WO2008072428A1 - 含窒素化合物の製造方法 - Google Patents

含窒素化合物の製造方法 Download PDF

Info

Publication number
WO2008072428A1
WO2008072428A1 PCT/JP2007/071476 JP2007071476W WO2008072428A1 WO 2008072428 A1 WO2008072428 A1 WO 2008072428A1 JP 2007071476 W JP2007071476 W JP 2007071476W WO 2008072428 A1 WO2008072428 A1 WO 2008072428A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
aliphatic
metal
ruthenium
component
Prior art date
Application number
PCT/JP2007/071476
Other languages
English (en)
French (fr)
Inventor
Yuuta Suzuki
Yasuyuki Mimura
Tetsuaki Fukushima
Original Assignee
Kao Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corporation filed Critical Kao Corporation
Priority to BRPI0720208-3A priority Critical patent/BRPI0720208A2/pt
Priority to EP07831209A priority patent/EP2103593A4/en
Priority to CN200780046299.2A priority patent/CN101558034B/zh
Priority to US12/518,888 priority patent/US7947853B2/en
Publication of WO2008072428A1 publication Critical patent/WO2008072428A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/04Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups
    • C07C209/14Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of hydroxy groups or of etherified or esterified hydroxy groups
    • C07C209/16Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of hydroxy groups or of etherified or esterified hydroxy groups with formation of amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8946Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/053Sulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/04Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups
    • C07C209/14Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of hydroxy groups or of etherified or esterified hydroxy groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing

Definitions

  • the present invention relates to a method for producing a nitrogen-containing compound, particularly an aliphatic amine, and more particularly to a method for producing an aliphatic amine with high activity and high selectivity by using a ruthenium-based catalyst.
  • Aliphatic primary amines and aliphatic secondary amines are important compounds in the household and industrial fields, and are used as raw materials for producing surfactants, fiber treatment agents, and the like.
  • There are various methods for producing aliphatic primary amine and aliphatic secondary amine and one of them is a method of contacting an aliphatic alcohol with ammonia and hydrogen in the presence of a catalyst. ing. In this catalytic reaction, a nickel or copper catalyst or a noble metal catalyst is used as a catalyst.
  • ruthenium is formed on a porous oxide such as alumina, silica, or aluminosilicate, for example. ! a ⁇ 25 weight 0/0 degree, cobalt and / or nickel 0 ⁇ ; together is - carried about 6 wt%, 0 copper;! 10% by weight approximately, and an accelerator made of various metals 0-5
  • Patent Document 1 A method using a catalyst in which about wt% is supported (see Patent Document 1), or ruthenium on a porous oxide such as alumina, silica, aluminosilicate, etc.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-174874
  • Patent Document 2 Japanese Patent Laid-Open No. 10-174875
  • An object of the present invention is to provide a method for producing an aliphatic primary amine and / or an aliphatic secondary amine with high activity and high selectivity from an aliphatic alcohol.
  • a ruthenium compound is hydrolyzed, and a ruthenium component is supported on at least one selected from (B) a zirconium oxide composite oxide and (C) a metal surface-treated zirconium oxide.
  • the present invention also provides a method for producing an aliphatic amine, which comprises producing an aliphatic amine by bringing a linear or branched or ring aliphatic alcohol having 6 to 22 carbon atoms into contact with ammonia and hydrogen.
  • an aliphatic primary amine and / or an aliphatic secondary amine can be produced from an aliphatic alcohol with high activity and high selectivity.
  • the raw material has 6 to 22 carbon atoms having a straight chain, branched chain or ring, and preferably 8 to 8 carbon atoms from the viewpoint of reactivity and selectivity. 2, More preferably, a linear aliphatic alcohol having 8 to 22 carbon atoms is used.
  • the alcohol can be either saturated or unsaturated.
  • aliphatic alcohols include hexyl alcohol, isohexyl alcohol oleore, octyl alcohol, isooctyl alcohol, 2-ethyl hexyl al monole, noninore nore: ⁇ -nore, isononinore nore: ⁇ — Nore, 3, 5, 5—Trimethinore Octinore Nore Cornole, Desinorenoreconole, 3, 7-Dimethenoleoctinorenorenore, 2-Propinolehepinoreanoreconole, Laurinorenoreconole Tetradecyl alcohols such as dodecinorenoreconoles, myristinoleanolols, hexadecylalcohols, oleylarconole, octadenoleanoreconoles such as stearinoleanoreconole, Heninoleano
  • ruthenium-based catalyst a ruthenium compound is hydrolyzed, and a ruthenium component is supported on at least one selected from (B) a zirconium oxide composite oxide and (C) a metal surface-treated zirconium oxide. Aliphatic amines are produced in the presence of the prepared catalyst (hereinafter sometimes referred to as “ruthenium-based catalyst”).
  • the (B) zircoure complex oxide refers to a complex oxide composed of zircoure and at least one other metal oxide. From the viewpoints of reactivity and aliphatic primary amine selectivity, It is preferable to contain at least one metal component selected from the group consisting of calcium, cerium, lanthanum, aluminum, yttrium, silicon, titanium, sulfur and phosphorus, and a zirconium component. More preferably, (B) the zirconium oxide composite oxide is a complex formed of zirconium oxide with at least one metal oxide selected from the group consisting of calcium, cerium, lanthanum, aluminum, yttrium, silicon, titanium and sulfur. It is an oxide, and more preferably a composite oxide formed of at least one metal oxide selected from the group consisting of cerium, yttrium, silicon, titanium, and sulfur and zircoure.
  • the other metal oxide used together with zircoure is 0.01 to 25% by mass as a metal constituting the metal oxide with respect to the total amount of the catalyst. Contained, more preferably 0.;! To 15% by mass.
  • the content ratio of the other metal oxide and the zirconium oxide is 0.0001-0.
  • the metal / zircoure mass ratio of the other metal oxide from the viewpoint of reactivity and aliphatic primary amine selectivity. 2 is preferable, and more preferably (0. 01-0. 1.
  • the (B) zirconium oxide complex oxide can be prepared, for example, by a general precipitation method described in AppLCatal. B16 (1998) 105 by C.E.Hori et al.
  • a method for preparing zirconium oxide cerium monoxide will be described.
  • An alkali is added to a solution in which ammonium cerium nitrate and zirconium nitrate are dissolved in a medium such as ion-exchanged water to adjust the pH to preferably 7 to 12, more preferably 9 to 12; By aging, it is precipitated as a hydroxide.
  • the type of the alkali is not particularly limited, but alkali metal carbonates such as sodium and potassium, hydroxide, aqueous ammonia, ammonium hydroxide and the like can be used. Hydroxide obtained The product is separated into solid and liquid by filtration, etc., and the solid obtained is preferably washed thoroughly with water,
  • (C) Metal surface-treated zirconium oxide is obtained by surface-treating zirconium oxide with a metal component, and from the viewpoint of aliphatic primary amine selectivity, molybdenum, calcium, cerium, lanthanum, aluminum, yttrium, silicon The group consisting of calcium, cerium, lanthanum, aluminum, yttrium, silicon, titanium and sulfur, preferably zircoure surface-treated with at least one metal component selected from the group consisting of titanium, sulfur and phosphorus More preferably, it is zirconia surface-treated with at least one metal component selected from
  • Such surface treatment can be performed by firing after the metal component is supported by an impregnation method or by dispersing zirconium in a metal salt solution.
  • the surface treatment of the metal component can be performed using a nitrate, sulfate, carbonate, hydroxide, oxide, or the like of the metal.
  • the metal component used for the surface treatment is a metal as a metal component with respect to the total amount of the catalyst from the viewpoint of reactivity and aliphatic primary amine selectivity.
  • the content is preferably 0.;! To 15% by mass.
  • the content ratio of the above metal component and zircoure (metal / metal as a metal component) is preferably 0.001 to 0.22 in terms of mass ratio from the viewpoint of reactivity and aliphatic primary amine selectivity. Preferably it is 0.01-0.1.
  • the (C) metal surface-treated zirconium oxide as described above is, for example, J. Yori et al., Appl. Catal. A129.
  • Alkaline is added to a solution of zirconium chloride octahydrate dissolved in a medium such as ion-exchanged water to adjust the pH to preferably 7 to 12, more preferably 9 to 12; To precipitate as a hydroxide.
  • the type of the alkali is not particularly limited, but alkali metal carbonates such as sodium and potassium, hydroxides, aqueous ammonia, ammonium hydroxide and the like can be used.
  • the resulting hydroxide is filtered The solid obtained is thoroughly washed with water, dried, dispersed in 0.5M aqueous sulfuric acid, separated into solid and liquid by filtration, etc., dried, and preferably 400 ° C to 800 ° C. ° C
  • firing is performed at a temperature of 500 ° C to 700 ° C.
  • the (B) dinoreconia composite oxide and the (C) metal surface-treated dinoleconia can be used alone or in combination of two or more.
  • the ruthenium-based catalyst supports (A) a ruthenium component, preferably (D) a Group VIII metal component, on the (B) zirconium oxide composite oxide and / or (C) metal surface-treated zirconium oxide.
  • a ruthenium component preferably (D) a Group VIII metal component
  • the (D) Group VIII metal component include nickel, cobalt, palladium, rhodium and iridium. From the viewpoint of improving catalytic activity and selectivity, the nickel component is preferably supported.
  • the catalyst used in the present invention is a method in which a ruthenium component, preferably further a VIII metal component is supported by hydrolysis on the (B) zirconium oxide composite oxide and / or (C) metal surface-treated zirconium oxide. To obtain.
  • the zirconium oxide composite oxide and / or (C) the metal surface-treated zirconium oxide in a medium such as ion-exchanged water and suspending (A) the ruthenium compound, and Preferably, a solution in which the metal compound (I), which is a Group VIII metal component source as the component (B), is dissolved in a medium such as ion-exchanged water is added and heated as necessary while stirring, preferably 20 ° The temperature is adjusted to about C to 95 ° C, more preferably 40 ° C to 80 ° C.
  • Examples of the (A) ruthenium compound include ruthenium chlorides, nitrates, formates, ammonium salts, and the like, and are preferably chlorides from the viewpoint of reactivity and aliphatic primary amine selectivity.
  • Examples of the metal compound (I), which is a group VIII metal component source as the component (B), include chloride, nitrate, sulfate, carbonate, formate, ammonium salt, etc. From the viewpoint of amine selectivity, preferred are chlorides, nitrates, and sulfates.
  • an alkali is added to the suspension obtained above to adjust the pH to preferably 5 to 12, more preferably 6 to 11;
  • the component is supported on the zirconium oxide complex oxide and / or the metal surface-treated zirconium oxide.
  • alkali metal carbonates such as sodium and potassium, hydroxides, aqueous ammonia and ammonium hydroxide can be used.
  • the ruthenium-based catalyst is preferably subjected to a reduction treatment next from the viewpoint of reactivity and aliphatic primary amine selectivity.
  • a reducing agent such as formaldehyde, hydrazine, or sodium borohydride is added and heated as necessary, and the temperature is preferably about 20 to 95 ° C, more preferably 60 ° C to 95 ° C.
  • the reduction process is performed at Thereafter, solid-liquid separation is performed by filtration or the like, and the obtained solid is sufficiently washed with water, and then preferably dried at a temperature of 60 ° C. or higher under normal pressure or reduced pressure.
  • the reducing agent is usually about 1 to 50 times mol, preferably 15 to 40 times mol of the total amount of metal. Used in proportions.
  • the reduction treatment can be performed as necessary. After the ruthenium component or the like is supported by alkali hydrolysis, the solid-liquid separation is performed, and the obtained solid is sufficiently washed with water and dried. Good.
  • the zirconium oxide composite oxide and / or (C) the metal surface-treated zirconium oxide carries the ruthenium component and the group VIII metal component by hydrolysis as described above, There is no need for operations such as a high-temperature calcination treatment performed in an impregnation method or the like, or a high-temperature reduction treatment in an inert gas atmosphere, and the preparation of the catalyst is simplified.
  • the ruthenium-based catalyst thus obtained is preferably a ruthenium metal as a ruthenium metal with respect to the total amount of the catalyst including the carrier, from the viewpoints of sufficient catalytic activity, selectivity and economy. 0.0;! To 25% by mass, more preferably 0 .;! To 20% by mass, and still more preferably;! To 15% by mass. From the same point of view, the Group VIII metal component is preferably 0.0;! To 25% by mass, more preferably 0. !! as the Group VIII metal based on the total amount of the catalyst including the support. ⁇ 20% by mass, more preferably 0.2 ⁇ ; 15% by mass.
  • the metal oxide used together with zirconia in the component (B) and the component (C) is a catalyst from the viewpoint of reactivity and aliphatic primary amine selectivity.
  • the content of the metal component constituting the metal component with respect to the total amount is 0.0;! To 25% by mass. S is preferable, and more preferably 0.
  • the ruthenium metal content in the catalyst is measured by ICP emission spectrometry after melting the catalyst with ammonium hydrogen sulfate.
  • the content of Group VIII metal components, metals that form complex oxides with zircoure, and metals that surface-treat zircoure are V containing no silicon in the zircoure, in which case the catalyst is wet decomposed (sulfuric acid, hydrogen peroxide) If the catalyst contains silicon, the catalyst is alkali-melted and measured by ICP emission spectrometry.
  • the aliphatic alcohol as a raw material is brought into contact with ammonia and hydrogen in the presence of the ruthenium catalyst prepared as described above, thereby producing a fatty acid.
  • an aliphatic amine preferably an aliphatic primary amine or an aliphatic secondary amine.
  • This contact reaction may be carried out by a closed type or a flow type in a batch type, or may be carried out by a fixed bed flow type.
  • the amount of the catalyst used depends on the reaction system, from the viewpoint of obtaining good reactivity and selectivity, 0.;! To 20% by mass is preferable with respect to the starting aliphatic alcohol. ⁇ 10% by mass is more preferred.
  • the reaction temperature is preferably about 100 to 280 ° C, more preferably 180 ° C to 250 ° C, and the reaction pressure
  • the pressure is usually from normal pressure to 40 MPa, preferably from 0.5 to 30 MPa.
  • the pressure is usually from normal pressure to about 1 OMPa, preferably from 0 ⁇ ;! to 5 MPa.
  • the molar ratio of ammonia and aliphatic alcohol (ammonia / aliphatic alcohol) as a raw material component is usually about 0.;! ⁇ 20, preferably 1 ⁇ 15 in the case of a notch type closed system. is there.
  • the ammonia to be distributed is preferably 0.01-10, more preferably 0.;!
  • the molar ratio of hydrogen to aliphatic alcohol (hydrogen / aliphatic alcohol) V In the case of a batch-type closed system, 0.01 to 3.0. 02-2.0 is preferred. In the case of the batch type flow type and fixed bed flow type, the hydrogen to be circulated is 0.01 to 1.0, more preferably 0.02 to 0.8 in the above-mentioned monolayer with respect to Gankikan Anole Cornole. Masle. However, in any reaction system, the reaction is not limited within the range during the progress of the reaction. Example
  • Zircoyu powder in a separable flask 13 Suspend Og in 220 g of ion-exchanged water, add a solution prepared by dissolving 0.76 g of ruthenium chloride pentahydrate in 50 g of ion-exchanged water, and heat to 60 ° C with stirring. did. After the suspension (60 ° C) was stirred for 3 hours, ammonia water was added dropwise as a precipitating agent to bring the suspension to pH 11, and the mixture was aged for 2 hours.
  • Catalyst 1 is a catalyst in which 2% by mass of ruthenium is supported on zircoure.
  • Catalyst 2 is a catalyst in which 2% by mass of ruthenium is supported on zircoure whose surface is treated with sulfur.
  • Zircoyu-sulfuric acid powder 13 Og was suspended in ion-exchanged water 220 g in a separable flask, and ruthenium chloride pentahydrate 0.38 g and nickel sulfate hexahydrate 0.93 g were dissolved in ion-exchanged water 50 g. The solution was added and heated to 60 ° C with stirring. The suspension (60 ° C.) was stirred for 3 hours, then ammonia water was added dropwise as a precipitating agent to adjust the pH of the suspension to 11, and the mixture was aged for 2 hours. To the suspension, 3.2 g of a 37% by weight formalin solution was added and heated to 90 ° C.
  • Catalyst 3 is a catalyst in which 1% by mass of ruthenium and 1.6% by mass of nickel are supported on zircoure whose surface has been treated with sulfur.
  • Catalyst 4 is a zirconium and cerium complex oxide, which is a zirconium oxide complex oxide. 6% by mass of supported catalyst.
  • Catalyst 5 is a catalyst in which 1% by mass of ruthenium and 1.6% by mass of Nikkenore are supported on a complex oxide of zirconium and calcium, which is a zirconium oxide complex oxide.
  • catalyst 6 About 13 g of catalyst 6 was obtained in the same manner as in Preparation Example 3, except that dinoreconia lanthanum monoxide powder was used instead of dinoleconia sulfuric acid powder.
  • the catalyst 6 is Jirukoyua composite oxide, 1 weight ruthenium composite oxide of zirconium and lanthanum 0/0, a nickel 1.6 wt% on catalyst.
  • Catalyst 7 is a catalyst in which 1% by mass of ruthenium and 1.6% by mass of nickel are supported on a complex oxide of zirconium and aluminum, which is a zirconium oxide complex oxide.
  • Catalyst 8 is Jirukoyua composite oxide, 1 weight ruthenium composite oxide of zirconium and yttrium 0/0, a 1.6 wt% catalyst supported the Nikkenore.
  • Catalyst 9 is a Jirukoyua composite oxide, 1 wt% ruthenium composite oxide of zirconium and silicon, nickel 1.6 mass 0/0 catalyst supported.
  • catalyst 10 is a Jirukoyua composite oxide, 1 weight ruthenium composite oxide of zirconium and titanium 0/0, a nickel 1.6 wt% on catalyst.
  • catalyst 11 was obtained in the same manner as in Preparation Example 3, except that 2% by mass of ruthenium and 0.6% by mass of nickel were supported.
  • Table 1 shows the physical properties of (B) zirconium oxide complex oxide or (C) metal surface-treated zirconium oxide used in Preparation Examples;
  • the obtained reaction product was subjected to composition analysis by gas chromatography after filtering the catalyst.
  • Table 2 shows the reaction time at a reaction rate of 93% and the selectivities of stearylamine and distearylamine at that time.
  • Comparative Example 1 In Example 1, the reaction was performed in the same manner as in Example 1 except that the catalyst 1 obtained in Preparation Example 1 was used instead of the catalyst 2 obtained in Preparation Example 2. The same evaluation was performed. The results are shown in Table 2.
  • the obtained reaction product was subjected to composition analysis by gas chromatography after filtering the catalyst.
  • Table 3 shows the reaction time at a reaction rate of 93% and the selectivities of stearylamine and distearylamine at that time.
  • zirconia (catalyst 3) having sulfur treated on the surface is particularly superior.
  • the reaction time was 6.5 hours, the conversion rate was 100%, and the selectivity at this time was 48.73% distearylamine and 13% stearylamine by weight.
  • the secondary amine selectivity can be improved by increasing the partial pressure of hydrogen with respect to ammonia.
  • the method for producing an aliphatic amine according to the present invention is a method capable of producing an aliphatic primary amine and an aliphatic secondary amine from an aliphatic alcohol with high activity and high selectivity.
  • the group amine is an important compound in the household and industrial fields, and is suitably used as a raw material for production of, for example, a surfactant and a fiber treatment agent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 脂肪族アルコールから、脂肪族1級アミン又は脂肪族2級アミンを高活性で高選択に製造する方法を提供する。  (A)ルテニウム化合物を加水分解して、ルテニウム成分を(B)ジルコニア複合酸化物及び(C)金属表面処理ジルコニアから選ばれる少なくとも一種に担持した触媒の存在下、直鎖状又は分岐若しくは環を有する炭素数6~22の脂肪族アルコールを、アンモニア及び水素と接触させて脂肪族アミンを製造する、脂肪族アミンの製造方法である。

Description

明 細 書
含窒素化合物の製造方法
技術分野
[0001] 本発明は、含窒素化合物、特に脂肪族ァミンの製造方法に関し、さらに詳しくは、 ルテニウム系触媒を用いることにより脂肪族アミンを高活性で高選択に製造する方法 に関する。
背景技術
[0002] 脂肪族 1級ァミン及び脂肪族 2級ァミンは、家庭用、工業用分野において重要な化 合物であり、界面活性剤、繊維処理剤等の製造原料などとして用いられている。 脂肪族 1級ァミン及び脂肪族 2級ァミンの製造方法としては、様々な方法があるが、 その 1つとして、触媒の存在下に、脂肪族アルコールを、アンモニア及び水素と接触 させる方法が知られている。この接触反応においては、触媒として、ニッケル、銅系触 媒ゃ貴金属触媒が用いられる。
貴金属系触媒の中で、特にルテニウム触媒を用いて、アルコール等からアミンを製 造する方法としては、例えば、アルミナ、シリカ、アルミノケィ酸塩などの多孔性酸化 物上に、ルテニウムを 0· 00;!〜 25重量0 /0程度と、コバルト及び/又はニッケルを 0· ;!〜 6重量%程度担持させると共に、銅を 0〜; 10重量%程度、及び各種金属からなる 促進剤を 0〜5重量%程度担持させてなる触媒を用いる方法(特許文献 1参照)、あ るいはアルミナ、シリカ、アルミノケィ酸塩などの多孔性酸化物上に、ルテニウムを 0. 00;!〜 25重量%程度と、コバルト及び/又はニッケルを 6〜50重量%程度担持させ ると共に、銅を 0.;!〜 10重量%程度、及び各種金属からなる促進剤を 0〜5重量% 程度担持させてなる触媒を用いる方法 (特許文献 2参照)等が開示されて V、る。
[0003] 特許文献 1 :特開平 10— 174874号公報
特許文献 2:特開平 10— 174875号公報
発明の開示
発明が解決しょうとする課題
[0004] しかしながら、これらの技術においては、触媒の調製法には含浸法が採用され、乾 燥後に 400°Cで 4時間焼成し、更に 300°Cで 20時間の水素還元が行われており、ま た、触媒の反応性、選択性は不十分であった。
本発明は、脂肪族アルコールから、脂肪族 1級ァミン及び/又は脂肪族 2級ァミン を高活性で高選択に製造する方法を提供することを目的とする。
課題を解決するための手段
[0005] 本発明は、(A)ルテニウム化合物を加水分解して、ルテニウム成分を(B)ジルコ二 ァ複合酸化物及び (C)金属表面処理ジルコユアから選ばれる少なくとも一種に担持 した触媒の存在下、直鎖状又は分岐若しくは環を有する炭素数 6〜22の脂肪族ァ ルコールを、アンモニア及び水素と接触させて脂肪族ァミンを製造する、脂肪族アミ ンの製造方法を提供する。
発明の効果
[0006] 本発明の製造方法によれば、脂肪族アルコールから、脂肪族 1級ァミン及び/又 は脂肪族 2級アミンを高活性で高選択に製造することができる。
発明を実施するための最良の形態
[0007] 本発明の脂肪族ァミンの製造方法においては、原料として、直鎖状又は分岐若しく は環を有する炭素数 6〜22、反応性及び選択性の観点から、好ましくは炭素数 8〜2 2、更に好ましくは、直鎖状の炭素数 8〜22の脂肪族アルコールが用いられる。該ァ ルコールは、飽和、不飽和のいずれも使用できる。
このような脂肪族アルコールの具体例としては、へキシルアルコール、イソへキシル ァノレコーノレ、ォクチルアルコール、イソオタチルアルコール、 2—ェチルへキシルアル 一ノレ、ノニノレ ノレ: π—ノレ、イソノニノレ ノレ: π—ノレ、 3, 5, 5—トリメチノレ八キシノレ ノレ コーノレ、デシノレァノレコーノレ、 3, 7—ジメチノレオクチノレァノレコーノレ、 2—プロピノレヘプ チノレアノレコーノレ、ラウリノレアノレコーノレなどのドデシノレァノレコーノレ類、ミリスチノレアノレコ ールなどのテトラデシルアルコール類、へキサデシルアルコール類、ォレイルアルコ 一ノレ、 ステアリノレアノレコーノレなどのォクタデシノレアノレコーノレ類、ベへニノレアノレコーノレ 、ィコシルアルコール類、ゲラニオール、シクロペンチルメタノール、シクロペンテュル メタノール、シクロへキシルメタノール、シクロへキセニルメタノールなどを挙げることが できる。 [0008] 本発明にお!/、ては、(A)ルテニウム化合物を加水分解して、ルテニウム成分を(B) ジルコユア複合酸化物及び (C)金属表面処理ジルコユアから選ばれる少なくとも一 種に担持した触媒 (以下、「ルテニウム系触媒」ということがある)の存在下で脂肪族ァ ミンを製造する。
[0009] 上記(B)ジルコユア複合酸化物とはジルコユアと少なくとも 1種の他の金属酸化物 力、らなる複合酸化物をいい、反応性及び脂肪族一級アミン選択性の観点から、モリ ブデン、カルシウム、セリウム、ランタン、アルミニウム、イットリウム、珪素、チタン、硫 黄及びリンからなる群から選ばれる少なくとも 1種の金属成分とジルコニウム成分とを 含有することが好ましい。より好ましくは (B)ジルコユア複合酸化物は、カルシウム、セ リウム、ランタン、アルミニウム、イットリウム、珪素、チタン及び硫黄からなる群から選 ばれる少なくとも 1種の金属の酸化物とジルコユアとから形成される複合酸化物であり 、更に好ましくは、セリウム、イットリウム、珪素、チタン及び硫黄からなる群から選ばれ る少なくとも 1種の金属の酸化物とジルコユアとから形成される複合酸化物である。
[0010] ジルコユアとともに用いられる上記他の金属酸化物は、反応性及び脂肪族一級アミ ン選択性の観点から、触媒全量に対し、該金属酸化物を構成する金属として 0. 01 〜25質量%含有され、より好ましくは 0. ;!〜 15質量%含有される。また、上記他の 金属酸化物とジルコユアの含有量割合は、反応性及び脂肪族一級アミン選択性の 観点から、他の金属酸化物を構成する金属/ジルコユア質量比として、 0. 001-0. 2カ好ましく、より好ましく (ま 0. 01-0. 1である。
[0011] 上記(B)ジルコユア複合酸化物は、例えば、 C.E.Horiらの AppLCatal.B16 (1998) 105に記載されている一般的な沈殿法にて調製することができる。以下に(B)ジルコ ユア複合酸化物の調製方法の一例として、ジルコユア一酸化セリウムの調製法につ いて説明する。
硝酸アンモニゥムセリウムと硝酸ジルコニウムをイオン交換水などの媒体に溶解させ た溶液に、アルカリを加えて pHを好ましくは 7〜12、より好ましくは 9〜; 12程度に調 整して加水分解させ、熟成することで、水酸化物として沈殿させる。上記アルカリにつ いてはその種類は特に制限はないが、ナトリウム、カリウムなどのアルカリ金属の炭酸 塩、水酸化物、アンモニア水、水酸化アンモユウム等が使用できる。得られた水酸化 物は、ろ過などにより固液分離し、得られた固形物を、十分に水洗した後、好ましくは
400。C〜800。C、より好ましくは 500。C〜700。Cの温度にて焼成を行う。
[0012] (C)金属表面処理ジルコユアは、ジルコユアを金属成分で表面処理してなるもので あり、脂肪族一級アミン選択性の観点から、モリブデン、カルシウム、セリウム、ランタ ン、アルミニウム、イットリウム、珪素、チタン、硫黄及びリンからなる群から選ばれる少 なくとも 1種の金属成分で表面処理したジルコユアであることが好ましぐカルシウム、 セリウム、ランタン、アルミニウム、イットリウム、珪素、チタン及び硫黄からなる群から選 ばれる少なくとも 1種の金属成分で表面処理したジルコユアであることがより好ましい
[0013] このような、表面処理は、前記金属成分を含浸法により、または金属塩溶液中にジ ルコユアを分散させることにより担持した後、焼成して行うこと力 Sできる。具体的には、 金属成分の表面処理は、該金属の硝酸塩、硫酸塩、炭酸塩、水酸化物、酸化物等 を用いて行うことができる。
上記表面処理に用いられる金属成分は、反応性及び脂肪族一級アミン選択性の 観点から、触媒全量に対し、金属成分としての金属で、 0. 0;!〜 25質量%含有され ること力 S好ましく、より好ましくは 0.;!〜 15質量%含有される。また、上記金属成分と ジルコユアの含有量割合 (金属成分としての金属/ジルコユア)は、反応性及び脂肪 族一級アミン選択性の観点から、質量比で 0. 001-0. 2が好ましぐより好ましくは 0 . 01—0. 1である。
[0014] 上記のような(C)金属表面処理ジルコユアは、例えば、 J.Yoriらの Appl.Catal.A129
(1995) 83に示されている一般的な手法にて調製を行うことができる。以下に(C)金 属表面処理ジルコユアの調製方法の一例として、ジルコユアと硫黄の複合酸化物で あるジノレコニァ 硫酸の調製法について説明する。
塩化酸化ジルコニウム八水和物をイオン交換水などの媒体に溶解させた溶液に、 アルカリを加えて pHを好ましくは 7〜12、より好ましくは 9〜; 12程度に調整して加水 分解させ、熟成することで、水酸化物として沈殿させる。前記アルカリについてはその 種類は特に制限はないが、ナトリウム、カリウムなどのアルカリ金属の炭酸塩、水酸化 物、アンモニア水、水酸化アンモニゥム等が使用できる。得られた水酸化物は、ろ過 などにより固液分離し、得られた固形物を、十分に水洗、乾燥後、 0. 5M硫酸水溶液 中に分散させ、再びろ過などにより固液分離し、乾燥後、好ましくは 400°C〜800°C
、より好ましくは 500°C〜700°Cの温度にて焼成を行う。
[0015] 上記(B)ジノレコニァ複合酸化物及び(C)金属表面処理ジノレコニァは、各々単独で 使用することもできる力 これらを 2種以上組み合わせて使用することもできる。
ルテニウム系触媒は、前記 (B)ジルコユア複合酸化物及び/又は(C)金属表面処 理ジルコユアに、(A)ルテニウム成分、好ましくは更に (D)第 VIII族金属成分を担持 させる。上記 (D)第 VIII族金属成分としては、具体的には、ニッケル、コバルト、パラ ジゥム、ロジウム、イリジウムが挙げられ、触媒活性や選択性向上の観点から、好まし くはニッケル成分が担持される。
[0016] 本発明において用いる触媒は、上記 (B)ジルコユア複合酸化物及び/又は(C)金 属表面処理ジルコユアに、ルテニウム成分、好ましくは更に第 VIII金属成分を加水分 解により担持させる方法を用いて得られる。
以下に当該触媒の調製法の一例について説明する。
まず、イオン交換水などの媒体に、前記の(B)ジルコユア複合酸化物及び/又は( C)金属表面処理ジルコユアを加えて懸濁させたのち、この懸濁液に (A)ルテニウム 化合物、及び好ましくは (B)成分としての第 VIII族金属成分源である金属化合物 (I) をイオン交換水などの媒体に溶解させた溶液を加え、攪拌しながら必要に応じて加 熱し、好ましくは 20°C〜95°C程度、より好ましくは 40°C〜80°Cの温度に調節する。
[0017] 前記 (A)ルテニウム化合物としては、例えば、ルテニウムの塩化物、硝酸塩、蟻酸 塩、アンモニゥム塩等が挙げられ、反応性及び脂肪族一級アミン選択性の観点から、 好ましくは塩化物である。 (B)成分としての VIII族金属成分源である金属化合物(I)と しては、例えば、塩化物、硝酸塩、硫酸塩、炭酸塩、蟻酸塩、アンモニゥム塩等が挙 げられる力 脂肪族一級アミン選択性の観点から、好ましくは、塩化物、硝酸塩、硫 酸塩である。
次いで、上記得られた懸濁液にアルカリを加えて pHを好ましくは 5〜12、より好まし くは 6〜; 11に調整して加水分解させ、熟成することで、ルテニウム成分、第二金属成 分をジルコユア複合酸化物及び/又は金属表面処理ジルコユアに担持させる。この 場合のアルカリについてはその種類は特に制限はないが、ナトリウム、カリウムなどの アルカリ金属の炭酸塩、水酸化物、アンモニア水、水酸化アンモニゥム等が使用でき
[0018] 上記ルテニウム系触媒は、反応性及び脂肪族一級アミン選択性の観点から、次に 還元処理を施すことが好ましい。具体的には、例えば、ホルムアルデヒド、ヒドラジン、 水素化ホウ素ナトリウム等の還元剤を加え、必要に応じて加熱し、好ましくは 20〜95 °C程度、より好ましくは 60°C〜95°Cの温度で還元処理を行う。その後、ろ過などによ り固液分離し、得られた固形物を、十分に水洗後、好ましくは 60°C以上の温度で常 圧又は減圧下で乾燥処理する。
[0019] 上記還元剤は担持されたルテニウム成分、及び第 VIII族金属成分を効果的に還元 するために、金属全量に対して、通常 1〜50倍モル程度、好ましくは 15〜40倍モル の割合で用いられる。
なお、前記還元処理は、必要に応じて行うことができ、ルテニウム成分等をアルカリ 加水分解で担持させた後、固液分離し、得られた固形物を十分に水洗して乾燥処理 してもよい。本発明においては、(B)ジルコユア複合酸化物及び/又は(C)金属表 面処理ジルコユアへのルテニウム成分、第 VIII族金属成分の担持を、前記のように加 水分解で行うことから、通常含浸法等において行われる高温での焼成処理、不活性 ガス雰囲気下での高温還元処理等の操作を必要とせず、触媒の調製が簡易となる。
[0020] このようにして得られたルテニウム系触媒は、十分な触媒活性、選択性及び経済性 などの観点から、ルテニウム成分を、担体を含めた触媒全量に対して、ルテニウム金 属として好ましくは 0. 0;!〜 25質量%、より好ましくは 0. ;!〜 20質量%、更に好ましく は;!〜 15質量%の割合で含有する。また、同様の観点から、第 VIII族金属成分を、担 体を含めた触媒全量に対して、第 VIII族金属として好ましくは 0. 0;!〜 25質量%、よ り好ましくは 0. ;!〜 20質量%、更に好ましくは 0. 2〜; 15質量%の割合で含有する。
[0021] 更に上記ルテニウム系触媒には、前記 (B)成分及び (C)成分において、ジルコ二 ァとともに用いられる前記金属酸化物を、反応性及び脂肪族一級アミン選択性の観 点から、触媒全量に対し、該金属成分を構成する金属として 0. 0;!〜 25質量%含有 すること力 S好ましく、より好ましくは 0. ;!〜 15質量%含有する。 触媒中におけるルテニウム金属の含有量は触媒を硫酸水素アンモニゥムで融解処 理後、 ICP発光分析で測定する。また、第 VIII族金属成分、ジルコユアと複合酸化物 を形成する金属、ジルコユアを表面処理する金属の含有量は、ジルコユア中に珪素 が含まな V、場合は触媒を湿式分解 (硫酸 過酸化水素)処理し、珪素を含む場合は 触媒をアルカリ溶融処理して、 ICP発光分析で測定する。
[0022] 本発明の脂肪族ァミンの製造方法においては、前記のようにして調製されたルテニ ゥム系触媒の存在下、原料の前記脂肪族アルコールを、アンモニア及び水素と接触 させることにより、脂肪族ァミン、好ましくは脂肪族 1級ァミン又は脂肪族 2級ァミンを 製造する。
この接触反応は、バッチタイプでは密閉式、流通式のいずれで行ってもよぐ又は 固定床流通式で行ってもよい。触媒の使用量は、反応方式にもよるが、良好な反応 性及び選択性を得る観点から、原料の脂肪族アルコールに対して、 0.;!〜 20質量 %が好ましぐ 0. ;!〜 10質量%がより好ましい。
[0023] また、良好な転化率や選択性及び触媒劣化の抑制の観点から、反応温度は、好ま しくは 100〜280°C程度、より好ましくは 180°C〜250°Cであり、反応圧力は、バッチ タイプの密閉式の場合、通常、常圧乃至 40MPa程度、好ましくは 0. 5〜30MPaで ある。また、バッチタイプの流通式の場合は、通常、常圧乃至 lOMPa程度、好ましく は 0·;!〜 5MPaである。
[0024] 原料成分としてのアンモニアと脂肪族アルコールのモル比(アンモニア/脂肪族ァ ルコール)は、ノ ツチタイプの密閉系の場合は、通常 0.;!〜 20程度、好ましくは 1〜1 5である。また、バッチタイプの流通式や固定床流通式の場合は、流通させるアンモ ユアは脂肪族アルコールに対して上記モル比で 0. 01-10,更に 0.;!〜 8が好まし い。
[0025] 水素と脂肪族アルコールのモル比(水素/脂肪族アルコール)につ V、ては、バッチ タイプの密閉系の場合は、初期の仕込み時で 0. 01-3. 0、更に 0. 02-2. 0が好 ましい。また、バッチタイプの流通式や固定床流通式の場合は、流通させる水素は脂 月方族ァノレコーノレに対して上記モノレ匕で 0. 01— 1. 0、更に 0. 02〜0. 8カ好ましレヽ。 但し、いずれの反応方式においても、反応進行中は当該範囲内に限定されない。 実施例
[0026] 以下に、本発明を実施例等を挙げて更に具体的に示すが、本発明は以下の実施 例、比較例によって限定されるものではない。
[0027] 調製例 1
セパラブルフラスコにジルコユア粉末 13. Ogをイオン交換水 220gに懸濁し、そこに 塩化ルテニウム 5水和物 0. 76gをイオン交換水 50gに溶解させた溶液を加えて攪拌 しながら 60°Cまで加熱した。その懸濁液(60°C)を 3時間攪拌した後、沈殿剤としてァ ンモユア水を滴下して懸濁液の pHを 11にして加水分解させ、 2時間熟成した。その 懸濁液に 37質量%ホルマリン溶液 3. 2gを加えて 90°Cまで加熱し、 1時間還元した 後、得られた粉末をろ過、水洗し、 60°C、 13kPaで乾燥して、触媒 1を約 13g得た。 触媒 1は、ジルコユアにルテニウムを 2質量%担持した触媒である。
[0028] 調製例 2
調製例 1におレ、て、ジノレコニァ粉末に代えてジノレコニァ 硫酸粉末を用いた以外 は同様にして、触媒 2を約 13g得た。触媒 2は、硫黄が表面に処理されたジルコユア にルテニウムを 2質量%担持した触媒である。
[0029] 調製例 3
セパラブルフラスコにジルコユア—硫酸粉末 13. Ogをイオン交換水 220gに懸濁し 、そこに塩化ルテニウム 5水和物 0. 38g、硫酸ニッケル 6水和物 0. 93gをイオン交換 水 50gに溶解させた溶液を加えて攪拌しながら 60°Cまで加熱した。その懸濁液(60 °C)を 3時間攪拌した後、沈殿剤としてアンモニア水を滴下して懸濁液の pHを 11にし て加水分解させ、 2時間熟成した。その懸濁液に 37質量%ホルマリン溶液 3. 2gを加 えて 90°Cまで加熱し、 1時間還元した後、得られた粉末をろ過、水洗し、 60°C、 13k Paで乾燥して、触媒 3を約 13g得た。触媒 3は、硫黄が表面に処理されたジルコユア にルテニウムを 1質量%、ニッケルを 1. 6質量%担持した触媒である。
[0030] 調製例 4
調製例 3において、ジノレコニァ 硫酸粉末に代えてジノレコニァ一酸化セリウム粉末 を用いた以外は同様にして、触媒 4を約 13g得た。触媒 4は、ジルコユア複合酸化物 である、ジルコニウムとセリウムの複合酸化物に、ルテニウムを 1質量%、ニッケルを 1 . 6質量%担持した触媒である。
[0031] 調製例 5
調製例 3において、ジノレコニァ 硫酸粉末に代えてジノレコニァ一酸化カルシウム粉 末を用いた以外は同様にして、触媒 5を約 13g得た。触媒 5は、ジルコユア複合酸化 物である、ジルコニウムとカルシウムの複合酸化物にルテニウムを 1質量%、ニッケノレ を 1. 6質量%担持した触媒である。
[0032] 調製例 6
調製例 3において、ジノレコニァ 硫酸粉末に代えてジノレコニァ一酸化ランタン粉末 を用いた以外は同様にして、触媒 6を約 13g得た。触媒 6は、ジルコユア複合酸化物 である、ジルコニウムとランタンの複合酸化物にルテニウムを 1質量0 /0、ニッケルを 1. 6質量%担持した触媒である。
[0033] 調製例 7
調製例 3において、ジノレコニァ 硫酸粉末に代えてジノレコニァ一酸化アルミニウム 粉末を用いた以外は同様にして、触媒 7を約 13g得た。触媒 7は、ジルコユア複合酸 化物である、ジルコニウムとアルミニウムの複合酸化物にルテニウムを 1質量%、ニッ ケルを 1. 6質量%担持した触媒である。
[0034] 調製例 8
調製例 3において、ジノレコニァ—硫酸粉末に代えてジノレコニァ—酸化イットリウム粉 末を用いた以外は同様にして、触媒 8を約 13g得た。触媒 8は、ジルコユア複合酸化 物である、ジルコニウムとイットリウムの複合酸化物にルテニウムを 1質量0 /0、ニッケノレ を 1. 6質量%担持した触媒である。
[0035] 調製例 9
調製例 3において、ジノレコニァ 硫酸粉末に代えてジノレコニアーシリカ粉末を用い た以外は同様にして、触媒 9を約 13g得た。触媒 9は、ジルコユア複合酸化物である 、ジルコニウムと珪素の複合酸化物にルテニウムを 1質量%、ニッケルを 1. 6質量0 /0 担持した触媒である。
[0036] 調製例 10
調製例 3において、ジノレコニァ 硫酸粉末に代えてジノレコニァ一酸化チタン粉末を 用いた以外は同様にして、触媒 10を約 13g得た。触媒 10は、ジルコユア複合酸化物 である、ジルコニウムとチタンの複合酸化物にルテニウムを 1質量0 /0、ニッケルを 1. 6 質量%担持した触媒である。
[0037] 調製例 11
調製例 3において、ルテニウムを 2質量%、ニッケルを 0. 6質量%担持した以外は 同様にして、触媒 11を約 13g得た。
調製例;!〜 11で用いた(B)ジルコユア複合酸化物、又は(C)金属表面処理ジルコ ユアの物性を第 1表に示す。
[0038] [表 1]
表 1
Figure imgf000011_0001
[0039] 実施例 1
内容積 500mlの電磁誘導回転攪拌式オートクレーブに、ステアリルアルコール 15 0g (0. 55mol)、調製例 2で得た触媒 2各 3g (2. 0質量%対原料アルコール)を仕込 み、アンモニア 47g (2. 76mol)と、全圧が 2· 3MPa (室温)になるように水素(0. 17 mol)を圧入した。次!/、で攪拌(lOOOrpm)を行って反応温度 220°Cまで昇温した。 同温度での初期最高圧力は 16MPaであった。全圧力を 16MPaで一定になるように 水素を連続追加して反応を行った。
得られた反応生成物は触媒をろ別した後、ガスクロマトグラフィーで組成分析を行つ た。反応率 93%における反応時間と、そのときのステアリルァミン、ジステアリルァミン の選択性を表 2に示す。
[0040] 比較例 1 実施例 1において、調製例 2で得た触媒 2に代えて、調製例 1で得た触媒 1を用!/ た以外は、同様にして反応を行い、同様に評価を行った。結果を表 2に示す。
[表 2] 表 2
Figure imgf000012_0001
[0042] 実施例 2〜9
内容積 500mlの電磁誘導回転攪拌式オートクレーブに、ステアリルアルコール 15 Og(0. 55mol)、調製例 3〜: 10で得た触媒 3〜; 10各 3g(2.0質量%対原料アルコー ノレ)を仕込み、アンモニア 47g (2· 76mol)と、全圧力 2. 3MPa (室温)になるように 水素(0· 17mol)を圧入した。次いで攪拌(lOOOrpm)を行って反応温度 220°Cまで 昇温した。同温度での初期最高圧力は 16MPaであった。全圧力を 16MPaで一定 になるように水素を連続追加して反応を行った。
得られた反応生成物は触媒をろ別した後、ガスクロマトグラフィーで組成分析を行つ た。反応率 93%における反応時間と、そのときのステアリルァミン、ジステアリルァミン の選択性を第 3表に示す。
尚、反応時間の観点からは、硫黄が表面に処理されたジルコニァ (触媒 3)が特に 優れていることが分力、る。
[0043] [表 3コ 表 3
反応時間 ステアリルァミン シ"ステアリ;レアミン
実施例 触媒
(h) (%) (%)
2 3 2.4 91.8 7.1
3 4 3.3 90.9 8.2
4 5 8.0 92.5 6.9
5 6 6.1 91.4 7.7
6 7 5.8 91.1 8.2
7 8 6.1 92.6 6.5
8 9 4.8 92.4 7.0
9 10 4.2 92.0 7.2 [0044] 実施例 10
内容積 500mlの電磁誘導回転攪拌式オートクレーブに、ステアリルアルコール 15 0g (0. 55mol)、調製例 11で得た触媒 11を 3g (2. 0質量%対原料アルコール)仕 込み、アンモニア 1. 0 MPa、水素 1. OMPaの分圧の混合ガスを、流量が KG— 2で 17から 20となるように出口で流量を制御して圧入した。次いで攪拌(lOOOrpm)を行 つて反応温度 220°Cまで昇温した。同温度での反応圧力は 2. OMPaで一定あった。 得られた反応生成物は触媒をろ別した後、ガスクロマトグラフィーで組成分析を行つ た。結果、反応時間 6. 5時間転化率 100%、このときの選択率は重量%でジステア リルアミン 48. 73 %、ステアリルアミン 13%であった。このように、脂肪族二級アミン を選択的に製造することも可能である。尚、アンモニアに対する水素の分圧を上げる ことで、二級アミン選択性を向上させることが出来る。
産業上の利用可能性
[0045] 本発明の脂肪族ァミンの製造方法は、脂肪族アルコールから、脂肪族 1級ァミン及 び脂肪族 2級アミンを高活性で高選択に製造することができる方法であり、得られる 脂肪族ァミンは、家庭用、工業用分野において重要な化合物であり、例えば、界面 活性剤、繊維処理剤等の製造原料などとして好適に用いられる。

Claims

請求の範囲
[1] (A)ルテニウム化合物を加水分解して、ルテニウム成分を (B)ジルコユア複合酸化 物及び (C)金属表面処理ジルコユアから選ばれる少なくとも一種に担持した触媒の 存在下、直鎖状又は分岐若しくは環を有する炭素数 6〜22の脂肪族アルコールを、 アンモニア及び水素と接触させて脂肪族ァミンを製造する、脂肪族ァミンの製造方法
[2] 前記触媒として (A)ルテニウム化合物と、(D)第 VIII族金属化合物から選ばれる少 なくとも 1種以上の金属化合物とを加水分解して、ルテニウム成分及び第 VIII族金属 成分を (B)ジルコユア複合酸化物及び (C)金属表面処理ジルコユアから選ばれる少 なくとも一種に担持した触媒を用いる、請求項 1記載の脂肪族ァミンの製造方法。
[3] 触媒中における第 VIII族金属成分の含有量が、金属として、触媒全量に対して 0.
0;!〜 25質量%である、請求項 2に記載の脂肪族ァミンの製造方法。
[4] 触媒中におけるルテニウム成分の含有量力 ルテニウム金属として、触媒全量に対 して 0. 0;!〜 25質量%である、請求項 1〜3のいずれかに記載の脂肪族ァミンの製 造方法。
[5] (B)ジルコユア複合酸化物力 モリブデン、カルシウム、セリウム、ランタン、アルミ二 ゥム、イットリウム、珪素、チタン、硫黄及びリンからなる群から選ばれる少なくとも 1種 の金属成分とジルコニウム成分とを含む複合酸化物である、請求項 1〜4のいずれか に記載の脂肪族ァミンの製造方法。
[6] (C)金属表面処理ジルコユア力 モリブデン、カルシウム、セリウム、ランタン、アルミ 二ゥム、イットリウム、珪素、チタン、硫黄及びリンからなる群から選ばれる少なくとも 1 種の金属成分で表面処理したジルコユアである、請求項 1〜4のいずれかに記載の 脂肪族ァミンの製造方法。
[7] (C)金属表面処理ジルコユア力 モリブデン、カルシウム、セリウム、ランタン、アルミ 二ゥム、イットリウム、珪素、チタン、硫黄及びリンからなる群から選ばれる少なくとも 1 種の金属成分を含浸法により、または金属塩溶液中にジルコユアを分散させることに より担持した後、焼成して得られる金属表面処理ジルコユアである、請求項;!〜 4及 び 6の V、ずれかに記載の脂肪族ァミンの製造方法。
[8] 触媒が、 60°C以上の温度で乾燥処理したものである、請求項;!〜 7のいずれかに 記載の脂肪族ァミンの製造方法。
[9] 調製した触媒を、ホルムアルデヒド、ヒドラジン及び水素化ホウ素ナトリウムから選ば れる少なくとも 1種の還元剤の存在下で還元処理する、請求項 1〜8のいずれかに記 載の脂肪族ァミンの製造方法。
[10] 脂肪族アルコールとアンモニア及び水素との接触反応を、 100〜280°Cの温度で 行う、請求項 1〜9のいずれかに記載の脂肪族ァミンの製造方法。
[11] 脂肪族アルコールとアンモニア及び水素との接触反応を、アンモニア/脂肪族ァ ルコールモル比で 0. ;!〜 20の条件で行う、請求項 1〜10のいずれかに記載の脂肪 族ァミンの製造方法。
[12] (A)ルテニウム化合物が加水分解され、ルテニウム成分が(B)ジルコユア複合酸化 物及び (C)金属表面処理ジルコユアから選ばれる少なくとも一種に担持された、脂 肪族アルコール力 の脂肪族ァミン製造用触媒。
[13] (A)ルテニウム化合物が加水分解され、ルテニウム成分が(B)ジルコユア複合酸化 物及び (C)金属表面処理ジルコユアから選ばれる少なくとも一種に担持された触媒 の、脂肪族アルコールからの脂肪族ァミンの製造への使用。
PCT/JP2007/071476 2006-12-15 2007-11-05 含窒素化合物の製造方法 WO2008072428A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BRPI0720208-3A BRPI0720208A2 (pt) 2006-12-15 2007-11-05 Processo para a produção de composto nitrogenado
EP07831209A EP2103593A4 (en) 2006-12-15 2007-11-05 PROCESS FOR PRODUCING NITROGEN COMPOUND
CN200780046299.2A CN101558034B (zh) 2006-12-15 2007-11-05 含氮化合物的制造方法
US12/518,888 US7947853B2 (en) 2006-12-15 2007-11-05 Process for production of nitrogenated compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-338815 2006-12-15
JP2006338815A JP4892329B2 (ja) 2006-12-15 2006-12-15 含窒素化合物の製造方法

Publications (1)

Publication Number Publication Date
WO2008072428A1 true WO2008072428A1 (ja) 2008-06-19

Family

ID=39511456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071476 WO2008072428A1 (ja) 2006-12-15 2007-11-05 含窒素化合物の製造方法

Country Status (6)

Country Link
US (1) US7947853B2 (ja)
EP (1) EP2103593A4 (ja)
JP (1) JP4892329B2 (ja)
CN (1) CN101558034B (ja)
BR (1) BRPI0720208A2 (ja)
WO (1) WO2008072428A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011004465A1 (de) 2010-09-10 2012-03-15 Evonik Degussa Gmbh Verfahren zur direkten Aminierung sekundärer Alkohole mit Ammoniak zu primären Aminen
EP2484659A1 (de) 2011-02-03 2012-08-08 Evonik Degussa GmbH Herstellung von in ihrer Hauptkette linearen primären Diaminen für Polyamidsynthesen
CN115463657A (zh) * 2022-09-19 2022-12-13 中国科学院兰州化学物理研究所 一种Zr基氧化物负载催化剂的制备方法及应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103270015B (zh) 2010-12-27 2015-03-11 花王株式会社 叔胺的制造方法
EP3057935B1 (en) * 2013-10-15 2018-12-26 Rhodia Operations Process for forming primary, secondary or tertiary amine via direct amination reaction
WO2022065142A1 (ja) 2020-09-25 2022-03-31 花王株式会社 3級アミン組成物の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07206788A (ja) * 1994-01-17 1995-08-08 Tosoh Corp アニリン類を製造する方法
JPH08243392A (ja) * 1995-02-28 1996-09-24 Basf Ag アルコール、ケトン及びアルデヒドのアミノ化のための触媒
JPH0987235A (ja) * 1995-09-22 1997-03-31 Kao Corp N,n−ジメチル−n−アルキルもしくはアルケニルアミンの製造方法
JPH10174874A (ja) 1996-10-31 1998-06-30 Basf Ag アルキレンオキシド、アルコール、アルデヒドおよびケトンのアミノ化用触媒
JPH10174875A (ja) 1996-10-31 1998-06-30 Basf Ag アルキレンオキシド、アルコール、アルデヒドおよびケトンのアミノ化用触媒、およびその製造方法
JP2001151734A (ja) * 1999-11-26 2001-06-05 Kao Corp 第3級アミンの製造法
JP2007176891A (ja) * 2005-12-28 2007-07-12 Kao Corp 含窒素化合物の製造方法
JP2007197422A (ja) * 2005-12-28 2007-08-09 Kao Corp 脂含窒素化合物の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19742911A1 (de) * 1997-09-29 1999-04-01 Basf Ag Verfahren zur Herstellung von Aminen
US7318915B2 (en) * 2002-01-25 2008-01-15 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Oxidation-reduction catalyst and its process of use
CA2419519A1 (en) * 2002-03-27 2003-09-27 Kuraray Co., Ltd. Process for producing diamines
BRPI0620821B1 (pt) * 2005-12-28 2016-06-21 Kao Corp processo para produção de uma amina alifática, bem como catalisador utilizado no referido processo e seu uso

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07206788A (ja) * 1994-01-17 1995-08-08 Tosoh Corp アニリン類を製造する方法
JPH08243392A (ja) * 1995-02-28 1996-09-24 Basf Ag アルコール、ケトン及びアルデヒドのアミノ化のための触媒
JPH0987235A (ja) * 1995-09-22 1997-03-31 Kao Corp N,n−ジメチル−n−アルキルもしくはアルケニルアミンの製造方法
JPH10174874A (ja) 1996-10-31 1998-06-30 Basf Ag アルキレンオキシド、アルコール、アルデヒドおよびケトンのアミノ化用触媒
JPH10174875A (ja) 1996-10-31 1998-06-30 Basf Ag アルキレンオキシド、アルコール、アルデヒドおよびケトンのアミノ化用触媒、およびその製造方法
JP2001151734A (ja) * 1999-11-26 2001-06-05 Kao Corp 第3級アミンの製造法
JP2007176891A (ja) * 2005-12-28 2007-07-12 Kao Corp 含窒素化合物の製造方法
JP2007197422A (ja) * 2005-12-28 2007-08-09 Kao Corp 脂含窒素化合物の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
C.E. HORI ET AL., APPL. CATAL., vol. B16, 1998, pages 105
J. YORI ET AL., APPL. CATAL., vol. A129, 1995, pages 83
See also references of EP2103593A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011004465A1 (de) 2010-09-10 2012-03-15 Evonik Degussa Gmbh Verfahren zur direkten Aminierung sekundärer Alkohole mit Ammoniak zu primären Aminen
EP2484659A1 (de) 2011-02-03 2012-08-08 Evonik Degussa GmbH Herstellung von in ihrer Hauptkette linearen primären Diaminen für Polyamidsynthesen
DE102011003595A1 (de) 2011-02-03 2013-06-13 Evonik Degussa Gmbh Herstellung von in ihrer Hauptkette linearen primären Diaminen für Polyamidsynthesen
DE102011003595B4 (de) * 2011-02-03 2014-04-17 Evonik Degussa Gmbh Herstellung von in ihrer Hauptkette linearen primären Diaminen für Polyamidsynthesen
CN115463657A (zh) * 2022-09-19 2022-12-13 中国科学院兰州化学物理研究所 一种Zr基氧化物负载催化剂的制备方法及应用
CN115463657B (zh) * 2022-09-19 2023-09-29 中国科学院兰州化学物理研究所 一种Zr基氧化物负载催化剂的制备方法及应用

Also Published As

Publication number Publication date
JP2008150312A (ja) 2008-07-03
CN101558034B (zh) 2012-12-26
JP4892329B2 (ja) 2012-03-07
EP2103593A4 (en) 2012-10-03
CN101558034A (zh) 2009-10-14
US7947853B2 (en) 2011-05-24
EP2103593A1 (en) 2009-09-23
US20100029988A1 (en) 2010-02-04
BRPI0720208A2 (pt) 2014-01-21

Similar Documents

Publication Publication Date Title
WO2008072428A1 (ja) 含窒素化合物の製造方法
WO2008043060A2 (en) Highly dispersed nickel hydrogenation catalysts and methods for making the same
JP2010532245A5 (ja)
CN105727962B (zh) 用于己二酸二甲酯制己二醇的催化剂及其制备方法和应用
JP2000176287A (ja) メタノ―ル合成用触媒及びメタノ―ルの合成方法
JP4972314B2 (ja) 含窒素化合物の製造方法
JP4641497B2 (ja) 脂肪族アルコールのアミノ化触媒及びその触媒を用いたアミンの製造方法
JP5038700B2 (ja) 脂含窒素化合物の製造方法
JP2001501130A (ja) アミノアルコールをアミノカルボン酸へと脱水素するかまたはエチレングリコール(誘導体)をオキシカルボン酸へと脱水素するための触媒、その製造法および該触媒の使用
US8247611B2 (en) Process for producing nitrogen-containing compounds
JP4972315B2 (ja) 含窒素化合物の製造方法
CN107519882B (zh) 一种醋酸环己酯加氢催化剂的制备方法及所制备的加氢催化剂和醋酸环己酯的加氢方法
JP7106797B2 (ja) Pdナノ粒子を付着させるための改善された方法
CN112619652B (zh) 合成气制低碳烯烃的催化剂及其制备方法
JP2002263497A (ja) メタノール合成用触媒
AU2018219673B2 (en) Start-up procedure for a fischer-tropsch process
CN108947851B (zh) 一种5-氨基-1-戊醇的合成方法
CN112533697A (zh) 铁-镁二氧化硅负载的催化剂、其制备方法及其用途
JP3143744B1 (ja) 酢酸メチルおよび酢酸合成用触媒、その製造方法並びに該触媒による酢酸メチルおよび酢酸の合成法
JP4170562B2 (ja) アルキレンオキサイド付加反応用触媒
JP3970489B2 (ja) N,n−ジメチル−n−アルキルアミンの製法
CN114643062B (zh) 一种合成气制低碳烯烃催化剂及其制备方法和应用
JP2002126531A (ja) メタンの水蒸気改質反応用触媒及びメタンの水蒸気改質方法
JP2001151734A (ja) 第3級アミンの製造法
JP2002172326A (ja) メタンの水蒸気改質反応用触媒及びメタンの水蒸気改質方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780046299.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831209

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007831209

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12518888

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0720208

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090609