WO2008095349A1 - Procédé de production de combustible liquide à partir de biomasse cellulosique - Google Patents

Procédé de production de combustible liquide à partir de biomasse cellulosique Download PDF

Info

Publication number
WO2008095349A1
WO2008095349A1 PCT/CN2007/001118 CN2007001118W WO2008095349A1 WO 2008095349 A1 WO2008095349 A1 WO 2008095349A1 CN 2007001118 W CN2007001118 W CN 2007001118W WO 2008095349 A1 WO2008095349 A1 WO 2008095349A1
Authority
WO
WIPO (PCT)
Prior art keywords
monosaccharide
acid
reaction
catalyst
liquid fuel
Prior art date
Application number
PCT/CN2007/001118
Other languages
English (en)
French (fr)
Inventor
Hongping Yie
Meg M. Sun
Zuolin Zhu
Original Assignee
China Fuel (Huaibei) Bioenergy Technology Development Co. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Fuel (Huaibei) Bioenergy Technology Development Co. Ltd. filed Critical China Fuel (Huaibei) Bioenergy Technology Development Co. Ltd.
Publication of WO2008095349A1 publication Critical patent/WO2008095349A1/zh
Priority to US12/534,288 priority Critical patent/US8618341B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/06Liquid carbonaceous fuels essentially based on blends of hydrocarbons for spark ignition
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/342Preparation characterised by non-gaseous activating agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/06Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation
    • C10G1/065Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation in the presence of a solvent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/08Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/08Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts
    • C10G1/083Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts in the presence of a solvent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/08Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts
    • C10G1/086Characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/08Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention relates to a novel biomass refining method for producing a liquid fuel, and more particularly to a production process capable of converting all organic carbon in all sugar components in a cellulosic biomass into a liquid fuel, and also relates to a process A process for producing low-cost ⁇ -purity lignin, which in turn can be used to prepare a variety of aromatic compounds, or converted to liquid fuels.
  • Background technique
  • Biomass fuel ethanol is entering the liquid fuel field.
  • the starch and cellulose fuel ethanol production processes are gradually improving and improving, especially when we invented the fiber at normal temperature and pressure. After the rapid pretreatment of the biomass and the corresponding new production process (application number)
  • the existing production process using cellulosic biomass and starch-based fermentation to produce liquid fuel ethanol includes four main production steps: the first step is a pretreatment, and the second step is a sugar polymer. Hydrolysis to monosaccharide, the third step is the fermentation of monosaccharide to ethanol, and the fourth step is the separation and dehydration of ethanol to prepare fuel ethanol.
  • the production steps for producing biomass fuel butanol products are the same.
  • the object of the present invention is to provide a process for producing liquid fuel by using a cellulosic biomass, which can completely convert all organic carbon in all sugar components in the cellulosic biomass, and avoid conversion of monosaccharide organic carbon into inorganic in the sugar fermentation production process. Carbon dioxide, causing a serious loss of organic carbon.
  • Another object of the present invention is to provide a production process for preparing low-cost, high-purity lignin.
  • a process for producing a liquid fuel from a spent cellulosic biomass is provided, which comprises the following Steps:
  • First step providing a mixture of cellulosic biomass and water, wherein the cellulosic biomass has a weight content of 1-60% in water;
  • Step 2 Perform the following steps (a) or (b):
  • the mixture obtained in the first step is subjected to catalytic hydrogenation hydrolysis under acidic conditions to obtain a liquid product monosaccharide solution and an optional solid product lignin;
  • the third step the monosaccharide or monosaccharide obtained in the second step is reacted as follows:
  • the monosaccharide alcohol obtained in the second step (a) is esterified with a C2-C5 organic acid to obtain a liquid fuel I I;
  • the liquid fuel II is an esterified product of a monosaccharide alcohol;
  • the process further includes the following steps:
  • the pretreatment method is selected from the group consisting of physical chemical methods: high temperature acid, alkali method, high temperature acid and alkali Steam explosion method, normal temperature and normal pressure acid-base ultrasonic method, normal temperature and normal pressure acid-base microwave method, or ammonia circulation flow method, or a combination thereof; wherein the normal temperature and normal pressure acid-base ultrasonic method is preferably normal temperature and atmospheric pressure ammonia ultrasonic method, normal temperature
  • the atmospheric pressure acid-base microwave method is preferably a normal temperature atmospheric pressure ammonia microwave method
  • the high temperature acid-base steam explosion method is preferably a high temperature ammonia vapor explosion method.
  • the pretreatment method is a pure physical pretreatment method.
  • the pure physical pretreatment method is selected from the group consisting of: normal temperature and atmospheric pressure ultrasonic method, normal temperature and atmospheric pressure microwave method, high temperature steam explosion method or a combination thereof.
  • the catalytic hydrogenation reaction of the step (a) of the second step is carried out in the presence of an acid content of 0.1% to 2.0% by weight of the cellulose biomass; and/or
  • the step (a) of the second step is that the hydrogen pressure is between 1 and 200 atmospheres; and/or
  • the step (a) of the second step has a reaction temperature of 0-200 ° C; and/or
  • the reaction time of the step (a) of the second step is 1 to 100 hours; and/or
  • the hydrolysis reaction of the step (b) of the second step is carried out under acid catalysis or enzymatic catalysis.
  • the hydrogenation catalyst of step (a) described in the second step comprises: a heterogeneous catalyst, wherein the heterogeneous catalyst is a heterogeneous catalyst in which a transition metal is dispersed on a support, the transition metal being selected from the group consisting of ruthenium, nickel, platinum, palladium or a combination thereof;
  • the homogeneous catalyst comprising a ruthenium complex of triphenylphosphine, a ruthenium complex of sulfophenylphosphonium or a combination thereof.
  • the carrier of the heterogeneous catalyst is activated carbon prepared from sugar as a raw material; and/or
  • the activated carbon is produced by a process comprising the steps of:
  • step (B) pulverizing the crude activated carbon in the step (A), and placing it in concentrated sulfuric acid having a concentration of >96% to smoke, and washing off the acid-soluble residue under the protection of an inert gas to obtain an acid-treated activated carbon;
  • the inert gas is nitrogen
  • step (C) is washed with hot distilled water.
  • the molar ratio of the monosaccharide alcohol to the C2-C5 organic acid in the step (i) of the third step is between 1:1 and 1:10; and/or
  • reaction in the step (i) of the third step is carried out in the presence of a non-nucleophilic inorganic strong acid catalyst or an acidic ion exchange resin catalyst; and/or
  • the reaction temperature in the step (i) of the third step is between 15 ° C and 200 ° C; and / or
  • the dehydroxylation polymerization hydrogenation reaction in the step (i i) in the third step is carried out in the presence of an acid having a molar ratio of the monosaccharide alcohol or monosaccharide of 1:1:1:20; and/or
  • the reaction temperature of the dehydroxylation polymerization hydrogenation reaction in the step (ii) in the third step is between 100 and 300; and/or the dehydroxylation polymerization hydrogenation reaction in the step (ii) in the third step is in the monosaccharide alcohol Or a monosaccharide in the presence of 0.1 to 20% by weight of a catalyst; and/or
  • the reaction time of the dehydroxylation polymerization hydrogenation reaction in the step (ii) in the third step is 10 to 100 hours; and/or the step (ii) in the third step, further separating the anthraquinone hydrocarbon organic product from the aqueous phase , the separated liquid fuel I is obtained.
  • Another aspect of the invention provides a process for producing lignin comprising the steps of:
  • the mixture obtained in the step (1) is subjected to catalytic hydrogenation hydrolysis under acidic conditions to obtain a solid product lignin and a liquid product monosaccharide alcohol.
  • the mixture of step (1) is obtained by a process comprising the steps of: pretreating a cellulosic biomass feedstock to obtain a mixture of said cellulosic biomass and water in a first step Wherein the pretreatment is a physical pretreatment method;
  • the catalytic hydrogenation reaction in the step (2) is carried out in the presence of an acid containing 0.1% to 2.0% by weight of the cellulose biomass;
  • the hydrogenation catalyst in the catalytic hydrogenation reaction in the step (2) is 0.1% by weight of the cellulose biomass, and/or.
  • the hydrogen pressure of the step (2) is between 1 and 200 atmospheres; and/or
  • the reaction temperature of the step (2) is 0-200 ° C ; and / or
  • the reaction time of the step (2) is 1 to 100 hours;
  • the physical pretreatment method is selected from the group consisting of: normal temperature and atmospheric pressure ultrasonic method, normal temperature and atmospheric pressure microwave method, high temperature steam explosion method or a combination thereof.
  • the hydrogenation catalyst of step (2) comprises:
  • heterogeneous catalyst wherein the heterogeneous catalyst is a heterogeneous catalyst in which a transition metal is dispersed on a support, the transition metal being selected from the group consisting of ruthenium, nickel, platinum, palladium or a combination thereof;
  • the homogeneous catalyst comprising a ruthenium complex of triphenylphosphine, a ruthenium complex of sulfophenylphosphine or a combination thereof;
  • the carrier of the heterogeneous catalyst is activated carbon prepared from sugar as a raw material.
  • the biomass of the biomass in water is 1-60%;
  • Step 2 Perform the following steps (a) or (b):
  • the mixture obtained in the first step is subjected to catalytic hydrogenation hydrolysis under acidic conditions to obtain a liquid product monosaccharide solution and an optional solid product lignin.
  • the presence of the solid product lignin depends on the pretreatment of the cellulosic biomass.
  • the monosaccharide alcohol including all five carbon sugars and six carbon sugars, such as glucose alcohol, xylitol, mannitol, galactitol, and arabitol, etc.; or
  • the mixture obtained in the first step is hydrolyzed to obtain a monosaccharide.
  • the monosaccharides include glucose, xylose, mannose, galactose, and arabinose, and the like;
  • the third step the monosaccharide or monosaccharide obtained in the second step is carried out as follows - (i) the monosaccharide alcohol obtained in the step (a) in the second step is esterified with the C2-C5 organic acid to obtain a liquid fuel.
  • liquid fuel II is an esterification product of a monosaccharide alcohol
  • the monosaccharide alcohol obtained in the step (a) in the second step or the monosaccharide obtained in the step (b) is subjected to a dehydroxy polymerization hydrogenation reaction to obtain a liquid fuel I; wherein the liquid fuel I is an alkane organic
  • the product the boiling range covers gasoline and diesel, contains alkanes with a carbon number between 5 and 24, which is basically the same as the gasoline and diesel products currently on the market;
  • the dehydroxylation hydrogenation reaction is a very
  • the dehydroxylation reaction is the initial step, and the intermediate formed by the reaction is subjected to a related polymerization reaction, and the product formed by the polymerization has a plurality of unsaturated bonds, and the unsaturated bonds pass through the hydrogenation reaction.
  • the first step of the process and the step (a) of the second step also provide a production process of by-product high-purity lignin.
  • Figure 1 is a flow chart of a process for producing liquid fuel from cellulosic biomass.
  • the cellulosic biomass (BIOMASS) raw material of the present invention is defined as: biomass containing cellulose, and biomass refers to other biomass-rich substances such as crop straw, bamboo, reed, and each after removing the edible portion. Planting trees, leaves, weeds, and aquatic plants, and so on.
  • the main constituents of these cellulosic biomass are polysaccharide cellulose and hemicellulose, as well as lignin of polyaromatic compounds.
  • the method which can be used for the pretreatment of the cellulose biomass is not particularly limited, and it is not intended to limit the object of the invention.
  • Specific pre-processing methods include, but are not limited to, the following:
  • the purpose of the pretreatment of the present invention is: if it is necessary to prepare a monosaccharide by hydrolysis of the next cellulose and hemicellulose, the purpose of the pretreatment is to remove the components lignin which affects the hydrolysis reaction, dissociate the hemicellulose, and destroy the cellulose.
  • the crystal structure thereby increasing the accessible surface of the sugar polymer in the biomass, and extracting the hydrolysis rate; at this time, it is usually carried out under alkaline conditions, and the alkaline condition means a case where the pH is not less than 7. If it is necessary to prepare a monosaccharide alcohol by the next hydrohydrolysis reaction, the purpose of the pretreatment is to break the structure of the cellulose biomass, especially to destroy the crystal structure of the cellulose, thereby increasing the accessible surface of the sugar polymer in the biomass, Increase the rate of hydrogenation hydrolysis reaction.
  • the above pretreatment method is only a partial example of the pretreatment method of the present invention. According to the above examples, those skilled in the art can obtain the pretreated cellulosic biomass required by the present invention by adjusting different methods or according to prior art techniques. For example, a combination of the above pre-processing methods is employed. As another example, the resulting pretreated cellulosic biomass can be further purified by further filtration, washing, and the like.
  • the reaction for preparing the monosaccharide alcohol is generally carried out in water, and the content of the solid in the liquid may be 1-60%; for the degradation of the polysaccharide cellulose and hemicellulose by catalytic hydrogenation hydrolysis
  • the acid of the monosaccharide may be an inorganic acid or an organic acid, including but not limited to sulfuric acid, phosphoric acid, phosphorous acid, hypophosphorous acid, acetic acid, and the like, or a combination thereof, and the amount of the acid is generally dry cellulose cellulose.
  • the weight of the hydrogen is 0.1%-2.0%; the pressure of hydrogen used is between 1 and 200 atmospheres; the catalyst used for catalytic hydrogenation may be a heterogeneous catalyst or a homogeneous catalyst, including but not limited to ruthenium (Ru), nickel ( Ni), a heterogeneous catalyst in which a transition metal such as platinum (Pt) or palladium (Pd) is dispersed on various supports.
  • ruthenium Ru
  • Ni nickel
  • Pt platinum
  • Pd palladium
  • the carrier of the heterogeneous catalyst may be activated carbon, silica (silica gel), acid industrial zeolite (zeolite), alumina, high molecular weight polymer containing triphenylphosphine, etc., and the weight content of the transition metal on the carrier is generally It is 0.1% to 5.5%; the homogeneous catalyst contains various ruthenium complexes of triphenylphosphine, ruthenium complexes of sulfophenylphosphonium, and the like.
  • a transition metal catalyst such as ruthenium (Ru), nickel (Ni), platinum (Pt) or palladium (Pd) is prepared using activated carbon prepared from sugar as a starting material. This new catalyst works best.
  • the sugar used for preparing the activated carbon may be various monosaccharides and disaccharides, and the monosaccharide may be a three-carbon sugar, a four-carbon sugar, a five-carbon sugar, a six-carbon sugar or the like, such as glucose;
  • the disaccharide may be the same sugar disaccharide or a heterosaccharide disaccharide such as sucrose.
  • the method for preparing the activated carbon is not particularly limited as long as the object of the present invention is not limited.
  • the sugar is generally dehydrated at a high temperature under a nitrogen stream, and the temperature is between 350 and 500 ° C; the crude activated carbon obtained after dehydration is generally The acid-soluble residue was washed away with concentrated sulfuric acid under a nitrogen stream, the concentrated sulfuric acid concentration was >96% to fuming sulfuric acid; the acid washed activated carbon was washed with hot distilled water until no acid ions were detected.
  • the preparation of heterogeneous catalysts generally employs transition metal water-soluble salts including, but not limited to, ruthenium chloride, ruthenium hexachloride, platinum tetraammine nitrate, palladium tetraammonium nitrate, nickel chloride, and the like.
  • the preparation method is as follows: generally the carrier and transition metal water in deionized water After the soluble salt is uniformly mixed, the halogen ions are completely washed away with warm deionized water.
  • the activation of the catalyst is generally carried out in a hydrogen stream at a temperature between 200 and 480 ° C for 2 to 16 hours.
  • a cellulose hydrolyzing enzyme is generally used as a catalyst for hydrolyzing polysaccharide cellulose and hemicellulose into a monosaccharide, and other enzymes such as glucosidase or acid may also be appropriately added.
  • other enzymes such as glucosidase or acid may also be appropriately added.
  • sulfuric acid, phosphoric acid, hydrochloric acid Such as sulfuric acid, phosphoric acid, hydrochloric acid.
  • the following steps are included: In the first step, the cellulose and hemicellulose solids obtained by pretreatment of the lignin are prepared as an aqueous suspension or mixture, and in the second step, if enzymatic hydrolysis is used, the suspension or An appropriate amount of hydrolase is added to the mixture (the type and amount of the hydrolase are not particularly limited as long as the object of the present invention is not limited), and the hydrolysis reaction is generally carried out at a temperature of 25 to 50 ° C and a pH of 4.5 to 7.5.
  • the reaction time is not particularly limited as long as it does not limit the object of the present invention; for example, 72 ⁇ 10 hours; and the third step, after the completion of the hydrolysis reaction, the hydrolase is generally precipitated by heating, and all solids are filtered off.
  • the fourth step the solution can be prepared by concentration to prepare a concentrated sugar liquid, or can be prepared by spray drying (spmy dry); if acid-catalyzed hydrolysis is used, the second step is to the suspension or the mixture. Adding an appropriate amount of acid, the acid concentration generally does not exceed 3% by weight (the lower limit of the acid concentration is not particularly limited, as long as it is not correct The object of the present invention is limited.
  • the reaction is generally carried out at a temperature of from 150 to 250 ° C, and the reaction temperature is not particularly limited as long as it does not limit the object of the present invention; the third step is to add a base.
  • the acid used was neutralized, and then all solids were filtered off to obtain an aqueous monosaccharide solution.
  • the monosaccharide alcohol can be converted into a novel biodiesel, i.e., liquid fuel II, by an esterification reaction, which is an esterification product of a monosaccharide alcohol.
  • the prepared monosaccharide alcohol is generally prepared by spray drying to prepare a dried product, and the organic acid of C2-C5 is generally used as an acyl source for the esterification reaction, and an acid anhydride of these acids is often used as a starting material, such as acetic anhydride, various Propionic anhydride, various butyric anhydrides, and various valeric anhydrides; etc.; esterification reactions can generally use these anhydrides as solvents, the molar ratio of monosaccharide alcohol to anhydride is generally between 1: 1 and 1: 10; the reaction is generally based on these acids As a catalyst, or using a non-nucleophilic inorganic strong acid as a catalyst, or using an acidic ion exchange resin as a catalyst
  • esterification method is only a part of the esterification method of the present invention. According to the above examples, those skilled in the art can obtain the esterification products of the monosaccharide alcohols required by the present invention by adjusting different methods or according to the prior art. For example, other acyl sources are employed.
  • the monosaccharide alcohol can also be converted into a hydrocarbon, i.e., liquid fuel I, by a dehydroxylation polymerization hydrogenation reaction.
  • the catalyst acid used in the dehydroxy polymerization hydrogenation reaction of monosaccharide alcohol may be a mineral acid or an organic acid, including but not limited to liquid sulfuric acid, phosphoric acid, hydroiodic acid, phosphorous acid, hypophosphorous acid, acetic acid, etc., solid state Acids such as acidic aluminum oxide, etc.; the amount of acid is generally 1: 1-20 in molar ratio to monosaccharide alcohol;
  • the catalyst and the reducing agent to be used in the reaction are not particularly limited as long as the object of the present invention is not limited, and preferably, the above-mentioned ruthenium (Ru), nickel (Ni), platinum (Pt), palladium (Pd) may be
  • the substance on the carrier, the reducing agent may be hydrogen, or phosphorous acid, or hypophosphorous acid or the like.
  • the hydrogen pressure used is between 1 and 200 atmospheres, using phosphorous acid or hypophosphorous acid, and is generally used in an amount of from 1 to 20 molar equivalents.
  • the dehydroxylation polymerization hydrogenation reaction is generally carried out under the protection of nitrogen, and the reaction temperature is usually between 100 and 300 °C.
  • the above dehydroxylation polymerization hydrogenation process is only a part of the dehydroxylation polymerization hydrogenation process of the present invention. According to the above examples, those skilled in the art can obtain the hydrocarbons required by the present invention by adjusting different methods or according to prior art techniques. For example, the obtained product is further purified. '
  • a halogenated anthracene hydrocarbon is commonly used in a terpene hydrocarbon product and cannot be used as a fuel.
  • These halogenated hydrocarbons can be easily removed, such as by reacting a hydrogen halide with a base to form a olefinic hydrocarbon, or by a condensation reaction to be converted into an ether product or the like.
  • the terpene hydrocarbon product may be separated by distillation or may be separated by standing stratification.
  • the catalyst of the acidic carrier is used to catalyze hydrogenation and reduction of the polysaccharide cellulose and hemicellulose to a monosaccharide product
  • the solid lignin separated after the reaction is of good purity. Simple cleaning, purity up to >96%, this lignin can be used to prepare a variety of aromatic compounds, and is also an ideal raw material for the production of liquid fuels by hydrocracking and liquefaction.
  • all of the technologies for direct coal liquefaction of coal can be used to convert lignin into a liquid fuel, which may be a high temperature and high pressure hydrocracking process or a melting process. Zinc chloride method.
  • the pretreated biomass includes both solid and liquid portions, and the solid portion is mainly cellulose, hemicellulose, and Very small amounts of lignin; the liquid fraction is mainly lignin, hemicellulose, and very small amounts of cellulose. Separation of the solid and liquid fractions can be carried out using all conventional separation methods.
  • the pretreatment reaction, the hydrolysis reaction, and the dehydroxylation polymerization can be carried out either in Batch reactor systems, in continuous flow reactor systems, or in a continuous flow reaction. Performed in Flow through reactor systems.
  • the biomass used in the examples given below including but not limited to comminuted naturally dried corn sorghum Straw, reed, bamboo, all kinds of hardwood, cork, weeds, or wheat straw, soybean stalks, and cotton stalks. Biomass particles are between 1.6-2.4 mm.
  • the composition of the corn straw granules is 36.4% of ⁇ -glucan ( ⁇ -glucan), , 2.8 wt% arabin (arabinan), 1.8 wt% mannan (mannan), 2.2 wt% galactan, 20.2 wt% Klason lignin, 7.0 wt% Ash (ash), 3.2 wt% acetyl group, 4.0% protein, and 3.8 wt % .
  • Uronic acid the composition of wheat straw particles is 33%% 0-glucan, 45wt% xylan, 20wt% Carson lignin; the composition of soybean straw particles is 41%% ⁇ - dextran, 23 wt% xylan, 20.8 wt% Carson lignin; cotton straw granules are composed of 41.4 wt% ⁇ -glucan, 23.8 wt% xylan, 20.6 wt% card Sensin lignin.
  • the powdered 100 grams of glucose is heated to a temperature of 400 in a stream of nitrogen.
  • the glucose gradually changes color, from white to brown, and finally to black.
  • the reaction takes about 16-20 hours.
  • the heating was stopped and the black solid was cooled to room temperature under nitrogen to be crushed and transferred to a solution of 99% of concentrated sulfuric acid, which was deoxygenated with nitrogen.
  • This mixture was heated to 150 ° C under a nitrogen atmosphere with agitation and maintained at this temperature for 15 hours.
  • the mixture was then cooled to room temperature and diluted with five volumes of distilled water and maintained at a temperature not exceeding 50 ° C.
  • the black solid product was washed with hot distilled water until no sulfate ions were detected and dried under vacuum.
  • the activated carbon does not detect metals commonly found in general activated carbon such as iron, lead, and copper.
  • the specific surface area of the carrier measured by a conventional method is 900-1400 m 2 /g, and the pore volume is 1.0-2.5 ml/g.
  • Example 2 Preparation of ruthenium/activated carbon catalyst
  • Example 3 Preparation of platinum/acidic alumina catalyst
  • the analytical method is a conventional method: The amount of platinum contained in the catalyst is generally determined by atomic absorption spectrometry. First, a certain amount of the catalyst is dissolved by aqua regia, and then diluted to a certain concentration to measure the spectrum absorption, and the working curve is measured with a reference product.
  • Example 4 Preparation of liquid fuel I, liquid fuel II by monosaccharide alcohol
  • Example 4A Microwave pretreatment
  • a suitable container such as PFA or PTFE reaction vessel, PTFE-polytetrafluoroethylene; PFA-perfluoromethane ferroflurane
  • a microwave reactor 1000 W / 2.45 GHZ.
  • the container containing the corn straw was kept shaking during the treatment, and microwave treatment was carried out for 20 minutes. After the treatment, it was cooled to room temperature and filtered for use.
  • Example 4B Preparation of monosaccharide alcohol, lignin
  • Example 4A The corn straw treated in Example 4A was directly formulated into a suspension having a solid-liquid ratio of 25% with purified water, and then a small amount of phosphoric acid was added to the suspension, which was about 0.7% by weight of corn straw.
  • the reaction was acid hydrogenated at a temperature of 160 ° C and a hydrogen pressure of 4.5 MPa under the action of a cerium/activated carbon supported catalyst (the catalyst prepared in Example 2) containing about 3.8% by weight of corn straw and 3.8% by weight of rhodium/activated carbon supported catalyst. Catalytic hydrolysis, the reaction takes about 2-3 hours, then after cooling to below 10 °C, the hydrogen is drained.
  • Example 4B To the liquid product obtained in Example 4B, about seven equivalents of hydroiodic acid, five equivalents of phosphorous acid were added, and the reaction mixture was subjected to a hydrogen pressure of 120 MPa and a pressure of 1.6 MPa for about 16 hours, and cooled to room temperature. After the removal of hydrogen, the reaction product was extracted with methylene chloride. Using gas chromatography-mass spectrometry, it was found that about 20% of the components contained iodine, and the two components containing iodine and non-iodine were separated by distillation. The iodine-containing product was further analyzed and found to be about 90% by mole.
  • the components are all anthracene hydrocarbon compounds having a carbon number between 5 and 24 (C U H 20 . )
  • Example 4B The monosaccharide product obtained in Example 4B was subjected to water drying by spray drying, and dried under vacuum at 60 ° C for 24 hours to give a pale-yellow-yellow solid, which was crushed under nitrogen and protected under nitrogen. Five times the toluene (weight to volume ratio) was added to the dehydration reactor. 2% concentrated sulfuric acid, about seven molar equivalents of acetic anhydride were added in sequence with stirring, followed by reflux dehydration, and reflux was continued for about 3 hours in the absence of water formation. After cooling to about 10 ° C, it is washed three times with about one third of the volume of distilled water, and the reaction product solution is analyzed by gas chromatography-mass spectrometry.
  • the main components in the product are various monosaccharide acetates, and their corresponding A small amount of dehydroxyacetate.
  • the main component detected has a molecular weight of 434 (C I 8 H 26 0 12 ), a compound having a molecular weight of 362 (C ⁇ IfeC o), a molecular weight of 332 (CH 2Q 0 9 ), and a compound having a molecular weight of 260 (CnH ⁇ O). ,) , and many more.
  • Example 5 Preparation of liquid fuel by monosaccharide I
  • Example 5A The solid product obtained in Example 5A was formulated into a suspension having a solid-liquid ratio of 10% using a citrate buffer having a pH of 4.8, and then added to a ratio of about 10% by weight of Spezyme CP cellulose hydrolase (Genencor, Inc., The average activity was 30.6 FPU/ml and 20 CBU/ml, containing 106 mg of protein per ml, and 5% of ⁇ -glucosidase (Novozyme, activity 40 IU/g). The reaction was carried out under slow agitation at 48-50 ° C for 72 hours. After cooling and filtration analysis, it was found that more than 98% of the product was monosaccharide, and was reserved under nitrogen.
  • Example 5C Conversion of Monosaccharides to Liquid Fuel I
  • the present invention can convert all organic carbon atoms in a monosaccharide or a monosaccharide alcohol obtained by converting cellulose biomass into organic carbon atoms in a terminal liquid fuel product, and a conventional fuel ethanol fermentation production process, six carbon
  • the organic carbon in the sugar is lost by one third, and the organic carbon in the five carbon sugar is lost by 60%;
  • the terminal product given in the third step of the present invention is a water-insoluble organic alkane compound.
  • the layer is allowed to stand and is easily separated from water; whereas in the conventional fuel ethanol fermentation production process, the product ethanol is difficult to be Water separation, distillation and refining are the most energy-intensive steps in the entire production process. It is estimated that more than 50% of the energy consumption in the fuel ethanol production process is at this step in the production process (Katzen, R.; Fuels From Biomass and Wastes, 1981,
  • the product given by the present invention is an organic terpene hydrocarbon compound, which is less corrosive to the engine, and the corrosion of ethanol is relatively large;
  • the product of the present invention has a wide boiling point range, and has a fraction below 200 ° C (the interval of gasoline), and
  • the concentration of the reaction liquid used in the present invention can be very high, and the volume of the reaction vessel is greatly reduced compared with the fermenter; further, the chemical reaction speed used in the present invention is fast, and the production efficiency is greatly improved compared to the fermentation process of the monosaccharide. ;
  • the method of (a) of the second step of the present invention can eliminate the lignin in the cellulosic biomass.
  • lignin is a strong inhibitor of cellulolytic enzyme, it does not substantially affect the hydrogenation condition. Acid hydrolysis reaction and hydrogenation reaction, The hydrogenation reaction conditions of this hydrazine do not reduce lignin. And since the lignin is insoluble in acid, the lignin can be separated by simple filtration after the reaction is completed. Since lignin can be removed, the pretreatment process of cellulosic biomass only needs to destroy the compact structure of cellulosic biomass.
  • the simple physical pretreatment method can meet the process requirements, such as normal temperature and pressure ultrasonic method, normal temperature and atmospheric pressure microwave method. , high temperature steam explosion method, the pretreatment cost will be further reduced;
  • the method provides a production process of by-product high-purity lignin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Saccharide Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

髙效纤维素生物质生产液体燃料工艺 技术领域
本发明涉及一种全新的生物质精炼生产液体燃料的方法,更具体地说涉及一种能够 将纤维素生物质中的所有糖成分中的有机碳全部转化为液体燃料的生产工艺, 还涉及一 种用来制备低成本髙纯度木质素的生产工艺, 木质素进而可以用于制备多种芳香化合 物, 或者转化为液体燃料。 背景技术
本世纪初, 人类对化石能源如煤炭, 石油, 核能, 等不可再生性能源的消耗速度迅 速增长, 化石能源已走进或正在走向其可供应量的峰值, 人类社会面临历史中最重大的 转折关头, 这不仅仅即将出现能源短缺危机, 同时由于大量来自化石能源的温室效应气 体二氧化碳造成全球变暖。 全球变暖已被公认为是最近这几年全球灾难性天气现象的元 凶, 为确保人类的生存与可持续发展, 必须开发利用新的可再生形式的能源。
再生性能源已得到全球的重视, 生物质燃料乙醇正在全面进入液体燃料领域, 淀粉 和纤维素燃料乙醇生产工艺都在逐步完善和改进中, 特别是在我们发明了能在常温常压 下对纤维素生物质进行快速预处理的技术和相应的全新生产工艺以后 (申请号
200610008062. 2 , PCT/CN2006/000120 ) , 商业化纤维素生物质燃料乙醇的生产成本有 望等同淀粉燃料乙醇, 纤维素生物质燃料乙醇生产将会出现迅猛发展。
现有的使用纤维素生物质和以淀粉为原料发酵法生产液体燃料乙醇的生产工艺包括四 个主要生产步骤: 第一步反应都是预处理, 第二步反应是糖的多聚物高分子水解为单糖, 第 三步反应是单糖发酵为乙醇, 第四步是乙醇的分离与脱水制备燃料乙醇。 生产生物质燃料丁 醇产品的生产步骤是相同的。
无论是发酵生产乙醇还是丁醇产品, 生产工艺中的有机碳损失都是惊人的。 对于六碳 糖的单糖而言, 发酵反应步骤有三分之一的有机碳被转化为二氧化碳中的无机碳, 而对于五 碳糖(木糖) 的单糖而言, 发酵反应步骤有百分之六十的有机碳被转化为二氧化碳中的无机 碳, 对于纤维素生物质中的另一个五碳糖***糖, 由于还没有好的发酵菌种来转化它, 就 被损失掉了; 还有, 由于乙醇的脱水比较困难, 制备燃料乙醇产品成本高。 为了更好地使用 生物质能源, 需要开发出能够避免有机碳损失的新的生产工艺。
Figure imgf000003_0001
*· CH3CH2OH + 3C02 + H20
五碳糖 乙醇 60%有机碳损失
由于地球上煤炭的储藏量远高于石油, 可以预见范围广阔的煤化工项目和生产基地会 全面铺开, 煤化工项目会有不少副产品氢气, 同时, 煤制氢技术会更加完善, 生产成本会更 低。 另外, 随着其它科技的发展, 太阳能直接制备氢气的技术会逐步完善, 生产成本也会不 断降低; 而新的经济可靠的发电技术会不断涌现, 电解法生产氢气的成本也会迅速降低; 但 是纯氢气的运输与使用均有较大的困难,而将氢气储藏在烃类化合物中为最好的储氢方法之 一,所以氢气的最重要用途之一将可能是用于生物质液体燃料的生产和其它在生物质领域的 应用。
我们考虑的另外一个因素是纤维素水解酶的终极效价比。虽然经过这几年生物科技 的迅猛发展和科技工作者的艰苦工作, 纤维素水解酶的效价比已经比前几年有了巨幅降 低, 但是对比淀粉水解酶的效价比, 纤维素水解酶的效价比还是很高。 是否能够和需要 幵发出水解效果很高的纤维素水解酶, 人类还需要进一步考虑。 因为纤维素生物质是地 球上的动物赖以生存的基本能量来源, 经过不断进化而成为对所有纤维素水解酶稳定的 生命。 设想一下如果人类开发出了超级微生物, 它们很易于分解纤维素生物质, 如果这种 超级微生物由于人类的疏忽进入自然界, 将会是高等动植物的末日。 因此, 短期内不可能开 发出效果极好的纤维素水解酶, 纤维素水解的成本也不可能降低到类似淀粉水解, 幵发其它 降解纤维素的方法很有必要。
单糖类物质和多羟基化合物在酸催化条件下的脱水和聚合反应,是有机化学中最常见的 有机反应。 本发明中揭示的液体燃料新生产工艺, 就是有效地利用了这些以前糖化学和多羟 基化合物在酸性条件下, 科技工作者竭力想法避免的不利副反应, 例如六碳糖在酸性条件下 被转化为羟甲基糠醛, 五碳糖在酸性条件下被转化为糠醛, 等等, 而这些羰基化合物进而会 发生聚合反应, 从而生成含碳数更多的有机化合物。 发明内容
本发明的目的在于提供一种髙效纤维素生物质生产液体燃料工艺, 能够将纤维素生物质 中的所有糖成分中的有机碳全部转化,避免糖发酵生产工艺中单糖有机碳转化为无机碳二氧 化碳, 造成有机碳的严重损失。
本发明的另一目的还在于提供一种用来制备低成本高纯度木质素的生产工艺。 在本发明的一个方面, 提供一种髙效纤维素生物质生产液体燃料工艺, 其包括以下 步骤:
第一步: 提供纤维素生物质和水的混合物, 其中所述纤维素生物质在水中的重量含 量为 1-60%;
第二步: 进行如下步骤(a)或步骤(b)反应:
( a) 第一步得到的混合物进行酸性条件下的催化氢化水解反应, 得到液体产物单 糖醇溶液和可选的固体产物木质素; 或
( b) 将第一歩得到的混合物进行水解, 得到单糖;
第三步: 第二步得到的单糖醇或单糖进行如下反应:
(i)第二歩中步骤(a)得到的单糖醇与 C2-C5有机酸进行酯化反应, 得到液体燃料 I I; 所述液体燃料 II为单糖醇的酯化产物;
或者, (i i)第二步中步骤(a)得到的单糖醇或步骤(b)得到的单糖进行脱羟基聚合氢 化反应, 得到液体燃料 I; 其中所述液体燃料 I是烷烃类有机产物。 在本发明的一个实施方式中, 所述工艺还包括如下步骤:
对纤维素生物质原料进行预处理, 得到第一步的所述纤维素生物质和水的混合物; 优选地, 所述预处理法选自物理化学法: 如高温酸、 碱法, 高温酸碱汽爆法, 常温常压 酸碱超声波法, 常温常压酸碱微波法, 或者是氨循环流法, 或其组合; 其中所述常温常压酸 碱超声波法优选常温常压氨超声波法, 常温常压酸碱微波法优选常温常压氨微波法; 所述高 温酸碱汽爆法优选高温氨汽爆法。 或者, 所述预处理方法为纯物理预处理方法, 优选地, 所 述纯物理预处理方法选自: 常温常压超声波法, 常温常压微波法, 高温汽爆法或其组合。 在本发明的一个实施方式中, 所述第二步的步骤(a)的催化氢化反应在占纤维素生 物质重量含量 0. 1%-2. 0%的酸存在下进行; 和 /或
所述第二步的步骤(a)的催化氢化反应中氢化催化剂占纤维素生物质重量的 0. 1-20%; 和 /或
所述第二步的步骤(a)氢气压力介于 1-200大气压; 和 /或
所述第二步的步骤(a)反应温度为 0-200°C; 和 /或
所述第二步的步骤(a)的反应时间为 1〜100小时; 和 /或
所述第二步的步骤(b)的水解反应在酸催化或是酶催化下进行。 在本发明的一个实施方式中, 第二步所述的步骤(a)的氢化催化剂包括: 非均相催化剂, 其中所述的非均相催化剂为过渡金属分散在载体上的非均相催化剂, 所 述过渡金属选自钌、 镍、 铂、 钯或其组合;
或均相催化剂, 所述的均相催化剂包括三苯基磷的钌络合物、 磺基化苯基磷的钌络合物 或其组合。 在本发明的一个实施方式中,所述的非均相催化剂的载体为由糖作为原料制得的活 性炭; 和 /或
所述非均相催化剂中所述过渡金属的含量为载体重量的 0. 1〜5. 5 %。 在本发明的一个实施方式中, 所述活性炭由包括如下步骤的方法制得:
(A)糖在惰性气体保护下在 350-500T之间脱水,反应 16— 20小时,得到粗活性炭;
(B)将步骤(A)的粗活性炭粉碎, 并置于浓度〉 96%至发烟的浓硫酸中, 惰性气体保护 下, 洗去酸溶残留物, 得到酸处理活性炭;
(C)步骤(B)得到的酸处理活性炭进行洗涤, 直到检测不到硫酸根离子, 干燥, 得到 活性炭;
优选地, 所述惰性气体为氮气;
优选地, 步骤(C)釆用热蒸馏水进行洗涤。 在本发明的一个实施方式中, 第三步的步骤(i)中单糖醇和所述 C2-C5有机酸的摩 尔比为 1 : 1到 1 : 10之间; 和 /或
第三步的步骤(i)中反应在非亲核性无机强酸催化剂或酸性离子交换树脂催化剂存 在下进行; 和 /或
第三步的步骤(i)中反应温度为 15°C到 200°C之间; 和 /或
第三步中步骤(i i)中的脱羟基聚合氢化反应在与所述单糖醇或单糖摩尔比为 1 : 1-1 : 20之间的酸存在下进行; 和 /或
第三步中步骤(i i)中的脱羟基聚合氢化反应的反应温度在 100- 300 之间; 和 /或 第三步中步骤(i i)中的脱羟基聚合氢化反应在占所述单糖醇或单糖 0. 1-20重量% 的催化剂存在下进行; 和 /或
第三步中步骤(i i)中的脱羟基聚合氢化反应的反应时间为 10- 100个小时; 和 /或 第三步的步骤(i i)中, 进一步将垸烃类有机产物与水相进行分离, 得到分离的液体 燃料 I。 本发明另一方面提供一种木质素的生产工艺, 其包括以下步骤:
( 1)提供纤维素生物质和水的混合物, 其中所述纤维素生物质在水中的重量含量为 1-60%;
(2)步骤(1)得到的混合物进行酸性条件下催化氢化水解反应得到固体产物木质素 和液体产物单糖醇。 在本发明的一个实施方式中, 所述步骤(1)的混合物由包括如下步骤的方法得到- 对纤维素生物质原料进行预处理, 得到第一步的所述纤维素生物质和水的混合物; 其中 所述预处理为物理预处理方法;
和 /或
所述步骤(2)的催化氢化反应在占纤维素生物质重量含量 0. 1%-2. 0%的酸存在下进 行;
和 /或
所述步骤(2)的催化氢化反应中氢化催化剂占纤维素生物质重量含量 0. 1-20%; 和 / 或 . 所述步骤(2)的氢气压力介于 1-200大气压; 和 /或
所述步骤(2)的反应温度为 0- 200°C; 和 /或
所述步骤(2)的反应时间为 1〜100小时;
优选地, 所述物理预处理方法选自: 常温常压超声波法, 常温常压微波法, 高温汽爆法 或其组合。 ' 在本发明的一个实施方式中, 步骤(2)所述的氢化催化剂包括;
非均相催化剂, 其中所述的非均相催化剂为过渡金属分散在载体上的非均相催化剂, 所 述过渡金属选自钌、 镍、 铂、 钯或其组合;
或均相催化剂, 所述的均相催化剂包括三苯基磷的钌络合物、 磺基化苯基磷的钌络合物 或其组合;
优选地, 所述的非均相催化剂的载体为由糖作为原料制得的活性炭。 素生物质在水中的重量含量为 1-60%;
第二步: 进行如下步骤(a)或步骤(b)反应:
( a) 第一步得到的混合物进行酸性条件下的催化氢化水解反应, 得到液体产物单 糖醇溶液和可选的固体产物木质素。 固体产物木质素的存在视纤维素生物质的预处理情 况而定。 所述的单糖醇, 包括所有的五碳糖和六碳糖, 如葡萄糖醇, 木糖醇, 甘露糖醇, 半乳糖醇, 和***糖醇, 等等; 或
( b) 将第一步得到的混合物进行水解, 得到单糖。 所述的单糖包括葡萄糖, 木糖, 甘露糖, 半乳糖, 和***糖, 等等;
第三步: 第二步得到的单糖醇或单糖进行如下反应- (i)第二步中步骤(a)得到的单糖醇与 C2- C5有机酸进行酯化反应, 得到液体燃料
II; 所述液体燃料 II为单糖醇的酯化产物;
或者,(ii)第二步中步骤 (a)得到的单糖醇或步骤 (b)得到的单糖进行脱羟基聚合氢化反应, 得到液体燃料 I; 其中, 所述液体燃料 I是烷烃类有机产物, 沸点范围涵盖汽油和柴油, 含 有碳原子数主要介于 5-24个之间的烷烃, 与现在市场上销售的汽油和柴油产品构成基本相 同; 所述的脱羟基聚合氢化反应是一个非常复杂的过程, 对单糖醇来说, 脱羟基反应为起始 步, 反应生成的中间体进行相关的聚合反应, 聚合反应生成的产物中有多个不饱和键, 这些 不饱和键通过氢化反应被还原为饱和垸烃; 而对单糖, 氢化反应和脱羟基反应会同步进行, 反应生成的中间体进行相关的聚合反应, 聚合反应生成的产物中有多个不饱和键, 这些不饱 和键通过氢化反应被还原为饱和烷烃。
同时该工艺的第一步和第二步的步骤 (a)也提供了一种副产高纯度木质素的生产工艺。 附图说明
图 1是纤维素生物质生产液体燃料工艺流程图。 本发明的最佳实施方案
本发明的纤维素生物质 (BIOMASS) 原料的定义是: 含有纤维素的生物质, 生物质是 指剔除可食用部分后其它的富含生物质能的物质, 如农作物秸秆, 竹子、 芦苇、 各种树木、 树叶、 野草、 和水生植物, 等等。 这些纤维素生物质的主要构成成分为多聚糖纤维素和半纤 维素, 以及多聚芳香化合物的木质素。
在本发明中揭示的生产工艺中, 可以用于纤维素生物质预处理的方法没有具体限制, 只 要不对本发明的发明目的产生限制既可。 具体的预处理方法包括但不局限于以下:
― 6―
替换页(细则第 26条) 酸、 碱法, 酸性条件下的高温汽爆法, 高温汽爆法, 高温氨汽爆法, 常温常压超声波酸、 碱法, 常温常压超声波法, 常温常压微波酸、 碱法, 常温常压微波法, 和臭氧法, 等等。 本发明的预处理的目的是: 如果需要通过下一歩的纤维素和半纤维素水解制备单糖, 预 处理的目的是除去影响水解反应的成分木质素、 解离半纤维素, 和破坏纤维素的晶体结 构, 从而增大生物质内糖聚合物的可接近表面, 提髙水解速率; 此时通常釆用碱性条件 进行, 碱性条件是指 pH不小于 7的情况。 如果需要通过下一步的氢化水解反应制备单 糖醇, 预处理的目的则是打破纤维素生物质的结构, 特别是破坏纤维素的晶体结构, 从 而增大生物质内糖聚合物的可接近表面, 提高氢化水解反应速率。
上述预处理方法只是本发明的预处理方法的部分举例。 根据上述例子, 本领域技术人员 可以通过调整不同的方法或是根据现有公知技术来得到本发明所需的经过预处理的纤维素 生物质。 例如, 釆用上述预处理方法的组合。 又如, 所得到的预处理的纤维素生物质可以进 一步通过过滤、 洗涤等方式进一步纯化。
在本发明中揭示的生产工艺中, 制备单糖醇的反应一般在水中进行, 固体在液体中的含 量可以是 1-60%; 用于多聚糖纤维素和半纤维素催化氢化水解而降解成单糖醇的酸可以是无 机酸, 也可以是有机酸, 包括但不局限于硫酸、 磷酸、 亚磷酸、 次磷酸、 醋酸、 等等或者其 组合, 酸的用量一般为纤维素生物质干重的 0.1%-2.0%; 使用的氢气压力介于 1-200大气压; 用于催化氢化的催化剂可以是非均相催化剂,也可以是均相催化剂,包括但不局限于钌(Ru), 镍 (Ni), 铂 (Pt), 钯 (Pd) 等过渡金属分散在各种载体上的非均相催化剂。 非均相催化剂 的载体可以是活性炭、 二氧化硅 (硅胶)、 酸性工业沸石 (zeolite), 氧化铝、 含三苯基磷的高分 子聚合物、 等等, 过渡金属在载体上的重量含量一般是 0.1%-5.5%; 均相催化剂则包含各种 三苯基磷的钌络合物、 磺基化苯基磷钌的钌络合物等。
在本发明中, 我们第一次发现, 使用从糖作为起始原料制备的活性炭, 用作载体来制备 钌 (Ru), 镍 (Ni), 铂 (Pt), 钯 (Pd) 等过渡金属催化剂, 这种新催化剂的效果最好。
在本发明中揭示的生产工艺中, 用于制备活性炭的糖可以是各种单糖和双糖, 单糖可以 是三碳糖、 四碳糖、 五碳糖、 六碳糖等, 如葡萄糖; 双糖可以是同糖双糖, 也可以是异糖双 糖, 如蔗糖等。 制备活性炭的方法没有特别限制, 只要不对本发明的目的产生限制即可, 优 选的是: 糖一般在氮气流保护下高温脱水, 温度在 350-500°C之间; 脱水后得到的粗活性炭 一般在氮气流保护下用浓硫酸洗掉酸溶残留物, 所述的浓硫酸浓度 >96%至发烟硫酸; 酸洗 后的活性炭用热蒸馏水洗涤, 直到检测不到酸根离子。
非均相催化剂的制备一般使用过渡金属水溶性盐,包括但不局限于氯化钌、六氨氯化钌、 四氨硝酸铂、 四氨硝酸钯、 氯化镍等。 制备方法为: 一般在去离子水中将载体和过渡金属水 溶性盐混合均匀后, 卤素离子用温的去离子水全部洗掉。 催化剂的活化一般在氢气流中, 温 度在 200-480°C之间, 进行 2-16个小时。
在本发明中揭示的生产工艺中,用于多聚糖纤维素和半纤维素水解成单糖的催化剂常用 纤维素水解酶, 也可以适当加入其它酶, 例如葡萄糖苷酶, 也可以使用酸, 如硫酸、 磷酸、 盐酸。 本发明的水解反应的条件没有特别限制, 只要不对本发明的发明目的产生限制即可。 具体地例如包括如下步骤: 第一步, 将通过预处理脱去木质素的纤维素和半纤维素固体制备 成水悬浮液或者混合物, 第二步, 如果使用酶水解, 则向上述悬浮液或者混合物内加入适量 的水解酶 (水解酶的种类和用量没有特殊限制, 只要不对本发明的发明目的产生限制即可), 水解反应一般在温度 25-50°C, pH4.5-7.5之间的条件下进行, 反应时间没有特殊限制, 只要 不对本发明的发明目的产生限制即可; 例如为 72± 10小时; 第三步, 水解反应结束后, 一 般通过升温来沉淀水解酶, 滤出所有固体后得单糖水溶液, 第四步, 该溶液可以通过浓缩制 备浓糖液, 也可以通过喷雾干燥 (spmy dry) 制备单糖固体; 如果使用酸催化水解, 第二步 则向悬浮液或者混合物内加入适量的酸, 酸浓度一般不超过 3%的重量比 (酸浓度的下限没有 特殊限制,只要不对本发明的发明目的产生限制即可),反应一般在温度 150-250°C之间进行, 反应温度没有特殊限制, 只要不对本发明的发明目的产生限制即可; 第三步则是加入碱来中 和所用的酸, 然后滤出所有固体后得单糖水溶液。
在本发明中揭示的生产工艺中, 单糖醇可以通过酯化反应被转化为新型生物柴油, 即液 体燃料 II,为单糖醇的酯化产物。制备的单糖醇一般釆用喷雾干燥法来制备干燥产物, C2-C5 的有机酸一般用来作为酯化反应的酰基来源, 常使用这些酸的酸酐为起始物, 如醋酸酐、 各 种丙酸酐、 各种丁酸酐、 和各种戊酸酐等; 酯化反应一般可以使用这些酸酐作为溶剂, 单糖 醇和酸酐的摩尔比一般为 1 :1到 1 : 10之间; 反应一般以这些酸自己作为催化剂, 或者使用非 亲核性无机强酸作催化剂, 或者使用酸性的离子交换树脂作催化剂; 所述的催化剂没有特别 限制, 只要可以对酯化反应进行催化即可; 反应温度一般为室温到 200°C之间, 常用反应温 度一般为室温到 120°C之间; 酯化反应也可以在非质子溶剂如甲苯中进行, 在甲苯中的反应 一般使用脱水反应釜, 反应一般在回流温度下进行。
上述酯化方法只是本发明的酯化方法的部分举例。 根据上述例子, 本领域技术人员可以 通过调整不同的方法或是根据现有公知技术来得到本发明所需的单糖醇的酯化产物。 例如, 采用其它酰基来源。
在本发明中揭示的生产工艺中,单糖醇也可以通过脱羟基聚合氢化反应被转化为碳氢化 合物, 即液体燃料 I。 单糖醇的脱羟基聚合氢化反应使用的催化剂酸可以是无机酸, 也可以 是有机酸, 包括但不局限于液态硫酸、 磷酸、 氢碘酸、 亚磷酸、 次磷酸、 醋酸、 等等, 固态 酸如酸性三氧化二铝等; 酸的用量一般与单糖醇的摩尔比的 1 : 1-20;。 反应使用的催化剂 和还原剂没有特别限制, 只要不对本发明的发明目的产生限制即可, 优选地, 可以是上述的 钌 (Ru), 镍 (Ni), 铂 (Pt), 钯 (Pd) 在载体上的物质, 还原剂可以是氢气、 或者亚磷酸、 或者次磷酸等。 使用的氢气压力介于 1-200大气压, 使用亚磷酸、 或者次磷酸, 使用的量一 般是 1-20 个摩尔当量。 脱羟基聚合氢化反应一般在氮气保护下进行, 反应温度一般在 100-300°C之间。
上述脱羟基聚合氢化方法只是本发明的脱羟基聚合氢化方法的部分举例。 根据上述例 子,本领域技术人员可以通过调整不同的方法或是根据现有公知技术来得到本发明所需的碳 氢化合物。 例如所得产物再进行进一步纯化。 '
在本发明中揭示的生产工艺中, 如果单糖醇的脱羟基聚合氢化反应使用的酸为含卤素 酸, 垸烃产品中常见卤代垸烃, 不能用作燃料。 这些卤代垸烃可以很容易除去, 如通过碱消 除卤化氢反应生成烯烷烃, 或者通过缩合反应被转化为醚产品等。
在本发明中揭示的生产工艺中, 垸烃产品可以通过蒸馏分离, 也可以通过静置分层后分 离。
在本发明中揭示的生产工艺中,如果釆用酸性载体的催化剂催化氢化水解还原多聚糖纤 维素和半纤维素成为单糖醇产品, 反应后所分离出的固体木质素纯度很好, 经过简单清洗, 纯度可达>96%, 这种木质素既可以用来制备所需的多种芳香化合物, 也是非常理想的氢化 裂解液化制备液体燃料的原材料。 在本发明中揭示的液体燃料新生产工艺中, 巳知的所有煤 炭直接液化制油的技术均可用于此处将木质素转化为液体燃料, 可以是高温高压加氢裂解 法, 也可以是熔融氯化锌法。
在本发明中揭示的生产工艺中, 如果釆用碱性条件下的纤维素生物质预处理, 经过预处 理的生物质包括固体和液体两部分, 固体部分主要是纤维素,半纤维素,和极少量的木质素; 液体部分主要是木质素, 半纤维素, 和很少量的纤维素。 固体和液体部分的分离可以釆用所 有传统的分离方法。
预处理反应、 水解反应、 和脱羟基聚合氢化反应既可以在间歇反应器 (Batch reactor systems)中进行, 也可以在连续式流动反应器*** (Continuous flow reactor systems), 或者是 持续流经式反应器*** (Flow through reactor systems)中进行。 下面所给出的实施例是为了更好地说明本发明,并不是说本发明所揭示的内容仅限于下 面的实施例。
以下所给出的实施例中使用的生物质,包括但不局限于是粉碎好的自然干燥的玉米高粱 秸秆, 芦苇, 竹子, 各种硬木、 软木, 野草, 或是麦秸、 大豆秸、 和棉花秸。 生物质颗粒介 于 1.6-2.4mm之间。 在实施方案中, 玉米秸杆颗粒的构成为 36.4^%的 β-葡聚糖 (β-glucan),
Figure imgf000012_0001
, 2.8wt%***多糖 (arabinan), 1.8wt%的葡甘聚糖 (mannan), 2.2wt% 的半乳聚糖 (galactan), 20.2wt%的卡森木质素 (Klason lignin), 7.0wt%的灰份 (ash), 3.2wt%的 乙酰基组分 (acetyl group), 4.0^%的蛋白质 (protein), 和 3.8wt0/。的醛糖酸 (Uronic acid); 麦秸 颗粒的构成为 33^%的0-葡聚糖, 45wt%的木聚糖, 20wt%的卡森木质素; 大豆秸颗粒的构 成为 41^%的 β-葡聚糖, 23wt%的木聚糖, 20.8wt%的卡森木质素; 棉花秸颗粒的构成为 41.4wt%的 β-葡聚糖, 23.8wt%的木聚糖, 20.6wt%的卡森木质素。
固体样品中的糖和木质素含量: 使用酸处理后, 用 HPLC方法测定 [<<国家再生能源实 验室生物质分析实验室规程》( 11 £]^ Chemical Analysis and Testing Standard Procedure, 001 -004, 1996)]。
反应产品的分析使用气相色谱-质谱法测定。 实施例 1 : 活性炭的制备
粉末状 100克的葡萄糖在氮气流中被加热到 400 温度, 葡萄糖逐渐变色, 从白色到棕 色, 最后是黑色, 反应过程约需 16-20小时。 停止加热, 黑色固体在氮气保护下冷却到室温 后碾碎, 转移到巳经用氮气脱氧的 99%的 600毫升浓硫酸中。 此混合物在氮气保护下, 缓慢 搅拌下加热到 150°C并保持该温度 15个小时。 然后混合物冷却到室温后用五倍体积的蒸馏 水稀释并保持温度不超过 50°C,黑色固体产物用热蒸馏水洗涤直到检测不到硫酸根离子,真 空干燥。 该活性炭内检测不到铁、 铅、 和铜等一般活性炭中常见的金属, 常规方法测得的载 体的比表面积为 900-1400m2/g, 孔容为 1.0-2.5ml/g。 实施例 2: 钌 /活性炭催化剂的制备
0.77克的三氯化钌在 1000毫升的去离子水溶液和实施例 1得到的 10克的活性炭在氮气 保护下在一起混合, 搅拌 2个小时后, 水分全部被蒸发除去后, 所得固体用去离子水洗涤除 去所有氯离子, 此固体催化剂在 400°C的氢气流中活化 3个小时, 得钌 /活性炭催化剂。取样 分析三次, 催化剂含钌量介于 3.6-3.9%之间, 平均为 3.8%, 以载体重量计算。 实施例 3: 铂 /酸性氧化铝催化剂的制备
1. 0克的四氨基硝酸三铂在 100毫升的去离子水溶液和 10克的酸性氧化铝在氮气保 护下在一起混合, 搅拌 2个小时后, 过滤后所得固体在 60°C真空下干燥 12个小时。 干 燥所得的固体在含 20%氧气的氦气流中煅烧, 升温速度为每分钟一度。 温度到 150°C时 保持该温度 2个小时, 然后此固体催化剂在 300。C的氢气流中活化 3个小时, 得铂 /酸性 氧化铝催化剂。 取样分析三次, 催化剂含铂量介于 4. 9-5. 2%之间, 平均为 5. 0%, 以载 体重量计算。 分析方法为常规方法: 催化剂中的含铂量一般用原子吸收光谱法测定, 先 用王水将一定量的催化剂溶解, 然后稀释到一定浓度后测光谱吸收, 用对照品测绘工作 曲线。 实施例 4: 通过单糖醇制备液体燃料 I、 液体燃料 II
实施例 4A: 微波预处理
在一个适当的容器(如 PFA 或者 PTFE 反应容器, PTFE-聚四氟乙烯 polytetrafluoroethylene; PFA-过氟垸氧基铁氟龙 perfluomlkoxy)内加入 20.0克粉碎好的自然干 燥的玉米秸杆, 再加入 50毫升的去离子水, 封好口后, 在 1000W/2.45GHZ的微波反应器内 进行处理, 处理反应过程中保持不断晃动盛玉米秸杆的容器, 微波处理 20分钟。 处理完后, 冷却到室温后过滤备用。 实施例 4B: 制备单糖醇、 木质素
把实施例 4A处理好的玉米秸杆直接用纯净水配制成固液之比为 25%的悬浮液, 然后向 悬浮液内加入少量的磷酸, 约为玉米秸杆 0.7%的重量含量。 反应在约为玉米秸杆 0.6%的重 量含量, 含钌量为 3.8%的钌 /活性炭载体催化剂 (实施例 2制备的催化剂)的作用下, 160°C温 度和 4.5MPa的氢气压下酸氢化催化水解, 反应约需 2-3个小时, 然后冷却到 10°C以下后排 掉氢气, 静置约 20分钟后, 催化剂全部沉降在不锈钢耐压反应器底部, 取出上部固体和液 体, 过滤后得均相水溶液。 使用丁基硼酯衍生物, 电离子化气相色谱-质谱法分析, 按玉米 秸杆中的纤维素和半纤维素可转化糖含量计算, 液相中绝大多数产品均是单糖醇, 产率 >95%。 过滤所得的木质素固体产物用纯净水洗涤后, 真空干燥得固体产物, 重 3.62克, 取 样用常用二氧六环抽提分析法测定, 木质素含量 96.8%。 实施例 4C: 单糖醇转化为液体燃料 I
向实施例 4B中所得的液体产物内加入约七个当量的氢碘酸, 五个当量的亚磷酸, 反应 混合物在 120°C温度和 1.6MPa的氢气压下进行约 16个小时, 冷却到室温后排放除去氢气, 反应产物用二氯甲垸萃取。 使用气相色谱 -质谱法分析发现, 产品中约有 20%的成分含有碘, 蒸馏分出含碘产物和非含碘产物两个组分, 含碘产物经进一步分析对照发现, 约为 90%摩尔 组分是分子量为 212和 198的化合物 (C5HuI: m/e=198,C6H13I: m/e=212), 分别来源于六碳 糖和五碳糖; 而非含碘产物组分均是含碳原子数为 5-24 之间的垸烃化合物 (CUH20
Figure imgf000014_0001
。 )
取含碘烷烃产物 2克在 0.6克的氢氧化钾, 140°C温度的密封反应器内搅拌十几分钟后 冷到 10°C 以下, 液体产物中不再检测到含碘垸烃化合物, 产物主要为烯烃 (C5H10: m/e=70,C6H12: nVe=84)( 产率 >96%。 含碳原子数为 5-24之间的垸烃化合物加上脱砜产物烯 烃, 测得产率超过 96%, 可能是部分木质素溶解在水溶液中, 然后被还原为饱和烷烃, 否则 由于操作损失, 应当低于这个产率。
实施例 4D: 单糖醇转化为液体燃料 II
实施例 4B中所得的单糖醇产物通过喷雾干燥法除去水, 60°C下真空干燥 24小时得淡 灰黄色固体, 该固体单糖醇混合物在氮气保护下碾碎后, 在氮气保护下和 5倍的甲苯(重量 体积比) 加进脱水反应器内。 搅拌下依次加入 2%的浓硫酸, 约七个摩尔当量的醋酸酐, 然 后回流脱水, 在无水生成时继续回流约 3个小时。 冷却到约 10°C后用约三分之一体积的蒸 馏水洗涤三次, 反应产物溶液使用气相色谱-质谱法分析., 产品中的主要成分为各种单糖醇 的醋酸酯,和它们相应的少量的脱羟基醋酸酯。检测到的主要成分分子量为 434 (CI 8H26012), 分子量为 362的化合物 (C^IfeC o), 分子量为 332 ( C H2Q09), 和分子量为 260的化合物 (CnH^O,) , 等等。 实施例 5: 通过单糖制备液体燃料 I
实施例 5A: 超声波预处理
在一个适当的容器内加入 20克粉碎好的自然干燥的玉米秸杆,然后加入 300毫升 15wt% 的氨水作溶剂, 封好口后, 在 2kW/20kHz 的超声波反应器内进行处理, 处理中不断晃动盛 玉米秸杆的容器, 60分钟处理完后, 固体样品用去离子纯净水洗掉氨水后, 用于转化为单糖 或者单糖醇。 实施例 5B: 制备单糖溶液
实施例 5A中所得的固体产物用 pH值为 4.8的柠檬酸盐缓冲液配制成固液之比为 10% 的悬浮液, 然后加入约 10%的重量比 Spezyme CP纤维素水解酶 (Genencor公司,平均活性为 30.6FPU/ml和 20CBU/ml, 每毫升含蛋白质 106毫克), 禾!] 5%的 β-葡萄糖苷酶 (Novozyme 公司, 活性是 40IU/g)。 反应在 48-50°C之间缓慢搅拌下进行 72小时, 冷却过滤后分析发现 超过 98%产品是单糖, 氮气保护下备用。 实施例 5C: 单糖转化为液体燃料 I
向实施例 5B中所得的单糖液体产物内直接加入约 5%重量比的实施例 3得到的铂 /酸性 氧化铝催化剂, 然后加入约一个当量的氢 ϋ酸, 五个当量的亚磷酸, 约 10%体积比的丙酮协 助物料扩散, 在 160°C温度和 6.0MPa的氡气压下, 搅袢 (600RPM转速) 约 16个小时, 冷 却到室温后排放除去氢气, 反应产物用二铽甲垸萃取, 产品仅含有少量的含 ϋ烷烃 ( ni/e=198,m/e=212,m/e=324,m/e=338 )。 使用气相色谱 -质谱法分析, 产品质谱数据和质谱数 据库内的进行比对分析对照发现, m/e=128,m/e=166,m/e=170,m/e=226, m/e=248, m/e=254,m/e=332,m/e=338,等为主峰的宽峰区, 也检测到 m/e=72, m/e=86的小分子产物, 均 是含碳原子数为 5-24之间的垸烃化合物。 工业应用性
对比传统的发酵法燃料乙醇生产工艺, 本发明中揭示的液体燃料生产工艺优势非常明 显:
第一,本发明能将纤维素生物质转化得到的单糖或者单糖醇中所有的有机碳原子转化为 终端液体燃料产品中的有机碳原子, 而传统的燃料乙醇发酵生产工艺中, 六碳糖中的有机碳 损失三分之一, 五碳糖中的有机碳损失 60%;
第二,本发明第三步给出的终端产品是水不溶性有机烷烃化合物,反应完成后静置分层, 很容易和水分离; 而传统的燃料乙醇发酵生产工艺中, 其产品乙醇很难和水分离, 其蒸馏和 精制脱水是全部生产工艺中能耗最大的步骤, 据测算, 燃料乙醇生产工艺中超过百分之五十 的能耗在生产流程中的这一步 (Katzen,R.; Fuels From Biomass and Wastes, 1981,
393-402 );
第三, 本发明给出的产品是有机垸烃化合物, 对发动机的腐蚀性很小, 而乙醇的腐蚀性 相对较大;
第四, 本发明给出的产品的沸点范围大, 既有 200°C 以下的馏分 (汽油的区间), 又有
200°C以上的馏分(柴油的区间),我们能够从纤维素生物质直接制备所需的汽油和柴油这些 液体燃料, 而传统发酵生产工艺只能给出燃料乙醇;
第五, 本发明使用的反应液浓度可以很高, 反应釜体积相比发酵罐大幅缩小; 再者, 本 发明中使用的化学反应速度快, 相比单糖的发酵过程, 生产效率大幅度提高;
第六, 釆用本发明的第二步的 (a)方法可以不用除去纤维素生物质中的木质素, 木质素虽 然是纤维素水解酶的强力抑制剂, 但是它基本不影响氢化条件下的酸水解反应和氢化反应, 此歩的氢化反应条件不会还原木质素。 并且由于木质素不溶于酸, 反应完成后, 简单的过滤 即可将木质素分离。 由于木质素可以不用除去, 纤维素生物质的预处理过程仅需要破坏纤维 素生物质的紧密结构, 单纯的物理预处理方法即可满足工艺要求, 如常温常压超声波法, 常 温常压微波法, 高温汽爆法, 预处理成本会进一歩降低;
同时该方法提供了一种副产高纯度木质素的生产工艺。

Claims

权 利 要 求
1、 一种髙效纤维素生物质生产液体燃料工艺, 其特征在于, 包括以下步骤:
, 第一步: 提供纤维素生物质和水的混合物, 其中所述纤维素生物质在水中的重量含 量为 1-60%;
5 第二歩: 进行如下步骤(a)或步骤(b)反应:
( a) 第一步得到的混合物进行酸性条件下的催化氢化水解反应, 得到液体产物单 糖醇溶液和可选的固体产物木质素; 或
( b ) 将第一步得到的混合物进行水解, 得到单糖;
第三步: 第二步得到的单糖醇或单糖进行如下反应-0 (i)第二步中步骤(a)得到的单糖醇与 C2- C5有机酸进行酯化反应, 得到液体燃料
II; 所述液体燃料 II为单糖醇的酯化产物;
或者, (i i)第二步中步骤(a)得到的单糖醇或歩骤(b)得到的单糖进行脱羟基聚合氢 化反应, 得到液体燃料 I; 其中所述液体燃料 I是垸烃类有机产物。 5 2、 如权利要求 1所述的髙效纤维素生物质生产液体燃料工艺, 其特征在于: 还包 括如下步骤- 对纤维素生物质原料进行预处理, 得到第一步的所述纤维素生物质和水的混合物。
3、 如权利要求 1所述的高效纤维素生物质生产液体燃料工艺, 其特征在于-0 所述第二步的步骤(a)的催化氢化反应在占纤维素生物质重量含量 0. 1%-2. 0%的酸 存在下进行; 和 /或
所述第二步的步骤(a)的催化氢化反应中氢化催化剂占纤维素生物质重量的 0. 1-20%; 和 /或
所述第二步的步骤(a)氢气压力介于 1-200大气压; 和 /或
5 所述第二步的步骤(a)反应温度为 0- 20CTC; 和 /或
所述第二步的步骤(a)的反应时间为 1〜100小时; 和 /或
所述第二步的步骤(b)的水解反应在酸催化或是酶催化下进行。
4、 如权利要求 3所述的高效纤维素生物质生产液体燃料工艺, 其特征在于:0 .第二步所述的步骤(a)的氢化催化剂包括:
非均相催化剂, 其中所述的非均相催化剂为过渡金属分散在载体上的非均相催化剂, 所 述过渡金属选自钌、 镍、 铂、 钯或其组合;
或均相催化剂, 所述的均相催化剂包括三苯基磷的钌络合物、 磺基化苯基磷的钌络合物 或其组合。 5、 如权利要求 4所述的高效纤维素生物质生产液体燃料工艺, 其特征在于: 所述的非均相催化剂的载体为由糖作为原料制得的活性炭; 和 /或
所述非均相催化剂中所述过渡金属的含量为载体重量的 0. 1〜5.
5 %。
6、 如权利要求 5所述的高效纤维素生物质生产液体燃料工艺, 其特征在于: 所述 活性炭由包括如下步骤的方法制得:
(A)糖在惰性气体保护下在 350- 500°C之间脱水,反应 16— 20小时,得到粗活性炭;
(B)将步骤(A)的粗活性炭粉碎, 并置于浓度〉 96%至发烟的浓硫酸中, 惰性气体保护 下, 洗去酸溶残留物, 得到酸处理活性炭;
(C)步骤(B)得到的酸处理活性炭进行洗涤, 直到检测不到硫酸根离子, 干燥, 得到 活性炭。
'
7、 如权利要求 1所述的高效纤维素生物质生产液体燃料工艺, 其特征在于- 第三步的步骤(i)中单糖醇和所述 C2-C5有机酸的摩尔比为 1 : 1到 1 : 10之间; 和 / 或
第三步的步骤(i)中反应在非亲核性无机强酸催化剂或酸性离子交换树脂催化剂存 在下进行; 和 /或
第三步的步骤(i)中反应温度为 15Ό到 200°C之间; 和 /或
第三步中步骤(i i)中的脱羟基聚合氢化反应在与所述单糖醇或单糖摩尔比为 1 : 1- 1 : 20之间的酸存在下进行; 和 /或
第三步中步骤(i i)中的脱羟基聚合氢化反应的反应温度在 100-300°C之间; 和 /或 第三步中步骤(i i)中的脱羟基聚合氢化反应在占所述单糖醇或单糖 0. 1-20重量% 的催化剂存在下进行; 和 /或
第三步中步骤(i i)中的脱羟基聚合氢化反应的反应时间为 10- 100个小时; 和 /或 第三步的步骤(i i)中, 进一步将垸烃类有机产物与水相进行分离, 得到分离的液体 燃料 I。
8、 一种木质素的生产工艺, 其特征在于, 包括以下步骤:
( 1)提供纤维素生物质和水的混合物, 其中所述纤维素生物质在水中的重量含量为 1-60%;
(2)步骤(1)得到的混合物进行酸性条件下催化氢化水解反应得到固体产物木质素 和液体产物单糖醇。
9、 如权利要求 8所述的木质素的生产工艺, 其特征在于:
所述步骤(1)的混合物由包括如下步骤的方法得到: 对纤维素生物质原料进行预处 理,得到第一步的所述纤维素生物质和水的混合物;其中所述预处理为物理预处理方法; 和 /或
所述步骤(2)的催化氢化反应在占纤维素生物质重量含量 0. 1%-2. 0%的酸存在下进 行;
和 /或
所述步骤(2)的催化氢化反应中氢化催化剂占纤维素生物质重量含量 0. 1-20%; 和 / 或
所述步骤(2)的氢气压力介于 1-200大气压; 和 /或
所述步骤(2)的反应温度为 0- 200°C; 和 /或
所述步骤 (2)的反应时间为 1〜100小时。
10、 如权利要求 9所述的木质素的生产工艺, 其特征在于:
步骤(2)所述的氢化催化剂包括;
非均相催化剂, 其中所述的非均相催化剂为过渡金属分散在载体上的非均相催化剂, 所 述过渡金属选自钌、 镍、 铂、 钯或其组合;
或均相催化剂, 所述的均相催化剂包括三苯基磷的钌络合物、 磺基化苯基磷的钌络 合物或其组合。
PCT/CN2007/001118 2007-02-01 2007-04-06 Procédé de production de combustible liquide à partir de biomasse cellulosique WO2008095349A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/534,288 US8618341B2 (en) 2007-02-01 2009-08-03 Process of producing liquid fuel from cellulosic biomass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710006858.9 2007-02-01
CN2007100068589A CN101012387B (zh) 2007-02-01 2007-02-01 高效纤维素生物质生产液体燃料工艺

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/534,288 Continuation US8618341B2 (en) 2007-02-01 2009-08-03 Process of producing liquid fuel from cellulosic biomass

Publications (1)

Publication Number Publication Date
WO2008095349A1 true WO2008095349A1 (fr) 2008-08-14

Family

ID=38700115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/001118 WO2008095349A1 (fr) 2007-02-01 2007-04-06 Procédé de production de combustible liquide à partir de biomasse cellulosique

Country Status (3)

Country Link
US (1) US8618341B2 (zh)
CN (1) CN101012387B (zh)
WO (1) WO2008095349A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010124381A1 (en) 2009-04-30 2010-11-04 Evegenetics Canada Inc. Preparation of biofuels and other useful products such as 5-(hydroxymethyl)-furfural

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8450542B2 (en) * 2005-12-16 2013-05-28 Phillips 66 Company Integrated process for converting carbohydrates to hydrocarbons
CN101012387B (zh) 2007-02-01 2011-05-11 淮北中润生物能源技术开发有限公司 高效纤维素生物质生产液体燃料工艺
US7674608B2 (en) 2007-02-23 2010-03-09 The University Of Toledo Saccharifying cellulose
JP5563313B2 (ja) 2007-03-14 2014-07-30 ザ・ユニバーシティ・オブ・トレド バイオマス前処理
WO2009065275A1 (fr) * 2007-11-23 2009-05-28 China Fuel (Huaibei) Bioenergy Technology Development Co., Ltd Système pour l'hydrolyse catalytique bionique de cellulose et son utilisation dans la production de combustible liquide à partir d'une biomasse de cellulose
CN101580794B (zh) * 2008-05-14 2012-05-30 中国石油化工股份有限公司 生物质发酵-分离耦合装置及制备乙醇的方法
US7999355B2 (en) * 2008-07-11 2011-08-16 Air Products And Chemicals, Inc. Aminosilanes for shallow trench isolation films
CN102020556B (zh) * 2009-09-22 2014-06-11 淮北中润生物能源技术开发有限公司 一种纤维素生物质生产羧酸酯的方法
CN101805629B (zh) * 2010-03-22 2014-03-26 华东理工大学 生物质水热液化生产燃料油的方法
EP2569350A2 (en) 2010-05-12 2013-03-20 Shell Internationale Research Maatschappij B.V. Process for liquefying a cellulosic material
EP2580340A4 (en) * 2010-06-14 2015-09-30 3M Innovative Properties Co METHODS FOR REMOVAL OF CELLULOSIC BIOMASS INHIBITORS AND PRODUCTION OF ALCOHOLS
CA2821520A1 (en) * 2010-12-20 2012-06-28 Joseph Broun Powell Process to produce biofuels from biomass
CN102230284B (zh) * 2011-05-06 2012-11-07 西南交通大学 用于农作物秸秆纤维素提取的超声波辅助汽爆预处理工艺
CN102268139B (zh) * 2011-05-30 2013-08-14 中国科学院理化技术研究所 一种树脂添加剂及其制备方法与应用
EP2721125A1 (en) * 2011-06-14 2014-04-23 Shell Internationale Research Maatschappij B.V. Hydrothermal hydrocatalytic treatment of biomass
FR2978157B1 (fr) * 2011-07-19 2014-09-12 IFP Energies Nouvelles Procede flexible de transformation de biomasse lignocellulosique en hydrocarbures en presence d'un acide
FR2978156B1 (fr) * 2011-07-19 2014-11-07 IFP Energies Nouvelles Procede flexible de transformation de biomasse lignocellulosique avec etape de purification
FR2978155B1 (fr) * 2011-07-19 2014-11-21 IFP Energies Nouvelles Procede flexible de transformation de biomasse lignocellulosique en hydrocarbures
US8772558B2 (en) 2011-07-26 2014-07-08 Uop Llc Methods and apparatuses for producing aromatic hydrocarbon-containing effluent
US8772557B2 (en) 2011-07-26 2014-07-08 Uop Llc Aromatic hydrocarbons from depolymerization and deoxygenation of lignin
US8754275B2 (en) 2011-07-26 2014-06-17 Uop Llc Methods and apparatuses for producing aromatic hydrocarbon-rich effluent from lignocellulosic material
CN102776015B (zh) * 2012-08-10 2015-05-20 上海交通大学 一种利用超声波预处理生物质提高液化生物油产率的方法
IN2015DN03057A (zh) * 2012-10-31 2015-10-02 Shell Int Research
BR112015009013A2 (pt) * 2012-10-31 2017-07-04 Shell Int Research método métodos para digerir sólidos de biomassa celulósica, e, sistema de conversão de biomassa
WO2014070582A1 (en) * 2012-10-31 2014-05-08 Shell Oil Company Methods and systems for processing lignin during hydrothermal digestion of cellulosic biomass solids
WO2014070579A1 (en) 2012-10-31 2014-05-08 Shell Oil Company Methods for hydrothermal digestion of cellulosic biomass solids using a glycerol solvent system
FR3004182B1 (fr) 2013-04-09 2015-03-27 IFP Energies Nouvelles Procede de transformation de biomasses lignocellulosiques en molecules mono ou poly-oxygenees
FR3026407B1 (fr) 2014-09-26 2016-10-28 Ifp Energies Now Procede de transformation d'une charge comprenant une biomasse lignocellulosique utilisant un catalyseur homogene acide en combinaison avec un catalyseur heterogene comprenant un support specifique
FR3030560B1 (fr) * 2014-12-18 2017-01-27 Ifp Energies Now Procede de transformation de biomasse lignocellulosique en hydrocarbures et en molecules oxygenees
CN104744191B (zh) * 2015-02-11 2017-04-05 中国科学院广州能源研究所 一种农林生物质连续化生产c5、c6烷烃的方法
CN105296329B (zh) * 2015-11-09 2018-05-25 北京化工大学 一种利用微波-稀酸汽爆对木质纤维素类物料进行连续预处理的装置及方法
CN105272811B (zh) * 2015-11-18 2018-06-29 中国科学院广州能源研究所 一种转化酸性生物质基糖醇溶液制取c5,c6烷烃的方法
CN105441106A (zh) * 2015-11-23 2016-03-30 农业部规划设计研究院 一种木质素制备长链烷烃的方法
CA3006226C (en) 2015-11-24 2023-09-19 Inbicon A/S Bitumen compositions comprising lignin
CN105566087A (zh) * 2015-12-21 2016-05-11 中国科学院过程工程研究所 一种从木质纤维素原料提取木质素催化转化制备丁香醛的方法
CN108069558B (zh) * 2016-11-11 2021-03-05 中国石油化工股份有限公司抚顺石油化工研究院 一种催化臭氧处理纤维素乙醇废水生化出水的脱色方法
CN108069559B (zh) * 2016-11-11 2021-03-05 中国石油化工股份有限公司抚顺石油化工研究院 一种纤维素乙醇废水生化处理出水的脱色方法
CN107417649B (zh) * 2017-04-06 2020-08-28 中国科学院山西煤炭化学研究所 水相催化5-羟甲基糠醛制备2,5-呋喃二甲醛的催化剂及制法和应用
CN107604012B (zh) * 2017-10-25 2021-09-10 武汉凯迪工程技术研究总院有限公司 基于高频震荡电磁场的生物质原料预处理方法
BR112020008273A2 (pt) 2017-10-27 2020-10-20 Xyleco, Inc. processamento de biomassa
CN115193478B (zh) * 2022-07-11 2023-06-23 南京工业大学 一种秸秆制糖的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1175820A (en) * 1979-03-23 1984-10-09 David L. Brink Utilization of cellulosic and lignocellulosic materials
WO2005021475A1 (en) * 2003-09-03 2005-03-10 Sk Corporation Method for preparing sugar alcohols by catalytic hydrogenation of sugars
CN1633334A (zh) * 2002-02-15 2005-06-29 亚乐克株式会社 吸附剂及其制造方法
CN1264985C (zh) * 2003-12-18 2006-07-19 中国科学院理化技术研究所 利用秸秆植物制备苯酚和甲苯用木质素的方法
CN101012387A (zh) * 2007-02-01 2007-08-08 淮北中润生物能源技术开发有限公司 高效纤维素生物质生产液体燃料工艺

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB320842A (en) * 1928-04-18 1929-10-18 Henry Dreyfus The manufacture and treatment of cellulose derivatives
US5366558A (en) * 1979-03-23 1994-11-22 Brink David L Method of treating biomass material
US5026927A (en) * 1989-11-16 1991-06-25 The United States Of America As Represented By The United States Department Of Energy Hydrocracking of carbohydrates making glycerol, glycols and other polyols
IT1256800B (it) * 1992-01-31 1995-12-15 Novamont Spa Procedimento per la produzione di polioli inferiori e nuovo catalizzatore a base di rutenio utilizzato in tale procedimento.
US5648529A (en) * 1995-05-16 1997-07-15 Hoechst Celanese Corporation Process for the recovery of an organic acid from the manufacture of a cellulose ester
US6982328B2 (en) * 2003-03-03 2006-01-03 Archer Daniels Midland Company Methods of producing compounds from plant material
US7998339B2 (en) * 2005-12-12 2011-08-16 Neste Oil Oyj Process for producing a hydrocarbon component
US7678950B2 (en) * 2005-12-16 2010-03-16 Conocophillips Company Process for converting carbohydrates to hydrocarbons
CN100365099C (zh) 2006-02-27 2008-01-30 淮北市辉克药业有限公司 全新的生物质生产液体燃料技术
US8053615B2 (en) * 2007-03-08 2011-11-08 Virent Energy Systems, Inc. Synthesis of liquid fuels and chemicals from oxygenated hydrocarbons

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1175820A (en) * 1979-03-23 1984-10-09 David L. Brink Utilization of cellulosic and lignocellulosic materials
CN1633334A (zh) * 2002-02-15 2005-06-29 亚乐克株式会社 吸附剂及其制造方法
WO2005021475A1 (en) * 2003-09-03 2005-03-10 Sk Corporation Method for preparing sugar alcohols by catalytic hydrogenation of sugars
CN1264985C (zh) * 2003-12-18 2006-07-19 中国科学院理化技术研究所 利用秸秆植物制备苯酚和甲苯用木质素的方法
CN101012387A (zh) * 2007-02-01 2007-08-08 淮北中润生物能源技术开发有限公司 高效纤维素生物质生产液体燃料工艺

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ATSUSHI FUKUOKA ET AL.: "Catalytic Conversion of Cellulose into Sugar Alcohols", ANGEW. CHEM. IND. ED., vol. 45, 2006, pages 5161 - 5163, XP003016856 *
HUBER W. ET AL.: "An Overview of Aqueous-phase Catalytic Processes for Production of Hydrogen and Alkanes in a Biorefinery", CATALYSIS TODAY, vol. 111, 2006, pages 119 - 132, XP005221539 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010124381A1 (en) 2009-04-30 2010-11-04 Evegenetics Canada Inc. Preparation of biofuels and other useful products such as 5-(hydroxymethyl)-furfural
EP2427534A4 (en) * 2009-04-30 2014-11-12 Eve Res Inc PREPARATION OF BIOCOMBUSTIBLES AND OTHER USEFUL PRODUCTS SUCH AS 5- (HYDROXYMETHYL) FURFURAL
US9683328B2 (en) 2009-04-30 2017-06-20 Eve Research Inc. Preparation of biofuels and other useful products such as 5-(hydroxymethyl)-furfural

Also Published As

Publication number Publication date
US8618341B2 (en) 2013-12-31
CN101012387A (zh) 2007-08-08
CN101012387B (zh) 2011-05-11
US20090326286A1 (en) 2009-12-31

Similar Documents

Publication Publication Date Title
WO2008095349A1 (fr) Procédé de production de combustible liquide à partir de biomasse cellulosique
Liu et al. Application and prospect of organic acid pretreatment in lignocellulosic biomass separation: A review
EP2006354A9 (en) Novel method for production liquid fuel from biomass
JP4604194B2 (ja) 触媒を用いたセルロースの加水分解方法および触媒を用いたグルコースの生産方法
RU2617938C2 (ru) Способ получения продуктов расщепления углеводов из лигноцеллюлозных материалов
JP2021524869A (ja) 繊維系バイオマスに対する総合的な利用方法
JP5498005B2 (ja) 有機酸を経由したアルコール類の製造方法
Zhou et al. High biomass loadings of 40 wt% for efficient fractionation in biorefineries with an aqueous solvent system without adding adscititious catalyst
US10106862B2 (en) Mixed super critical fluid hydrolysis and alcoholysis of cellulosic materials to form alkyl glycosides and alkyl pentosides
Wu et al. Research progress on the preparation and application of biomass derived methyl levulinate
Yang et al. Efficient co-production of xylooligosaccharides, furfural and reducing sugars from yellow bamboo via the pretreatment with biochar-based catalyst
Zhang et al. Co-production of xylose, lignin, and ethanol from eucalyptus through a choline chloride-formic acid pretreatment
CN111943917A (zh) 一种甲酸预处理木质纤维素高效制备5-羟甲基糠醛的方法
Zhou et al. Enhancing of pretreatment on high solids enzymatic hydrolysis of food waste: Sugar yield, trimming of substrate structure
He et al. Integrated understanding of enhancing enzymatic hydrolysis of bulrush through the metal chloride-assisting choline chloride: Glycerol pretreatment
JP2009254283A (ja) セルロース系バイオマスの糖化方法
WO2013159322A1 (zh) 制备乙酸的方法
Wan et al. Hydrolysis of lignocellulosic biomass in ionic solution
CN113185394A (zh) 一种将Dowson构型钨磷杂多酸用于催化水解纤维素制备乙酰丙酸的方法
Hanchar et al. Separation of glucose and pentose sugars by selective enzyme hydrolysis of AFEX-treated corn fiber
KR101122452B1 (ko) 바이오 연료의 제조 방법
Ma et al. A process insight into production of ethyl levulinate via a stepwise fractionation
CN101519599A (zh) 纤维素催化降解转化为烃类有机原料的方法
Rahman et al. Effect of Dilute Acid Pretreatment of Vegetable Waste on Sugar Production and Inhibitor Formation
CN109503317B (zh) 一种竹基生物质转化糖醇的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07720691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07720691

Country of ref document: EP

Kind code of ref document: A1