WO2008080951A1 - Vertikale ausrichtung eines lidar-sensors - Google Patents

Vertikale ausrichtung eines lidar-sensors Download PDF

Info

Publication number
WO2008080951A1
WO2008080951A1 PCT/EP2007/064584 EP2007064584W WO2008080951A1 WO 2008080951 A1 WO2008080951 A1 WO 2008080951A1 EP 2007064584 W EP2007064584 W EP 2007064584W WO 2008080951 A1 WO2008080951 A1 WO 2008080951A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
diff
output signal
determined
evaluation unit
Prior art date
Application number
PCT/EP2007/064584
Other languages
English (en)
French (fr)
Inventor
Jochen Bauer
Ludwig Ertl
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Priority to DE502007005103T priority Critical patent/DE502007005103D1/de
Priority to US12/522,019 priority patent/US8135513B2/en
Priority to EP07858180A priority patent/EP2097770B1/de
Priority to JP2009544392A priority patent/JP2010515183A/ja
Priority to AT07858180T priority patent/ATE481651T1/de
Publication of WO2008080951A1 publication Critical patent/WO2008080951A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • G01S7/4972Alignment of sensor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/04Traffic conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/16Pitch
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles

Definitions

  • the invention relates to an evaluation unit for a driver assistance system for a vehicle having an input for receiving image information which has been detected by a camera.
  • driver assistance systems summarizes functions that serve the support of the driver of a motor vehicle.
  • the aim of driver assistance systems is often to increase safety by avoiding dangerous situations before they occur and by assisting the driver in avoiding accidents in critical situations.
  • Other goals are to increase comfort by reducing stress and relieving the driver in standard situations, facilitating orientation through situationally prepared and driver-friendly information about surroundings, and increasing driving enjoyment.
  • driver assistance functions are traction control or traction control such as ABS (anti-lock braking system), ASR (electronic traction control), ESP (Electronic Stability Program), EDS (electronic differential lock), and adaptive cornering light, headlamps for the headlights, Night vision systems, cruise control, parking assistance, brake assist, ACC (Adaptive Cruise Control), proximity control, distance warning, turn assistant, traffic jam assistant, lane detection system, lane departure warning, lane keeping assistance, lane change assistant, ISA (Intelligent Speed Adaptation), ANB (Automatic emergency braking), tire pressure monitoring system, driver condition recognition, traffic sign recognition, platooning.
  • the object of the invention is to disclose an efficient evaluation unit for a driver assistance system, as well as a corresponding computer program product and a method for operating a driver assistance system.
  • the evaluation unit according to the invention for a driver assistance system for a vehicle has an input for receiving image information acquired by a camera, as well as determination means for determining at least one variable describing an inclination angle of the vehicle using the image information. Furthermore, determination means are provided for determining an output signal using the at least one large, wherein the output signal relates to a vertical alignment of electromagnetic radiation to be emitted by a transmitting unit, and an output for outputting the output signal.
  • the large regarding the inclination angle is thus obtained from a consideration of the environment of the vehicle.
  • the inclination angle refers to a reference variable, such as the road level or the inclination of another vehicle.
  • the inclination described by the large is an inclination of the vehicle in the vertical direction or a rotation parallel to the transverse axis of the vehicle and thus in the dimension in which the transmitting unit or the electromagnetic radiation to be emitted by the transmitting unit align in accordance with the output signal.
  • the magnitude or magnitude of the tilt angle is used to determine an output signal relating to the vertical orientation of electromagnetic radiation to be emitted by the transmitter unit.
  • the output signal is determined exclusively from the at least one angle of inclination angle, or for other magnitudes to be included in this determination.
  • the vertical orientation here preferably refers to the reference system of the vehicle; a movement in the vertical direction in this case means a movement perpendicular to the plane of the road surface. Such a vertical alignment is preferably effected by a rotation of the transmitting unit parallel to the transverse axis of the vehicle.
  • the output signal can be used to control the vertical orientation of the electromagnetic radiation.
  • the evaluation unit preferably sends the output signal to a component responsible for the control or alignment of the transmission unit, such as e.g. to an electric motor. After alignment of the transmitting unit according to the output signal, the transmitting unit can radiate in the respective direction; Alternatively, it is possible that the transmitting unit does not radiate, but is aligned only for radiation in the respective direction, so that if necessary, a radiation can take place.
  • the determination means are designed in such a way that the at least one size is determined using lane markings and / or lane delineations depicted in the image information.
  • Markings for delimiting different lanes from each other come into consideration as lane markings, or markings for indicating the lane edge; as the road boundary, this is e.g. the edge of the road asphalt or objects arranged at the edge of the road such as posts or
  • the determination means are designed such that, using the formed lane markings and / of the lane boundaries a road course is determined, and using the determined road course, the at least one large is determined.
  • the course of the road may indicate the vertical and / or horizontal curvature of the roadway.
  • the determination means are designed such that the at least one variable is determined using another vehicle depicted in the image information.
  • the at least one size may in this case include a tilt angle of the vehicle relative to the other vehicle.
  • the at least one large may include an inclination angle of the vehicle relative to a connecting line between the vehicle and the other vehicle.
  • the at least one large comprises a pitch angle of the vehicle.
  • the pitch angle here describes an inclination of the vehicle against its transverse axis, wherein the transverse axis runs parallel to the plane of the roadway when the road surface is flat.
  • the transmitting unit is part of a distance determination system, such as e.g. of a Libar system.
  • the determination means can be designed in such a way that the at least one variable is determined using information acquired by a tilt sensor. In this case, in addition to the image information measurements a tilt sensor taken into account when the at least one size is determined.
  • the inventive driver assistance system comprises an evaluation unit, the camera and the transmission unit for electromagnetic radiation.
  • means are further provided for determining the distance to another vehicle using the transmitting unit, and means for controlling a distance to the other vehicle, for example, to maintain a constant distance to the other vehicle.
  • the computer program product comprises determining means for determining at least one variable describing an inclination angle of the vehicle using image information, determining means for determining a
  • a computer program product may, in addition to the actual computer program (with its technical effect beyond the normal physical interaction between the program and the arithmetic unit) include a record carrier for the computer program, a file library, a configured arithmetic unit but also, for example, a Storage device or a server on which the computer program belonging files are stored understood.
  • image information recorded by a camera is received, at least one variable describing an inclination angle of the vehicle is determined using the image information, and an output signal is determined using the at least one variable, wherein the output signal is a vertical alignment. tion of emitted by a transmitting unit electromagnetic radiation.
  • the computer program product according to the invention and the method according to the invention are particularly suitable for the evaluation device according to the invention, and this may also apply to the embodiments and further developments. For this purpose, they may comprise further suitable means or steps.
  • FIG. 1 two vehicles
  • FIG. 2 shows a detail of a driver assistance system of a vehicle
  • FIG. 3 a flowchart.
  • FIG. 1 shows the two vehicles Fl and F2, which are located behind each other on a road S.
  • the vehicle F1 has a driver assistance system with the driver assistance function ACC, which is to regulate the distance to the vehicle F2 driving in front.
  • the distance between the vehicles Fl and F2 is determined by a lidar sensor L of the vehicle F1.
  • the lidar sensor L is here attached behind the windshield of the vehicle Fl; it emits a laser beam in the forward direction and receives the laser beam reflected from the vehicle F2. It is the transit time between the transmission of the laser signal and the
  • Receiving the reflected laser signal determines which is a measure of the distance of the vehicle F2 from the vehicle Fl.
  • FIG. 1 shows two laser beams S 1 and S 2 of the lidar sensor L, which differ in their vertical orientation.
  • the vertical orientation hereby means the alignment perpendicular to the surface of the road S. stood, indicated in Figure 1 by a double arrow. While the laser beam S2 impinges on the vehicle F2 and thus makes it possible to determine the distance between the vehicles F1 and F2, the emission of the beam S1 is so high in the vertical direction that the beam S1 does not reach the vehicle F2.
  • the vertical orientation of the lidar sensor L is thus of great importance as to whether a distance determination to a vehicle in front is possible. Misalignments of the lidar sensor L gain in importance in particular with increasing distance to the vehicle F2 driving ahead.
  • the driver assistance system of the vehicle F1 has a video camera K which detects the space in front of the vehicle F1.
  • the camera K can e.g. as well as the lidar sensor L installed behind the windshield of the vehicle Fl.
  • the camera K supplies the images P acquired by it to an evaluation unit A shown in FIG. 2.
  • the evaluation unit A determines, using the images P, a control signal S which is used to set the vertical orientation of the lidar sensor L.
  • an electric motor is provided which, taking into account the control signal S, can change the vertical orientation of the lidar sensor L.
  • FIG. 3 shows a flowchart to illustrate the determination of the control signal S by the evaluation device A using the images P.
  • a roadway model MOD is used with parameters which at least include the pitch angle of the vehicle F1 and the vertical and horizontal curvature of the road correspond.
  • An adjustment of the parameters takes place until the road course determined using these adjusted parameters matches as well as possible the road taken by the camera.
  • the lane markings are preferably considered; Alternatively, the edge of the roadway can be considered, the latter being relevant in particular in the case of snow-covered roadway.
  • the aforementioned parameters are output, so that the pitch angle N of the vehicle Fl and the course of the road V have been determined.
  • the course of the road V indicates, depending on the distance to the vehicle F1, how large the horizontal and vertical curvature of the road is.
  • Such a determination of pitch angle and road course using a roadway model is described, for example, in ED Dickmanns, BD Mysliwetz: "3-D road and relative ego state estimation", IEEE Transactions on PAMI, 14 (2), p. 199-213, February 1992.
  • the determination of the control signal S can be done using only the pitch angle N.
  • the pitch angle N describes the inclination of the vehicle Fl against its transverse axis, the transverse axis of the vehicle Fl in FIG. 1 pointing into the plane of the drawing.
  • the pitch angle W may be changed, e.g. due to the loading, the occupation of the vehicle seats, by different tire pressures, by road bumps, accelerating, decelerating or rocking a vehicle.
  • the control signal S is determined so that the
  • Pitch angle N of the vehicle Fl is compensated.
  • the lidar sensor L is aligned in the vertical direction parallel to the road. If, for example, the vehicle F1 is tilted backwards due to the heavy load on the trunk, as shown in FIG. 1, then the lidar sensor L should be oriented more strongly downwards in relation to the condition without boot load. Apart from the pitch angle N, the course of the road V can also be taken into account in the determination of the control signal S.
  • An orientation of the lidar sensor L as explained above in the vertical direction parallel to the road is particularly useful when the vertical slope of the road is constant, which applies both to a flat road course, as well as to a positive or negative slope.
  • the lidar sensor L slightly more upward with respect to the parallel alignment; Accordingly, in the case where the pitch in front of the vehicle F1 decreases, it is favorable to align the lidar sensor L slightly more downward with respect to the parallel orientation. This can be illustrated particularly well in the event that the vehicle Fl moves to a dome or a valley.
  • the road V is thus taken from whether the slope of the road increases or decreases, and accordingly, the parallel orientation of the lidar sensor L, which is achieved by the compensation of the pitch angle N, changed.
  • the determination of the control signal S has been determined as a function of the images P on the premise that no preceding vehicle F2 is detected by the camera K.
  • the relative inclination angle DIFF of the vehicle F1 to the straight line connecting the vehicles F1 and F2 can be determined. If the lidar sensor L is in the same vertical position as the camera K, the control signal S can be derived directly from this relative inclination angle DIFF. If, on the other hand, the lidar sensor L is not in the same vertical position as the camera K, then the control signal S can be calculated by trigonometry including the distance between the vehicles F1 and F2.
  • an estimate determined from the image taken by the camera K can be used. In this case, it is advantageous that the requirements for the accuracy of the estimation are low.
  • the difference of the gradients of the two vehicles F1 and F2 is made using the course of the road V. Since the road course V has been determined, and in addition from the pictures P it is known at which point of the road V the vehicle F2 is located, the current vertical roadway slope, at which the vehicle F2 is found. The current vertical road gradient of the vehicle F1 can also be taken from the road V, so that the difference DIFF of these two values can be determined.
  • the control signal S is determined such that the Lidar sensor L is aligned parallel to the road. If, however, the actual pitch of the preceding vehicle F2 is greater than that of the vehicle F1, then the lidar sensor L should be aligned higher; the opposite applies if the current gradient of the preceding vehicle F2 is smaller than that of the vehicle F1.
  • the pitch angle N of the vehicle F1 is taken into account. Because of the course of the road V, although a relative inclination of the vehicles Fl and F2 can be determined, which results from the gradient of the road; however, the actual relative inclination results from the difference DIFF and the pitch angle N.
  • the pitch angle may increase or reduce the pitch difference DIFF depending on which direction the vehicle F1 is inclined due to the pitch angle N.
  • pitch angle sensor may be provided for other vehicle components, such as the ESP system or the headlamps.
  • the measurement results of the pitch angle sensor can also be used in addition to the pitch angle N determined on the basis of the roadway model MOD, for example by using a pitch angle value determined from the two values.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Traffic Control Systems (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

Die Erfindung betrifft eine Auswerteeinheit für ein Fahrerassistenzsystem für ein Fahrzeug (F1), mit einem Eingang zum Empfangen von von einer Kamera (K) erfassten Bildinformationen, Ermittlungs-Mitteln zum Ermitteln einer einen Neigungswinkel des Fahrzeugs (F1) beschreibenden Grösse unter Verwendung der Bildinformationen, Bestimmungs-Mitteln zum Bestimmen eines Ausgabesignals unter Verwendung der Grösse, wobei das Ausgabesignal eine vertikale Ausrichtung von von einer Sendeeinheit (L) auszustrahlender elektromagnetischer Strahlung betrifft, und einem Ausgang zum Ausgeben des Ausgabesignals. Weiterhin betrifft die Erfindung ein Computerprogrammprodukt und ein Verfahren zum Betreiben eines Fahrerassistenzsystems.

Description

Beschreibung
Vertikale Ausrichtung eines Lidar-Sensors
Die Erfindung betrifft eine Auswerteeinheit für ein Fahrerassistenzsystem für ein Fahrzeug mit einem Eingang zum Empfangen von Bildinformationen, welche von einer Kamera erfasst wurden .
Unter dem Begriff der Fahrerassistenzsysteme (englisch: ADAS, Advanced Driver Assistance Systems) werden Funktionen zusam- mengefasst, welche der Unterstützung des Fahrers eines Kraftfahrzeuges dienen. Ziel der Fahrerassistenzsysteme ist häufig die Steigerung der Sicherheit durch die Vermeidung von Gefah- rensituationen vor deren Entstehung und durch die Unterstützung des Fahrers zur Unfallvermeidung in kritischen Situationen. Weitere Ziele sind die Steigerung des Komforts durch Stressreduktion und Entlastung des Fahrers in Standardsituationen, die Erleichterung der Orientierung durch situations- abhangig aufbereitete und fahrergerecht vermittelte Umfeld- Informationen, sowie die Erhöhung des Fahrspaßes.
Beispiele für Fahrerassistenzfunktionen sind die Antriebsschlupfregelung bzw. Traktionskontrolle wie ABS (Antiblo- ckiersystem) , ASR (Antriebs-Schlupf-Regelung) , ESP (Elektronisches Stabilitatsprogramm) , EDS (Elektronische Differentialsperre) , sowie adaptives Kurvenlicht, Auf- und Abblendassistent für das Fahrlicht, Nachtsichtsysteme (englisch: night vision) , Tempomat, Einparkhilfe, Bremsassistent, ACC (Adapti- ve Cruise Control) bzw. Abstandsregeltempomat, Abstandswar- ner, Abbiegeassistent, Stauassistent, Spurerkennungssystem, Spurhalteassistent, Spurhalteunterstutzung, Spurwechselassistent, ISA (Intelligent Speed Adaption) , ANB (Automatische Notbremsung) , Reifendruckkontrollsystem, Fahrerzustandserken- nung, Verkehrszeichenerkennung, Platooning. Der Erfindung liegt die Aufgabe zugrunde, eine effiziente Auswerteeinheit für ein Fahrerassistenzsystem, sowie ein entsprechendes Computerprogrammprodukt und ein Verfahren zum Betreiben eines Fahrerassistenzsystems aufzuzeigen.
Diese Aufgabe wird durch eine Auswerteeinheit mit den Merkmalen des Anspruchs 1, sowie durch ein Computerprogrammprodukt und ein Verfahren mit Merkmalen von nebengeordneten Ansprüchen gelost. Vorteilhafte Ausgestaltungen und Weiterbildungen sind Gegenstand von Unteranspruchen .
Die erfindungsgemaße Auswerteeinheit für ein Fahrerassistenzsystem für ein Fahrzeug weist einen Eingang auf zum Empfangen von von einer Kamera erfassten Bildinformationen, sowie Er- mittlungs-Mittel zum Ermitteln zumindest einer einen Neigungswinkel des Fahrzeugs beschreibenden Große unter Verwendung der Bildinformationen. Weiterhin sind Bestimmungs-Mittel vorhanden zum Bestimmen eines Ausgabesignals unter Verwendung der zumindest einen Große, wobei das Ausgabesignal eine ver- tikale Ausrichtung von von einer Sendeeinheit auszustrahlender elektromagnetischer Strahlung betrifft, und ein Ausgang zum Ausgeben des Ausgabesignals.
Von der Auswerteeinheit wird aus Bildinformationen eine oder mehrere Großen ermittelt, welche einen Neigungswinkel des
Fahrzeugs betreffen. Die Große betreffend den Neigungswinkel wird somit aus einer Betrachtung des Umfeldes des Fahrzeugs gewonnen. Der Neigungswinkel bezieht sich auf eine Bezugsgroße, so z.B. auf die Fahrbahnebene oder auf die Neigung eines anderen Fahrzeugs. Vorzugsweise handelt es sich bei der durch die Große beschriebene Neigung um eine Neigung des Fahrzeugs in vertikaler Richtung bzw. um eine Rotation parallel zur Querachse des Fahrzeugs und somit in derjenigen Dimension, in welcher die Sendeeinheit bzw. die von der Sendeeinheit auszu- strahlende elektromagnetische Strahlung gemäß dem Ausgangssignal auszurichten ist. Die den Neigungswinkel betreffende Große oder Großen wird verwendet, um ein Ausgabesignal betreffend die vertikale Ausrichtung von von der Sendeinheit auszustrahlender elektromagnetischer Strahlung zu bestimmen. Hierbei ist es möglich, dass das Ausgabesignal ausschließlich aus der mindestens einen Neigungswinkel-Große bestimmt wird, oder dass andere Großen in diese Bestimmung einfließen. Die vertikale Ausrichtung bezieht sich hierbei vorzugsweise auf das Bezugssystem des Fahrzeugs; eine Bewegung in vertikaler Richtung bedeutet in diesem Fall eine Bewegung senkrecht zur Ebene der Fahrbahnoberflache. Eine derartige vertikale Ausrichtung wird vorzugsweise durch eine Rotation der Sendeeinheit parallel zur Querachse des Fahrzeugs bewirkt.
Das Ausgabesignal kann zur Steuerung der vertikalen Ausrichtung der elektromagnetischen Strahlung eingesetzt werden. Vorzugsweise sendet die Auswerteeinheit das Ausgabesignal dementsprechend an eine für die Steuerung oder Ausrichtung der Sendeeinheit zustandige Komponente, wie z.B. an einen Elektromotor. Nach Ausrichtung der Sendeeinheit entsprechend dem Ausgabesignal kann die Sendeeinheit in die jeweilige Richtung abstrahlen; alternativ hierzu ist es möglich, dass die Sendeinheit nicht abstrahlt, sondern lediglich zur Abstrahlung in die jeweilige Richtung ausgerichtet ist, so dass bei Bedarf eine Abstrahlung erfolgen kann.
In Weiterbildung der Erfindung sind die Ermittlungs-Mittel derart ausgestaltet, dass die zumindest eine Große unter Verwendung von in den Bildinformationen abgebildeten Fahrbahn- markierungen und/der Fahrbahnbegrenzungen ermittelt wird. Als Fahrbahnmarkierungen kommen hierbei Markierungen zur Abgrenzung verschiedener Fahrspuren voneinander in Betracht, oder Markierungen zur Anzeige des Fahrbahnrandes; als Fahrbahnbegrenzung kommt hierbei z.B. der Rand des Fahrbahnasphalts oder am Fahrbahnrand angeordnete Objekte wie Pfosten oder
Leitplanken in Betracht. Vorzugsweise sind die Ermittlungs- Mittel derart ausgestaltet, dass unter Verwendung der abge- bildeten Fahrbahnmarkierungen und/der Fahrbahnbegrenzungen ein Straßenverlauf ermittelt wird, und unter Verwendung des ermittelten Straßenverlaufs die zumindest eine Große ermittelt wird. Der Straßenverlauf kann hierbei in Abhängigkeit vom Abstand vom Fahrzeug die vertikale und/oder horizontale Krümmung der Fahrbahn angeben .
Besonders vorteilhaft ist es, wenn die die Ermittlungs-Mittel derart ausgestaltet sind, dass die zumindest eine Große unter Verwendung von einem anderen in den Bildinformationen abgebildeten Fahrzeug ermittelt wird. Dies erlaubt es, die Ausrichtung der von der Sendeeinheit auszustrahlenden elektromagnetischen Strahlung an das andere Fahrzeug anzupassen. Die zumindest eine Große kann in diesem Fall einen Neigungswinkel des Fahrzeugs relativ zu dem anderen Fahrzeug umfassen. Weiterhin kann die zumindest eine Große einen Neigungswinkel des Fahrzeugs relativ zu einer Verbindungslinie zwischen dem Fahrzeug und dem anderen Fahrzeug umfassen. Alternativ zur Verwendung eines abgebildeten Fahrzeugs ist es möglich, die Ermittlung der zumindest einen Große durchzufuhren, ohne dass ein Fahrzeug in den Bildinformationen abgebildet ist.
Einer Weiterbildung der Erfindung gemäß umfasst die zumindest eine Große einen Nickwinkel des Fahrzeugs. Der Nickwinkel be- schreibt hierbei eine Neigung des Fahrzeugs gegen seine Querachse, wobei die Querachse bei ebener Fahrbahn parallel zur Fahrbahnebene verlauft.
In Ausgestaltung der Erfindung ist die Sendeeinheit Bestand- teil eines Systems zur Abstandsbestimmung, wie z.B. eines Li- dar-Systems .
Die Ermittlungs-Mittel können derart ausgestaltet sein, dass die zumindest eine Große unter Verwendung von von einem Nei- gungssensor erfassten Informationen ermittelt wird. In diesem Fall werden zusatzlich zu den Bildinformationen Messungen eines Neigungssensors berücksichtigt, wenn die zumindest eine Große ermittelt wird.
Das erfindungsgemaße Fahrerassistenzsystem umfasst eine Aus- werteeinheit, die Kamera und die Sendeeinheit für elektromagnetische Strahlung. Vorzugsweise sind weiterhin Mittel vorgesehen zum Bestimmen des Abstandes zu einem anderen Fahrzeug unter Verwendung der Sendeeinheit, sowie Mittel zum Regeln eines Abstandes zu dem anderen Fahrzeug, beispielsweise zum Einhalten eines konstanten Abstandes zu dem anderen Fahrzeug.
Das erfindungsgemaße Computerprogrammprodukt umfasst Ermittlungs-Mittel zum Ermitteln zumindest einer einen Neigungswinkel des Fahrzeugs beschreibenden Große unter Verwendung von Bildinformationen, Bestimmungs-Mittel zum Bestimmen eines
Ausgangssignals unter Verwendung der zumindest einen Große, wobei das Ausgabesignal eine vertikale Ausrichtung von von einer Sendeeinheit auszustrahlender elektromagnetischer Strahlung betrifft, sowie Ausgabe-Mittel zum Ausgeben des Ausgangssignals. Unter einem Computerprogrammprodukt kann im Zusammenhang mit der vorliegenden Erfindung neben dem eigentlichen Computerprogramm (mit seinem über das normale physikalische Zusammenspiel zwischen Programm und Recheneinheit hinausgehenden technischen Effekt) insbesondere ein Aufzeich- nungstrager für das Computerprogramm, eine Dateisammlung, eine konfigurierte Recheneinheit, aber auch beispielsweise eine Speichervorrichtung oder ein Server, auf der bzw. dem zum Computerprogramm gehörende Dateien gespeichert sind, verstanden werden.
Bei dem erfindungsgemaßen Verfahren werden von einer Kamera aufgenommene Bildinformationen empfangen, es wird zumindest eine einen Neigungswinkel des Fahrzeugs beschreibende Große unter Verwendung der Bildinformationen ermittelt, und ein Ausgangssignal wird unter Verwendung der zumindest einen Große bestimmt, wobei das Ausgabesignal eine vertikale Ausrich- tung von von einer Sendeeinheit auszustrahlender elektromagnetischer Strahlung betrifft.
Das erfindungsgemaße Computerprogrammprodukt und das erfin- dungsgemaße Verfahren eignen sich insbesondere für die erfin- dungsgemaße Auswerteeinrichtung, wobei dies auch auf die Ausgestaltungen und Weiterbildungen zutreffen kann. Hierzu können sie weitere geeignete Mittel bzw. Schritte umfassen.
Im folgenden wird die Erfindung anhand eines Ausfuhrungsbeispiels naher erläutert. Dabei zeigen:
Figur 1: zwei Fahrzeuge,
Figur 2: einen Ausschnitt aus einem Fahrerassistenzsystem eines Fahrzeugs,
Figur 3: ein Flussdiagramm.
Figur 1 zeigt die beiden Fahrzeuge Fl und F2, welche sich hintereinander auf einer Straße S befinden. Das Fahrzeug Fl verfugt über ein Fahrerassistenzsystem mit der Fahrerassistenzfunktion ACC, welche den Abstand zum vorausfahrenden Fahrzeug F2 regeln soll. Zu diesem Zweck wird der Abstand zwischen den Fahrzeugen Fl und F2 von einem Lidar-Sensor L des Fahrzeugs Fl bestimmt. Der Lidar-Sensor L ist hierbei hinter der Windschutzscheibe des Fahrzeugs Fl befestigt; er sendet einen Laserstrahl in Vorwartsrichtung aus und empfangt den vom Fahrzeug F2 reflektierten Laserstrahl. Es wird die Laufzeit zwischen der Versendung des Lasersignals und dem
Empfang des reflektierten Lasersignals bestimmt, welche ein Maß für die Entfernung des Fahrzeugs F2 vom Fahrzeug Fl ist.
Figur 1 zeigt zwei Laserstrahlen Sl und S2 des Lidar-Sensors L, welche sich hinsichtlich ihrer vertikalen Ausrichtung unterscheiden. Unter der vertikalen Ausrichtung wird hierbei die Ausrichtung senkrecht zur Oberflache der Straße S ver- standen, in Figur 1 durch einen Doppelpfeil angezeigt. Wahrend der Laserstrahl S2 auf das Fahrzeug F2 trifft und somit eine Bestimmung des Abstandes zwischen den Fahrzeugen Fl und F2 ermöglicht, erfolgt die Abstrahlung des Strahls Sl so hoch in vertikaler Richtung, dass der Strahl Sl das Fahrzeug F2 nicht erreicht. Die vertikale Ausrichtung des Lidar-Sensors L ist somit von großer Bedeutung dafür, ob eine Abstandsbestimmung zu einem vorausfahrenden Fahrzeug möglich ist. Fehlausrichtungen des Lidar-Sensors L gewinnen insbesondere mit steigender Entfernung zum voranfahrenden Fahrzeug F2 an Bedeutung .
Das Fahrerassistenzsystem des Fahrzeugs Fl verfugt über eine Videokamera K, welche den Raum vor dem Fahrzeug Fl erfasst. Die Kamera K kann z.B. wie auch der Lidar-Sensor L hinter der Windschutzscheibe des Fahrzeugs Fl installiert sein. Die Kamera K liefert die von ihr erfassten Bilder P an eine in Figur 2 dargestellte Auswerteeinheit A. Die Auswerteeinheit A ermittelt unter Verwendung der Bilder P ein Steuersignal S, welches zur Einstellung der vertikalen Ausrichtung des Lidar- Sensors L verwendet wird. Hierzu ist ein Elektromotor vorgesehen, welcher unter Berücksichtigung des Steuersignals S die vertikale Ausrichtung des Lidar-Sensors L verandern kann.
Figur 3 zeigt ein Flussdiagramm zur Veranschaulichung der Ermittlung des Steuersignals S durch die Auswerteeinrichtung A unter Verwendung der Bilder P. Hierzu wird ein Fahrbahnmodell MOD mit Parametern eingesetzt, welche zumindest u.a. dem Nickwinkel des Fahrzeugs Fl, sowie der vertikalen und hori- zontalen Krümmung der Straße entsprechen. Es findet eine Anpassung der Parameter statt, bis der unter Verwendung dieser angepassten Parameter ermittelte Straßenverlauf möglichst gut mit dem von der Kamera aufgenommenen Straßenverlauf übereinstimmt. Zur Überprüfung der Übereinstimmung werden vorzugs- weise die Fahrbahnmarkierungen betrachtet; alternativ kann der Rand der Fahrbahn betrachtet werden, wobei letzteres insbesondere bei schneebedeckter Fahrbahn relevant ist. Als Er- gebnis werden die genannten Parameter ausgegeben, so dass der Nickwinkel N des Fahrzeugs Fl und der Straßenverlauf V bestimmt wurden. Der Straßenverlauf V gibt hierbei in Abhängigkeit vom Abstand zum Fahrzeug Fl an, wie groß die horizontale und vertikale Krümmung der Straße ist. Eine derartige Ermittlung von Nickwinkel und Fahrbahnverlauf unter Verwendung eines Fahrbahnmodells wird beschrieben z.B. in E. D. Dickmanns, B. D. Mysliwetz: "3-D road and relative ego- state estimation", IEEE Transactions on PAMI, 14(2), S. 199- 213, Februar 1992.
Zuerst wird die Situation betrachtet, dass die Kamera K kein voranfahrendes Fahrzeug F2 erfasst. Auch in dieser Situation ist eine geeignete vertikale Ausrichtung des Lidar-Sensors L sinnvoll, denn ein gut ausgerichteter Lidar-Sensor L kann ein neu auftauchendes voranfahrendes Fahrzeug F2 schneller erfassen und somit den Abstand zu diesem Fahrzeug bestimmen. Auf diese Weise kann die Fahrerassistenzfunktion ACC rascher genutzt werden, sobald ein sichtbares voranfahrendes Fahrzeug F2 vorhanden ist.
Die Ermittlung des Steuersignals S kann unter Verwendung von lediglich dem Nickwinkel N erfolgen. Der Nickwinkel N beschreibt die Neigung des Fahrzeuges Fl gegen seine Querachse, wobei die Querachse des Fahrzeugs Fl in Figur 1 in die Zeichenebene hinein zeigt. Der Nickwinkel W kann sich andern z.B. aufgrund der Beladung, der Besetzung der Fahrzeugsitzplatze, durch unterschiedliche Reifendrucke, durch Fahrbahnunebenheiten, Beschleunigen, Abbremsen oder Aufschaukeln eines Fahrzeugs. Das Steuersignal S wird so bestimmt, dass der
Nickwinkel N des Fahrzeugs Fl ausgeglichen wird. Dies bedeutet, dass der Lidar-Sensor L in vertikaler Richtung parallel zur Straße ausgerichtet wird. Ist das Fahrzeug Fl beispielsweise aufgrund starker Kofferraum-Beladung nach hinten ge- neigt, wie in Figur 1 dargestellt, so sollte der Lidar-Sensor L gegenüber dem Zustand ohne Kofferraum-Beladung starker nach unten ausgerichtet werden. Außer dem Nickwinkel N kann auch der Straßenverlauf V bei der Ermittlung des Steuersignals S berücksichtigt werden. Eine Ausrichtung des Lidar-Sensors L wie oben erläutert in vertikaler Richtung parallel zur Straße ist insbesondere dann sinnvoll, wenn die vertikale Steigung der Straße konstant ist, wobei dies sowohl auf einen ebenen Straßenverlauf, als auch auf eine positive oder negative Steigung zutrifft. Nimmt die Steigung jedoch vor dem Fahrzeug Fl zu, so ist es vorteilhaft, den Lidar-Sensor L gegenüber der parallelen Aus- richtung etwas starker nach oben auszurichten; entsprechend ist es für den Fall, dass die Steigung vor dem Fahrzeug Fl abnimmt, gunstig, den Lidar-Sensor L gegenüber der parallelen Ausrichtung etwas starker nach unten auszurichten. Dies lasst sich besonders gut für den Fall illustrieren, dass sich das Fahrzeug Fl auf eine Kuppe oder ein Tal hinbewegt. Dem Straßenverlauf V wird somit entnommen, ob die Steigung der Fahrbahn zu- oder abnimmt, und dementsprechend wird die parallele Ausrichtung des Lidar-Sensors L, welche durch den Ausgleich des Nickwinkels N erreicht wird, abgeändert.
Bislang wurde die Ermittlung des Steuersignals S in Abhängigkeit von den Bildern P ermittelt unter der Voraussetzung, dass von der Kamera K kein vorausfahrendes Fahrzeug F2 er- fasst wird. Ist hingegen in den Bildern P ein vorausfahrendes Fahrzeug F2 enthalten, so kann der relative Neigungswinkel DIFF des Fahrzeugs Fl zur Geraden, welche die Fahrzeuge Fl und F2 verbindet, bestimmt werden. Befindet sich der Lidar- Sensor L auf gleicher vertikaler Position wie die Kamera K, so kann das Steuersignal S direkt auf diesem relativen Nei- gungswinkel DIFF abgeleitet werden. Befindet sich hingegen der Lidar-Sensor L nicht auf gleicher vertikaler Position wie die Kamera K, so kann das Steuersignal S durch Trigonometrie unter Einbeziehung des Abstandes zwischen den Fahrzeugen Fl und F2 berechnet werden. Als Maß für den Abstand kann hierbei eine aus dem von der Kamera K aufgenommenen Bild ermittelte Schätzung dienen. Hierbei ist von Vorteil, dass die Anforderungen an die Genauigkeit der Schätzung gering sind. Alternativ zur erläuterten Große DIFF ist es möglich, als Große DIFF die Differenz der Steigungen der beiden Fahrzeuge Fl und F2 einzusetzen. Die Bestimmung dieser Differenz DIFF erfolgt unter Verwendung des Straßenverlaufs V. Da der Stra- ßenverlauf V ermittelt wurde, und zudem aus den Bildern P bekannt ist, an welcher Stelle des Straßenverlaufs V sich das Fahrzeug F2 befindet, kann die aktuelle vertikale Fahrbahnsteigung, an welcher sich das Fahrzeug F2 befindet, festgestellt werden. Auch die aktuelle vertikale Fahrbahnsteigung des Fahrzeugs Fl kann dem Straßenverlauf V entnommen werden, so dass die Differenz DIFF dieser beiden Werte bestimmbar ist. Sind die beiden Steigungen gleich groß, so z.B. wenn die beiden Fahrzeuge Fl und F2 wie in Figur 1 dargestellt auf ebener Strecke fahren, oder wenn die beiden Fahrzeuge Fl und F2 einen Anstieg mit konstanter Steigung befahren, wird das Steuersignal S so bestimmt, dass der Lidar-Sensor L parallel zur Straße ausgerichtet wird. Ist die aktuelle Steigung des voranfahrenden Fahrzeugs F2 hingegen großer als diejenige des Fahrzeugs Fl, so sollte der Lidar-Sensor L hoher ausgerichtet werden; umgekehrtes gilt, wenn die aktuelle Steigung des voranfahrenden Fahrzeugs F2 hingegen kleiner als diejenige des Fahrzeugs Fl ist.
Zusatzlich zur Differenz DIFF der Steigungen der beiden Fahr- zeuge Fl und F2 wird der Nickwinkel N des Fahrzeugs Fl berücksichtigt. Denn anhand des Straßenverlaufs V kann zwar eine relative Neigung der Fahrzeuge Fl und F2 bestimmt werden, welche sich aus dem Steigungsverlauf der Straße ergibt; die tatsachliche relative Neigung ergibt sich jedoch aus der Differenz DIFF und dem Nickwinkel N. Hierbei kann der Nickwinkel abhangig davon, in welche Richtung das Fahrzeug Fl aufgrund des Nickwinkels N geneigt ist, die Steigungsdifferenz DIFF erhohen oder reduzieren.
Alternativ zur bisherigen Ausfuhrung, gemäß welcher der Nickwinkel aus den Bildern P der Kamera K ermittelt wurde, ist es auch möglich, den Nickwinkel über einen Nickwinkel-Sensor zu gewinnen. Ein Nickwinkelsensor kann für andere Fahrzeugkomponenten vorgesehen sein, so z.B. für das ESP-System oder für die Scheinwerfer. Die Messergebnisse des Nickwinkelsensors können auch zusatzlich zu dem anhand des Fahrbahnmodells MOD ermittelten Nickwinkels N eingesetzt werden, indem z.B. ein aus den beiden Werten ermittelter Nickwinkelwert verwendet wird .

Claims

Patentansprüche
1. Auswerteeinheit (A) für ein Fahrerassistenzsystem für ein Fahrzeug (Fl), mit einem Eingang zum Empfangen von von einer Kamera (K) er- fassten Bildinformationen (P) ,
Ermittlungs-Mitteln zum Ermitteln zumindest einer einen Neigungswinkel des Fahrzeugs (Fl) beschreibenden Große (N, DIFF) unter Verwendung der Bildinformationen (P) , Bestimmungs-Mitteln zum Bestimmen eines Ausgabesignals
(S) unter Verwendung der zumindest einen Große (N, DIFF) , wobei das Ausgabesignal (S) eine vertikale Ausrichtung von von einer Sendeeinheit (L) auszustrahlender elektromagnetischer Strahlung betrifft, und einem Ausgang zum Ausgeben des Ausgabesignals (S) .
2. Auswerteeinheit (A) nach Anspruch 1, bei welcher die Ermittlungs-Mittel derart ausgestaltet sind, dass die zumindest eine Große (N, DIFF) unter Verwendung von in den Bildinformationen (P) abgebildeten Fahrbahnmarkierungen und/oder Fahrbahnbegrenzungen ermittelt wird.
3. Auswerteeinheit (A) nach Anspruch 2, bei welcher die Ermittlungs-Mittel derart ausgestaltet sind, dass unter Verwendung der abgebildeten Fahrbahnmarkierungen und/oder Fahrbahnbegrenzungen ein Straßenverlauf (V) ermittelt wird, und unter Verwendung des ermittelten Straßenverlaufs die zumindest eine Große (N, DIFF) ermittelt wird.
4. Auswerteeinheit (A) nach einem der Ansprüche 1 bis 3, bei welcher die Ermittlungs-Mittel derart ausgestaltet sind, dass die zumindest eine Große (N, DIFF) unter Verwendung von einem anderen in den Bildinformationen (P) abgebildeten Fahrzeug (F2) ermittelt wird.
5. Auswerteeinheit (A) nach Anspruch 4, wobei die zumindest eine Große (N, DIFF) einen Neigungswinkel (DIFF) des Fahrzeugs (Fl) relativ zu dem anderen Fahrzeug (F2) umfasst.
6. Auswerteeinheit (A) nach Anspruch 4 oder 5, wobei die zumindest eine Große (N, DIFF) einen Neigungswinkel (DIFF) des Fahrzeugs (Fl) relativ zu einer Verbindungslinie zwischen dem Fahrzeug (Fl) und dem anderen Fahrzeug (F2) umfasst.
7. Auswerteeinheit (A) nach einem der Ansprüche 1 bis 6, wobei die zumindest eine Große (N, DIFF) einen Nickwinkel (N) des Fahrzeugs (Fl) umfasst.
8. Auswerteeinheit (A) nach einem der Ansprüche 1 bis 7, wobei die Sendeeinheit (L) Bestandteil eines Systems zur Ab- Standsbestimmung ist.
9. Auswerteeinheit (A) nach einem der Ansprüche 1 bis 8, bei welcher die Ermittlungs-Mittel derart ausgestaltet sind, dass die zumindest eine Große (N, DIFF) unter Verwendung von von einem Neigungssensor erfassten Informationen (N) ermittelt wird.
10. Fahrerassistenzsystem für ein Fahrzeug (Fl), mit einer Auswerteeinheit (A) nach einem der Ansprüche 1 bis 9, der Kamera (K) und der Sendeeinheit (L) .
11. Fahrerassistenzsystem nach Anspruch 10, mit
Mitteln zum Bestimmen des Abstands zu einem anderen Fahr- zeug (F2) unter Verwendung der Sendeeinheit (L), und
Mitteln zum Regeln des Abstandes zu dem anderen Fahrzeug (F2) .
12. Computerprogrammprodukt für ein Fahrerassistenzsystem für ein Fahrzeug (Fl), mit
Ermittlungs-Mitteln zum Ermitteln zumindest einer einen Neigungswinkel des Fahrzeugs (Fl) beschreibenden Große (N, DIFF) unter Verwendung von Bildinformationen (P) , Bestimmungs-Mitteln zum Bestimmen eines Ausgabesignals (S) unter Verwendung der zumindest einen Große (N, DIFF) , wobei das Ausgabesignal (S) eine vertikale Ausrichtung von von einer Sendeeinheit (L) auszustrahlender elektro- magnetischer Strahlung betrifft,
Ausgabe-Mitteln zum Ausgeben des Ausgabesignals (S) .
13. Verfahren zum Betreiben eines Fahrerassistenzsystem für ein Fahrzeug (Fl), wobei von einer Kamera (K) aufgenommene Bildinformationen (P) empfangen werden, zumindest eine einen Neigungswinkel des Fahrzeugs (Fl) beschreibende Große (N, DIFF) ermittelt wird unter Verwendung der Bildinformationen (P) , ein Ausgabesignal (S) unter Verwendung der zumindest einen Große (N, DIFF) bestimmt wird, wobei das Ausgabesignal (S) eine vertikale Ausrichtung von von einer Sendeeinheit (L) auszustrahlender elektromagnetischer Strahlung betrifft.
PCT/EP2007/064584 2007-01-04 2007-12-27 Vertikale ausrichtung eines lidar-sensors WO2008080951A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE502007005103T DE502007005103D1 (de) 2007-01-04 2007-12-27 Vertikale ausrichtung eines lidar-sensors
US12/522,019 US8135513B2 (en) 2007-01-04 2007-12-27 Vertical alignment of a lidar sensor
EP07858180A EP2097770B1 (de) 2007-01-04 2007-12-27 Vertikale ausrichtung eines lidar-sensors
JP2009544392A JP2010515183A (ja) 2007-01-04 2007-12-27 ライダーセンサの垂直アライメント
AT07858180T ATE481651T1 (de) 2007-01-04 2007-12-27 Vertikale ausrichtung eines lidar-sensors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007001103A DE102007001103A1 (de) 2007-01-04 2007-01-04 Vertikale Ausrichtung eines Lidar-Sensors
DE102007001103.4 2007-01-04

Publications (1)

Publication Number Publication Date
WO2008080951A1 true WO2008080951A1 (de) 2008-07-10

Family

ID=39167362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/064584 WO2008080951A1 (de) 2007-01-04 2007-12-27 Vertikale ausrichtung eines lidar-sensors

Country Status (6)

Country Link
US (1) US8135513B2 (de)
EP (1) EP2097770B1 (de)
JP (1) JP2010515183A (de)
AT (1) ATE481651T1 (de)
DE (2) DE102007001103A1 (de)
WO (1) WO2008080951A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011075674A1 (de) 2011-05-11 2012-11-15 Continental Teves Ag & Co. Ohg Abstandsbestimmung mittels eines Kamerasensors

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120067681A (ko) * 2010-12-16 2012-06-26 한국전자통신연구원 차량 안전 센서 제어 장치
DE102011081392B4 (de) * 2011-08-23 2023-01-26 Robert Bosch Gmbh Verfahren zur Kalibrierung einer Lichtaussendung zumindest eines Scheinwerfers eines Fahrzeugs
US10412368B2 (en) 2013-03-15 2019-09-10 Uber Technologies, Inc. Methods, systems, and apparatus for multi-sensory stereo vision for robotics
JP6221607B2 (ja) * 2013-10-08 2017-11-01 株式会社デンソー 物体検出装置
DE102013221696A1 (de) * 2013-10-25 2015-04-30 Robert Bosch Gmbh Verfahren und Vorrichtung zum Ermitteln eines Höhenverlaufes einer vor einem Fahrzeug liegenden Straße
US10046793B2 (en) * 2014-02-26 2018-08-14 GM Global Technology Operations LLC Methods and systems for automated driving
JP6265149B2 (ja) * 2014-08-27 2018-01-24 株式会社デンソー 検出装置
DE102014117399B4 (de) * 2014-11-27 2017-05-11 Sick Ag Sensorsystem
DE102015118085A1 (de) 2015-10-23 2017-04-27 Valeo Schalter Und Sensoren Gmbh Verfahren zum Korrigieren einer fehlerhaften Ausrichtung eines optischen Sensors eines Kraftfahrzeugs, Recheneinrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
US10338225B2 (en) 2015-12-15 2019-07-02 Uber Technologies, Inc. Dynamic LIDAR sensor controller
US10281923B2 (en) 2016-03-03 2019-05-07 Uber Technologies, Inc. Planar-beam, light detection and ranging system
US9952317B2 (en) 2016-05-27 2018-04-24 Uber Technologies, Inc. Vehicle sensor calibration system
US10690757B1 (en) 2016-08-25 2020-06-23 AI Incorporated Method and apparatus for improving range finding system readings
US10788316B1 (en) 2016-09-21 2020-09-29 Apple Inc. Multi-sensor real-time alignment and calibration
KR102272801B1 (ko) 2016-11-29 2021-07-02 블랙모어 센서스 앤드 애널리틱스, 엘엘씨 포인트 클라우드 데이터 세트에서 객체의 분류를 위한 방법 및 시스템
CN110140064B (zh) 2016-11-30 2023-07-18 布莱克莫尔传感器和分析有限责任公司 利用光学测距***进行自动实时自适应扫描的方法和***
US11802965B2 (en) 2016-11-30 2023-10-31 Blackmore Sensors & Analytics Llc Method and system for doppler detection and doppler correction of optical chirped range detection
US11624828B2 (en) 2016-11-30 2023-04-11 Blackmore Sensors & Analytics, Llc Method and system for adaptive scanning with optical ranging systems
JP7157054B2 (ja) * 2017-01-26 2022-10-19 モービルアイ ビジョン テクノロジーズ リミテッド 整合画像及びlidar情報に基づいた車両ナビゲーション
US10422880B2 (en) 2017-02-03 2019-09-24 Blackmore Sensors and Analytics Inc. Method and system for doppler detection and doppler correction of optical phase-encoded range detection
US10479376B2 (en) 2017-03-23 2019-11-19 Uatc, Llc Dynamic sensor selection for self-driving vehicles
DE102017106484A1 (de) * 2017-03-27 2018-09-27 Valeo Schalter Und Sensoren Gmbh Bestimmung eines Nickwinkels eines Umgebungssensors eines Fahrzeugs
US10401495B2 (en) 2017-07-10 2019-09-03 Blackmore Sensors and Analytics Inc. Method and system for time separated quadrature detection of doppler effects in optical range measurements
US10746858B2 (en) 2017-08-17 2020-08-18 Uatc, Llc Calibration for an autonomous vehicle LIDAR module
DE102017118809B4 (de) 2017-08-17 2019-05-02 Valeo Schalter Und Sensoren Gmbh Verfahren zum Betreiben einer Sensorvorrichtung eines Kraftfahrzeugs, Sensorvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
US10775488B2 (en) 2017-08-17 2020-09-15 Uatc, Llc Calibration for an autonomous vehicle LIDAR module
DE102017118880B4 (de) 2017-08-18 2019-03-07 Valeo Schalter Und Sensoren Gmbh Verfahren zum Betreiben einer Sensorvorrichtung eines Kraftfahrzeugs, Sensorvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
KR101947478B1 (ko) * 2017-09-19 2019-02-13 충북대학교 산학협력단 라이다 센서의 배치 위치 결정 방법 및 그를 위한 장치
DE102017217005A1 (de) * 2017-09-26 2019-03-28 Robert Bosch Gmbh Verfahren zum Ermitteln der Steigung einer Fahrbahn
EP3702806A4 (de) * 2017-10-26 2021-07-21 Pioneer Corporation Steuerungsvorrichtung, steuerungsverfahren, programm und speichermedium
US10514462B2 (en) 2017-12-13 2019-12-24 Luminar Technologies, Inc. Training a machine learning based model of a vehicle perception component based on sensor settings
US10914820B2 (en) 2018-01-31 2021-02-09 Uatc, Llc Sensor assembly for vehicles
EP3785043B1 (de) * 2018-04-23 2023-08-16 Blackmore Sensors & Analytics, LLC Verfahren und system zur steuerung eines autonomen fahrzeugs unter verwendung von optischen dopplersensoren mit kohärentem bereich
DE112018007636T5 (de) * 2018-06-22 2021-03-04 Mitsubishi Electric Corporation Sensorsteuervorrichtung, fahrzeug, abtastverfahren und sensorsteuerprogramm
EP3821273B1 (de) * 2018-07-11 2024-05-22 Valeo Schalter und Sensoren GmbH Erkennung einer fehlstellung eines abstandssensors basierend auf einem verhältnis von detektionsmerkmalen
KR102163660B1 (ko) * 2018-11-13 2020-10-08 현대오트론 주식회사 라이다의 신호 처리 장치 및 라이다 장치
US11822010B2 (en) 2019-01-04 2023-11-21 Blackmore Sensors & Analytics, Llc LIDAR system
KR20200098774A (ko) * 2019-02-12 2020-08-21 주식회사 만도 차량 및 그 제어 방법
EP3757611A1 (de) * 2019-06-27 2020-12-30 Aptiv Technologies Limited Schätzung vertikaler strassenprofile
DE102019209694A1 (de) * 2019-07-02 2021-01-07 Ibeo Automotive Systems GmbH Anpassungsvorrichtung und Lidar-Messvorrichtung
DE102019211739A1 (de) * 2019-08-06 2021-02-11 Ibeo Automotive Systems GmbH Lidar-Messsystem mit zwei Lidar-Messvorrichtungen
US11556000B1 (en) 2019-08-22 2023-01-17 Red Creamery Llc Distally-actuated scanning mirror
JP2020073878A (ja) * 2019-09-25 2020-05-14 パイオニア株式会社 光制御装置
CN111427331B (zh) * 2020-03-24 2022-03-04 新石器慧通(北京)科技有限公司 无人驾驶车辆的感知信息展示方法、装置和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19650863C1 (de) * 1996-12-07 1998-04-16 Bosch Gmbh Robert Verfahren und Vorrichtung zur Erkennung einer vertikalen Dejustierung eines Abstandssensors
WO2000075686A1 (en) 1999-06-08 2000-12-14 Celsiustech Electronics Ab Method at a vehicle mounted radar system for compensating for vehicle pitch
WO2001079879A1 (de) * 2000-04-17 2001-10-25 Robert Bosch Gmbh Verfahren und vorrichtung zum ermitteln einer fehlausrichtung der strahlungscharakteristik eines sensors zur geschwindigkeits- und abstandsregelung eines fahrzeugs
US20030093220A1 (en) * 2001-10-15 2003-05-15 Hans Andersson System and method for controlling an object detection system of a vehicle
DE10316101A1 (de) 2002-10-28 2004-05-13 Hyundai Motor Co. Verfahren und Vorrichtung zum Erfassen eines Fahrzeugabstands

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05297141A (ja) * 1992-04-17 1993-11-12 Canon Inc 車載型物体検知装置
DE19536000B4 (de) * 1995-09-28 2006-05-11 Spies, Martin, Dipl.-Ing. (FH) Niveaueinstellung für Abstandsmessgeräte in Fahrzeugen
DE60038467T2 (de) * 1999-08-12 2009-04-23 Kabushiki Kaisha Toyota Jidoshokki, Kariya Lenkhilfseinrichtung
JP2001318149A (ja) * 2000-03-02 2001-11-16 Denso Corp 車両用前方情報検出装置
WO2001085496A1 (fr) * 2000-05-12 2001-11-15 Kabushiki Kaisha Toyota Jidoshokki Appareil d'aide a la marche arriere d'un vehicule
DE20105340U1 (de) 2001-03-26 2001-07-26 Daimler Chrysler Ag Dimensionale Umfelderfassung
JP3905410B2 (ja) * 2002-04-12 2007-04-18 富士重工業株式会社 車両用運転支援装置
JP3862015B2 (ja) * 2002-10-25 2006-12-27 オムロン株式会社 車載用レーダ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19650863C1 (de) * 1996-12-07 1998-04-16 Bosch Gmbh Robert Verfahren und Vorrichtung zur Erkennung einer vertikalen Dejustierung eines Abstandssensors
WO2000075686A1 (en) 1999-06-08 2000-12-14 Celsiustech Electronics Ab Method at a vehicle mounted radar system for compensating for vehicle pitch
WO2001079879A1 (de) * 2000-04-17 2001-10-25 Robert Bosch Gmbh Verfahren und vorrichtung zum ermitteln einer fehlausrichtung der strahlungscharakteristik eines sensors zur geschwindigkeits- und abstandsregelung eines fahrzeugs
US20030093220A1 (en) * 2001-10-15 2003-05-15 Hans Andersson System and method for controlling an object detection system of a vehicle
DE10316101A1 (de) 2002-10-28 2004-05-13 Hyundai Motor Co. Verfahren und Vorrichtung zum Erfassen eines Fahrzeugabstands

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011075674A1 (de) 2011-05-11 2012-11-15 Continental Teves Ag & Co. Ohg Abstandsbestimmung mittels eines Kamerasensors
WO2012152746A1 (de) 2011-05-11 2012-11-15 Continental Teves Ag & Co. Ohg Abstandsbestimmung mittels eines kamerasensors
US9373041B2 (en) 2011-05-11 2016-06-21 Continental Teves Ag & Co. Ohg Distance measurement by means of a camera sensor

Also Published As

Publication number Publication date
US20090312906A1 (en) 2009-12-17
EP2097770A1 (de) 2009-09-09
EP2097770B1 (de) 2010-09-15
DE502007005103D1 (de) 2010-10-28
DE102007001103A1 (de) 2008-07-10
JP2010515183A (ja) 2010-05-06
ATE481651T1 (de) 2010-10-15
US8135513B2 (en) 2012-03-13

Similar Documents

Publication Publication Date Title
EP2097770B1 (de) Vertikale ausrichtung eines lidar-sensors
DE102013209873B4 (de) Vorrichtung und Verfahren zur Kollisionsvermeidung für Fahrzeuglasten und -aufbauten
DE102017125454B4 (de) Frontalaufprall-Abschwächungssystem für ein Fahrzeug und Verfahren
DE102012221561B4 (de) System und verfahren zum schätzen der masse eines fahrzeugs
DE102017111170A1 (de) Automatisches fahrsystem zum auswerten von fahrspurausscherungen und verfahren zur verwendung desselben
EP1873736A1 (de) Verfahren und System zur Unterstützung des Fahrers eines Kraftfahrzeugs bei der Erkennung von Bodenschwellen
DE102015213193B4 (de) Steuersystem für eine Berganfahrhilfe eines Kraftfahrzeugs
DE102004022113A1 (de) Überwachung eines PKW-Anhängers mit einer Rückfahrkamera
DE102008050973A1 (de) Geschwindigkeitsreglungssystem für Fahrzeuge
DE102013211243A1 (de) Verfahren zur Ermittlung einer Fahrzeugmasse
EP2840005B1 (de) Fahrerassistenzsystem und Betriebsverfahren für ein Fahrerassistenzsystem zur Fahrzeug-Längsregelung
DE102006036921A1 (de) Verfahren zum Stabilisieren eines Kraftfahrzeugs und Fahrdynamikregelsystem
WO2013083313A1 (de) Verfahren und vorrichtung zur erkennung einer bremssituation
DE102016119160A1 (de) Fahrzeug-Kollisionssystem und Verfahren zu dessen Verwendung
DE102008020007A1 (de) Verfahren zum Unterstützen eines Fahrers beim Fahren mit einem Fahrzeug mit einer Fahrspurerkennung
DE102020202937A1 (de) Fahrerassistenzsystem und steuerungsverfahren hierfür
DE102012004201A1 (de) Verfahren zur Unterstützung eines Fahrers beim Führen eines Fahrzeugs im Gelände
WO2006061106A1 (de) Verfahren zur anpassung von eingriffsparametern eines assistenzsystems eines fahrzeuges
DE102014200987B4 (de) Verfahren zur Ermittlung der Lage des Schwerpunkts eines Fahrzeugs
DE102013108000A1 (de) Kollisionserkennungssystem mit Plausibilitätsmodul
DE102020103503A1 (de) Adaptive steuerung des automatischen spurwechsels im fahrzeug
DE102018213262A1 (de) Verfahren zum Betreiben eines Kraftfahrzeugs, insbesondere eines Motorrads, Computerprogramm
DE102020007772A1 (de) Verfahren zur In-Betrieb-Kalibrierung eines Lidars und Fahrzeug
DE102020123658A1 (de) Fahrerassistenzapparat und verfahren dafür
DE102017104412A1 (de) Fahrzeugkollisionssystem und verfahren zu dessen verwendung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07858180

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007858180

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12522019

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2009544392

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE