injection de charge 28 hors de la vanne 20 vers le dispositif 10. Plus spécifiquement, la charge est intercalée dans le dispositif 10 ; en effet, l'ensemble de la charge est poussée sensiblement d'un bloc dans le dispositif. Ceci permet d'éviter la dilution de la charge dans le dispositif comme cela est le cas lors d'une injection dans le dispositif utilisant une pompe d'injection. Dans ces derniers cas, la charge étant injectée dans le fluide en circulation, la charge est alors répartie et diluée dans le fluide. Contrairement à cela, l'invention permet de faire pénétrer la charge dans le dispositif sans y être diluée dès l'injection; l'injection de charge est donc plus précise et la séparation est plus efficace.Figure 3 shows the injection valve 20 in the injection position; the charge is then injected into the device. For this, the valve 20 has undergone a permutation allowing a switching of the orifices and channels of the valve 20. It can be seen that the channel 22 is interposed between the charging conduit 42 and the evacuation conduit 44, via the orifices 30 and 32. Also, the charge injection loop 28 is placed between the conduits 101 and 102 of the device 10. More specifically, the orifice 38 connects the valve 20 to the conduit 101 and the orifice 36 connects the valve 20 to the conduit 102 The ducts 101 and 102 are connected within the valve by the channel 26, the charge injection loop 28 and by the channel 24. Thus, the fluid circulating in the device 10 according to the arrows 52 and 54 makes it possible to inject the charge into the device; the fluid enters the valve 20 by pushing the charge present in the charge injection loop 28 out of the valve 20 to the device 10. More specifically, the charge is interposed in the device 10; indeed, the entire load is pushed substantially a block in the device. This avoids the dilution of the load in the device as is the case when an injection in the device using an injection pump. In these latter cases, the charge being injected into the circulating fluid, the charge is then distributed and diluted in the fluid. In contrast to this, the invention allows the charge to enter the device without being diluted upon injection; the charge injection is more precise and the separation is more efficient.
La vanne 20, et en particulier la boucle 28, est maintenue à une pression supérieure à la pression atmosphérique. Ceci permet d'assurer que la boucle 28 soit à une pression plus proche de ce que la pression est dans le dispositif ; ceci permet de réduire les différences de pression entre la pression de la boucle et la pression dans le dispositif. Ceci permet d'améliorer l'injection et la séparation; de même ceci permet de protéger le matériel de mise en œuvre du procédé de séparation. Avantageusement, la pression dans la boucle est sensiblement supérieure à la pression atmosphérique, par exemple supérieure à 2 bars, voire supérieure à 5 bars. De manière préférentielle, la pression dans la boucle est supérieure ou égale à la pression du dispositif de chromatographie dans les différentes positions (par exemple à une pression supérieure ou égale à 60 bars, voire supérieure ou égale à 70 bars). En particulier, la boucle 28 est maintenue en pression pendant les étapes de chargement et d'injection. Dans tous les cas, Ceci permet d'améliorer l'injection et la séparation; de même ceci permet de protéger le matériel de mise en œuvre du procédé de séparation.The valve 20, and in particular the loop 28, is maintained at a pressure greater than atmospheric pressure. This ensures that the loop 28 is at a pressure closer to the pressure in the device; this makes it possible to reduce the pressure differences between the pressure of the loop and the pressure in the device. This improves injection and separation; likewise, it makes it possible to protect the equipment for implementing the separation process. Advantageously, the pressure in the loop is substantially greater than atmospheric pressure, for example greater than 2 bar, or even greater than 5 bar. Preferably, the pressure in the loop is greater than or equal to the pressure of the chromatography device in the different positions (for example at a pressure greater than or equal to 60 bars, or even greater than or equal to 70 bars). In particular, the loop 28 is maintained under pressure during the loading and injection steps. In all cases, this improves injection and separation; likewise, it makes it possible to protect the equipment for implementing the separation process.
En effet, la séparation par chromatographie de composés d'une charge est réalisée dans le dispositif à des pressions élevées. Par exemple dans le cas d'une séparation supercritique fonctionnant avec du CO2, , une pression supérieure à 73 bar. Or, dans les dispositifs du type celui du document US-B-6 428 702, la charge est chargée dans une boucle à pression atmosphérique ; lorsque la boucle de ce document est permutée en position d'injection dans le dispositif fonctionnant entre 100 et 600 bar, une brusque montée en pression se produit au sein de la boucle. Ceci produit une compression de la boucle qui implique une entrée d'éluant et un risque de dilution de la charge à traiter. Inversement, lorsque la boucle est permutée en position de chargement à pression atmosphérique, une détente du fluide présent dans la boucle se traduit par une brusque augmentation du volume de fluide. Pour éviter cela, Ia vanne 20, et en particulier la boucle 28, est maintenue à une pression sensiblement supérieure à la pression atmosphérique, préférentiellement supérieure ou égale à la pression du dispositif. Ainsi, lorsque la boucle est commutée de la position de chargement (figure 2) à la position d'injection (figure 3), l'augmentation de pression est minimisée voire annulée dans la vanne 20 ce qui réduit ou évite le risque de dilution et rend l'injection de charge précise. De même, lorsque la boucle est commutée de la position d'injection (figure 3) à la position de chargement (figure 2), il n'y a pas de retour à pression atmosphérique dans la vanne 20 ce qui évite une détente du fluide et une sensation d'explosion désagréable pour l'opérateur.Indeed, the separation by chromatography of compounds of a charge is carried out in the device at high pressures. For example, in the case of a supercritical separation operating with CO2, a pressure greater than 73 bar. However, in the devices of the type of US-B-6 428 702, the charge is loaded in a loop at atmospheric pressure; when the loop of this document is permuted into the injection position in the device operating between 100 and 600 bar, a sudden rise in pressure occurs within the loop. This produces a compression of the loop which implies an entry of eluent and a risk of dilution of the charge to be treated. Conversely, when the loop is switched to the loading position at atmospheric pressure, an expansion of the fluid present in the loop results in a sudden increase in the volume of fluid. To avoid this, the valve 20, and in particular the loop 28, is maintained at a pressure substantially greater than the atmospheric pressure, preferably greater than or equal to the pressure of the device. So, when the loop is switched from the loading position (FIG. 2) to the injection position (FIG. 3), the increase in pressure is minimized or even canceled in the valve 20, which reduces or avoids the risk of dilution and renders the precise charge injection. Similarly, when the loop is switched from the injection position (Figure 3) to the loading position (Figure 2), there is no return to atmospheric pressure in the valve 20 which avoids a relaxation of the fluid and an unpleasant explosion sensation for the operator.
Selon les figures 1 à 3, un dispositif de contrôle 58 permet de maintenir une pression dans la vanne 20 (et en particulier dans la boucle 28) sensiblement supérieure à la pression atmosphérique, préférentiellement supérieure ou égale à la pression dans le dispositif 10 lors du chargement et de l'injection. Sur les figures le contrôleur de pression 58 est sur le conduit 44 d'évacuation. Ainsi, la pression de la vanne 20 est contrôlée. A titre d'exemple, le contrôleur de pression 58 peut être une soupape, un clapet taré, un déverseur voire une vanne de régulation de pression. La figure 1 montre la vanne 20 en position de chargement. Les conduits 101 etAccording to FIGS. 1 to 3, a control device 58 makes it possible to maintain a pressure in the valve 20 (and in particular in the loop 28) substantially greater than the atmospheric pressure, preferably greater than or equal to the pressure in the device 10 during the loading and injection. In the figures, the pressure controller 58 is on the exhaust duct 44. Thus, the pressure of the valve 20 is controlled. By way of example, the pressure controller 58 may be a valve, a calibrated valve, an overflow or even a pressure regulating valve. Figure 1 shows the valve 20 in the loading position. The conduits 101 and
102 du dispositif sont reliés entre eux, le fluide étant en circulation dans le dispositif ; pendant la circulation du fluide, et notamment l'élution du fluide le long de la colonne 12, la vanne 20 est chargée. La boucle d'injection de charge 28 est reliée d'une part au conduit 42 de chargement et d'autre part au conduit 44 d'évacuation. Le contrôleur de pression 58 assure le contrôle de la pression dans la boucle. La boucle est ensuite permutée en position d'injection de sorte que la boucle d'injection de charge 28 soit connectée aux conduits 101 et 102; la charge fraîche est intercalée dans le fluide en circulation dans le dispositif.102 of the device are interconnected, the fluid being circulated in the device; during the circulation of the fluid, and in particular the elution of the fluid along the column 12, the valve 20 is loaded. The charge injection loop 28 is connected on the one hand to the loading duct 42 and on the other hand to the exhaust duct 44. The pressure controller 58 provides control of the pressure in the loop. The loop is then switched to the injection position so that the charge injection loop 28 is connected to the conduits 101 and 102; the fresh charge is interposed in the circulating fluid in the device.
Selon la figure 2, le procédé permet de contrôler la pression dans la boucle, lorsque la boucle est en position de chargement. On évite par exemple une détente brutale du fluide de la boucle et une augmentation brutale du volume du fluide, se traduisant par une sensation d'explosion désagréable pour l'opérateur. Pour cela, le procédé comprend une étape de chargement par le conduit 42 de chargement de la boucle qui est en position de chargement ; en particulier, la boucle d'injection de charge 28 relie les conduits 42 et 44. Lors du pompage de la charge à traiter dans la boucle d'injection 28, la pression monte, jusqu'à ce qu'elle atteigne la pression de contrôle imposée par le contrôleur de pression 58. La boucle est évacuée par le conduit d'évacuation 44 de la boucle en position de chargement; le procédé comprend aussi une étape de contrôle de la pression de la vanne 20 par le contrôleur de pression 58 du conduit d'évacuation. Ainsi, lors de l'évacuation, on évite que la boucle soit mise à une pression trop basse, par exemple atmosphérique, par l'intermédiaire du conduit d'évacuation 44 ; en particulier on évite que la boucle d'injection de charge 28 soit mise à une pression plus basse. En outre, on protège ainsi le dispositif contre des risques de projection dans le conduit d'évacuation 44. Par ailleurs, alors que la boucle est en position de chargement, le canal 26 est intercalé entre les conduits 101 et 102 et est traversé par le fluide en circulation dans le dispositif ; ce canal 26 est alors à la pression du dispositif. Ainsi, toute la boucle est à une pression sensiblement supérieure à la pression atmosphérique, préférentiellement supérieure ou égale à la pression du dispositif.According to FIG. 2, the method makes it possible to control the pressure in the loop when the loop is in the loading position. For example, it avoids a sudden relaxation of the fluid of the loop and a sudden increase in the volume of the fluid, resulting in an uncomfortable explosion sensation for the operator. For this, the method comprises a loading step by the loading pipe 42 of the loop which is in the loading position; in particular, the charge injection loop 28 connects the conduits 42 and 44. During the pumping of the charge to be treated in the injection loop 28, the pressure rises, until it reaches the control pressure imposed by the pressure controller 58. The loop is discharged through the exhaust duct 44 of the loop in the loading position; the method also comprises a step of controlling the pressure of the valve 20 by the pressure controller 58 of the exhaust duct. Thus, during the evacuation, it is avoided that the loop is placed at a pressure too low, for example atmospheric, through the exhaust duct 44; in particular, it is avoided that the charge injection loop 28 is put at a lower pressure. In addition, the device is thus protected against risks of projection in the exhaust duct 44. Moreover, while the loop is in the loading position, the channel 26 is interposed between the ducts 101 and 102 and is traversed by the fluid circulating in the device; this channel 26 is then at the pressure of the device. Thus, the entire loop is at a pressure substantially greater than the atmospheric pressure, preferably greater than or equal to the pressure of the device.
Selon la figure 3, le procédé permet de contrôler la pression de la boucle, lorsque la boucle est en position d'injection. La boucle d'injection 28 est intercalée entre les conduits 101 et 102 du dispositif ; la boucle est donc à la pression du dispositif. De plus, le canal 22 qui est rempli de fluide - de préférence de l'éluant - à la pression du dispositif, est entre les conduits 42 et 44 ; le contrôleur de pression 58 permet de contrôler la pression dans le canal 22, et en particulier, le contrôleur de pression 58 empêche une mise à la pression atmosphérique du canal 22.According to FIG. 3, the method makes it possible to control the pressure of the loop when the loop is in the injection position. The injection loop 28 is interposed between the conduits 101 and 102 of the device; the loop is therefore at the pressure of the device. In addition, the channel 22 which is filled with fluid - preferably eluent - at the pressure of the device, is between the conduits 42 and 44; the pressure controller 58 makes it possible to control the pressure in the channel 22, and in particular, the pressure controller 58 prevents atmospheric pressure being exerted on the channel 22.
Selon la figure 4, la pression de la boucle d'injection 28 peut être contrôlée par le contrôleur de pression 58 en utilisant un dispositif composé de plusieurs vannes automatiques 2 voies 201 à 206. Lorsque les vannes 202, 204 et 206 sont ouvertes et les vannes 201, 203 et 205 sont fermées, la boucle d'injection de charge 28 est en position de chargement. Lorsque les vannes 202, 204 et 206 sont fermées et les vannes 201 , 203 et 205 sont ouvertes, ainsi le fluide en circulation dans le dispositif 10 selon les flèches 52 et 54 permet d'injecter la charge dans le dispositif, la boucle d'injection de charge 28 est en position. La pression dans le dispositif est alors régulée soit par le dispositif chromatographique situé après le canal 54 soit par le contrôleur de pression 58.According to FIG. 4, the pressure of the injection loop 28 can be controlled by the pressure controller 58 by using a device composed of several automatic two-way valves 201 to 206. When the valves 202, 204 and 206 are open and the valves valves 201, 203 and 205 are closed, the charge injection loop 28 is in the loading position. When the valves 202, 204 and 206 are closed and the valves 201, 203 and 205 are open, and the fluid circulating in the device 10 according to the arrows 52 and 54 makes it possible to inject the charge into the device, the loop of charge injection 28 is in position. The pressure in the device is then regulated either by the chromatographic device located after the channel 54 or by the pressure controller 58.
Selon la figure 5, la pression de la boucle d'injection 28 peut être contrôlée par le contrôleur de pression 58 en utilisant un dispositif composé de plusieurs vannes automatiques 3 voies 301 à 304. La pression dans le dispositif est alors régulée soit par le dispositif chromatographique situé après le canal 54 soit par le contrôleur de pression 58. Selon la figure 5, la boucle peut être en position de chargement lorsque les vannes 301 et 302 sont commutées vers la boucle 28 (les vannes 304 et 303 étant commutées de sorte à connecter les conduits 101 et 102 entre eux) ; la boucle peut être en position d'injection lorsque les vannes 303 et 304 sont commutées vers la boucle 28 (les vannes 301 et 302 étant commutées de sorte à connecter les conduits 42 et 44 entre eux).According to FIG. 5, the pressure of the injection loop 28 can be controlled by the pressure controller 58 by using a device composed of several 3-way automatic valves 301 to 304. The pressure in the device is then regulated either by the device chromatograph located after the channel 54 is by the pressure controller 58. According to Figure 5, the loop can be in the loading position when the valves 301 and 302 are switched to the loop 28 (the valves 304 and 303 are switched so as to connect the conduits 101 and 102 to each other); the loop may be in the injection position when the valves 303 and 304 are switched to the loop 28 (the valves 301 and 302 being switched so as to connect the conduits 42 and 44 together).
Les figures 2 à 5 sont illustratives du principe de l'invention et ne la restreigne en rien à la technologie des vannes automatiques présentées. En effet, l'invention est pertinente que l'on utilise au moins une vanne à plusieurs voies, par exemple une vanne 6 voies, un ensemble de vannes 3 voies ou un ensemble de vannes 2 voies, voire des combinaisons de différentes technologies de vannes. De plus, les positions de la boucle ne sont pas limitées à deux. Un avantage du maintien de la boucle à une pression supérieure à la pression atmosphérique est que l'on peut utiliser une boucle d'un volume plus important que le volume de charge à injecter sans avoir ou en limitant un phénomène de compression au moment de la mise en ligne de la boucle d'injection. En effet, la pression de la boucle étant maintenue à une pression sensiblement supérieure à la pression atmosphérique, préférentiellement supérieure ou égale à la pression du dispositif pendant le chargement et l'injection, il y a donc limitation voir annulation de l'augmentation de pression qui se produit lors de l'injection ; il y a donc une maîtrise de la compression du contenu de la boucle au moment de la mise en position d'injection. Ainsi, pour une injection d'un certain volume de charge, une boucle comprenant un volume plus important peut être utilisée. Par exemple, Pour une injection de 1 ml de charge, on peut utiliser une boucle ayant un volume par exemple compris entre 1 ml et 10 ml. Ceci permet d'injecter des volumes variables de charge au cours du fonctionnement du dispositif, tout en utilisant la même boucle. Ceci permet de couvrir une grande plage de volume de charge à injecter (par exemple de 1 à 50 ml) avec un nombre réduit de boucles d'injection (par exemple deux boucles de 10 et 50 ml). Ceci rend le dispositif et le procédé de séparation moins onéreux car un nombre réduit de boucles est nécessaire mais surtout cela simplifie grandement l'utilisation du procédé. Par ailleurs, la pompe 46 peut être utilisée pour pomper un volume correspondant au volume de charge à injecter ; ceci permet de diminuer les temps de chargement de la boucle. Alternativement, la pompe 46 peut pomper des volumes moins importants que le volume à de charge à injecter, la boucle étant chargée en plusieurs cycles de pompage ; le temps de chargement est plus long, mais la pompe peut être moins onéreuse.Figures 2 to 5 are illustrative of the principle of the invention and does not in any way restrict the technology of automatic valves presented. Indeed, the invention is relevant that at least one multi-way valve, for example a 6-way valve, a set of 3-way valves or a set of 2-way valves, or even combinations of different valve technologies, is used. . In addition, the positions of the loop are not limited to two. An advantage of maintaining the loop at a pressure higher than the atmospheric pressure is that it is possible to use a loop of a larger volume than the volume of charge to be injected without having or limiting a compression phenomenon at the moment of the putting the injection loop online. Indeed, the pressure of the loop being maintained at a pressure substantially greater than atmospheric pressure, preferably greater than or equal to the pressure of the device during loading and injection, there is therefore a limitation see cancellation of the pressure increase that occurs during the injection; there is therefore a control of the compression of the content of the loop at the time of setting in the injection position. Thus, for an injection of a certain volume of charge, a loop comprising a larger volume can be used. For example, for an injection of 1 ml of filler, one can use a loop having a volume for example between 1 ml and 10 ml. This makes it possible to inject variable volumes of charge during the operation of the device, while using the same loop. This makes it possible to cover a large range of charge volume to be injected (for example from 1 to 50 ml) with a reduced number of injection loops (for example two loops of 10 and 50 ml). This makes the device and the method of separation less expensive because a reduced number of loops is necessary but above all it greatly simplifies the use of the method. In addition, the pump 46 can be used to pump a volume corresponding to the volume of charge to be injected; this reduces the load times of the loop. Alternatively, the pump 46 can pump smaller volumes than the volume to charge to inject, the loop being loaded in several pumping cycles; the charging time is longer, but the pump can be less expensive.
La boucle d'injection de charge 28 est un volume résistant à la pression suffisamment important pour contenir la charge à traiter. La boucle d'injection de charge 28 doit également permettre d'éviter la dispersion de la charge dans la boucle lorsque celle-ci est partiellement remplie. Ainsi, à titre d'exemple, la boucle d'injection de charge 28 peut être choisie parmi, sans être limitatif, un tube dont la longueur est au moins dix fois supérieure au diamètre, enroulé en serpentin ou encore un volume préférentiellement de géométrie tubulaire rempli d'un garnissage qui permet de limiter la dispersion lorsque la boucle d'injection de charge 28 est partiellement remplie.The charge injection loop 28 is a pressure-resistant volume large enough to hold the charge to be treated. The charge injection loop 28 must also make it possible to avoid the dispersion of the load in the loop when the latter is partially filled. Thus, by way of example, the charge injection loop 28 may be chosen from, without being limiting, a tube whose length is at least ten times greater than the diameter, wound in a coil or a volume preferably of tubular geometry. filled with a packing which limits the dispersion when the charge injection loop 28 is partially filled.
La figure 6 montre une variante du dispositif 10 de la figure 1. La figure 6 montre une autre manière d'injecter la charge dans le dispositif 10. Selon la figure 6, le dispositif comporte un organe 60 d'injection. L'organe 60 permet d'injecter la charge dans le dispositif ; l'organe 60 peut être un organe d'injection manuelle. L'organe 60 d'injection peut être disposé entre la pompe 46 et la boucle 28 de la vanne 20 d'injection de charge. Dans cette variante du dispositif 10, la pompe 46 du dispositif 10 pompe non plus de la charge mais un solvant liquide depuis un réservoir 62. L'organe 60 permet l'injection de la charge dans le solvant. Ceci permet d'éviter que le conduit entre la pompe 46 et la boucle 28 de la vanne 20 d'injection soit rempli de charge ; au contraire, l'organe 60 permet d'injecter dans le dispositif 10 uniquement la quantité de charge souhaitée. A titre d'exemple d'organe 60 d'injection, on peut utiliser une vanne d'injection 6 voies. L'organe 60 comporte un volume 64; en position de chargement de l'organe 60, une quantité souhaitée de charge est introduite dans le volume 64 de l'organe 60, éventuellement manuellement. La charge est par exemple introduite à l'aide d'une seringue 70. L'organe 60 est ensuite permuté de sorte à placer le volume 64 en position d'injection dans le conduit qui mène à la boucle 28 de la vanne 20 d'injection. La pompe 46 fait circuler le solvant dans le volume 64 de sorte à diriger la charge vers la boucle 28 de la vanne 20 d'injection dont le fonctionnement est décrit précédemment. L'organe 60 est ensuite placé à nouveau dans la position de chargement. L'avantage est que seule une quantité souhaitée de charge est introduite dans le dispositif et qu'il n'est pas nécessaire de remplir tout le conduit entre la pompe 46 et la vanne 20 par de Ia charge. De plus, l'utilisation d'une vanne 6 voies comme organe d'injection permet d'injecter manuellement la charge de manière sécurisée dans la vanne 20 d'injection qui est maintenue sous pression comme décrit précédemment. Par ailleurs, l'organe 60 permet aussi d'éviter le passage de la charge dans la pompe 46, ce qui évite la contamination de la charge.FIG. 6 shows a variant of the device 10 of FIG. 1. FIG. 6 shows another way of injecting the charge into the device 10. According to FIG. 6, the device comprises an injection device 60. The member 60 makes it possible to inject the charge into the device; the member 60 may be a manual injection member. The injection member 60 may be disposed between the pump 46 and the loop 28 of the charge injection valve 20. In this variant of the device 10, the pump 46 of the device 10 no longer pumps the charge but a liquid solvent from a reservoir 62. 60 allows the injection of the charge into the solvent. This makes it possible to prevent the conduit between the pump 46 and the loop 28 of the injection valve 20 from being filled with charge; on the contrary, the member 60 allows to inject into the device 10 only the desired amount of charge. As an example of injection member 60, a 6-way injection valve can be used. The member 60 comprises a volume 64; in the loading position of the member 60, a desired quantity of charge is introduced into the volume 64 of the member 60, possibly manually. The load is for example introduced using a syringe 70. The member 60 is then permuted so as to place the volume 64 in the injection position in the conduit that leads to the loop 28 of the valve 20. injection. The pump 46 circulates the solvent in the volume 64 so as to direct the charge to the loop 28 of the injection valve 20 whose operation is described above. The member 60 is then placed again in the loading position. The advantage is that only a desired amount of charge is introduced into the device and it is not necessary to fill the entire conduit between the pump 46 and the valve 20 with the load. In addition, the use of a 6-way valve as an injection member makes it possible to manually inject the charge securely into the injection valve 20 which is kept under pressure as described above. Furthermore, the member 60 also prevents the passage of the load in the pump 46, which prevents contamination of the load.
L'organe 60 trouve un intérêt particulier pour tester la colonne 12 du dispositif 10. L'organe 60 permet d'injecter manuellement et ponctuellement une ou quelques quantités de charge pour tester l'efficacité de la colonne 12 ou certaines conditions d'élution. Une fois le test réalisé, l'organe 60 peut être retiré (et la pompe 46 pompe à nouveau de la charge) ou être laissé dans la position de la figure 6.The member 60 finds a particular interest in testing the column 12 of the device 10. The member 60 makes it possible to manually and occasionally inject one or a few quantities of filler to test the efficiency of the column 12 or certain elution conditions. Once the test is carried out, the member 60 can be removed (and the pump 46 pumps the load again) or left in the position of FIG.
Il est également possible, sans pour autant que cela soit limitatif au procédé selon l'invention, de s'affranchir d'un clapet anti-retour entre la boucle 28 d'injection et le point d'injection de charge dans Ie dispositif (ce point étant la pompe 46 ou l'organe 60 le cas échéant) selon les besoins. L'invention est particulièrement d'intérêt dans le cas d'un dispositif et d'un procédé de séparation avec un éluant supercritique. En effet, le contrôle de la pression est un facteur important pour maintenir l 'éluant dans un état supercritique ; le procédé et le dispositif permettent ce contrôle.It is also possible, without being limited to the method according to the invention, to overcome a non-return valve between the injection loop 28 and the point of charge injection into the device (this point being the pump 46 or the member 60 if necessary) as needed. The invention is particularly of interest in the case of a device and a method of separation with a supercritical eluent. Indeed, pressure control is an important factor in keeping the eluent in a supercritical state; the method and the device allow this control.
Le dispositif comprend dans certains cas un actionneur permettant le changement de position de la boucle. L'actionneur est électrique ou pneumatique. The device comprises in some cases an actuator for changing the position of the loop. The actuator is electric or pneumatic.

Claims

REVENDICATIONS
1. Un procédé de séparation de composés d'une charge dans un dispositif de chromatographie comprenant une boucle (28) de charge caractérisé en ce que la boucle est mobile entre une position de chargement de charge et une position d'injection de charge dans le dispositif et est maintenue à une pression supérieure à la pression atmosphérique dans les différentes positions.A method of separating compounds from a charge in a chromatography device comprising a charging loop (28) characterized in that the loop is movable between a charge charging position and a charge injection position in the device and is maintained at a pressure above atmospheric pressure in the different positions.
2. Le procédé de séparation selon la revendication 1, la boucle étant maintenue à une pression sensiblement supérieure à la pression atmosphérique, de préférence supérieure à 2 bars, de préférence encore supérieur à 5 bars dans les différentes positions.2. The separation process according to claim 1, the loop being maintained at a pressure substantially greater than atmospheric pressure, preferably greater than 2 bar, more preferably greater than 5 bar in the different positions.
3. Le procédé de séparation selon la revendication 1 ou 2, la boucle étant maintenue à une pression sensiblement supérieure ou égale à la pression du dispositif dans les différentes positions.3. The separation method according to claim 1 or 2, the loop being maintained at a pressure substantially greater than or equal to the pressure of the device in the different positions.
4. Procédé de séparation selon l'une des revendications 1 à 3 dans lequel la boucle est maintenue à une pression supérieure à la pression du dispositif lorsqu'elle est en position de chargement.4. Separation method according to one of claims 1 to 3 wherein the loop is maintained at a pressure greater than the pressure of the device when in the loading position.
5. Le procédé de séparation selon l'une des revendications 1 à 4 dans un dispositif de chromatographie comprenant une boucle (28) de charge, un conduit de chargement (42), un conduit d'évacuation (44) de la boucle ainsi qu'un contrôleur de pression (58) sur le conduit d'évacuation (44), caractérisé en ce qu'il comprend les étapes suivantes :5. The separation method according to one of claims 1 to 4 in a chromatography device comprising a loop (28) of charge, a charging duct (42), a discharge duct (44) of the loop as well as a pressure controller (58) on the exhaust duct (44), characterized in that it comprises the following steps:
- évacuation par le conduit d'évacuation (44) de la boucle en position de chargement,- evacuation through the exhaust duct (44) of the loop in the loading position,
- contrôle de la pression de la boucle par le contrôleur de pression (58) du conduit d'évacuation.- Control of the pressure of the loop by the pressure controller (58) of the exhaust duct.
6. Le procédé de séparation selon l'une des revendications 1 à 5, dans un dispositif de chromatographie comprenant un organe d'injection (60) de charge entre la boucle6. The separation process according to one of claims 1 to 5, in a chromatography device comprising a charge injection member (60) between the loop.
(28) de charge et une pompe (46) d'éluant, caractérisé en ce qu'il comporte les étapes suivantes :(28) and an eluent pump (46), characterized in that it comprises the following steps:
- introduction de la charge dans l'organe d'injection ;introduction of the charge into the injection member;
- permutation de l'organe en position d'injection vers la boucle (28) ; - circulation de l'éluant dans l'organe d'injection.- Switching the member in the injection position to the loop (28); - Circulation of the eluent in the injection member.
7. Le procédé selon l'une des revendications 1 à 6, dans lequel un éluant supercritique ou subcritique est utilisé. 7. The method according to one of claims 1 to 6, wherein a supercritical or subcritical eluent is used.
8. Le procédé selon l'une des revendications 1 à 7, comprenant en outre une étape de séparation de Ia charge dans le dispositif de chromatographie.8. The method according to one of claims 1 to 7, further comprising a step of separating the charge in the chromatography device.
9. Le procédé selon l'une des revendications 1 à 8 caractérisé en ce que le fluide est dévié à travers le canal de charge lorsque la boucle est en position d'injection au moyen d'au moins une vanne à plusieurs voies.9. The method according to one of claims 1 to 8 characterized in that the fluid is deflected through the charge channel when the loop is in the injection position by means of at least one multi-way valve.
10. Le procédé selon la revendication 9, dans lequel on utilise une vanne à 6 voies ou un ensemble de vannes possédant au moins 2 voies.The method of claim 9, wherein a 6-way valve or a set of valves having at least 2 lanes is used.
1 1. Le procédé selon l'une des revendications 1 à 10, le procédé de séparation dans un dispositif de chromatographie est un procédé multicolonnes.1. The process according to one of claims 1 to 10, the separation process in a chromatography device is a multicolumn process.
12. Le procédé selon l'une des revendications 1 à 1 1 , le procédé de séparation dans un dispositif de chromatographie est un procédé choisi parmi les procédés VariCol, Lit Mobile Simulé ou steady-state recycling ou Cyclojet ®.12. The method according to one of claims 1 to 1 1, the separation process in a chromatography device is a method selected from VariCol processes, Simulated Mobile Bed or steady-state recycling or Cyclojet ®.
13. Le procédé selon l'une des revendications 1 à 12, utilisant un éluant contenant au moins du dioxyde de carbone, à l'état de gaz, de gaz dissous, liquide ou supercritique. 13. The method according to one of claims 1 to 12, using an eluent containing at least carbon dioxide in the form of gas, dissolved gas, liquid or supercritical.
PCT/FR2008/000094 2007-01-26 2008-01-28 Separation method WO2008107562A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0700540 2007-01-26
FR0700540A FR2911793B1 (en) 2007-01-26 2007-01-26 CHROMATOGRAPHY SEPARATION PROCESS

Publications (2)

Publication Number Publication Date
WO2008107562A2 true WO2008107562A2 (en) 2008-09-12
WO2008107562A3 WO2008107562A3 (en) 2009-03-19

Family

ID=38477031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/000094 WO2008107562A2 (en) 2007-01-26 2008-01-28 Separation method

Country Status (2)

Country Link
FR (1) FR2911793B1 (en)
WO (1) WO2008107562A2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9150816B2 (en) 2013-12-11 2015-10-06 Novasep Process Sas Chromatographic method for the production of polyunsaturated fatty acids
US9234157B2 (en) 2011-07-06 2016-01-12 Basf Pharma Callanish Limited SMB process
US9260677B2 (en) 2011-07-06 2016-02-16 Basf Pharma Callanish Limited SMB process
US9315762B2 (en) 2011-07-06 2016-04-19 Basf Pharma Callanish Limited SMB process for producing highly pure EPA from fish oil
US9321715B2 (en) 2009-12-30 2016-04-26 Basf Pharma (Callanish) Limited Simulated moving bed chromatographic separation process
US9347020B2 (en) 2011-07-06 2016-05-24 Basf Pharma Callanish Limited Heated chromatographic separation process
US9370730B2 (en) 2011-07-06 2016-06-21 Basf Pharma Callanish Limited SMB process
US9428711B2 (en) 2013-05-07 2016-08-30 Groupe Novasep Chromatographic process for the production of highly purified polyunsaturated fatty acids
US9694302B2 (en) 2013-01-09 2017-07-04 Basf Pharma (Callanish) Limited Multi-step separation process
US10975031B2 (en) 2014-01-07 2021-04-13 Novasep Process Method for purifying aromatic amino acids
DE102022101546A1 (en) 2022-01-24 2023-07-27 Alexander Bozic Chromatography facility
DE102022113684A1 (en) 2022-05-31 2023-11-30 Alexander Bozic Chromatography system with fluid recycling

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITPD20110153A1 (en) * 2011-05-13 2012-11-14 Univ Padova METHOD OF SYNTHESIS OF CARBON NANOTUBES FUNCTIONALIZED BY CYCLE ADDS IN CONTINUOUS FLOW AND APPARATUS FOR THE SAME

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4300393A (en) * 1979-12-14 1981-11-17 Stearns Stanley D Sample introduction apparatus for gas chromatographic analysis using packed or capillary bore open tubular columns and method of testing
US4962042A (en) * 1988-05-25 1990-10-09 The Dow Chemical Company Method for on-column injection gas chromatography
US6428702B1 (en) * 2001-08-01 2002-08-06 Berger Instruments, Inc. Method of sample introduction for supercritical fluid chromatography systems
US20020166364A1 (en) * 2001-04-24 2002-11-14 Teresa Lechner-Fish Sample and carrier gas pre-heat system for gas chromatograph
EP1536228A1 (en) * 2003-11-27 2005-06-01 Agilent Technologies, Inc. Dual loop autosampling
EP1918705A1 (en) * 2006-10-30 2008-05-07 Agilent Technologies, Inc. Controlled Trapping Process

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4300393A (en) * 1979-12-14 1981-11-17 Stearns Stanley D Sample introduction apparatus for gas chromatographic analysis using packed or capillary bore open tubular columns and method of testing
US4962042A (en) * 1988-05-25 1990-10-09 The Dow Chemical Company Method for on-column injection gas chromatography
US20020166364A1 (en) * 2001-04-24 2002-11-14 Teresa Lechner-Fish Sample and carrier gas pre-heat system for gas chromatograph
US6428702B1 (en) * 2001-08-01 2002-08-06 Berger Instruments, Inc. Method of sample introduction for supercritical fluid chromatography systems
EP1536228A1 (en) * 2003-11-27 2005-06-01 Agilent Technologies, Inc. Dual loop autosampling
EP1918705A1 (en) * 2006-10-30 2008-05-07 Agilent Technologies, Inc. Controlled Trapping Process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
T.A. DEAN, C.F. POOLE: "Solventless Injection for Packed Column Supercritical Fluid Chromatography" JOURNAL OF HIGH RESOLUTION CHROMATOGRAPHY, vol. 12, no. 12, décembre 1989 (1989-12), pages 773-778, XP002456275 Dr Alfred Huethig Publishers - Heidelberg (Germany) *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9321715B2 (en) 2009-12-30 2016-04-26 Basf Pharma (Callanish) Limited Simulated moving bed chromatographic separation process
US9790162B2 (en) 2009-12-30 2017-10-17 Basf Pharma (Callanish) Limited Simulated moving bed chromatographic separation process
US9695382B2 (en) 2011-07-06 2017-07-04 Basf Pharma (Callanish) Limited SMB process for producing highly pure EPA from fish oil
US9234157B2 (en) 2011-07-06 2016-01-12 Basf Pharma Callanish Limited SMB process
US9260677B2 (en) 2011-07-06 2016-02-16 Basf Pharma Callanish Limited SMB process
US9315762B2 (en) 2011-07-06 2016-04-19 Basf Pharma Callanish Limited SMB process for producing highly pure EPA from fish oil
US9347020B2 (en) 2011-07-06 2016-05-24 Basf Pharma Callanish Limited Heated chromatographic separation process
US9370730B2 (en) 2011-07-06 2016-06-21 Basf Pharma Callanish Limited SMB process
US9771542B2 (en) 2011-07-06 2017-09-26 Basf Pharma Callanish Ltd. Heated chromatographic separation process
US9694302B2 (en) 2013-01-09 2017-07-04 Basf Pharma (Callanish) Limited Multi-step separation process
US10179759B2 (en) 2013-01-09 2019-01-15 Basf Pharma (Callanish) Limited Multi-step separation process
US10214475B2 (en) 2013-01-09 2019-02-26 Basf Pharma (Callanish) Limited Multi-step separation process
US10723973B2 (en) 2013-01-09 2020-07-28 Basf Pharma (Callanish) Limited Multi-step separation process
US9428711B2 (en) 2013-05-07 2016-08-30 Groupe Novasep Chromatographic process for the production of highly purified polyunsaturated fatty acids
US9150816B2 (en) 2013-12-11 2015-10-06 Novasep Process Sas Chromatographic method for the production of polyunsaturated fatty acids
US10975031B2 (en) 2014-01-07 2021-04-13 Novasep Process Method for purifying aromatic amino acids
DE102022101546A1 (en) 2022-01-24 2023-07-27 Alexander Bozic Chromatography facility
DE102022113684A1 (en) 2022-05-31 2023-11-30 Alexander Bozic Chromatography system with fluid recycling

Also Published As

Publication number Publication date
FR2911793A1 (en) 2008-08-01
WO2008107562A3 (en) 2009-03-19
FR2911793B1 (en) 2010-07-30

Similar Documents

Publication Publication Date Title
WO2008107562A2 (en) Separation method
EP3163063B1 (en) Method for adjusting the pressure inside a first propellant tank of a rocket engine
EP0592646B1 (en) Method and device for chromatographically fractionating a mixture in a simulated mobile bed in the presence of a compressed gas, a supercritical fluid or a subcritical liquid
EP1600675B1 (en) Advanced method and apparatus for a separation in a simulated moving bed
CN102460146B (en) Method of manufacturing substances by supercritical fluid chromatography
US9945762B2 (en) Apparatus and method for introducing sample into a separation unit of a chromatography system without disrupting a mobile phase
EP1859263B1 (en) Supercritical-phase mixed chromatography method and installation for implementing same
FR2620512A1 (en) METHOD AND DEVICE FOR STORING BY SORPTION A GAS COMPRISING MULTIPLE CONSTITUENTS
WO2010049653A2 (en) Method for maturing wine and device for implementing same
EP0960642B1 (en) Separation unit comprising a device for controlling the flow of at least one fluid
EP0999402A1 (en) Device for the connection and transfer of a fluid between a donor tank and a receiver tank
EP0973032A1 (en) System for sampling specific pollutants in diluted thermal machine exhaust gases
CA2296194C (en) Integrated analysis process and system for hydrocarbon characterization by distillation simulation
EP1459007B1 (en) Device for storing and mixing two gases
FR2721529A1 (en) Simulated moving bed chromatography separation method with dead volume correction by length reduction.
EP0688589A1 (en) Separation process by simulated moving bed chromatography with correction for dead volume by desynchronisation of periods
US20060249459A1 (en) Method and device for injecting sample
EP0816841A1 (en) Device for measuring solubility of solid components in supercritical fluids
FR2817347A1 (en) DEVICE FOR COUPLING A MICROCHROMATOGRAPH WITH A MASS SPECTROMETER AND ANALYSIS DEVICE
FR2721527A1 (en) Separation method by simulated moving bed chromatography with correction of dead volume by flow rate increase.
EP3959500A1 (en) Device for collecting a sample of elements of interest present as traces in a pressurised gas
JP5853942B2 (en) Gas chromatograph
FR2696437A1 (en) Method and installation for loading a container with liquid air.
FR2873816A1 (en) METHOD AND DEVICE FOR INTEGRATED ANALYSIS OF A SAMPLE OF HYDROCARBONS
CA2528342A1 (en) Expansion valve block with co-ordinated high- and low-pressure circuit control means

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08761806

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08761806

Country of ref document: EP

Kind code of ref document: A2