WO2008074538A1 - Beschleunigungssensor mit kammelektroden - Google Patents

Beschleunigungssensor mit kammelektroden Download PDF

Info

Publication number
WO2008074538A1
WO2008074538A1 PCT/EP2007/061189 EP2007061189W WO2008074538A1 WO 2008074538 A1 WO2008074538 A1 WO 2008074538A1 EP 2007061189 W EP2007061189 W EP 2007061189W WO 2008074538 A1 WO2008074538 A1 WO 2008074538A1
Authority
WO
WIPO (PCT)
Prior art keywords
seismic mass
substrate
acceleration sensor
comb
electrode
Prior art date
Application number
PCT/EP2007/061189
Other languages
English (en)
French (fr)
Inventor
Johannes Classen
Markus Heitz
Fouad Bennini
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP07821553.0A priority Critical patent/EP2102666B1/de
Priority to JP2009541929A priority patent/JP2010513888A/ja
Priority to CN2007800471652A priority patent/CN101563616B/zh
Priority to US12/304,604 priority patent/US20090320596A1/en
Publication of WO2008074538A1 publication Critical patent/WO2008074538A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0808Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
    • G01P2015/0811Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass
    • G01P2015/0814Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass for translational movement of the mass, e.g. shuttle type

Definitions

  • the invention relates to a capacitive micromechanical acceleration sensor with comb electrodes, which is characterized by particularly low zero errors.
  • movable structures are created by sequences of deposition and structuring steps on a substrate, which represent mechanical spring-mass systems in which, when accelerations occur, at least one seismic mass is deflected against the substrate against a known restoring force.
  • the principle of capacitive sensors is based on the fact that both connected to the seismic mass electrodes and connected to the substrate electrodes are included, which are summarized circuitry to capacitors and in the case of a deflection of the seismic mass to each other corresponding to the deflection of the seismic mass Perform relative movement, wherein the capacitance of the capacitors formed by the electrodes changes in the clearest possible dependence on the deflection of the seismic mass.
  • the electrodes are preferably designed as plate capacitors, wherein sensor geometries have prevailed, which are based either on the evaluation of a change in the distance between the electrodes or a change in the size of the overlapping regions.
  • dx the capacitance change resulting from an acceleration is given by dC / C ⁇ dx / xo, where C denotes the total capacitance, ie the quiescent capacity plus parasitic capacitances of the device, and xo corresponds to the quiescent distance between the electrodes.
  • the capacitance change resulting from an acceleration dx of the seismic mass is given by dC / C ⁇ dx / lo, where C again denotes the total capacitance and Io corresponds to the overlap length of the electrodes at rest.
  • substrate deformations may occur, which may be associated with corresponding relative movements between individual structural elements connected to the substrate. Particularly critical in this sense
  • the quiescent distance xo between the electrodes is often selected to be very small in order to achieve sufficient sensitivity in such sensors, even relatively small zero deflections dxo lead to significant or intolerable offset signals, which are also due to the known reduction in the distances between the mounting positions. rich on the substrate under realistic operating conditions can not manage.
  • the object of the invention is to provide a sensor structure for a micromechanical acceleration sensor, which is characterized by low zero errors while avoiding the disadvantages of the prior art.
  • the dependence of the zero point signals is to be reduced by occurring substrate deformations.
  • micromechanical acceleration sensor having the features of claim 1.
  • the dependent claims 2 to 10 relate to advantageous embodiments of an acceleration sensor according to the invention.
  • the essence of the invention consists in a constructive design of connected to a seismic mass movable electrodes and solid electrodes connected to a substrate as comb electrodes, which are arranged in pairs.
  • the comb electrodes each have transverse webs on which electrode blades are located.
  • the arrangement of the comb electrodes takes place in such a way that the lamellae of the comb electrodes are parallel to the deflection of the seismic mass and to point the open areas of the lamellar arrangements on each other, whereby the lamellae of two paired comb electrodes can overlap at least partially Ü.
  • the comb electrodes form capacitors whose capacitance varies as the size of the overlap areas changes.
  • the invention is embodied by a micromechanical capacitive acceleration sensor with at least one steerable with a substrate associated seismic mass, at least one electrode fixedly connected to the substrate and at least one connected to the seismic mass electrode, wherein the at least one electrode fixedly connected to the substrate and the at least one connected to the seismic mass electrode as comb electrodes with parallel to the deflection of the seismic mass extending lamellae are performed, with the lamellae of both comb electrodes partially overlap in the idle state.
  • comb electrodes according to the invention in which a parallel movement of parallel slats results in a change in an overlap length, which is evaluated as a measure of the deflection of the seismic mass, results in various advantages.
  • the zero error is given by dxo / lo in this case. Since the overlap length Io can be chosen to be significantly greater than the rest distance xo of a distance-based capacitor arrangement, an otherwise comparable zero point displacement dxo results in a clear reduction of the offset signal dC / C compared to conventional sensor arrangements.
  • a seismic mass is designed as a frame which surrounds the electrode arrangement, all relevant connection areas can be accommodated closely adjacent in the center of the substrate by means of corresponding structuring measures.
  • the sensor configuration according to the invention is used in particular in so-called x and y acceleration sensors, in which a detection of accelerations in the wafer level, can be used to advantage. It is particularly advantageous if all fastening regions in which functional assemblies are fastened to the substrate are arranged closely adjacent so that they lie on a line which runs transversely to the deflection direction of the seismic mass. Changes in distance between the individual attachment areas in this case lead almost exclusively to relative movements between the functional assemblies, which are transverse to the measurement deflection of the seismic mass and thus have no influence on the overlap length. On the other hand, a transverse displacement of intermeshed comb electrodes has no influence on the capacitance of a capacitor formed by a comb electrode pair, since distance increases and distance reductions between the laminations of the comb electrodes cancel each other out.
  • comb electrodes By using comb electrodes, large overlapping areas can be realized in an advantageous manner in a small space, which leads to correspondingly large capacities and an associated high sensitivity of acceleration sensors designed in this way. This is especially true if in each case a plurality of comb electrodes firmly connected to the substrate and a plurality of comb electrodes connected to the seismic mass are included, which form comb electrode pairs whose overlap length depends on the deflection of the seismic mass.
  • the design of the seismic mass as a frame surrounding the electrode assembly opens up the possibility of using further advantageous structural means.
  • the attachment of the seismic mass to the substrate can advantageously take place via a connecting beam, which is fastened in a central region of the substrate and connected at its ends with springs which serve to deflect the seismic mass.
  • These springs are advantageously designed as S-shaped bending springs.
  • a particularly low cross-sensitivity of the seismic mass results when the suspension takes place via a pair of mirror-symmetrical S-shaped bending springs.
  • Fig.l is a representation of a sensor arrangement according to the invention as a plan view of the plane of the seismic mass; and 2 shows a sectional view through a sensor arrangement according to the invention along the section line II of FIG. 1.
  • FIG. 1 shows an illustration of a sensor arrangement according to the invention for detecting accelerations in the low-range region in a direction parallel to the wafer plane as a plan view of the plane of the seismic mass.
  • the seismic mass 1 is designed as a rectangular frame, which is connected via a pair of S-shaped bending springs 2, 2 'to a connecting beam 3, which in turn has a central fastening region 4, in which the connecting beam is structurally connected to a substrate 5 stands.
  • the S-shaped bending springs 2, 2 ' are arranged mirror-symmetrically and thus define the deflection direction of the seismic mass 1 in the x-direction, since deformations of the S-shaped bending springs 2, 2' interfere with each other in the case of transverse accelerations.
  • comb electrodes 6, 6 ' are connected to the frame-shaped seismic mass 1 comb electrodes 6, 6 ', each comprising a transverse web 7, 7', which in each case a plurality of perpendicular to the transverse web 7, 7 'extending lamellae 8, 8' carries.
  • the lamellae 8, 8 ' run parallel to the deflection direction of the seismic mass 1.
  • the comb electrodes 6, 6' integral with the frame-shaped seismic mass 1 lead from the frame region extending parallel to the deflection direction of the seismic mass 1 into the interior of the frame.
  • the frame- formed seismic mass 1 at the same time the outer boundary of the deflectable functional element, which is formed from the seismic mass 1 and attached to her comb electrodes 6, 6 ', consisting of transverse webs 7, 7' and fins 8, 8 '.
  • Carrier beams 9, 9 ' which likewise each have a central fastening region 10, 10', in which the support beams 9, 9 'are structurally connected to the substrate 5, run parallel to the connecting beam 3.
  • the support beams 5, 5 'each have on the side facing away from the connecting beam 3 comb electrodes 11, 11', which are also each formed of a transverse web 12, 12 'and fins 13, 13'.
  • these comb electrodes 11, 11' are electrodes firmly connected to the substrate 5 in the sense of the invention.
  • a solid connection in the sense of the invention is to be understood as meaning that deformations or deflections of the attached structures are small when a measurement and / or disturbance acceleration occurs compared to the deflection of the seismic mass 1 occurring in these cases.
  • the illustrated cross-sections and dimensions in Figures 1 and 2 are not to scale and are not intended to illustrate the static behavior of the illustrated structures, but are intended solely to describe their relative to each other made arrangement.
  • the comb electrodes 11, 11 'on the support beams 9, 9' and the comb electrodes 6, 6 'on the frame-shaped seismic mass 1 are arranged so that their lamellae 8, 8', 13, 13 'face each other and partially overlap , In this way, comb electrode pairs are formed whose overlap length depends on the deflection of the seismic mass 1.
  • the distance between the tips of the lamellae of a comb electrode and the crosspiece of the respective other comb electrode of a comb electrode pair opposite these tips is slightly larger than the maximum deflection of the comb electrode.
  • the maximum deflection of the seismic mass 1 is determined by stop structures which are formed by rectangular recesses 14 in the frame-shaped seismic mass 1 and pillars 15 mounted on the substrate 5 and projecting into these recesses.
  • the area 16 of the maximum deflection of the seismic mass 1 is outlined in dashed lines in the illustration.
  • contact of the comb electrodes 6, 6 ', 11, 11' forming a capacitor is narrowly but surely avoided.
  • a maximum usable Ü overlap of the slats 8, 8 ', 13, 13' of the comb electrodes 6, 6 ', 11, 11' which is described by the overlap length Io in the idle state of the sensor assembly. Since in this case the overlap length Io is relatively large, a typical error-based zero-point displacement dxo results in a clear reduction of the offset signal dC / C compared to conventional sensor arrangements.
  • the comb electrodes 6, 6 ', 11, 11' are arranged so that on the right of the beam assembly of connecting 3 - and support beams 9, 9 'comb electrode pairs 6, 11 are, whose overlap lengths increase in deflection of the seismic mass 1 in the x direction and on the left of the beam arrangement of connection 3 and support beams 9, 9 'are comb electrode pairs 6', 11 'whose overlap lengths decrease on deflection of the seismic mass 1 in the x direction.
  • the sensor arrangement according to the invention is particularly suitable for differential capacitive evaluation methods, since a measurement signal to be generated is hardly influenced by disturbing transverse and torsional accelerations in the wafer plane.
  • the frame-shaped seismic mass 1 and the transverse webs 7, 7 ', 12, 12' of the comb electrodes 6, 6 ', 11, 11' have a perforation 17 in order to guarantee a simple undercutting in the exemption of the structures.
  • the central attachment areas 4, 10, 10 'of the connecting bar 3 and the carrier bars 9, 9' lie in a line transversely to the direction of deflection of the seismic mass 1.
  • FIG. 2 shows a schematic sectional illustration through a sensor arrangement according to the invention along the section line II of FIG. 1.
  • Support structures which extend to the attachment areas 4, 10, 10, rise on a substrate 5 of silicon in the form of rectangular columns 18, 18 ', 18 " 'of the connecting bar 3 and the support beam 9, 9' lead and provide for their firm connection to the substrate 5.
  • the attachment regions 4, 10, 10 ' lie closely adjacent on the section line I-I transversely to the deflection direction of the seismic mass 1.
  • the lateral extent of the arrangement is determined by the frame-shaped seismic mass 1. In the left-hand area of the illustration, the cross-section of the seismic mass 1 is visible in the region of a frame region running parallel to the deflection direction.
  • the seismic region is cut in the region of the connection to a transverse web 7 of a comb electrode 6.
  • the seismic mass 1 is connected only via the connecting bar 3 with the substrate 5 in connection.
  • To the right of the connecting bar 3, the cross section of a carrier bar 9 is shown, to the left of the connecting bar 3 a carrier bar 9 'is cut in the region of a transverse bar 12' of a comb electrode 11 'attached to it.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pressure Sensors (AREA)

Abstract

Die Erfindung betrifft einen mikromechanischen kapazitiven Beschleunigungssensor mit mindestens einer auslenkbar mit einem Substrat (5) verbundenen seismischen Masse (1), mindestens einer fest mit dem Substrat (5) verbundenen Elektrode (11) und mindestens einer mit der seismischen Masse (1) verbundenen Elektrode (6), wobei die mindestens eine fest mit dem Substrat (5) verbundene Elektrode (11) und die mindestens eine mit der seismischen Masse (1) verbundenen Elektrode (6) als Kammelektroden (6, 11) mit parallel zur Auslenkrichtung der seismischen Masse (1) verlaufenden Lamellen (8, 13) ausgeführt sind, wobei sich die Lamellen (8, 13) beider Kammelektroden (6, 11) im Ruhezustand teilweise überlappen.

Description

ROBERT BOSCH GMBH, 70442 Stuttgart
Beschleunigungssensor mit Kammelektroden
Die Erfindung betrifft einen kapazitiven mikromechanischen Beschleunigungssensor mit Kammelektroden, der sich durch besonders geringe Nullpunktsfehler auszeichnet.
Stand der Technik
Bei der Herstellung mikromechanischer Beschleunigungssensoren werden durch Abfolgen von Abscheidungs- und Strukturierungs- schritten auf einem Substrat bewegliche Strukturen geschaffen, die mechanische Feder-Masse-Systeme darstellen, in denen bei auftretenden Beschleunigungen mindestens eine seismische Masse gegenüber dem Substrat entgegen einer bekannten Rückstellkraft ausgelenkt wird. Das Prinzip kapazitiver Sensoren beruht dabei darauf, dass sowohl mit der seismischen Masse verbundene Elektroden als auch mit dem Substrat verbundene Elektroden umfasst sind, die schaltungstechnisch zu Kondensatoren zusammengefasst sind und im Falle einer Auslenkung der seismischen Masse zueinander eine der Auslenkung der seismi- sehen Masse entsprechende Relativbewegung ausführen, wobei sich die Kapazität der durch die Elektroden gebildeten Kondensatoren in möglichst eindeutiger Abhängigkeit von der Auslenkung der seismischen Masse ändert. Diese Änderung der Kapazität wird schaltungstechnisch erfasst und ausgewertet und ermöglicht die Berechnung der aufgetretenen Beschleunigung. Die Elektroden werden vorzugsweise als Plattenkondensatoren entworfen, wobei sich Sensorgeometrien durchgesetzt haben, die entweder auf der Auswertung einer Abstandsänderung zwischen den Elektroden oder einer Änderung der Größe der Über- lappungsbereiche beruhen. Im Falle einer beschleunigungsabhängigen Abstandsänderung dx ist die aus einer Beschleunigung resultierende Kapazitätsänderung gegeben durch dC/C ~ dx/xo, wobei C die Gesamtkapazität, also die Ruhekapazität plus parasitäre Kapazitäten der Anordnung bezeichnet und xo dem Ruheabstand zwischen den Elektroden entspricht. In Fällen, in denen sich die Größe der Überlappungsbereiche nur in Abhän- gigkeit von einer Überlappungslänge ändert, ist die aus einer Beschleunigung bzw. Auslenkung dx der seismischen Masse resultierende Kapazitätsänderung gegeben durch dC/C ~ dx/lo, wobei C wiederum die Gesamtkapazität bezeichnet und Io der Überlappungslänge der Elektroden im Ruhezustand entspricht.
Durch Fertigungsprozesse bzw. nachträgliche Belastungen, insbesondere thermischer Art, kann es zu Substratverformungen kommen, welche mit entsprechenden Relativbewegungen zwischen einzelnen mit dem Substrat verbundenen Strukturelementen ver- bunden sein können. Besonders kritisch sind in diesem Sinne
Nullpunktsauslenkungen dxo der mit der seismischen Masse verbundenen Elektroden gegenüber direkt mit dem Substrat verbundenen Elektroden, was zu unerwünschten Offsetsignalen führt, die sich proportional zu dxo/xo bzw. dxo/lo verhalten.
Es ist bekannt, dieses Problem durch eng benachbarte Befestigungsbereiche, in denen die Verbindung zwischen den einzelnen relativ zueinander bewegbaren Strukturelementen und dem Substrat realisiert wird, zu reduzieren (DE 196 39 946 Al) . Die- se Lösung ist jedoch mit relativ langen Verbindungsbalken zwischen den Befestigungsbereichen und den befestigten Strukturelementen verbunden, was einen hohen Platzbedarf und eine nachteilig reduzierte Steifigkeit der Anordnung bedingt. Des Weiteren betrifft diese Lösung nur einen Beschleunigungssen- sor, in dem die Bewegung der Elektroden senkrecht zueinander erfolgt, Nullpunktsfehler also proportional zu dxo/xo auftreten. Da zur Erreichung einer ausreichenden Empfindlichkeit in derartigen Sensoren der Ruheabstand xo zwischen den Elektroden häufig sehr klein gewählt wird, führen bereits relativ geringe Nullpunktsauslenkungen dxo zu signifikanten bzw. nicht tolerierbaren Offsetsignalen, denen auch durch die bekannte Verringerung der Abstände zwischen den Befestigungsbe- reichen auf dem Substrat unter realistischen Betriebsbedingungen nicht beizukommen ist.
Offenbarung der Erfindung
Technische Aufgabe
Die Aufgabe der Erfindung besteht darin, eine Sensorstruktur für einen mikromechanischen Beschleunigungssensor anzugeben, die sich durch geringe Nullpunktsfehler unter Vermeidung der Nachteile des Standes der Technik auszeichnet. Insbesondere soll die Abhängigkeit der Nullpunktssignale von auftretenden Substratverformungen reduziert werden.
Technische Lösung
Gelöst wird die Aufgabe durch einen mikromechanischen Beschleunigungssensor mit den Merkmalen von Anspruch 1. Die Unteransprüche 2 bis 10 betreffen vorteilhafte Ausgestaltungen eines erfindungsgemäßen Beschleunigungssensors.
Der Kern der Erfindung besteht in einer konstruktiven Ausführung von mit einer seismischen Masse verbundenen beweglichen Elektroden und mit einem Substrat verbundenen festen Elektro- den als Kammelektroden, welche paarweise angeordnet sind. Die Kammelektroden weisen jeweils Querstege auf, an denen sich Elektrodenlamellen befinden. Die Anordnung der Kammelektroden erfolgt dabei in einer Weise, dass die Lamellen der Kammelektroden parallel zur Auslenkrichtung der seismischen Masse verlaufen und die offenen Bereiche der Lamellenanordnungen auf einander zu weisen, wodurch sich die Lamellen zweier paarweise angeordneter Kammelektroden zumindest teilweise ü- berlappen können. Im Bereich der Überlappung der Lamellen bilden die Kammelektroden Kondensatoren, deren Kapazität va- riiert, wenn sich die Größe der Überlappungsbereiche ändert. Die Erfindung wird verkörpert durch einen mikromechanischen kapazitiven Beschleunigungssensor mit mindestens einer aus- lenkbar mit einem Substrat verbundenen seismischen Masse, mindestens einer fest mit dem Substrat verbundenen Elektrode und mindestens einer mit der seismischen Masse verbundenen Elektrode, wobei die mindestens eine fest mit dem Substrat verbundene Elektrode und die mindestens eine mit der seismischen Masse verbundenen Elektrode als Kammelektroden mit parallel zur Auslenkrichtung der seismischen Masse verlaufenden Lamellen ausgeführt sind, wobei sich die Lamellen beider Kammelektroden im Ruhezustand teilweise überlappen.
Vorteilhafte Wirkungen
Durch den erfindungsgemäßen Einsatz von Kammelektroden, bei denen es durch eine Parallelbewegung parallel verlaufender Lamellen zu einer Änderung einer Überlappungslänge kommt, die als Maß für die Auslenkung der seismischem Masse ausgewertet wird, ergeben sich verschiedene Vorteile. Der Nullpunktsfehler ist in diesem Falle durch dxo/lo gegeben. Da die Überlappungslänge Io deutlich größer als der Ruheabstand xo einer abstandsbasierten Kondensatoranordnung gewählt werden kann, ergibt sich bei einer ansonsten vergleichbaren Nullpunktsauslenkung dxo gegenüber herkömmlichen Sensoranordnungen eine deutliche Reduktion des Offset-Signals dC/C.
Die Vorteile einer Anordnung aller Befestigungsbereiche in einem zentralen Bereich des Substrates lassen sich auch in erfindungsgemäßen Sensoranordnungen nutzen, wodurch sich eine besonders hohe Unempfindlichkeit gegenüber Substratverbiegungen und ähnlichen Deformationen erzielen lässt.
Insbesondere, wenn eine seismische Masse als Rahmen ausgeführt ist, welcher die Elektrodenanordnung umgibt, lassen sich durch entsprechende Strukturierungsmaßnahmen alle relevanten Verbindungsbereiche eng benachbart im Zentrum des Sub- strates unterbringen. Die erfindungsgemäße Sensorkonfiguration wird insbesondere in sogenannten x- und y- Beschleunigungssensoren, bei denen eine Detektion von Be- schleunigungen in der Wafer-Ebene erfolgt, mit Vorteil eingesetzt werden können. Besonders vorteilhaft ist es, wenn alle Befestigungsbereiche, in denen Funktionsbaugruppen am Substrat befestigt werden, dicht benachbart so angeordnet sind, dass sie auf einer Linie liegen, die quer zur Auslenkrichtung der seismischen Masse verläuft. Abstandsänderungen zwischen den einzelnen Befestigungsbereichen führen in diesem Falle nahezu ausschließlich zu Relativbewegungen zwischen den Funktionsbaugruppen, die quer zur Messauslenkung der seismischen Masse erfolgen und haben somit keinen Einfluss auf die Überlappungslänge. Eine Querverschiebung ineinander verzahnter Kammelektroden hat dagegen auf die Kapazität eines durch ein Kammelektrodenpaar gebildeten Kondensators keinen Einfluss, da sich Abstandsvergrößerungen und Abstandsverkleinerungen zwischen den Lamellen der Kammelektroden gegenseitig aufheben .
Durch den Einsatz von Kammelektroden lassen sich in vorteilhafter Weise auf engem Raum große Überlappungsbereiche reali- sieren, was zu entsprechend großen Kapazitäten und einer damit verbundenen großen Empfindlichkeit derart ausgelegter Beschleunigungssensoren führt. Das gilt insbesondere, wenn jeweils mehrere fest mit dem Substrat verbundene Kammelektroden und mehrere mit der seismischen Masse verbundene Kammelektro- den umfasst sind, die Kammelektrodenpaare bilden, deren Überlappungslänge von der Auslenkung der seismischen Masse abhängt. Für die Anwendung differenzkapazitiver Auswertemethoden ist es zudem vorteilhaft, wenn mindestens ein Kammelektrodenpaar enthalten ist, dessen Überlappungslänge bei einer Auslenkung der seismischen Masse in der Wafer-Ebene zunimmt und mindestens ein weiteres Kammelektrodenpaar enthalten ist, dessen Überlappungslänge bei der gleichen Auslenkung der seismischen Masse in der Wafer-Ebene abnimmt. Das gilt entsprechend für eine Anordnung jeweils mehrerer Kammelektroden- paare. Die Ausführung der seismischen Masse als einen die Elektrodenanordnung umgebenden Rahmen eröffnet die Möglichkeit, weitere vorteilhafte konstruktive Mittel einzusetzen. Die Befestigung der seismischen Masse am Substrat kann vorteilhafter- weise über einen Verbindungsbalken erfolgen, welcher in einem zentralen Bereich des Substrates befestigt ist und an seinen Enden mit Federn verbunden ist, die der auslenkbaren Lagerung der seismischen Masse dienen. Diese Federn sind vorteilhafterweise als S-förmige Biegefedern ausgeführt. Eine besonders geringe Querempfindlichkeit der seismischen Masse ergibt sich, wenn die Aufhängung über ein Paar spiegelsymetrisch ausgebildeter S-förmiger Biegefedern erfolgt.
Dem Prinzip einer eng benachbarten Anordnung erforderlicher Befestigungsbereiche folgend, ist es des weiteren vorteilhaft, wenn beidseits des Verbindungsbalkens Trägerbalken zur Aufnahme der fest mit dem Substrat verbundenen Kammelektroden verlaufen, welche ebenfalls lediglich in einem zentralen Bereich des Substrates am Substrat befestigt sind. Aus prozess- technischen Gründen ist es vorteilhaft, wenn zumindest Teile der seismischen Masse und/oder der Querstege der Kammelektroden als perforierte Flächen ausgeführt sind.
Kurze Beschreibung der Zeichnungen
An einem Ausführungsbeispiel wird die Erfindung näher erläutert. Es zeigen:
Fig.l eine Darstellung einer erfindungsgemäßen Sensoran- Ordnung als Draufsicht auf die Ebene der seismischen Masse; und Fig.2 eine Schnittdarstellung durch eine erfindungsgemäße Sensoranordnung entlang der Schnittlinie I-I der Fig. 1.
Ausführungsform der Erfindung
Figur 1 zeigt eine Darstellung einer erfindungsgemäßen Sensoranordnung zur Detektierung von Beschleunigungen im Nieder- g-Bereich in einer Richtung parallel zur Waferebene als Draufsicht auf die Ebene der seismischen Masse. Die seismische Masse 1 ist als rechteckiger Rahmen ausgebildet, der ü- ber ein Paar S-förmiger Biegefedern 2, 2' mit einem Verbindungsbalken 3 in Verbindung steht, welcher wiederum einen zentralen Befestigungsbereich 4 aufweist, in dem der Verbin- dungsbalken in struktureller Verbindung zu einem Substrat 5 steht. Die S-förmigen Biegefedern 2, 2' sind spiegelsymmetrisch angeordnet und definieren so die Auslenkrichtung der seismischen Masse 1 in x-Richtung, da sich Deformationen der S-förmigen Biegefedern 2, 2' im Fall von Querbeschleunigungen gegenseitig behindern. Auf diese Weise ergibt sich eine geringe Querempfindlichkeit, ohne die Federsteifigkeit in x- Richtung erhöhen zu müssen. Das bildet eine Voraussetzung für die Eignung des erfindungsgemäßen Sensors für eine Verwendung zur Messung niedriger Beschleunigungen. Alternative Federfor- men, beispielsweise Mehrfach-U-Federn mit geringer Gesamt- steifigkeit, sind ebenfalls realisierbar, beanspruchen jedoch mehr Platz .
Fest mit der rahmenförmigen seismischen Masse 1 verbunden sind Kammelektroden 6, 6', die jeweils einen Quersteg 7, 7' umfassen, welcher jeweils mehrere rechtwinklig zum Quersteg 7, 7' verlaufende Lamellen 8, 8' trägt. Die Lamellen 8, 8' verlaufen parallel zur Auslenkrichtung der seismischen Masse 1. Die fest mit der rahmenförmigen seismischen Masse 1 ver- bundenen Kammelektroden 6, 6' führen vom parallel zur Auslenkrichtung der seismischen Masse 1 verlaufenden Rahmenbereich in das Innere des Rahmens. Dadurch bildet die rahmen- förmige seismische Masse 1 gleichzeitig die äußere Begrenzung des auslenkbaren Funktionselementes, das aus der seismischen Masse 1 und den an ihr befestigten Kammelektroden 6, 6' , bestehend aus Querstegen 7, 7' und Lamellen 8, 8', gebildet wird. Parallel zum Verbindungsbalken 3 verlaufen Trägerbalken 9, 9', die ebenfalls jeweils einen zentralen Befestigungsbereich 10, 10' aufweisen, in dem die Trägerbalken 9, 9' in struktureller Verbindung zum Substrat 5 stehen. Die Trägerbalken 5, 5' weisen jeweils auf der dem Verbindungsbalken 3 abgewandten Seite Kammelektroden 11, 11' auf, die ebenfalls aus jeweils einem Quersteg 12, 12' und Lamellen 13, 13' gebildet werden. Durch die Verbindung zu den ihrerseits fest mit dem Substrat verbundenen Trägerbalken 9, 9' stellen diese Kammelektroden 11, 11' fest mit dem Substrat 5 verbundene E- lektroden im Sinne der Erfindung dar.
Unter fester Verbindung im Sinne der Erfindung ist dabei zu verstehen, dass Deformationen oder Auslenkungen der befestigten Strukturen bei Auftreten einer Mess- und/oder Störbe- schleunigung gegenüber der in diesen Fällen auftretenden Auslenkung der seismischen Masse 1 klein sind. Die dargestellten Querschnitte und Abmessungen in den Figuren 1 und 2 sind nicht maßstabsgerecht und dienen nicht der Illustration des statischen Verhaltens der dargestellten Strukturen, sondern sollen ausschließlich der Beschreibung ihrer relativ zueinander vorgenommenen Anordnung dienen.
Die Kammelektroden 11, 11' an den Trägerbalken 9, 9' und die Kammelektroden 6, 6' an der rahmenförmigen seismischen Masse 1 sind so angeordnet, dass ihre Lamellen 8, 8', 13, 13' auf einander zu weisen und sich teilweise überlappen. Auf diese Weise werden Kammelektrodenpaare gebildet, deren Überlappungslänge von der Auslenkung der seismischen Masse 1 abhängt. Der Abstand zwischen den Spitzen der Lamellen einer Kammelektrode und dem diesen Spitzen gegenüberliegenden Quersteg der jeweils anderen Kammelektrode eines Kammelektrodenpaares ist etwas größer als die maximale Auslenkung der seis- mischen Masse 1. Die maximale Auslenkung der seismischen Masse 1 wird durch Anschlagsstrukturen festgelegt, die durch rechteckige Aussparungen 14 in der rahmenförmigen seismischen Masse 1 und in diese Aussparungen ragende auf dem Substrat 5 befestigte Säulen 15 gebildet werden. Der Bereich 16 der maximalen Auslenkung der seismischen Masse 1 ist in der Darstellung gestrichelt umrissen. Im vorliegenden Ausführungsbeispiel wird bei Vorliegen dieser maximalen Auslenkung der seismischen Masse 1 eine Berührung der einen Kondensator bil- denden Kammelektroden 6, 6', 11, 11' knapp aber sicher vermieden. Auf diese Weise ergibt sich eine maximal nutzbare Ü- berlappung der Lamellen 8, 8', 13, 13' der Kammelektroden 6, 6', 11, 11', die durch die Überlappungslänge Io im Ruhezustand der Sensoranordnung beschrieben wird. Da in diesem Fall die Überlappungslänge Io relativ groß ist, ergibt sich bei einer typischen fehlerbasierten Nullpunktsauslenkung dxo gegenüber herkömmlichen Sensoranordnungen eine deutliche Reduktion des Offset-Signals dC/C. Die Kammelektroden 6, 6', 11, 11' sind so angeordnet, dass sich rechts der Balkenanordnung aus Verbindungs 3 - und Trägerbalken 9, 9' Kammelektrodenpaare 6, 11 befinden, deren Überlappungslängen bei Auslenkung der seismischen Masse 1 in x-Richtung zunehmen und sich links der Balkenanordnung aus Verbindungs 3 - und Trägerbalken 9, 9' Kammelektrodenpaare 6', 11' befinden, deren Überlappungs- längen bei Auslenkung der seismischen Masse 1 in x-Richtung abnehmen. Dadurch wird die erfindungsgemäße Sensoranordnung besonders geeignet für differenzkapazitive Auswertemethoden, da ein zu generierendes Messsignal kaum von störenden Quer- und Torsionsbeschleunigungen in der Waferebene beeinflusst wird. Aus prozesstechnischen Gründen weisen die rahmenförmige seismische Masse 1 sowie die Querstege 7, 7', 12, 12' der Kammelektroden 6, 6', 11, 11' eine Perforation 17 auf, um ein einfaches Unterätzen bei der Freistellung der Strukturen zu garantieren. Die zentralen Befestigungsbereiche 4, 10, 10' des Verbindungsbalkens 3 und der Trägerbalken 9, 9' liegen in einer Linie quer zu Auslenkrichtung der seismischen Masse 1. Durch die Anordnung aller Befestigungsbereiche 4, 10, 10' im zentralen Bereich des Substrates 5 ergibt sich eine hohe Unempfindlichkeit gegenüber Substratverbiegungen und ähnlichen Deformationen. Durch die Anordnung aller Befestigungsbereiche 4, 10, 10' auf einer Linie quer zur Auslenkrichtung der seis- mischen Masse wird diese Unempfindlichkeit gegenüber Substratverbiegungen nochmals gezielt in der Messrichtung (x- Richtung) der Sensoranordnung verbessert, da nur Deformationen, die zu einem Ausrücken eines einzelnen Befestigungsbereiches aus der Flucht der Anordnung aller Befestigungsberei- che 4, 10, 10' führen, auch zu einer Veränderung des Messsignals bzw. des Offsets führen. Derart inhomogene Deformationen treten jedoch in wesentlich geringerem Ausmaß auf und sind in erfindungsgemäßen Sensoranordnungen bei normalen Betriebsbedingungen messtechnisch nicht relevant.
Figur 2 zeigt eine schematische Schnittdarstellung durch eine erfindungsgemäße Sensoranordnung entlang der Schnittlinie I-I der Fig. 1. Auf einem Substrat 5 aus Silizium erheben sich in Form rechteckiger Säulen 18, 18', 18'' Stützstrukturen, die zu den Befestigungsbereichen 4, 10, 10' des Verbindungsbalkens 3 und der Trägerbalken 9, 9' führen und für deren feste Verbindung mit dem Substrat 5 sorgen. Die Befestigungsbereiche 4, 10, 10' liegen dicht benachbart auf der Schnittlinie I-I quer zur Auslenkrichtung der seismischen Masse 1. Über dem Substrat 5 wird die seitliche Erstreckung der Anordnung durch die rahmenförmige seismische Masse 1 bestimmt. Im linken Bereich der Darstellung ist der Querschnitt der seismischen Masse 1 im Bereich eines parallel zur Auslenkungsrichtung verlaufenden Rahmenbereiches sichtbar, im rechten Be- reich der Darstellung wird die seismische im Bereich der Verbindung zu einem Quersteg 7 einer Kammelektrode 6 geschnitten. Die seismische Masse 1 steht nur über den Verbindungsbalken 3 mit dem Substrat 5 in Verbindung. Rechts des Verbindungsbalkens 3 ist der Querschnitt eines Trägerbalkens 9 dar- gestellt, links des Verbindungsbalkens 3 wird ein Trägerbalken 9' im Bereich eines an ihm angebachten Quersteges 12' einer Kammelektrode 11' geschnitten.

Claims

Ansprüche
1. Mikromechanischer kapazitiver Beschleunigungssensor mit mindestens einer auslenkbar mit einem Substrat (5) verbun- denen seismischen Masse (1), mindestens einer fest mit dem Substrat (5) verbundenen Elektrode (11) und mindestens einer mit der seismischen Masse (1) verbundenen Elektrode (6), dadurch gekennzeichnet, dass die mindestens eine fest mit dem Substrat (5) verbundene Elektrode (11) und die mindestens eine mit der seismischen Masse (1) verbundenen Elektrode (6) als Kammelektroden (6, 11) mit parallel zur Auslenkrichtung der seismischen Masse (1) verlaufenden Lamellen (8, 13) ausgeführt sind, wobei sich die Lamellen (8, 13) beider Kammelektroden (6, 11) im Ruhezustand teil- weise überlappen.
2. Beschleunigungssensor nach Anspruch 1, dadurch gekennzeichnet, dass jeweils mehrere fest mit dem Substrat (5) verbundene Kammelektroden (11, 11') und mehrere mit der seismischen Masse (1) verbundene Kammelektroden (6, 6') umfasst sind, die Kammelektrodenpaare (6, 11; 6' 11') bilden, deren Überlappungslänge von der Auslenkung der seismischen Masse (1) abhängt.
3. Beschleunigungssensor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die seismische Masse (1) als Rahmen ausgeführt ist, welcher die Elektrodenanordnung umgibt.
4. Beschleunigungssensor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die seismische Masse (1) über S-förmige Biegefedern (2, 2') mit dem Substrat (5) verbunden ist.
5. Beschleunigungssensor nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass ein im zentralen Bereich des Substrates (5) befestigter Verbindungsbalken (3) umfasst ist, der zu Federn (2, 2') führt, welche die seismische Masse (1) auslenkbar tragen.
6. Beschleunigungssensor nach Anspruch 5, dadurch gekennzeichnet, dass beidseits des Verbindungsbalkens (3) Trägerbalken (9, 9') zur Aufnahme der fest mit dem Substrat verbundenen Kammelektroden (11, 11') verlaufen, wobei die Trägerbalken (9, 9') ebenfalls im zentralen Bereich des Substrates (5) am Substrat (5) befestigt sind.
7. Beschleunigungssensor nach Anspruch 5 oder 6, dadurch ge- kennzeichnet, dass die Bereiche (4, 10, 10') , in denen der
Verbindungsbalken (3) und die Trägerbalken (9, 9') am Substrat (5) befestigt sind, auf einer Linie liegen, die quer zur Auslenkrichtung der seismischen Masse (1) verläuft.
8. Beschleunigungssensor nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die seismische Masse (1) durch ein Paar spiegelsymetrisch angeordneter S-förmiger Biegefedern (2, 2') mit dem Substrat (5) in Verbindung steht.
9. Beschleunigungssensor nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass mindestens ein Kammelektrodenpaar (6, 11) enthalten ist, dessen Überlappungslänge bei einer Auslenkung der seismischen Masse (1) in der Wa- fer-Ebene zunimmt und mindestens ein weiteres Kammelektrodenpaar (6', 11') enthalten ist, dessen Überlappungslänge bei der gleichen Auslenkung der seismischen Masse (1) in der Wafer-Ebene abnimmt.
10. Beschleunigungssensor nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass zumindest Teile der seismischen Masse (1) und/oder der Querstege (7, 7', 12, 12') der Kammelektroden (6, 6', 11, 11') als perforierte Flächen ausgeführt sind.
PCT/EP2007/061189 2006-12-19 2007-10-19 Beschleunigungssensor mit kammelektroden WO2008074538A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07821553.0A EP2102666B1 (de) 2006-12-19 2007-10-19 Beschleunigungssensor mit kammelektroden
JP2009541929A JP2010513888A (ja) 2006-12-19 2007-10-19 櫛の歯状電極を有する加速度センサ
CN2007800471652A CN101563616B (zh) 2006-12-19 2007-10-19 具有梳形电极的加速度传感器
US12/304,604 US20090320596A1 (en) 2006-12-19 2007-10-19 Acceleration sensor with comb-shaped electrodes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006059928.4 2006-12-19
DE102006059928A DE102006059928A1 (de) 2006-12-19 2006-12-19 Beschleunigungssensor mit Kammelektroden

Publications (1)

Publication Number Publication Date
WO2008074538A1 true WO2008074538A1 (de) 2008-06-26

Family

ID=39142091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/061189 WO2008074538A1 (de) 2006-12-19 2007-10-19 Beschleunigungssensor mit kammelektroden

Country Status (6)

Country Link
US (1) US20090320596A1 (de)
EP (1) EP2102666B1 (de)
JP (1) JP2010513888A (de)
CN (1) CN101563616B (de)
DE (1) DE102006059928A1 (de)
WO (1) WO2008074538A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101666813B (zh) * 2008-09-05 2011-12-21 财团法人工业技术研究院 电容式多轴加速度计
RU2521141C2 (ru) * 2012-08-27 2014-06-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) Емкостный датчик перемещений
WO2017051243A1 (en) * 2015-09-25 2017-03-30 Murata Manufacturing Co., Ltd. Improved microelectromechanical accelerometer device
EP3352365A1 (de) * 2017-01-20 2018-07-25 Chambre de Commerce et d'Industrie de Région Paris Ile de France (ESIEE Paris) Kinetischer miniatur-energiegewinner zur erzeugung elektrischer energie aus mechanischen schwingungen

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007047592B4 (de) * 2007-10-05 2022-01-05 Robert Bosch Gmbh Beschleunigungssensor
DE102008002606B4 (de) * 2008-06-24 2020-03-12 Robert Bosch Gmbh Mikromechanischer Beschleunigungssensor mit offener seismischer Masse
DE102008054553B4 (de) * 2008-12-12 2022-02-17 Robert Bosch Gmbh Beschleunigungssensor
DE102009028924A1 (de) * 2009-08-27 2011-03-03 Robert Bosch Gmbh Kapazitiver Sensor und Aktor
JP5560809B2 (ja) * 2010-03-23 2014-07-30 株式会社豊田中央研究所 Mems構造体
DE102010039236B4 (de) 2010-08-12 2023-06-29 Robert Bosch Gmbh Sensoranordnung und Verfahren zum Abgleich einer Sensoranordnung
WO2012160845A1 (ja) * 2011-05-24 2012-11-29 アルプス電気株式会社 Memsセンサ
JP5880877B2 (ja) * 2012-05-15 2016-03-09 株式会社デンソー センサ装置
WO2014061099A1 (ja) 2012-10-16 2014-04-24 日立オートモティブシステムズ株式会社 慣性センサ
US9218065B2 (en) * 2013-03-11 2015-12-22 Intel Corporation Stress tolerant MEMS accelerometer
FI126199B (en) * 2013-06-28 2016-08-15 Murata Manufacturing Co CAPACITIVE MICROMECHANICAL SENSOR STRUCTURE AND MICROMECHANICAL ACCELEROMETER
JP6020392B2 (ja) * 2013-09-03 2016-11-02 株式会社デンソー 加速度センサ
JP2015072188A (ja) * 2013-10-03 2015-04-16 セイコーエプソン株式会社 物理量検出素子、および物理量検出装置、電子機器、移動体
DE102014202819A1 (de) 2014-02-17 2015-08-20 Robert Bosch Gmbh Mikromechanische Struktur für einen Beschleunigungssensor
GB2523320A (en) 2014-02-19 2015-08-26 Atlantic Inertial Systems Ltd Accelerometers
WO2015166771A1 (ja) 2014-04-28 2015-11-05 日立オートモティブシステムズ株式会社 加速度検出装置
CN103954795B (zh) * 2014-04-30 2016-04-13 中国科学院地质与地球物理研究所 一种可工程化的mems加速度计
JP6262629B2 (ja) 2014-09-30 2018-01-17 株式会社日立製作所 慣性センサ
CN105731353A (zh) * 2014-12-12 2016-07-06 立锜科技股份有限公司 微机电装置
TWI607955B (zh) * 2015-03-05 2017-12-11 立錡科技股份有限公司 微機電元件
CN105984828B (zh) * 2015-03-06 2018-04-03 立锜科技股份有限公司 微机电元件
JP6657626B2 (ja) * 2015-07-10 2020-03-04 セイコーエプソン株式会社 物理量センサー、電子機器および移動体
DE102015222532A1 (de) * 2015-11-16 2017-05-18 Robert Bosch Gmbh Mikromechanische Struktur für einen Beschleunigungssensor
CN107782916B (zh) * 2016-08-27 2021-07-09 深迪半导体(绍兴)有限公司 一种三轴加速计
JP6691882B2 (ja) 2017-03-03 2020-05-13 株式会社日立製作所 加速度センサ
CN107607100B (zh) * 2017-10-19 2019-09-27 北方电子研究院安徽有限公司 一种硅微机械角振动陀螺抗冲击弹性止挡结构
DE102019113628A1 (de) 2018-06-05 2019-12-05 Dyconex Ag Dehnungssensor, insbesondere für ein medizinisches Gerät
WO2020140171A1 (zh) * 2018-12-30 2020-07-09 瑞声声学科技(深圳)有限公司 一种陀螺仪
DE102019200839A1 (de) * 2019-01-24 2020-07-30 Robert Bosch Gmbh Mikromechanischer Inertialsensor
JP7188311B2 (ja) * 2019-07-31 2022-12-13 セイコーエプソン株式会社 ジャイロセンサー、電子機器、及び移動体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19639946A1 (de) * 1996-09-27 1998-04-02 Bosch Gmbh Robert Mikromechanisches Bauelement
US20030205739A1 (en) 1995-05-24 2003-11-06 Petersen Kurt E. Single crystal silicon sensor with high aspect ratio and curvilinear structures and associated method
EP1626283A1 (de) 2004-08-13 2006-02-15 STMicroelectronics S.r.l. Mikroelektromechanische Struktur, insbesondere Beschleunigungssensor, mit verbesserter Unempfindlichkeit gegenüber thermischen und mechanischen Spannungen
US20060201249A1 (en) 2005-03-09 2006-09-14 Horning Robert D MEMS device with thinned comb fingers

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0618450A1 (de) * 1993-03-30 1994-10-05 Siemens Aktiengesellschaft Beschleunigungssensor
JP3077077B2 (ja) * 1994-01-28 2000-08-14 ザ・チャールズ・スターク・ドレイパー・ラボラトリー・インコーポレイテッド 慣性レートセンサー
DE4432837B4 (de) * 1994-09-15 2004-05-13 Robert Bosch Gmbh Beschleunigungssensor und Meßverfahren
CN2424450Y (zh) * 2000-06-02 2001-03-21 中国科学院上海冶金研究所 微机械梳状电容式加速度传感器
JP2003166999A (ja) * 2001-12-03 2003-06-13 Denso Corp 半導体力学量センサ
CA2429508C (en) * 2002-05-28 2013-01-08 Jds Uniphase Inc. Piano mems micromirror
US7031040B2 (en) * 2003-05-16 2006-04-18 Ricoh Company, Ltd. Optical scanning apparatus, optical writing apparatus, image forming apparatus, and method of driving vibration mirror
CN100425993C (zh) * 2006-01-25 2008-10-15 哈尔滨工业大学 框架结构差分电容式加速度传感器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030205739A1 (en) 1995-05-24 2003-11-06 Petersen Kurt E. Single crystal silicon sensor with high aspect ratio and curvilinear structures and associated method
DE19639946A1 (de) * 1996-09-27 1998-04-02 Bosch Gmbh Robert Mikromechanisches Bauelement
EP1626283A1 (de) 2004-08-13 2006-02-15 STMicroelectronics S.r.l. Mikroelektromechanische Struktur, insbesondere Beschleunigungssensor, mit verbesserter Unempfindlichkeit gegenüber thermischen und mechanischen Spannungen
US20060201249A1 (en) 2005-03-09 2006-09-14 Horning Robert D MEMS device with thinned comb fingers

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101666813B (zh) * 2008-09-05 2011-12-21 财团法人工业技术研究院 电容式多轴加速度计
RU2521141C2 (ru) * 2012-08-27 2014-06-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) Емкостный датчик перемещений
WO2017051243A1 (en) * 2015-09-25 2017-03-30 Murata Manufacturing Co., Ltd. Improved microelectromechanical accelerometer device
US10281486B2 (en) 2015-09-25 2019-05-07 Murata Manufacturing Co., Ltd. Microelectromechanical accelerometer device
EP3352365A1 (de) * 2017-01-20 2018-07-25 Chambre de Commerce et d'Industrie de Région Paris Ile de France (ESIEE Paris) Kinetischer miniatur-energiegewinner zur erzeugung elektrischer energie aus mechanischen schwingungen
WO2018134192A1 (en) * 2017-01-20 2018-07-26 Chambre De Commerce Et D'industrie De Region Paris Ile De France Miniature kinetic energy harvester for generating electrical energy from mechanical vibrations

Also Published As

Publication number Publication date
EP2102666A1 (de) 2009-09-23
CN101563616A (zh) 2009-10-21
CN101563616B (zh) 2011-10-19
DE102006059928A1 (de) 2008-08-21
US20090320596A1 (en) 2009-12-31
EP2102666B1 (de) 2017-05-17
JP2010513888A (ja) 2010-04-30

Similar Documents

Publication Publication Date Title
EP2102666B1 (de) Beschleunigungssensor mit kammelektroden
DE102008040855B4 (de) Dreiachsiger Beschleunigungssensor
DE19930779B4 (de) Mikromechanisches Bauelement
EP2389561B1 (de) Drehratensensor
DE102012200929B4 (de) Mikromechanische Struktur und Verfahren zur Herstellung einer mikromechanischen Struktur
DE102008041327B4 (de) Dreiachsiger Beschleunigungssensor
EP0981755B1 (de) Beschleunigungssensor
DE102009000167A1 (de) Sensoranordnung
DE102013007593B4 (de) Beschleunigungssensor sowie verfahren zur herstellung eines beschleunigungssensors
DE102011076551A1 (de) Inertialsensor
DE102004013583B4 (de) Sensor für eine physikalische Grösse mit einem Balken
EP2106551A2 (de) Mehrachsiger mikromechanischer beschleunigungssensor
DE102010038461B4 (de) Drehratensensor und Verfahren zur Herstellung eines Masseelements
WO2009077263A1 (de) Drehratensensor und verfahren zum betrieb eines drehratensensors
DE19802353B4 (de) Kapazitiver Beschleunigungssensor
DE102006051329B4 (de) Z-Beschleunigungssensor mit verringerter Störempfindlichkeit
DE102008054553B4 (de) Beschleunigungssensor
DE102011080982B4 (de) Sensoranordnung
WO1998011443A1 (de) Sensor zur kapazitiven aufnahme einer beschleunigung
DE102009045393B4 (de) Mikromechanisches Bauelement
DE19920066B4 (de) Sensor aus einem mehrschichtigen Substrat mit einem aus einer Halbleiterschicht herausstrukturierten Federelement
EP2425208B1 (de) Messelement
DE102005056361B4 (de) Halbleitersensor für eine dynamische Grösse
DE19813941A1 (de) Mikromechanischer Beschleunigungssensor
DE102020214019A1 (de) Mikromechanisches Sensorelement

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780047165.2

Country of ref document: CN

REEP Request for entry into the european phase

Ref document number: 2007821553

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007821553

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07821553

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12304604

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2009541929

Country of ref document: JP

Kind code of ref document: A