WO2008099695A1 - Process for production of hydrocarbons by reduction of carbon monoxide - Google Patents

Process for production of hydrocarbons by reduction of carbon monoxide Download PDF

Info

Publication number
WO2008099695A1
WO2008099695A1 PCT/JP2008/051712 JP2008051712W WO2008099695A1 WO 2008099695 A1 WO2008099695 A1 WO 2008099695A1 JP 2008051712 W JP2008051712 W JP 2008051712W WO 2008099695 A1 WO2008099695 A1 WO 2008099695A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconium
catalyst
carbon monoxide
carrier
metal oxide
Prior art date
Application number
PCT/JP2008/051712
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Seki
Hirofumi Konno
Original Assignee
Nippon Oil Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corporation filed Critical Nippon Oil Corporation
Priority to AU2008215570A priority Critical patent/AU2008215570B2/en
Priority to JP2008558040A priority patent/JP5127726B2/en
Priority to CN200880005002.2A priority patent/CN101636471B/en
Publication of WO2008099695A1 publication Critical patent/WO2008099695A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature

Definitions

  • the present invention relates to a method for producing hydrocarbons by a reduction reaction of carbon monoxide.
  • FT synthesis is carried out using a catalyst in which an active metal such as ruthenium or cobalt is supported on a carrier such as silica or alumina (see Patent Document 1). These active metals are generally used after being reduced with hydrogen before the start of the FT synthesis reaction.
  • the catalyst performance is improved by using these catalysts in combination with a second metal in addition to the above active metal (see Patent Document 2).
  • the second metal include sodium, magnesium, lithium, zirconium, hafnium, etc., which are used as appropriate depending on the purpose, such as improving the conversion rate of carbon monoxide or increasing the chain growth probability that is an indicator of the amount of wax produced. ing.
  • Patent Document 1 Japanese Patent Laid-Open No. 4 2 2 7 8 4 7
  • Patent Document 2 Japanese Patent Laid-Open No. 599-1040 24
  • the present invention is a carrier in which zirconium is supported on a metal oxide, and zirconium of 60% or more of the total zirconium amount is present in a portion within 49% by volume on the outer surface side of the carrier.
  • a catalyst obtained by supporting cobalt as an active metal on the support is reduced in a hydrogen atmosphere at 4 10 to 4 70 ° C. for 4 to 12 hours, and then used for the reduction reaction of carbon monoxide. And a hydrocarbon production method.
  • the metal oxide is preferably alumina or silica.
  • the amount of zirconium supported on the metal oxide is 1.0 to 8.0% by mass.
  • the supported amount of cobalt with respect to the carrier is 20 to 40% by mass.
  • a catalyst in which cobalt is supported as an active metal is used on a carrier in which zirconium is supported on a metal oxide.
  • the metal oxide used in the present invention is not particularly limited, and examples thereof include silica, titanium, alumina, magnesia and the like, and silica or alumina is preferable.
  • the average pore diameter of the metal oxide is preferably 6 to 30 nm, and more preferably 10 to 15 nm. If the average pore diameter is less than 6 nm or more than 30 nm, it is not preferable because a highly active catalyst cannot be prepared.
  • the shape of the metal oxide is not particularly limited, but in consideration of practicality, shapes such as a spherical shape, a cylindrical shape, and a three-leaf type that are generally used in actual oil refining and petrochemical equipment are preferable.
  • the particle size is not particularly limited, but is preferably 10 ⁇ m to 1 O mm for practical use.
  • 60% of the total amount of zirconium is present in a portion within 49% by volume of the outer surface side of the carrier in which zirconium is supported on a metal oxide (hereinafter also referred to as a portion near the outer surface). It is important that the above zirconium is supported.
  • the amount of zirconium present in the vicinity of the outer surface is preferably 70% or more of the total amount of zirconium, more preferably 80% or more.
  • the portion within 49% by volume on the outer surface side of the carrier is a region from the outer surface of the carrier toward the center of the carrier, and the volume from the outer surface side is 4% of the total volume of the carrier. Means an area that is within 9%.
  • the volume within 1/5 of the radius from the outer surface to the center of the carrier particle (outer surface side) corresponds to 49% of the total volume of the carrier.
  • the region within 49% by volume on the outer surface side of the carrier means the region within 15 radius (outer surface side) of the radius from the outer surface of the carrier particle toward the center.
  • the zirconium concentration distribution in the radial direction of the carrier particles is obtained by measuring the zirconium concentration at each point by electron probe microanalysis (EPMA).
  • the amount of zirconium supported on the metal oxide is usually 0.2 to 15% by mass, preferably 1.0 to 8.0% by mass.
  • the amount of zirconium supported is less than 0.2% by mass, the catalytic activity tends to decrease, and when it exceeds 15% by mass, the pores of the metal oxide are clogged and the activity tends to decrease, which is not preferable. .
  • the method for supporting zirconium in the vicinity of the outer surface of the metal oxide is not particularly limited, and an impregnation method, an incipient wetness method, an LPD (Liquid phase deposition) method, etc. can be used, and the LPD method is preferable.
  • an impregnation method, an incipient wetness method, an LPD (Liquid phase deposition) method, etc. can be used, and the LPD method is preferable.
  • the following method can be exemplified.
  • the metal oxide is pretreated with an aqueous solution having a pH of 7 or less.
  • the aqueous solution having a pH of 7 or less used at this time include nitric acid aqueous solution, acetic acid aqueous solution, sulfuric acid aqueous solution, hydrochloric acid aqueous solution, ion-exchanged water, and distilled water.
  • 11 is preferably 5-7, more preferably 6-7.
  • pH is less than 5, it is not economically preferable because it is necessary to increase the concentration of zirconium supported after the pretreatment.
  • the pretreatment can be performed by pouring an aqueous solution having a pH of 7 or less into a container containing a metal oxide.
  • the time for immersing the metal oxide in an aqueous solution having a pH of 7 or less is preferably about 10 to 72 hours when left as it is, about 1 to 12 hours when vibrating, and about 1 to 30 minutes when applying ultrasonic waves. .
  • the above time is when the temperature of the aqueous solution is room temperature, and the time for immersion can be saved by heating the aqueous solution to 50 ° C. However, if the temperature exceeds 50 ° C, the water tends to evaporate and the pH changes, which is not preferable.
  • the container containing the pretreated metal oxide is excessive.
  • zirconium can be supported on the metal oxide.
  • the excess here means a volume more than twice the volume of the metal oxide.
  • Zirconium trichloride and the like can be used, with zirconium zirconium carbonate and zirconium acetate being more preferred.
  • the loading time of zirconium is not particularly limited depending on the intended loading amount, but is usually 3 to 72 hours.
  • the solution and the support are separated, and then the support is dried.
  • the drying treatment is not particularly limited, and examples thereof include natural drying in air and deaeration drying under reduced pressure. Usually, it is carried out at a temperature of 100 to 200 ° C, preferably 1100 to 130 ° C for 2 to 24 hours, preferably 5 to 12 hours.
  • a calcination treatment is then performed to convert zirconium into an oxide.
  • the firing treatment is not particularly limited, it is usually 3 40 to 60 in an air atmosphere. C, preferably at 400 to 45 ° C. for 1 to 5 hours.
  • the supported amount of cobalt is preferably 10 to 50% by mass, more preferably 20 to 40% by mass with respect to the support. This loading is 10 mass. If it is less than 0 , the activity is insufficient and the effect of the present invention tends to be difficult to obtain. Also 50 mass. If it exceeds / 0 , cobalt aggregation is likely to occur, so that the utility value of a practical FT synthesis catalyst is lowered, which is not preferable.
  • Cobalt loading method is not particularly limited, I ncipient We tn An impregnation method typified by the ess method can be used.
  • the precursor compound used when carrying cobalt is not particularly limited, and a cobalt salt or complex can be used.
  • a cobalt salt or complex can be used.
  • nitrate, hydrochloride, formate, propionate, acetate and the like can be mentioned.
  • a calcination treatment is usually performed for 1 to 5 hours at 3400 to 60 ° C, preferably 4400 to 4500 ° C in an air atmosphere to convert cobalt into an oxide.
  • a carbon monoxide reduction catalyst is prepared. In performing the carbon monoxide reduction reaction using the catalyst prepared by the above method, a pre-reduction treatment is performed in order to develop the activity of the catalyst. This reduction treatment is a very important operation in the present invention, and an inappropriate operation may cause a runaway of the reaction temperature during the reduction reaction of carbon monoxide.
  • the reduction treatment of the catalyst is performed in a hydrogen atmosphere.
  • the temperature is in the range of 4 10 to 4 70 ° C, preferably 4 2 to 4 50 ° C. If the temperature is less than 4 10 ° C, the activity of the catalyst tends to decrease during the reduction reaction of carbon monoxide, which is not preferable. On the other hand, if it exceeds 4700C, the temperature increase during the carbon monoxide reduction reaction increases, and there is a high possibility that the reaction will run out of control, and the effects of the present invention tend not to be obtained.
  • the reduction treatment time is preferably 4 to 12 hours, more preferably 5 to 12 hours. Less than 4 hours is not preferable because the activity of the catalyst tends to be low during the reduction reaction of carbon monoxide. On the other hand, if it exceeds 12 hours, the temperature rises at the time of the reduction reaction of carbon monoxide, and there is a high possibility that the reaction will run out of control, and the effects of the present invention tend not to be obtained.
  • Spherical silica (average pore size 10 nm, average particle size 1.8 mm) 30 ⁇ is weighed into a 250 ml glass bottle, 100 ml of ion-exchanged water is added thereto, and ultrasonic waves are applied at 40 ° C for 30 minutes. Irradiated. Thereafter, about 50 ml of the supernatant liquid was sucked out with a Pasteur pipette, and an aqueous solution of zirconyl ammonium carbonate with a concentration of 0.1 lmo 1 was added and left at room temperature for 24 hours. Then, after filtering with filter paper, vacuum drying was performed at 120 ° C for 6 hours, followed by baking at 430 ° C for 3 hours in an air atmosphere.
  • the obtained zirconium-containing support was impregnated with an aqueous solution of cobalt nitrate in an amount corresponding to 30% by mass as metallic cobalt by the Inc pipe parts wet method. After impregnation, the catalyst was dried at 120 ° C. for 12 hours and then calcined at 420 ° C. for 3 hours to obtain the target catalyst 1.
  • the amount of zirconium in the catalyst was quantified using fluorescent X-rays.
  • the distribution and quantification of zirconium in the radial direction of the catalyst particles were performed by electron probe microanalysis (EPMA).
  • Example 2 30 g of the spherical silica used in Example 1 was weighed into a 250 ml glass bottle, to which heion exchange water 10 Om 1 was added, and ultrasonic waves were irradiated at 40 ° C. for 10 minutes. Thereafter, the supernatant of about 5 Om 1 was sucked out with a Pasteur pipette, and 150 ml of an aqueous solution of zirconyl ammonium carbonate having a concentration of 0.3 mol ZL was added and left at room temperature for 30 hours. Then, after filtering with filter paper, vacuum drying was performed at 120 ° C. for 6 hours, and then baking was performed at 430 ° C. for 3 hours in an air atmosphere.
  • the obtained support was impregnated with an aqueous solution of cobalt nitrate in an amount corresponding to 25% by mass as metallic cobalt by the Incipient Wetness method. Impregnation After drying at 120 for 1 2 hours, then 420. The target catalyst 2 was obtained by calcination for 3 hours.
  • the amount of zirconium in the catalyst was quantified using fluorescent X-rays.
  • the distribution of zirconium in the radial direction of the catalyst particles was quantified by electron probe microanalysis (EPMA).
  • EPMA electron probe microanalysis
  • Catalyst 3 was prepared in the same manner as Catalyst 1, except that 30 g of silica used in the preparation of Catalyst 1 was impregnated with 1.2 g of zirconium nitrate aqueous solution equivalent to 1.2 g by the Incipient Wetness method. .
  • the amount of zirconium in the catalyst was quantified using fluorescent X-rays.
  • the distribution of zirconium in the radial direction of the catalyst particles was determined by electron probe microanalysis (EPMA).
  • EPMA electron probe microanalysis
  • a carbon monoxide reduction reaction was carried out in the same manner as in Example 1 except that the reduction treatment temperature of the catalyst was 45 ° C.
  • Table 2 shows the conversion rate of carbon monoxide and the peak temperature rise of the catalyst layer monitored during the reaction.
  • a carbon monoxide reduction reaction was performed in the same manner as in Example 1 except that the catalyst was subjected to a reduction treatment temperature of 4700C.
  • Table 2 shows the conversion rate of carbon monoxide and the peak temperature of the catalyst layer monitored during the reaction.
  • a carbon monoxide reduction reaction was carried out in the same manner as in Example 2, except that catalyst 2 was used instead of catalyst 1.
  • Table 2 shows the conversion rate of carbon monoxide and the peak temperature rise of the catalyst layer monitored during the reaction.
  • a carbon monoxide reduction reaction was carried out in the same manner as in Example 1 except that the reduction treatment temperature of the catalyst was 400 ° C.
  • Table 2 shows the conversion rate of carbon monoxide and the peak temperature rise of the catalyst layer monitored during the reaction.
  • a carbon monoxide reduction reaction was carried out in the same manner as in Example 1 except that the catalyst was subjected to a reduction treatment temperature of 4880C.
  • Table 2 shows the conversion rate of carbon monoxide and the peak temperature rise of the catalyst layer monitored during the reaction.
  • Monoacid was obtained in the same manner as in Example 1 except that catalyst 3 was used instead of catalyst 1.
  • a reduction reaction of carbonized carbon was performed.
  • Table 2 shows the conversion rate of carbon monoxide and the peak temperature of the catalyst layer monitored during the reaction.
  • the method of the present invention is a very useful method for producing hydrocarbons by reduction of carbon monoxide, and has great industrial value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

In a process for producing hydrocarbons by reduction of carbon monoxide, operation without run away reaction can be continued by subjecting a catalyst which comprises both cobalt as active metal and a carrier supporting the cobalt which carrier comprises a metal oxide and zirconium supported on the metal oxide and in which at least 60% of the whole zirconium is present in the 49vol% outer surface side zone of the carrier to reduction in a hydrogen atmosphere at 410 to 470°C for 4 to 12 hours and then using the resulting catalyst in the reduction of carbon monoxide.

Description

明 細 書 . 一酸化炭素の還元による炭化水素の製造方法  A method for producing hydrocarbons by reduction of carbon monoxide
[技術分野] [Technical field]
本発明は、 一酸化炭素の還元反応により炭化水素を製造する方法に関する。 [背景技術]  The present invention relates to a method for producing hydrocarbons by a reduction reaction of carbon monoxide. [Background]
近年、 ガソリンゃ軽油のような液体燃料に対する硫黄分規制が急速に厳しくな つてきている。 そのため、 硫黄分や芳香族炭化水素の含有量が低い環境にやさし ぃクリーンな液体燃料の製造が不可欠となっている。 このようなクリーン燃料製 造法の一つとして、 一酸化炭素を水素で還元する、 いわゆるフィッシャー ' トロ プシュ (F T ) 合成法が挙げられる。  In recent years, regulations on sulfur content for liquid fuels such as gasoline and light oil have been rapidly becoming stricter. For this reason, it is indispensable to produce an environment-friendly clean liquid fuel with a low content of sulfur and aromatic hydrocarbons. One such clean fuel production method is the so-called Fischer-Tropsch (F T) synthesis method in which carbon monoxide is reduced with hydrogen.
F T合成は、 シリカやアルミナなどの担体上に、 ルテニウムやコバルトなどの 活性金属を担持した触媒を用いて実施されている (特許文献 1参照) 。 これら活 性金属は一般に F T合成反応開始前に水素により還元して使用される。  FT synthesis is carried out using a catalyst in which an active metal such as ruthenium or cobalt is supported on a carrier such as silica or alumina (see Patent Document 1). These active metals are generally used after being reduced with hydrogen before the start of the FT synthesis reaction.
また、 これら触媒に上記活性金属に加えて第 2金属を組み合わせて使用するこ とにより、 触媒性能が向上することが報告されている (特許文献 2参照) 。 第 2 金属としては、 ナトリウム、 マグネシウム、 リチウム、 ジルコニウム、 ハフニゥ ムなどが挙げられ、 一酸化炭素の転化率向上またはワックス生成量の指標となる 連鎖成長確率の増加など、 目的に応じて適宜使用されている。  In addition, it has been reported that the catalyst performance is improved by using these catalysts in combination with a second metal in addition to the above active metal (see Patent Document 2). Examples of the second metal include sodium, magnesium, lithium, zirconium, hafnium, etc., which are used as appropriate depending on the purpose, such as improving the conversion rate of carbon monoxide or increasing the chain growth probability that is an indicator of the amount of wax produced. ing.
( 1 ) 特許文献 1 :特開平 4一 2 2 7 8 4 7号公報  (1) Patent Document 1: Japanese Patent Laid-Open No. 4 2 2 7 8 4 7
( 2 ) 特許文献 2 :特開昭 5 9 - 1 0 2 4 4 0号公報  (2) Patent Document 2: Japanese Patent Laid-Open No. 599-1040 24
F T合成は非常に大きな発熱を伴う反応であるので、反応系外から冷却したり、 溶剤を反応系内に共存させて除熱を行っているのが一般的である。 この除熱がう まくいかないと触媒層温度が急上昇し、 反応が暴走し、 最悪の場合火災が発生す る。このような除熱を困難にしている要因として、触媒の高活性化が挙げられる。 一般に触媒が高活性であれば、 反応温度を低下させることができ、 より高分子量 な炭化水素の収率向上や触媒の長寿命化が可能となる。 しかしながら、 その一方 で、 高活性な為に触媒層内の局所的な発熱が起こりやすく、 その結果、 暴走反応 が起こる。 このように触媒活性の向上はプロセス面では不利に働くことになる。 [発明の開示] Since FT synthesis is a reaction with a very large exotherm, cooling is generally performed from outside the reaction system or heat is removed by coexisting a solvent in the reaction system. If this heat removal is not successful, the catalyst layer temperature will rise rapidly, the reaction will run out of control, and in the worst case a fire will occur. As a factor that makes such heat removal difficult, there is a high activation of the catalyst. In general, if the catalyst is highly active, the reaction temperature can be lowered, and the yield of higher molecular weight hydrocarbons can be improved and the life of the catalyst can be extended. However, on the other hand, due to its high activity, local heat generation in the catalyst layer is likely to occur, resulting in a runaway reaction. Happens. Thus, the improvement of the catalyst activity is disadvantageous in the process. [Disclosure of the Invention]
一酸化炭素の還元反応は大きな発熱反応のため、 暴走しやすい。 この傾向は高 活性な触媒ほど見られる。 従って、 運転の安定性の面から言えば触媒活性は低い 方が望ましい。 一方で、 プロセスの経済性を向上させる為には、 触媒の活性向上 は不可欠と考えられる。 このような触媒活性の二面性が経済性の高い F T合成プ 口セスの開発の障害となっている。  The reduction reaction of carbon monoxide is a large exothermic reaction and is likely to run away. This tendency is seen with highly active catalysts. Therefore, in terms of operational stability, it is desirable that the catalyst activity is low. On the other hand, improving the activity of the catalyst is indispensable for improving the economics of the process. This duality of catalytic activity is an obstacle to the development of an economical FT synthesis process.
本発明者らは、 鋭意研究を重ねた結果、 特定の触媒を、 一酸化炭素の還元反応 前に特定の条件下に還元処理を行い、 その後 F T合成を行うことにより、 高活性 であり、 かつ安定した運転ができることを見出し、 本発明を完成するに至ったも のである。 すなわち、 本発明は、 金属酸化物にジルコニウムを担持させた担体であって、 該担体の外表面側 4 9体積%以内の部位に、 全ジルコニウム量の 6 0 %以上のジ ルコニゥムが存在してなる担体に、 活性金属としてコバルトを担持してなる触媒 を、 4 1 0〜4 7 0 °Cで 4〜1 2時間水素雰囲気下で還元した後、 一酸化炭素の 還元反応に用いることを特徴とする炭化水素の製造方法に関する。  As a result of intensive research, the inventors of the present invention have achieved high activity by reducing a specific catalyst under specific conditions before the reduction reaction of carbon monoxide, and then performing FT synthesis. The inventors have found that stable operation is possible, and have completed the present invention. That is, the present invention is a carrier in which zirconium is supported on a metal oxide, and zirconium of 60% or more of the total zirconium amount is present in a portion within 49% by volume on the outer surface side of the carrier. A catalyst obtained by supporting cobalt as an active metal on the support is reduced in a hydrogen atmosphere at 4 10 to 4 70 ° C. for 4 to 12 hours, and then used for the reduction reaction of carbon monoxide. And a hydrocarbon production method.
前記炭化水素の製造方法においては、 前記金属酸化物はアルミナまたはシリカ であることが好ましい。  In the hydrocarbon production method, the metal oxide is preferably alumina or silica.
また、 前記炭化水素の製造方法においては、 前記金属酸化物に対するジルコ二 ゥム担持量が 1 . 0〜8 . 0質量%であることが好ましい。  In the method for producing hydrocarbons, it is preferable that the amount of zirconium supported on the metal oxide is 1.0 to 8.0% by mass.
さらに、 前記炭化水素の製造方法においては、 前記担体に対するコバルトの担 持量が 2 0〜4 0質量%であることが好ましい。  Furthermore, in the hydrocarbon production method, it is preferable that the supported amount of cobalt with respect to the carrier is 20 to 40% by mass.
[発明の効果] [The invention's effect]
本発明により、 特定の触媒を特定の条件下に予備還元処理することにより、 活 性の高い F T合成触媒を用いても、 反応が暴走することなく初期から安定した運 転を行うことが可能となった。 — By preliminarily reducing a specific catalyst under specific conditions according to the present invention, even if a highly active FT synthesis catalyst is used, stable operation can be performed from the beginning without runaway reaction. became. —
[発明を実施するための最良の形態] [Best Mode for Carrying Out the Invention]
以下、 本発明について説明する。  The present invention will be described below.
本発明においては、 金属酸化物にジルコニウムを担持させた担体に、 活性金属 としてコバルトを担持した触媒を用いる。  In the present invention, a catalyst in which cobalt is supported as an active metal is used on a carrier in which zirconium is supported on a metal oxide.
本発明において用いる金属酸化物としては特に制限は無いが、 シリカ、 チタ- ァ、 アルミナ、 マグネシアなどを挙げることができ、 好ましくはシリカまたはァ ルミナである。  The metal oxide used in the present invention is not particularly limited, and examples thereof include silica, titanium, alumina, magnesia and the like, and silica or alumina is preferable.
上記金属酸化物の性状に特に制限は無いが、 窒素吸着法で測定される比表面積 が 1 0 0〜8 0 O m 2 /^であることが好ましく、 1 5 0〜 5 0 0 m 2Z がより 好ましい。 There is no particular limitation on the nature of the metal oxide, it is preferable that the specific surface area determined by nitrogen adsorption method 1 0 0~8 0 O m 2 / ^ a, 1 5 0~ 5 0 0 m 2 Z Is more preferable.
また、 上記金属酸化物の平均細孔径は 6〜3 0 n mであることが好ましく、 1 0〜 1 5 n mがより好ましい。 平均細孔径が 6 n m未満または 3 0 n mを越える と高活性な触媒を調製することができないので好ましくない。  The average pore diameter of the metal oxide is preferably 6 to 30 nm, and more preferably 10 to 15 nm. If the average pore diameter is less than 6 nm or more than 30 nm, it is not preferable because a highly active catalyst cannot be prepared.
また、 金属酸化物の形状についても特に制限は無いが、 実用性を考慮すると、 一般に石油精製や石油化学の実装置で使用されている球状、 円柱状および三つ葉 型などの形状が好ましい。 また、 その粒子径についても特に制限は無いが、 実用 性から 1 0 μ m〜 1 O mmであることが好ましレヽ。 本発明では、 金属酸化物にジルコニウムを担持させた担体の外表面側 4 9体 積%以内の部位 (以下において、 外表面近傍部位とも称する。 ) に、 全ジルコ- ゥム量の 6 0 %以上のジルコニウムが担持されていることが重要である。 外表面 近傍部位に存在するジルコニウム量は、 好ましくは全ジルコェゥム量の 7 0 %以 上、 より好ましくは 8 0 %以上であることが好ましい。  In addition, the shape of the metal oxide is not particularly limited, but in consideration of practicality, shapes such as a spherical shape, a cylindrical shape, and a three-leaf type that are generally used in actual oil refining and petrochemical equipment are preferable. The particle size is not particularly limited, but is preferably 10 μm to 1 O mm for practical use. In the present invention, 60% of the total amount of zirconium is present in a portion within 49% by volume of the outer surface side of the carrier in which zirconium is supported on a metal oxide (hereinafter also referred to as a portion near the outer surface). It is important that the above zirconium is supported. The amount of zirconium present in the vicinity of the outer surface is preferably 70% or more of the total amount of zirconium, more preferably 80% or more.
外表面近傍部位に存在するジルコ二ゥム量が全ジルコ二ゥム量の 6 0 %未満で は触媒活性が低下する傾向にあり、 本発明の効果が減少するので好ましくない。 本発明において、 担体の外表面側 4 9体積%以内の部位とは、 担体の外表面から 担体の中心に向けた領域であって、 その外表面側からの体積が、 担体の全体積の 4 9 %以内である領域を意味する。  If the amount of zirconium present in the vicinity of the outer surface is less than 60% of the total amount of zirconium, the catalytic activity tends to decrease and the effect of the present invention is decreased, which is not preferable. In the present invention, the portion within 49% by volume on the outer surface side of the carrier is a region from the outer surface of the carrier toward the center of the carrier, and the volume from the outer surface side is 4% of the total volume of the carrier. Means an area that is within 9%.
担体が球形状の場合には、 担体粒子の外表面から中心に向けた半径の 1 / 5以 内 (外表面側) の体積が、 担体の全体積の 4 9 %に相当することから、 球状担体 の場合は、 担体の外表面側 49体積%以内の部位とは、 担体粒子の外表面から中 心に向けた半径の 1 5以内 (外表面側) の部位を表す。 When the carrier is spherical, the volume within 1/5 of the radius from the outer surface to the center of the carrier particle (outer surface side) corresponds to 49% of the total volume of the carrier. Carrier In this case, the region within 49% by volume on the outer surface side of the carrier means the region within 15 radius (outer surface side) of the radius from the outer surface of the carrier particle toward the center.
なお、 担体粒子の半径方向のジルコニウム濃度分布は、 電子プローブマイクロ 分析 (EPMA) による各点のジルコニウム濃度の測定により求める。  The zirconium concentration distribution in the radial direction of the carrier particles is obtained by measuring the zirconium concentration at each point by electron probe microanalysis (EPMA).
金属酸化物に対するジルコニウム担持量は、 通常 0. 2〜15質量%でぁり、 好ましくは 1. 0〜8. 0質量%である。 ジルコニウム担持量が 0. 2質量%未 満では触媒活性が低下する傾向にあり、 また、 1 5質量%を越えると金属酸化物 の細孔が閉塞し、 活性が低下する傾向にあるので好ましくない。  The amount of zirconium supported on the metal oxide is usually 0.2 to 15% by mass, preferably 1.0 to 8.0% by mass. When the amount of zirconium supported is less than 0.2% by mass, the catalytic activity tends to decrease, and when it exceeds 15% by mass, the pores of the metal oxide are clogged and the activity tends to decrease, which is not preferable. .
金属酸化物の外表面近傍にジルコニウムを担持する方法は特に制限されず、 含 浸法、 I n c i p i e n t we t n e s s、法、 L P D (L i q u i d p h a s e d e p o s i t i o n) 法などを用いることができ、 好ましくは L PD法 である。 前記の金属酸化物の外表面近傍部位に高濃度のジルコニウムが担持された担体 を有する触媒の好ましい製造方法としては、 例えば、 以下の方法を例示すること ができる。  The method for supporting zirconium in the vicinity of the outer surface of the metal oxide is not particularly limited, and an impregnation method, an incipient wetness method, an LPD (Liquid phase deposition) method, etc. can be used, and the LPD method is preferable. . As a preferred method for producing a catalyst having a carrier on which a high concentration of zirconium is supported in the vicinity of the outer surface of the metal oxide, for example, the following method can be exemplified.
先ず上記金属酸化物を p Hが 7以下の水溶液で前処理する。 このとき使用する pHが 7以下の水溶液としては、 硝酸水溶液、 酢酸水溶液、 硫酸水溶液、 塩酸水 溶液、 イオン交換水、 蒸留水などを挙げることができる。 11は5〜7が好まし く、 6〜7がより好ましい。 p Hが 5未満の場合には、 前処理後に担持するジル コニゥム濃度を濃くする必要があるため経済的に好ましくない。 前処理は、 例え ば、 金属酸化物を入れた容器に p Hが 7以下の水溶液を注ぎ込むことにより行う ことができる。  First, the metal oxide is pretreated with an aqueous solution having a pH of 7 or less. Examples of the aqueous solution having a pH of 7 or less used at this time include nitric acid aqueous solution, acetic acid aqueous solution, sulfuric acid aqueous solution, hydrochloric acid aqueous solution, ion-exchanged water, and distilled water. 11 is preferably 5-7, more preferably 6-7. When pH is less than 5, it is not economically preferable because it is necessary to increase the concentration of zirconium supported after the pretreatment. For example, the pretreatment can be performed by pouring an aqueous solution having a pH of 7 or less into a container containing a metal oxide.
金属酸化物を p Hが 7以下の水溶液に浸す時間は、 そのまま放置の場合は 10 〜72時間程度、 振動させる場合は 1〜12時間程度、 超音波をかける場合は 1 〜30分程度が好ましい。 いずれの場合も、 金属酸化物を必要時間以上浸してお いても特に悪影響は無い。 上記時間は水溶液の温度が室温の場合であり、 水溶液 を 50°Cまで加熱することで浸す時間を節約することもできる。 ただし 50°Cを 超えると水の蒸発が起こりやすくなり、 pHが変化するので好ましくない。  The time for immersing the metal oxide in an aqueous solution having a pH of 7 or less is preferably about 10 to 72 hours when left as it is, about 1 to 12 hours when vibrating, and about 1 to 30 minutes when applying ultrasonic waves. . In any case, there is no particular adverse effect even if the metal oxide is immersed for more than the required time. The above time is when the temperature of the aqueous solution is room temperature, and the time for immersion can be saved by heating the aqueous solution to 50 ° C. However, if the temperature exceeds 50 ° C, the water tends to evaporate and the pH changes, which is not preferable.
前記前処理を所定時間行った後、 前処理を施した金属酸化物を含む容器に過剰 のジルコニウムを含む溶液を注ぎ込むことにより、 ジルコニウムを金属酸化物に 担持させることができる。 このとき、 前処理後の水溶液の上澄み液を除去すると 必要な容器が小さくなるので好ましい。 ここでいう過剰とは、 金属酸化物の体積 に対して 2倍以上の体積量を意味する。 After performing the pretreatment for a predetermined time, the container containing the pretreated metal oxide is excessive. By pouring a solution containing zirconium, zirconium can be supported on the metal oxide. At this time, it is preferable to remove the supernatant of the aqueous solution after the pretreatment because a necessary container becomes small. The excess here means a volume more than twice the volume of the metal oxide.
ジルコニウム源としては硫酸ジルコニール、 酢酸ジルコニール、 炭酸ジルコ二 Zirconyl sulfate, zirconyl acetate, zirconium carbonate
—ルアンモ-ゥム、 三塩化ジルコニウムなどを用いることができ、 炭酸ジルコ二 一ルアンモユウムおよび酢酸ジルコニールがより好ましい。 —Lumonium, zirconium trichloride, and the like can be used, with zirconium zirconium carbonate and zirconium acetate being more preferred.
ジルコニウムの担持時間は目的とする担持量に依存し特に制限されるものでは ないが、 通常 3〜7 2時間である。  The loading time of zirconium is not particularly limited depending on the intended loading amount, but is usually 3 to 72 hours.
ジルコニウム担持終了後、 溶液と担体 (ジルコニウムを担持した金属酸化物) とを分離し、 その後、 担体を乾燥処理する。 乾燥処理は特に制限されるものでは なく、例えば、空気中での自然乾燥や減圧下での脱気乾燥を挙げることができる。 通常、 温度 1 0 0〜2 0 0°C、 好ましくは 1 1 0〜 1 3 0 °Cで、 2〜 24時間、 好ましくは 5〜1 2時間行う。  After the zirconium loading is completed, the solution and the support (metal oxide supporting zirconium) are separated, and then the support is dried. The drying treatment is not particularly limited, and examples thereof include natural drying in air and deaeration drying under reduced pressure. Usually, it is carried out at a temperature of 100 to 200 ° C, preferably 1100 to 130 ° C for 2 to 24 hours, preferably 5 to 12 hours.
上記乾燥処理後、次いで焼成処理を行い、ジルコニウムを酸化物へと変換する。 焼成処理も特に制限されるものではないが、 通常、 空気雰囲気下に 3 4 0〜6 0 0。C、 好ましくは 4 0 0〜 4 5 0 °Cで、 1〜 5時間行うことができる。  After the drying treatment, a calcination treatment is then performed to convert zirconium into an oxide. Although the firing treatment is not particularly limited, it is usually 3 40 to 60 in an air atmosphere. C, preferably at 400 to 45 ° C. for 1 to 5 hours.
かく して、 金属酸化物の外表面近傍部位にジルコニウム酸化物が選択的に担持 された担体を得ることができる。 次に、 金属酸化物にジルコニウムが担持された担体に、 コバルトを担持する。 通常、 FT合成における活性金属としては、 ルテニウム、 コバルト、 鉄などが用 いられるが、 本発明においてはジルコニウムの特性を活かすため、 活性金属とし てはコバルトを使用する。  Thus, it is possible to obtain a carrier in which zirconium oxide is selectively supported in the vicinity of the outer surface of the metal oxide. Next, cobalt is supported on a carrier in which zirconium is supported on a metal oxide. Usually, ruthenium, cobalt, iron or the like is used as the active metal in the FT synthesis. In the present invention, cobalt is used as the active metal in order to make use of the characteristics of zirconium.
コバルトの担持量は、 担体に対して好ましくは 1 0〜5 0質量%、 より好まし くは 2 0〜4 0質量%である。 この担持量が 1 0質量。 /0未満では活性が不十分で あり、 本発明の効果が得られにくい傾向にある。 また、 5 0質量。 /0を超えるとコ バルトの凝集が起こりやすくなるので実用的な F T合成触媒としては利用価値が 低くなるため好ましくない。 The supported amount of cobalt is preferably 10 to 50% by mass, more preferably 20 to 40% by mass with respect to the support. This loading is 10 mass. If it is less than 0 , the activity is insufficient and the effect of the present invention tends to be difficult to obtain. Also 50 mass. If it exceeds / 0 , cobalt aggregation is likely to occur, so that the utility value of a practical FT synthesis catalyst is lowered, which is not preferable.
. コバルトの担持方法としては特に制限は無く、 I n c i p i e n t We t n e s s法に代表される含浸法を用いることができる。 Cobalt loading method is not particularly limited, I ncipient We tn An impregnation method typified by the ess method can be used.
コバルトを担持する際に'用いる前駆体化合物としては特に限定されることは無 く、 コバルトの塩または錯体を使用することができる。例えば、硝酸塩、塩酸塩、 蟻酸塩、 プロピオン酸塩、 酢酸塩などを挙げることができる。  The precursor compound used when carrying cobalt is not particularly limited, and a cobalt salt or complex can be used. For example, nitrate, hydrochloride, formate, propionate, acetate and the like can be mentioned.
コバルトを担持した後、 通常、 温度 1 0 0〜2 0 0 °C、 好ましくは 1 1 0〜1 3 0 °Cで、 2〜2 4時間、 好ましくは 5〜 1 2時間乾燥し、 次いで、 空気雰囲気 下に通常 3 4 0〜6 0 0 °C、 好ましくは 4 0 0〜 4 5 0 °Cで、 1〜 5時間焼成処 理を行い、 コバルトを酸化物へと変換して、 本発明の一酸化炭素の還元触媒が調 製される。 上記方法で調製した触媒を用いて一酸化炭素の還元反応を行うにあたり、 触媒 の活性を発現させるために予備還元処理を行う。 この還元処理は本発明において 非常に重要な操作であり、 不適切な操作は一酸化炭素の還元反応時に反応温度の 暴走を引き起こすおそれがある。  After loading cobalt, it is usually dried at a temperature of 100 to 200 ° C, preferably 110 to 130 ° C for 2 to 24 hours, preferably 5 to 12 hours, In the present invention, a calcination treatment is usually performed for 1 to 5 hours at 3400 to 60 ° C, preferably 4400 to 4500 ° C in an air atmosphere to convert cobalt into an oxide. A carbon monoxide reduction catalyst is prepared. In performing the carbon monoxide reduction reaction using the catalyst prepared by the above method, a pre-reduction treatment is performed in order to develop the activity of the catalyst. This reduction treatment is a very important operation in the present invention, and an inappropriate operation may cause a runaway of the reaction temperature during the reduction reaction of carbon monoxide.
本発明においては、 触媒の還元処理は水素雰囲気下で行う。 温度は 4 1 0〜4 7 0 °Cの範囲であり、 好ましくは 4 2 0〜4 5 0 °Cである。 温度が 4 1 0 °C未満 では一酸化炭素の還元反応時に触媒の活性が低くなる傾向があるので好ましくな い。また、 4 7 0 °Cを超えると一酸化炭素の還元反応時に温度上昇が大きくなり、 反応が暴走するおそれが高くなり、 本発明の効果が得られない傾向にあるので好 ましくない。  In the present invention, the reduction treatment of the catalyst is performed in a hydrogen atmosphere. The temperature is in the range of 4 10 to 4 70 ° C, preferably 4 2 to 4 50 ° C. If the temperature is less than 4 10 ° C, the activity of the catalyst tends to decrease during the reduction reaction of carbon monoxide, which is not preferable. On the other hand, if it exceeds 4700C, the temperature increase during the carbon monoxide reduction reaction increases, and there is a high possibility that the reaction will run out of control, and the effects of the present invention tend not to be obtained.
還元処理時間は 4〜 1 2時間が好ましく、より好ましくは 5〜 1 2時間である。 4時間未満では一酸化炭素の還元反応時に触媒の活性が低くなる傾向があるので 好ましくない。 また、 1 2時間を越えると一酸化炭素の還元反応時に温度上昇が 大きくなり、 反応が暴走するおそれが高くなり、 本発明の効果が得られない傾向 にあるので好ましくない。  The reduction treatment time is preferably 4 to 12 hours, more preferably 5 to 12 hours. Less than 4 hours is not preferable because the activity of the catalyst tends to be low during the reduction reaction of carbon monoxide. On the other hand, if it exceeds 12 hours, the temperature rises at the time of the reduction reaction of carbon monoxide, and there is a high possibility that the reaction will run out of control, and the effects of the present invention tend not to be obtained.
以上のようにして特定条件下に予備還元処理した触媒を用いて一酸化炭素の還 元反応を行うことにより、 高い活性の触媒を用い、 かつ反応が暴走することなく 炭化水素を製造することができる。 [実施例] By performing a carbon monoxide reduction reaction using a catalyst that has been pre-reduced under specific conditions as described above, it is possible to produce hydrocarbons using a highly active catalyst and without runaway reaction. it can. [Example]
以下、 実施例及び比較例に基づき本発明を更に具体的に説明するが、 本発明は 以下の実施例に何ら限定されるものではない。  EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example and a comparative example, this invention is not limited to a following example at all.
(触媒 1の調製) (Preparation of catalyst 1)
球状のシリカ (平均細孔径 1 0 nm、 平均粒子径 1. 8mm) 30 §を250 m 1のガラス瓶に秤量し、そこへイオン交換水 1 00m lを加え、超音波を 40 °C で 30分照射した。 その後、 約 50m 1の上澄み液をパスツールピぺットで吸出 し、 濃度 0. lmo 1 の炭酸ジルコ二—ルアンモニゥム水溶液 1 5 Om 1を 加えて 24時間室温で放置した。 その後、 ろ紙でろ過した後、 1 20°Cで 6時間 真空乾燥を行い、 次いで空気雰囲気下、 430°Cで 3時間焼成した。 Spherical silica (average pore size 10 nm, average particle size 1.8 mm) 30 § is weighed into a 250 ml glass bottle, 100 ml of ion-exchanged water is added thereto, and ultrasonic waves are applied at 40 ° C for 30 minutes. Irradiated. Thereafter, about 50 ml of the supernatant liquid was sucked out with a Pasteur pipette, and an aqueous solution of zirconyl ammonium carbonate with a concentration of 0.1 lmo 1 was added and left at room temperature for 24 hours. Then, after filtering with filter paper, vacuum drying was performed at 120 ° C for 6 hours, followed by baking at 430 ° C for 3 hours in an air atmosphere.
得られたジルコニウム含有担体に対して金属コバルトとして 30質量%に相当 する量の硝酸コバルトの水溶液を I n c i p i e n t We t n e s s法により 含浸させた。 含浸後、 1 20°Cで 1 2時間乾燥し、 その後 420°Cで 3時間焼成 し、 目的の触媒 1を得た。  The obtained zirconium-containing support was impregnated with an aqueous solution of cobalt nitrate in an amount corresponding to 30% by mass as metallic cobalt by the Inc pipe parts wet method. After impregnation, the catalyst was dried at 120 ° C. for 12 hours and then calcined at 420 ° C. for 3 hours to obtain the target catalyst 1.
この触媒中のジルコニウム量を、 蛍光 X線を用いて定量した。 また、 電子プロ ーブマイクロ分析 (EPMA) により、 触媒粒子の半径方向に対するジルコニゥ ムの分布および定量を行った。 表 1に、 上記測定結果として、 触媒中のジルコ二 ゥム量および全ジルコニゥム量に対する外表面から中心に向けた半径の 1 Z 5以 内 (外表面側) に存在するジルコニウム量の割合を示す。  The amount of zirconium in the catalyst was quantified using fluorescent X-rays. In addition, the distribution and quantification of zirconium in the radial direction of the catalyst particles were performed by electron probe microanalysis (EPMA). Table 1 shows the ratio of the amount of zirconium present within 1 Z 5 of the radius from the outer surface to the center (outer surface side) with respect to the amount of zirconium in the catalyst and the total amount of zirconium as the measurement results. .
(触媒 2の調製) (Preparation of catalyst 2)
実施例 1で使用した球状シリカ 30 gを 250m lのガラス瓶に秤量し、 そこ ヘイオン交換水 1 0 Om 1を加え、 超音波を 40°Cで 1 0分照射した。 その後、 約 5 Om 1の上澄み液をパスツールピペットで吸出し、 濃度 0. 3mo l ZLの 炭酸ジルコニールアンモニゥム水溶液 1 50m lを加えて 30時間室温で放置し た。 その後、 ろ紙でろ過した後、 1 20°Cで 6時間真空乾燥を行い、 次いで空気 雰囲気下、 430°Cで 3時間焼成した。  30 g of the spherical silica used in Example 1 was weighed into a 250 ml glass bottle, to which heion exchange water 10 Om 1 was added, and ultrasonic waves were irradiated at 40 ° C. for 10 minutes. Thereafter, the supernatant of about 5 Om 1 was sucked out with a Pasteur pipette, and 150 ml of an aqueous solution of zirconyl ammonium carbonate having a concentration of 0.3 mol ZL was added and left at room temperature for 30 hours. Then, after filtering with filter paper, vacuum drying was performed at 120 ° C. for 6 hours, and then baking was performed at 430 ° C. for 3 hours in an air atmosphere.
得られた担体に対して金属コバルトとして 25質量%に相当する量の硝酸コパ ルトの水溶液を I n c i p i e n t We t n e s s法により含浸させた。 含浸 後、 1 20でで 1 2時間乾燥し、 その後 420。じで 3時間焼成し、 目的の触媒 2 を得た。 The obtained support was impregnated with an aqueous solution of cobalt nitrate in an amount corresponding to 25% by mass as metallic cobalt by the Incipient Wetness method. Impregnation After drying at 120 for 1 2 hours, then 420. The target catalyst 2 was obtained by calcination for 3 hours.
この触媒中のジルコニウム量を、 蛍光 X線を用いて定量した。 また、 電子プロ ーブマイクロ分析 (EPMA) により、 触媒粒子の半径方向に対するジルコユウ ムの分布おょぴ定量を行った。 上記測定結果として、 触媒中のジルコニウム量お よび全ジルコニウム量に対する外表面から中心に向けた半径の 1Z5以内 (外表 面側) に存在するジルコニウム量の割合を表 1に示す。  The amount of zirconium in the catalyst was quantified using fluorescent X-rays. In addition, the distribution of zirconium in the radial direction of the catalyst particles was quantified by electron probe microanalysis (EPMA). As a result of the above measurements, Table 1 shows the zirconium content in the catalyst and the ratio of the amount of zirconium present within 1Z5 of the radius from the outer surface toward the center (outer surface side) with respect to the total zirconium content.
(触媒 3の調製) (Preparation of catalyst 3)
触媒 1の調製で使用したシリカ 30 gにジルコニウム金属として 1. 2 gに相 当する硝酸ジルコニール水溶液を I n c i p i e n t We t n e s s法で含浸 させたこと以外は触媒 1と同様の方法で触媒 3を調製した。  Catalyst 3 was prepared in the same manner as Catalyst 1, except that 30 g of silica used in the preparation of Catalyst 1 was impregnated with 1.2 g of zirconium nitrate aqueous solution equivalent to 1.2 g by the Incipient Wetness method. .
この触媒中のジルコニウム量を、 蛍光 X線を用いて定量した。 また、 電子プロ ーブマイクロ分析 (EPMA) により、 触媒粒子の半径方向に対するジルコニゥ ムの分布おょぴ定量を行った。 上記測定結果として、 触媒中のジルコニウム量お よび全ジルコニウム量に対する外表面から中心に向けた半径の 1ノ 5以内 (外表 面側) に存在するジルコニウム量の割合を表 1に示す。 表 1  The amount of zirconium in the catalyst was quantified using fluorescent X-rays. In addition, the distribution of zirconium in the radial direction of the catalyst particles was determined by electron probe microanalysis (EPMA). As a result of the above measurements, Table 1 shows the proportion of zirconium in the catalyst and the proportion of zirconium present within 1 to 5 radii from the outer surface to the center (outer surface side) with respect to the total zirconium content. table 1
Figure imgf000009_0001
Figure imgf000009_0001
(実施例 1) (Example 1)
流通式固定床反応装置に触媒 1を 1 0 g充填し、 水素気流下 (流速: 30m l Zm i n) 、 圧力 3 MP a、 温度 4 1 0 °Cにて 5時間触媒の還元処理を行った。 その後、 合成ガス (水素ノー酸化炭素モル比 = 2. 1) を原料とし、 初期温度 2 20°C、 圧力 3 MP a、 ガス空間速度 1 800 h 1で一酸化炭素の還元反応を行 つた。 一酸化炭素の転化率および反応中にモニターした触媒層のピーク温度の上 昇結果を表 2に示す。 (実施例 2 ) 10 g of catalyst 1 was packed in a flow-type fixed bed reactor, and the catalyst was reduced for 5 hours under a hydrogen stream (flow rate: 30 ml lmin) at a pressure of 3 MPa and a temperature of 4 10 ° C. . Then, synthesis gas (hydrogen no carbon oxide molar ratio = 2.1) as a raw material, the initial temperature 2 20 ° C, pressure 3 MP a, a reduction reaction of carbon monoxide at a gas hourly space velocity 1 800 h 1 row I got it. Table 2 shows the conversion rate of carbon monoxide and the peak temperature rise of the catalyst layer monitored during the reaction. (Example 2)
触媒の還元処理温度が 4 5 0 °Cであること以外は実施例 1と同様の操作により 一酸化炭素の還元反応を行った。 一酸化炭素の転化率および反応中にモニターし た触媒層のピーク温度の上昇結果を表 2に示す。  A carbon monoxide reduction reaction was carried out in the same manner as in Example 1 except that the reduction treatment temperature of the catalyst was 45 ° C. Table 2 shows the conversion rate of carbon monoxide and the peak temperature rise of the catalyst layer monitored during the reaction.
(実施例 3 ) (Example 3)
触媒の還元処理温度が 4 7 0 °Cであること以外は実施例 1と同様の操作により 一酸化炭素の還元反応を行った。 一酸化炭素の転化率および反応中にモ-ターし た触媒層のピーク温度の上昇結果を表 2に示す。  A carbon monoxide reduction reaction was performed in the same manner as in Example 1 except that the catalyst was subjected to a reduction treatment temperature of 4700C. Table 2 shows the conversion rate of carbon monoxide and the peak temperature of the catalyst layer monitored during the reaction.
(実施例 4 ) (Example 4)
触媒 1の代わりに触媒 2を使用したこと以外は実施例 2と同様の操作により一 酸化炭素の還元反応を行った。 一酸化炭素の転化率および反応中にモニターした 触媒層のピーク温度の上昇結果を表 2に示す。  A carbon monoxide reduction reaction was carried out in the same manner as in Example 2, except that catalyst 2 was used instead of catalyst 1. Table 2 shows the conversion rate of carbon monoxide and the peak temperature rise of the catalyst layer monitored during the reaction.
(比較例 1 ) (Comparative Example 1)
触媒の還元処理温度が 4 0 0 °Cであること以外は実施例 1と同様の操作により 一酸化炭素の還元反応を行った。 一酸化炭素の転化率および反応中にモニターし た触媒層のピーク温度の上昇結果を表 2に示す。  A carbon monoxide reduction reaction was carried out in the same manner as in Example 1 except that the reduction treatment temperature of the catalyst was 400 ° C. Table 2 shows the conversion rate of carbon monoxide and the peak temperature rise of the catalyst layer monitored during the reaction.
(比較例 2 ) (Comparative Example 2)
触媒の還元処理温度が 4 8 0 °Cであること以外は実施例 1と同様の操作により 一酸化炭素の還元反応を行った。 一酸化炭素の転化率および反応中にモニターし た触媒層のピーク温度の上昇結果を表 2に示す。  A carbon monoxide reduction reaction was carried out in the same manner as in Example 1 except that the catalyst was subjected to a reduction treatment temperature of 4880C. Table 2 shows the conversion rate of carbon monoxide and the peak temperature rise of the catalyst layer monitored during the reaction.
(比較例 3 ) (Comparative Example 3)
触媒 1の代わりに触媒 3を用いたこと以外は実施例 1と同様の操作により一酸 化炭素の還元反応を行った。 一酸化炭素の転化率および反応中にモニターした触 媒層のピーク温度の上昇結果を表 2に示す。 Monoacid was obtained in the same manner as in Example 1 except that catalyst 3 was used instead of catalyst 1. A reduction reaction of carbonized carbon was performed. Table 2 shows the conversion rate of carbon monoxide and the peak temperature of the catalyst layer monitored during the reaction.
Figure imgf000011_0001
以上のように、 担体の外表面から中心に向けた半径の 1 Z 5以内 (外表面側) に存在するジルコニウムが全ジルコニウム量の 6 0 %以上であるコバルト担持触 媒を用いた一酸化炭素の還元反応において、 反応前に 4 1 0〜4 7 0 °Cで 4〜 1 2時間水素雰囲気下で還元することで、 活性の高い F T合成触媒を用いても運転 初期から暴走を抑制することができることがわかる。
Figure imgf000011_0001
As described above, carbon monoxide using a cobalt-supported catalyst in which zirconium present within 1 Z 5 (outer surface side) of the radius from the outer surface to the center of the support is 60% or more of the total amount of zirconium. In this reduction reaction, the runaway is suppressed from the beginning of operation even when a highly active FT synthesis catalyst is used by reducing it in a hydrogen atmosphere at 4 10 to 4 70 ° C for 4 to 12 hours before the reaction. You can see that
[産業上の利用可能性] [Industrial applicability]
本発明の方法は、 一酸化炭素の還元により炭化水素を製造するのに極めて有用 な方法であり、 産業的価値は大きい。  The method of the present invention is a very useful method for producing hydrocarbons by reduction of carbon monoxide, and has great industrial value.

Claims

請 求 の 範 囲 The scope of the claims
1. 金属酸化物にジルコニウムを担持させた担体であって、 該担体の外 表面側 49体積%以内の部位に、 全ジルコニウム量の 60%以上のジルコニウム が存在してなる担体に、 活性金属としてコバルトを担持してなる触媒を、 410 〜470°Cで 4〜1 2時間水素雰囲気下で還元処理した後、 一酸化炭素の還元反 応に用いることを特徴とする炭化水素の製造方法。 1. A carrier in which zirconium is supported on a metal oxide, and a carrier in which zirconium of 60% or more of the total zirconium amount is present in a portion within 49% by volume on the outer surface side of the carrier as an active metal A method for producing hydrocarbons, characterized in that a catalyst comprising cobalt is reduced in a hydrogen atmosphere at 410 to 470 ° C for 4 to 12 hours and then used for the reduction reaction of carbon monoxide.
2. 金属酸化物がアルミナまたはシリカであることを特徴とする請求項 1に記載の炭化水素の製造方法。 2. The method for producing a hydrocarbon according to claim 1, wherein the metal oxide is alumina or silica.
3. 金属酸化物に対するジルコニウム担持量が 1. 0〜8. 0質量%で あることを特徴とする請求項 1または 2に記載の炭化水素の製造方法。 3. The method for producing a hydrocarbon according to claim 1 or 2, wherein the amount of zirconium supported on the metal oxide is 1.0 to 8.0% by mass.
4. 担体に対するコバルトの担持量が 20〜40質量%であることを特 徴とする請求項 1〜 3のいずれかに記載の炭化水素の製造方法。 4. The hydrocarbon production method according to any one of claims 1 to 3, wherein the amount of cobalt supported on the carrier is 20 to 40% by mass.
PCT/JP2008/051712 2007-02-14 2008-01-29 Process for production of hydrocarbons by reduction of carbon monoxide WO2008099695A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2008215570A AU2008215570B2 (en) 2007-02-14 2008-01-29 Process for production of hydrocarbons by reduction of carbon monoxide
JP2008558040A JP5127726B2 (en) 2007-02-14 2008-01-29 Process for producing hydrocarbons by reduction of carbon monoxide
CN200880005002.2A CN101636471B (en) 2007-02-14 2008-01-29 Process for production of hydrocarbons by reduction of carbon monoxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007033037 2007-02-14
JP2007-033037 2007-02-14

Publications (1)

Publication Number Publication Date
WO2008099695A1 true WO2008099695A1 (en) 2008-08-21

Family

ID=39689939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/051712 WO2008099695A1 (en) 2007-02-14 2008-01-29 Process for production of hydrocarbons by reduction of carbon monoxide

Country Status (7)

Country Link
JP (1) JP5127726B2 (en)
CN (1) CN101636471B (en)
AU (1) AU2008215570B2 (en)
MY (1) MY148931A (en)
RU (1) RU2449002C2 (en)
WO (1) WO2008099695A1 (en)
ZA (1) ZA200905535B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239878A (en) * 2007-03-28 2008-10-09 Nippon Oil Corp Method for manufacturing hydrocarbon
EP2692431A1 (en) * 2011-03-31 2014-02-05 Japan Oil, Gas and Metals National Corporation Activated catalyst for fischer-tropsch synthesis reaction and method for producing hydrocarbons

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5676120B2 (en) * 2010-02-26 2015-02-25 Jx日鉱日石エネルギー株式会社 Process for producing activated Fischer-Tropsch synthesis catalyst and process for producing hydrocarbon

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102440A (en) * 1982-11-22 1984-06-13 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ Production of fischer-tropsch catalyst and use thereof in producing hydrocarbon
JPS63147545A (en) * 1986-10-03 1988-06-20 エクソン リサーチ アンド エンヂニアリング コムパニー Catalyst composition and manufacture thereof
JPH03178339A (en) * 1989-11-16 1991-08-02 Shell Internatl Res Maatschappij Bv Product extrusion, extruded product and its use
WO2006099897A1 (en) * 2005-03-22 2006-09-28 Eastman Kodak Company Method and device for controlling differential gloss and print item produced thereby

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5652193A (en) * 1989-03-29 1997-07-29 Exxon Research And Engineering Company Method for hydrocarbon synthesis reactions
DE69129541T2 (en) * 1990-10-15 1999-01-07 Exxon Research Engineering Co METHOD FOR PRODUCING COBALT-CONTAINING HYDROCARBON SYNTHESIS CATALYSTS
DZ2013A1 (en) * 1995-04-07 2002-10-23 Sastech Ltd Catalysts.
JP2003517913A (en) * 1999-05-26 2003-06-03 エナジー・インターナショナル・コーポレーション Improved Fischer-Tropsch activity for cobalt on alumina catalyst without promoter
GC0000360A (en) * 2000-05-04 2007-03-31 Shell Int Research A catalyst support and a supported metal catalyst, a process for their preparation, and the use of the catalyst
CN1176746C (en) * 2001-05-18 2004-11-24 石油大学(北京) Fischer-Tropsch catalyst and its preparing process
CN1136972C (en) * 2002-07-19 2004-02-04 中国科学院山西煤炭化学研究所 Co-Zr catalyst for Fischer-Tropsch synthesis and its prepn and application
MY142111A (en) * 2004-04-16 2010-09-15 Nippon Oil Corp Catalyst for fischer-tropsch synthesis and process for producing hydrocarbons
US20070055963A1 (en) * 2005-09-08 2007-03-08 Lucent Technologies, Inc. Compile target and compiler flag extraction in program analysis and transformation systems
CN1785515A (en) * 2005-12-14 2006-06-14 中国科学院山西煤炭化学研究所 Catalyst used for synthesizing middle distillate from synthetic gas, its preparation method and application

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102440A (en) * 1982-11-22 1984-06-13 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ Production of fischer-tropsch catalyst and use thereof in producing hydrocarbon
JPS63147545A (en) * 1986-10-03 1988-06-20 エクソン リサーチ アンド エンヂニアリング コムパニー Catalyst composition and manufacture thereof
JPH03178339A (en) * 1989-11-16 1991-08-02 Shell Internatl Res Maatschappij Bv Product extrusion, extruded product and its use
WO2006099897A1 (en) * 2005-03-22 2006-09-28 Eastman Kodak Company Method and device for controlling differential gloss and print item produced thereby

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239878A (en) * 2007-03-28 2008-10-09 Nippon Oil Corp Method for manufacturing hydrocarbon
EP2692431A1 (en) * 2011-03-31 2014-02-05 Japan Oil, Gas and Metals National Corporation Activated catalyst for fischer-tropsch synthesis reaction and method for producing hydrocarbons
EP2692431A4 (en) * 2011-03-31 2015-01-14 Japan Oil Gas & Metals Jogmec Activated catalyst for fischer-tropsch synthesis reaction and method for producing hydrocarbons
AU2012234817B2 (en) * 2011-03-31 2015-06-11 Cosmo Oil Co., Ltd. Activated Fischer-Tropsch synthesis reaction catalyst and method for producing hydrocarbons
US9458387B2 (en) 2011-03-31 2016-10-04 Japan Oil, Gas And Metals National Corporation Activated fischer-tropsch synthesis reaction catalyst and method for producing hydrocarbons

Also Published As

Publication number Publication date
AU2008215570A1 (en) 2008-08-21
AU2008215570B2 (en) 2012-05-10
CN101636471A (en) 2010-01-27
RU2009134169A (en) 2011-03-20
RU2449002C2 (en) 2012-04-27
MY148931A (en) 2013-06-14
ZA200905535B (en) 2010-10-27
CN101636471B (en) 2013-09-25
JPWO2008099695A1 (en) 2010-05-27
JP5127726B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
AU777852B2 (en) Reducing Fischer-Tropsch catalyst attrition losses in high agitation reaction systems
CN102770204B (en) Process for production of activated fischer-tropsch synthesis catalyst, and process for production of hydrocarbon
JP5759447B2 (en) Method for producing Fischer-Tropsch synthesis catalyst and method for producing hydrocarbon
JP4473450B2 (en) Nickel catalyst
JP4698343B2 (en) Catalyst for producing hydrocarbons from synthesis gas, method for producing the catalyst, and method for producing hydrocarbons from synthesis gas using the catalyst
JP5795483B2 (en) Activated Fischer-Tropsch synthesis reaction catalyst and hydrocarbon production method
WO2008099695A1 (en) Process for production of hydrocarbons by reduction of carbon monoxide
JP2007270049A (en) Method for producing hydrocarbon by reduction of carbon monoxide
JP5100151B2 (en) Catalyst for producing hydrocarbons from synthesis gas, catalyst production method, method for producing hydrocarbons from synthesis gas, and catalyst regeneration method
JP5013919B2 (en) Hydrocarbon production catalyst and its preparation
CN105392558B (en) Method for producing chlorine-containing catalysts, catalysts produced thereby and use thereof
WO2014046009A1 (en) Fischer-tropsch synthesis catalyst, method for producing same, and method for producing hydrocarbon
JP5025301B2 (en) Hydrocarbon production method
WO2002000338A1 (en) Bimodal porous material and catalyst using the same
JP4907212B2 (en) Carbon monoxide reduction catalyst and preparation method thereof
AU2011222198B2 (en) Method for manufacturing a regenerated Fischer-Tropsch synthesis catalyst, and hydrocarbon manufacturing method
WO2007113965A1 (en) Reduction catalyst for carbon monoxide, process for preparation thereof, and process for production of hydrocarbons
JP5688291B2 (en) Cobalt catalyst with improved activity retention
WO2004085055A1 (en) Catalyst for fischer-tropsch synthesis and process for producing hydrocarbon
JP2644336B2 (en) Method for producing dimethyl ether
WO2012102256A1 (en) Catalyst for fischer-tropsch synthesis, and production method therefor, as well as hydrocarbon production method using fischer-tropsch synthesis catalyst
JP5479286B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880005002.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08704391

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008558040

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2008215570

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2008215570

Country of ref document: AU

Date of ref document: 20080129

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009134169

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 08704391

Country of ref document: EP

Kind code of ref document: A1