JP2008239878A - Method for manufacturing hydrocarbon - Google Patents

Method for manufacturing hydrocarbon Download PDF

Info

Publication number
JP2008239878A
JP2008239878A JP2007084602A JP2007084602A JP2008239878A JP 2008239878 A JP2008239878 A JP 2008239878A JP 2007084602 A JP2007084602 A JP 2007084602A JP 2007084602 A JP2007084602 A JP 2007084602A JP 2008239878 A JP2008239878 A JP 2008239878A
Authority
JP
Japan
Prior art keywords
catalyst
zirconium
cobalt
carbon monoxide
ruthenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007084602A
Other languages
Japanese (ja)
Other versions
JP5025301B2 (en
Inventor
Hiroyuki Seki
浩幸 関
Hirobumi Konno
博文 紺野
Kaoru Fujimoto
薫 藤元
Giyouko Rei
暁紅 黎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2007084602A priority Critical patent/JP5025301B2/en
Publication of JP2008239878A publication Critical patent/JP2008239878A/en
Application granted granted Critical
Publication of JP5025301B2 publication Critical patent/JP5025301B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a hydrocarbon from carbon monoxide at a high carbon monoxide conversion rate and a high chain propagation rate. <P>SOLUTION: The method for manufacturing the hydrocarbon by reacting the carbon monoxide with hydrogen in the presence of a catalyst supporting zirconium, cobalt and/or ruthenium on a metal oxide is disclosed, in which 75% or more of the total amount of the zirconium, cobalt and/or ruthenium are supported within 1/5 of a radius (on an outside surface side) from the outside surface of the catalyst toward the center of the catalyst. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ジルコニウムと、コバルトおよび/またはルテニウムとが金属酸化物の外表面近傍に選択的に担持された触媒を用いて、一酸化炭素から炭化水素を製造する方法に関する。   The present invention relates to a method for producing hydrocarbons from carbon monoxide using a catalyst in which zirconium and cobalt and / or ruthenium are selectively supported in the vicinity of the outer surface of a metal oxide.

一酸化炭素を水素で還元して炭化水素を製造する、いわゆるフィッシャー・トロプシュ(FT)合成法は、硫黄分を含まないクリーンな燃料基材の製造方法として知られている。FT合成では、鉄、ルテニウム、コバルトなどの活性金属をシリカやアルミナなどの担体上に担持して得られる触媒を用いて実施されている(例えば、特許文献1参照。)。
また、上記活性金属に加えて第2金属を組み合わせて使用することにより、触媒性能が向上することが報告されている(例えば、特許文献2および3参照。)。かかる第2金属としては、ナトリウム、マグネシウム、リチウム、ジルコニウム、ハフニウムなどが挙げられ、触媒性能である一酸化炭素の転化率(活性)または連鎖成長確率(選択性)の向上を目的に適宜使用されている
特開平4−227847号公報 特開昭59−102440号公報 国際公開第2004/085055号パンフレット
A so-called Fischer-Tropsch (FT) synthesis method in which carbon monoxide is reduced by hydrogen to produce a hydrocarbon is known as a method for producing a clean fuel substrate that does not contain sulfur. In the FT synthesis, a catalyst obtained by supporting an active metal such as iron, ruthenium, and cobalt on a support such as silica or alumina is used (for example, see Patent Document 1).
Further, it has been reported that the catalyst performance is improved by using a combination of a second metal in addition to the active metal (see, for example, Patent Documents 2 and 3). Examples of the second metal include sodium, magnesium, lithium, zirconium, hafnium, and the like, which are used appropriately for the purpose of improving the conversion rate (activity) or chain growth probability (selectivity) of carbon monoxide, which is catalytic performance. ing
JP-A-4-227847 JP 59-102440 A International Publication No. 2004/085055 Pamphlet

クリーンな中間留分(燃料基材)を収率良く製造する為には、一酸化炭素の転化率が高いことはもちろん、ワックス生成の指標である連鎖成長確率が高いことが必要である。後者は、通常、FT合成よりもその後段プロセスであるワックス水素化分解の方が高収率で中間留分を製造することができるからである。
従って、FT合成触媒としては、高い一酸化炭素転化率および高い連鎖成長確率を与えるような触媒開発が進められてきた。
In order to produce a clean middle distillate (fuel base material) with high yield, it is necessary that the conversion rate of carbon monoxide is high and the probability of chain growth, which is an index of wax production, is high. The latter is because a wax hydrocracking, which is a subsequent process, can usually produce a middle distillate with higher yield than FT synthesis.
Therefore, as an FT synthesis catalyst, development of a catalyst that gives a high carbon monoxide conversion rate and a high chain growth probability has been advanced.

これまでの触媒は、ある程度その性能が向上されてきてはいるものの、必ずしも十分なものとはいえない。更なる触媒性能の向上は、プロセス全体の経済性を向上させるためにも不可欠である。
本発明は、特定の方法により調製された高性能な触媒を用いて一酸化炭素から炭化水素を製造する方法を提供することを目的とする。
Although the performance of conventional catalysts has been improved to some extent, it is not always sufficient. Further catalyst performance improvement is also essential to improve the overall economics of the process.
An object of this invention is to provide the method of manufacturing a hydrocarbon from carbon monoxide using the high performance catalyst prepared by the specific method.

本発明者らは、上記課題について鋭意研究を重ねた結果、活性金属および第2金属が担体の外表面近傍に選択的に担持された触媒を用いることにより、一酸化炭素から炭化水素を効率良く製造できることを見出し、本発明を完成するに至った。
すなわち、本発明は、金属酸化物にジルコニウムとコバルトおよび/またはルテニウムが担持された触媒であって、ジルコニウムとコバルトおよび/またはルテニウムが触媒外表面から中心に向けた半径の1/5以内(外表面側)に総量の75%以上が担持された触媒の存在下に、一酸化炭素と水素を反応させて炭化水素を製造する方法に関する。
As a result of intensive studies on the above problems, the present inventors have efficiently used hydrocarbons from carbon monoxide by using a catalyst in which an active metal and a second metal are selectively supported in the vicinity of the outer surface of the support. The inventors have found that it can be manufactured, and have completed the present invention.
That is, the present invention is a catalyst in which zirconium and cobalt and / or ruthenium are supported on a metal oxide, and the zirconium, cobalt and / or ruthenium are within 1/5 of the radius from the outer surface of the catalyst toward the center (outside The present invention relates to a method for producing hydrocarbons by reacting carbon monoxide with hydrogen in the presence of a catalyst having 75% or more of the total amount supported on the surface side).

本発明により、高い一酸化炭素転化率および高い連鎖成長率で、一酸化炭素から炭化水素を製造することができる。   According to the present invention, hydrocarbons can be produced from carbon monoxide with a high carbon monoxide conversion rate and a high chain growth rate.

以下、本発明について詳細に説明する。
本発明において用いる触媒は、金属酸化物にジルコニウムとコバルトおよび/またはルテニウムが担持された触媒である。より具体的には、金属酸化物にジルコニウムを担持して得られる担体に、コバルトおよび/またはルテニウムが担持されたものであり、ジルコニウムと、コバルトおよび/またはルテニウムとが、触媒の外表面から中心に向けた半径の1/5以内(外表面側)に、総量の75%以上が担持されたものである。
Hereinafter, the present invention will be described in detail.
The catalyst used in the present invention is a catalyst in which zirconium and cobalt and / or ruthenium are supported on a metal oxide. More specifically, cobalt and / or ruthenium is supported on a support obtained by supporting zirconium on a metal oxide, and zirconium and cobalt and / or ruthenium are centered from the outer surface of the catalyst. 75% or more of the total amount is supported within 1/5 of the radius toward the outer surface (outer surface side).

本発明において用いる金属酸化物としては特に制限は無いが、シリカ、チタニア、アルミナ、マグネシアなどを挙げることができ、好ましくはシリカまたはアルミナである。
上記金属酸化物の性状については特に制限は無いが、窒素吸着法で測定される比表面積が50〜800m/gであることが好ましく、150〜500m/gがより好ましい。
また、金属酸化物の平均細孔径としては6〜30nmが好ましく、10〜20nmがより好ましい。平均細孔径が6nm未満ではジルコニウムの担持時間が長くなる傾向があり、好ましくない。一方、平均細孔径が30nmを超えるとジルコニウムが金属酸化物の内部にまで入りやすくなる傾向があるので好ましくない。
上記金属酸化物の形状に制限は無いが、実用性を考慮すると、一般に石油精製や石油化学の実装置で使用されている球状、円柱状および三つ葉型などが良い。また、その粒子径についても制限は無く、実用性から10μm〜10mmが良い。
Although there is no restriction | limiting in particular as a metal oxide used in this invention, A silica, titania, an alumina, magnesia etc. can be mentioned, Preferably it is a silica or an alumina.
Although there is no restriction | limiting in particular about the property of the said metal oxide, It is preferable that the specific surface area measured by a nitrogen adsorption method is 50-800 m < 2 > / g, and 150-500 m < 2 > / g is more preferable.
Moreover, as an average pore diameter of a metal oxide, 6-30 nm is preferable and 10-20 nm is more preferable. If the average pore diameter is less than 6 nm, the zirconium loading time tends to be long, which is not preferable. On the other hand, if the average pore diameter exceeds 30 nm, zirconium tends to easily enter the metal oxide, which is not preferable.
Although there is no restriction | limiting in the shape of the said metal oxide, When a practicality is considered, the spherical shape, cylindrical shape, and three-leaf type etc. which are generally used with the actual apparatus of petroleum refining or petrochemistry are good. Moreover, there is no restriction | limiting also about the particle diameter, and 10 micrometers-10 mm are good from practicality.

本発明で用いる触媒は以下のようにして調製される。
本発明で用いる触媒の調製に際しては、まず金属酸化物を前処理する。この前処理は不可欠であり、重要な工程である。以下に前処理について説明する。
まず、金属酸化物をpH7以下の水溶液に浸す。このとき使用する水溶液として硝酸水溶液、酢酸水溶液、硫酸水溶液、塩酸水溶液、イオン交換水、蒸留水、アンモニウム水溶液を挙げることができる。またpHは5〜7が好ましく、6〜7がより好ましい。pHが5未満の場合、前処理後に担持するジルコニウム濃度を濃くする必要があり、経済的に良くない。
金属酸化物をpH7以下の水溶液に浸す時間は、そのまま放置の場合は好ましくは10〜72時間、振動させる場合は好ましくは1〜12時間、超音波をかける場合は好ましくは1〜30分である。いずれの場合も、金属酸化物を必要時間以上浸しておいても影響は無い。上記時間は水溶液の温度が室温の場合であり、水溶液を加熱することで浸す時間を節約することもできる。ただし50℃を超えると水の蒸発が起こりやすくなり、pHが変化するので好ましくない。
The catalyst used in the present invention is prepared as follows.
In preparing the catalyst used in the present invention, first, the metal oxide is pretreated. This pretreatment is indispensable and an important process. The preprocessing will be described below.
First, the metal oxide is immersed in an aqueous solution having a pH of 7 or less. Examples of the aqueous solution used at this time include an aqueous nitric acid solution, an aqueous acetic acid solution, an aqueous sulfuric acid solution, an aqueous hydrochloric acid solution, ion-exchanged water, distilled water, and an aqueous ammonium solution. Moreover, 5-7 are preferable and 6-7 are more preferable. If the pH is less than 5, it is necessary to increase the concentration of zirconium supported after the pretreatment, which is not economical.
The time for immersing the metal oxide in an aqueous solution having a pH of 7 or less is preferably 10 to 72 hours when left as it is, preferably 1 to 12 hours when vibrating, and preferably 1 to 30 minutes when applying ultrasonic waves. . In either case, there is no effect even if the metal oxide is immersed for more than the required time. The above time is when the temperature of the aqueous solution is room temperature, and the time for immersion can be saved by heating the aqueous solution. However, if the temperature exceeds 50 ° C., water tends to evaporate and the pH changes, which is not preferable.

前処理を所定時間行った後、過剰のジルコニウムを含む溶液を注ぎ込み、ジルコニウムを金属酸化物に担持する。このとき、前処理後の水溶液の上澄み液を除去すると必要な容器が小さくなるので好ましい。ここでいう過剰とは、金属酸化物の体積に対して2倍以上の体積量を意味する。
ジルコニウム源としては硫酸ジルコニ−ル、酢酸ジルコニ−ル、炭酸ジルコニ−ルアンモニウム、三塩化ジルコニウムを用いることができ、炭酸ジルコニ−ルアンモニウムおよび酢酸ジルコニ−ルが好ましい。
担持するジルコニウム量としては、金属酸化物に対して10質量%以下が好ましい。10質量%を超えると金属酸化物の外表面近傍に選択的に担持できなくなるとともに、一酸化炭素の転化率が減少する傾向にある。
ジルコニウムの担持時間は目的とする担持量に依存し、通常3〜72時間である。
After performing the pretreatment for a predetermined time, a solution containing excess zirconium is poured to support the zirconium on the metal oxide. At this time, it is preferable to remove the supernatant of the aqueous solution after the pretreatment because a necessary container becomes small. The term “excess” as used herein means a volume amount that is twice or more the volume of the metal oxide.
Zirconium sulfate, zirconium acetate, zirconium carbonate ammonium, and zirconium trichloride can be used as the zirconium source, with zirconium carbonate ammonium and zirconium acetate being preferred.
The amount of zirconium supported is preferably 10% by mass or less based on the metal oxide. If it exceeds 10% by mass, it cannot be selectively supported in the vicinity of the outer surface of the metal oxide, and the conversion of carbon monoxide tends to decrease.
The loading time of zirconium depends on the intended loading and is usually 3 to 72 hours.

ジルコニウム担持終了後、溶液と担体(ジルコニウムを担持した金属酸化物)とを分離し、その後、担体を乾燥処理する。乾燥処理は特に制限されるものではなく、例えば、空気中での自然乾燥や減圧下での脱気乾燥を挙げることができる。通常、100〜200℃、好ましくは110〜130℃で、2〜24時間、好ましくは5〜12時間行う。
乾燥後、焼成処理してジルコニウムを酸化物へと変換する。焼成処理も特に制限されるものではなく、通常、空気雰囲気下に340〜600℃、好ましくは400〜450℃で、1〜5時間行うことができる。
After the zirconium loading is completed, the solution and the carrier (metal oxide carrying zirconium) are separated, and then the carrier is dried. The drying process is not particularly limited, and examples thereof include natural drying in air and deaeration drying under reduced pressure. Usually, it is carried out at 100 to 200 ° C., preferably 110 to 130 ° C. for 2 to 24 hours, preferably 5 to 12 hours.
After drying, it is calcined to convert zirconium into an oxide. The baking treatment is not particularly limited, and can usually be performed in an air atmosphere at 340 to 600 ° C., preferably 400 to 450 ° C. for 1 to 5 hours.

ジルコニウムは、担体の外表面から中心に向けた半径の1/5以内(外表面側)に、全ジルコニウム量の75%以上、好ましくは80%以上が担持される。75%未満では、反応活性が低下するため好ましくない。   Zirconium is supported at 75% or more, preferably 80% or more of the total amount of zirconium within 1/5 of the radius from the outer surface of the support toward the center (outer surface side). If it is less than 75%, the reaction activity decreases, which is not preferable.

次に、上記で得られた担体に、活性金属を担持する。
FT合成における活性金属としては、通常、ルテニウム、コバルト、鉄が用いられるが、本発明において用いる活性金属は、ジルコニウムの特性を生かすため、ルテニウム若しくはコバルトまたは両者の組合わせに限定される。
ルテニウムおよび/またはコバルトの担持量については特に制限は無いが、担体に対して好ましくは3〜50質量%、より好ましくは5〜15質量%である。この担持量が3質量%未満では活性が不十分であり、50質量%を超えると活性金属の凝集が起こりやすくなり、一酸化炭素の転化率が減少する傾向にある。
Next, the active metal is supported on the carrier obtained above.
As the active metal in the FT synthesis, ruthenium, cobalt and iron are usually used. However, the active metal used in the present invention is limited to ruthenium or cobalt or a combination of both in order to make use of the characteristics of zirconium.
Although there is no restriction | limiting in particular about the load of ruthenium and / or cobalt, Preferably it is 3-50 mass% with respect to a support | carrier, More preferably, it is 5-15 mass%. If the loading is less than 3% by mass, the activity is insufficient, and if it exceeds 50% by mass, aggregation of the active metal tends to occur and the conversion of carbon monoxide tends to decrease.

活性金属(ルテニウムおよび/またはコバルト)を、金属酸化物にジルコニウムが担持された担体の外表面近傍に選択的に担持する為の方法としては、スプレー担持法を挙げることができる。従来のIncipient Wetness法に代表される含浸法では、本発明の効果が得られない。
具体的には、上記担体を攪拌しながら50〜350℃、好ましくは100〜250℃において活性金属の前駆体化合物を含んだ水溶液またはアルコール溶液を担体にスプレー含浸する。温度が50℃未満の場合、活性金属は担体粒子の中央まで入り込む傾向があり、一方、350℃を越えると外表面のみに活性金属が担持され、一酸化炭素の転化率が減少する傾向にあるので、実用上好ましくない。
ルテニウムおよび/またはコバルトを含む前駆体化合物としては特に限定されることは無く、その金属の塩または錯体を使用することができる。例えば、硝酸塩、塩酸塩、蟻酸塩、プロピオンサン塩、酢酸塩などを挙げることができる。
Examples of a method for selectively supporting an active metal (ruthenium and / or cobalt) near the outer surface of a support in which zirconium is supported on a metal oxide include a spray supporting method. In the impregnation method represented by the conventional Incipient Wetness method, the effect of the present invention cannot be obtained.
Specifically, the carrier is spray impregnated with an aqueous solution or an alcohol solution containing an active metal precursor compound at 50 to 350 ° C., preferably 100 to 250 ° C. while stirring the carrier. When the temperature is less than 50 ° C., the active metal tends to enter the center of the carrier particles, while when it exceeds 350 ° C., the active metal is supported only on the outer surface, and the conversion of carbon monoxide tends to decrease. Therefore, it is not preferable for practical use.
The precursor compound containing ruthenium and / or cobalt is not particularly limited, and a metal salt or complex thereof can be used. For example, nitrate, hydrochloride, formate, propionsan salt, acetate and the like can be mentioned.

活性金属担持後、温度100〜200℃、好ましくは110〜130℃で、2〜24時間、好ましくは5〜10時間乾燥し、次いで、空気雰囲気下に340〜600℃、好ましくは400〜450℃で、1〜5時間焼成処理を行い、活性金属を酸化物へと変換する。   After supporting the active metal, it is dried at a temperature of 100 to 200 ° C, preferably 110 to 130 ° C for 2 to 24 hours, preferably 5 to 10 hours, and then 340 to 600 ° C, preferably 400 to 450 ° C in an air atmosphere. Then, a baking treatment is performed for 1 to 5 hours to convert the active metal into an oxide.

かくして調製された本発明の触媒は、ジルコニウムと、コバルトおよび/またはルテニウムとが、触媒の外表面から中心に向けた半径の1/5以内(外表面側)、好ましくは1/6以内(外表面側)に、総量の75%以上、好ましくは80%以上が担持されている。75%未満では、反応活性が低下するため好ましくない。   In the catalyst of the present invention thus prepared, zirconium and cobalt and / or ruthenium are within 1/5 of the radius from the outer surface of the catalyst toward the center (outside surface side), preferably within 1/6 (outside). 75% or more, preferably 80% or more of the total amount is supported on the surface side). If it is less than 75%, the reaction activity decreases, which is not preferable.

本発明は、上記の如くして調製された触媒を用いて一酸化炭素の還元反応を行う。反応温度は好ましくは170〜320℃、より好ましくは180〜250℃である。反応温度が170℃未満では一酸化炭素がほとんど反応せず、炭化水素収率が低い傾向にある。また、反応温度が320℃を超えると、メタンなどのガス生成量が増加する傾向にあるので好ましくない。   In the present invention, the reduction reaction of carbon monoxide is performed using the catalyst prepared as described above. The reaction temperature is preferably 170 to 320 ° C, more preferably 180 to 250 ° C. When the reaction temperature is less than 170 ° C., carbon monoxide hardly reacts and the hydrocarbon yield tends to be low. Moreover, when reaction temperature exceeds 320 degreeC, since it exists in the tendency for the gas production amount of methane etc. to increase, it is unpreferable.

触媒に対するガス空間速度に特に制限は無いが、通常、500〜4000h−1であり、好ましくは1000〜3000h−1である。ガス空間速度が500h−1未満では液体燃料の生産性が低下する傾向にあり、また4000h−1を超えると反応温度が高くなることに伴いガス生成が大きくなる傾向にあるので好ましくない。 Although there is no restriction | limiting in particular in the gas space velocity with respect to a catalyst, Usually, it is 500-4000h- 1 , Preferably it is 1000-3000h- 1 . If the gas space velocity is less than 500 h −1 , the productivity of the liquid fuel tends to decrease, and if it exceeds 4000 h −1 , gas reaction tends to increase as the reaction temperature increases, which is not preferable.

反応圧力(一酸化炭素と水素からなる合成ガスの分圧)は特に制限が無いが、好ましくは0.5〜7MPaの範囲であり、より好ましくは2〜4MPaの範囲で反応を行うことができる。反応圧力が0.5MPa未満では一酸化炭素の転化率が低下する傾向にあり、また7MPaを超えると設備投資額が大きくなる傾向にあり、好ましくない。   The reaction pressure (partial pressure of the synthesis gas composed of carbon monoxide and hydrogen) is not particularly limited, but is preferably in the range of 0.5 to 7 MPa, and more preferably in the range of 2 to 4 MPa. . If the reaction pressure is less than 0.5 MPa, the conversion rate of carbon monoxide tends to decrease, and if it exceeds 7 MPa, the amount of capital investment tends to increase.

原料としては一酸化炭素と水素を主成分とする合成ガスであれば特に制限は無いが、通常、水素/一酸化炭素のモル比が1.2〜3.0であり、1.8〜2.2の範囲であることが望ましい。上記モル比が1.2未満の場合、一酸化炭素転化率が減少する傾向にあり、一方3.0を超えると連鎖成長確率が減少する傾向にある。   The raw material is not particularly limited as long as it is a synthesis gas mainly composed of carbon monoxide and hydrogen. Usually, the hydrogen / carbon monoxide molar ratio is 1.2 to 3.0, and 1.8 to 2 It is desirable to be in the range of. When the molar ratio is less than 1.2, the carbon monoxide conversion tends to decrease, whereas when it exceeds 3.0, the chain growth probability tends to decrease.

以下、実施例及び比較例に基づき本発明を更に具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example at all.

(触媒A)
球状のシリカ(平均細孔径15nm、平均粒子径1.75mm)30gを250mlのガラス瓶に秤量し、そこへpH6.5の硝酸水溶液100mlを加え、超音波を40℃で10分照射した。その後、約50mlの上澄み液をパスツールピペットで吸出し、濃度0.2mol/Lの炭酸ジルコニ−ルアンモニウム水溶液150mlを加えて24時間室温で放置した。その後、ろ紙でろ過した後、120℃で6時間真空乾燥を行い、次いで空気雰囲気下、430℃で3時間焼成した。
得られた担体に対して金属コバルトとして10質量%に相当する量の硝酸コバルトの水溶液を200℃で担体にスプレー含浸させた。含浸後、120℃で12時間乾燥し、その後420℃で3時間焼成し、目的の触媒を得た。
この触媒中のジルコニウムおよびコバルト量を蛍光X線を用いて定量化した。また、電子走査マイクロ分析(EPMA)により、触媒粒子の半径方向に対するジルコニウムおよびコバルトの分布および定量を行った。表1に、上記測定結果として、触媒中の全ジルコニウム量に対する外表面から中心に向けた半径の1/5以内(外表面側)に存在するジルコニウム量の割合を示す。また、触媒中の全コバルト量に対する外表面から中心に向けた半径の1/5以内(外表面側)に存在するコバルト量の割合を示す。
(Catalyst A)
30 g of spherical silica (average pore size 15 nm, average particle size 1.75 mm) was weighed into a 250 ml glass bottle, 100 ml of a pH 6.5 nitric acid aqueous solution was added thereto, and ultrasonic waves were irradiated at 40 ° C. for 10 minutes. Thereafter, about 50 ml of the supernatant was sucked with a Pasteur pipette, 150 ml of a 0.2 mol / L aqueous zirconium carbonate solution was added, and left at room temperature for 24 hours. Then, after filtering with filter paper, it vacuum-dried at 120 degreeC for 6 hours, and then baked at 430 degreeC for 3 hours in air atmosphere.
The carrier was spray impregnated at 200 ° C. with an aqueous solution of cobalt nitrate corresponding to 10% by mass as metallic cobalt with respect to the obtained carrier. After impregnation, it was dried at 120 ° C. for 12 hours and then calcined at 420 ° C. for 3 hours to obtain the desired catalyst.
The amount of zirconium and cobalt in the catalyst was quantified using fluorescent X-rays. Further, the distribution and quantification of zirconium and cobalt in the radial direction of the catalyst particles were performed by electronic scanning microanalysis (EPMA). Table 1 shows the ratio of the amount of zirconium present within 1/5 of the radius from the outer surface toward the center (outer surface side) with respect to the total amount of zirconium in the catalyst as the measurement result. Moreover, the ratio of the amount of cobalt existing within 1/5 (outer surface side) of the radius from the outer surface toward the center with respect to the total amount of cobalt in the catalyst is shown.

(触媒B)
円柱状のアルミナ(平均細孔径11.5nm、φ1/16インチ、長さ約3mm)30gを250mlのガラス瓶に秤量し、そこへイオン交換水(pH7.0)100mlを加え、超音波を40℃で10分照射した。その後、約50mlの上澄み液をパスツールピペットで吸出し、濃度0.15mol/Lの炭酸ジルコニ−ルアンモニウム水溶液150mlを加えて36時間室温で放置した。その後、ろ紙でろ過した後、120℃で6時間真空乾燥を行い、次いで空気雰囲気下、430℃で3時間焼成した。
得られた担体に対して金属コバルトとして10質量%に相当する量の酢酸コバルトの水溶液を200℃で担体にスプレー含浸させた。含浸後、120℃で12時間乾燥し、その後420℃で3時間焼成し、目的の触媒を得た。
この触媒中のジルコニウムおよびコバルト量を蛍光X線を用いて定量化した。また、電子走査マイクロ分析(EPMA)により、触媒粒子の半径方向に対するジルコニウムおよびコバルトの分布および定量を行った。表1に、上記測定結果として、触媒中の全ジルコニウム量に対する外表面から中心に向けた半径の1/5以内(外表面側)に存在するジルコニウム量の割合を示す。また、触媒中の全コバルト量に対する外表面から中心に向けた半径の1/5以内(外表面側)に存在するコバルト量の割合を示す。
(Catalyst B)
30 g of cylindrical alumina (average pore diameter 11.5 nm, φ 1/16 inch, length of about 3 mm) is weighed into a 250 ml glass bottle, 100 ml of ion-exchanged water (pH 7.0) is added thereto, and ultrasonic waves are applied at 40 ° C. For 10 minutes. Thereafter, about 50 ml of the supernatant was sucked out with a Pasteur pipette, 150 ml of an aqueous solution of zirconyl ammonium carbonate having a concentration of 0.15 mol / L was added and left at room temperature for 36 hours. Then, after filtering with filter paper, it vacuum-dried at 120 degreeC for 6 hours, and then baked at 430 degreeC for 3 hours in air atmosphere.
The carrier was spray impregnated at 200 ° C. with an aqueous solution of cobalt acetate in an amount corresponding to 10% by mass as metallic cobalt with respect to the obtained carrier. After impregnation, it was dried at 120 ° C. for 12 hours and then calcined at 420 ° C. for 3 hours to obtain the desired catalyst.
The amount of zirconium and cobalt in the catalyst was quantified using fluorescent X-rays. Further, the distribution and quantification of zirconium and cobalt in the radial direction of the catalyst particles were performed by electronic scanning microanalysis (EPMA). Table 1 shows the ratio of the amount of zirconium present within 1/5 of the radius from the outer surface toward the center (outer surface side) with respect to the total amount of zirconium in the catalyst as the measurement result. Moreover, the ratio of the amount of cobalt existing within 1/5 (outer surface side) of the radius from the outer surface toward the center with respect to the total amount of cobalt in the catalyst is shown.

(触媒C)
スプレー含浸に代えてIncipient Wetness法でコバルトを含浸させたこと以外は、触媒Aと同じ触媒調製および分析を行った。得られた分析結果を表1に示す。
(Catalyst C)
The same catalyst preparation and analysis as catalyst A were performed except that cobalt was impregnated by the Incipient Wetness method instead of spray impregnation. The obtained analysis results are shown in Table 1.

Figure 2008239878
Figure 2008239878

(実施例1)
固定床流通式反応装置に触媒Aを20g充填した。反応前に水素気流下において400℃で2時間、触媒の還元処理を行った。次に、水素/一酸化炭素が2/1(モル比)の原料混合ガスをガス空間速度2500h−1で供給し、反応温度215℃、反応塔内圧力3.0MPaの条件で反応を行った。反応部出口のガス組成および生成油をガスクロマトグラフィーで分析し、一酸化炭素転化率および連鎖成長確率を常法に従い算出した。その結果を表2に示す。
Example 1
A fixed bed flow reactor was charged with 20 g of catalyst A. Prior to the reaction, the catalyst was reduced at 400 ° C. for 2 hours under a hydrogen stream. Next, a raw material mixed gas having a hydrogen / carbon monoxide ratio of 2/1 (molar ratio) was supplied at a gas space velocity of 2500 h −1 , and the reaction was performed under the conditions of a reaction temperature of 215 ° C. and a reaction tower pressure of 3.0 MPa. . The gas composition at the outlet of the reaction section and the product oil were analyzed by gas chromatography, and the carbon monoxide conversion rate and chain growth probability were calculated according to a conventional method. The results are shown in Table 2.

(実施例2)
触媒Aの代わりに触媒Bを使用したこと以外は、実施例1と同じ反応条件下で反応および分析を行った。その結果を表2に示す。
(Example 2)
The reaction and analysis were performed under the same reaction conditions as in Example 1 except that catalyst B was used instead of catalyst A. The results are shown in Table 2.

(比較例1)
触媒Aの代わりに触媒Cを使用したこと以外は、実施例1と同じ反応条件下で反応および分析を行った。その結果を表2に示す。
(Comparative Example 1)
The reaction and analysis were performed under the same reaction conditions as in Example 1 except that catalyst C was used instead of catalyst A. The results are shown in Table 2.

Figure 2008239878
Figure 2008239878

表1および表2から、外表面近傍に活性金属および第2金属(ジルコニア)が選択的に担持された触媒を用いることにより、一酸化炭素転化率および連鎖成長確率が高い、すなわち、炭化水素を効率良く製造することができることがわかる。   From Table 1 and Table 2, by using a catalyst in which an active metal and a second metal (zirconia) are selectively supported in the vicinity of the outer surface, the carbon monoxide conversion rate and the chain growth probability are high. It turns out that it can manufacture efficiently.

Claims (4)

金属酸化物にジルコニウムとコバルトおよび/またはルテニウムが担持された触媒であって、ジルコニウムとコバルトおよび/またはルテニウムが触媒外表面から中心に向けた半径の1/5以内(外表面側)に総量の75%以上が担持された触媒の存在下に、一酸化炭素と水素を反応させて炭化水素を製造する方法。   A catalyst in which zirconium, cobalt, and / or ruthenium are supported on a metal oxide, and the total amount of zirconium, cobalt, and / or ruthenium is within 1/5 (outside surface side) of the radius from the outer surface of the catalyst toward the center. A process for producing hydrocarbons by reacting carbon monoxide with hydrogen in the presence of a catalyst on which 75% or more is supported. 金属酸化物がアルミナまたはシリカであることを特徴とする請求項1に記載の炭化水素を製造する方法。   The method for producing a hydrocarbon according to claim 1, wherein the metal oxide is alumina or silica. コバルトおよび/またはルテニウムの担持量が、金属酸化物にジルコニウムを担持してなる担体に対して5〜15質量%である触媒を用いることを特徴とする請求項1または2に記載の炭化水素を製造する方法。   The hydrocarbon according to claim 1 or 2, wherein a catalyst having a supported amount of cobalt and / or ruthenium of 5 to 15% by mass with respect to a support obtained by supporting zirconium on a metal oxide is used. How to manufacture. 反応温度が180〜250℃であることを特徴とする請求項1〜3に記載の炭化水素を製造する方法。   The method for producing a hydrocarbon according to claim 1, wherein the reaction temperature is 180 to 250 ° C.
JP2007084602A 2007-03-28 2007-03-28 Hydrocarbon production method Active JP5025301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007084602A JP5025301B2 (en) 2007-03-28 2007-03-28 Hydrocarbon production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007084602A JP5025301B2 (en) 2007-03-28 2007-03-28 Hydrocarbon production method

Publications (2)

Publication Number Publication Date
JP2008239878A true JP2008239878A (en) 2008-10-09
JP5025301B2 JP5025301B2 (en) 2012-09-12

Family

ID=39911600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007084602A Active JP5025301B2 (en) 2007-03-28 2007-03-28 Hydrocarbon production method

Country Status (1)

Country Link
JP (1) JP5025301B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010061623A1 (en) * 2008-11-28 2010-06-03 財団法人北九州産業学術推進機構 Method for producing catalyst for hydrocarbon production, catalyst for hydrocarbon production, method for producing hydrocarbon
JP2019188341A (en) * 2018-04-25 2019-10-31 日鉄エンジニアリング株式会社 Method for preparing catalyst for producing hydrocarbon from synthesis gas, and method for producing hydrocarbon from synthesis gas

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102440A (en) * 1982-11-22 1984-06-13 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ Production of fischer-tropsch catalyst and use thereof in producing hydrocarbon
JPS63147545A (en) * 1986-10-03 1988-06-20 エクソン リサーチ アンド エンヂニアリング コムパニー Catalyst composition and manufacture thereof
JPH03178339A (en) * 1989-11-16 1991-08-02 Shell Internatl Res Maatschappij Bv Product extrusion, extruded product and its use
JPH04227847A (en) * 1990-05-04 1992-08-17 Shell Internatl Res Maatschappij Bv Manufacture of alumina extruded item
JPH0584444A (en) * 1991-02-19 1993-04-06 Shell Internatl Res Maatschappij Bv Cleaning process for catalyst and/or catalyst precorsor
WO2005099897A1 (en) * 2004-04-16 2005-10-27 Nippon Oil Corporation Catalyst for fisher-tropsh synthesis and method for producing hydrocarbon
JP2007270049A (en) * 2006-03-31 2007-10-18 Nippon Oil Corp Method for producing hydrocarbon by reduction of carbon monoxide
WO2008099695A1 (en) * 2007-02-14 2008-08-21 Nippon Oil Corporation Process for production of hydrocarbons by reduction of carbon monoxide

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102440A (en) * 1982-11-22 1984-06-13 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ Production of fischer-tropsch catalyst and use thereof in producing hydrocarbon
JPS63147545A (en) * 1986-10-03 1988-06-20 エクソン リサーチ アンド エンヂニアリング コムパニー Catalyst composition and manufacture thereof
JPH03178339A (en) * 1989-11-16 1991-08-02 Shell Internatl Res Maatschappij Bv Product extrusion, extruded product and its use
JPH04227847A (en) * 1990-05-04 1992-08-17 Shell Internatl Res Maatschappij Bv Manufacture of alumina extruded item
JPH0584444A (en) * 1991-02-19 1993-04-06 Shell Internatl Res Maatschappij Bv Cleaning process for catalyst and/or catalyst precorsor
WO2005099897A1 (en) * 2004-04-16 2005-10-27 Nippon Oil Corporation Catalyst for fisher-tropsh synthesis and method for producing hydrocarbon
JP2007270049A (en) * 2006-03-31 2007-10-18 Nippon Oil Corp Method for producing hydrocarbon by reduction of carbon monoxide
WO2008099695A1 (en) * 2007-02-14 2008-08-21 Nippon Oil Corporation Process for production of hydrocarbons by reduction of carbon monoxide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010061623A1 (en) * 2008-11-28 2010-06-03 財団法人北九州産業学術推進機構 Method for producing catalyst for hydrocarbon production, catalyst for hydrocarbon production, method for producing hydrocarbon
JP5555920B2 (en) * 2008-11-28 2014-07-23 公益財団法人北九州産業学術推進機構 Method for producing hydrocarbon production catalyst, hydrocarbon production catalyst, and hydrocarbon production method
US8822369B2 (en) 2008-11-28 2014-09-02 Kitakyushu Foundation For The Advancement Of Industry, Science And Technology Method for producing hydrocarbon-producing catalyst, hydrocarbon-producing catalyst, and method for producing hydrocarbon
JP2019188341A (en) * 2018-04-25 2019-10-31 日鉄エンジニアリング株式会社 Method for preparing catalyst for producing hydrocarbon from synthesis gas, and method for producing hydrocarbon from synthesis gas
JP7012596B2 (en) 2018-04-25 2022-02-14 日鉄エンジニアリング株式会社 A method for producing a catalyst for producing a hydrocarbon from syngas, and a method for producing a hydrocarbon from syngas.

Also Published As

Publication number Publication date
JP5025301B2 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
JP5676120B2 (en) Process for producing activated Fischer-Tropsch synthesis catalyst and process for producing hydrocarbon
JP5759447B2 (en) Method for producing Fischer-Tropsch synthesis catalyst and method for producing hydrocarbon
JP4436832B2 (en) Fischer-Tropsch synthesis catalyst and hydrocarbon production process
JP5795483B2 (en) Activated Fischer-Tropsch synthesis reaction catalyst and hydrocarbon production method
JP2007270049A (en) Method for producing hydrocarbon by reduction of carbon monoxide
JP5013919B2 (en) Hydrocarbon production catalyst and its preparation
JP5025301B2 (en) Hydrocarbon production method
JP5127726B2 (en) Process for producing hydrocarbons by reduction of carbon monoxide
JPWO2014046009A1 (en) Fischer-Tropsch synthesis catalyst, method for producing the same, and method for producing hydrocarbons
JP4907212B2 (en) Carbon monoxide reduction catalyst and preparation method thereof
JP4911974B2 (en) Fischer-Tropsch synthesis catalyst and hydrocarbon production process
RU2436832C2 (en) Catalyst for reducing carbon monoxide, method of preparing catalyst and method of producing hydrocarbon
WO2012102256A1 (en) Catalyst for fischer-tropsch synthesis, and production method therefor, as well as hydrocarbon production method using fischer-tropsch synthesis catalyst
JP4291590B2 (en) Fischer-Tropsch synthesis catalyst and hydrocarbon production process
JP2012152666A (en) Production method for catalyst for fischer-tropsch synthesis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5025301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250