WO2008062632A1 - Trichlorosilane producing apparatus - Google Patents

Trichlorosilane producing apparatus Download PDF

Info

Publication number
WO2008062632A1
WO2008062632A1 PCT/JP2007/070805 JP2007070805W WO2008062632A1 WO 2008062632 A1 WO2008062632 A1 WO 2008062632A1 JP 2007070805 W JP2007070805 W JP 2007070805W WO 2008062632 A1 WO2008062632 A1 WO 2008062632A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
trichlorosilane
reaction vessel
heat transfer
transfer body
Prior art date
Application number
PCT/JP2007/070805
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsutoshi Narukawa
Yuji Shimizu
Original Assignee
Mitsubishi Materials Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007268617A external-priority patent/JP5160181B2/en
Application filed by Mitsubishi Materials Corporation filed Critical Mitsubishi Materials Corporation
Priority to CN2007800429212A priority Critical patent/CN101535180B/en
Priority to US12/312,471 priority patent/US8221691B2/en
Publication of WO2008062632A1 publication Critical patent/WO2008062632A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • C01B33/1071Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof

Definitions

  • the present invention relates to a trichlorosilane production apparatus that converts tetrachlorosilane to trichlorosilane.
  • SiHCl 3 is converted by reacting tetrachlorosilane (SiCl: silicon tetrachloride) with hydrogen.
  • Patent Document 1 discloses a double chamber design in which a reaction chamber surrounded by a heating element has an outer chamber and an inner chamber formed by two concentric tubes. Has been.
  • a reactor has been proposed in which a supply gas of hydrogen and tetrachlorosilane is supplied to the reaction chamber from below, and a reaction product gas is discharged from the bottom of the reaction chamber.
  • a heating element which is a heater formed of carbon or the like, generates heat when energized, and heats the inside of the reaction chamber from the outside to heat the tube. The gas is heated and reacted while passing through a cylindrical path formed concentrically between these tubes.
  • Patent Document 1 Japanese Patent No. 3781439
  • the conversion reaction from tetrachlorosilane to trichlorosilane has a higher conversion efficiency as the temperature range in the conversion furnace is wider.
  • the above prior art has a problem that the conversion efficiency is extremely low because the high temperature region is limited to the region heated by the radiant heat from the heating element outside the reaction chamber.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a trichlorosilane production apparatus capable of efficiently heating a supply gas to provide a reaction.
  • the trichlorosilane production apparatus of the present invention includes a reaction vessel in which a supply gas containing tetrachlorosilane and hydrogen is supplied to generate a reaction product gas containing trichlorosilane and hydrogen chloride, and the inside of the reaction vessel
  • a heat transfer body that is formed of a material having a melting point of at least 1400 ° C. and that has a gap through which gas can flow, and a heating mechanism that heats the heat transfer body in the reaction vessel. It is characterized by being.
  • a heat transfer body having a melting point of at least 1400 ° C. is filled in a reaction vessel, and is heated by radiant heat and conduction heat transfer from a heating mechanism.
  • the contact area between the supply gas and the heat transfer body is increased by the gap of the heat transfer body, so that the heat can be efficiently generated.
  • the supply gas since the supply gas is widely distributed through the gap, the supply gas can be heated by the entire heat transfer body.
  • the reason why the melting point of the heat transfer body exceeds 1400 ° C is that it may be heated to 1400 ° C in order to carry out the conversion reaction, so that the solid state can be maintained at a high temperature. is there.
  • the reaction vessel has a gas supply port for introducing the supply gas into the reaction vessel, and a gas guide for leading the reaction product gas out of the reaction vessel.
  • the supply gas introduced from the supply port flows in a fixed direction from the one end side to the gas outlet port on the other end side in the filling portion. Therefore, the supply gas and the reaction product gas can flow easily without stagnation in the filling section, and the conversion reaction can be performed efficiently.
  • the trichlorosilane production apparatus of the present invention is characterized in that the heat transfer body is composed of a plurality of agglomerates or molded block bodies! /. A gap in the heat transfer body can be effectively secured by the plurality of agglomerates or block bodies.
  • the trichlorosilane production apparatus of the present invention is characterized in that a plurality of irregularities are formed on the surface of the agglomerates or molded block bodies. That is, in this trichlorosilane manufacturing apparatus, a lump having a plurality of irregularities on the surface or a molded block body is adopted, so that the contact area with the supply gas can be increased, and heating can be performed more efficiently. You can use fi S, S.
  • the trichlorosilane production apparatus of the present invention is characterized in that the heat transfer body is any one of polycrystalline silicon, silicon carbide, and carbon whose surface is coated with silicon carbide. That is, in this trichlorosilane manufacturing apparatus, since any one of heat transfer members of polycrystalline silicon, silicon carbide (SiC), or carbon whose surface is coated with silicon carbide is employed, impurities are hardly generated and thermal conductivity is increased. High heating efficiency can be obtained.
  • the invention's effect is any one of polycrystalline silicon, silicon carbide (SiC), or carbon whose surface is coated with silicon carbide.
  • the reaction container is filled with a heat transfer element that is formed of a material having a melting point that exceeds at least 1400 ° C. and that has a gap that allows gas to flow therethrough. And heated.
  • the contact area with the supply gas increases, and efficient heating becomes possible. Therefore, an efficient conversion reaction can be obtained with high heating efficiency, and the conversion rate to trichlorosilane can be improved.
  • FIG. 1 is a simplified cross-sectional view showing a first embodiment of a trichlorosilane production apparatus according to the present invention.
  • FIG. 2 is an enlarged perspective view of essential parts showing a state in which block bodies are stacked in a second embodiment of the trichlorosilane manufacturing apparatus according to the present invention.
  • FIG. 3A is a plan view of the block bodies stacked in the second embodiment.
  • FIG. 3B is a side view of the block bodies stacked in the second embodiment when viewed from the inside of the radius.
  • a supply gas containing tetrachlorosilane and hydrogen is supplied into the interior to generate a reaction product gas containing trichlorosilane and hydrogen chloride.
  • Reaction vessel 1 a large number of agglomerates 2 having a melting point of at least 1400 ° C filled in reaction vessel 1 and heated by radiant heat and conduction heat transfer, and reaction vessel V is provided with a heating mechanism 3 arranged around 1 and heating the agglomerates 2 in the reaction vessel 1 by radiant heat and conduction heat transfer.
  • the reaction vessel 1 includes a gas supply port la for introducing a supply gas therein, a gas outlet port lb for deriving a reaction product gas to the outside, and a filling unit 4 filled with a large number of agglomerates 2. ing.
  • a gas supply port la is disposed below (one end side) of the filling portion 4 and a gas outlet port lb is disposed above (on the other end side).
  • the agglomerate 2 is one of high-purity polycrystalline silicon, silicon carbide, and carbon whose surface is coated with silicon carbide. In particular, those having a plurality of irregularities on the surface are employed.
  • the size and filling amount of the agglomerates 2 are appropriately set according to the flow rate of the supply gas to be circulated, the size (filling capacity) of the filling portion 4, and the like. Then, by filling a large number of the granule 2, the filling portion 4 is formed in a state in which the gap portions 2 a through which gas can flow between the respective granule 2 are intricately assembled.
  • the filling unit 4 is a partition plate 5 provided with a certain space from the bottom of the reaction vessel 1. Formed on top.
  • a gas supply port la is provided in the space between the partition plate 5 and the bottom of the reaction vessel 1 so that supply gas is introduced.
  • the partition plate 5 is formed with a plurality of gas inflow holes 5a smaller than the outer diameter of the agglomerates 2! /. The supply gas flows into the filling part 4 from these gas inflow holes 5a.
  • the gas supply port la is connected to a supply source (not shown) of a supply gas.
  • the supply gas flowing in from the gas inflow hole 5a flows upward in the gap 2a between the granule 2 in the filling unit 4. At this time, since it is heated while being in contact with the surface of the agglomerate 2, it reacts to become a reaction product gas. This reaction product gas is finally led out from the upper gas outlet lb force.
  • the heating mechanism 3 includes a heater unit 3a that is a heating element disposed around the reaction vessel 1 so as to surround the reaction vessel 1, and a heater unit 3a that is connected to a lower portion of the heater unit 3a and allows a current to flow through the heater unit 3a. And an electrode portion 3b.
  • the electrode portion 3b is connected to a power source (not shown).
  • the heating mechanism 3 performs heating control so that the agglomerate 2 in the reaction vessel 1 has a temperature in the range of 800 ° C to 1400 ° C. If the temperature of the agglomerate 2 is set to 1200 ° C or higher, the conversion rate to trichlorosilane is improved. Alternatively, disilanes may be introduced into the supply gas and the silanes may be taken out.
  • a large number of agglomerates 2 having a melting point exceeding 1400 ° C. are filled in the reaction vessel 1 and heated by the radiant heat and conduction heat transfer of the heating mechanism 3.
  • the gap 2a formed between the granulates 2 increases the contact area between the supply gas having many gaps and the granule 2 and can be efficiently heated.
  • the supply gas since the supply gas is widely distributed through the gap 2a between the agglomerates 2, the supply gas can be heated in the entire filling unit 4.
  • the contact area with the supply gas can be increased, and heating can be performed more efficiently.
  • any agglomerate 2 of polycrystalline silicon, silicon carbide, or carbon whose surface is coated with silicon carbide is employed, impurities are hardly generated. Together with this, the thermal conductivity is high, and high heating efficiency can be obtained.
  • carbon whose surface is coated with silicon carbide is used as the agglomerate 2
  • hydrogen, chlorosilane, and hydrogen chloride in carbon, supply gas, and reaction product gas are used.
  • methane, methylchlorosilane, silicon carbide, etc. from being produced and becoming impurities.
  • the gas supply port la is arranged below the filling unit 4 and the gas outlet port 1b is arranged above the filling unit 4, the supply gas introduced from the gas supply port la is contained in the filling unit 4. Flows in a fixed direction from the lower side force to the upper gas outlet lb. Therefore, the supply gas and the reaction product gas can easily flow in the filling section 4 without stagnation. As a result, the conversion reaction can be performed efficiently.
  • the direction of gas flow is indicated by arrows.
  • FIGS. 2, 3A and 3B a second embodiment of the trichlorosilane production apparatus according to the present invention will be described below with reference to FIGS. 2, 3A and 3B.
  • the same components as those described in the above embodiments are denoted by the same reference numerals, and the description thereof is omitted.
  • the difference between the second embodiment and the first embodiment is that, in the first embodiment, the filling section 4 is filled with a plurality of agglomerates 2 as a heat transfer body, whereas the second embodiment is different from the second embodiment.
  • the molded block body 22 is used as a heat transfer body, and the block body 22 is lined up and filled in the filling section 4. That is, in the trichlorosilane manufacturing apparatus according to the second embodiment, as shown in FIGS. 2 and 3A, a plurality of block bodies 22 molded in a substantially arc shape are provided in a plurality of annular shapes having different diameters in the filling portion 4. They are arranged and stacked.
  • the block body 22 includes a substantially arc-shaped main body portion 22a and a convex portion 22b protruding from the inside of the main body portion 22a.
  • the block bodies 22 are arranged in a plurality of annular shapes in contact with each other in the bottomed cylindrical filling portion 4. It is further stacked on top of it. Thus, a space 22c through which gas flows is formed between the convex portions 22b of each block body 22. In this case, when a plurality of the block bodies 22 are arranged in an annular shape and are stacked, as shown in FIG.
  • the upper and lower block bodies 22 are arranged so as to be shifted from each other in the circumferential direction, and the convex portions 22b are Is set so that they do not match.
  • the upper and lower convex portions 22b are shifted and arranged so that the upper and lower gap portions 22c are continuous while meandering.
  • the supply gas and the reaction product gas are circulated through the meandering continuous gap 22c.
  • the second embodiment a large number of gaps are formed in the filling portion 4 between each other. Since the molded block bodies 22 are lined up side by side, it is easy to increase the temperature as in the first embodiment, and the contact area between the supply gas and the block body 22 is increased. Therefore, it can power to heat efficiently. Further, since the supply gas spreads widely through the gap portion 22c between the block bodies 22, the supply gas can be heated in the entire filling portion 4.
  • the supply gas is introduced from below the filling unit 4 and the reaction product gas is led out from above.
  • gas may be introduced and derived from a different direction.
  • the supply gas may be introduced from one side in the horizontal direction of the filling unit 4 and the reaction product gas may be derived from the other side in the horizontal direction.
  • the force is transmitted by one molded block body that can be filled in the filling portion of the force reaction vessel, each of which constitutes a heat transfer body by a plurality of agglomerates or a plurality of block bodies.
  • a molded block body in which a void portion is formed from the surface to the inside by a combination structure of columnar portions or plate-like portions may be used as the heat transfer body.

Abstract

Disclosed is a trichlorosilane producing apparatus comprising a reaction vessel into which a supply gas containing tetrachlorosilane and hydrogen is supplied for producing a reaction product gas containing trichlorosilane and hydrogen chloride; a heat transfer body which is filled into the reaction vessel and composed of at least a material having a melting point higher than 1400˚C, while having a space through which a gas can be passed; and a heating mechanism for heating the heat transfer body within the reaction vessel.

Description

明 細 書  Specification
トリクロロシラン製造装置  Trichlorosilane production equipment
技術分野  Technical field
[0001] 本発明は、テトラクロロシランをトリクロロシランに転換するトリクロロシラン製造装置 に関する。  The present invention relates to a trichlorosilane production apparatus that converts tetrachlorosilane to trichlorosilane.
本願は、 2006年 11月 21日に日本国に出願された特願 2006— 314896号及び 2 007年 10月 16日に日本国に出願された特願 2007— 268617号に基づき優先権を 主張し、その内容をここに援用する。  This application claims priority based on Japanese Patent Application No. 2006-314896 filed in Japan on November 21, 2006 and Japanese Patent Application No. 2007-268617 filed in Japan on October 16, 2007. , The contents of which are incorporated herein.
背景技術  Background art
[0002] 高純度のシリコン(Si :珪素)を製造するための原料として使用されるトリクロロシラン  [0002] Trichlorosilane used as a raw material for producing high-purity silicon (Si: silicon)
(SiHCl )は、テトラクロロシラン(SiCl :四塩化珪素)を水素と反応させて転換するこ (SiHCl 3) is converted by reacting tetrachlorosilane (SiCl: silicon tetrachloride) with hydrogen.
3 4 3 4
とで製造すること力でさる。  With the power to manufacture with.
[0003] すなわち、シリコンは、以下の反応式(1) (2)によるトリクロロシランの還元反応と熱 分解反応で生成される。トリクロロシランは、以下の反応式(3)による転換反応で生成 される。 [0003] That is, silicon is produced by the reduction reaction and thermal decomposition reaction of trichlorosilane according to the following reaction formulas (1) and (2). Trichlorosilane is produced by a conversion reaction according to the following reaction formula (3).
[0004] SiHCl +H → Si + 3HC1 …ひ)  [0004] SiHCl + H → Si + 3HC1… hi)
3 2  3 2
4SiHCl → Si + 3SiCl + 2H  4SiHCl → Si + 3SiCl + 2H
3 4 2 …(2)  3 4 2… (2)
SiCl +H → SiHCl +HC1 · · · (3)  SiCl + H → SiHCl + HC1 (3)
4 2 3  4 2 3
このトリクロロシランを製造する装置として、例えば特許文献 1には、発熱体に囲まれ た反応室が、同心配置の 2つの管によって形成された外室と内室をもった二重室設 計とされている。この反応室に下方から水素とテトラクロロシランとの供給ガスを供給 すると共に、反応室の下方から反応生成ガスを排出する反応器が提案されている。こ の反応器では、炭素等で形成されたヒータ部である発熱体が通電により発熱し、反応 室内を外側から加熱することで管を加熱する。これら管の間に同心円状に形成される 円筒状の経路をガスが通過する間に加熱されて反応する構成とされている。  As an apparatus for producing this trichlorosilane, for example, Patent Document 1 discloses a double chamber design in which a reaction chamber surrounded by a heating element has an outer chamber and an inner chamber formed by two concentric tubes. Has been. A reactor has been proposed in which a supply gas of hydrogen and tetrachlorosilane is supplied to the reaction chamber from below, and a reaction product gas is discharged from the bottom of the reaction chamber. In this reactor, a heating element, which is a heater formed of carbon or the like, generates heat when energized, and heats the inside of the reaction chamber from the outside to heat the tube. The gas is heated and reacted while passing through a cylindrical path formed concentrically between these tubes.
特許文献 1:特許第 3781439号公報  Patent Document 1: Japanese Patent No. 3781439
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0005] 上記従来の技術には、以下の課題が残されている。 [0005] The following problems remain in the above conventional technique.
[0006] テトラクロロシランからトリクロロシランへの転換反応は、転換炉内部の高温域が広い ほど転換効率が高い。しかし、上記従来技術においては、この高温域が反応室の外 側の発熱体からの輻射熱により加熱された領域に限定されるため、転換効率が極め て低いという問題がある。  [0006] The conversion reaction from tetrachlorosilane to trichlorosilane has a higher conversion efficiency as the temperature range in the conversion furnace is wider. However, the above prior art has a problem that the conversion efficiency is extremely low because the high temperature region is limited to the region heated by the radiant heat from the heating element outside the reaction chamber.
[0007] 本発明は、前述の課題に鑑みてなされたもので、効率的に供給ガスを加熱して反 応に供することができるトリクロロシラン製造装置を提供することを目的とする。  [0007] The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a trichlorosilane production apparatus capable of efficiently heating a supply gas to provide a reaction.
課題を解決するための手段  Means for solving the problem
[0008] 本発明は、前記課題を解決するために以下の構成を採用した。すなわち、本発明 のトリクロロシラン製造装置は、テトラクロロシランと水素とを含む供給ガスが内部に供 給されてトリクロロシランと塩化水素とを含む反応生成ガスが生成される反応容器と、 前記反応容器内に充填され少なくとも 1400°Cを超えた融点の材料により形成される とともにガスが流通可能な空隙部を有する伝熱体と、前記反応容器内の前記伝熱体 を加熱する加熱機構とを備えていることを特徴とする。 The present invention employs the following configuration in order to solve the above-described problems. That is, the trichlorosilane production apparatus of the present invention includes a reaction vessel in which a supply gas containing tetrachlorosilane and hydrogen is supplied to generate a reaction product gas containing trichlorosilane and hydrogen chloride, and the inside of the reaction vessel A heat transfer body that is formed of a material having a melting point of at least 1400 ° C. and that has a gap through which gas can flow, and a heating mechanism that heats the heat transfer body in the reaction vessel. It is characterized by being.
[0009] このトリクロロシラン製造装置では、少なくとも 1400°Cを超えた融点を有する伝熱体 が反応容器内に充填され、加熱機構からの輻射熱と伝導伝熱によって加熱される。 さらに、伝熱体の空隙部により供給ガスと伝熱体との接触面積も多くなり、効率的に カロ熱すること力できる。また、空隙部を介して供給ガスが広く行き渡るため、伝熱体全 体で供給ガスを加熱することができる。なお、伝熱体の融点を 1400°Cを超えたものと しているのは、転換反応させるために 1400°Cまで加熱させる場合があるためであり、 高温下で固体状態を維持させるためである。  In this trichlorosilane production apparatus, a heat transfer body having a melting point of at least 1400 ° C. is filled in a reaction vessel, and is heated by radiant heat and conduction heat transfer from a heating mechanism. In addition, the contact area between the supply gas and the heat transfer body is increased by the gap of the heat transfer body, so that the heat can be efficiently generated. Further, since the supply gas is widely distributed through the gap, the supply gas can be heated by the entire heat transfer body. The reason why the melting point of the heat transfer body exceeds 1400 ° C is that it may be heated to 1400 ° C in order to carry out the conversion reaction, so that the solid state can be maintained at a high temperature. is there.
[0010] また、本発明のトリクロロシラン製造装置は、前記反応容器が、前記供給ガスを前記 反応容器内に導入するガス供給口と、前記反応生成ガスを前記反応容器から外部 に導出するガス導出口と、前記伝熱体を充填した充填部とを備え、前記充填部の一 端側に前記ガス供給口が配されて V、ると共に他端側に前記ガス導出口が配されて!/、 ることを特徴とする。すなわち、このトリクロロシラン製造装置では、充填部の一端側に ガス供給口が配されて!/、ると共に他端側にガス導出口が配されて!/、るので、ガス供 給口から導入された供給ガスが充填部内を一端側から他端側のガス導出口へと一 定方向に流れる。そのため、供給ガス及び反応生成ガスが充填部内で滞らずに流れ やすくなり、効率的に転換反応を行うことができる。 [0010] Further, in the trichlorosilane production apparatus of the present invention, the reaction vessel has a gas supply port for introducing the supply gas into the reaction vessel, and a gas guide for leading the reaction product gas out of the reaction vessel. An outlet and a filling part filled with the heat transfer body, the gas supply port is arranged on one end side of the filling part, and the gas outlet port is arranged on the other end side! / It is characterized by that. That is, in this trichlorosilane production apparatus, a gas supply port is arranged on one end side of the filling section, and a gas outlet port is arranged on the other end side! /. The supply gas introduced from the supply port flows in a fixed direction from the one end side to the gas outlet port on the other end side in the filling portion. Therefore, the supply gas and the reaction product gas can flow easily without stagnation in the filling section, and the conversion reaction can be performed efficiently.
[0011] また、本発明のトリクロロシラン製造装置は、前記伝熱体が複数の粒塊又は成型さ れたブロック体から構成されて!/、ることを特徴とする。これら複数の粒塊又はブロック 体により、伝熱体内の隙間を有効に確保することができる。  [0011] Further, the trichlorosilane production apparatus of the present invention is characterized in that the heat transfer body is composed of a plurality of agglomerates or molded block bodies! /. A gap in the heat transfer body can be effectively secured by the plurality of agglomerates or block bodies.
[0012] また、本発明のトリクロロシラン製造装置は、前記粒塊又は成型されたブロック体の 表面に、複数の凹凸が形成されていることを特徴とする。すなわち、このトリクロロシラ ン製造装置では、表面に複数の凹凸を有する粒塊又は成型されたブロック体を採用 するので、供給ガスとの接触面積をより大きくすることができ、さらに効率的に加熱を fiうこと力 Sでさる。  [0012] The trichlorosilane production apparatus of the present invention is characterized in that a plurality of irregularities are formed on the surface of the agglomerates or molded block bodies. That is, in this trichlorosilane manufacturing apparatus, a lump having a plurality of irregularities on the surface or a molded block body is adopted, so that the contact area with the supply gas can be increased, and heating can be performed more efficiently. You can use fi S, S.
[0013] また、本発明のトリクロロシラン製造装置は、前記伝熱体が、多結晶シリコン、炭化 珪素、炭化珪素で表面がコーティングされたカーボンのいずれかであることを特徴と する。すなわち、このトリクロロシラン製造装置では、多結晶シリコン、炭化珪素(SiC) 、炭化珪素で表面がコーティングされたカーボンのいずれかの伝熱体を採用するの で、不純物が生じ難いと共に、熱伝導性が高ぐ高い加熱効率を得ることができる。 発明の効果  [0013] The trichlorosilane production apparatus of the present invention is characterized in that the heat transfer body is any one of polycrystalline silicon, silicon carbide, and carbon whose surface is coated with silicon carbide. That is, in this trichlorosilane manufacturing apparatus, since any one of heat transfer members of polycrystalline silicon, silicon carbide (SiC), or carbon whose surface is coated with silicon carbide is employed, impurities are hardly generated and thermal conductivity is increased. High heating efficiency can be obtained. The invention's effect
[0014] 本発明によれば、以下の効果を奏する。 [0014] According to the present invention, the following effects can be obtained.
[0015] すなわち、本発明に係るトリクロロシラン製造装置によれば、少なくとも 1400°Cを超 えた融点の材料により形成されるとともにガスが流通可能な空隙部を有する伝熱体が 反応容器内に充填されて加熱される。これとともに、供給ガスとの接触面積も多くなり 、効率的な加熱が可能になる。したがって、高い加熱効率によって効率的な転換反 応が得られ、トリクロロシランへの転換率の向上を図ることができる。  That is, according to the trichlorosilane production apparatus according to the present invention, the reaction container is filled with a heat transfer element that is formed of a material having a melting point that exceeds at least 1400 ° C. and that has a gap that allows gas to flow therethrough. And heated. At the same time, the contact area with the supply gas increases, and efficient heating becomes possible. Therefore, an efficient conversion reaction can be obtained with high heating efficiency, and the conversion rate to trichlorosilane can be improved.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]本発明に係るトリクロロシラン製造装置の第 1実施形態を示す簡略的な断面図 である。  FIG. 1 is a simplified cross-sectional view showing a first embodiment of a trichlorosilane production apparatus according to the present invention.
[図 2]本発明に係るトリクロロシラン製造装置の第 2実施形態において、ブロック体を 積み重ねている状態を示す要部の拡大斜視図である。 [図 3A]第 2実施形態において積み重ねられた状態のブロック体の平面図である。 FIG. 2 is an enlarged perspective view of essential parts showing a state in which block bodies are stacked in a second embodiment of the trichlorosilane manufacturing apparatus according to the present invention. FIG. 3A is a plan view of the block bodies stacked in the second embodiment.
[図 3B]第 2実施形態において積み重ねられた状態のブロック体の半径内側から見た 側面図である。  FIG. 3B is a side view of the block bodies stacked in the second embodiment when viewed from the inside of the radius.
符号の説明  Explanation of symbols
[0017] 1 · · ·反応容器、 la…ガス供給口、 lb…ガス導出口、 2· · ·粒塊 (伝熱体)、 2a…空隙 部、 3· · ·加熱機構、 3a…ヒータ部、 3b…電極部、 4· · ·充填部、 5· · ·仕切り版、 5a…ガ ス流入孔、 22· · ·ブロック体(伝熱体)、 22a…本体部、 22b…凸状部、 22c…空隙部 発明を実施するための最良の形態  [0017] 1 · · · Reaction vessel, la… Gas supply port, lb… Gas outlet, 2 ·· Agglomerates (heat transfer body), 2a… Gap portion, 3 ··· Heating mechanism, 3a… Heater portion 3b: Electrode section 4 ... Filling section 5 ... Partition plate 5a ... Gas inflow hole 22 ... Block body (heat transfer body) 22a ... Main body section 22b ... Convex section 22c ... Void part BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下、本発明に係るトリクロロシラン製造装置の実施形態について図面を参照しな がら説明する。まず、第 1実施形態を、図 1を参照しながら説明する。  Hereinafter, embodiments of a trichlorosilane production apparatus according to the present invention will be described with reference to the drawings. First, a first embodiment will be described with reference to FIG.
[0019] 本実施形態のトリクロロシラン製造装置は、図 1に示すように、テトラクロロシランと水 素とを含む供給ガスが内部に供給されてトリクロロシランと塩化水素とを含む反応生 成ガスが生成される反応容器 1と、反応容器 1内に充填され輻射熱と伝導伝熱によつ て加熱される少なくとも 1400°Cを超えた融点を有する伝熱体としての多数の粒塊 2と 、反応容器 1の周囲に配され前記反応容器 1内の粒塊 2を輻射熱と伝導伝熱によつ て加熱する加熱機構 3とを備えて V、る。  In the trichlorosilane production apparatus of the present embodiment, as shown in FIG. 1, a supply gas containing tetrachlorosilane and hydrogen is supplied into the interior to generate a reaction product gas containing trichlorosilane and hydrogen chloride. Reaction vessel 1, a large number of agglomerates 2 having a melting point of at least 1400 ° C filled in reaction vessel 1 and heated by radiant heat and conduction heat transfer, and reaction vessel V is provided with a heating mechanism 3 arranged around 1 and heating the agglomerates 2 in the reaction vessel 1 by radiant heat and conduction heat transfer.
[0020] 上記反応容器 1は、供給ガスを内部に導入するガス供給口 laと、反応生成ガスを 外部に導出するガス導出口 lbと、多数の粒塊 2を充填した充填部 4とを備えている。 また、充填部 4の下方(一端側)にガス供給口 laが配されていると共に、上方 (他端側 )にガス導出口 lbが配されて!/、る。  [0020] The reaction vessel 1 includes a gas supply port la for introducing a supply gas therein, a gas outlet port lb for deriving a reaction product gas to the outside, and a filling unit 4 filled with a large number of agglomerates 2. ing. In addition, a gas supply port la is disposed below (one end side) of the filling portion 4 and a gas outlet port lb is disposed above (on the other end side).
[0021] 上記粒塊 2は、高純度の多結晶シリコン、炭化珪素、炭化珪素で表面がコーティン グされたカーボンのいずれかである。特に表面に、複数の凹凸が形成されているもの が採用される。  [0021] The agglomerate 2 is one of high-purity polycrystalline silicon, silicon carbide, and carbon whose surface is coated with silicon carbide. In particular, those having a plurality of irregularities on the surface are employed.
[0022] なお、粒塊 2の大きさ及び充填量は、流通させる供給ガスの流量や充填部 4の大き さ(充填容量)等に応じて適宜設定される。そして、この粒塊 2が多数充填されること により、充填部 4内には、各粒塊 2の間にガスが流通可能な空隙部 2aが複雑に入り 組んだ状態に形成される。  [0022] The size and filling amount of the agglomerates 2 are appropriately set according to the flow rate of the supply gas to be circulated, the size (filling capacity) of the filling portion 4, and the like. Then, by filling a large number of the granule 2, the filling portion 4 is formed in a state in which the gap portions 2 a through which gas can flow between the respective granule 2 are intricately assembled.
[0023] 上記充填部 4は、反応容器 1の底部から一定の空間を空けて設けられた仕切り板 5 上に形成されている。この仕切り板 5と反応容器 1の底部との間の空間には、ガス供 給口 laが設けられ、供給ガスが導入されるようになっている。また、仕切り板 5には、 粒塊 2の外径よりも小さ!/、複数のガス流入孔 5aが形成されて!/、る。これらガス流入孔 5aから充填部 4へと供給ガスが流入されるようになっている。上記ガス供給口 laは、 供給ガスの供給源(図示略)に接続されてレ、る。 [0023] The filling unit 4 is a partition plate 5 provided with a certain space from the bottom of the reaction vessel 1. Formed on top. A gas supply port la is provided in the space between the partition plate 5 and the bottom of the reaction vessel 1 so that supply gas is introduced. Further, the partition plate 5 is formed with a plurality of gas inflow holes 5a smaller than the outer diameter of the agglomerates 2! /. The supply gas flows into the filling part 4 from these gas inflow holes 5a. The gas supply port la is connected to a supply source (not shown) of a supply gas.
[0024] すなわち、ガス流入孔 5aから流入した供給ガスは、充填部 4内の粒塊 2の間の空隙 部 2aを上方に向けて流通する。このとき、粒塊 2の表面に接触しつつ加熱されるため 、反応して反応生成ガスとなる。この反応生成ガスは最終的に上方のガス導出口 lb 力、ら外部に導出される。 That is, the supply gas flowing in from the gas inflow hole 5a flows upward in the gap 2a between the granule 2 in the filling unit 4. At this time, since it is heated while being in contact with the surface of the agglomerate 2, it reacts to become a reaction product gas. This reaction product gas is finally led out from the upper gas outlet lb force.
[0025] 上記加熱機構 3は、反応容器 1の周囲に反応容器 1を囲うように配された発熱体で あるヒータ部 3aと、前記ヒータ部 3aの下部に接続されヒータ部 3aに電流を流すため の電極部 3bとを備えている。この電極部 3bは、図示しない電源に接続されている。ま た、加熱機構 3は、反応容器 1内の粒塊 2が 800°C〜; 1400°Cの範囲内の温度になる ように加熱制御を行う。なお、粒塊 2の温度を 1200°C以上に設定すれば、トリクロ口 シランへの転換率が向上する。また、供給ガスにジシラン類を導入し、シラン類を取り 出してもよい。  [0025] The heating mechanism 3 includes a heater unit 3a that is a heating element disposed around the reaction vessel 1 so as to surround the reaction vessel 1, and a heater unit 3a that is connected to a lower portion of the heater unit 3a and allows a current to flow through the heater unit 3a. And an electrode portion 3b. The electrode portion 3b is connected to a power source (not shown). In addition, the heating mechanism 3 performs heating control so that the agglomerate 2 in the reaction vessel 1 has a temperature in the range of 800 ° C to 1400 ° C. If the temperature of the agglomerate 2 is set to 1200 ° C or higher, the conversion rate to trichlorosilane is improved. Alternatively, disilanes may be introduced into the supply gas and the silanes may be taken out.
[0026] このように本実施形態では、 1400°Cを超えた融点を有する多数の粒塊 2が反応容 器 1内に充填され、加熱機構 3の輻射熱と伝導伝熱により加熱される。これと共に、粒 塊 2同士の間に形成される空隙部 2aによって隙間が多ぐ供給ガスと粒塊 2との接触 面積も多くなるため、効率的に加熱することができる。また、粒塊 2間の空隙部 2aを介 して供給ガスが広く行き渡るため、充填部 4全体で供給ガスを加熱することができる。  Thus, in the present embodiment, a large number of agglomerates 2 having a melting point exceeding 1400 ° C. are filled in the reaction vessel 1 and heated by the radiant heat and conduction heat transfer of the heating mechanism 3. At the same time, the gap 2a formed between the granulates 2 increases the contact area between the supply gas having many gaps and the granule 2 and can be efficiently heated. In addition, since the supply gas is widely distributed through the gap 2a between the agglomerates 2, the supply gas can be heated in the entire filling unit 4.
[0027] また、表面に複数の凹凸を有する粒塊 2を採用するので、供給ガスとの接触面積を より大きくすること力でき、さらに効率的に加熱を行うことができる。  [0027] Further, since the agglomerate 2 having a plurality of irregularities on the surface is employed, the contact area with the supply gas can be increased, and heating can be performed more efficiently.
[0028] 特に、多結晶シリコン、炭化珪素、炭化珪素で表面がコーティングされたカーボン のいずれかの粒塊 2を採用するので、不純物が生じ難い。これと共に熱伝導性が高く 、高い加熱効率を得ることができる。なお、炭化珪素で表面がコーティングされたカー ボンを粒塊 2とする場合、炭化珪素のコーティング膜でカーボンを保護しているので、 カーボンと供給ガス及び反応生成ガス中の水素、クロロシラン及び塩化水素とが反 応してメタン、メチルクロロシラン、炭化珪素等が生成されて不純物となることを防ぐこ と力 Sできる。 [0028] In particular, since any agglomerate 2 of polycrystalline silicon, silicon carbide, or carbon whose surface is coated with silicon carbide is employed, impurities are hardly generated. Together with this, the thermal conductivity is high, and high heating efficiency can be obtained. In addition, when carbon whose surface is coated with silicon carbide is used as the agglomerate 2, since carbon is protected by the silicon carbide coating film, hydrogen, chlorosilane, and hydrogen chloride in carbon, supply gas, and reaction product gas are used. And anti Correspondingly, it is possible to prevent methane, methylchlorosilane, silicon carbide, etc. from being produced and becoming impurities.
[0029] さらに、充填部 4の下方にガス供給口 laが配されていると共に上方にガス導出口 1 bが配されているので、ガス供給口 laから導入された供給ガスが充填部 4内を下方側 力、ら上方のガス導出口 lbへと一定方向に流れる。そのため、供給ガス及び反応生成 ガスが充填部 4内で滞らずに流れやすくなる。その結果、効率的に転換反応を行うこ と力 Sできる。なお、図中において、ガスの流れ方向を矢印で示している。  [0029] Furthermore, since the gas supply port la is arranged below the filling unit 4 and the gas outlet port 1b is arranged above the filling unit 4, the supply gas introduced from the gas supply port la is contained in the filling unit 4. Flows in a fixed direction from the lower side force to the upper gas outlet lb. Therefore, the supply gas and the reaction product gas can easily flow in the filling section 4 without stagnation. As a result, the conversion reaction can be performed efficiently. In the figure, the direction of gas flow is indicated by arrows.
[0030] 次に、本発明に係るトリクロロシラン製造装置の第 2実施形態について、図 2、図 3A 及び図 3Bを参照しながら以下に説明する。なお、以下の実施形態の説明において、 上記実施形態において説明した同一の構成要素には同一の符号を付し、その説明 は省略する。  Next, a second embodiment of the trichlorosilane production apparatus according to the present invention will be described below with reference to FIGS. 2, 3A and 3B. In the following description of the embodiments, the same components as those described in the above embodiments are denoted by the same reference numerals, and the description thereof is omitted.
[0031] 第 2実施形態と第 1実施形態との異なる点は、第 1実施形態では、伝熱体として充 填部 4に複数の粒塊 2を充填しているのに対し、第 2実施形態では、図 2に示すように 、成型したブロック体 22を伝熱体とし、このブロック体 22を充填部 4に並べて充填して いる点である。すなわち、第 2実施形態のトリクロロシラン製造装置では、図 2及び図 3 Aに示すように、略円弧状に成型された複数のブロック体 22を充填部 4内に径の異 なる複数の円環状に並べると共に積み重ねて設置している。  [0031] The difference between the second embodiment and the first embodiment is that, in the first embodiment, the filling section 4 is filled with a plurality of agglomerates 2 as a heat transfer body, whereas the second embodiment is different from the second embodiment. In the embodiment, as shown in FIG. 2, the molded block body 22 is used as a heat transfer body, and the block body 22 is lined up and filled in the filling section 4. That is, in the trichlorosilane manufacturing apparatus according to the second embodiment, as shown in FIGS. 2 and 3A, a plurality of block bodies 22 molded in a substantially arc shape are provided in a plurality of annular shapes having different diameters in the filling portion 4. They are arranged and stacked.
[0032] 上記ブロック体 22は、略円弧状の本体部 22aと、前記本体部 22aの内側から突出 した凸状部 22bとで構成されている。このブロック体 22は、有底円筒状の充填部 4内 に相互に接触状態の複数の円環状に並べられている。また、その上にさらに積み重 ねられている。これにより、各ブロック体 22の凸状部 22bの間がガスを流通させる空 隙部 22cとなる。この場合、各ブロック体 22は、円環状に並べられると共に複数積み 重ねられる際、図 3Bに示すように、上下のブロック体 22が円周方向に互いにずれて 配置され、凸状部 22bが上下で一致しないように設定される。すなわち、上下の凸状 部 22bがずれて配置されることで、上下の空隙部 22cが蛇行しながら連続する。この 蛇行して連続する空隙部 22cを経由して供給ガス及び反応生成ガスが流通させられ  [0032] The block body 22 includes a substantially arc-shaped main body portion 22a and a convex portion 22b protruding from the inside of the main body portion 22a. The block bodies 22 are arranged in a plurality of annular shapes in contact with each other in the bottomed cylindrical filling portion 4. It is further stacked on top of it. Thus, a space 22c through which gas flows is formed between the convex portions 22b of each block body 22. In this case, when a plurality of the block bodies 22 are arranged in an annular shape and are stacked, as shown in FIG. 3B, the upper and lower block bodies 22 are arranged so as to be shifted from each other in the circumferential direction, and the convex portions 22b are Is set so that they do not match. In other words, the upper and lower convex portions 22b are shifted and arranged so that the upper and lower gap portions 22c are continuous while meandering. The supply gas and the reaction product gas are circulated through the meandering continuous gap 22c.
[0033] したがって、第 2実施形態では、充填部 4に互いの間に隙間が多数形成されるよう に成型したブロック体 22を並べて充填しているので、第 1実施形態と同様に、高温化 し易いと共に、供給ガスとブロック体 22との接触面積も多くなる。そのため、効率的に カロ熱すること力できる。また、ブロック体 22間の空隙部 22cを介して供給ガスが広く行 き渡るため、充填部 4全体で供給ガスを加熱することができる。 [0033] Therefore, in the second embodiment, a large number of gaps are formed in the filling portion 4 between each other. Since the molded block bodies 22 are lined up side by side, it is easy to increase the temperature as in the first embodiment, and the contact area between the supply gas and the block body 22 is increased. Therefore, it can power to heat efficiently. Further, since the supply gas spreads widely through the gap portion 22c between the block bodies 22, the supply gas can be heated in the entire filling portion 4.
[0034] なお、本発明の技術範囲は上記各実施形態に限定されるものではなぐ本発明の 趣旨を逸脱しない範囲において種々の変更を加えることが可能である。  Note that the technical scope of the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.
[0035] 例えば、上記各実施形態では、充填部 4の下方から供給ガスを導入すると共に上 方から反応生成ガスを導出している。しかし、別方向からガスの導入及び導出を行う ようにしても構わない。例えば、充填部 4の横方向の一方から供給ガスを導入し、横 方向の他方から反応生成ガスを導出しても良い。  [0035] For example, in each of the above embodiments, the supply gas is introduced from below the filling unit 4 and the reaction product gas is led out from above. However, gas may be introduced and derived from a different direction. For example, the supply gas may be introduced from one side in the horizontal direction of the filling unit 4 and the reaction product gas may be derived from the other side in the horizontal direction.
[0036] また、上記各実施形態では、複数の粒塊、又は複数のブロック体によってそれぞれ 伝熱体を構成した力 反応容器の充填部に充填され得る 1個の成型ブロック体によつ て伝熱体を構成してもよレ、。例えば柱状部や板状部の組み合わせ構造などにより、 表面から内部にかけて空隙部を形成した成型ブロック体を伝熱体としてもよい。 産業上の利用可能性  [0036] Further, in each of the above embodiments, the force is transmitted by one molded block body that can be filled in the filling portion of the force reaction vessel, each of which constitutes a heat transfer body by a plurality of agglomerates or a plurality of block bodies. You can make up a thermal body. For example, a molded block body in which a void portion is formed from the surface to the inside by a combination structure of columnar portions or plate-like portions may be used as the heat transfer body. Industrial applicability
[0037] 本発明により、効率的に供給ガスを加熱して反応に供することができるトリクロロシラ ン製造装置を提供できるから、産業上極めて有用である。 [0037] According to the present invention, it is possible to provide a trichlorosilane production apparatus that can efficiently heat a supply gas and use it for a reaction, which is extremely useful industrially.

Claims

請求の範囲 The scope of the claims
[1] テトラクロロシランと水素とを含む供給ガスが内部に供給されてトリクロロシランと塩 化水素とを含む反応生成ガスが生成される反応容器と、  [1] A reaction vessel in which a supply gas containing tetrachlorosilane and hydrogen is supplied to generate a reaction product gas containing trichlorosilane and hydrogen chloride;
前記反応容器内に充填され少なくとも 1400°Cを超えた融点の材料により形成され るとともにガスが流通可能な空隙部を有する伝熱体と、  A heat transfer body filled in the reaction vessel and formed of a material having a melting point exceeding at least 1400 ° C. and having a gap through which gas can flow;
前記反応容器内の前記伝熱体を加熱する加熱機構とを備えていることを特徴とす るトリクロロシラン製造装置。  An apparatus for producing trichlorosilane, comprising: a heating mechanism for heating the heat transfer body in the reaction vessel.
[2] 請求項 1に記載のトリクロロシラン製造装置にお!/、て、  [2] In the trichlorosilane production apparatus according to claim 1,! /,
前記反応容器が、前記供給ガスを前記反応容器内に導入するガス供給口と、 前記反応生成ガスを前記反応容器から外部に導出するガス導出口と、 前記伝熱体を充填した充填部とを備え、  A gas supply port through which the reaction vessel introduces the supply gas into the reaction vessel; a gas outlet through which the reaction product gas is led out from the reaction vessel; and a filling portion filled with the heat transfer body. Prepared,
前記充填部の一端側に前記ガス供給口が配されて!/、ると共に他端側に前記ガス 導出口が配されているトリクロロシラン製造装置。  An apparatus for producing trichlorosilane in which the gas supply port is arranged on one end side of the filling section and the gas outlet port is arranged on the other end side.
[3] 請求項 1に記載のトリクロロシラン製造装置にお!/、て、 [3] In the trichlorosilane production apparatus according to claim 1,! /,
前記伝熱体が複数の粒塊又は成型されたブロック体から構成されているトリクロロシ ラン製造装置。  A trichlorosilane manufacturing apparatus, wherein the heat transfer body is composed of a plurality of agglomerates or molded block bodies.
[4] 請求項 3に記載のトリクロロシラン製造装置において、  [4] In the trichlorosilane production apparatus according to claim 3,
前記粒塊又は成型されたブロック体の表面に、複数の凹凸が形成されているトリク ロロシラン製造装置。  An apparatus for producing chlorosilane, wherein a plurality of irregularities are formed on the surface of the agglomerate or molded block body.
[5] 請求項 1に記載のトリクロロシラン製造装置にお!/、て、 [5] In the trichlorosilane production apparatus according to claim 1,! /,
前記伝熱体が、多結晶シリコン、炭化珪素、炭化珪素で表面がコーティングされた カーボンのいずれかであるトリクロロシラン製造装置。  The trichlorosilane manufacturing apparatus, wherein the heat transfer body is any one of polycrystalline silicon, silicon carbide, and carbon whose surface is coated with silicon carbide.
PCT/JP2007/070805 2006-11-21 2007-10-25 Trichlorosilane producing apparatus WO2008062632A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2007800429212A CN101535180B (en) 2006-11-21 2007-10-25 Trichlorosilane producing apparatus
US12/312,471 US8221691B2 (en) 2006-11-21 2007-10-25 Apparatus for producing trichlorosilane

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-314896 2006-11-21
JP2006314896 2006-11-21
JP2007-268617 2007-10-16
JP2007268617A JP5160181B2 (en) 2006-11-21 2007-10-16 Trichlorosilane production equipment

Publications (1)

Publication Number Publication Date
WO2008062632A1 true WO2008062632A1 (en) 2008-05-29

Family

ID=39429571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070805 WO2008062632A1 (en) 2006-11-21 2007-10-25 Trichlorosilane producing apparatus

Country Status (1)

Country Link
WO (1) WO2008062632A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4847500A (en) * 1971-10-21 1973-07-05
JPS56169119A (en) * 1980-05-27 1981-12-25 Mitsubishi Metal Corp Manufacture of trichlorosilane
JPS62123011A (en) * 1985-11-25 1987-06-04 Koujiyundo Silicon Kk Method for producing trichlorosilane and apparatus therefor
JPH07232910A (en) * 1994-01-28 1995-09-05 Hemlock Semiconductor Corp Method for hydrogenation of tetrachloro- silane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4847500A (en) * 1971-10-21 1973-07-05
JPS56169119A (en) * 1980-05-27 1981-12-25 Mitsubishi Metal Corp Manufacture of trichlorosilane
JPS62123011A (en) * 1985-11-25 1987-06-04 Koujiyundo Silicon Kk Method for producing trichlorosilane and apparatus therefor
JPH07232910A (en) * 1994-01-28 1995-09-05 Hemlock Semiconductor Corp Method for hydrogenation of tetrachloro- silane

Similar Documents

Publication Publication Date Title
WO2008053759A1 (en) Trichlorosilane production apparatus
WO2008053786A1 (en) Trichlorosilane production apparatus
US9764960B2 (en) Method and apparatus for preparation of granular polysilicon
JP5119856B2 (en) Trichlorosilane production equipment
JP5444839B2 (en) Trichlorosilane production apparatus and production method
WO2008065838A1 (en) Process for producing trichlorosilane and apparatus for producing trichlorosilane
US20160052791A1 (en) Method for Producing Trichlorosilane
CN102744021A (en) Fluidized bed reactor
EP2382037B1 (en) Method and apparatus for producing granular silicon
TW201139273A (en) Use of a pressurized ceramic heat exchanger as an integral part of a plant for converting silicon tetrachloride to trichlorosilane
EP2003092B1 (en) Trichlorosilane production apparatus
JP5160181B2 (en) Trichlorosilane production equipment
JP5012449B2 (en) Trichlorosilane production equipment
CN107074561B (en) Use the poly plant and method of high-efficiency hybrid horizontal reactor
WO2008062632A1 (en) Trichlorosilane producing apparatus
WO2008066027A1 (en) Apparatus for producing trichlorosilane
JP5316284B2 (en) Trichlorosilane production equipment
CN106458607B (en) Use the device of horizontal reactor manufacture polysilicon and the manufacturing method of the polysilicon
JP5637013B2 (en) Trichlorosilane production apparatus and production method
WO2008065829A1 (en) Apparatus for production of trichlorosilane
JP2011157223A (en) Apparatus for manufacturing trichlorosilane
JP2008150273A (en) Apparatus for producing trichlorosilane

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780042921.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830539

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12312471

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07830539

Country of ref document: EP

Kind code of ref document: A1