WO2008069227A1 - 流量制御装置の検定方法 - Google Patents

流量制御装置の検定方法 Download PDF

Info

Publication number
WO2008069227A1
WO2008069227A1 PCT/JP2007/073457 JP2007073457W WO2008069227A1 WO 2008069227 A1 WO2008069227 A1 WO 2008069227A1 JP 2007073457 W JP2007073457 W JP 2007073457W WO 2008069227 A1 WO2008069227 A1 WO 2008069227A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
flow
control device
control
verification
Prior art date
Application number
PCT/JP2007/073457
Other languages
English (en)
French (fr)
Inventor
Tadahiro Yasuda
Original Assignee
Horiba Stec, Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Stec, Co., Ltd. filed Critical Horiba Stec, Co., Ltd.
Priority to US12/517,796 priority Critical patent/US8104323B2/en
Priority to KR1020097005173A priority patent/KR101444964B1/ko
Priority to CN200780044787XA priority patent/CN101563663B/zh
Priority to JP2008548305A priority patent/JP5002602B2/ja
Publication of WO2008069227A1 publication Critical patent/WO2008069227A1/ja

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/03Control of flow with auxiliary non-electric power
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow

Definitions

  • the present invention relates to a verification method for a flow rate control device that controls the flow rate of a fluid such as gas or liquid in a semiconductor manufacturing process or the like.
  • thermal MFC101 thermal mass flow controller
  • control valve 101b a control valve 101b
  • differential pressure MFM102 differential pressure mass meter
  • control valve 101b of the thermal type MFC101 to be verified is controlled so that the flow rate in the flow path between the control valve 101b and the differential pressure type MFM102 is a constant flow rate.
  • the test is performed by comparing the output value of the sensor unit of the thermal MFC101 to be verified with the output value of the reference differential pressure type MFM102.
  • the thermal MFC 101 controls the flow path (dead volume) from the thermal MFC 101 to the differential pressure MFM 102 at a constant flow rate. As shown in Fig. 2, it takes a certain time to reach the target pressure. For this reason, there is a disadvantage that a long waiting time until the start of the test occurs and the test time becomes longer.
  • the occurrence of such a waiting time is a ROR (Rate of Rise) type using pressure, temperature, volume, and time, and a diagnostic type based on an integrated mass flow rate of a laminar flow element resistor and a gas state equation (Ga s Law check of Integrated Flow Equation (G—LIFE) type.
  • ROR Rate of Rise
  • G—LIFE gas state equation
  • the present invention has been made paying attention to such problems, and the main purpose thereof is to control the flow rate so that the time required for verification including waiting time can be reduced as much as possible and accurate verification can be performed.
  • the purpose is to provide a method for testing the device.
  • the flow rate control apparatus verification method is provided with a valve, a flow rate measurement unit that measures a fluid flow rate that passes through the valve, and an actual flow rate that is measured by the flow rate measurement unit.
  • a flow rate control device verification method comprising a valve control mechanism for controlling the valve so as to achieve a target flow rate, wherein the flow rate control device to be detected and a reference are provided on a flow path through which a fluid to be flow rate controlled flows.
  • the flow control device to be used is set in series in this order from the upstream, and the flow control device to be verified is set to the non-flow control state in which the valve is almost fully opened, and the reference flow control is performed.
  • the actual flow rate force by the flow rate control device to be verified is whether or not it is within the predetermined range of the actual flow rate by the reference flow rate control device. The judgment is made special.
  • the flow control device to be verified is brought into a non-flow control state in which the valve is almost fully open, so that the reference flow control from the flow control device to be verified is used.
  • the pressure in the flow path (dead volume) to the apparatus can be increased at a stroke, and the reference flow rate control apparatus can be instantaneously set to a target pressure at which the operation is stable. Therefore, the time required for verification including waiting time is reduced as much as possible, and accuracy is high. Can be tested.
  • the flow rate of the fluid is controlled at a plurality of points by a reference flow rate control device, and the flow rate control device that is the subject of verification at each point. It is possible to determine whether or not the actually measured flow rate is within a predetermined range of the actually measured flow rate of the reference flow control device.
  • a pressure control device that controls the pressure of the flow path to be constant is provided further upstream of the flow rate control device to be verified or between the flow rate control devices, it will be subject to verification. The operation of the flow control device is stabilized and the verification can be performed smoothly.
  • a desirable aspect of the present invention is that which uses a flow rate control device that is different from the flow rate control device to be verified as a reference flow rate control device.
  • a thermal type flow control device is used for verification and a differential pressure type is used for the standard flow control device
  • the pressure type is more stable than the thermal type.
  • it can fully perform its function by making the downstream side a negative pressure (vacuum pressure).
  • the thermal type is superior to the pressure type in terms of price and operating conditions. Therefore, by combining these, it is possible to build a low-priced and high-performance gas system by making the best use of the advantages of both types.
  • the pressure change range is wide when the valve is installed downstream.
  • the pressure change range can be limited by setting the valve upstream and the flow measurement unit to the chamber one side (vacuum side), enabling more accurate verification. Become.
  • the reference flow rate control device includes a non-linear resistor provided on the flow path and a pressure sensor that measures a differential pressure of the non-linear resistor, and is measured by the pressure sensor. It is a differential pressure type that measures the flow rate based on pressure, and the nonlinear antibody has a characteristic that the differential pressure differential value of the flow rate flowing through the resistor decreases as the differential pressure between the two ends decreases. For example, in the case of a laminar flow element, the flow rate can be verified with high accuracy in a small flow rate region. Strictly speaking, the pressure sensor measures the absolute pressure at both the upstream and downstream ends of the non-linear resistor and obtains the differential pressure therefrom.
  • a linear resistor is provided downstream of the reference flow control device, and the differential pressure between both ends of the linear resistor is also measured at the time of determination at each point.
  • the flow characteristic of the linear resistor is calculated from the correspondence between each differential pressure and the actual flow rate measured by the reference flow rate control device.
  • the actual flow rate by the flow control device to be verified is calculated from the flow characteristics of the linear resistor. It is sufficient to determine whether or not the calculated flow rate is within a predetermined range.
  • a valve As a desirable aspect of the verification system for the flow rate control device of the present invention, a valve, a flow rate measurement unit for measuring a fluid flow rate passing through the valve, and an actual flow rate measured by the flow rate measurement unit are given.
  • a flow control device verification system comprising a valve control mechanism for controlling the valve so as to achieve a specified target flow rate, and a flow path through which a fluid to be flow controlled flows, and a verification provided on the flow path
  • the target flow control device and the The reference flow control device provided in series on the downstream side of the flow control device to be verified and the flow control device valve to be verified are fixed in a fully open state and the flow control device is in a non-control state.
  • the flow rate measurement signal output from each flow rate control device is received, and the actual measurement indicated by the flow rate measurement signal of the flow rate control device to be detected
  • An information processing device that outputs whether or not it is possible to determine whether or not the flow rate is within a predetermined range of the actual flow rate indicated by the flow rate measurement signal of the reference flow rate control device.
  • a valve, a flow rate measuring unit for measuring a fluid flow rate passing through the valve, and an actual flow rate measured by the flow rate measuring unit are given a target flow rate.
  • a semiconductor manufacturing apparatus configured to perform verification of a flow rate control device including a valve control mechanism for controlling the valve so as to be a process chamber for semiconductor manufacturing, and a semiconductor to the process chamber.
  • the flow rate control device and the valve of the flow control device to be verified are in a fully unopened flow rate control state, and the fluid flow rate is adjusted to a predetermined flow rate by the reference flow control device.
  • the flow rate measurement signal output from each flow rate control device is received, and the actual flow rate indicated by the flow rate measurement signal of the flow rate control device to be verified is the reference flow rate measurement signal of the flow rate control device.
  • an information processing apparatus that outputs whether or not it is within a predetermined range of the actually measured flow rate shown.
  • a flow rate measuring device to be verified having a flow rate measuring unit that measures a fluid flow rate is measured, and a flow rate of fluid passing through the valve is measured.
  • Verification method using a standard flow control device having a flow rate measurement unit and a valve control mechanism for controlling the valve so that the actual flow rate measured by the flow rate measurement unit becomes a given target flow rate
  • the flow rate measuring device to be verified and the reference flow rate control device are provided in series in this order from the upstream side on the flow path through which the fluid to be controlled by the flow rate flows.
  • the actual flow rate by the flow rate measuring device to be verified is Examples include determining whether or not the measured flow rate is within a predetermined range by the reference flow rate control device.
  • the flow control device to be verified is brought into the flow non-control state in which the valve is almost fully open.
  • the dead volume pressure to the reference flow control device can be increased at once, and the reference flow control device can be instantaneously adjusted to the target pressure at which its operation is stable. Therefore, the time required for the test including the waiting time can be reduced as much as possible, and the test can be performed with high accuracy.
  • FIG. 1 is a schematic diagram showing a semiconductor manufacturing apparatus provided with a test system according to an embodiment of the present invention.
  • FIG. 2 is a device configuration diagram of the verification system in the same embodiment.
  • FIG. 3 is a flow characteristic diagram showing the relationship between the flow rate of the nonlinear resistor and the differential pressure in the same embodiment.
  • FIG. 4 is a functional configuration diagram of the information processing apparatus of the verification system according to the embodiment.
  • FIG. 5 is a flowchart for explaining the operation related to the verification of the information processing apparatus in the embodiment.
  • FIG. 6 is a diagram for explaining a pressure state when the verification system in the embodiment is operated.
  • FIG. 7 is a diagram showing the equipment configuration of an inspection system in a second embodiment of the present invention.
  • FIG. 8 is a flow characteristic diagram showing the relationship between the flow rate of the linear resistor and the differential pressure in the same embodiment.
  • FIG. 9 is a functional configuration diagram of the information processing apparatus of the verification system in the embodiment.
  • FIG. 10 is a schematic diagram showing an assay system according to another embodiment of the present invention.
  • FIG. 11 Device configuration diagram of a conventional verification system.
  • FIG. 12 is a diagram for explaining a pressure state when a conventional verification system is operated.
  • the verification system A of the flow control device of the present embodiment is, for example, a flow control device that controls the flow of various gases supplied to the process chamber C as part of the semiconductor manufacturing device P. It is used for the test of.
  • the verification system A is, for example, a gas supply line la, lb,... (Hereinafter collectively referred to as “gas supply line 1”) through which various semiconductor manufacturing gases such as process gas and etching gas flow.
  • a chamber line 2 and test lines 3a, 3b, 3c (hereinafter collectively referred to as “test line 3”) provided in parallel downstream from the junction where the gas supply line 1 joins, and a gas supply Flow control devices 4a, 4b, ...
  • flow control devices 4 to be verified provided on line 1 and standards provided on verification line 3 respectively.
  • 5a, 5b, 5c (hereinafter collectively referred to as “reference flow control device 5”) and pressure control provided on the gas supply line 1 upstream of the flow control device 4 to be verified Devices 6a, 6 ⁇ (hereinafter “pressure control” And collectively determine whether the actual flow rate of the flow rate control device 4 to be verified is within the predetermined range of the actual flow rate of the reference flow rate control device 5 And an information processing device 7 that performs the processing.
  • the gas supply line 1 is not shown to accommodate various gases on the upstream side! /, Connected to the gas cylinders respectively, and the downstream side is joined at the junction lx. It is configured so that it can be supplied to chamber C.
  • the chamber line 2 is a line for supplying various gases flowing from the gas supply line 1 to the process channel.
  • a valve 2V is installed to prevent various gases from flowing through the chamber line 2. This valve 2V is opened and closed by the information processing device 7.
  • a plurality (three in this embodiment) of test lines 3 are provided in parallel on the downstream side of the junction lx.
  • Each verification line 3 is provided with a reference flow rate control device 5 having a different flow rate range that can be verified, that is, a different flow rate control range.
  • the verification line 3a is provided with a flow rate control device 5a that serves as a reference for measuring (controlling) the flow rate of 20 to 200 SCCM, and the verification line 3b has a flow rate of 200 to 2, OOOSCCM. Can be measured (controlled)
  • the standard flow control device 5b is placed, and the standard flow control device 5c that can measure (control) the flow rate of 2,000-20,000S CCM is placed on the verification line 3c! .
  • Valves 3Va, 3Vb, and 3Vc are provided on the upstream side of these reference flow rate control devices 5.
  • a valve 3Vx is provided to prevent various gases from flowing in the verification line 3 during non-verification.
  • the flow rate control device 4 to be verified is a thermal mass flow rate control device.
  • the flow rate control device 4 to be verified is driven by a command signal from the outside, and when a set flow rate is given as the command signal, local feedback control is performed internally to determine the set flow rate.
  • open-loop control can be performed to make the valve fully open or fully closed.
  • the internal configuration includes an internal flow path 40, a flow rate sensor unit 41 for measuring the flow rate of the fluid flowing in the internal flow path 40, and the flow rate sensor unit 41 provided on the downstream side, for example.
  • a flow control valve 42 and a flow control processing means 43 are provided. Each part will be described more specifically.
  • the internal flow path 40 includes an introduction port and a discharge port that are connected to the gas supply line 1, and a hollow thin tube and a bypass portion that are once branched between these ports and then joined together. Is.
  • the flow rate sensor unit 41 includes, for example, a pair of thermal sensors (thermal sensors) provided in a hollow thin tube, and the instantaneous flow rate of the fluid is electrically generated by the thermal sensors.
  • the signal is detected as a signal, and the electric signal is amplified by an internal electric circuit and output as a flow rate measurement signal having a value corresponding to the detected flow rate.
  • the flow rate control valve 42 is configured such that, for example, the valve opening degree can be changed by an actuator using a piezo element.
  • the actuator is driven by an opening degree control signal from the flow rate control processing means 43, and the valve opening degree is adjusted to an opening degree corresponding to the value of the opening degree control signal.
  • the flow control processing means 43 communicates with a CPU or internal memory (not shown), a digital or analog electric circuit having an A / D converter, a D / A converter, etc., a flow control valve 42, etc. Communication interface, input interface, and the like. Then, it receives a command signal from the outside such as the information processing device 7 and interprets the contents thereof. For example, when the command signal indicates a set flow rate, local feedback control is performed so that the set flow rate is obtained. Specifically, an opening control signal for controlling the valve opening of the flow control valve 42 is generated from the deviation so that the detected flow detected by the flow sensor unit 41 becomes the set flow, and the opening control signal Is output to the flow control valve 42.
  • the reference flow rate control device 5 is a differential pressure type mass flow rate control device here, and is provided on the internal flow path 50 through which the gas flows and the flow path of the internal flow path 50 as shown in FIG.
  • the flow control valve 51, the differential pressure generating resistor 52, the pressure sensors 53 and 54 for measuring the pressure at each end of the resistor 52, and the gas flowing in the internal flow path 50 on the inlet side And a flow rate control processing means 56.
  • the internal flow path 50 is opened with the upstream end serving as an introduction port and the downstream end serving as a lead-out port.
  • the introduction port is provided with a pneumatic valve, a pressure regulator, and a gas cylinder (regularity, displacement) via external piping. (Not shown) is connected!
  • the flow control valve 51 is configured such that the opening degree of the flow control valve 51 can be changed by an actuator such as a piezo element, and is opened from the flow control processing means 56.
  • the actuator is driven, and the flow rate of the gas is controlled by adjusting the valve opening degree according to the value of the opening degree control signal.
  • the resistor 52 includes an inlet for introducing the gas flowing from the flow rate control valve 51 and an outlet for discharging the gas, and generates a differential pressure between these inlets.
  • a laminar flow element having a characteristic that the differential pressure differential value of the flow rate flowing through the resistor 52 becomes smaller as the differential pressure becomes smaller.
  • the inlet side sensor 53 detects the pressure of the gas flowing through the internal flow path 50 on the primary side of the resistor 52, that is, the inlet side.
  • the outlet side sensor 54 detects the pressure of the gas flowing through the internal channel 50 on the secondary side of the resistor 52, that is, the outlet side.
  • this The pressure sensors 53 and 54 are absolute pressure type pressure sensors.
  • the flow rate control processing means 56 communicates with a CPU or internal memory (not shown), a digital or analog electric circuit having an A / D converter, a D / A converter, etc., a flow rate control valve 51, etc. It is composed of a communication interface, an input interface, and the like. Then, by cooperating the CPU and its peripheral devices according to the program stored in the internal memory, the flow control processing means 56 is based on the pressure values detected by the sensors 53 and 54.
  • a flow rate calculation unit for calculating the mass flow rate of the gas
  • a deviation calculation unit for calculating a deviation between the mass flow rate of the gas obtained by the flow rate calculation unit and the flow rate set value
  • the deviation A control value calculation unit that calculates a feedback control value for feedback control of the flow control valve 51 by performing at least a proportional operation (including integration operation, differentiation operation, etc.) on the deviation obtained by the calculation unit (Not shown) generates an opening control signal having a value based on the feedback control value obtained by the control value calculation unit, and outputs the opening control signal to the flow control valve 51.
  • the function of the control signal output unit are configured to be at least achieved.
  • the pressure control device 6 is composed of, for example, a regulator, and performs feedback control so that the pressure in the downstream line of the pressure control device 6 becomes the target pressure.
  • the target pressure value can be set by a command signal from the information processing device 7.
  • the information processing device 7 includes a CPU or internal memory (not shown), a digital or analog electric circuit having an A / D converter, a D / A converter, etc., a flow rate control device 4 to be verified, and a reference flow rate. It consists of a communication interface for communicating with each part of the control device 5, an input interface, a display device such as a liquid crystal display, etc., and may be dedicated, or part or all of such as a personal computer A general-purpose computer may be used. In addition, it may be configured not to use a CPU but to function as the following parts only with an analog circuit, and a part of the functions may be controlled by a control device (not shown) in the semiconductor manufacturing apparatus P or each flow control. It may be composed of a plurality of devices connected to each other by wire or wireless, such as being combined with the flow rate control processing means of the devices 4 and 5, which need not be physically integrated.
  • the information processing apparatus 7 has a predetermined program stored in the internal memory. As shown in FIG. 4, when the CPU and its peripheral devices cooperate with each other according to the program, at least the functions of the state control unit 7a, the signal reception unit 7b, the determination unit 7c, etc. are exhibited. Hereinafter, each part will be described in detail.
  • the state control unit 7a outputs a command signal for verification with a verification start command by a predetermined operation of the input interface as a trigger, and the flow rate control device 4 to be verified and the reference flow rate control device 5 Each of the pressure control devices 6 performs an operation based on the command signal. The specific verification operation will be described later.
  • the signal receiving unit 7b receives a flow measurement signal for verification from the flow rate sensor unit 41 of the flow rate control device 4 to be verified, and also receives a reference flow rate from the flow rate calculation unit of the flow rate control device 5 as a reference. A flow rate measurement signal is received.
  • the determination unit 7c compares the verification flow measurement signal received by the signal reception unit 7b with the reference flow measurement signal, and the actual flow rate indicated by the verification flow measurement signal is the reference flow measurement. It is determined whether or not the measured flow rate indicated by the signal is within a predetermined range, and the determination result is output.
  • the output mode of the determination result can be appropriately set according to the mode of implementation such as screen output or print output.
  • the verification is started by operating the input interface of the information processing apparatus 7 or the like.
  • test start command is transmitted to the state control unit 7a of the information processing device 7.
  • the state control unit 7a outputs a command signal triggered by the verification start command, and sets the flow rate control device 4 to be verified to a flow rate non-control state in which the valve 42 is fully opened (step S
  • the flow rate control device 4 to be verified in this non-flow rate control state functions only as a mass flow meter.
  • the state control unit 7a also outputs a command signal to the pressure control device 6, and the pressure in the flow path 3 on the downstream side of the pressure control device 6 is constant included in the command signal.
  • the pressure control device 6 is caused to perform local feedback control so as to obtain the target pressure (step S2).
  • the state control unit 7a outputs a command signal including the flow rate set value to the reference flow rate control device 5, and provides local feedback control to the reference flow rate control device 5.
  • the flow control device 5 serving as a reference is controlled by the flow control processing unit 56 based on the deviation between the flow set value indicated by the command signal and the actually measured flow rate. (Step S4).
  • the signal receiving unit 7b receives the flow measurement signal for verification from the flow rate sensor unit 41 of the flow rate control device 4 to be verified, and from the flow rate calculation unit of the flow rate control device 5 that is the reference.
  • the determination unit 7c compares the received flow measurement signal for verification with the reference flow measurement signal. Then, it is determined whether or not the actual flow rate indicated by the verification flow rate measurement signal is within a predetermined range of the actual flow rate indicated by the reference flow rate measurement signal, and the determination result is output (step S5).
  • the flow rate of the fluid is controlled at a plurality of points having different values by the reference flow rate control device 5, and at each point, the actual flow rate of the flow rate control device 4 as the verification target is determined.
  • the determination unit 7c determines whether or not the measured flow rate of the reference flow rate control device 5 is within a predetermined range (steps S3, S5, and S7). For example, if the flow rate control device 4a to be verified is 100 SCCM or 50 SCCM flow rate verification, the flow rate control device 5a that is the standard that can measure (control) the flow rate of 20 to 200 SCCM is 50% or 25%. It may be determined by operating.
  • the flow rate control device 5b which can measure (control) the flow rate of 200-2 000 SCCM, operates at 50%. And then make a decision.
  • flow control can be performed by arbitrarily selecting a plurality of reference flow control devices with different flow control ranges.
  • the flow rate control device 4 to be verified is set to the non-flow rate control state, and the fluid flow rate is set to a predetermined value by the reference flow rate control device 5. Since the flow rate verification is performed with the flow rate controlled, as shown in Fig. 6, the pressure in the flow path (dead volume) from the flow rate control device 4 to be verified to the reference flow rate control device 5 is adjusted as shown in Fig. 6.
  • the flow rate control device 5 serving as a reference can be instantaneously set to a target pressure at which its operation is stabilized. Therefore, waiting time The time required for the test including this can be reduced as much as possible, and the test can be performed with high accuracy.
  • the pressure between the flow control device 4 to be verified and the reference flow control device 5 is controlled to be constant by the pressure control device 6, the operation of the flow control device 4 to be verified is stabilized. The test can be performed smoothly.
  • the flow rate of the fluid is controlled at a plurality of points by the reference flow rate control device 5, and the measured flow rate of the flow rate control device 4 to be verified is the reference flow rate control device at each point. Whether or not the measured flow rate is within a predetermined range of 5 is determined. Therefore, since the linearity and zero point of the flow rate can be known, more accurate judgment can be made.
  • a reference flow control device 5 having a flow control valve 51 disposed upstream of the pressure sensors 53, 54 is used, and the sensors 53, 54 are connected to one side (vacuum side) of the chamber. Therefore, the pressure change range can be limited, and more accurate verification can be performed.
  • each verification line 3 is provided with a reference flow rate control device 5 having a different flow rate range that can be verified, in other words, a different flow rate control range.
  • a reference flow rate control device 5 having a different flow rate range that can be verified, in other words, a different flow rate control range.
  • the linear resistor 8 has a linear relationship between the flow rate flowing through the linear resistor 8 and the differential pressure between the two ends, and the effective flow rate capacity is larger than that of the nonlinear resistor 52.
  • reference sign BL is a bypass line for guiding fluid to the linear resistor 8 without going through the reference flow rate control device when the linear resistor 8 is used for verification.
  • the information processing apparatus 7 has a function as a flow rate characteristic calculation unit 7d in addition to the state control unit 7a, the signal reception unit 7b, and the determination unit 7c.
  • the information processing device 7 uses the flow rate as in the first embodiment. Compare the flow measurement signal for verification with the reference flow measurement signal at each point where the actual flow rate indicated by the flow measurement signal for verification is within the specified range of the actual flow rate indicated by the reference flow measurement signal. Determine whether or not.
  • the flow rate characteristic calculation unit 7d also measures the differential pressure between both ends of the linear resistor 8,
  • the flow characteristics of the linear resistor 8 are calculated from the corresponding relationship between each differential pressure and the measured flow rate by the flow rate control device 5 serving as the reference, and stored in the memory.
  • This flow rate characteristic can be derived from the force obtained in the small flow rate region, and the relationship between the flow rate flowing through the linear resistor 8 and the differential pressure in the large flow rate region.
  • the differential pressure between both ends of the linear resistor 8 has a secondary side pressure of 0 (that is, a vacuum), so the primary side pressure can be measured by measuring the primary side pressure.
  • the outlet side sensor 54 of the reference flow rate control device 5 is used as the sensor to be determined.
  • a dedicated pressure sensor may be provided at both ends of the linear resistor 8.
  • the determination unit 7c determines whether or not the actually measured flow rate by the flow rate control device 4 to be verified is within a predetermined range of the calculated flow rate calculated from the flow rate characteristics of the linear resistor 8. judge. The determination is made at a plurality of different flow points as in the small flow area.
  • the flow rate control device in which the valve 51 of the reference flow control device 5 is fully opened and the flow rate is not controlled, and the fluid is the reference. It may be configured to be guided to the linear resistor 8 through 5 [0069] If this is the case, the verification using the linear resistor 8 cannot guarantee the verification accuracy in the small flow rate region, but by using the nonlinear resistor 52 having the flow rate characteristic described above, The flow rate verification can be performed with high accuracy in a small flow rate region.
  • the linear resistor 8 used as a reference in the verification of the large flow rate region has its flow characteristics changed due to changes in the fluid type, changes over time due to the influence of corrosive gas, etc. For example, the flow characteristics must be measured separately each time calibration is performed.
  • the flow characteristic of the linear resistor 8 is simultaneously calculated and grasped at the time of verification in the small flow area. Since this is done, it is possible to perform laborious testing in a short time.
  • the flow control device to be verified is not limited to a thermal type! /.
  • the reference flow control device is not limited to the differential pressure type.
  • the pressure control device is installed upstream of the flow control device to be verified! /, But between the flow control device to be verified and the reference flow control device. Make sure to set it up.
  • a plurality of flow rate control devices to be verified can be arranged in series on the gas supply line.
  • a plurality (three in FIG. 5) of flow control devices 4 to be verified are arranged in series on the gas supply line 1, and the flow control devices to be verified are arranged in series. It can be determined at a time whether the measured flow rate at the device 4 is within a predetermined range of the measured flow rate indicated by the reference flow control device 5. By doing so, the number of verifications per unit time can be increased, and for example, it is useful for verification at the time of factory shipment. At this time, the plurality of flow rate control devices 4 to be verified arranged in series on the gas supply line may be different.
  • a plurality of verification lines are provided, and on each of the verification lines, a reference flow rate control device having a different flow rate range that can be verified, in other words, a different flow rate control range, is arranged. May be one.
  • the verification target may be a flow rate measuring device including a flow rate measuring unit that measures the fluid flow rate.
  • the time required for verification including waiting time can be reduced as much as possible, and accurate verification can be performed.
  • the flow control device to be verified is brought into the flow non-control state in which the valve is almost fully open, so that the flow control device from the verification target to the reference flow control device
  • the dead volume pressure can be increased at once, and the reference flow rate control device can be instantaneously set to a target pressure at which its operation is stable. Therefore, the time required for the test including the waiting time can be reduced as much as possible, and the test can be performed with high accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Flow Control (AREA)
  • Measuring Volume Flow (AREA)

Abstract

 待ち時間も含め検定に要する時間を可及的に少なくし、精度良い検定を行える流量制御装置の検定方法を提供する。そのために、流量制御対象となる流体が流れる流路上に、検定対象となる流量制御装置(4)及び基準となる流量制御装置(5)を、上流からこの順で直列に設けておき、前記検定対象となる流量制御装置(4)をそのバルブがほぼ全開状態にある流量非制御状態にするとともに、前記基準となる流量制御装置(5)によって流体流量を所定流量に制御した状態で、前記検定対象となる流量制御装置(4)による実測流量が、前記基準となる流量制御装置(5)による実測流量の所定範囲内にあるか否かを判定するようにした。 

Description

明 細 書
流量制御装置の検定方法
技術分野
[0001] 本発明は、半導体製造プロセス等においてガスや液体などの流体の流量を制御す る流量制御装置の検定方法等に関するものである。
背景技術
[0002] 従来、半導体ウェハ等の製造において、チャンバに供給するガスの流量を制御す る流量制御装置が用いられて!/、る。この流量制御装置の流量制御精度に問題があ ると、半導体ウェハに製品不良が発生することから、流量制御装置が設計通りに流量 を制御することができるか否かを検証するため、定期的、或いは不定期的に流量検 定が実施されている。
[0003] 具体的にこの検定は次のようにして行われる。
[0004] 例えば、センサ部 101a、コントロールバルブ 101b等を備える熱式の質量流量制御 装置(以下、熱式 MFC101と呼ぶ)について、流量検定を行う場合は、図 11に示す ように、その検定対象となる熱式 MFC101の下流側に基準となる差圧式のマスフ口 一メータ(以下、差圧式 MFM102と呼ぶ)を、上流側にレギユレータを、それぞれ直 歹 IJに設ける。ここで、差圧式 MFM102は、差圧式マスフローコントローラ 103のバル ブ 103Vは動作させず、マスフローメータ機能のみを動作させることで実現している。
[0005] そして、検定対象となる熱式 MFC101のコントロールバルブ 101bで、このコント口 ールバルブ 101bと差圧式 MFM102との間の流路における流量が一定流量となるよ うに制御し、差圧式 MFM102の動作が安定する目標圧力に達してから、検定対象と なる熱式 MFC101のセンサ部の出力値と、基準の差圧式 MFM102の出力値とを 比較することにより検定を行うようにしている。
[0006] なお、上述したような従来技術は、検定現場において適宜実施されるものであり、 特許文献などとして開示されてレ、るものは見あたらなレ、。
発明の開示
発明が解決しょうとする課題 [0007] しかしながら、従来の構成では、熱式 MFC101が、当該熱式 MFC101から差圧式 MFM102までの流路(デットボリューム)を一定流量で制御するため、差圧式 MFM 102における圧力上昇は、図 12に示すように、一定の傾きとなり、前記目標圧力に達 するまでに時間を要する。このため、検定の開始するまでの長い待ち時間が発生し、 、ては検定時間が長くなる不都合がある。
[0008] このような待ち時間の発生は、圧力、温度、容積、時間を用いた ROR (Rate of ri se)型及び層流素子抵抗体の質量流量積算値と気体状態方程式による診断型 (Ga s Law check of Integrated Flow Equation ( G— LIFE )型)の [¾ί方で生 し ·ο。
[0009] 本発明は、このような課題に着目してなされたものであって、主たる目的は、待ち時 間も含め検定に要する時間を可及的に少なくし、精度良い検定を行える流量制御装 置の検定方法を提供することにある。
課題を解決するための手段
[0010] すなわち、本発明に係る流量制御装置の検定方法は、バルブと、そのバルブを通 過する流体流量を測定する流量測定部と、その流量測定部で測定した実測流量が、 与えられた目標流量となるように前記バルブを制御するバルブ制御機構とを備えた 流量制御装置の検定方法であって、流量制御対象となる流体が流れる流路上に、検 定対象となる流量制御装置及び基準となる流量制御装置を、上流からこの順で直列 に設けておき、前記検定対象となる流量制御装置をそのバルブがほぼ全開状態にあ る流量非制御状態にするとともに、前記基準となる流量制御装置によって流体流量 を所定流量に制御した状態で、前記検定対象となる流量制御装置による実測流量 力 前記基準となる流量制御装置による実測流量の所定範囲内にあるか否かを判定 するようにしたことを特 ί毁とする。
[0011] このようなものによれば、検定対象となる流量制御装置を、そのバルブがほぼ全開 状態にある流量非制御状態にするので、検定対象となる流量制御装置から基準とな る流量制御装置までの流路(デッドボリューム)の圧力を一気に上昇させることができ 、基準となる流量制御装置を、その動作が安定する目標圧力に瞬時にすることがで きる。したがって、待ち時間も含め検定に要する時間を可及的に少なくし、精度良い 検定を行える。
[0012] なお、より正確な判定を行えるようにするには、基準となる流量制御装置によって流 体の流量を複数ポイントで制御するようにし、各ポイントにおいて、前記検定対象とな る流量制御装置の実測流量が、前記基準となる流量制御装置の実測流量の所定範 囲内にあるか否かをそれぞれ判定するようにして!/、ること力 S望ましレ、。
[0013] 前記流路の圧力を一定に制御する圧力制御装置を、検定対象となる流量制御装 置のさらに上流又は流量制御装置の間に設けるようにしているのであれば、検定対 象となる流量制御装置の動作を安定させて、検定を円滑に行える。
[0014] 本発明の望ましい態様としては、基準となる流量制御装置に、検定対象となる流量 制御装置とは流量測定原理の異なるものを用いるようにしたものが挙げられる。例え ば、検定対象となる流量制御装置に熱式のものを用い、基準となる流量制御装置に 差圧式のものを用いるようにしているのであれば、圧力式は、熱式に比べて安定性に 優れているうえ、下流側を負圧 (真空圧)にすることでその機能を充分に発揮できる。 一方、熱式は、圧力式に比べ、価格や動作条件で優れている。このため、これらを組 み合わせることで、両方式の長所を活力、して低価格で高性能なガスシステムの構築 が可能となる。
[0015] 基準となる流量制御装置に、その流量測定部よりも上流にバルブが配置されたもの を用いるようにしているのであれば、バルブを下流側に設置した場合は圧力の変化 範囲が広範囲となり高精度な校正が困難となるが、バルブを上流側にし、流量測定 部をチャンバ一側 (真空側)にすることで圧力変化範囲を限定することができ、より高 精度な検定が可能となる。
[0016] 前記基準となる流量制御装置が、前記流路上に設けられた非線形抵抗体と、その 非線形抵抗体の差圧を測定する圧力センサと、を具備し、前記圧力センサで測定さ れた圧力に基づいて流量を測定する差圧式のものであり、なおかつ、前記非線形抵 抗体が、その両端間の差圧が小さくなるほど、当該抵抗体を流れる流量の差圧微分 値が小さくなる特性を有した例えば層流素子であると、小流量領域において、高い精 度での流量検定を行うことができる。なお、前記圧力センサとしては、厳密には、非線 形抵抗体の上流側及び下流側の両端の絶対圧を測定し、そこから差圧を求めるよう にしたものが好ましいが、下流側が真空である場合のように固定圧である場合は、上 流側だけに圧力センサを配置した構成でもよレ、。また逆に上流側が固定圧である場 合は、下流側だけに圧力センサを配置した構成でもかまわな!/、。
[0017] 一方、このような非線形抵抗体の場合、大流量領域での誤差が大きくなることから、 大流量領域では、内部を流れる流量と両端間の差圧との関係が線形であって、有効 流量容量が前記非線形抵抗体よりも大き!/、オリフィスなどの線形抵抗体を用いて検 定を行うことが望ましい。
[0018] しかし、大流量領域の検定にお!/、て基準となる、オリフィスなどの線形抵抗体の特 性は、流体の種類変更や、腐食性ガスの影響などによる経時変化などによって変化 するため、例えば、単純に小流量領域と大流量領域とを組み合わせた広い流量レン ジでの検定を行う場合には、検定の都度、線形抵抗体の校正を行う必要が生じて、 検定の手間が非常に煩雑になる。
[0019] そこで、この手間を解消し、短時間でのワイドレンジ検定を可能とするためには、小 流量領域での検定のときに、同時に線形抵抗体の校正(又は流量特性の把握)を行 つてしまえばよい。
[0020] すなわち、基準となる流量制御装置の下流に線形抵抗体を設けておき、前記各ポ イントにおける判定の際に、前記線形抵抗体の両端間の差圧をも測定することによつ て、それら各差圧と前記基準となる流量制御装置による実測流量との対応関係から、 当該線形抵抗体の流量特性を算出してしまう。
[0021] そして、基準となる流量制御装置の規定流量を超えた領域、つまり大流量領域に おいては、前記検定対象となる流量制御装置による実測流量が、前記線形抵抗体 の流量特性から算出される算出流量の所定範囲内にあるか否かを判定するようにす れば'よい。
[0022] 本発明の流量制御装置の検定システムの望ましい態様としては、バルブと、そのバ ルブを通過する流体流量を測定する流量測定部と、その流量測定部で測定した実 測流量が、与えられた目標流量となるように前記バルブを制御するバルブ制御機構 とを備えた流量制御装置の検定システムであって、流量制御対象となる流体が流れ る流路と、その流路上に設けた検定対象となる流量制御装置と、当該流路上であつ て前記検定対象となる流量制御装置の下流側に直列に設けた基準となる流量制御 装置と、検定対象となる流量制御装置のバルブがほぼ全開状態に固定された流量 非制御状態にあり、基準となる流量制御装置によって流体流量が所定流量に制御さ れている状態において、各流量制御装置から出力される流量測定信号を受信し、検 定対象となる流量制御装置の流量測定信号が示す実測流量が、基準となる流量制 御装置の流量測定信号が示す実測流量の所定範囲内にあるか否かを判定可能に 出力する情報処理装置と、を備えてレ、るもの力 S挙げられる。
[0023] 本発明の半導体製造装置の望ましい態様としては、バルブと、そのバルブを通過 する流体流量を測定する流量測定部と、その流量測定部で測定した実測流量が、与 えられた目標流量となるように前記バルブを制御するバルブ制御機構とを備えた流 量制御装置の検定を行なえるように構成した半導体製造装置であって、半導体製造 のためのプロセスチャンバと、前記プロセスチャンバへ半導体製造用の流体を供給 する流路と、前記流路上に設けた検定対象となる流量制御装置と、当該流路上であ つて前記検定対象となる流量制御装置の下流側に直列に設けた基準となる流量制 御装置と、検定対象となる流量制御装置のバルブがほぼ全開状態に固定された流 量非制御状態にあり、基準となる流量制御装置によって流体流量が所定流量に制御 されている状態において、各流量制御装置から出力される流量測定信号を受信し、 検定対象となる流量制御装置の流量測定信号が示す実測流量が、基準となる流量 制御装置の流量測定信号が示す実測流量の所定範囲内にあるか否かを判定可能 に出力する情報処理装置と、を備えているものが挙げられる。
[0024] 本発明の流量測定装置の検定方法の望ましい態様としては、流体流量を測定する 流量測定部を備えた検定対象の流量測定装置を、バルブと、そのバルブを通過する 流体流量を測定する流量測定部と、その流量測定部で測定した実測流量が、与えら れた目標流量となるように前記バルブを制御するバルブ制御機構とを備えた基準の 流量制御装置を用いて検定する検定方法であって、流量制御対象となる流体が流 れる流路上に、前記検定対象の流量測定装置及び前記基準の流量制御装置を、上 流からこの順で直列に設けておき、前記基準の流量制御装置によって流体流量を所 定流量に制御した状態で、前記検定対象の流量測定装置による実測流量が、前記 基準の流量制御装置による実測流量の所定範囲内にあるか否かを判定するようにし たものが挙げられる。
発明の効果
[0025] 以上に説明したような本発明によれば、検定対象となる流量制御装置を、そのバル ブがほぼ全開状態にある流量非制御状態にするので、検定対象となる流量制御装 置から基準となる流量制御装置までのデッドボリュームの圧力を一気に上昇させるこ とができ、基準となる流量制御装置を、その動作が安定する目標圧力に瞬時にする こと力 Sでさる。したがって、待ち時間も含め検定に要する時間を可及的に少なくし、精 度良い検定を行える。
図面の簡単な説明
[0026] [図 1]本発明の一実施形態に係る検定システムを備えた半導体製造装置を示す模式 図。
[図 2]同実施形態における検定システムの機器構成図。
[図 3]同実施形態における非線形抵抗体の流量と差圧との関係を示す流量特性図。
[図 4]同実施形態における検定システムの情報処理装置の機能構成図。
[図 5]同実施形態における情報処理装置の検定に係る動作を説明するためのフロー チャート。
[図 6]同実施形態における検定システムを動作させたときの圧力状態を説明するため の図。
[図 7]本発明の第 2実施形態における検定システムの機器構成図。
[図 8]同実施形態における線形抵抗体の流量と差圧との関係を示す流量特性図。
[図 9]同実施形態における検定システムの情報処理装置の機能構成図。
[図 10]本発明の他の実施形態に係る検定システムを示す模式図。
[図 11]従来の検定システムの機器構成図。
[図 12]従来の検定システムを動作させたときの圧力状態を説明するための図。
発明を実施するための最良の形態
[0027] 以下、本発明の種々の実施形態に係る流量制御装置の検定システム Aについて 図面を参照して説明する。 [0028] <第 1実施形態〉
本実施形態の流量制御装置の検定システム Aは、図 1に示すように、例えば、半導 体製造装置 Pの一部として、そのプロセスチャンバ Cに供給する各種ガスの流量制御 を行う流量制御装置の検定に用いられるものである。具体的にこの検定システム Aは 、例えばプロセスガスやエッチングガスなどの半導体製造用の各種ガスが流れるガス 供給ライン la、 lb、 · · ·(以下、「ガス供給ライン 1」と総称する)と、このガス供給ライン 1が合流する合流点より下流側に並列して設けたチャンバ用ライン 2及び検定用ライ ン 3a、 3b、 3c (以下、「検定用ライン 3」と総称する)と、ガス供給ライン 1上にそれぞれ 設けた検定対象となる流量制御装置 4a、 4b、 · · ·(以下、「検定対象となる流量制御 装置 4」と総称する)と、検定用ライン 3上にそれぞれ設けた基準となる流量制御装置 5a、 5b、 5c (以下、「基準となる流量制御装置 5」と総称する)と、検定対象となる流量 制御装置 4の上流側のガス供給ライン 1上に設けた圧力制御装置 6a、 6 · ·(以下、 「圧力制御装置 6」と総称する)と、各流量制御装置を所定動作させ検定対象となる 流量制御装置 4の実測流量が基準となる流量制御装置 5による実測流量の所定範 囲にあるか否かを判定する情報処理装置 7と、を具備して成るものである。
[0029] 以下、各部を詳述する。
ガス供給ライン 1は、上流側を各種ガスを収容する図示しな!/、ガスボンベにそれぞ れ接続し、下流側を合流部 lxで合流したものであり、単独のガスまたは混合ガスを、 プロセスチャンバ Cへ供給できるように構成されている。
[0030] チャンバ用ライン 2は、ガス供給ライン 1から流れてくる各種ガスを、プロセスチャン ノ^に供給するためのラインである。検定時には、このチャンバ用ライン 2に各種ガス が流れないようにするバルブ 2Vを設けている。このバルブ 2Vは、情報処理装置 7に よって開閉制徒 Pされるようにしてレ、る。
[0031] 検定用ライン 3は、前記合流部 lxの下流側に並列して複数 (本実施形態では 3本) 設けている。各検定用ライン 3には、検定できる流量範囲の異なる、すなわち流量制 御範囲の異なる、基準となる流量制御装置 5を配置している。具体的には、検定用ラ イン 3aには、 20〜200SCCMの流量を測定 (制御)できる基準となる流量制御装置 5aを配置し、検定用ライン 3bには、 200〜2, OOOSCCMの流量を測定(制御)でき る基準となる流量制御装置 5bを配置し、検定用ライン 3cには、 2, 000-20, 000S CCMの流量を測定 (制御)できる基準となる流量制御装置 5cを配置して!/、る。そして 、これら基準となる流量制御装置 5の上流側にはバルブ 3Va、 3Vb、 3Vcを設けてい る。さらに、非検定時には、この検定用ライン 3に各種ガスが流れないようにするバル ブ 3Vxを設けている。これらバルブ 3Va〜3Vc及び 3Vxは、情報処理装置 7によって 開閉制卸されるようにしてレヽる。
[0032] 検定対象となる流量制御装置 4は、本実施形態では、熱式の質量流量制御装置で ある。この検定対象となる流量制御装置 4は、外部からの指令信号によって駆動され るものであり、前記指令信号として設定流量を与えられた場合には、内部でローカル フィードバック制御を行ってその設定流量となるようにバルブを制御するほか、同指 令信号の内容によっては、オープンループ制御を行い、バルブを全開あるいは全閉 状態にすることもできる。内部構成としては、図 2に示すように、内部流路 40と、その 内部流路 40内を流れる流体の流量を測定する流量センサ部 41と、その流量センサ 部 41の例えば下流側に設けた流量制御バルブ 42と、流量制御処理手段 43とを備 えている。より具体的に各部を説明する。
[0033] 内部流路 40は、詳細は図示しないが、ガス供給ライン 1に接続される導入ポート及 び導出ポートと、これらポート間で一旦分岐したのち合流する中空細管及びバイパス 部とを備えたものである。
[0034] 流量センサ部 41は、やはり詳細は図示しないが、例えば、中空細管に設けられた 一対の感熱センサ(サーマルセンサ)を備えたものであって、流体の瞬時流量がこの 感熱センサによって電気信号として検出され、内部電気回路によってその電気信号 が増幅等されて、検出流量に応じた値を有する流量測定信号として出力される。
[0035] 流量制御バルブ 42は、やはり詳細は図示しないが、例えば、その弁開度をピエゾ 素子を利用したァクチユエータによって変化させ得るように構成したものである。ァク チュエータは、流量制御処理手段 43からの開度制御信号によって駆動され、弁開度 は、その開度制御信号の値に応じた開度に調整される。
[0036] 流量制御処理手段 43は、図示しない CPUや内部メモリ、 A/D変換器、 D/A変 換器等を有したデジタル乃至アナログ電気回路、流量制御バルブ 42等と通信するた めの通信インタフェース、入力インタフェースなどで構成されたものである。そして、情 報処理装置 7などの外部からの指令信号を受信してその内容を解釈し、例えば、指 令信号が設定流量を示す場合は、その設定流量となるようにローカルフィードバック 制御する。具体的には、流量センサ部 41で検出する検出流量が、前記設定流量と なるように、偏差から流量制御バルブ 42の弁開度を制御する開度制御信号を生成し 、その開度制御信号を流量制御バルブ 42に対して出力する。
[0037] 基準となる流量制御装置 5は、ここでは差圧式の質量流量制御装置であり、図 2に 示すように、ガスが流れる内部流路 50と、この内部流路 50の流路上に設けた流量制 御バルブ 51と、差圧発生用の抵抗体 52と、その抵抗体 52の各端の圧力をそれぞれ 測定する圧力センサ 53、 54と、導入口側の内部流路 50内を流れるガスの温度を検 知する温度センサ 55と、流量制御処理手段 56とを具備してなるものである。
[0038] 内部流路 50は、上流端を導入ポート、下流端を導出ポートとしてそれぞれ開口する もので、導入ポートには、外部配管を介して空圧弁、圧力レギユレータおよびガスボ ンべ(レ、ずれも図示せず)が接続されて!/、る。
[0039] 流量制御バルブ 51は、詳細は図示しないが、例えば、その弁開度をピエゾ素子な どよりなるァクチユエータによって変化させ得るように構成したものであって、流量制 御処理手段 56から開度制御信号を与えられることによって前記ァクチユエ一タを駆 動し、その開度制御信号の値に応じた弁開度に調整してガスの流量を制御するもの である。
[0040] 抵抗体 52は、流量制御バルブ 51から流れてくるガスを導入する導入口及び導出 する導出口を備えて成り、これら導入出口間に差圧を発生させるものである。この実 施形態では、抵抗体 52として、例えば、図 3に示すように、差圧が小さくなるほど、当 該抵抗体 52を流れる流量の差圧微分値が小さくなる特性を有した層流素子などの 非線形抵抗体を用いてレ、る。
[0041] 圧力センサとしては、入口側センサ 53と出口側センサ 54との 2つがある。入口側セ ンサ 53は、抵抗体 52の一次側、すなわち導入口側の内部流路 50を流れるガスの圧 カを検知するものである。出口側センサ 54は、抵抗体 52の二次側、すなわち導出口 側の内部流路 50を流れるガスの圧力を検知するものである。本実施形態では、これ ら圧力センサ 53、 54に、絶対圧型の圧力センサを用いている。
[0042] 流量制御処理手段 56は、図示しない CPUや内部メモリ、 A/D変換器、 D/A変 換器等を有したデジタル乃至アナログ電気回路、流量制御バルブ 51等と通信するた めの通信インタフェース、入力インタフェースなどで構成されたものである。そして、前 記内部メモリに記憶しているプログラムにしたがって CPUやその周辺機器を協働動 作させることによって、この流量制御処理手段 56が、各センサ 53、 54が検知した圧 力値に基づいてガスの質量流量を算出する流量算出部(図示しない)と、この流量算 出部で求めたガスの質量流量と流量設定値との偏差を算出する偏差算出部(図示し ない)と、この偏差算出部で求めた偏差に少なくとも比例演算 (その他に積分演算、 微分演算などを含めてもょレ、)を施して、流量制御バルブ 51をフィードバック制御す るフィードバック制御値を算出する制御値算出部(図示しない)と、この制御値算出部 で求めたフィードバック制御値に基づく値を有する開度制御信号を生成し、その開度 制御信号を流量制御バルブ 51に対して出力するバルブ制御信号出力部(図示しな い)としての機能を少なくとも発揮するように構成している。
[0043] 圧力制御装置 6は、例えばレギユレータからなり、当該圧力制御装置 6の下流側の ラインの圧力を目標圧力となるようにフィードバック制御するものである。前記目標圧 力の値は、情報処理装置 7からの指令信号により設定できるようにしている。
[0044] 情報処理装置 7は、図示しない CPUや内部メモリ、 A/D変換器、 D/A変換器等 を有したデジタル乃至アナログ電気回路、検定対象となる流量制御装置 4及び基準 となる流量制御装置 5の各部と通信するための通信インタフェース、入力インタフエ一 ス、液晶ディスプレイ等の表示装置などで構成されたもので、専用のものであってもよ いし、一部又は全部にパソコン等の汎用コンピュータを利用するようにしたものであつ てもよい。また、 CPUを用いず、アナログ回路のみで次の各部としての機能を果たす ように構成してもよいし、その一部の機能を半導体製造装置 Pにおける制御装置(図 示省略)や各流量制御装置 4、 5の流量制御処理手段と兼用するなど、物理的に一 体である必要はなぐ有線乃至無線によって互いに接続された複数の機器からなるも のであってもよい。
[0045] しかしてこの情報処理装置 7は、前記内部メモリに所定のプログラムが格納されて おり、そのプログラムにしたがって CPUやその周辺機器が協働動作することによって 、図 4に示すように、状態制御部 7a、信号受信部 7b、判定部 7cなどとしての機能を 少なくとも発揮する。以下、各部を詳述する。
[0046] 状態制御部 7aは、入力インタフェースの所定操作などによる検定開始命令をトリガ として、検定のための指令信号を出力し、検定対象となる流量制御装置 4、基準とな る流量制御装置 5、圧力制御装置 6に、それぞれ当該指令信号に基づく動作を行わ せるものである。具体的な検定動作にっレ、ては後述する。
[0047] 信号受信部 7bは、検定対象となる流量制御装置 4の流量センサ部 41から、検定用 の流量測定信号を受信するとともに、基準となる流量制御装置 5の流量算出部から、 基準の流量測定信号を受信するものである。
[0048] 判定部 7cは、信号受信部 7bで受信した、検定用の流量測定信号と基準の流量測 定信号とを比較し、検定用の流量測定信号の示す実測流量が、基準の流量測定信 号の示す実測流量の所定範囲内にあるか否力、を判定し、判定結果を出力するもの である。判定結果の出力態様は、画面出力や印刷出力など実施態様に応じて適宜 に設定できる。
[0049] 次に、以上のように構成される流量制御装置の検定システム Aについて、その検定 を行う手順を、図 5を参照して説明する。
[0050] まず、情報処理装置 7の入力インタフェースを操作するなどして検定を開始する。
すると、その検定開始命令が情報処理装置 7の状態制御部 7aに伝わる。
[0051] 状態制御部 7aは、この検定開始命令をトリガとして、指令信号を出力し、検定対象 となる流量制御装置 4を、バルブ 42が全開となる流量非制御状態にする(ステップ S
D oすなわち、この流量非制御状態において検定対象となる流量制御装置 4は、マ スフローメータとしての機能のみを営む。
[0052] またその一方で、状態制御部 7aは、圧力制御装置 6にも指令信号を出力し、該圧 力制御装置 6の下流側の流路 3の圧力を、前記指令信号に含まれる一定の目標圧 力となるように、圧力制御装置 6にローカルフィードバック制御させる(ステップ S2)。
[0053] そして、当該状態制御部 7aは、基準となる流量制御装置 5に対し、流量設定値を 含んだ指令信号を出力し、基準となる流量制御装置 5にローカルフィードバック制御 を行わせて、この基準となる流量制御装置 5を流量制御状態(指令信号の示す流量 設定値と実際に測定された流量測定値との偏差に基づいて流量制御処理手段 56が PID制御等する状態)にする(ステップ S4)。
[0054] 次に、信号受信部 7bが、検定対象となる流量制御装置 4の流量センサ部 41から検 定用の流量測定信号を受信するとともに、基準となる流量制御装置 5の流量算出部 から基準の流量測定信号を受信すると、判定部 7cが、受信した検定用の流量測定 信号と基準の流量測定信号とを比較する。そして、検定用の流量測定信号の示す実 測流量が、基準の流量測定信号の示す実測流量の所定範囲内にあるか否かを判定 し、判定結果を出力する (ステップ S5)。
[0055] なお、この実施形態では、基準となる流量制御装置 5によって流体の流量を異なる 値の複数ポイントで制御するようにし、各ポイントにおいて、前記検定対象となる流量 制御装置 4の実測流量が、前記基準となる流量制御装置 5の実測流量の所定範囲 内にあるか否かを、前記判定部 7cがそれぞれ判定するようにしている(ステップ S3、 S5、 S7)。例えば、検定対象となる流量制御装置 4aについて、 100SCCM又は 50 SCCMの流量検定をする場合は、 20〜200SCCMの流量を測定(制御)できる基 準となる流量制御装置 5aを 50%又は 25%で動作させて判定すれば良い。また、そ の検定対象となる流量制御装置 4aについて、 1 , 000SCCMの流量検定をする場合 は、 200-2, 000SCCMの流量を測定 (制御)できる基準となる流量制御装置 5bを 50%で動作させて判定すれば良い。このように、一つの検定対象となる流量制御装 置について、流量制御範囲の異なる複数の基準となる流量制御装置を、任意に選択 して流量検定を行うことができ、複数ポイントで各実測流量を比較することでより幅広 い流量レンジで正確な流量検定の判定結果を得られる。
[0056] しかして、このように構成した流量制御装置の検定システム Aによれば、検定対象と なる流量制御装置 4を流量非制御状態にし、基準となる流量制御装置 5によって流 体流量を所定流量に制御した状態で流量検定を行うようにしているため、図 6に示す ように、検定対象となる流量制御装置 4から基準となる流量制御装置 5までの流路( デッドボリューム)の圧力を一気に上昇させることができ、基準となる流量制御装置 5 を、その動作が安定する目標圧力に瞬時にすることができる。したがって、待ち時間 も含め検定に要する時間を可及的に少なくし、精度良い検定を行える。また、検定対 象となる流量制御装置 4と基準となる流量制御装置 5との間の圧力を、圧力制御装置 6で一定に制御するため、検定対象となる流量制御装置 4の動作を安定させて、検 定を円滑に行える。
[0057] また、基準となる流量制御装置 5によって流体の流量を複数ポイントで制御するよう にし、各ポイントにおいて、前記検定対象となる流量制御装置 4の実測流量が、前記 基準となる流量制御装置 5の実測流量の所定範囲内にあるか否かをそれぞれ判定 するようにしている。したがって、流量のリニアリティ及びゼロ点がわかるようになるの で、より正確な判定を行える。
[0058] さらに、検定対象となる流量制御装置 4に熱式のものを用い、基準となる流量制御 装置 5に差圧式のものを用いるため、低価格で高性能なガスシステムの構築が可能 となる。
[0059] 加えて、基準となる流量制御装置 5に、その圧力センサ 53、 54よりも上流に流量制 御バルブ 51が配置されたものを用い、センサ 53、 54をチャンバ一側(真空側)にして いるため、圧力変化範囲を限定することができ、より高精度な検定が可能となる。
[0060] また、検定用ライン 3を複数設け、それぞれの検定用ライン 3に、検定できる流量範 囲の異なる、換言すると流量制御範囲の異なる、基準となる流量制御装置 5を配置し ているため、ユーザが検定したい流量範囲での検定を、精度良く行うことができる。
[0061] <第 2実施形態〉
次に本発明の第 2実施形態について説明する。なお、本実施形態において、前記 第 1実施形態に対応する構成要素には同一の符号を付している。
[0062] この第 2実施形態では、基準となる流量制御装置 5を 1つだけ用いるとともに、図 7 に示すように、基準となる流量制御装置 5の下流に線形抵抗体 (ここではオリフィス) 8 を設けている。この線形抵抗体 8は、図 8に示すように、その内部を流れる流量と両端 間の差圧との関係が線形であって、有効流量容量が前記非線形抵抗体 52よりも大き いものである。なお、図 7中、符号 BLは、線形抵抗体 8を用いて検定を行うときに、基 準となる流量制御装置を介さずに線形抵抗体 8に流体を導くためのバイパスラインで ある。 [0063] また、情報処理装置 7は、図 9に示すように、状態制御部 7a、信号受信部 7b、判定 部 7cに加えて、流量特性算出部 7dとしての機能を具備している。
[0064] 次に、この第 2実施形態での検定の際の情報処理装置 7の動作につき説明する。
[0065] まず、基準となる流量制御装置 5による規定流量内、すなわち検定のための十分な 精度で流量をコントロールできる小流量領域では、前記第 1実施形態同様、情報処 理装置 7が、流量の異なる各ポイントで、検定用の流量測定信号と基準の流量測定 信号とを比較し、検定用の流量測定信号の示す実測流量が、基準の流量測定信号 の示す実測流量の所定範囲内にあるか否力、を判定する。
[0066] このとき、情報処理装置 7の判定部 7cによる各ポイントでの判定と同時に、前記流 量特性算出部 7dが、前記線形抵抗体 8の両端間の差圧をも測定することによって、 それら各差圧と前記基準となる流量制御装置 5による実測流量との対応関係から、当 該線形抵抗体 8の流量特性を算出し、メモリに記憶する。この流量特性は小流量領 域で得られたものである力、これから大流量領域での当該線形抵抗体 8を流れる流 量と差圧との関係を導くことができる。
なお、この実施形態においては、線形抵抗体 8の両端間の差圧は、その二次側圧 力が 0 (つまり真空)であるため、一次側圧力を測定すればよぐその一次側圧力を測 定するセンサとして、前記基準となる流量制御装置 5の出口側センサ 54を用いるよう にしている。もちろん線形抵抗体 8の両端に専用の圧力センサを設けても構わない。
[0067] 次に、切換弁 SVを切り換えて、流体がバイパスライン BLを介して線形抵抗体 8に 導力、れるようにする。
そして、基準となる流量制御装置 5による制御規定流量を超えた領域、つまり大流 量領域での検定を行う。具体的には、前記検定対象となる流量制御装置 4による実 測流量が、前記線形抵抗体 8の流量特性から算出される算出流量の所定範囲内に あるか否かを、前記判定部 7cが判定する。判定は、前記小流量領域と同様、複数の 異なる流量ポイントで行う。
[0068] なお、バイパスラインは必ずしも必要ではなぐ大流量領域での検定においては、 基準となる流量制御装置 5のバルブ 51を全開にした流量非制御状態とし、流体が基 準となる流量制御装置 5を介して線形抵抗体 8に導かれるように構成しても構わない [0069] しかしてこのようなものであれば、線形抵抗体 8を用いた検定では、小流量領域に おいて検定精度を担保できないところ、前述した流量特性を有する非線形抵抗体 52 を用いることにより、小流量領域での高い精度での流量検定を行うことができる。
[0070] 一方、このような特性の非線形抵抗体 52の場合、大流量領域での誤差が大きくな る恐れが生じるが、この大流量領域では、線形抵抗体 8を用いていることから、大流 量領域での精度の高い検定をも担保でき、結果として非常に広い流量範囲に亘つて 、精度よく検定を行うことができる。
[0071] しかも、大流量領域の検定に基準として用いられる線形抵抗体 8は、流体の種類変 更ゃ、腐食性ガスの影響などによる経時変化などによってその流量特性が変化する ため、本来であれば、校正の都度、流量特性を別途測定しなければならないところ、 この第 2実施形態では、前記小流量領域での検定のときに、線形抵抗体 8の流量特 性の算出 ·把握をも同時に行ってしまうため、短時間での手間の力、からない検定が可 能となる。
[0072] なお、本発明は上記実施形態に限られるものではない。
[0073] 例えば、検定対象となる流量制御装置は熱式のものに限られな!/、。また、基準とな る流量制御装置も差圧式のものに限られない。
[0074] 前記実施形態では、圧力制御装置を、検定対象となる流量制御装置の上流に設 けて!/、るが、検定対象となる流量制御装置と基準となる流量制御装置との間に設け るようにしてあよレヽ。
[0075] また、複数の検定対象となる流量制御装置を、ガス供給ライン上に直列に配するこ ともできる。例えば、図 10に示すように、ガス供給ライン 1上に、同一の検定対象とな る流量制御装置 4を、複数(図 5では 3つ)直列に配し、各検定対象となる流量制御装 置 4での実測流量が、基準の流量制御装置 5の示す実測流量の所定の範囲内にあ るか否かを一度に判定することができる。このようにすることによって、単位時間当たり に検定できる個数を増やせることができ、例えば、工場出荷時の検定に有用となる。 このとき、ガス供給ライン上に直列に配置する複数の検定対象となる流量制御装置 4 は、異なるものであっても良い。 [0076] 検定用ラインを複数設け、それぞれの検定用ライン上に、検定できる流量範囲の異 なる、換言すると流量制御範囲の異なる、基準となる流量制御装置を配置しているが 、検定用ラインは 1つでもよい。
[0077] さらに、検定対象を、流体流量を測定する流量測定部を備えた流量測定装置とす ることもできる。この場合も基準の流量制御装置を用いて上述した検定方法と同様の 方法で検定を行えば、待ち時間も含め検定に要する時間を可及的に少なくし、精度 良い検定を行える。
[0078] その他、各部の具体的構成についても上記実施形態に限られるものではなぐ本 発明の趣旨を逸脱しない範囲で種々変形が可能である。
発明の産業上の利用可能性
[0079] 本発明によれば、検定対象となる流量制御装置を、そのバルブがほぼ全開状態に ある流量非制御状態にするので、検定対象となる流量制御装置から基準となる流量 制御装置までのデッドボリュームの圧力を一気に上昇させることができ、基準となる流 量制御装置を、その動作が安定する目標圧力に瞬時にすることができる。したがって 、待ち時間も含め検定に要する時間を可及的に少なくし、精度良い検定を行える。

Claims

請求の範囲
[1] バルブと、そのバルブを通過する流体流量を測定する流量測定部と、その流量測 定部で測定した実測流量が、与えられた目標流量となるように前記バルブを制御す るバルブ制御機構とを備えた流量制御装置の検定方法であって、
流量制御対象となる流体が流れる流路上に、検定対象となる流量制御装置及び基 準となる流量制御装置を、上流からこの順で直列に設けておき、前記検定対象となる 流量制御装置を前記バルブがほぼ全開状態にある流量非制御状態にするとともに、 前記基準となる流量制御装置によって流体流量を所定流量に制御した状態で、前 記検定対象となる流量制御装置による実測流量力、前記基準となる流量制御装置に よる実測流量の所定範囲内にあるか否かを判定するようにした流量制御装置の検定 方法。
[2] 基準となる流量制御装置によって流体の流量を複数ポイントで制御するようにし、 各ポイントにおいて、前記検定対象となる流量制御装置の実測流量が、前記基準と なる流量制御装置の実測流量の所定範囲内にあるか否かをそれぞれ判定するように した請求項 1記載の流量制御装置の検定方法。
[3] 前記流路の圧力を一定に制御する圧力制御装置を、検定対象となる流量制御装 置のさらに上流又は流量制御装置の間に設けるようにした請求項 1又は 2記載の流 量制御装置の検定方法。
[4] 基準となる流量制御装置に、検定対象となる流量制御装置とは流量測定原理の異 なるものを用いるようにした請求項 1乃至 3いずれか記載の流量制御装置の検定方 法。
[5] 検定対象となる流量制御装置に熱式のものを用い、基準となる流量制御装置に差 圧式のものを用いるようにした請求項 4記載の流量制御装置の検定方法。
[6] 基準となる流量制御装置に、その流量測定部よりも上流にバルブが配置されたもの を用いるようにした請求項 5記載の流量制御装置の検定方法。
[7] 基準となる流量制御装置が、両端間の差圧が小さくなるほど、当該抵抗体を流れる 流量の差圧微分値力 S小さくなる特性を有した非線形抵抗体と、その非線形抵抗体で 発生する前記差圧を測定する圧力センサと、を具備し、その圧力センサで測定され たた差差圧圧にに基基づづいいてて流流量量をを測測定定すするる差差圧圧式式ののももののでであありり、、
基基準準ととななるる流流量量制制御御装装置置のの下下流流にに、、内内部部をを流流れれるる流流量量とと両両端端間間のの差差圧圧ととのの関関係係がが 線線形形ででああるる線線形形抵抵抗抗体体をを設設けけてておおきき、、
前前記記各各ポポイインントトににおおけけるる判判定定のの際際にに、、前前記記線線形形抵抵抗抗体体のの両両端端間間のの差差圧圧ををもも測測定定すす るるここととにによよっってて、、そそれれらら各各差差圧圧とと前前記記基基準準ととななるる流流量量制制御御装装置置にによよるる実実測測流流量量ととのの対対 応応関関係係かからら、、当当該該線線形形抵抵抗抗体体のの流流量量特特性性をを算算出出しし、、
基基準準ととななるる流流量量制制御御装装置置のの規規定定流流量量をを超超ええたた領領域域ににおお!!//、、ててはは、、前前記記検検定定対対象象ととなな るる流流量量制制御御装装置置にによよるる実実測測流流量量がが、、前前記記線線形形抵抵抗抗体体のの流流量量特特性性かからら算算出出さされれるる算算 出出流流量量のの所所定定範範囲囲内内ににああるるかか否否かかをを判判定定すするるよよううににししたた請請求求項項 22記記載載のの流流量量制制御御装装 置置のの検検定定方方法法。。
[[88]] ババルルブブとと、、そそののババルルブブをを通通過過すするる流流体体流流量量をを測測定定すするる流流量量測測定定部部とと、、そそのの流流量量測測 定定部部でで測測定定ししたた実実測測流流量量がが、、与与ええらられれたた目目標標流流量量ととななるるよよううにに前前記記ババルルブブをを制制御御すす るるババルルブブ制制御御機機構構ととをを備備ええたた流流量量制制御御装装置置のの検検定定シシスステテムムででああっってて、、
流流量量制制御御対対象象ととななるる流流体体がが流流れれるる流流路路とと、、
そそのの流流路路上上にに設設けけたた検検定定対対象象ととななるる流流量量制制御御装装置置とと、、
当当該該流流路路上上ででああっってて前前記記検検定定対対象象ととななるる流流量量制制御御装装置置のの下下流流側側にに直直列列にに設設けけたた 基基準準ととななるる流流量量制制御御装装置置とと、、
検検定定対対象象ととななるる流流量量制制御御装装置置ののババルルブブががほほぼぼ全全開開状状態態にに固固定定さされれたた流流量量非非制制御御 状状態態ににあありり、、基基準準ととななるる流流量量制制御御装装置置にによよっってて流流体体流流量量がが所所定定流流量量にに制制御御さされれててレレ、、 るる状状態態ににおおいいてて、、各各流流量量制制御御装装置置かからら出出力力さされれるる流流量量測測定定信信号号をを受受信信しし、、検検定定対対象象 ととななるる流流量量制制御御装装置置のの流流量量測測定定信信号号がが示示すす実実測測流流量量がが、、基基準準ととななるる流流量量制制御御装装置置 のの流流量量測測定定信信号号がが示示すす実実測測流流量量のの所所定定範範囲囲内内ににああるるかか否否かかをを判判定定可可能能にに出出力力すするる 情情報報処処理理装装置置とと、、をを備備ええてて!!//、、るる流流量量制制御御装装置置のの検検定定シシスステテムム。。
[[99]] ババルルブブとと、、そそののババルルブブをを通通過過すするる流流体体流流量量をを測測定定すするる流流量量測測定定部部とと、、そそのの流流量量測測 定定部部でで測測定定ししたた実実測測流流量量がが、、与与ええらられれたた目目標標流流量量ととななるるよよううにに前前記記ババルルブブをを制制御御すす るるババルルブブ制制御御機機構構ととをを備備ええたた流流量量制制御御装装置置のの検検定定をを行行ななええるるよよううにに構構成成ししたた半半導導体体 製製造造装装置置ででああっってて、、
* 前記プロセスチャンバへ半導体製造用の流体を供給する流路と、
前記流路上に設けた検定対象となる流量制御装置と、
当該流路上であって前記検定対象となる流量制御装置の下流側に直列に設けた 基準となる流量制御装置と、
検定対象となる流量制御装置のバルブがほぼ全開状態に固定された流量非制御 状態にあり、基準となる流量制御装置によって流体流量が所定流量に制御されてレ、 る状態において、各流量制御装置から出力される流量測定信号を受信し、検定対象 となる流量制御装置の流量測定信号が示す実測流量が、基準となる流量制御装置 の流量測定信号が示す実測流量の所定範囲内にあるか否かを判定可能に出力する 情報処理装置と、を備えている半導体製造装置。
[10] 流体流量を測定する流量測定部を備えた検定対象の流量測定装置を、バルブと、 そのバルブを通過する流体流量を測定する流量測定部と、その流量測定部で測定 した実測流量が、与えられた目標流量となるように前記バルブを制御するバルブ制 御機構とを備えた基準の流量制御装置を用いて検定する流量測定装置の検定方法 であって、
流量制御対象となる流体が流れる流路上に、前記検定対象の流量測定装置及び 前記基準の流量制御装置を、上流からこの順で直列に設けておき、前記基準の流 量制御装置によって流体流量を所定流量に制御した状態で、前記検定対象の流量 測定装置による実測流量が、前記基準の流量制御装置による実測流量の所定範囲 内にあるか否力、を判定するようにした流量測定装置の検定方法。
PCT/JP2007/073457 2006-12-05 2007-12-05 流量制御装置の検定方法 WO2008069227A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/517,796 US8104323B2 (en) 2006-12-05 2007-12-05 Flow controller, flow measuring device testing method, flow controller testing system, and semiconductor manufacturing apparatus
KR1020097005173A KR101444964B1 (ko) 2006-12-05 2007-12-05 유량제어장치의 검정방법
CN200780044787XA CN101563663B (zh) 2006-12-05 2007-12-05 流量控制装置的检定方法
JP2008548305A JP5002602B2 (ja) 2006-12-05 2007-12-05 流量制御装置の検定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006328876 2006-12-05
JP2006-328876 2006-12-05

Publications (1)

Publication Number Publication Date
WO2008069227A1 true WO2008069227A1 (ja) 2008-06-12

Family

ID=39492109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073457 WO2008069227A1 (ja) 2006-12-05 2007-12-05 流量制御装置の検定方法

Country Status (6)

Country Link
US (1) US8104323B2 (ja)
JP (1) JP5002602B2 (ja)
KR (1) KR101444964B1 (ja)
CN (1) CN101563663B (ja)
TW (1) TWI444799B (ja)
WO (1) WO2008069227A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090146089A1 (en) * 2007-12-11 2009-06-11 Fujikin Incorporated Pressure type flow rate control reference and corrosion resistant pressure type flow rate controller used for the same
JP2015203898A (ja) * 2014-04-11 2015-11-16 株式会社堀場エステック 流量制御装置の検査方法、流量制御装置の検査システム、及び、流量制御装置の検査システム用プログラム
KR20150143327A (ko) 2014-06-13 2015-12-23 가부시키가이샤 호리바 에스텍 유체 제어·측정 시스템의 전력 공급 장치
CN106950051A (zh) * 2017-03-29 2017-07-14 中北大学 一种基于阀门流量特性测试的过程控制多功能实验装置
KR20220136985A (ko) 2021-03-29 2022-10-11 주식회사 히타치하이테크 가스 공급 제어 장치

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102053617B (zh) * 2009-10-28 2013-11-13 北京北方微电子基地设备工艺研究中心有限责任公司 流量比例控制器在线校准方法、***及等离子体处理设备
JP5058358B2 (ja) * 2010-09-30 2012-10-24 株式会社堀場エステック 診断機構
US9188989B1 (en) 2011-08-20 2015-11-17 Daniel T. Mudd Flow node to deliver process gas using a remote pressure measurement device
US9958302B2 (en) 2011-08-20 2018-05-01 Reno Technologies, Inc. Flow control system, method, and apparatus
JP5433660B2 (ja) * 2011-10-12 2014-03-05 Ckd株式会社 ガス流量監視システム
JP5809012B2 (ja) * 2011-10-14 2015-11-10 株式会社堀場エステック 流量制御装置、流量測定機構、又は、当該流量測定機構を備えた流量制御装置に用いられる診断装置及び診断用プログラム
JP5665794B2 (ja) * 2012-04-27 2015-02-04 株式会社フジキン 半導体製造装置のガス分流供給装置
US9062993B2 (en) * 2012-05-22 2015-06-23 E I Du Pont De Nemours And Company Method and apparatus for liquid flow calibration check
US9454158B2 (en) 2013-03-15 2016-09-27 Bhushan Somani Real time diagnostics for flow controller systems and methods
US10957561B2 (en) * 2015-07-30 2021-03-23 Lam Research Corporation Gas delivery system
US10192751B2 (en) 2015-10-15 2019-01-29 Lam Research Corporation Systems and methods for ultrahigh selective nitride etch
US10825659B2 (en) 2016-01-07 2020-11-03 Lam Research Corporation Substrate processing chamber including multiple gas injection points and dual injector
US10147588B2 (en) 2016-02-12 2018-12-04 Lam Research Corporation System and method for increasing electron density levels in a plasma of a substrate processing system
US10699878B2 (en) 2016-02-12 2020-06-30 Lam Research Corporation Chamber member of a plasma source and pedestal with radially outward positioned lift pins for translation of a substrate c-ring
US10651015B2 (en) 2016-02-12 2020-05-12 Lam Research Corporation Variable depth edge ring for etch uniformity control
US10438833B2 (en) 2016-02-16 2019-10-08 Lam Research Corporation Wafer lift ring system for wafer transfer
US11144075B2 (en) 2016-06-30 2021-10-12 Ichor Systems, Inc. Flow control system, method, and apparatus
US10303189B2 (en) 2016-06-30 2019-05-28 Reno Technologies, Inc. Flow control system, method, and apparatus
US10679880B2 (en) 2016-09-27 2020-06-09 Ichor Systems, Inc. Method of achieving improved transient response in apparatus for controlling flow and system for accomplishing same
US10838437B2 (en) 2018-02-22 2020-11-17 Ichor Systems, Inc. Apparatus for splitting flow of process gas and method of operating same
US10410832B2 (en) 2016-08-19 2019-09-10 Lam Research Corporation Control of on-wafer CD uniformity with movable edge ring and gas injection adjustment
US10663337B2 (en) 2016-12-30 2020-05-26 Ichor Systems, Inc. Apparatus for controlling flow and method of calibrating same
US10983538B2 (en) 2017-02-27 2021-04-20 Flow Devices And Systems Inc. Systems and methods for flow sensor back pressure adjustment for mass flow controller
CN109374289A (zh) * 2018-12-26 2019-02-22 江苏里斯特通用机械制造有限公司 节流阀流量测试装置及其测试方法
KR102277216B1 (ko) * 2019-12-18 2021-07-14 세메스 주식회사 스토커의 센서 테스트 장치 및 방법
CN111324153B (zh) * 2020-02-28 2023-05-26 老肯医疗科技股份有限公司 一种流量监控装置及流量监控方法
WO2022186971A1 (en) 2021-03-03 2022-09-09 Ichor Systems, Inc. Fluid flow control system comprising a manifold assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05215593A (ja) * 1992-02-06 1993-08-24 Oval Corp 空気流量計の動的試験装置
JPH05296815A (ja) * 1992-04-23 1993-11-12 Toshiba Corp 流量計測制御システム
JPH0653103A (ja) * 1992-08-03 1994-02-25 Hitachi Ltd 半導体製造装置
JP2000035821A (ja) * 1998-07-17 2000-02-02 Horiba Ltd 気体流量制御装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824759Y2 (ja) * 1978-01-31 1983-05-27 株式会社東芝 流量計の校正装置
JPS63235800A (ja) * 1987-03-24 1988-09-30 Nec Kyushu Ltd マスフロ−コントロ−ラ−
US5233861A (en) * 1990-12-03 1993-08-10 Motorola, Inc. Apparatus and method for in situ calibration of a metering device
JP2692770B2 (ja) * 1992-09-30 1997-12-17 シーケーディ株式会社 マスフローコントローラ流量検定システム
JPH0863235A (ja) * 1994-08-24 1996-03-08 Burutsukusu Instr Kk 差圧式質量流量コントロール装置
JP2642880B2 (ja) * 1994-08-26 1997-08-20 工業技術院長 流量計の校正方法
US5744695A (en) * 1997-01-10 1998-04-28 Sony Corporation Apparatus to check calibration of mass flow controllers
JP3262225B2 (ja) * 1998-06-30 2002-03-04 株式会社山武 流量制御装置
US6453257B1 (en) * 1998-12-18 2002-09-17 Larson Testing Laboratories Apparatus for testing the ability of a filter to filter contaminants
EP1384121A2 (en) * 2001-04-24 2004-01-28 Unit Instruments, Inc. System and method for a mass flow controller
JP4092684B2 (ja) * 2002-06-14 2008-05-28 日立金属株式会社 マスフローコントローラの校正方法及びその装置
US7412986B2 (en) * 2004-07-09 2008-08-19 Celerity, Inc. Method and system for flow measurement and validation of a mass flow controller
JP4648098B2 (ja) * 2005-06-06 2011-03-09 シーケーディ株式会社 流量制御機器絶対流量検定システム
KR101840047B1 (ko) * 2008-01-18 2018-03-19 피포탈 시스템즈 코포레이션 가스 유동 제어기의 인 시투 시험을 위한 방법 및 장치
CN101763096A (zh) * 2009-12-18 2010-06-30 北京七星华创电子股份有限公司 自动标定检验***及其标定检验方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05215593A (ja) * 1992-02-06 1993-08-24 Oval Corp 空気流量計の動的試験装置
JPH05296815A (ja) * 1992-04-23 1993-11-12 Toshiba Corp 流量計測制御システム
JPH0653103A (ja) * 1992-08-03 1994-02-25 Hitachi Ltd 半導体製造装置
JP2000035821A (ja) * 1998-07-17 2000-02-02 Horiba Ltd 気体流量制御装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090146089A1 (en) * 2007-12-11 2009-06-11 Fujikin Incorporated Pressure type flow rate control reference and corrosion resistant pressure type flow rate controller used for the same
US8210022B2 (en) * 2007-12-11 2012-07-03 Fujikin Incorporated Pressure type flow rate control reference and corrosion resistant pressure type flow rate controller used for the same
US8381755B2 (en) 2007-12-11 2013-02-26 Fujikin Incorporated Pressure type flow rate control reference and corrosion resistant pressure type flow rate controller used for the same
JP2015203898A (ja) * 2014-04-11 2015-11-16 株式会社堀場エステック 流量制御装置の検査方法、流量制御装置の検査システム、及び、流量制御装置の検査システム用プログラム
KR20150143327A (ko) 2014-06-13 2015-12-23 가부시키가이샤 호리바 에스텍 유체 제어·측정 시스템의 전력 공급 장치
JP2016015872A (ja) * 2014-06-13 2016-01-28 株式会社堀場エステック 流体制御・測定システムの電力供給装置
US10234884B2 (en) 2014-06-13 2019-03-19 Horiba Stec, Co., Ltd. Power supply apparatus of fluid control and measurement system
CN106950051A (zh) * 2017-03-29 2017-07-14 中北大学 一种基于阀门流量特性测试的过程控制多功能实验装置
CN106950051B (zh) * 2017-03-29 2023-08-25 中北大学 一种基于阀门流量特性测试的过程控制多功能实验装置
KR20220136985A (ko) 2021-03-29 2022-10-11 주식회사 히타치하이테크 가스 공급 제어 장치

Also Published As

Publication number Publication date
TW200839474A (en) 2008-10-01
CN101563663A (zh) 2009-10-21
KR20090086936A (ko) 2009-08-14
JPWO2008069227A1 (ja) 2010-03-18
US20100145633A1 (en) 2010-06-10
US8104323B2 (en) 2012-01-31
JP5002602B2 (ja) 2012-08-15
CN101563663B (zh) 2011-09-21
KR101444964B1 (ko) 2014-09-26
TWI444799B (zh) 2014-07-11

Similar Documents

Publication Publication Date Title
JP5002602B2 (ja) 流量制御装置の検定方法
JP6926168B2 (ja) 質量流量コントローラ
US8744784B2 (en) Diagnostic mechanism in differential pressure type mass flow controller
US10801867B2 (en) Method and apparatus for self verification of pressured based mass flow controllers
KR101707877B1 (ko) 유량 모니터 부착 유량 제어 장치
KR100781407B1 (ko) 기판 처리 장치
KR102237868B1 (ko) 압력 둔감형 자기 검증 질량 유량 컨트롤러를 제공하는 시스템 및 방법
KR20120033999A (ko) 진단기구
TW201514500A (zh) 用於暫態氣流之度量衡方法
JP7131561B2 (ja) 質量流量制御システム並びに当該システムを含む半導体製造装置及び気化器
JP6215120B2 (ja) 流量制御装置の検査方法、流量制御装置の検査システム、及び、流量制御装置の検査システム用プログラム
US11644852B2 (en) Flow rate ratio control system, film forming system, abnormality diagnosis method, and abnormality diagnosis program medium

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780044787.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850099

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008548305

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020097005173

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12517796

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07850099

Country of ref document: EP

Kind code of ref document: A1