WO2008062605A1 - Resin composition, anti-reflection coating material, anti-dazzling coating material, anti-reflection coating, anti-reflection film, anti-dazzling film, corrosion protective coating, corrosion protective coating material, coating material, and coating film - Google Patents

Resin composition, anti-reflection coating material, anti-dazzling coating material, anti-reflection coating, anti-reflection film, anti-dazzling film, corrosion protective coating, corrosion protective coating material, coating material, and coating film Download PDF

Info

Publication number
WO2008062605A1
WO2008062605A1 PCT/JP2007/068940 JP2007068940W WO2008062605A1 WO 2008062605 A1 WO2008062605 A1 WO 2008062605A1 JP 2007068940 W JP2007068940 W JP 2007068940W WO 2008062605 A1 WO2008062605 A1 WO 2008062605A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
coating
silica
anticorrosion
paint
Prior art date
Application number
PCT/JP2007/068940
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuyuki Tanabe
Kiyoshi Hoshino
Kouhei Mitsuhashi
Masayoshi Fuji
Kyoichi Fujimoto
Kozo Hayashi
Original Assignee
Nittetsu Mining Co., Ltd
Nagoya Institute Of Technology
Grandex Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006314205A external-priority patent/JP5186644B2/en
Priority claimed from JP2007037461A external-priority patent/JP2008200922A/en
Priority claimed from JP2007037304A external-priority patent/JP2008201858A/en
Application filed by Nittetsu Mining Co., Ltd, Nagoya Institute Of Technology, Grandex Co., Ltd. filed Critical Nittetsu Mining Co., Ltd
Publication of WO2008062605A1 publication Critical patent/WO2008062605A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/48Stabilisers against degradation by oxygen, light or heat
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/084Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/10Anti-corrosive paints containing metal dust
    • C09D5/106Anti-corrosive paints containing metal dust containing Zn
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/38Coatings with pigments characterised by the pigments
    • D21H19/40Coatings with pigments characterised by the pigments siliceous, e.g. clays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0226Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures having particles on the surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0294Diffusing elements; Afocal elements characterized by the use adapted to provide an additional optical effect, e.g. anti-reflection or filter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/50Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by form
    • D21H21/52Additives of definite length or shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures

Definitions

  • Resin composition antireflection coating material, antiglare coating material, antireflection film, antireflection film and antiglare film, anticorrosion film and anticorrosion paint, and coating paint and coating film
  • the present invention relates to a resin composition containing hollow particles made of silica shells, and further includes a coating material containing the hollow particles, a coating film coated with the coating material, fibers and films.
  • a resin composition containing hollow particles made of silica shells, and further includes a coating material containing the hollow particles, a coating film coated with the coating material, fibers and films.
  • the present invention also relates to a coating material and a coating film that utilize the heat insulating property, wear resistance, high hardness, and transparency of hollow particles made of a silica shell having an outer diameter ranging from about 30 nm to 300 nm. It is.
  • the present invention is a reflection method utilizing the low refractive index, translucency, and irregular reflection of hollow particles having a cubic shape made of a silica shell having an outer diameter ranging from about lOnm to about 300nm.
  • the present invention relates to an antireflection coating material, an antiglare coating material, an antireflection film, an antireflection film, and an antiglare film.
  • the “cubic form” means not only a cube but a shape similar to a cube surrounded by a face.
  • the present invention relates to a cubic form comprising a corrosion prevention film using metal particles or the like as an inhibitor, and hollow particles comprising silica shells having an outer diameter ranging from lOnm to 300 ⁇ m, in particular, silica shells. It consists of an anti-corrosion film that uses an anti-corrosion film that utilizes the insulation and transparency of hollow particles, an anti-corrosion paint that uses metal particles as an inhibitor, and a silica shell that has an outer diameter in the range of lOnm to 300 nm.
  • the present invention relates to an anticorrosion film and an anticorrosion paint obtained by mixing hollow particles, in particular, a cubic hollow particle made of silica shell, with an anticorrosion paint utilizing the insulation and transparency, and obtains higher anticorrosion performance.
  • the present invention relates to an anticorrosion film and an anticorrosion paint.
  • the resin includes natural resin and synthetic resin, and the latter synthetic resin is industrially used!
  • thermoplastic resins that soften as the temperature rises
  • thermosetting resins that cure relatively low molecular weight resins by heat.
  • the thermoplastic resins are polyethylene, polystyrene, There are many types such as polypropylene, chlorinated resin, methacrylic resin, fluororesin, polyimide, and acetic acid butyl.
  • Thermosetting resins include alkyd resin, aryl resin, amino resin, epoxy resin, phenolic resin, unsaturated resin. There are polyester resin, silicone resin, polyurethane and so on.
  • These resins may be used alone.
  • various additives and fillers are selected and kneaded according to the application, and prepared so as to satisfy the required physical properties and performance.
  • Used as a resin composition used as a resin composition.
  • various shapes such as compression molding, extrusion molding, and injection molding are used to form shapes suitable for applications.
  • synthetic fiber is one of the most typical synthetic resin molded products.
  • Resins used as synthetic fibers include polyester, acrylic, acrylic, nylon, vinylon, polypropylene, polychlorinated butyl, polyethylene, vinylidene, polyurethane, amide, polyarylate, and PBO (polyparaphenylene benzobisoxa). Sol), ethylene vinyl alcohol, acrylate, polylactic acid and the like.
  • acetate, triacetate, promix which is a semi-synthetic fiber made from natural organic substances such as cellulose and protein, and the cellulose fiber contained in wood pulp and cotton linters.
  • rayon, polynosic, cupola, and lyocell which are regenerated fibers that are dissolved by chemicals and regenerated as fibers.
  • Polyester particularly polyethylene terephthalate, which is one of these many resins, has excellent physical and chemical properties and is widely used as various molded products including fibers and films. Yes.
  • various industrial uses such as various garments and rubber reinforced fibers.
  • various uses such as optical, building materials, packaging, agriculture, OHP, and magnetic tape. Are known.
  • This polyester is manufactured in the largest amount as a polyester fiber among synthetic fibers, and many proposals have already been made as a technique for imparting the above-described characteristics by hollowing or adding fine particles.
  • the following is a partial list.
  • the average particle diameter of primary particles is 0.111 m or less, and the specific surface area measured by the BET method is 150 m 2 / g or less.
  • Polyester hollow fibers having a hollow ratio of 25% or more having through-holes to the surface have been proposed, and the hollow fibers have a high water-absorbing property and have a feeling of excellent contact cooling and dry feeling.
  • Patent Document 2 discloses a copolymer polyester containing fine particles such as silica having an average particle size of 0.03 to 2111 from 0.5 to 10% by weight, and an average particle size of 0.03 to 2 111.
  • a hollow composite fiber excellent in repulsion and lightness is disclosed in which a hollow portion of 1 to 25% is formed of a crystalline thermoplastic polymer containing 2 to 15 wt. Has been.
  • Patent Document 3 discloses a backing made of polyester having water molecule adsorption heat generation performance in which a synthetic resin layer containing hygroscopic fine particles such as hygroscopic polymer and silica fine particles is laminated on one side.
  • Patent Document 4 in a hollow polyester fiber having a hollowness of 5 to 60%, 3 to 60% of silica gel is adhered to the hollow portion of the fiber based on the weight of the polymer constituting the polyester hollow fiber. Polyester hollow fibers having improved moisture absorption / release characteristics and drape characteristics are disclosed.
  • Patent Document 5 discloses an unsaturated polyester paint composition excellent in thixotropy containing hydrophobic silica and hydrophilic silica in a specific ratio.
  • Patent Document 6 includes excellent corrosion resistance and resistance including one or more resin components selected from water-soluble or water-dispersible urethane resins, epoxy resins, polyester resins, and acrylic resins, and silica components. Water-based paint assembly that forms solvent-borne coatings Compositions have been proposed.
  • Patent Document 7 contains silica, and a coating film having a particularly excellent corrosion resistance and solvent resistance even after processing of a metal plate is coated with a surface of a metal material thin enough to facilitate welding.
  • Water-based paint compositions that can be formed have been proposed.
  • Patent Document 8 relates to a spherical inorganic hollow powder having an average particle size of 8 m or less and an average sphericity of 0.85 or more, and a resin composition containing the hollow powder, and has a low specific gravity and a low specific gravity. It describes the effects of improving physical properties such as dielectric properties, heat resistance, heat insulation, pressure resistance, impact resistance, electrical properties, dimensional stability, and moldability.
  • a CRT display device such as a CRT monitor for a cathode ray tube television 'PC
  • a liquid crystal display device such as a liquid crystal monitor for a liquid crystal television' PC
  • a plasma display device such as a plasma display
  • the screen is illuminated indoors.
  • An anti-reflection film is used on the surface to prevent the reflection of the image and to increase the contrast and make the display device easier to see.
  • an antireflection (AR) film in a narrow sense it is refracted by forming an optical multilayer film using ⁇ / 4 (quarter wavelength) interference, or forming fine pores. Porous antireflective coatings that obtain an antireflective effect by lowering the rate to about 1.2 to 1.3 are known.
  • a so-called anti-glare (AG) film is known which is formed by dispersing silica particles in a binder such as a paint and coating it. Yes.
  • an antireflection film having both the AR effect and the AG effect can be obtained by a simple manufacturing process.
  • the antireflective film according to Patent Document 9 uses solid silica fine particles as the fine particles, the refractive index of the antireflective film increases, and the desired antireflective effect can be obtained. Nare ,.
  • Patent Document 10 in order to obtain silica-based fine particles having a low refractive index, a method for producing hollow spherical silica-based fine particles having a cavity inside the outer shell and the silica-based fine particles were used. Disclosure of the invention of coating film-forming paints and coated substrates.
  • the silica-based fine particles obtained by this production method have an average particle diameter in the range of 5 nm to 500 nm, a refractive index in the range of 1.15 to;
  • the coating comprising the forming matrix is said to have a low refractive index and excellent transparency and antireflection performance.
  • chromate treatment particularly chromic acid chromate treatment called yellow chromate treatment
  • the surface of aluminum or the like is treated in a strongly acidic solution containing one or more of chromic acid or chromic acid salt and fluoride and adjusted to pH with organic acid or inorganic acid to form a film.
  • This yellow chromate film exhibits a sufficient anti-corrosion and anti-corrosion effect with a thin film of 1, im or less.
  • Patent Document 11 mainly uses a polymer or copolymer of colloidal silica, an organoalkoxysilane partial hydrolysis condensate, and an unsaturated ethylene monomer. Disclosure of the invention of the coating structure of a metal member as a component ing.
  • Patent Document 12 a specific acrylic resin, epoxy resin, block polyisocyanate compound, a primer mainly composed of powdered silica and crosslinkable polymer particles, and a thickness mainly composed of the above components.
  • a transparent anticorrosive thick film coating composition comprising a film primer is disclosed and disclosed.
  • the coating film softly flies even when dried, and thus the coating composition contains aluminum.
  • the coating process is repeated from 4 to 5 steps ⁇ drying ⁇ painting ⁇ drying, and the protective coating is applied to a thickness of about 200 ⁇ .
  • the coating process takes a long time and the length of the coating line is also long. Longer and higher cost.
  • the hardness of the protective coating was about ⁇ in pencil hardness, and was very vulnerable to friction.
  • Patent Document 13 the present inventors can shorten the coating process by shortening the coating process, reduce the cost, and directly combine the aluminum active surface and the paint component.
  • the invention discloses a method for coating an aluminum surface and a paint for aluminum which can be further improved in surface hardness.
  • a coating composition (coating paint) that is capable of forming a coating film having excellent wear resistance, stain resistance, chemical resistance and high hardness.
  • a coating composition comprising a silyl group-containing bulle compound and an organosilane compound (colloidal silica) shown in Patent Document 14 is known.
  • the composition is obtained by adding a polymer of an unsaturated ethylenic monomer. As a result, the coating film formed becomes thick and the texture of the substrate is impaired.
  • Patent Document 15 a glass coating composition that can be easily coated on a glass substrate, is excellent in antifouling property, durability, and transparency, and further provides a coated glass having a photocatalytic function.
  • This invention is disclosed.
  • the photocatalytic function has an excellent antifouling property and transparency, and there is a problem that the surface hardness of the coating film is low and is easily damaged.
  • Patent Document 16 is a floor polish composition applied to a floor surface such as a wooden floor material, a chemical floor material made of a synthetic resin, and a stone floor such as concrete or marble. Therefore, the invention of a floor polish composition that preserves the aesthetics of the flooring and protects the floor surface, can prevent the skin from being damaged and worn even in places with high walking frequency, and also considers environmental problems. ! /, Please disclose! /
  • Patent Document 1 JP-A-8-291463
  • Patent Document 2 Japanese Patent Laid-Open No. 11 350256
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2003-193309
  • Patent Document 4 Japanese Patent Laid-Open No. 10-237758
  • Patent Document 5 JP-A-6-184493
  • Patent Document 6 Japanese Patent Laid-Open No. 7-242833
  • Patent Document 7 Japanese Patent Laid-Open No. 9324148
  • Patent Document 8 Japanese Patent Laid-Open No. 2005-206436
  • Patent Document 9 JP-A-10-133002
  • Patent Document 10 Japanese Unexamined Patent Application Publication No. 2006-21938
  • Patent Document 11 Japanese Patent Publication No. 7-77777
  • Patent Document 12 JP-A-6-57177
  • Patent Document 13 Japanese Unexamined Patent Application Publication No. 2004-154757
  • Patent Document 14 Japanese Patent Laid-Open No. 01-0669673
  • Patent Document 15 Japanese Unexamined Patent Publication No. 2001-158643
  • Patent Document 16 Japanese Unexamined Patent Publication No. 2005-255703
  • Patent Document 17 Japanese Unexamined Patent Publication No. 2005-263550
  • Patent Document 18 Japanese Unexamined Patent Application Publication No. 2006-256921
  • the present inventors have succeeded in developing a novel hollow particle and a method for producing the same, and are eagerly researching its industrial applicability. Finding the possibility of improving various physical properties by including it in industrial products made of resin compositions widely used in fibers, films, paints, etc. That is, the present invention has been successfully developed by utilizing this knowledge.
  • the present invention firstly uses a hollow particle made of a metal oxide shell to provide heat insulation, lightness, transparency, water absorption, hygroscopicity, colorability, color development, insulation. Resin composition with improved properties, corrosion resistance, scratch resistance, slipperiness, abrasion resistance, drop-off resistance, etc., and paints, molded articles, fibers that are representative of the molded articles, The issue is to provide a film.
  • the silica-based fine particles in the technique described in Patent Document 10 have a low refractive index because they are hollow, but since they are spherical, the incident visible light is refracted and the transparency is deteriorated immediately. Moreover, since it is spherical, it has poor filling properties. Furthermore, since the silica-based fine particles are produced by a complicated production process as described in Patent Document 2, the cost is extremely high, and it is difficult to use for applications that require low cost. There was a problem that there was.
  • the second aspect of the present invention is a low cost method utilizing the low refractive index and translucency of the hollow particles having a cubic shape made of silica shells produced at low cost and the irregular reflection of secondary particles. It is an object of the present invention to provide an antireflection coating material, an antiglare coating material, an antireflection film, an antireflection film and an antiglare film that can be used in applications where strikes are required.
  • the present invention thirdly, in the portion where the hollow particles made of silica shells are distributed, water is surely prevented from being swallowed, and inhibitors such as metal particles are distributed! /,
  • the problem is to provide an anti-corrosion film and anti-corrosion paint with extremely excellent anti-corrosion performance by preventing the invasion of water by the action of the inhibitor even if water has sunk in the part! It is what.
  • Patent Document 15 and Patent Document 16 are also limited in base material and inferior in versatility. Further, the technique described in Patent Document 16 has a problem that the original texture of the large-sized stone is lost because the coating film to be formed has gloss.
  • the present invention fourthly utilizes the heat insulation, wear resistance, high hardness, and transparency of hollow particles made of silica shells having an outer diameter in the range of approximately 30 nm to 300 nm.
  • it is a highly versatile coating film and coating that can be applied to any substrate, and it has a high surface hardness that ensures that the original texture and feel of the substrate are not lost. It is an object of the present invention to provide a coating film and a coating material that can be applied.
  • the present invention firstly provides a resin composition that solves the first problem and a fiber or film using the resin composition, and the resin composition comprises a metal oxide shell. It contains hollow particles.
  • the fiber or film is formed by molding the resin composition.
  • the hollow particles preferably have an average primary particle diameter of 20 nm to l ⁇ m by transmission electron microscopy and an average particle diameter of 20 nm to 3 m by dynamic light scattering.
  • the average primary particle diameter by transmission electron microscopy is 20 nm to 0.1 ⁇ ii ⁇ , and more desirably 20 nm to 0.1 m, which can exhibit excellent effects when considering functions such as transparency, heat insulation, and particle strength.
  • the metal oxide shell of the hollow particles is preferable in that the pore distribution measured by mercury porosimetry does not detect pores of 2 to 20 nm, and the hollow state is maintained.
  • Hollow particles having such a silica shell can be prepared by using a carbonate as a core material, forming a metal oxide film on the surface of the carbonate, and then dissolving the carbonate of the core material with an acid.
  • a carbonate as a core material
  • forming a metal oxide film on the surface of the carbonate and then dissolving the carbonate of the core material with an acid.
  • calcium carbonate having a cubic shape called colloidal calcium carbonate or cubic calcium carbonate has a primary particle size as small as 20 nm to 0.5 111 and is suitable as a core material for hollow particles used in the present invention. ing.
  • the obtained hollow particles also have a cubic shape, and have excellent features derived from the shape.
  • Silica sources include silicon alkoxides such as tetraethoxysilane (TEOS) and sodium silicate. An alkali acid is preferred.
  • a polyester-based resin can be mentioned.
  • the hollow particles in the polyester for example, when terephthalic acid and ethylene glycol are used as polymerization raw materials, Before or after completion of the polymerization of terephthalic acid and ethylene glycol, it may be carried out by kneading after the polymerization, but it is desirable to add hollow particles before the completion of the polymerization in order to disperse more uniformly!
  • An antireflection coating material according to the invention of claim 4 is an antireflection coating material that utilizes the low refractive index and translucency of hollow particles having a cubic shape with silica shell strength, and is from 30 nm to 300 nm. Hollow particles having a cubic shape composed of the above-mentioned silica shell having an outer diameter in the range are uniformly dispersed in an organic synthetic resin paint.
  • the antiglare coating material according to the invention of claim 5 is an antiglare coating material that utilizes the low refractive index, translucency, and irregular reflection of secondary particles of a hollow particle having a cubic shape made of silica shells. Secondary particles having a size in a range of 0.5 m to 50 m in which hollow primary particles having a cubic shape composed of the silica shell having an outer diameter in the range of 30 nm to 300 nm are aggregated. It is formed by uniformly dispersing in an organic synthetic resin paint.
  • the antireflection film according to the invention of claim 6 is formed by applying the antiglare coating material according to claim 5 and the antireflection coating material according to claim 4. It is formed by laminating coating films.
  • the antireflection film according to the invention of claim 7 is an antireflection film utilizing the low refractive index and translucency of the hollow particles having a cubic shape having a silica shell force, and is 30 nm to 300 nm.
  • the hollow particles having a cubic shape composed of the silica shell having the outer diameter in the range up to are uniformly dispersed in the organic synthetic resin film.
  • the antiglare film according to the invention of claim 8 is an antiglare film that utilizes the low refractive index, translucency, and irregular reflection of secondary particles of hollow particles having a cubic form made of silica shells.
  • the hollow primary particles having a cubic shape composed of the silica shell having an outer diameter in the range of 30 nm to 300 nm are aggregated and have a size in the range of 0.5, 1 m to 50, 1 m.
  • the particles are uniformly dispersed in the organic synthetic resin film.
  • An antireflection film according to the invention of claim 9 and the antiglare film of claim 8 The antireflection film according to claim 7 is laminated.
  • the antireflection coating material, the antiglare coating material, the antireflection film, the antireflection film, or the antiglare film according to the invention of claim 10 is the structure according to any one of claims 4 to 9. Hollow particles having a cubic shape made of silica shells have an outer diameter in the range of 40 nm to 150 nm.
  • the anticorrosion film according to the invention of claim 11 is a silica having a metal particle selected from the group consisting of aluminum, zinc, an alloy power of aluminum and zinc, and an outer diameter in the range of 10 nm to 300 nm.
  • Hollow particles made of shells are uniformly dispersed in an organic resin binder, an inorganic polymer binder, or an organic-inorganic composite binder.
  • the organic resin binder includes an isocyanate acrylic binder
  • the inorganic polymer binder includes an alkyl silicate hydrolysis binder
  • the organic inorganic composite binder includes a mixture of colloidal silica and block isocyanate. Etc.
  • the anticorrosion film according to the invention of claim 12 covers the surface of the magnesium-based metal with an anodized oxide layer, and the surface of the oxide layer is an aluminum-based, titanium-based or zirconium-based coupling agent.
  • a hollow particle composed of a modified resin modified with the above and a silica shell having an outer diameter in the range of 10 nm to 300 nm was coated with a layer uniformly dispersed in an organic resin binder or an inorganic polymer binder or an organic / inorganic composite binder. Is a thing
  • the anticorrosion film according to the invention of claim 13 is an anticorrosion film formed on the surface of aluminum or an aluminum alloy, comprising colloidal silica, an organoalkoxysilane partial hydrolysis condensate, and an unsaturated ethylene monomer. And a hollow particle composed of a silica shell having an outer diameter in the range of 10 nm to 300 nm is uniformly dispersed in an organic resin binder, an inorganic polymer binder, or an organic-inorganic composite binder. Stuff
  • the anticorrosion film according to the invention of claim 14 has the structure of any one of claims 11 to 13, and has a hollow particle force S made of the silica shell and a cubic form.
  • the anticorrosion film according to the invention of claim 15 is the structure according to any one of claims 11 to 14, wherein the hollow particle force comprising the silica shell, the organic resin binder, or the front
  • the inorganic polymer binder or the organic-inorganic composite binder is mixed in a solid content of 4 wt% to 15 wt%.
  • the anticorrosion film according to the invention of claim 16 is the structure according to any one of claims 11 to 15, wherein an isocyanate-based surface modifier is added to the surface of the hollow particles comprising the silica shell. It is a thing.
  • the anticorrosion paint according to the invention of claim 17 is a coating composition for metal anticorrosion comprising a water-soluble trivalent chromium compound, a water-soluble fluoride, zinc-aluminum alloy powder, glycols and / or celluloses. And an anticorrosive composition in which hollow particles composed of silica shells having an outer diameter in the range of 10 nm to 300 nm are uniformly dispersed in an organic resin paint, an inorganic polymer paint, or an organic-inorganic composite paint.
  • organic resin paints include isocyanate acrylic paints
  • inorganic polymer paints include alkyl silicate hydrolysis paints
  • organic inorganic composite paints include a mixture of colloidal silica and block isocyanate. .
  • the anticorrosion paint according to the invention of claim 18 is the composition according to claim 17, wherein the coating composition for metal anticorrosion contains the water-soluble trivalent chromium compound in terms of Cr 2 O in terms of 100 parts by weight of water. 2 to 10 parts by weight, 0.01 to 0.5 parts by weight of the water-soluble fluoride in terms of fluoride ion, 5 to 50 parts by weight of the zinc-aluminum alloy powder, And / or containing 5 to 30 parts by weight of the cellulose and having a pH in the range of 3.0 to 7.0.
  • the coating composition for metal anticorrosion contains the water-soluble trivalent chromium compound in terms of Cr 2 O in terms of 100 parts by weight of water. 2 to 10 parts by weight, 0.01 to 0.5 parts by weight of the water-soluble fluoride in terms of fluoride ion, 5 to 50 parts by weight of the zinc-aluminum alloy powder, And / or containing 5 to 30 parts by weight of the cellulose and having a pH in the range of 3.0 to
  • the anticorrosion paint according to the invention of claim 19 is made of at least one metal powder selected from the group consisting of a water-soluble chromic acid compound and zinc powder 'aluminum powder ⁇ zinc alloy powder' aluminum alloy powder. Contains a metal component formed by coating a higher fatty acid salt on the surface, an oxidizing agent capable of decomposing the higher fatty acid salt, a glycol compound and / or ⁇ -hydroxyketone, and water and / or a water-soluble organic solvent.
  • An anti-corrosion coating composition comprising the above and hollow particles made of silica shells having an outer diameter in the range of 10 nm to 300 nm are uniformly dispersed in an organic resin paint, an inorganic polymer paint, or an organic-inorganic composite paint. And an anticorrosive composition.
  • the anticorrosion paint according to the invention of claim 20 is provided with at least one fluoride salt selected from fluorine fluoride salt 'titanium fluoride salt' and zirconium fluoride fluoride salt, all of which are placed by hydrolyzable groups.
  • a coating agent for forming an inorganic film obtained by reacting at least one hydrolyzable monomer selected from 'titanium monomer' and 'zirconium monomer' and / or a low condensate thereof, within a range of 10 nm to 300 nm.
  • a hollow particle composed of silica shells having an outer diameter of 2 is mixed with an anticorrosive composition obtained by uniformly dispersing organic particles in an organic resin paint, an inorganic polymer paint or an organic-inorganic composite paint.
  • An anticorrosion paint according to the invention of claim 21 comprises an acrylic resin, an amino resin, and a coating composition containing a phosphoric acid group and an acrylic resin having a hydrogenated bisphenol skeleton structure, and 10 ⁇ m to 300nm. Hollow particles composed of silica shells having an outer diameter within the range are mixed with an anticorrosive composition in which organic particles are uniformly dispersed in an organic resin paint, an inorganic polymer paint or an organic-inorganic composite paint.
  • the anticorrosion paint according to the invention of claim 22 includes an anticorrosion paint composition containing an acrylic resin, an epoxy resin, a block polyisocyanate compound, powdered silica, and crosslinkable polymer particles, and a range of 10 nm to 300 nm. Hollow particles composed of silica shells having an outer diameter are mixed with an organic resin coating, an inorganic polymer coating, or an anticorrosion composition that is uniformly dispersed in an organic-inorganic composite coating.
  • the anticorrosion paint according to the invention of claim 23 is the structure according to any one of claims 17 to 22, wherein the anticorrosion composition and the hollow particles made of the silica shell are used for the entire anticorrosion coating.
  • the total content is 10% by weight to 30% by weight, and the content of the organic resin paint, the inorganic polymer paint or the organic-inorganic composite paint is 70% by weight to 90% by weight.
  • the anticorrosion paint according to the invention of claim 24 has a hollow particle force cubic shape composed of the silica shell in the structure of any one of claims 17 to 23.
  • the hollow particles having the silica shell force are the organic resin paint, the organic polymer paint, 15% by weight in solid content with respect to the organic-inorganic composite paint; It is mixed at a rate of%.
  • an isocyanate-based surface modifier is added to the surface of the hollow particles made of the silica shell. Is.
  • the coating paint according to the invention of claim 27 is composed of a silica shell having an outer diameter in the range of about 30 nm to 300 nm, and hollow particles having a cubic shape are made of organic resin paint, inorganic polymer paint or organic inorganic It is formed by dispersing substantially uniformly in the composite paint.
  • the coating paint according to the invention of claim 28 is characterized in that, in the structure of claim 27, an isocyanate-based, alkyl-based, bur-based or attaxy-oxy-based surface modifier is applied to the surface of the hollow particles made of the silica shell. It is added.
  • an alkyl group There are triisocyanate compounds in which three isocyanate groups are bonded, triethoxypropyl isocyanate silane (TEIS), and the like.
  • TEIS triethoxypropyl isocyanate silane
  • alkyl-based surface modifier means a surface modifier composed of a compound having at least one alkyl group.
  • the coating film according to the invention of claim 29 is a coating film formed on the surface of a substrate, and is composed of a silica shell having an outer diameter in a range of approximately 30 nm to 300 nm, and has a cubic shape. Hollow particles are dispersed substantially uniformly in an organic resin binder, an inorganic polymer binder, or an organic-inorganic composite binder.
  • the “base material” includes various materials such as wood, leather, synthetic leather, plastic, stone, glass, paper, and fiber material.
  • the substrate is made of wood, leather or synthetic leather, plastic, stone, glass, paper, or a fiber material.
  • plastic is generally referred to as an organic synthetic resin, such as polyethylene, polypropylene, polyethylene terephthalate (PET) 'nylon resin' acrylic resin, polyamide resin, polycarbonate, polystyrene, polychlorinated.
  • thermoplastic resins such as fluorine resin, and urethane resin ⁇ phenol resin ⁇ epoxy resin ⁇ urea resin' melamine resin ⁇ unsaturated polyester resin ⁇ alkyd resin ⁇ ebonite and other thermosetting resins.
  • Stone includes so-called concrete made only of high-grade stones such as granite and marble used as building materials and flooring materials.
  • fiber material means cotton, silk, hemp, wool, nylon, vinylon, polyester fiber, acrylic fiber, vinylidene chloride fiber, acetate, rayon and other organic fibers, glass fiber, carbon fiber (carbon fiber), etc.
  • the coating film according to the invention of claim 31 is the structure of claim 29 or claim 30, wherein the surface of the hollow particle comprising the silica shell is an isocyanate-based, alkyl-based, bur-based, or attaryloxy-based surface. A modifier is added.
  • the obtained polyester composition containing hollow particles made of silica shells can be used for various purposes by processing into a fiber or film as a paint or a molded body. Applicable in
  • the feature of the invention according to claims 1 to 3 is that the resin composition contains hollow particles made of a metal oxide, so that heat insulation, light weight, transparency, water absorption, hygroscopicity are obtained. It is possible to provide a resin composition that exhibits colorability, color developability, insulation, corrosion resistance, scratch resistance, slipperiness, wear resistance, drop-off resistance, and can form an excellent molded body without coarse protrusions. It is in.
  • the antireflective coating material according to the invention of claim 4 has a cubic shape with silica shell strength.
  • An anti-reflective coating material that utilizes the low refractive index and translucency of hollow particles having a solid shape, and hollow particles having a cubic shape made of silica shells having an outer diameter in the range of 30 nm to 300 nm. It is uniformly dispersed inside.
  • FIG. 5 is an explanatory diagram showing an outline of a method for producing hollow particles having silica shell strength.
  • calcium carbonate fine particles serving as core particles are crystal-grown.
  • the crystals of calcium carbonate produced here are calcite and hexagonal.
  • the force is also transformed into a cubic shape, that is, a “cubic shape”.
  • the “cubic form” is not limited to a cube, but is a shape similar to a cube surrounded by a surface!
  • silica is coated on the calcium carbonate fine particles using sodium alkoxide sodium silicate by a sol-gel method.
  • silica hollow particles having a cubic form are formed by dispersing this in water and adding an acid to dissolve and discharge the internal calcium carbonate.
  • the hollow silica particles 10 composed of a dense silica shell are produced by closing the pores into which the calcium carbonate dissolved by surface modification or firing has flowed out.
  • the hollow portion 12 of the hollow silica particle 10 has an inner diameter of 20 nm to 200 nm of the calcium carbonate fine particle of the core particle, and the dense silica shell 11 has a thickness of lnm to 5 nm, even if it is thick, about 5 nm to 20 nm. Therefore, the outer diameter of the hollow silica particle 10 is 30 nm to 300 nm.
  • the silica hollow particles 10 composed of the dense silica shell according to the present invention can be produced by a very simple production process. Therefore, the silica-based silica disclosed in Patent Document 2 is used. It can be manufactured at a low cost of about a fraction of that of fine particles. Therefore, the antireflection coating material using the silica hollow particles 10 composed of the dense silica shell can also be produced at an extremely low cost.
  • the silica hollow particles 10 are uniformly dispersed in the organic synthetic resin paint to form a substrate.
  • a transparent organic synthetic resin coating film having a thickness of about 0.5 111 to 2.O ⁇ m in which silica hollow particles 10 are dispersed in a single layer is formed.
  • the refractive index of this coating film is a low refractive index of about 1.2 to 1.3 because the hollow silica particles 10 containing air are uniformly dispersed inside, and this coating film is reflective. Functions as a prevention film (AR film).
  • the hollow particles having a cubic shape composed of silica shells manufactured at low cost can be used for applications requiring low cost by utilizing the low refractive index and translucency. It becomes an anti-reflection coating material.
  • the anti-glare coating material according to the invention of claim 5 is an anti-glare coating material utilizing the low refractive index, translucency, and irregular reflection of secondary particles of a hollow particle having a cubic form made of silica shell. Secondary particles having a size in the range of 0.5 ⁇ 111 to 50 111 in which hollow primary particles having a cubic shape composed of silica shells having an outer diameter in the range of 30 nm to 300 nm are aggregated. It is uniformly dispersed in organic synthetic resin paint.
  • FIG. 6 is a transmission electron microscope (TEM) photograph showing a state in which hollow particles having a cubic shape composed of silica shells having an outer diameter of 50 nm to 150 nm are aggregated.
  • the secondary particles in which the hollow particles are agglomerated are forces that have a size of about 0.5 ⁇ 111 to about 0.8 m in this TEM photograph.
  • the secondary particles in which the hollow particles are aggregated are uniformly dispersed in the organic synthetic resin paint and thinly coated on the substrate, so that the large secondary particles protrude from the coating film of the organic synthetic resin.
  • the hollow silica particles constituting the secondary particles have a cubic shape, and the thickness of the silica shell is as thin as about 1 nm to 5 nm, so that it is almost perpendicular to the coating film.
  • the incident visible light is transmitted as it is, and the visible light incident obliquely on the coating film is scattered.
  • An antireflection film according to the invention of claim 6 is formed by applying the antiglare coating material according to claim 5 and the antireflection coating material according to claim 4. It is made by laminating a coating film.
  • the antiglare coating film (AG film) having excellent antireflection properties and antiglare properties as described above can be obtained.
  • An antireflection coating (AR film) is formed by applying an antireflection coating material in a single layer on the antiglare coating. In this way, by overlaying the AR film on the AG film, it is possible to improve the contrast of the display device with excellent transparency and no reflection of room lighting etc. A membrane can be obtained.
  • the antireflection film according to the invention of claim 7 is an antireflection film that utilizes the low refractive index and translucency of hollow particles having a cubic shape made of silica shells, and is 30 nm to 300 nm. Hollow particles having a cubic shape composed of silica shells having an outer diameter in the range up to are uniformly dispersed in an organic synthetic resin film.
  • hollow particles having a cubic shape with a thin silica shell and a very high volume fraction of air contained therein are uniformly dispersed in the organic synthetic resin film, and the refractive index of the film is 1.2. ⁇ ; 1. It becomes a low antireflection film having a high antireflection effect as low as 3. In this way, anti-reflection that can be used for low-cost applications utilizing the low refractive index and translucency of hollow particles having a cubic shape made of silica shells manufactured at low cost. It becomes a stop film.
  • the antiglare film according to the invention of claim 8 is an antiglare film utilizing the low refractive index, light transmissivity, and irregular reflection of secondary particles of a hollow particle having a cubic shape made of silica shells. Secondary particles having a size in the range of 0.5 m to 50 m, in which hollow primary particles having a cubic shape composed of silica shells having an outer diameter in the range of 30 nm to 300 nm are aggregated The particles are uniformly dispersed in the organic synthetic resin film.
  • Silica hollow particles constituting secondary particles by uniformly dispersing secondary particles in which hollow primary particles having a cubic shape such as silica shell force are aggregated in an organic synthetic resin film.
  • An antireflection film according to the invention of claim 9 is formed by laminating the antiglare film of claim 8 and the antireflection film of claim 7.
  • the antiglare film according to claim 8 is an antiglare film (AG film) having excellent antireflection properties and antiglare properties as described above.
  • AG film antiglare film
  • AR antireflection film
  • hollow particles having a cubic shape composed of silica shells are 40 nm to 150 nm.
  • the outer diameter is within the range of 50 nm to 1 OOnm.
  • Silica shell force hollow particles having an outer diameter of OOnm are more It is easy to disperse uniformly in an organic synthetic resin paint or organic synthetic resin film that is easy to manufacture.
  • the anticorrosion film according to the invention of claim 11 is a silica having a metal particle selected from the group consisting of aluminum, zinc, an alloy power of aluminum and zinc, and an outer diameter in the range of 10 nm to 300 nm.
  • Hollow particles made of shells are uniformly dispersed in an organic resin binder, an inorganic polymer binder, or an organic-inorganic composite binder.
  • the organic resin binder includes an isocyanate acrylate binder
  • the inorganic polymer binder includes an alkyl silicate hydrolysis binder
  • the organic inorganic composite binder includes a mixture of colloidal silica and block isocyanate.
  • the hollow particles composed of silica shells are prepared by, for example, precipitating silica generated by the hydrolysis reaction of silicon alkoxide on the surface of colloidal calcium carbonate in the form of microcrystals and cubes, followed by acid treatment.
  • the calcium carbonate inside the silica layer is dissolved, dehydrated and then fired at 400 ° C. to 800 ° C. to close the pores from which the dissolved calcium carbonate has flowed out.
  • the ratio of about 2.0 to about 3.0 is obtained by uniformly dispersing hollow particles made of silica shells having an outer diameter in the range of 10 nm to 300 nm in an organic resin (polyester resin). Since it has a dielectric constant, it exhibits excellent insulation with a relative dielectric constant smaller than that of an epoxy resin having a small relative dielectric constant (relative dielectric constant of about 4.0) among organic resins.
  • Nano hollow particles made of silica shells have a particle size as small as 10 nm to 300 nm. Therefore, even if 50 or more nano hollow particles made of silica shells are stacked in order to obtain sufficient anticorrosion performance, it is about 20 m or less. Therefore, it is possible to obtain a sufficient anticorrosion performance with a very thin layer and a film thickness, and to obtain a strong anticorrosion film that can be formed at a low cost and is difficult to peel off.
  • the anticorrosion film in which hollow particles made of silica shells are uniformly dispersed in an organic resin binder or an inorganic polymer binder or in an organic-inorganic composite binder causes foaming by reaction to generate pores and insulate. Since the hollowness of the hollow particles made of silica shells is not intended to enhance the insulating property, the insulating property is enhanced. It is an independent pore made of hollow particles made of licca shell, and there is no risk of water permeating.
  • Zinc 'Aluminum-zinc alloy metal particles selected from a powerful group exist, so even if water permeates, the metal particles act as an inhibitor and eat water! / Therefore, the anticorrosion film having extremely excellent anticorrosion performance is obtained.
  • the anticorrosion film according to the invention of claim 12 covers the surface of a magnesium-based metal with an anodized oxide layer, and the surface of the oxide layer is modified with an aluminum-based, titanium-based, or zirconium-based coupling agent.
  • the hollow particles composed of the modified resin and the silica shell having an outer diameter in the range of 10 nm to 300 nm are coated with a layer that is uniformly dispersed in an organic resin binder, an inorganic polymer binder, or an organic-inorganic composite binder. Is.
  • hollow particles made of silica shells having an outer diameter in the range of 10 nm to 300 nm have high porosity, they are uniformly distributed in an organic resin binder or an inorganic polymer binder or in an organic-inorganic composite binder.
  • the anticorrosion film formed by dispersion exhibits excellent insulation with a small relative dielectric constant.
  • Nano hollow particles made of silica shells have a small particle size from 10 nm to 300 nm, so even if 50 or more nano hollow particles made of silica shells are stacked to obtain sufficient anti-corrosion performance, about 20 m With the following extremely thin film thickness, sufficient anticorrosion performance can be obtained, and a durable anticorrosion film that can be formed at low cost and difficult to peel off can be obtained.
  • the anticorrosion film in which hollow particles made of silica shells are uniformly dispersed in an organic resin binder, an inorganic polymer binder, or an organic-inorganic composite binder causes foaming by reaction to generate pores and insulate. Insulation is enhanced by the hollowness of the hollow particles made of silica shells that do not increase the properties, so there is no risk of continuous pores being formed, and they are independent pores made of hollow particles made of silica shells. There is no fear of entering.
  • the portion where the hollow particles of silica shell are not distributed is magnesium. Since the surface of the base metal is covered with an anodized film formed by anodizing, even if water permeates, it acts as an anodized film force S-inhibitor and prevents water from entering. It becomes a magnesium-based metal anticorrosion film having performance.
  • the anticorrosion film according to the invention of claim 13 is an anticorrosion film formed on the surface of aluminum or an aluminum alloy, comprising colloidal silica, an organoalkoxysilane partial hydrolysis condensate, and an unsaturated ethylene monomer. And a hollow particle composed of a silica shell having an outer diameter in the range of 10 nm to 300 nm is uniformly dispersed in an organic resin binder, an inorganic polymer binder, or an organic-inorganic composite binder. .
  • the anticorrosion film in which hollow particles composed of silica shells having an outer diameter in the range of 10 nm to 300 nm are uniformly dispersed in an organic resin binder or an inorganic polymer binder or in an organic-inorganic composite binder, As described above, it exhibits excellent insulation properties with a high porosity and a low relative dielectric constant.
  • Nano hollow particles made of silica shells have a particle size as small as 10 nm to 30 Onm, so even if 50 or more nano hollow particles made of silica shells are stacked in order to obtain sufficient anticorrosion performance, about 20 m It is possible to obtain sufficient anticorrosion performance with an extremely thin film thickness as follows, and to obtain a strong anticorrosion film that can be formed at low cost and is difficult to peel off.
  • the anticorrosion film in which hollow particles made of silica shells are uniformly dispersed in an organic resin binder or an inorganic polymer binder or in an organic / inorganic composite binder causes foaming by reaction to generate pores and insulate. Insulation is enhanced by the hollowness of the hollow particles made of silica shells that do not increase the properties, so there is no risk of continuous pores being formed, and they are independent pores made of hollow particles made of silica shells. There is no fear of entering.
  • the portion where the hollow particles of silica shell are not distributed is a polymer or copolymer of colloidal silica force, organoalkoxysilane partial hydrolysis condensate and unsaturated ethylene monomer. Because it is distributed, it works as an inhibitor even if water is swallowed. Therefore, the intrusion of water is stopped, so that it becomes an anticorrosion film of aluminum or aluminum alloy having extremely excellent anticorrosion performance.
  • the hollow particles made of silica shells have a cubic form.
  • a method of producing hollow particles having a silica shell force having a cubic shape a microcrystalline colloidal calcium carbonate having a cubic shape or a surface of a cubic carbonate power lucum is formed by a hydrolysis reaction of silicon alkoxide.
  • the calcium carbonate inside the silica layer is dissolved by acid treatment, and after dehydration, the pores into which the dissolved calcium carbonate has flowed out are sealed by baking at 400 ° C to 800 ° C. Manufactured by.
  • the cubic form of calcium carbonate microcrystals is transferred to hollow particles, and the force and the thickness of the silica shell are 3 nm to 15 n. Since it is as thin as m, the porosity is 70% to 80%, resulting in highly insulating hollow particles. In addition, since it has a cubic shape, the effect that the filling rate is higher than that of spherical hollow particles can be obtained.
  • the hollow particles having a cubic shape composed of silica shells are reliably prevented from stagnation and water squeezing and coated with a film containing an inhibitor. Therefore, even if water stagnates into the area, it stops the intrusion of water by the action of the inhibitor, so that the anticorrosion film having extremely excellent anticorrosion performance is obtained.
  • the hollow particles made of silica shell are 4% by weight or more in solid content with respect to the organic resin binder, the inorganic polymer binder or the organic-inorganic composite binder; It is mixed in the ratio of weight%.
  • Nano hollow particles made of silica shells are hollow, so the solid content with a small specific gravity is 4% by weight. Even if they are mixed, the volume percentage in the anticorrosion film is sufficiently large. Can be improved. On the other hand, if the mixing amount exceeds 15% by weight, It becomes difficult to handle due to high viscosity. Therefore, the mixing amount of the hollow particles composed of silica shells in the anticorrosion film is most suitable in a ratio of 4 wt% to 15 wt% in solid content with respect to the organic resin binder or the like.
  • the corrosion resistance can be improved easily and reliably, It is an anti-corrosion film that can reduce the thickness of the coating to 20 m or less without the risk of water permeating through independent pores.
  • an isocyanate-based surface modifier is added to the surface of the hollow particles made of silica shell.
  • TEIS triethoxypropyl isocyanate silane
  • Such an isocyanate-based surface modifier is added via hydroxyl groups (1 OH) present on the surface of the hollow particles made of silica shell, and the entire surface of the hollow particles made of silica shell is added to the isocyanate.
  • hydroxyl groups (1 OH) present on the surface of the hollow particles made of silica shell
  • the entire surface of the hollow particles made of silica shell is added to the isocyanate.
  • the anticorrosion paint according to the invention of claim 17 is a coating composition for metal anticorrosion comprising a water-soluble trivalent chromium compound, a water-soluble fluoride, zinc-aluminum alloy powder, glycols and / or celluloses. And an anticorrosive composition in which hollow particles composed of silica shells having an outer diameter in the range of 10 nm to 300 nm are uniformly dispersed in an organic resin paint, an inorganic polymer paint, or an organic-inorganic composite paint. Become.
  • organic resin paints include isocyanate acrylic paints
  • inorganic polymer paints include alkyl silicate.
  • As an organic-inorganic composite paint there is a mixture of colloidal silica and block isocyanate.
  • the corrosion resistance of the excellent alloy powder which is said to be several times to several tens of times that of the zinc powder, is improved.
  • the corrosion-resistant film has been successfully used to prolong the service life, and by adding fluoride, the corrosion resistance of the trivalent chromium compound is reinforced and the surface of the body to be protected is passivated and at the same time the film adhesion is improved. It has a combined anti-corrosion effect that improves
  • the hollow particles having a silica shell strength having an outer diameter in the range of 10 nm to 300 nm have a high porosity as described above, and thus are used as organic resin paints or organic polymer paints.
  • an anticorrosion film formed by applying an anticorrosion composition uniformly dispersed in an organic-inorganic composite paint exhibits excellent insulation with a small relative dielectric constant.
  • Nano hollow particles that also have silica shell strength are small from 10 nm to 300 nm, so even if 50 or more layers of nano hollow particles made of silica shells are stacked in order to obtain sufficient anti-corrosion performance, about 20 ⁇ m Sufficient anticorrosion performance can be obtained with an extremely thin film thickness as described below, and a strong anticorrosion film that can be formed at low cost and hardly peeled off can be obtained.
  • the anticorrosion film formed by applying an anticorrosion composition in which hollow particles having silica shell strength are uniformly dispersed in an organic resin paint, an inorganic polymer paint or an organic-inorganic composite paint is foamed by reaction.
  • an anticorrosion composition in which hollow particles having silica shell strength are uniformly dispersed in an organic resin paint, an inorganic polymer paint or an organic-inorganic composite paint is foamed by reaction.
  • the portion where the hollow particles composed of silica shells are not distributed includes a water-soluble trivalent chromium compound, a water-soluble fluoride, a zinc aluminum alloy powder, glycols and / or celluloses. Because it is coated with a metal anticorrosive film containing water, it acts as a water-soluble trivalent chromium compound and zinc aluminum alloy powder inhibitor even if water has permeated, and is extremely excellent because it prevents water from entering. It becomes an anticorrosion film having anticorrosion performance. [0127] In this way, in the portion where the hollow particles composed of the silica shell are distributed, water is surely prevented from permeating, and the portion coated with the metal anticorrosive coating composition film is! / O! /, Even if water has permeated, by inhibiting the intrusion of water by the action of the inhibitor, it becomes an anticorrosion paint that can form an anticorrosion film having extremely excellent anticorrosion performance.
  • the anticorrosion paint according to the invention of claim 18 is the anticorrosion coating composition according to claim 17, wherein the metal anticorrosion coating composition comprises 0.2 parts of water-soluble trivalent chromium compound in terms of Cr 2 O in 100 parts by weight of water. Parts by weight to 10 parts by weight, water-soluble fluoride in terms of fluoride ions from 0.01 to 0.5 parts by weight, zinc aluminum alloy powder from 5 to 50 parts by weight, glycols and / or celluloses Contains 5 to 30 parts by weight, and has a pH in the range of 3.0 to 7.0.
  • the water-soluble trivalent chromium compound is 0.2 to 10 parts by weight in terms of Cr 2 O with respect to 100 parts by weight of water. 0.01 to 0.5 parts by weight of water-soluble fluoride in terms of fluoride ions, 5 to 50 parts by weight of zinc aluminum alloy powder, 5 to 30 parts by weight of glycols and / or celluloses By containing a part, the corrosion resistance of the superior alloy powder can be demonstrated and the life of the corrosion-resistant film can be further extended. In addition, by adjusting the pH within the range of 3.0 to 7.0, it is possible to prevent the alloy powder from dissolving and gelling due to a low pH due to the high concentration of water-soluble fluoride. S can.
  • the anticorrosion paint according to the invention of claim 19 is made of at least one metal powder selected from the group consisting of a water-soluble chromic acid compound and zinc powder 'aluminum powder ⁇ zinc alloy powder' aluminum alloy powder.
  • An anticorrosive coating composition comprising 10 nm to A hollow particle composed of silica shells having an outer diameter in the range of 300 nm is mixed with an anticorrosive composition in which organic particles are uniformly dispersed in an organic resin paint, an inorganic polymer paint or an organic-inorganic composite paint.
  • hollow particles made of silica shells having an outer diameter in the range of 10 nm to 300 nm have a high porosity as described above, they are uniformly applied to organic resin paints, inorganic polymer paints, or organic-inorganic composite paints.
  • An anticorrosion film formed by applying a dispersed anticorrosion composition exhibits excellent insulating properties with a small specific dielectric constant.
  • Nano hollow particles made of silica shells have a small particle size from 10 nm to 300 nm, so even if 50 or more nano hollow particles made of silica shells are stacked to obtain sufficient anticorrosion performance, the hollow particle is about 20 m or less. With a very thin film thickness, sufficient anticorrosion performance can be obtained, and it is possible to obtain a strong anticorrosion film that can be formed at low cost and is difficult to peel off.
  • the anticorrosion film formed by applying an anticorrosion composition in which hollow particles having silica shell strength are uniformly dispersed in an organic resin paint, an inorganic polymer paint or an organic-inorganic composite paint is foamed by reaction.
  • an anticorrosion composition in which hollow particles having silica shell strength are uniformly dispersed in an organic resin paint, an inorganic polymer paint or an organic-inorganic composite paint is foamed by reaction.
  • the portion where the hollow particles of silica shell are not distributed is at least selected from the group consisting of a water-soluble chromic acid compound and zinc powder, aluminum powder, zinc alloy powder, and aluminum alloy powder. Because it is coated with an anti-corrosion coating composition film containing a kind of metal powder, water-soluble chromic acid compound and zinc powder act as an inhibitor even if water has permeated, preventing water from entering. Since it stops, it becomes an anticorrosive film having extremely excellent anticorrosion performance.
  • the anticorrosion paint according to the invention of claim 20 is provided with at least one fluoride salt selected from a fluoride salt, a titanium fluoride salt, and a zirconium fluoride salt, all of which are placed by a hydrolyzable group.
  • a coating agent for forming an inorganic film obtained by reacting at least one hydrolyzable monomer selected from 'titanium monomer' and 'zirconium monomer' and / or a low condensate thereof, within a range of 10 nm to 300 nm.
  • a hollow particle made of silica shell having an outer diameter of is mixed with an anticorrosive composition in which an organic resin paint, an inorganic polymer paint or an organic-inorganic composite paint is uniformly dispersed.
  • Hollow particles made of silica shells having an outer diameter in the range of 10 nm to 300 nm have a high porosity as described above, so that they are uniformly applied to organic resin paints, inorganic polymer paints, or organic-inorganic composite paints.
  • An anticorrosion film formed by applying a dispersed anticorrosion composition exhibits excellent insulating properties with a small specific dielectric constant.
  • Nano hollow particles made of silica shells have a small particle size from 10 nm to 300 nm, so even if 50 or more nano hollow particles made of silica shells are stacked to obtain sufficient anticorrosion performance, the hollow particle is about 20 m or less. With a very thin film thickness, sufficient anticorrosion performance can be obtained, and it is possible to obtain a strong anticorrosion film that can be formed at low cost and is difficult to peel off.
  • the anticorrosion film formed by applying an anticorrosion composition in which hollow particles having silica shell strength are uniformly dispersed in an organic resin paint, an inorganic polymer paint or an organic-inorganic composite paint is foamed by reaction.
  • an anticorrosion composition in which hollow particles having silica shell strength are uniformly dispersed in an organic resin paint, an inorganic polymer paint or an organic-inorganic composite paint is foamed by reaction.
  • the portion where the hollow particles composed of silica shells are not distributed is a metal polymer in which at least one hydrolyzable monomer selected from silicon monomer, titanium monomer and zirconium monomer is polymerized. Since it is covered with the coating film for inorganic film formation it contains, the metal polymer acts as an inhibitor even if water has permeated, preventing the ingress of water, so it has extremely excellent anticorrosion performance. Become a film.
  • the anticorrosion paint according to the invention of claim 21 comprises an acrylic resin, an amino resin, and a paint composition containing a phosphoric acid group and an acrylic resin having a hydrogenated bisphenol skeleton structure, and 10 ⁇ m to 300 nm. Hollow particles composed of silica shells having an outer diameter within the range are mixed with an anticorrosive composition in which organic particles are uniformly dispersed in an organic resin paint, an inorganic polymer paint or an organic-inorganic composite paint.
  • hollow particles made of silica shells having an outer diameter in the range of 10 nm to 300 nm have a high porosity as described above, they are uniformly applied to organic resin paints, inorganic polymer paints, or organic-inorganic composite paints.
  • An anticorrosion film formed by applying a dispersed anticorrosion composition exhibits excellent insulating properties with a small specific dielectric constant.
  • Nano hollow particles made of silica shells have a particle size as small as lOnm to 300 nm, so even if 50 or more nano hollow particles made of silica shells are stacked in order to obtain sufficient anticorrosion performance, about 20 m or less With a very thin film thickness, sufficient anticorrosion performance can be obtained, and it is possible to obtain a strong anticorrosion film that can be formed at low cost and is difficult to peel off.
  • the anticorrosion film formed by applying an anticorrosion composition in which hollow particles having silica shell strength are uniformly dispersed in an organic resin paint, an inorganic polymer paint or an organic-inorganic composite paint is foamed by reaction.
  • an anticorrosion composition in which hollow particles having silica shell strength are uniformly dispersed in an organic resin paint, an inorganic polymer paint or an organic-inorganic composite paint is foamed by reaction.
  • the portion where the hollow particles of silica shell are not distributed is covered with a coating composition film containing an acrylic resin having a phosphoric acid group and hydrogenated bisphenol skeleton structure. Even if water is swallowed, it acts as a phosphate basic S inhibitor and prevents water from entering, resulting in an anticorrosion film having extremely excellent anticorrosion performance.
  • An anticorrosion paint according to the invention of claim 22 is an anticorrosion paint composition containing an acrylic resin, an epoxy resin, a block polyisocyanate compound, powdered silica, and crosslinkable polymer particles, and is in the range of 10 nm to 300 nm. Hollow particles composed of silica shells having an outer diameter are mixed with an organic resin coating, an inorganic polymer coating or an organic / inorganic composite coating and an anticorrosion composition formed by uniformly dispersing the hollow particles.
  • the hollow particles composed of silica shells having an outer diameter in the range of 10 nm to 300 nm have a high porosity as described above, and thus are uniformly applied to organic resin paints, inorganic polymer paints, or organic-inorganic composite paints.
  • An anticorrosion film formed by applying a dispersed anticorrosion composition exhibits excellent insulating properties with a small specific dielectric constant.
  • Nano hollow particles made of silica shells have a small particle size from 10 nm to 300 nm, so even if 50 or more nano hollow particles made of silica shells are stacked to obtain sufficient anticorrosion performance, the hollow particle is about 20 m or less. With a very thin film thickness, sufficient anticorrosion performance can be obtained, and it is possible to obtain a strong anticorrosion film that can be formed at low cost and is difficult to peel off.
  • the anticorrosion film formed by applying an anticorrosion composition in which hollow particles having silica shell strength are uniformly dispersed in an organic resin paint, an inorganic polymer paint or an organic inorganic composite paint is foamed by reaction.
  • an anticorrosion composition in which hollow particles having silica shell strength are uniformly dispersed in an organic resin paint, an inorganic polymer paint or an organic inorganic composite paint is foamed by reaction.
  • the portion where the hollow particles composed of the silica shell are not distributed is covered with the anticorrosion coating composition film containing the powdered silica and the crosslinkable polymer particles, so that water is swallowed. Even if it can, it acts as a powder silica force S inhibitor and stops the intrusion of water, resulting in an anticorrosion film having extremely excellent anticorrosion performance.
  • the total content of the anticorrosion composition and the hollow particles made of silica shell is 10 wt% to 30 wt%, and the organic resin
  • the content of the paint, the inorganic polymer paint or the organic-inorganic composite paint is 70% to 90% by weight.
  • the anticorrosive composition is 7.5 wt% to 12.5 wt%, and hollow particles composed of silica shells are 7.
  • the content of the organic resin paint, the inorganic polymer paint or the organic-inorganic composite paint is 75% by weight to 85% by weight.
  • the present inventors have found that the total content of the anticorrosive composition and the hollow particles having silica shell strength is 10 wt% to 30 wt%, and the organic resin paint or inorganic polymer paint or When the content of the organic-inorganic composite coating is 70% by weight to 90% by weight, more preferably, the content of the anticorrosive composition is 7.5% by weight to 12.5% by weight, and the hollow particles made of silica shell It is found that the best results can be obtained when the content of the organic resin paint is 75% by weight to 85% by weight. The present invention has been completed based on knowledge.
  • the total content of both of the anticorrosive composition content and the hollow particle content of silica shell is almost equal to about 20% by weight, and the remaining about 80% by weight is organic resin paint, etc.
  • the viscosity becomes the most easy to handle as an anticorrosion paint, and when applied to a metal surface or the like, an anticorrosion film having the most excellent anticorrosion ability can be formed.
  • the hollow particles made of the silica shell have a cubic form.
  • a method for producing hollow particles having a silica shell force having a cubic shape a microcrystalline colloidal calcium carbonate having a cubic shape or a cubic shape is used.
  • Silica produced by the hydrolysis reaction of silicon alkoxide is deposited on the surface of calcium carbonate, and then the calcium carbonate in the silica layer is dissolved by acid treatment and dehydrated, and then 400 ° C to 800 ° C. It is manufactured by closing the pores from which the calcium carbonate dissolved by baking treatment.
  • the cubic form of calcium carbonate fine crystals is transferred to hollow particles, and the force and the thickness of the silica shell are 3 nm to 15 n. Since it is as thin as m, the porosity is 70% to 80%, resulting in highly insulating hollow particles. In addition, since it has a cubic shape, the effect that the filling rate is higher than that of spherical hollow particles can be obtained.
  • the hollow particles having a cubic shape composed of silica shells are reliably prevented from stagnation and water squeezing and coated with a film containing an inhibitor. Even if water spills into the surface, it can be an anti-corrosion paint that can form an anti-corrosion film with extremely excellent anti-corrosion performance by preventing water from entering due to the action of the inhibitor. .
  • the hollow particles made of silica shells are in a solid content of 4% by weight to 15% by weight with respect to the organic resin paint, the inorganic polymer paint or the organic-inorganic composite paint. %, More preferably 8% by weight to solid content; and 12% by weight.
  • the present inventors have determined that the hollow particles having silica shell strength are in a proportion of 4 wt% to 15 wt% in terms of solid content with respect to the organic resin coating or the like, and more preferably. It has been found that the best results can be obtained when the solid content is mixed in a ratio of 8 to 12% by weight, and the present invention has been completed based on this finding.
  • the mixing ratio of the hollow particles having silica shell strength is less than 4 wt% in terms of solid content with respect to the organic resin paint or the like, the ratio of the hollow particles is too small and sufficient corrosion resistance can be obtained.
  • the mixing ratio of the hollow particles exceeds 15% by weight in solid content with respect to the organic resin paint, etc., the viscosity rises too much and it becomes difficult to handle.
  • the mixing ratio of the hollow particles made of silica shell is preferably in the range of 4 wt% to 15 wt% in solid content with respect to the organic resin paint or the like.
  • the mixing ratio of the hollow particles having silica shell strength is within the range of 8% by weight to 12% by weight with respect to the organic resin paint or the like, the viscosity as the anticorrosion paint becomes appropriate and the coating is performed. Since the filling rate of the hollow particles in the case of a film is maximized, it is more preferable that the anticorrosion performance is further enhanced.
  • an isocyanate-based surface modifier is added to the surface of the hollow particles made of silica shell.
  • Examples include triisocyanate compounds in which three isocyanate groups are bonded to an alkyl group, triethoxypropyl isocyanate silane (TEIS), and the like.
  • Such an isocyanate-based surface modifier is added via hydroxyl groups (one OH) present on the surface of the hollow particles made of silica shell, and the entire surface of the hollow particles made of silica shell is added to the isocyanate.
  • hydroxyl groups one OH
  • a surface modifier of the system By coating with a surface modifier of the system, reagglomeration can be prevented and dispersibility is improved, and when mixed with an organic resin paint, an active group such as an organic resin and an isocyanate group are present. By reacting, a strong bond between the organic resin or the like and the hollow particles made of the silica shell can be obtained.
  • the coating paint according to the invention of claim 27 is composed of a silica shell having an outer diameter in a range of approximately 30 nm to 300 nm, and hollow particles having a cubic form are formed into an organic resin paint or It is dispersed substantially uniformly in the inorganic polymer paint or organic-inorganic composite paint.
  • this coating film By forming a coating film by applying a strong coating paint to the substrate, this coating film is excellent in wear resistance even in a thin film, so that the appearance of the substrate can be changed, Has almost no gloss and is formed along the unevenness of the surface of the substrate, so that the texture and feel of the substrate are not impaired. Furthermore, the surface of the base material can be made flame retardant by the heat insulating property of the hollow particles made of silica shell, and the surface hardness is increased by the high hardness of the hollow particles made of silica shell, so that the surface of the base material is not damaged. Can prevent sticking.
  • the base paint of the coating paint into an organic resin paint, an inorganic polymer paint, or an organic-inorganic composite paint depending on the type of the base material, the adhesion between the coating paint and the base material is secured. It can be applied to any base material and becomes a highly versatile! / ⁇ coating paint.
  • the heat insulating property, wear resistance, high hardness and transparency of the hollow particles composed of silica shells having an outer diameter in the range of approximately 30 nm to 300 nm it can be applied to any substrate. It is a highly versatile coating paint that can be applied, and it can form a coating film that has high surface hardness that can prevent the original texture and feel of the substrate from being lost, and that can reliably prevent scratches.
  • an isocyanate, alkyl, bur, or attaryloxy surface modifier is added to the surface of the hollow particles made of silica shells.
  • TEIS triethoxypropyl isocyanate silane
  • alkyl-based surface modifier means a surface modifier composed of a compound having at least one alkyl group.
  • “Atalyloxy-based surface modifier” means at least one talixyloxy group. A surface modifying agent composed of two compounds, and specific examples include triethoxy
  • Such an isocyanate-based, alkyl-based, bur-based or attaryloxy-based surface modifier is added via a hydroxyl group (-OH) present on the surface of a hollow particle composed of a silica shell to form a silica shell.
  • a hydroxyl group -OH
  • the active groups such as organic resins react with isocyanate groups, alkyl groups, bur groups, or talyloxy groups, so that strong bonds between organic resins and hollow particles made of silica shells can be obtained. Is obtained.
  • the coating film according to the invention of claim 29 is a coating film formed on the surface of a substrate, and is composed of a silica shell having an outer diameter in a range of approximately 30 nm to 300 nm, and has a cubic shape. Hollow particles are dispersed substantially uniformly in an organic resin binder, an inorganic polymer binder, or an organic-inorganic composite binder.
  • the “base material” includes various materials such as wood, leather, synthetic leather, plastic, stone, glass, paper, and fiber material.
  • the coating film in which hollow particles made of silica shells having an outer diameter in a range of about 30 nm to 300 nm are dispersed almost uniformly in a binder is excellent in wear resistance even in a thin film.
  • Changing the appearance of the substrate has almost no gloss and no gloss, and is formed along the unevenness of the surface of the substrate, so that the texture and feel of the substrate are not impaired.
  • the surface of the base material can be made flame retardant by the heat insulating property of the hollow particles made of silica shell, and the surface hardness is increased by the high hardness of the hollow particles made of silica shell, and the surface of the base material is scratched. Can power to prevent.
  • an organic resin binder By using an organic resin binder, an inorganic polymer binder, or an organic-inorganic composite binder as the binder, depending on the type of the substrate, it is possible to secure adhesion to the substrate. It is a highly versatile coating film that can be applied to.
  • the base material is wood, leather or synthetic leather, plastic, stone, glass, paper, or a fiber material.
  • plastic is generally referred to as an organic synthetic resin.
  • Polyethylene Polypropylene.
  • Polyethylene terephthalate (PET) Polyethylene terephthalate (PET) 'Nylon resin' Acrylic resin 'Polyamide resin ⁇ Polycarbonate' Polystyrene ⁇ Polychlorinated Bull ⁇ Polyacetal 'There are thermoplastic resins such as fluorine resin, and urethane resin ⁇ phenol resin ⁇ epoxy resin ⁇ urea resin' melamine resin ⁇ unsaturated polyester resin ⁇ alkyd resin ⁇ ebonite and other thermosetting resins.
  • “Stone” includes so-called concrete made only of high-grade stones such as granite and marble used as building materials and flooring materials.
  • fiber material means cotton, silk, hemp, wool, nylon, vinylon, polyester fiber, acrylic fiber, vinylidene chloride fiber, acetate, rayon and other organic fibers, glass fiber, carbon fiber (carbon fiber), etc.
  • the wear resistance of the wood can be improved.
  • Coating film according to the present invention In this case, 8% by weight of solid particles of silica shell are mixed with the binder. It was possible to ensure wear resistance simply by
  • the flame retardancy can be improved, and further, the luster of the wood that does not have a gloss and does not impair the texture of the wood. Since a coating film is formed along the surface irregularities, it is possible to secure the original feel of wood. Therefore, even when applied to high-grade wood such as cypress, the sense of quality is not impaired. Furthermore, flame retardancy can be imparted to the wood.
  • the base material is leather or synthetic leather
  • the leather and the synthetic leather are scratched, which is a material used not only for shoes 'fabrics' bags but also for sofas and automobile seats. Since it is easy, a coating film is often used.
  • a conventional coating film in which colloidal silica particles are dispersed must be formed thick in order to impart wear resistance, and loses the high-class feeling of leather because it is glossy and slippery.
  • the coating film according to claim 29 on the surface of the leather or the synthetic leather, the leather or the synthetic leather that does not have gloss and does not impair the texture of the leather or the synthetic leather. Since the coating film is formed along the surface irregularities of the synthetic leather, the original feel can be secured and the feeling of resin is eliminated, so that the leather's high quality feeling is not impaired. In addition, the surfaces of shoes, wallets, bags, sofas, automobile seats, and the like are less likely to be damaged, and flame retardancy can be improved.
  • leather and synthetic leather can be obtained by utilizing the heat insulating properties, wear resistance, high hardness and transparency of hollow particles made of silica shells having an outer diameter in the range of approximately 30 nm to 300 nm. It is a coating film that improves flame retardancy without losing the original texture and feel, and has high surface hardness and wear resistance to reliably prevent scratches.
  • the base material is plastic
  • the plastic is generally easily damaged. easy.
  • the coating film according to claim 29 on the surface of the plastic, since the coating film has a high hardness, the surface is hardly damaged and the flame retardancy can be improved.
  • transparent plastics such as polyethylene / polypropylene / polypropylene / acrylic resin / polycarbonate
  • the transparency is not impaired.
  • plastic touches the surface it has a sticky feeling (sticky feeling)
  • the coating film according to claim 29 on the surface of the plastic it has a sticky feeling (sticky feeling)
  • the force and sticky feeling is eliminated. , It feels smooth.
  • the base material is a stone
  • the stone is high in hardness! /
  • it is used for floors, stairs and sidewalks where people walk, and high-grade products such as granite and marble.
  • Stone is used for the outer walls and interiors of houses and buildings because of its aesthetic appearance. However, in places where many people walk frequently, it is necessary to further improve the hardness and to prevent rain from entering the surface when used outdoors. In addition, when used as interiors in the interior, it is preferable to reduce the sensation of cooling when people touch granite or marble!
  • the coating film according to claim 29 on the surface of these stone materials, the coating film has a high hardness, so that the surface becomes more difficult to be damaged and rain oozes. Can be reliably prevented.
  • the thermal sensation of the coating film that does not impair the texture of the high-grade stone material eliminates the feeling of cooling when touched, making it even more difficult to be damaged.
  • the texture of the stone is obtained by utilizing the heat insulation, wear resistance, high hardness and transparency of the hollow particles made of silica shells having an outer diameter in the range of approximately 30 nm to 300 nm.
  • the surface hardness can be further improved without damaging the surface, and scratches can be reliably prevented, and rain can be prevented from stagnation, reducing the feeling of cooling when touched. It becomes a coating film which can be done.
  • the coating film according to claim 29 is formed on the surface of the glass, thereby making the surface difficult to be scratched without impairing the transparency of the glass. Moreover, the feeling of cooling when touched can be reduced. Furthermore, generally, the glass has a sticky feeling (sticky feeling) when touched on the surface. By forming the coating film according to claim 29 on the glass surface, the force and the sticky feeling (sticky feeling) are eliminated. When it comes to a dull feeling!
  • the transparency of the glass can improve the surface hardness without damaging the surface and prevent damage, and reduce the feeling of cooling and sticking (stickiness) when touched.
  • the base material is paper
  • the cover of the book is often coated with bull resin after printing characters on thick colored paper, but in the coating of bull resin, etc.
  • the texture of the paper is impaired because it is easily scratched and glossy. Therefore, by forming the coating film according to claim 29 on the surface of the paper such as colored paper, the coating film that does not impair the texture of the paper has a high hardness, so that the surface is hardly damaged.
  • flame retardancy can be imparted to the paper by the heat insulating property of the coating film.
  • the printing ink is easily absorbed by the paper, and the effect of improving the printing characteristics of the paper can be obtained.
  • the ink is very good and suitable as ink jet printer paper.
  • the texture of the paper is reduced.
  • the coating film can improve the surface hardness without damaging to surely prevent scratches, impart flame retardancy, and improve printing characteristics.
  • the coating material according to claim 29 is formed on the surface of the fiber material.
  • the smooth feel of synthetic fibers such as nylon, vinylon, polyester fiber, acrylic fiber, vinylidene chloride fiber, acetate, rayon, etc. can be reduced without impairing the appearance of the synthetic fiber.
  • the slipperiness of the carbon fiber in the grip portion can be reduced.
  • the appearance of the synthetic fiber is obtained by utilizing the heat insulating property, wear resistance, high hardness and transparency of the hollow particles composed of silica shells having an outer diameter in the range of approximately 30 nm to 300 nm. It is possible to reduce the smooth feel of the synthetic fiber without impairing the properties, and to provide a coating film that can impart flame retardancy.
  • an isocyanate, alkyl, bur or talyloxy surface modifier is added to the surface of the hollow particles made of silica shell.
  • Specific examples include a triisocyanate compound in which three isocyanate groups are bonded to an alkyl group, and triethoxypropyl isocyanate silane (TEIS).
  • TEIS triethoxypropyl isocyanate silane
  • alkyl-based surface modifier means a surface modifier composed of a compound having at least one alkyl group.
  • Specific examples include triethoxybutylsilane (TEBS). is there.
  • Such an isocyanate-based, alkyl-based, bur-based, or attaryloxy-based surface modifier is added via a hydroxyl group (-OH) present on the surface of a hollow particle composed of a silica shell to form a silica shell.
  • a hydroxyl group -OH
  • Re-agglomeration is prevented by coating the entire surface of the hollow particles with an isocyanate, alkyl, bur or talyloxy surface modifier.
  • the dispersibility is improved, and even when mixed in the binder, the binder active group reacts with the isocyanate group, alkyl group, bur group, or talyloxy group to form a hollow made up of the binder and the silica shell. A strong bond with the particles is obtained.
  • the dispersibility is improved, and a strong bond between the binder and the hollow particles composed of the silica shell is obtained, and the silica shell having an outer diameter of approximately 30 nm to 300 nm.
  • a coating film having heat insulation, wear resistance, high hardness and transparency can be obtained.
  • FIG. 1 (a) is a partial cross-sectional view showing a state where an antiglare coating material according to Embodiment 2 of the present invention is applied on a glass substrate, and (b) is an enlarged cross-sectional view thereof. .
  • FIG. 2 is a partial cross-sectional view showing a state in which an antireflection coating material according to Embodiment 3 of the present invention is applied on a glass substrate.
  • Fig. 3 shows a manufacturing method of an antireflection coating material according to Embodiment 4 of the present invention, and shows a state where the antireflection coating material according to Embodiment 4 of the present invention is applied on a glass substrate. It is a fragmentary sectional view shown.
  • FIG. 4 (a) is a partial cross-sectional view showing a state where an antiglare film according to Embodiment 5 of the present invention is attached to a glass substrate
  • FIG. 4 (b) is according to Embodiment 5 of the present invention.
  • FIG. 8C is a partial cross-sectional view showing the structure of an antireflection film
  • FIG. 10C is a partial cross-sectional view showing the structure of an antireflection film according to a modification of Embodiment 5 of the present invention.
  • FIG. 5 is an explanatory diagram showing an outline of a method for producing hollow particles having silica shell strength.
  • FIG. 6 is a transmission electron microscope (TEM) photograph showing a state in which hollow particles having a cubic shape composed of a silica shell having an outer diameter of 50 nm to 150 nm are aggregated.
  • TEM transmission electron microscope
  • FIG. 7 (a) is a perspective view showing the overall configuration of a test piece with an anticorrosion film formed using the anticorrosion paint according to Embodiment 6 of the present invention, and (b) shows the configuration of the test piece with an anticorrosion film.
  • FIG. 7 (a) is a perspective view showing the overall configuration of a test piece with an anticorrosion film formed using the anticorrosion paint according to Embodiment 6 of the present invention, and (b) shows the configuration of the test piece with an anticorrosion film.
  • FIG. 8 is a flowchart showing a production process of an anticorrosive paint according to Embodiment 6 of the present invention.
  • FIG. 9 is a flowchart showing a manufacturing process of a test piece with an anticorrosion film formed using the anticorrosive paint according to Embodiment 6 of the present invention.
  • FIG. 10 is a schematic diagram showing a process for producing hollow particles made of a coated silica shell used for producing an anticorrosion film and an anticorrosion paint according to Embodiment 7 of the present invention.
  • FIG. 11 (a) is a perspective view showing the overall configuration of a test piece with an anticorrosion film formed using the anticorrosion paint according to Embodiment 7 of the present invention, and (b) shows the configuration of the test piece with an anticorrosion film.
  • FIG. 11 (a) is a perspective view showing the overall configuration of a test piece with an anticorrosion film formed using the anticorrosion paint according to Embodiment 7 of the present invention, and (b) shows the configuration of the test piece with an anticorrosion film.
  • FIG. 12 is a flowchart showing the production process of the anticorrosion paint according to Embodiment 7 of the present invention.
  • FIG. 13 is a flowchart showing a coating paint manufacturing process according to Example 14 of Embodiment 25 of the present invention.
  • FIG. 14 is a flowchart showing a coating paint manufacturing process according to Example 15 of Embodiment 25 of the present invention.
  • FIG. 15 is a flowchart showing a coating paint manufacturing process according to Example 16 of Embodiment 25 of the present invention.
  • FIG. 16 is an explanatory diagram showing a surface modification treatment method in the coating paint manufacturing process according to Example 16 of Embodiment 25 of the present invention.
  • FIG. 17 is an explanatory view showing another example of the surface modification treatment method in the coating paint manufacturing process according to Example 16 of Embodiment 25 of the present invention.
  • FIG. 18 (a) is a perspective view showing a wood having a coating film according to Embodiment 25 of the present invention formed on its surface
  • FIG. 18 (b) is a cross-sectional view thereof.
  • FIG. 19 (a) is a perspective view showing a plastic having a coating film according to Embodiment 26 of the present invention formed on its surface
  • FIG. 19 (b) is a sectional view thereof.
  • FIG. 20 (a) is a perspective view showing a leather seat for automobiles having a coating film according to Embodiment 27 of the present invention formed on its surface
  • FIG. 20 (b) is a sectional view thereof.
  • FIG. 21 (a) is a perspective view showing a stone material on the front floor surface of a front door on which a coating film according to Embodiment 28 of the present invention is formed
  • FIG. 21 (b) is a sectional view thereof.
  • FIG. 22 (a) shows the coating film according to a modification of the embodiment 28 of the present invention on the surface.
  • the perspective view which shows the formed marble table, (b) is the sectional drawing.
  • FIG. 23 (a) is a perspective view showing a glass window fitted with a glass on which a coating film according to Embodiment 29 of the present invention is formed
  • FIG. 23 (b) is a sectional view thereof.
  • FIG. 24 (a) is a perspective view showing a book cover using paper having a coating film on the surface according to Embodiment 30 of the present invention
  • FIG. 24 (b) is a cross-sectional view thereof.
  • FIG. 25 is a perspective view showing a parasol using a fabric made of a polyester fiber material (polyester yarn) on which a coating film according to Embodiment 31 of the present invention is formed, (b) FIG. 3 is a cross-sectional view of a polyester yarn.
  • FIG. 26 is a perspective view showing a sweater using a fabric made of an acrylic fiber material (acrylic yarn) having a coating film formed on the surface according to a modification of the embodiment 31 of the present invention
  • ( b) is a cross-sectional view of an acrylic yarn.
  • 29a Isocyanate surface modifier 29b Alkyl surface modifiers
  • Hollow particles made of silica shells are particles surrounded by a curved surface such as a sphere or rugby ball-like ellipsoid as a primary particle, a particle surrounded by a plane such as a cube, octahedron, or tetrahedron, or a curved surface.
  • the shape is not particularly limited, such as particles composed of a flat surface and irregularly shaped particles.
  • the size is not limited, but in order to enhance functions such as transparency, heat insulation, hygroscopicity, colorability, and color development, the average primary particle diameter by transmission electron microscopy is 20 nm. Hollow particles having an average particle diameter of 20 nm to 3 m as measured by a dynamic light scattering method are preferable.
  • the average primary particle diameter by transmission electron microscopy is 20 nm to 0.5.
  • 111 more preferably 201 111 to 0.1 m
  • an average particle size by dynamic light scattering method of 20 nm to l ⁇ m and a maximum particle size of 5 m or less is desirable! /.
  • Embodiment 1 of the present invention for example, calcium carbonate fine particles are used as a core material, and the surface of the calcium carbonate fine particles is coated with silica force from silica. And a method in which the calcium carbonate in the silica shell is dissolved with an acid.
  • the calcium carbonate used as the core material is known in various forms. Among them, a calcium carbonate having a cubic form called colloidal calcium carbonate or cubic calcium carbonate has a desired particle size. Particles are easily obtained and suitable.
  • the above-described method for producing hollow particles is characterized by forming a silica shell on the surface by using calcium carbonate as a core material, and then dissolving the core calcium carbonate using an acid. When foaming, the core material can be easily discharged out of the shell and hollowed out.
  • the method for producing hollow fine particles having silica shell strength to be contained in the resin composition in the present invention comprises preparing calcium carbonate fine particles to be used as a core material, and using the particles as a core material to form a silica shell on the surface thereof. Then, the calcium carbonate inside the silica shell is dissolved and foamed with an acid, which makes it very easy to hollow out the particles. As a result, it can be efficiently manufactured with a simple process compared to the conventional method.
  • Silica hollow microparticles produced in this way are incorporated into the resin composition, whereby heat insulation, lightness, transparency, water absorption, hygroscopicity, colorability, color development, slipperiness. , Resin compositions useful as molded articles for fibers, films, etc. with improved anticorrosion, scratch resistance, abrasion resistance, and drop-off resistance, and paints comprising the compositions, as well as molded articles and molded articles Providing typical fibers and films will produce excellent properties!
  • the hollow microparticles made of silica shell also have characteristics that various functions can be controlled by controlling the particle size, shape, shell thickness, and surface pores. . Furthermore, it is possible to obtain better effects by modifying the surface of the hollow fine particles with an epoxy group, isocyanate group, bur group, hydroxyl group, or carboxyl group. It is.
  • the type of resin that can contain the hollow fine particles of the present invention is not particularly limited.
  • thermoplastic resins polyethylene, polystyrene, polypropylene, chlorinated resin, methacrylic resin, fluororesin, polyimide, butyl acetate, etc.
  • thermosetting resin include alkyd resin, aryl resin, amino resin, epoxy resin, phenol resin, unsaturated polyester resin, silicone resin, polyurethane and the like.
  • Resins used as synthetic fibers include polyester, acrylic, acrylic, nylon, vinylon, polypropylene, polychlorinated butyl, polyethylene, vinylidene, polyurethane, aramid, polyarylate, PBO, ethylene butyl alcohol, and atari.
  • rate type, polylactic acid, and the like, and semi-synthetic fibers such as acetate and triacetate, and regenerated fiber yarns such as rayon and cubora may be used.
  • the method of incorporation in the resin is not particularly limited, and may be appropriately selected depending on the characteristics of the resin. For example, after preparing a master batch (sometimes called a compound or a chip) containing the hollow fine particles.
  • the resin composition may be obtained by optimal blending, and may be formed into a molded body such as a fiber or a film through processes such as spinning and stretching.
  • One of the hollow fine particles having the shell strength of the metal oxide dispersed and contained in the resin composition of the present invention is a highly dispersed silica nano hollow particle according to Patent Document 17 previously invented by the present inventors. And a method of manufacturing it. According to this method, hollow particles having a highly dispersed and dense silica shell and having an average primary particle diameter of 20 nm to 0.1 m by transmission electron microscopy can be produced. Considering the function, there is a possibility that an excellent effect can be exerted, and the hollowness in which pores of 2 to 20 nm are not detected in the pore distribution measured by the mercury intrusion method in the metal oxide shell of the hollow particles It is possible to obtain particle-like particles.
  • the resin composition of the present invention contains hollow particles made of a metal oxide shell.
  • Various functions such as heat insulation, light weight, transparency, water absorption, hygroscopicity, colorability, color development, electrical insulation, slipperiness, abrasion resistance, and dropout resistance can be imparted. That is, only by using hollow particles made of a metal oxide shell, the effects of the present invention can be sufficiently exerted, and heat insulation, lightness, transparency, water absorption, hygroscopicity, colorability, color development, electricity Resin compositions useful as molded articles for fibers, films, etc. with improved insulation, corrosion resistance, scratch resistance, slipperiness, abrasion resistance, and drop-off resistance, and paints comprising the compositions, and It is possible to provide a molded body, a fiber and a film that are representative of the molded body.
  • the shell force of the metal oxide prepared by the methods of Patent Document 17 and Patent Document 18 described above, and the hollow particles are nano-sized hollow particles having an average primary particle size of 20 nm to 200 nm. It is most suitable for producing these functions. Note that the effect of the hollow particles of the present invention is not impaired! /, If within the range, inorganic or organic fine particles insoluble in the resin composition, or fine particles precipitated in the reaction system during the production of the resin composition are contained. It's okay.
  • carbon dioxide gas was introduced into 2.0 L of calcium hydroxide slurry with a solid content concentration of 7.5% by weight adjusted to a liquid temperature of 15 ° C and stirred at a rate of 1.5 L / min for 2 hours while stirring. Colloidal calcium carbonate in the form of a precipitate was precipitated. Thereafter, the liquid temperature was set to 80 ° C., and the mixture was allowed to stand for 24 hours for aging. When the produced calcium carbonate was observed with a transmission electron microscope, the primary particle size was 40 to 80 nm.
  • This colloidal calcium carbonate slurry was made into a water-containing cake with a water content of 65% by weight using a centrifugal dehydrator, and then 22 g of this water-containing cake was put into 450 g of ethanol and subjected to ultrasonic irradiation for 1 minute. Colloidal calcium carbonate was dispersed therein. There was added 21 g of 28% ammonia water and 7.5 g of tetraethoxysilane. Caro (volume ratio of tetraethoxysilane / ethanol 0 ⁇ 01, NH contained in ammonia water was 9 per 1 mol of tetraethoxysilane. ⁇
  • the calcium carbonate slurry coated with silica was removed by suction filtration, washed with 1200 mL ethanol and 1200 mL water, and then dispersed again in 800 mL water. . Thereto was added 200 mL of 2.5 mol / L HC1 (the acid concentration of the whole solution was 0.5 mol / U, and the mixture was stirred for 1 hour to dissolve calcium carbonate.
  • colloidal calcium carbonate 3 Og produced in the same manner as the above colloidal calcium carbonate was dispersed in 500 g of ion-exchanged water, 87 g of 29% ammonia water and 32 g of tetraethoxysilane were added and stirred for 24 hours. Then, after washing with ion-exchanged water, it was poured into 500 mL of 1 M hydrochloric acid and stirred for 30 minutes to dissolve calcium carbonate. Subsequently, it was washed with ion-exchanged water and then dried at 105 ° C. to obtain silica hollow particles.
  • the obtained product was observed with a transmission electron microscope and a scanning electron microscope (SEM). As a result, it was found that the hollow particles having a fine silica shell (shell thickness 8 to 12 nm) 60 to 120 nm were used. Atsuta. Furthermore, when chemical analysis was performed using an energy dispersive X-ray detector, only silicon and oxygen were detected, confirming that the silica hollow particles had high purity. In addition, the average particle size by dynamic light scattering method is 250 nm, and pore distribution measurement by mercury intrusion method did not detect 2-20 nm pores. I was able to confirm that it was sex.
  • This spindle-shaped calcium carbonate slurry was made into a water-containing cake having a water content of 65% by weight with a centrifugal dehydrator, and then 22 g of this water-containing cake was put into 450 g of ethanol and subjected to ultrasonic irradiation for 1 minute. Then, calcium carbonate was dispersed in ethanol. To this, 21 g of 28% ammonia water and 7.5 g of tetraethoxysilane were added (volume ratio of tetraethoxysilane / ethanol 0 ⁇ 01, ⁇ contained in ammonia water was 9.3 per mol of tetraethoxysilane. Mole and water were 30 moles per mole of tetraethoxysilane) and stirring was continued for 12 hours to prepare a composite coated with silica.
  • colloid hollow particles B are added in 0.3% by weight in ethylene glycol and polycondensed by a conventional method, and the resulting resin is discharged and the chip is discharged.
  • a polyethylene terephthalate chip containing colloidal hollow particles having an intrinsic viscosity of 0.62 was obtained. The chips thus obtained were dried by a conventional method and supplied to a vent type biaxial melt kneading extruder.
  • the vent hole of the vent type twin-screw melt kneading extruder is melted while keeping the temperature of the composition at 280 ° C while keeping the vent hole at a vacuum of lOTorr.
  • Extrusion was performed to obtain a polyester resin composition chip containing colloidal hollow particles B.
  • a polyester resin composition chip containing this colloidal hollow particle B is set at a discharge rate of 26 g / min and a spinning speed of 1200 m / min, and the fiber fineness of 75 denier / 24 filament is set.
  • the spun yarn was stretched 3.3 times in an atmosphere of 185 ° C. to obtain a polyester fiber containing colloidal hollow particles B.
  • Example 2 In the same manner as in Example 1, spherical hollow particles were added by 0.2% by weight in solid content and polycondensed by a conventional method, and the resulting resin was discharged and formed into chips, resulting in a spherical hollow having an intrinsic viscosity of 0.60. A polyethylene terephthalate chip containing particles was obtained. This polyester was dried and extruded by a conventional method to obtain an unstretched sheet, which was stretched 5.0 times in the machine direction at 125 ° C and subsequently 3.8 times in the transverse direction at 115 ° C. Further, heat treatment was performed at 210 ° C. for 10 seconds to obtain a heat insulating biaxially stretched polyester film having a thickness of 15 m.
  • FIG. 1 (a) is a partial sectional view showing a state in which an antiglare coating material according to Embodiment 2 of the present invention is applied onto a glass substrate
  • FIG. 1 (b) is an enlarged sectional view thereof. That is, the antiglare coating material 1 according to Embodiment 2 is the antiglare coating material according to the invention of claim 10.
  • a method for manufacturing the antiglare coating material 1 according to Embodiment 2 will be described.
  • the force S for producing the hollow particles 10 having a cubic shape composed of silica shells having an outer diameter ranging from 30 nm to 300 nm, and the production method thereof are as described above with reference to FIG.
  • the hollow particles 10 having a cubic shape composed of silica shells having an average particle diameter of 50 nm and an outer diameter ranging from 30 nm to 70 nm are obtained. Manufactured.
  • acrylic resin 3 11 parts by weight of acrylic resin 3 is dissolved in 80 parts by weight of xylene as an organic solvent to prepare an acrylic resin solution as an organic synthetic resin paint.
  • acrylic resin solution hollow particles 10 having a cubic shape composed of silica shells having an average particle diameter of 50 nm having an outer diameter in the range of 30 nm to 70 nm were aggregated, and a range of 0.5 ⁇ 111 to 111 A suitable amount of secondary particles 2 having a size inside is mixed. Then, the secondary particles 2 are uniformly dispersed in the acrylic resin solution by stirring. Thereby, the antiglare coating material 1 according to the second embodiment is manufactured.
  • FIG. 1 (a) As shown in Fig. 1 (a), by applying the antiglare coating material 1 produced in this way to the surface of the glass substrate 4, xylene as a solvent volatilizes, and an acrylic resin is obtained.
  • the hollow particles 10 having a cubic shape with the silica shell force constituting the secondary particles 2 have a thin silica shell 11 thickness of about 1 nm to 5 nm. It is summer. And since the volume of the hollow part 12 is large, the refractive index as the whole anti-glare coating film is as low as 1.2 to 1.3.
  • the hollow particles 10 having a cubic shape composed of silica shells have a visible ray L1 incident on the silica shell 1 almost perpendicularly to the antiglare coating.
  • Visible light rays L2 that pass through 1 and the airspace portion 12 and pass through as they are and obliquely enter the antiglare coating film have a function of scattering in the silica shell 11. Therefore, when the glass substrate 4 shown in FIG. 1 is the surface of a display device such as a personal computer display or a television screen, the interior of the display is not reflected and the transparency of the display device is excellent.
  • the power S can be improved.
  • the glass substrate 4 shown in Fig. 1 is a window glass of a building
  • the antiglare coating film If the dazzling light such as sunlight or car headlights is reflected by the window glass of the building and enters the eyes of passers-by and car drivers! It can be surely prevented.
  • the acrylic resin 3 is resistant to ultraviolet rays and has excellent weather resistance, the hollow particles 10 having a cubic shape made of silica shell as described above are less likely to deteriorate even when applied on the outside of the window glass. Because it can be manufactured, it can also be used in large areas such as building window glass.
  • the antiglare coating material 1 according to the second embodiment is a low-refractive-index, translucent, hollow silica particle 10 having a silica-shell force produced at a low cost.
  • the anti-glare coating material can be used for low-cost applications utilizing the irregular reflection of the secondary particles 2.
  • FIG. 2 is a partial cross-sectional view showing a state in which an antireflection coating material according to Embodiment 3 of the present invention is applied on a glass substrate.
  • the hollow particles 10 having a cubic shape composed of silica shells having an outer diameter in the range of 30 nm to 70 nm and an average particle diameter of 50 nm are aggregated.
  • the secondary particles 2 having a size in the range of 5 m to 5 m are produced by crushing. That is, the antireflection coating material 5 according to Embodiment 3 is the antireflection coating material according to the invention of claim 11.
  • hollow primary particles 10 having a cubic shape composed of silica shells having an average particle diameter of 5 Onm having an outer diameter in the range of 30 nm to 70 nm were first aggregated to 0.5 ⁇ m. Secondary particles 2 having a size in the range of ⁇ 5 m are produced. Subsequently, the secondary particles 2 are crushed to obtain crushed particles having a size ranging from 30 nm to 70 nm.
  • acrylic resin 3 11 parts by weight of acrylic resin 3 is dissolved in 80 parts by weight of xylene as an organic solvent to prepare an acrylic resin solution as an organic synthetic resin paint.
  • an acrylic resin solution an appropriate amount of pulverized particles 6 produced by pulverizing the secondary particles 2 and having a size in the range of 30 nm to 70 nm are mixed and stirred, whereby the crushed particles 6 are contained in the acrylic resin solution. Disperse evenly. As a result, the antireflection coating material 5 according to the third embodiment is manufactured. It is.
  • the antireflection coating material 5 according to the third embodiment manufactured in this way is applied to the surface of the glass substrate 4 to volatilize xylene as a solvent.
  • an antireflection coating film having a single layer structure in which crushed particles 6 having a size ranging from 30 nm to 70 nm are uniformly dispersed in the thin coating film of the acrylic resin 3 is formed.
  • the hollow particles 10 having a cubic shape consisting of silica shells 10 become the primary particles force S, and depending on the conditions, more than half breaks the cubic shape
  • the crushed particles 6 consisted of broken pieces.
  • the inventors of the present invention are also excellent by uniformly dispersing the crushed particles 6 mixed with such broken pieces of the cubic shape in the organic synthetic resin paint 3 and applying them on the glass substrate 4.
  • the antireflection coating material 5 according to the second embodiment has been completed based on this finding.
  • the antireflection coating material 5 according to Embodiment 3 has a low refractive index and a light-transmitting property of the hollow shell 10 having a cubic shell shape, which is produced at a low cost. This is an anti-reflection coating material that can be used for applications that require low cost.
  • FIG. 3 is an explanatory view showing a manufacturing method of an antireflection coating material according to Embodiment 4 of the present invention, and a partial cross section showing a state in which the antireflection coating material according to Embodiment 4 of the present invention is applied on a glass substrate.
  • FIG. 3 is an explanatory view showing a manufacturing method of an antireflection coating material according to Embodiment 4 of the present invention, and a partial cross section showing a state in which the antireflection coating material according to Embodiment 4 of the present invention is applied on a glass substrate.
  • Secondary particles 2 in which hollow particles 10 having a cubic shape composed of silica shells having an outer diameter of nano level are aggregated also used beads BS having an average particle diameter of about 15 m and a micron level.
  • beads BS having an average particle diameter of about 15 m and a micron level.
  • the coating material 8 as shown in Fig. 3 is applied to the glass substrate 4 thinly so that the silica hollow particles 10 having a cubic shape are dispersed.
  • a transparent polycarbonate resin film 7 of about O ⁇ m is formed.
  • the refractive index of this coating film 7 is a low refractive index within the range of 1.2 to 1.3 because the hollow silica particles 10 containing air are uniformly dispersed therein. Functions as an antireflection film (AR film).
  • the antireflection coating material 8 according to Embodiment 4 has a low refractive index and a light-transmitting property of the hollow shell 10 having a cubic shell shape, which is produced at a low cost. This is an anti-reflection coating material that can be used for applications that require low cost.
  • FIG. 4 (a) is a partial cross-sectional view showing a state in which the antiglare film according to Embodiment 5 of the present invention is attached to a glass substrate, and (b) is the antireflection film according to Embodiment 5 of the present invention.
  • FIG. 7C is a partial cross-sectional view showing the structure of the antireflection film according to the modification of Embodiment 5 of the present invention.
  • the antiglare film 15 As shown in FIG. 4 (a), the antiglare film 15 according to the fifth embodiment has two aggregated hollow particles 10 having a cubic shape made of a silica shell having a nano-level outer diameter.
  • the secondary particles 2 are uniformly dispersed in an acrylic resin film 16 as an organic synthetic resin film having a thickness of micron order.
  • the antiglare film 15 manufactured in this way is attached to the surface of the glass substrate 4, so that 0.5 ⁇ 111 ⁇
  • the antiglare film 15 has a structure in which the secondary particles 2 having a size in the range of 5 to 111 are projected.
  • the hollow particles 10 having a cubic shape composed of the silica shells constituting the secondary particles 2 have a thin silica shell 11 thickness of about 1 nm to 5 nm. It has been. Since the volume of the hollow portion 12 is large, the refractive index of the antiglare film 15 as a whole is as low as 1.2 to 1.3.
  • the hollow particles 10 having a cubic shape composed of silica shells transmit visible light that passes through the silica shell 11 and the hollow portion 12 as they are, and pass through the silica shell 11 and the hollow portion 12 as they are.
  • Visible light incident obliquely on the antiglare film 15 has a function of scattering in the silica shell 11. Therefore, when the glass substrate 4 shown in FIG. 4 (a) is the surface of a display device such as a personal computer display or a TV screen, the interior of the display device is not reflected and the transparency is excellent. Contrast can also be improved.
  • the glass substrate 4 shown in Fig. 4 (a) is a window glass of a building
  • the antiglare film 15 is attached to the outside of the window glass, so that the head of sunlight or an automobile can be obtained. It is possible to surely prevent glare from lights and other problems such as light being reflected by the window glass of the building and entering the eyes of passers-by and automobile drivers.
  • the acrylic resin film 16 is resistant to ultraviolet rays and has excellent weather resistance, the hollow particles 10 having a cubic shape made of silica shell as described above are not easily deteriorated even when attached to the outside of the window glass. Since it can be manufactured at low cost, it can be used for large areas such as building window glass.
  • the antiglare film 15 has a low refractive index, translucency, and two-dimensionality of the hollow particles 10 having a cubic shape with a cruciform shell force produced at low cost.
  • the anti-glare film can be used for low-cost applications utilizing the irregular reflection of the secondary particles 2.
  • the antireflection film 17 according to Embodiment 5 will be described with reference to Fig. 4 (b).
  • the antireflection film 17 according to Embodiment 5 is a hollow particle 10 having a cubic shape made of silica shells in a polycarbonate resin film 18 as an organic synthetic resin film. Are uniformly dispersed.
  • a thin film is produced from a polycarbonate resin film raw material by a known thin film production method, silica hollow particles 10 having a cubic shape are dispersed in a single layer as shown in FIG. 4 (b).
  • a transparent polycarbonate resin film 17 having a thickness of about 0.5 111 to 2.0 m is formed.
  • the refractive index of this film 17 is a low refractive index in the range of 1.2 to 1.3 because the hollow silica particles 10 containing air are uniformly dispersed therein. Functions as an antireflection film (AR film).
  • the antireflection film 17 according to the fifth embodiment has a low refractive index and a light-transmitting property of the hollow particles 10 having a cubic shape formed by the silica shell force produced at low cost.
  • the anti-reflection film can be used for low cost applications.
  • an antireflection film 20 according to a modification of the fifth embodiment will be described with reference to Fig. 4 (c).
  • the antireflection film 20 according to the modification of the fifth embodiment is provided on the upper surface of the antiglare film 15 according to the fifth embodiment shown in FIG. 4 (a).
  • the antireflection film 17 according to the fifth embodiment shown in FIG. 4 (b) is laminated.
  • the antiglare film 15 shown in FIG. 4 (a) is an antiglare film (AG film) having excellent antireflection properties and antiglare properties as described above.
  • AG film antiglare film
  • AR film anti-reflection film
  • the antireflection film 20 has a low refractive index and a low transmittance of the hollow particles 10 having a cubic shell shape, which is produced at a low cost. It is an antireflection film that can be used for applications requiring low cost, utilizing light and irregular reflection of secondary particles 2.
  • FIG. 7 (a) is a perspective view showing the overall configuration of a test piece with an anticorrosion film formed using the anticorrosion paint according to Embodiment 6 of the present invention, and (b) is a partial cross-section showing the configuration of the test piece with an anticorrosion film
  • FIG. 8 shows a manufacturing process of the anticorrosion paint according to Embodiment 6 of the present invention. It is a flowchart which shows.
  • FIG. 9 is a flowchart showing a manufacturing process of a test piece with an anticorrosion film formed using the anticorrosion paint according to Embodiment 6 of the present invention.
  • the test piece 21 with the anticorrosion film according to the sixth embodiment has an oxide film on the surface of the aluminum plate 22 having a length of 150 mm, a width of 70 mm, and a thickness of 5 mm.
  • the anticorrosion paint according to Embodiment 6 is spray-coated to form the anticorrosion film 23.
  • the anticorrosion paint according to the sixth embodiment is obtained by uniformly dispersing cubic particles of hollow particles and zinc powder particles made of a silica shell having an outer diameter in the range of 10 nm to 30 Onm in an isocyanate acrylic paint.
  • the anticorrosion film 23 according to the sixth embodiment is spray-coated with the anticorrosive paint according to the sixth embodiment and baked and dried.
  • hollow particles 10 and zinc powder particles 25 having a silica shell with an average particle diameter of 80 nm and an outer diameter in the range of 50 nm to OO nm are uniformly dispersed. Become.
  • composition of the anticorrosion paint according to Embodiment 6 is as in Example 6 shown in Table 1.
  • the solid content ratio of the hollow particles 10 having a cubic shape made of silica shells was 10% by weight, and the hollow particles 1 having a cubic shape made of the most preferable amount of silica shells 1 Contains 0.
  • the zinc powder particles 25 as an inhibitor the most preferable amount of solid content is 10% by weight.
  • the solvent xylene (a mixture of ortho, meta, and para isomers), which is easy to dissolve organic resins, is used.
  • step S10 hollow particles 10 having a cubic shape composed of silica shells having an outer diameter in the range of 50 nm to! OOnm and having an average particle diameter of 80 nm are manufactured.
  • the silica shell becomes denser by baking at 800 ° C it is burned at 800 ° C.
  • an acrylic resin solution is prepared by dissolving 10 parts by weight of an acrylic resin in 80 parts by weight of an organic solvent xylene (step Sll).
  • the hollow particles 10 made of silica shells are uniformly dispersed in the acrylic resin solution (step S13).
  • the hollow particles 10 composed of fine silica shells with an average particle diameter of 80 nm are likely to aggregate, it is necessary to perform uniform dispersion by vigorous stirring with a disperser. There is a point.
  • 2.0 parts by weight of zinc powder particles 25 are added and further stirred (step S14).
  • 6.0 parts by weight of block isocyanate is added and stirred (step S15), and the anticorrosion paint 27 according to Embodiment 6 is completed as a uniform solution.
  • the aluminum plate 22 having a length of 150 mm, a width of 70 mm, and a thickness of 5 mm is used as the base material as described above.
  • the aluminum plate 22 is sandblasted to remove the oxide film on the surface (step S16). Sandblasting was performed by spraying alumina particles with an average particle size of 40 m at a speed of 60 m / s.
  • the anticorrosion paint 27 is spray-coated on the aluminum plate surface from which the oxide film has been removed (step S17). Then, after natural drying, it is placed in a drying oven and baked and dried at 170 ° C for 30 minutes (step S18). Since the boiling point of xylene is about 140 ° C, the solvent xylene is completely removed, and the block isocyanate block is removed and reacts with the acrylic resin. As shown in Fig. 7 (b), Thus, the anticorrosion film 23 in which the hollow particles 10 and the zinc powder particles 25 made of silica shells having an average particle diameter of 50 nm are uniformly dispersed in an organic resin 26 having a simple structure.
  • the test piece 21 with the anticorrosion film is taken out from the drying oven (step S19).
  • the thickness of the anticorrosion film 23 of the test piece with the anticorrosion film thus completed was about ⁇ , and the relative dielectric constant was measured to be 2.5, which was a sufficiently small value.
  • the anticorrosion film 23 and the anticorrosion coating 27 using the hollow particles 10 and the zinc powder particles 25 made of the silica shell according to the sixth embodiment have a thickness of 50 nm to Hollow particles of cubic shape consisting of silica shells with an average particle diameter of 80 nm and an outer diameter in the range
  • the insulation of the element 10 makes it easy to handle and reliably improves the anti-corrosion property, and reduces the coating thickness to 2 ( ⁇ 111 or less) without the risk of water permeating through independent pores. Even so, excellent anticorrosion properties can be obtained.
  • FIG. 10 is a schematic diagram showing a process for producing hollow particles made of a coated silica shell used for producing an anticorrosion film and an anticorrosion paint according to Embodiment 7 of the present invention.
  • FIG. 11 (a) is a perspective view showing the overall configuration of a test piece with an anticorrosion film formed using the anticorrosion paint according to Embodiment 7 of the present invention, and (b) is a partial cross-section showing the configuration of the test piece with an anticorrosion film
  • FIG. FIG. 12 is a flowchart showing manufacturing steps of the anticorrosion paint according to Embodiment 7 of the present invention.
  • the cubic nano-particles 10 composed of silica shells used in Embodiment 6 are fine particles having an outer diameter in the range of 50 nm to 100 nm and an average particle diameter of 80 nm. In order to disperse easily, strong stirring by a disperser was necessary.
  • the hollow particles 30 having a coating silica shell force according to the seventh embodiment have the surface of the nano hollow particles 10 made of silica shell covered with an isocyanate surface modifier 28. Therefore, it is difficult to aggregate and easy to disperse.
  • the test piece 31 with the anticorrosion film according to the seventh embodiment has an oxide film on the surface of the aluminum plate 22 having a length of 150 mm, a width of 70 mm, and a thickness of 5 mm.
  • the anticorrosion coating 29 according to the seventh embodiment is spray-coated to form the anticorrosion film 29.
  • the anticorrosion paint according to the seventh embodiment is a uniform coating of hollow particles 30 and aluminum two-muth zinc alloy powder 32 made of a coated silica shell having an outer diameter in the range of 10 nm to 30 Onm to an isocyanate-acrylic paint.
  • the anticorrosion film 29 according to the seventh embodiment is spray-coated with the anticorrosion paint according to the seventh embodiment and baked and dried.
  • hollow particles 30 made of a coated silica shell having an average particle diameter of 50 nm and an outer diameter ranging from about 30 nm to about 70 nm are uniformly dispersed in the isocyanate-acrylic coating film 26.
  • composition of the anticorrosive paint according to the seventh embodiment is as shown in Example 7 shown in Table 2.
  • Acrylic resin 10. 0 50. 0 Xylene 80. 0 0. 0 Mouth. ⁇ 100. 0 100. 0
  • the composition of the anticorrosion paint of Example 7 according to Embodiment 7 is such that the hollow particles 10 made of silica shells in the anticorrosion paint of Example 6 according to Embodiment 6 are coated.
  • the zinc powder particles 25 are changed to aluminum-zinc alloy powder 32, and the mixing ratios thereof are completely the same. That is, the solid content ratio of the hollow particles 30 composed of the coated silica shell is 10% by weight, and the hollow particles 30 composed of the most preferable amount of the coated silica shell are blended.
  • the aluminum-zinc alloy powder 32 as an inhibitor is blended with a solid content ratio of 10% by weight, which is the most preferable amount.
  • xylene a mixture of ortho, meta, and para isomers
  • is used as the solvent because it easily dissolves organic resins.
  • a method for manufacturing the anticorrosion paint 35 of Example 7 according to Embodiment 7 will be described with reference to the flowchart of FIG. As shown in FIG. 12, first, as described in FIG. 10, hollow particles 30 consisting of coated silica shells having an average particle diameter of 80 nm and an outer diameter in the range of 50 nm to 100 nm are manufactured (step S20).
  • an acrylic resin is dissolved in 80 parts by weight of xylene as an organic solvent to prepare an allyl resin solution (step S21).
  • this acrylic resin solution 2.0 parts by weight of hollow particles 30 made of coated silica shell having an outer diameter in the range of 50 nm to 100 nm and having an outer diameter in the range of 50 nm to 100 nm produced in step S20 are mixed (step S22).
  • the hollow particles 30 made of the coating silica shell are averaged in the acrylic resin solution. Disperse to one.
  • the hollow particles 30 having a coating silica shell force hardly aggregate and easily disperse, it is not necessary to perform strong stirring with a disperser.
  • the aluminum plate 22 is sandblasted to remove the oxide film on the surface (step S16).
  • the anticorrosion paint 35 is spray-coated on the surface of the anode plate from which the oxide film has been removed (step S17).
  • it is placed in a drying oven and baked and dried at 170 ° C for 30 minutes (step S18). Since the boiling point of xylene is about 140 ° C, the solvent xylene is completely removed, and the block isocyanate is unblocked and reacts with the acrylic resin.
  • the anticorrosion film 29 in which the hollow particles 30 made of a coating silica shell having an average particle diameter of 80 nm and the aluminum-zinc alloy powder 32 are uniformly dispersed in the organic resin 6 having the structure is obtained.
  • the test piece 31 with the anticorrosion film is taken out from the drying oven (step S19).
  • the thickness of the anticorrosion film 29 of the test piece 31 with the anticorrosion film thus completed is about ⁇ ⁇ , and when the relative dielectric constant is measured, the measured value is 2.0, which is even smaller than that of the sixth embodiment. was gotten.
  • the anticorrosion film 29 and the anticorrosion paint 35 using the hollow particles 30 made of the coated silica shell and the aluminum-zinc alloy powder 32 according to the seventh embodiment are mixed with organic resin or the like.
  • the dispersibility is improved and a strong bond between the organic resin or the like and the hollow particles having the silica shell strength is obtained, and the cubic shaped hollow particles having the silica shell strength are insulated. It is easy to handle and reliably improves the anti-corrosion property, and it has excellent anti-corrosion property even if the coating thickness is reduced to 20 m or less without the risk of water permeating through independent pores. Get power S to get.
  • the case where the aluminum-zinc alloy powder 32 is used has been described. However, the same effect can be obtained even when aluminum particles or zinc powder is used. Further, instead of the hollow particles 30 made of the coated silica shell, the cubic hollow nano particles 10 made of the same silica shell as in the sixth embodiment may be used.
  • the anticorrosion paint according to Embodiment 8 is an acrylic resin paint blended with aluminum tris (ethylacetoacetate), which is an aluminum chelate as an aluminum coupling agent, and isocyanate acrylic paint, 50 nm to 100 nm. And a paint obtained by uniformly dispersing hollow particles having a cubic shape made of silica shells having an outer diameter in the range of 80 nm and an average particle diameter of 80 nm.
  • the blending amount of aluminum tris (ethylacetoacetate) is preferably 0.1 to 1 part by weight with respect to 1 part by weight of the solid content of the acrylic resin.
  • 0.2 part by weight was blended with respect to 1 part by weight of the solid content of the acrylic resin.
  • the solid content ratio of the cubic hollow particles made of silica shell in the isocyanate-acrylic paint was 10% by weight.
  • This anticorrosion paint is anodized on the magnesium-based metal AZ31 to form an oxide layer with a thickness of 5 Hm, and a film thickness of 10 Hm is formed on the oxide layer. Then, it was applied by air spray so as to be dried and cured to form an anticorrosion film. In order to evaluate the adhesion of the anticorrosive film, a cross-cut test was conducted according to JIS! /.
  • a salt spray test as defined in 7 was conducted, and after 250 hours, the appearance was visually examined and the cross-cut test described above was conducted. As a result, the appearance was good even after 250 hours of the salt spray test, and in the cross-cut test, the number of peeled-off grids was 0 out of 100, indicating excellent durability adhesion.
  • the anticorrosion film and the anticorrosion paint using the acrylic resin blended with the cubic hollow particles made of the silica shell and the aluminum tris (ethylacetoacetate) according to the eighth embodiment are as follows. 50 nm to!! Utilizing the insulating property of cubic shaped hollow particles composed of silica shells with an outer diameter in the range of OOnm and an average particle size of 80 nm, it is easy to handle and surely improves the anti-corrosion property In addition, excellent anticorrosion properties can be obtained even if the coating thickness is reduced to 20 ⁇ m or less, where there is no risk of water permeating through independent pores.
  • the force described in the case of using aluminum chelate as the aluminum-based coupling agent is the same, even if a titanium-based coupling agent or a zirconium-based coupling agent is used.
  • the power to get a good effect in place of the cubic hollow particles 10 made of silica shells, hollow particles 30 made of the same coated silica shell as in Embodiment 7 may be used.
  • the anticorrosion paint according to Embodiment 9 has colloidal silica, an organoalkoxysilane partially hydrolyzed condensate, a polymer of an unsaturated ethylene monomer, and an outer diameter in the range of 50 nm to 100 nm.
  • Cubic hollow particles composed of silica shells with an average particle size of 80 nm are uniformly dispersed in an alkylsilicate hydrolyzed paint as an organic polymer paint. Therefore, the solvent is water and becomes a water-based anticorrosive paint.
  • an anticorrosion film obtained by applying an anticorrosion paint with such a strength to a metal surface it is ensured that water permeates in the portion where the hollow particles in the cubic form consisting of silica shells are distributed. Prevents colloidal silica as an inhibitor and organoalkoxysilane partially hydrolyzed condensate from being distributed, even in the presence of water. It has extremely excellent anticorrosion performance by preventing the ingress of water by the action of the water.
  • the anticorrosion film and anticorrosion paint using the hollow particles of the cubic form made of the silica shell according to the ninth embodiment have an average particle diameter of 80 nm having an outer diameter in the range of 50 nm to 100 nm. It is easy to handle and reliably improves the anti-corrosion property by utilizing the insulating properties of the cubic shaped hollow particles made of silica shells. Even if the thickness is reduced, excellent corrosion resistance can be obtained.
  • the anticorrosion paint according to Embodiment 10 is obtained by uniformly mixing the first liquid, the second liquid, and the third liquid.
  • the first solution is zinc aluminum alloy flaky powder (thickness 0 ⁇ 3 11 m, average length of the longest part is about 1 ⁇ 5 m) 200 g / l, nonionic surfactant 2 g / l, balance Is a mixture of polyethylene glycol.
  • the second liquid is an aqueous solution prepared by dissolving 50 g / l of chromic anhydride and 2.2 g / l of sodium fluoride in deionized water and then adding 2.0% by weight of calcium hydroxide.
  • the third liquid is obtained by uniformly dispersing, in an alkylsilicate hydrolyzed paint, hollow particles having a cubic shape made of silica shells having an outer diameter in the range of 50 nm to 100 nm and an average particle diameter of 80 nm. It is.
  • the first liquid, the second liquid, and the third liquid were mixed at a ratio of 1: 1: 1 while gently stirring to obtain the anticorrosive paint according to the fifth embodiment.
  • This anti-corrosion paint is applied to the steel plate that has been shot blasted to a uniform film thickness with a bar coater, and then heated for 4 minutes after the steel plate temperature reaches 300 ° C in a heating furnace. Internal cooling.
  • the formed film thickness was 1 m.
  • the anticorrosion film and the anticorrosion coating using the hollow particles of the cubic form made of the silica shell according to the tenth embodiment have an average particle diameter of 80 nm having an outer diameter in the range of 50 nm to 100 nm. It is easy to handle and reliably improves the anti-corrosion property by utilizing the insulating properties of the cubic shaped hollow particles made of silica shells. Even if the thickness is reduced to 1 ⁇ m, it is possible to obtain excellent corrosion resistance.
  • the anticorrosion paint according to Embodiment 11 is obtained by uniformly mixing the first liquid, the second liquid, and the third liquid.
  • the first solution is prepared by dissolving chromic anhydride and potassium permanganate in deionized water in such an amount that the chromic anhydride concentration is 3.1% and the potassium permanganate concentration is 0.1%. It is an aqueous solution.
  • the second liquid consists of a solvent containing 0.2 part by weight of an alkylphenol polyethoxy addition compound type surfactant and 39.8 parts by weight of dipropylene glycol, and zinc flakes (thickness 0 ⁇ l ⁇ m—O 3 ⁇ 111, the average length of the longest part is about 1 ⁇ 5 111) and 60 parts by weight are uniformly dispersed.
  • the third liquid is obtained by uniformly dispersing hollow particles having a cubic shape made of silicate shells having an average particle diameter of 80 nm and having an outer diameter in the range of 50 nm to 100 nm in an alkylsilicate hydrolyzed paint. It will be. These 1st, 2nd and 3rd solutions are loosened at a ratio of 1: 1: 1.
  • the anticorrosion paint according to the eleventh embodiment was obtained by mixing with gentle stirring. This anticorrosion paint was applied to a mild steel plate that had been washed with an alkali and then sufficiently polished with a polishing cloth, using a bar coater to achieve a uniform film thickness. After that, the steel plate temperature reached 300 ° C in a heating furnace. Heated for minutes and cooled in the furnace at room temperature.
  • the anticorrosion film and anticorrosion paint using the cubic hollow particles made of the silica shell according to Embodiment 11 have an average particle diameter of 80 nm having an outer diameter in the range of 50 nm to 100 nm. It is easy to handle and reliably improves the anti-corrosion property by utilizing the insulating properties of the cubic shaped hollow particles made of silica shells. Even if the thickness is reduced, excellent corrosion resistance can be obtained.
  • the same effect can be obtained even if the force phenolic powder, zinc alloy powder, or aluminum alloy powder described in the case of using zinc flakes is used. Further, in place of the cubic shaped hollow particles made of silica shells, the same hollow particles made of coated silica shells as in Embodiment 7 may be used.
  • the anticorrosion paint according to the twelfth embodiment comprises hollow particles having a cubic shape composed of silica shells having an outer diameter within a range of cerium chloride (CeCl) and 50 nm to OO nm, and having an average particle diameter of 80 nm. It is obtained by uniformly dispersing in the decomposition paint.
  • the composition of the anticorrosive paint according to the seventh embodiment is as shown in Example 8 shown in Table 3.
  • the solid content ratio of the hollow particles having a cubic shape with silica shell strength is 10% by weight, and the most preferable amount of the hollow particles having a cubic shape with silica shells is blended. ing. Similarly, cerium chloride as an inhibitor is blended at a solid content blending ratio of 10% by weight, which is the most preferable amount.
  • the solvent water that easily dissolves inorganic compounds is used.
  • the anticorrosion film and anticorrosion coating material using the cubic hollow particles made of the silica shell according to Embodiment 12 have an average particle diameter of 80 nm and an outer diameter in the range of 50 nm to 100 nm. Utilizing the insulating properties of the cubic hollow particles made of silica shell, the thickness of the coating film is easy to handle and reliably improves the anti-corrosion property, and there is no danger of water permeating through independent pores. Even if the thickness is reduced, excellent corrosion resistance can be obtained.
  • the anticorrosive paint according to the thirteenth embodiment includes an acrylic resin, an amino resin, a paint composition containing a phosphoric acid group and an acrylic resin having a hydrogenated bisphenol skeleton structure, and a silica shell. It is formed by mixing an anticorrosive composition in which hollow particles having a cubic shape are dispersed.
  • the acrylic resin is a copolymer of a polymerizable unsaturated monomer, and has a hydroxyl value of 100 mgKOH / g or less, preferably 10 mgKOH / g to 50 mgKOH /
  • the weight average molecular weight in g is 3000 to 100000. It is suitable from the viewpoint of easy handling and water resistance of the resulting anticorrosion film.
  • the amino resin is not particularly limited, but is composed of a melamine simple substance having 1 to 5 triazine rings or a condensate thereof, and has a weight average molecular weight of 300 to 5000, preferably ⁇ (between 1000 and 3000). Appropriate methylolated products with melamine luster inside are suitable.
  • the acrylic resin having a hydrogenated bisphenol skeleton structure has a phosphate group, and the structure of the hydrogenated bisphenol skeleton is about 1 to 40, preferably 5 to Suitable are those having about 20 and having an acid value of 10 mgKOH / g to 300 mgKOH / g and a weight average molecular weight of 3000 to 100,000.
  • an anticorrosive composition a hollow particle having a cubic shape composed of silica shells having an outer diameter in the range of 50 nm to 100 nm and an average particle diameter of 80 nm is uniformly dispersed in an isocyanate acrylic paint. ing.
  • the coating composition and the anticorrosive composition are mixed at a ratio of 1: 1 and stirred uniformly to obtain the anticorrosive paint according to Embodiment 13.
  • This anticorrosion paint was applied on an anodoleum plate to a dry film thickness of 25 am and baked at 140 ° C for 30 minutes to prepare a sample with an anticorrosion film. The properties of this sample were tested for weather resistance, corrosion resistance, and adhesion.
  • the anti-corrosion film was cross-cut with a knife to reach the substrate, and this was subjected to a salt spray test for 250 hours in accordance with JIS-Z-2371.
  • the heel width was measured and evaluated, it showed excellent anticorrosive properties when the heel width force was less than S lmm.
  • 100 Imm X lmm grids were formed on the anticorrosion film in accordance with 3-1 ⁇ 5400- 8.5.2, and the cellophane tape was affixed to the surface and peeled off rapidly. When evaluated by the number of squares remaining on the anticorrosion film after that, all 100 remained and showed excellent adhesion.
  • the anticorrosion film and anticorrosion paint using the cubic hollow particles made of the silica shell according to the thirteenth embodiment have an average particle diameter of 80 nm having an outer diameter in the range of 50 nm to 100 nm. It is easy to handle and reliably improves the anti-corrosion property by utilizing the insulating properties of the cubic shaped hollow particles made of silica shells. Excellent weather resistance, anticorrosion, and adhesion even when the thickness is reduced.
  • the anticorrosion paint according to Embodiment 14 comprises coated hollow silica particles produced as shown in FIG. 9 having an average particle diameter of 80 nm and polyaniline having an outer diameter in the range of 50 nm to OOnm. Isocyanate--is uniformly dispersed in an acrylic paint.
  • the composition of the anticorrosion paint according to Embodiment 9 is as shown in Example 9 shown in Table 4.
  • the solid content blending ratio of the coated hollow silica particles is 10% by weight, and the most preferable amount of the coated hollow silica particles is blended.
  • the polyaniline as a catalyst the most preferable amount of solid content is 10% by weight.
  • the solvent xylene (a mixture of ortho, meta, and para isomers), which is easy to dissolve organic resins, is used.
  • the anticorrosion film and anticorrosion paint using the coated hollow silica particles according to Embodiment 14 are coated hollow silica having an outer diameter in the range of 50 nm to 100 nm and an average particle diameter of 80 nm. Utilizing the insulating properties of the particles, it is easy to handle and reliably improves the anti-corrosion properties, and it has excellent anti-corrosion properties even if the coating thickness is reduced so that there is no risk of water permeating through independent pores. Obtainable.
  • the anticorrosion paint according to the fifteenth embodiment is obtained by isolating a hollow particle having a cubic shape composed of metal selenium and zinc selenide and a silica shell having an outer diameter in the range of 50 nm to 80 nm and an average particle diameter of 80 nm. It is obtained by uniformly dispersing in an acrylic paint.
  • the composition of the anticorrosion paint according to the tenth embodiment is as shown in Example 10 shown in Table 5.
  • Example 1 o weight part weight%
  • Acrylic resin 10. 0 50. 0 Xylene 80. 0 0. 0
  • Mouth BT 100. 0 100. 0
  • the solid content blending ratio of the hollow particles in the cubic form composed of silica shells is 10 wt%, and the most preferable amount of the hollow particles in the cubic form composed of silica shells is blended. ing.
  • the metal selenium and zinc selenide as the inhibitor a solid content blending ratio of 10% by weight, which is the most preferable amount in total, is blended.
  • the solvent xylene (a mixture of ortho, meta, and para isomers), in which the organic resin easily dissolves, is used.
  • the anticorrosion film and anticorrosion paint using the cubic hollow particles made of the silica shell according to the fifteenth embodiment have an average particle diameter of 80 nm having an outer diameter in the range of 50 nm to 100 nm. It is easy to handle and reliably improves the anti-corrosion property by utilizing the insulating properties of the cubic shaped hollow particles made of silica shells. Even if the thickness is reduced, excellent corrosion resistance can be obtained. [0351] Embodiment 16
  • the anticorrosion paint according to Embodiment 16 is produced as shown in FIG. 9 having an average particle size of 80 nm having scale-like zinc powder particles coated with a silane compound and an outer diameter in the range of 50 nm to 1 OO nm.
  • the coated hollow silica particles are uniformly dispersed in an isocyanate acrylic paint.
  • the composition of the anticorrosion paint according to Embodiment 16 is as in Example 11 shown in Table 6.
  • the solid content blending ratio of the coated hollow silica particles is 10 wt%, and the most preferable amount of the coated hollow silica particles is blended.
  • scale-like zinc powder particles coated with a silane compound as an inhibitor are blended with a solid content blending ratio of 10% by weight, which is the most preferable amount.
  • xylene a mixture of ortho, meta, and para isomers, which is easy to dissolve organic resins, is used.
  • the anticorrosion film and the anticorrosion paint using the coated hollow silica particles according to the sixteenth embodiment are coated hollow silica having an outer diameter in the range of 50 nm to 100 nm and an average particle diameter of 80 nm.
  • the insulating properties of the particles Utilizing the insulating properties of the particles, it is easy to handle and reliably improves the anti-corrosion properties, and it has excellent anti-corrosion properties even if the coating thickness is reduced so that there is no risk of water permeating through independent pores. Obtainable.
  • the anticorrosive paint according to the seventeenth embodiment is obtained by using, as an isocyanate acrylic paint, hollow particles having a cubic shape composed of a pyridinium compound and a silica shell having an average diameter of 80 nm having an outer diameter in the range of 50 nm to OO nm. It is made to disperse uniformly.
  • the composition of the anticorrosion paint according to Embodiment 17 is as in Example 12 shown in Table 7.
  • the solid content ratio of the cubic shaped hollow particles having silica shell strength is 10% by weight, and the most preferred amount of cubic shaped hollow particles comprising silica shells is blended.
  • a pyridinium compound as an inhibitor a solid content blending ratio of 10% by weight, which is the most preferable amount in total, is blended.
  • the solvent xylene (a mixture of ortho, meta, and para isomers), in which the organic resin easily dissolves, is used.
  • the anticorrosion film and anticorrosion paint using the hollow particles in the cubic form made of the silica shell according to the seventeenth embodiment have an average particle diameter of 80 nm having an outer diameter in the range of 50 nm to 100 nm. It is easy to handle and reliably improves the anti-corrosion property by utilizing the insulating properties of the cubic shaped hollow particles made of silica shells. Even if the thickness is reduced, excellent corrosion resistance can be obtained.
  • the anticorrosive paint according to Embodiment 18 is a coated hollow silica particle produced as shown in FIG. 9 having an average particle diameter of 80 nm having an outer diameter in the range of 50 nm to 1 OO nm, with epihalohydrin-modified polyamide and benzotriazole. Is uniformly dispersed in an isocyanate acrylic paint.
  • the composition of the anticorrosion paint according to Embodiment 18 is as in Example 13 shown in Table 8.
  • Acrylic resin 10. 0 50. 0 Xylene 80. 0 0. 0 Mouth 100. 0 100. 0
  • the solid content ratio of the coated hollow silica particles is 10% by weight, and the most preferable amount of the coated hollow silica particles is blended.
  • the epihalohydrin-modified polyamide and benzotriazole as the inhibitors are blended in a solid content blending ratio of 10% by weight which is the most preferable amount in total.
  • xylene a mixture of ortho, meta, and para isomers, in which the organic resin easily dissolves, is used.
  • an anticorrosion film obtained by applying an anticorrosive paint with a strength and chemical composition to the metal surface it is certain that the coated hollow silica particles are distributed, and that the water is squeezed into the area. It is extremely excellent by preventing the invasion of water by the action of the inhibitor even if water is swallowed in the V, part where the epihalohydrin-modified polyamide and benzotriazole as the inhibitors are distributed. Has anti-corrosion performance.
  • the anticorrosion film and anticorrosion coating material using the coated hollow silica particles according to Embodiment 18 are coated hollow silica having an outer diameter in the range of 50 nm to 100 nm and an average particle diameter of 80 nm. Utilizing the insulating properties of the particles, it is easy to handle and reliably improves the anti-corrosion properties, and it has excellent anti-corrosion properties even if the coating thickness is reduced so that there is no risk of water permeating through independent pores. Obtainable.
  • the anticorrosion paint according to the nineteenth embodiment is a cube composed of an aluminum-based metal surface treatment composition (hereinafter, also referred to as “surface treatment composition”) containing phosphoric acid zirconium salt and the like, and a silica shell. And an anticorrosive composition in which hollow particles having a shape are dispersed.
  • surface treatment composition aluminum-based metal surface treatment composition
  • the composition for surface treatment comprises phosphoric acid (H 3 PO 4) at a PO concentration of 40 ppm, zirconium salt (H
  • ZrF is 40 ppm in terms of Zr concentration, phosphorous acid is 150 ppm, and HF is lOppm as effective fluoride.
  • the anticorrosive composition is obtained by uniformly dispersing hollow particles having a cubic shape composed of silica shells having an average particle diameter of 80 nm having an outer diameter in a range of 50 nm to OO nm in an alkylsilicate hydrolyzed paint. .
  • the surface-treating composition and the anticorrosive composition are mixed at a ratio of 1: 1 and stirred uniformly to provide the anticorrosive paint according to the nineteenth embodiment.
  • the anticorrosion paint according to Embodiment 20 comprises an anticorrosion paint composition containing acrylic resin / epoxy resin / powdered silica 'crosslinkable polymer particles and a cubic shaped hollow particle made of silica shell in an organic resin paint.
  • the anticorrosive composition dispersed in the mixture is mixed.
  • the anticorrosion coating composition is a mixture of the primer (A) and the primer (B).
  • primer (A) a mixed solvent of hydrocarbon solvent / ester solvent mixture ratio (parts by weight) 1/1 was prepared, and the mixture ratio of mixed solvent / acrylic resin varnish (parts by weight) was 4/10. Then, powder silica and acrylic resin varnish were added so that the powder silica was dispersed by a batch type disperser using glass beads. Thereafter, the dispersion was taken out into a separate container, an epoxy resin varnish was added with stirring, and then a crosslinkable polymer particle solution was added in the same manner to prepare a primer (A).
  • Primer (B) has the same mixing ratio of mixed solvent / acrylic resin varnish as primer (A)
  • Powder silica and acrylic resin varnish were added so that (part by weight) was 6/10, and powder silica was dispersed by a batch type disperser using glass beads. Then take the dispersion in a separate container.
  • the block polyisocyanate compound varnish was added with stirring and stirring, and then a crosslinkable polymer particle solution was added in the same manner to prepare a primer (B).
  • the primer (A) and the primer (B) having extremely excellent anticorrosion properties were mixed at a ratio of 1: 1 to obtain the anticorrosion coating composition according to Embodiment 20.
  • this anticorrosion coating composition hollow particles in the form of a cuboid composed of silica shells having an outer diameter in the range of 50 nm to 100 nm and an average particle diameter of 80 nm are uniformly dispersed in an isocyanate acrylic paint.
  • the anticorrosion paint according to Embodiment 20 was obtained by mixing the above.
  • hollow particles having a cubic shape composed of the silica shell according to Embodiment 20 are the insulating properties of the hollow particles having a cubic shape made of silica shells having an outer diameter in the range of 50 nm to 100 nm and an average particle diameter of 80 nm, and primers (A) and (B) It is easy to handle and reliably improves the anti-corrosion property by using its extremely excellent anti-corrosion property, and excellent anti-corrosion even if the coating thickness is reduced so that there is no risk of water permeating through independent pores. You can have the power to gain ten years.
  • the anticorrosion paint according to Embodiment 21 includes an inorganic film-forming coating agent obtained by reacting a fluoride salt such as a fluoride fluoride salt with a titanium monomer all substituted with hydrolyzable groups, and silica shell. It is formed by mixing with an anticorrosive composition in which hollow particles having a strong cubic shape are dispersed.
  • the coating agent for forming an inorganic film comprises a mixture of 2.0 parts by weight of tetraisopropoxytitanium and 48 parts by weight of ethanol, in a mixture of 2.5 parts by weight of titanium fluoride fluoride and 47.5 parts by weight of deionized water. It was prepared by adding dropwise with stirring at 20 ° C over 1 hour. To this is mixed an anticorrosive composition in which hollow particles in the form of a cuboid composed of silica shells having an outer diameter in the range of 50 nm to 100 nm and an average particle diameter of 80 nm are uniformly dispersed in an isocyanate acrylic paint. As a result, the anticorrosion paint according to Embodiment 15 was obtained.
  • This anti-corrosion paint was degreased and washed with a 2% aqueous solution of an alkaline degreasing agent on an aluminum plate with a thickness of 0.1 mm so that the dry film weight would be 0.2 g / m2. Then, it was baked for 20 seconds so that the temperature reached the aluminum plate was 100 ° C, and an anticorrosion film was formed.
  • the specimen on which the anticorrosion film was formed was subjected to a salt spray test according to JIS-Z-2371 to evaluate the corrosion resistance. As a result, it was confirmed that there was no occurrence of white glaze or sag on the coated surface at any of the test times of 120 hours, 240 hours, and 360 hours, and it had extremely excellent anticorrosive properties! .
  • the anticorrosion film and anticorrosion paint using the cubic hollow particles composed of the silica shell according to Embodiment 21 have an average particle diameter of 80 nm having an outer diameter in the range of 50 nm to 100 nm.
  • cubic hollow particles made of silica shell and reaction of fluoride salt such as fluorinated silicon salt with titanium monomer all substituted with hydrolyzable groups
  • the force described in the case of using ammonium fluoride ammonium fluoride as the titanium fluoride salt as the fluoride salt, even if the fluorine fluoride salt or the zirconium fluoride fluoride salt is used Ability to obtain similar effects.
  • the anticorrosion paint according to the present embodiment 22 includes urethane-modified epoxy resin, melamine resin, block isocyanate resin, an antibacterial primer containing an antifouling pigment that does not contain lead and chromium, and hollow particles having a cubic shape with silica shell strength. And an anticorrosive composition in which is dispersed.
  • the component of the mildew-proofing primer is modified with a polyfunctional carboxylic acid or a polyfunctional amine in an amount that has an excessive amount of active hydrogen relative to the daricidyl group of the epoxy resin as a urethane-modified epoxy resin. After that, it is preferable to use a chain extended by further reacting the remaining active hydrogen and diisocyanate. By using such a urethane-modified epoxy resin, the corrosion resistance of the formed anticorrosion primer can be further improved.
  • the melamine resin can function as a curing agent for the urethane-modified epoxy resin and is not particularly limited.
  • a melamine formaldehyde resin obtained by reacting melamine with formaldehyde and then modifying with alcohol, And a resin composition containing the same.
  • the block isocyanate resin is obtained by adding a blocking agent to a polyisocyanate. Nate groups are generated. The generated isocyanate group reacts with the functional group in the urethane-modified epoxy resin to cure the urethane-modified epoxy resin.
  • an antifungal pigment that does not contain lead and chromium generally exhibits excellent anticorrosive properties because if the water-soluble content is large, ions are easily dissolved in water.
  • the amount of water-soluble component is too large, the anti-fouling primer coating film is liable to be excessively eroded or swollen by water, so it is preferably 2.0% or less, more preferably 1.0. It is blended in an amount of less than%.
  • Anti-fouling pigments that do not contain lead and chromium include zinc molybdate (water-soluble content: 1.2%), aluminum tripolyphosphate (water-soluble content: 1.5%), and aluminum phosphomolybdate (water-soluble content). Fine powder such as zinc phosphate (water soluble content 0.1%) and the like.
  • the hollow particles having a cubic shape made of silica shells having an outer diameter in the range of 50 nm to 100 nm and an average particle diameter of 80 nm are uniformly applied to the isocyanate acrylic paint.
  • the anticorrosion paint according to Embodiment 22 was obtained by mixing the anticorrosive composition thus dispersed.
  • This anticorrosion paint was degreased using an alkaline degreasing agent! /, Next! /, And then formed on an aluminum die-cast alloy plate subjected to chemical conversion treatment using a chemical conversion treatment agent. Spray painted to m. After standing for 10 minutes, the film was heat-treated at 120 ° C for 20 minutes to form an anticorrosion film.
  • a seawater exposure test was conducted. An aluminum die-cast alloy plate with an anti-corrosion film was immersed in a bull filled with seawater drawn from the coast at all times. As test conditions, immersion was performed for 12 hours and drying for 12 hours as one cycle, and after 30 days of immersion, the degree of corrosion on the coating film surface was visually determined. As a result, only a slight start of rusting was observed, and it was found that the corrosion resistance was extremely excellent.
  • the anticorrosion film and anticorrosion paint using the cubic hollow particles made of the silica shell according to Embodiment 22 have an average particle diameter of 80 nm and an outer diameter in the range of 50 nm to 100 nm. It is easy to handle and reliably improves the anti-corrosion property by utilizing the insulating properties of the cubic hollow particles made of silica shell and the extremely excellent anti-corrosion property of the anti-corrosion primer. Even if the coating thickness is reduced, there is no risk of water permeating through the pores.
  • the anticorrosion paint according to Embodiment 23 includes an aqueous anticorrosion composition containing an anticorrosion composition comprising hydrogen fluoride and / or ammonium fluoride, a cyclic amine, an alkyleneamine and / or an alkanolamine, It is formed by mixing with a corrosion-resistant composition in which hollow particles having a cubic shape with silica shell strength are dispersed.
  • Aqueous anticorrosive composition comprises ammonium fluoride as a fluoride in which a part or all of the cyclic amine is changed to a hydrofluoric acid salt of the cyclic amine when mixed with the cyclic amine, piperazine as the cyclic amine and N, An aqueous solution containing N-dimethylbiperazine and ethylenediamine as alkyleneamine.
  • the water content is in the range of ⁇ 40% by weight and water is in the range of 50.1% by weight to 99.9% by weight.
  • an aqueous anticorrosive composition hollow particles in the form of cubes composed of silica shells with an average particle diameter of 80 nm having an outer diameter in the range of 50 nm to OO nm are used as an alkylsilicate hydrolyzate paint.
  • the anticorrosive paint according to Embodiment 23 was obtained by mixing the anticorrosive composition that was uniformly dispersed. Since the solvent of the anticorrosion composition is also water, the anticorrosion paint according to Embodiment 23 is an aqueous anticorrosion paint that does not use an organic solvent.
  • the anticorrosion film and the anticorrosion coating using the hollow particles having a cubic shape composed of the silica shell according to the twenty-third embodiment have an average particle diameter of 80 nm having an outer diameter in the range of 50 nm to 100 nm. Utilizing the insulating properties of cubic hollow particles made of silica shells and the extremely excellent anticorrosive properties of a mixture of ammonium fluoride, cyclic amine, and alkyleneamine, it is easy and reliable to handle. The anticorrosion can be improved, and excellent anticorrosion can be obtained even if the thickness of the coating is reduced so that there is no risk of water permeating through the independent pores.
  • the anticorrosion paint according to Embodiment 24 is for a copper material prepared by blending an anticorrosive composition comprising a benzotriazole-based compound, an aliphatic amine and / or a fourth ammonium compound, and an alkoxysilane with a nonaqueous solvent as a solvent.
  • the anticorrosive composition for copper materials comprises a mixture of benzotriazole and 4-methyl-benzotriazole as a benzotriazole compound, octylamine as an aliphatic amine, and an imidazolinium compound as a quaternary ammonium compound.
  • butyltrimethoxysilane as alkoxysilane was dissolved in methanol as a non-aqueous solvent.
  • the blending ratio of the mixture of benzotriazole and 4-methyl-benzotriazole is in the range of 0.1 wt% to 10 wt%, preferably in the range of 0.5 wt% to 3 wt%. It is.
  • the blending ratio of the mixture of octylamine and imidazolinium compound is in the range of 0.1% to 5% by weight, preferably in the range of 0.2% to 1% by weight.
  • the compounding ratio of vinyltrimethoxysilane is in the range of 0.1% by weight to 5% by weight, preferably in the range of 0.1% by weight to!% By weight.
  • the anticorrosive composition for copper material according to Embodiment 24 contains benzotriazole and 4-methyl-benzotriazole that chemically react with copper to form a chelate compound,
  • a chelate compound is formed, and the surface of the copper material is covered in layers to form an anticorrosive film to protect the copper material surface. And exhibits anti-corrosion effect.
  • the anticorrosive composition for copper material according to the present embodiment 24 includes butytrimethoxysilane, butytrimethoxysilane is crosslinked as a mediator between the copper material surface and the chelate compound layer, and the copper material. Effectively improves the adhesion between the surface and the coating.
  • an anticorrosive composition for copper materials hollow particles in the form of cubes composed of silica shells having an outer diameter in the range of 50 nm to OO nm and having an average particle diameter of 80 nm are used as isocyanate-atalinole paints.
  • the anticorrosive paint according to the nineteenth embodiment is obtained. Therefore, in an anticorrosion film obtained by applying a corrosion-resistant coating having a strength and a formulation to the surface of a copper material, hollow particles having a cubic shape made of silica shells are separated. It prevents the water from squeezing in the area where the cloth is applied, and in the part where the chelate compound layer is distributed, it exhibits anti-corrosion properties even if water is squeezed. Have.
  • the anticorrosion film and anticorrosion paint using the cubic hollow particles made of the silica shell according to Embodiment 24 have an average particle diameter of 80 nm and an outer diameter in the range of 50 nm to 100 nm. It is easy to handle and reliably improves the anti-corrosion property by utilizing the insulating property of the hollow particles in the cubic form made of silica shell and the anti-corrosion property of the chelate compound layer, and water can be absorbed by independent pores. The ability to obtain excellent anti-corrosion properties even when the coating thickness is reduced.
  • FIG. 13 is a flowchart showing a coating paint manufacturing process according to Example 14 of Embodiment 25 of the present invention.
  • FIG. 14 is a flowchart showing a coating paint manufacturing process according to Example 15 of Embodiment 25 of the present invention.
  • FIG. 15 is a flowchart showing a coating paint manufacturing process according to Example 16 of Embodiment 25 of the present invention.
  • FIG. 16 is an explanatory view showing a surface modification treatment method in the coating paint manufacturing process according to Example 16 of Embodiment 25 of the present invention.
  • FIG. 17 is an explanatory view showing another example of the surface modification treatment method in the coating paint manufacturing process according to Example 16 of Embodiment 25 of the present invention.
  • FIG. 18 (a) is a perspective view showing a wood on which a coating film according to Embodiment 25 of the present invention is formed
  • FIG. 18 (b) is a sectional view thereof.
  • step S 10 the cubic shape of the silicon is produced by the manufacturing process described in FIG. Hollow particles 10 consisting of force shells are produced.
  • hollow silica particles 10 having an average outer diameter of 80 nm and an outer diameter in the range of OOnm and having a cubic shell shape with a porosity of about 70% to 80% are used. To do.
  • a polycarbonate resin emulsion is dissolved in water to prepare a uniform polycarbonate resin emulsion aqueous solution (step S31), and hollow particles 10 composed of silica shells are mixed with this polycarbonate resin emulsion aqueous solution (step S32). ). Then, using a high-speed stirrer, the mixture is processed at a peripheral speed of 25 m / Sec and a liquid flow rate of 180 m / min by a circulation method (step S33), and the processed dispersion is opened in a stainless steel network with an opening of 60 m. After filtering with (Step S34), the dispersion treatment is further carried out for 30 minutes with a wet jet mill (Step S35).
  • a cubic shape having an average outer diameter of 80 nm and a void ratio of approximately 70% to 80% having an outer diameter in the range of approximately 50 nm to OOnm.
  • the hollow particles 10 made of silica shell are uniformly dispersed.
  • a polycarbonate resin emulsion and a silicone surfactant are further added to the dispersion thus obtained (step S36), and the mixture is stirred with a mixer (step S37).
  • the coating paint 23a according to Example 14 of Embodiment 25 is manufactured.
  • the coating paint 23a according to Example 14 is an aqueous coating paint in which the hollow particles 10 made of silica shell are dispersed substantially uniformly in the polycarbonate resin emulsion organic resin paint.
  • the polycarbonate resin emulsion NeoRezR9603 (polycarbonate resin emulsion, solid content 34%) manufactured by DSM (Netherlands) is used, and KF643 manufactured by Shin-Etsu Chemical Co., Ltd. is used as the silicone surfactant. It was.
  • Table 9 shows the composition of coating paint 23a according to Example 14 of Embodiment 25 thus manufactured.
  • the coating paint 23a according to Example 14 contains 8000% of the hollow particles 10 made of silica shell in solid content. That is, the coating paint 23a according to Example 14 is the solid content of the hollow particles made of silica shells according to claim 61 of the present invention relative to the organic resin coating, the inorganic polymer coating, or the organic-inorganic composite coating. It is mixed at a ratio of about 2% to 15% by weight! /, And meets the requirements, and more preferably at a ratio of about 4% to about 10% by weight. It also meets the requirement that
  • the hollow resin particles 10 having an outer diameter in the range of about 50 nm to 100 nm and having an average outer diameter of 80 nm and a cubic shape silica shell having a porosity of about 70% to 80% are used as the organic resin coating.
  • the heat insulation, wear resistance, and scratch resistance of the coating film formed by applying the coating paint are more reliably improved.
  • the viscosity is within an appropriate range, it is easy to apply and the coating is easy, so the coating paint 23a is more preferable.
  • the coating paint 23a according to Example 14 of the present embodiment 25 was manufactured with the formulation shown in Table 9, but is not limited to this, in order to obtain a practical coating paint.
  • the amount of hollow particles made of silica shell is 0.6 to 4.6 parts by weight
  • the amount of polycarbonate resin emulsion in the dispersion is 15.3 to 30.6 parts by weight
  • the amount of water 15.3 parts by weight to 30.6 parts by weight 38 parts by weight to 61 parts by weight of additional polycarbonate resin emulsion and 2.3 parts by weight to 6.1 parts by weight of silicone surfactant It may be within the range of parts by weight.
  • the mixing ratio of hollow particles made of silica shell is 0.4 wt% to 3.0 wt%
  • the mixing ratio of polycarbonate resin emulsion in the dispersion is 10 wt% to 20 wt%, 40% to 60% by weight, 25% to 40% by weight of additional polycarbonate resin emulsion, 1.5% to 4.0% by weight of silicone surfactant It is preferable to be within the range.
  • the solid content of the hollow particles composed of the silica shell is 0.4 to 3.0 parts by weight, and the solid content of the polycarbonate resin emulsion in the dispersion is 3.4 to 4 parts by weight. 6. 8 parts by weight, the amount of the solid content of the polycarbonate resin emulsion added from 8.4 parts by weight to 13.5 parts by weight, the amount of the solid content of the silicone surfactant from 1.5 parts by weight to 4 parts It is preferable to be within the range of 0 part by weight. However, the mixing ratio of the solid content of the hollow particles made of silica shell needs to be in the range of 2 wt% to 15 wt%.
  • step S10 hollow particles 10 made of a silica shell having a cubic shape are manufactured by the manufacturing process described in FIG.
  • hollow particles 10 made of silica shells having a cubic shape with an average outer diameter of 80 nm and an outer diameter within the range of OOnm and a porosity of about 70% to 80% are used. .
  • the hollow particles 10 composed of the silica shell are mixed with isopropyl alcohol (IPA).
  • IPA isopropyl alcohol
  • Step S41 using a high-speed stirrer, the mixture is processed at a peripheral speed of 25 m / Sec and a liquid flow rate of 180 m / min by a circulation method (Step S42). After filtration through a stainless steel mesh (step S43), the dispersion is further treated with a wet jet mill for 30 minutes (step S44).
  • step S45 a 5% solution of TSL8123N, isopropyl alcohol (IPA), dimethyljetoxysilane (D MDES), and ethyl acetate acetate isopropylate (ALCH) was mixed (step S45).
  • IPA isopropyl alcohol
  • D MDES dimethyljetoxysilane
  • ACH ethyl acetate acetate isopropylate
  • This sol-gel method composition was added to the dispersion obtained in step S44 above, and a 20% solution of ethyl acetate acetate aluminum isopropylate (ALCH) and methyl isobutyl ketone (MIBK) were added. Are mixed (step S49) and stirred with a mixer (step S50).
  • the coating material 23b according to Example 15 of Embodiment 25 is manufactured.
  • the coating paint 23b according to Example 15 is an alcohol coating paint in which hollow particles 10 made of silica shells are dispersed substantially uniformly in an ALCH organic resin paint.
  • Table 10 shows the composition of coating paint 23b according to Example 15 of Embodiment 25 manufactured in this manner.
  • TSL is an abbreviation for silicone resin manufactured by GE Toshiba Silicone Co., Ltd., part number TSL8123, and “ALCH” is ethylacetoacetate alcohol manufactured by Kawaken Fine Chemicals Co., Ltd. It is a product name of dimudiisopropylate.
  • the coating paint 23b according to Example 2 contains approximately 2% of the solid particles 10 made of silica shells in solid content. That is, the coating paint 23b according to Example 15 is the “hollow particles made of silica shells are organic resin paint, inorganic polymer paint, or organic-inorganic composite according to claim 61 of the present invention.
  • the composition satisfies the requirement that it is mixed in a proportion of approximately 2 wt% to 15 wt% in solid content.
  • the hollow particles 10 composed of silica shells are hollow, so the coating material 23b is coated with a sufficiently large volume% in the coating paint 23b even if it is mixed at a solid content of about 2% by weight with a small specific gravity.
  • the protective effect can be improved by increasing the heat insulation, wear resistance and scratch resistance of the coating film.
  • the mixing amount exceeds 15% by weight in solid content, the viscosity of the coating paint becomes so high that application becomes difficult and handling becomes difficult. Accordingly, the mixing amount of the hollow particles 10 composed of silica shells in the coating paint is most suitable at a ratio of about 2 wt% to 15 wt% in solid content with respect to the organic resin paint or the like.
  • the coating paint 23b according to Example 15 of Embodiment 25 was manufactured with the formulation shown in Table 10. However, in order to obtain a practical coating paint that is not limited to this, The amount of hollow particles made of silica shell is from 0.6 to 4.6 parts by weight, the amount of isopropyl alcohol (IPA) in the dispersion is from 16.1 to 26.8 parts by weight, and the composition of TSL The amount is from 21.2 to 25.7 parts by weight, the sol-gel method, the amount of isopropyl alcohol (IPA) in the composition is 5.4 parts by weight to 9.7 parts by weight, the amount of KBE is 1.
  • the blending amount of% ALCH may be in the range of 12.1 parts by weight to 20.9 parts by weight, and the blending amount of methyl isobutyl ketone (MIBK) in the range of 10.7 parts by weight to 21.5 parts by weight.
  • MIBK methyl isobutyl ketone
  • the blending ratio of the hollow particles made of silica shell is 0.57 wt% to 4.3 wt%, and the blending ratio of IPA in the dispersion is 15.0 wt% to 25.0 wt%.
  • IPA in the sol-gel method composition is 5.0% to 9.0%
  • KBE is 1.1% 1 to 4 wt%
  • the mixing ratio of 20% ALCH is in the range of 11.3% by weight to 19.5% by weight
  • the MIBK content is in the range of 10.0% to 20.0% by weight.
  • the solid content of the hollow particles composed of silica shell is 0.556 to 4.22 parts by weight
  • the solid content of TSL is 19.7 to 23.9 parts by weight
  • KBE solid content 1.07 parts by weight to 1.41 parts by weight
  • 0.1% hydrochloric acid solids content of 0.02 It is preferable that the solid content of 20 wt.
  • a LCH is within the range of 2.25 to 3.90 parts by weight.
  • the mixing ratio of the solid content of the hollow particles made of silica shell should be in the range of 2 wt% to 15 wt%.
  • step S10 the hollow particles 10 made of a cruciform shell are manufactured by the manufacturing process described in FIG.
  • hollow particles 10 having an outer diameter in the range of approximately 50 nm to 80 nm and having an average outer diameter of 80 nm and a cubic shell silica with a porosity of approximately 70% to 80% are also used.
  • the hollow particles 10 made of silica shell are subjected to a surface modification treatment with a surface modifier (step S52).
  • hollow particle force composed of a surface-modified silica shell is mixed with an aqueous polyester resin aqueous solution prepared by dissolving an aqueous polyester resin in distilled water (step S53), and the aqueous polyester is used by using a disperser.
  • the hollow particles made of the silica shell whose surface is modified are uniformly dispersed in the resin aqueous solution (step S54).
  • the coating material 23c according to Example 16 of Embodiment 25 is manufactured.
  • the coating paint 23c according to Example 16 is a coating paint in which hollow particles composed of a surface-modified silica shell are dispersed substantially uniformly in an aqueous polyester organic resin paint.
  • This hollow silica particle 10 is mixed with an isocyanate-based surface modifier triethoxypropylisocyanate silane (TEIS) 29a as a surface modifier in an n-hexane solvent to obtain an oclave.
  • the mixture is heated under pressure until it reaches the supercritical state of n-hexane and allowed to react for about 2 hours.
  • TEIS29a enters and reacts between the aggregates of hollow particles 10 consisting of very fine silica shells at the nanometer level, as shown in FIG.
  • the surface-modified silica hollow particles 24A covered with the entire surface force STEIS29a of the hollow particles 10 made of silica shell are generated.
  • the surface-modified silica hollow particles 24 A are covered with TEIS29a having isocyanate groups, so that they do not re-aggregate easily, and the functional groups of the polyester-based organic resin in the water-based polyester-based organic resin coating Since the isocyanate group reacts to form a strong bond, a uniform dispersion state is maintained for a long time.
  • Triethoxybutylsilane which is an alkyl surface modifier as a surface modifier (TEBS) 29b is mixed and heated in an oclave until it reaches the supercritical state of n-hexane and reacted for about 2 hours, so that the entire surface of the hollow particles 10 made of silica shell 10 is TEBS29b. Covered surface-modified silica hollow particles 24B are produced.
  • the surface-modified silica hollow particle 24B is covered with TEBS29b having an alkyl group (methyl group), so that it does not easily re-aggregate, and the polyester in water-based polyester organic resin coatings Since the functional group of the organic organic resin and the alkyl group react to form a strong bond, a uniform dispersion state is maintained for a long time.
  • TEBS29b having an alkyl group (methyl group)
  • the coating paint 23a according to Example 14 shown in FIG. 13 is used as a wood as shown in FIG.
  • the coating film 43A was formed by spray coating on the surface of the cypress board 42 for building. Since the thickness of the coating film 43 is 5 111 to 10 111, it is formed along the unevenness of the surface of the cypress board 42 for construction, and the coating film contains hollow particles 10 made of silica and shells. Since 43A does not have gloss, as shown in FIG. 18 (a), the cypress plate 41 having the coating film 43A formed on its surface does not change its appearance and feel.
  • the coating film 43A is formed by uniformly dispersing the hollow particles 10 made of silica shell in the organic resin binder 45.
  • the wear resistance of the hollow particles 10 and the high hardness can improve the wear resistance of the cypress plate 42 as wood.
  • coating film 43A is formed on the surface of cypress plate 42. By making it, the flame retardancy can be improved by the heat insulating property of the hollow particles 10 made of silica shells. Further, since the appearance (texture) and the tactile sensation as described above do not change, the quality of the cypress board 42 is not impaired.
  • the coating paint 23c according to the sixteenth example shown in FIG. 15 is applied to the surface of the cypress board 42 for construction as a wood as shown in FIG.
  • the coating film 43A was formed by spraying.
  • the organic resin binder 45 shown in the cross-sectional view of FIG. 18 (b) is changed from a polycarbonate resin emulsion organic resin binder to an aqueous polyester organic resin binder. Since the surface-modified silica hollow particles 24A or 24B are dispersed instead of the hollow particles 10 to be obtained, a more uniform dispersion state can be obtained.
  • the wear resistance and high hardness of the hollow particles 10 made of silica shells can improve the wear resistance of the cypress plate 42 as wood, and can prevent scratches. Further, by forming the coating film 43A on the surface of the cypress plate 42, the flame retardancy can be improved by the heat insulation of the hollow particles 10 made of silica shells. Further, since the appearance (texture) and the tactile sensation as described above do not change, the quality of the cypress board 42 is not impaired.
  • coating film 43A and coating paint 23 A, 23b, 23c i according to the present embodiment 25! /, TE (average having an outer diameter in the range of approximately 50 nm to OO nm)
  • TE average having an outer diameter in the range of approximately 50 nm to OO nm
  • FIG. 19 (a) is a perspective view showing a plastic having a coating film according to Embodiment 26 of the present invention formed on its surface
  • FIG. 19 (b) is a sectional view thereof.
  • the coating material according to Embodiment 26 will be described with reference to FIGS. 15 and 17.
  • the coating paint according to the twenty-sixth embodiment is the same as that shown in FIG.
  • a silica-based inorganic polymer solution is mixed instead of the aqueous polyester resin aqueous solution in Step S53.
  • TEBS triethoxybutylsilane
  • the coating paint thus produced was spray-applied to the surface of a transparent polycarbonate plate 48 as a plastic to form a coating film 43B. Since the thickness of the coating film 438 is as thin as 10 to 111 to 20 to 111, the transparency of the transparent polycarbonate plate 48 is not impaired in combination with the transparency of the hollow particles 10 made of silica shells. In addition, the transparent polycarbonate plate 48 is easily scratched and easily worn, but by forming the coating film 43B on the surface of the transparent polycarbonate plate 48, the coating film 43B has a high hardness, so the surface is hardly damaged. In addition, flame retardancy can also be improved.
  • the average outer diameter of the outer diameter in the range of about 50 nm to 100 nm and the porosity of about 70% to 80 nm.
  • FIG. 20 (a) is a perspective view showing an automotive leather sheet having a coating film according to Embodiment 27 of the present invention formed on its surface
  • FIG. 20 (b) is a sectional view thereof.
  • the automotive leather seat according to the present embodiment 27 has a force that is obtained by covering the surface of the cushion material 52 with leather (main leather) 51. Since leather 51 is a high-grade one that is easily scratched, it was necessary to apply a coating film. However, since the conventional coating film in which colloidal silica particles are dispersed has a gloss, there is a problem that the high-class feeling of leather is lost. [0443] Therefore, in the automobile leather sheet 50 having the coating film according to the present embodiment 27 formed on the surface, SBR (styrene-butadiene styrene) is used instead of polycarbonate resin emulsion in the manufacturing method shown in FIG. The coating paint manufactured using rubber) emulsion is sprayed on the entire surface of leather 51.
  • SBR styrene-butadiene styrene
  • the coating film 43C on the surface of the leather 51, the hollow particles 10 made of silica shells are transformed into SBR (styrene-butadiene rubber) emulsion system. Since the coating film 43C dispersed in the organic resin binder 45B does not have gloss, the coating film 43C is formed along the surface irregularities of the leather 51 that does not impair the texture of the leather. A tactile sensation can be secured, and the luxury of leather 51 is not impaired. In addition, the surface of the automobile leather sheet 50 is hardly damaged, and the flame retardancy can be improved.
  • SBR styrene-butadiene rubber
  • a coating paint produced using SBR (styrene-butadiene rubber) emulsion is spray-applied to the entire surface of leather 51, and hollow particles 10 made of silica shells are converted into SBR (styrene-butadiene rubber) emulsion.
  • SBR styrene-butadiene rubber
  • the average outer diameter of the outer diameter in the range of about 50 nm to 100 nm and the porosity of about 70% to 80 nm are provided.
  • the surface hardness can be increased to prevent damage.
  • FIG. 21 (a) is a perspective view showing a stone material on the front floor of the front door on which a coating film according to Embodiment 28 of the present invention is formed
  • FIG. 21 (b) is a sectional view thereof
  • FIG. 22 (a) is a perspective view showing a marble table on the surface of which a coating film according to a modification of Embodiment 28 of the present invention is formed
  • FIG. 22 (b) is a sectional view thereof.
  • FIG. 21 (b) is a granite, which is a high-grade stone material. As shown in Fig. 21 (a), a person walking as a material with high hardness. In addition to being used on the floor in front of the entrance, it also has the function of decorating the entrance with its aesthetic appearance. However, in front of the entrance, where people often walk, it is necessary to further improve the hardness and to prevent rain from entering the surface because it is used outdoors.
  • the coating film 43D on the surface of the granite 56, the hollow particles 10 made of silica shells are converted into polycarbonate resin emulsion organic resin binders. Since the coating film 43D dispersed in 45 is transparent without gloss, the coating film 43D is formed along the irregularities on the surface of the granite 56 that does not impair the texture of the granite 56. It is possible to secure a feeling of touch, and the luxury feeling of granite 56 is not impaired. In addition, the surface of the granite 55 having the coating film 43D formed on the surface is more difficult to be damaged, and rain can be reliably prevented from entering the surface of the granite 56.
  • Stone material 56A shown in the cross-sectional view of Fig. 22 (b) is marble, which is a high-grade stone material.
  • a coating film 43D is formed on the surface of the table made of marble 56A to form a marble table 55A with a coating film.
  • the surface of the marble table 55A on which the coating film 43D is formed becomes more difficult to be damaged, and the human touches the surface of the marble table 55A due to the heat insulation of the hollow particles 10 made of silica shell. The feeling of cooling is reduced, and the marble table is easy to use.
  • FIG. 23 (a) is a perspective view showing a glass window into which glass having a coating film according to Embodiment 29 of the present invention formed thereon is fitted
  • FIG. 23 (b) is a sectional view thereof.
  • the coating material according to Embodiment 29 will be described with reference to FIGS. 15 and 17.
  • the coating paint according to the present embodiment 29 is a silica-based inorganic polymer in place of the aqueous polyester resin aqueous solution in step S53 in the manufacturing process of the coating paint 23c according to the above-described embodiment 25 shown in FIG. It is a mixture of solutions.
  • TEBS triethoxybutylsilane
  • the coating material thus manufactured was spray-coated on the surface of glass 59 to form a coating film 43E. Since the thickness of the coating film 43E is as thin as 5 111 to 10 m, the transparency of the glass 59 is not impaired in combination with the transparency of the hollow particles 10 made of silica shell. In addition, by forming the coating film 43E on the surface of the glass 59, the coating film 43E has a high hardness so that the surface is difficult to be damaged, and due to the heat insulation of the hollow particles 10 made of silica shell, the coating film 43E is formed. Cool feeling when touching the formed glass 58 can be reduced.
  • the average outer diameter of the outer diameter in the range of about 50 nm to 100 nm is 80 nm, and the porosity is about 70% to 80%.
  • the transparency of glass 59 is impaired by taking advantage of the thermal insulation, wear resistance, high hardness and transparency of hollow particles made of silica shells of 10% cubic shape The surface is hard enough to be hard to be scratched, and the feeling of cooling when touched can be reduced.
  • FIG. 24 (a) is a perspective view showing a book cover using paper having a coating film on the surface according to Embodiment 30 of the present invention
  • FIG. 24 (b) is a sectional view thereof.
  • the book cover 60 according to the present embodiment 30 is obtained by printing characters by forming the coating film 43F on the surface of the colored paper 61.
  • Colored paper 61 is easily scratched and book cover 60 is frequently touched by humans, so it must be coated, but conventional coatings such as bull resin are easily scratched and glossy. Therefore, there is a problem that the texture of the paper is impaired. Therefore, in the book cover 60 on which the coating film according to the present embodiment 30 is formed, the coating paint 23a manufactured by the manufacturing method shown in FIG.
  • the hollow particles 10 made of silica shells are converted into polycarbonate resin emulsion organic resin binder 45. Since the coating film 43F dispersed in the film has no gloss, the surface of the book cover 60 with the coating film 43F formed on the surface that does not impair the texture of the colored paper 61 is less likely to be damaged, and the silica shell
  • the heat resistance of the hollow particles 10 made of can improve flame retardancy.
  • the oil absorption of the coating film 43F makes it easier for the printing ink to be absorbed by the colored paper 61, and the effect of improving the printing characteristics of the colored paper 61 can also be obtained.
  • the ink is very good and suitable as the ink jet printer paper.
  • the average outer diameter of 80 nm having an outer diameter in the range of approximately 50 nm to 100 nm and the porosity of approximately 70% to 80%.
  • FIG. 25 (a) is a perspective view showing a parasol using a fabric made of a polyester fiber material (polyester yarn) having a coating film according to Embodiment 31 of the present invention formed on its surface, and FIG. It is sectional drawing.
  • FIG. 26 (a) is a perspective view showing a sweater using a cloth made of an acrylic fiber material (acrylic yarn) on the surface of which a coating film according to a modification of Embodiment 31 of the present invention is formed. It is sectional drawing of an acrylic thread.
  • the parasol 65 according to the present embodiment 31 uses a fabric made of a polyester fiber material (polyester yarn) 66 having a coating film formed on the surface thereof.
  • the coating film 23G manufactured by the manufacturing method shown in FIG. 13 is applied to the surface of the polyester yarn 67 as the fiber material to form a coating film 43G.
  • the smooth feel of the synthetic fiber can be reduced without deteriorating the appearance of the polyester yarn 67, and the polyester yarn 67 can be imparted with flame retardancy.
  • the heat insulation of the hollow particles 10 made of silica shell prevents the fabric from being heated by the sun's rays and makes the user feel cool.
  • the sweater 70 according to the modification of the present embodiment 31 is a fabric using an acrylic fiber material (acrylic yarn) 71 having a coating film formed on the surface thereof. Is used.
  • the coating film 23H produced by the production method shown in Fig. 13 is applied to the surface of the acrylic yarn 72 as the fiber material to form a coating film 43H.
  • the smooth feel of the synthetic fiber can be reduced without impairing the appearance of the acrylic yarn 72, and the acrylic yarn 72 can be imparted with flame retardancy.
  • the sweater 70 according to the modification of the present embodiment 31 is comfortable to wear with the smooth feel unique to synthetic fibers when worn.
  • the sweater 70 because of the heat insulating property of the coating film 43H, even if the sweater 70 is made of acrylic yarn 72, which is much cheaper than wool, the sweater has excellent cold resistance.
  • the average outer diameter having an outer diameter in the range of approximately 50 nm to 100 nm is 80 nm, and the porosity is approximately 70.
  • the heat insulation, wear resistance, high hardness and transparency of hollow particles made of silica shells with a cubic form of 80% to 80% they are synthesized without impairing the appearance of polyester yarn 67 and acrylic yarn 72.
  • the hollow particles comprising silica shells are approximately 50 nm to a cube having an average outer diameter of 80 nm and an outer diameter in the range of 100 nm and a porosity of approximately 70% to 80%.
  • the force described in the case of using hollow particles 10 made of silica shells in the shape of a hollow particle is hollow particles made of silica shells having an outer diameter in the range of approximately 30 nm to 300 nm, regardless of the porosity and shape.
  • the hollow particles 10 and the hollow particles 10 made of a coated silica shell were used to explain the force from a hollow silica and a coated silica shell made of a cubic force shell having an outer diameter in the range of 10 nm to 300 nm. Similar effects can be obtained even when hollow particles are used.
  • the anticorrosion film and the anticorrosion coating can be further prevented. Can be improved.
  • a resin composition and fibers and films comprising the composition, an antireflection coating material, an antiglare coating material, an antireflection film, an antireflection film, an antiglare film, and
  • the configuration, components, materials, size, thickness, shape, quantity, manufacturing method, and the like of the anticorrosion film and anticorrosion paint, and other parts of the coating film and coating paint are also limited to the above embodiments. is not.

Abstract

In a corrosion protective coating and a corrosion protective coating material, insulating properties of empty particles in a cubic form formed of a silica shell having an outer diameter in the range of 10 nm to 300 nm are utilized to avoid the penetration of water into closed cells and to realize excellent corrosion resistance even when the thickness of the coating film is reduced to not more than 20 µm. In a corrosion protective coating test specimen (1), an oxide film present on the surface of an aluminum plate (2) having a length of 150 mm, a width of 70 mm, and a thickness of 5 mm is removed by sand blasting. A corrosion protective coating material comprising empty particles (4) in a cubic form formed of a silica shell having an average particle diameter of 80 nm and having an outer diameter in the range of 50 nm to 100 nm, and zinc powder particles (5) homogeneously dispersed in an isocyanate-acrylic coating material is spray coated onto the aluminum plate (2), and the coating is then baked and dried to homogeneously disperse the empty particles (4) and the zinc powder particles (5) in a coating film (6) and thus to form a corrosion protective coating (3). The specific permittivity of the corrosion protective coating (3) is satisfactorily low and 2.5, and, in a CASS test, the corrosion protective coating test specimen (1) does not cause any abnormal phenomenon even when 240 hr has elapsed.

Description

明 細 書  Specification
樹脂組成物、並びに反射防止コーティング材、防眩コーティング材、反射 防止膜、反射防止フィルム及び防眩フィルム、並びに防食膜及び防食塗料、並 びにコーティング塗料及びコーティング膜  Resin composition, antireflection coating material, antiglare coating material, antireflection film, antireflection film and antiglare film, anticorrosion film and anticorrosion paint, and coating paint and coating film
技術分野  Technical field
[0001] 本発明は、シリカ殻からなる中空粒子を含有する樹脂組成物に関し、更には該中 空粒子を含有する塗料、また塗料を塗布した塗膜や、繊維やフィルムをはじめとする 様々な形状に成形した際に、断熱性、軽量性、透明性、吸水性、吸湿性、着色性、 発色性、電気絶縁性、滑り性、耐蝕性、耐擦傷性、耐摩耗性、耐脱落性を示し、かつ 粗大突起のない優れた成形体を形成し得る樹脂組成物に関するものである。  [0001] The present invention relates to a resin composition containing hollow particles made of silica shells, and further includes a coating material containing the hollow particles, a coating film coated with the coating material, fibers and films. When molded into a shape, heat insulation, light weight, transparency, water absorption, hygroscopicity, coloring, color development, electrical insulation, slipping, corrosion resistance, scratch resistance, abrasion resistance, dropout resistance The present invention relates to a resin composition that is capable of forming an excellent molded product without coarse protrusions.
[0002] また、本発明は、約 30nmから 300nmまでの範囲の外径を有するシリカ殻からなる 中空粒子の断熱性、耐摩耗性、高硬度及び透明性を利用したコーティング塗料及び コーティング膜に関するものである。  [0002] The present invention also relates to a coating material and a coating film that utilize the heat insulating property, wear resistance, high hardness, and transparency of hollow particles made of a silica shell having an outer diameter ranging from about 30 nm to 300 nm. It is.
[0003] また、本発明は、約 lOnmから約 300nmまでの範囲の外径を有するシリカ殻からな る立方体状形態を有する中空粒子の低屈折率、透光性及び乱反射を利用した、反 射防止コーティング材、防眩コーティング材、反射防止膜、反射防止フィルム及び防 眩フィルムに関するものである。ここで、「立方体状形態」とは、立方体に限らず面で 囲まれた立方体に似た形状を意味するものとする。  [0003] Further, the present invention is a reflection method utilizing the low refractive index, translucency, and irregular reflection of hollow particles having a cubic shape made of a silica shell having an outer diameter ranging from about lOnm to about 300nm. The present invention relates to an antireflection coating material, an antiglare coating material, an antireflection film, an antireflection film, and an antiglare film. Here, the “cubic form” means not only a cube but a shape similar to a cube surrounded by a face.
[0004] 更に、本発明は、金属粒子等をインヒビターとして用いた防食膜と、 lOnmから 300η mまでの範囲の外径を有するシリカ殻からなる中空粒子、特にシリカ殻からなる立方 体状形態の中空粒子の絶縁性及び透明性を利用した防食膜とを併用してなる防食 膜、及び金属粒子等をインヒビターとして用いた防食塗料と、 lOnmから 300nmまで の範囲の外径を有するシリカ殻からなる中空粒子、特にシリカ殻からなる立方体状形 態の中空粒子の絶縁性及び透明性を利用した防食塗料とを混合してなる防食膜及 び防食塗料に関するものであって、更に高い防食性能を得ることができる防食膜及 び防食塗料に関するものである。  [0004] Furthermore, the present invention relates to a cubic form comprising a corrosion prevention film using metal particles or the like as an inhibitor, and hollow particles comprising silica shells having an outer diameter ranging from lOnm to 300 ηm, in particular, silica shells. It consists of an anti-corrosion film that uses an anti-corrosion film that utilizes the insulation and transparency of hollow particles, an anti-corrosion paint that uses metal particles as an inhibitor, and a silica shell that has an outer diameter in the range of lOnm to 300 nm. The present invention relates to an anticorrosion film and an anticorrosion paint obtained by mixing hollow particles, in particular, a cubic hollow particle made of silica shell, with an anticorrosion paint utilizing the insulation and transparency, and obtains higher anticorrosion performance. The present invention relates to an anticorrosion film and an anticorrosion paint.
背景技術 [0005] 樹脂には、天然樹脂と合成樹脂があり、そのうち後者の合成樹脂が工業的に使用 されて!/、る樹脂の大半を占めてレ、る。 Background [0005] The resin includes natural resin and synthetic resin, and the latter synthetic resin is industrially used!
この合成樹脂は、温度を上げていくとしだいに軟化する熱可塑性樹脂と、比較的低 分子量の樹脂を熱により硬化させる熱硬化性樹脂に大別され、熱可塑性樹脂にはポ リエチレン、ポリスチレン、ポリプロピレン、塩化ビュル樹脂、メタクリル樹脂、フッ素樹 脂、ポリイミド、酢酸ビュル等、多くの種類があり、また熱硬化性樹脂にはアルキド樹 脂、ァリル樹脂、ァミノ樹脂、エポキシ樹脂、フエノール樹脂、不飽和ポリエステル樹 脂、シリコーン樹脂、ポリウレタン等がある。  These synthetic resins are broadly divided into thermoplastic resins that soften as the temperature rises, and thermosetting resins that cure relatively low molecular weight resins by heat. The thermoplastic resins are polyethylene, polystyrene, There are many types such as polypropylene, chlorinated resin, methacrylic resin, fluororesin, polyimide, and acetic acid butyl. Thermosetting resins include alkyd resin, aryl resin, amino resin, epoxy resin, phenolic resin, unsaturated resin. There are polyester resin, silicone resin, polyurethane and so on.
[0006] これらの樹脂は、樹脂単独で使用されることもある力 一般には用途に応じ多種の 添加剤や充填剤を選択 '混練し、要求される物性や性能を満足できるように調製され た樹脂組成物として使用される。また液状とした塗料の他、圧縮成形や押出成形、射 出成形等の様々な成形方法により、用途に適した形状に成形することが行われてい  [0006] These resins may be used alone. In general, various additives and fillers are selected and kneaded according to the application, and prepared so as to satisfy the required physical properties and performance. Used as a resin composition. In addition to liquid paints, various shapes such as compression molding, extrusion molding, and injection molding are used to form shapes suitable for applications.
[0007] 例えば、合成樹脂を成形したものとして最も代表的なものの 1つに合成繊維がある 。合成繊維として使用される樹脂には、ポリエステル、アクリル、アクリル系、ナイロン、 ビニロン、ポリプロピレン、ポリ塩化ビュル、ポリエチレン、ビニリデン、ポリウレタン、ァ ラミド、ポリアリレート、 PBO (ポリパラフエ二レンべンゾビスォキサゾール)、エチレンビ ニルアルコール、アタリレート系、ポリ乳酸等があげられる。 [0007] For example, synthetic fiber is one of the most typical synthetic resin molded products. Resins used as synthetic fibers include polyester, acrylic, acrylic, nylon, vinylon, polypropylene, polychlorinated butyl, polyethylene, vinylidene, polyurethane, amide, polyarylate, and PBO (polyparaphenylene benzobisoxa). Sol), ethylene vinyl alcohol, acrylate, polylactic acid and the like.
その他にもセルロースやたんぱく質のような天然の有機物に化学薬品を作用させた ものを原料とした半合成繊維であるアセテート、トリアセテート、プロミックスや、木材 パルプやコットンリンターに含まれているセルロース繊維を薬品で溶解し繊維として 再生した再生繊維であるレーヨン、ポリノジック、キュポラ、リヨセルがある。  In addition, acetate, triacetate, promix, which is a semi-synthetic fiber made from natural organic substances such as cellulose and protein, and the cellulose fiber contained in wood pulp and cotton linters. There are rayon, polynosic, cupola, and lyocell, which are regenerated fibers that are dissolved by chemicals and regenerated as fibers.
[0008] これらの多くの樹脂の一つであるポリエステル、特にポリエチレンテレフタレートは、 優れた物理的、化学的特性を有しており、繊維、フィルムをはじめとする各種の成形 品として広く使用されている。中でも、繊維分野においては各種の衣料用やゴム補強 繊維等の産業用があり、フィルム分野においては、光学用、建材用、包装用、農業用 、 OHP用、磁気テープ用等、様々な用途が知られている。 [0008] Polyester, particularly polyethylene terephthalate, which is one of these many resins, has excellent physical and chemical properties and is widely used as various molded products including fibers and films. Yes. In particular, in the textile field, there are various industrial uses such as various garments and rubber reinforced fibers. In the film field, there are various uses such as optical, building materials, packaging, agriculture, OHP, and magnetic tape. Are known.
[0009] しかしながら、いずれの分野においても、さらなる品質向上が求められており、その 用途により、断熱性、軽量性、透明性、吸水性、吸湿性、着色性、発色性、電気絶縁 性、滑り性、耐蝕性、耐擦傷性、耐摩耗性、耐脱落性等の上記製品自体の商品価値 の向上のみならず、それらを製造する成形工程における滑り性の向上、屑削物や脱 落物の防止、作業性の向上等が求められている。 [0009] However, in any field, further quality improvement is required. Depending on the application, the above products themselves such as heat insulation, light weight, transparency, water absorption, moisture absorption, coloring, color development, electrical insulation, slipping, corrosion resistance, scratch resistance, abrasion resistance, dropout resistance, etc. In addition to improving the commercial value of these products, it is required to improve the slipperiness in the molding process for manufacturing them, to prevent scraps and fallen objects, and to improve workability.
[0010] このポリエステルは、合成繊維の中ではポリエステル繊維として最も多量に製造さ れており、中空化あるいは微粒子を添加して、上記したような特性を付与する技術と してはすでに多くの提案がなされており、その一部を示すと以下のとおりである。 特許文献 1では、一次粒子の平均粒径が 0. 1 11 m以下、 BET法で測定した比表 面積が 150m2/g以下の乾式法シリカ粒子を含有した繊維表面から繊維内部の中 空部への貫通孔を有する中空率が 25%以上のポリエステル中空繊維が提案されて おり、該中空繊維は高い吸水性を有すると共に、優れた接触涼感とドライ感のある風 合いを有するとしている。 [0010] This polyester is manufactured in the largest amount as a polyester fiber among synthetic fibers, and many proposals have already been made as a technique for imparting the above-described characteristics by hollowing or adding fine particles. The following is a partial list. In Patent Document 1, the average particle diameter of primary particles is 0.111 m or less, and the specific surface area measured by the BET method is 150 m 2 / g or less. Polyester hollow fibers having a hollow ratio of 25% or more having through-holes to the surface have been proposed, and the hollow fibers have a high water-absorbing property and have a feeling of excellent contact cooling and dry feeling.
[0011] 特許文献 2には、平均粒子径 0. 03〜2 111のシリカ等の微粒子を0. 5〜; 10重量 %含有している共重合ポリエステルと、平均粒子径 0. 03〜2 111の微粒子を 2〜; 15 重量%含有している融点 150°C以上の結晶性熱可塑性ポリマーとからなる 1〜25% の中空部が存在する反撥性、軽量性に優れた中空複合繊維が開示されている。  Patent Document 2 discloses a copolymer polyester containing fine particles such as silica having an average particle size of 0.03 to 2111 from 0.5 to 10% by weight, and an average particle size of 0.03 to 2 111. A hollow composite fiber excellent in repulsion and lightness is disclosed in which a hollow portion of 1 to 25% is formed of a crystalline thermoplastic polymer containing 2 to 15 wt. Has been.
[0012] 特許文献 3には、吸湿性ポリマーやシリカ微粒子のような吸湿性微粒子を含む合成 樹脂層を片面に積層した水分子吸着発熱性能を有するポリエステルからなる裏地が 開示されている。  [0012] Patent Document 3 discloses a backing made of polyester having water molecule adsorption heat generation performance in which a synthetic resin layer containing hygroscopic fine particles such as hygroscopic polymer and silica fine particles is laminated on one side.
特許文献 4には、中空度が 5〜60%のポリエステル中空繊維において、該繊維の 中空部に、シリカゲルを、ポリエステル中空繊維を構成するポリマーの重量を基準と して 3〜60%付着していることを特徴とする改善された吸放湿特性とドレープ性とを 兼備するポリエステル中空繊維が開示されている。  In Patent Document 4, in a hollow polyester fiber having a hollowness of 5 to 60%, 3 to 60% of silica gel is adhered to the hollow portion of the fiber based on the weight of the polymer constituting the polyester hollow fiber. Polyester hollow fibers having improved moisture absorption / release characteristics and drape characteristics are disclosed.
[0013] また、塗料分野では、特許文献 5に疎水性シリカと親水性シリカを特定の割合で含 有する揺変性に優れた不飽和ポリエステル塗料組成物が開示されている。 [0013] In addition, in the paint field, Patent Document 5 discloses an unsaturated polyester paint composition excellent in thixotropy containing hydrophobic silica and hydrophilic silica in a specific ratio.
その他にも特許文献 6では水溶性または水分散性のウレタン樹脂、エポキシ樹脂、 ポリエステル樹脂及びアクリル樹脂から選ばれる 1種または 2種以上の樹脂成分とシ リカ成分とを含む、優れた耐食性及び耐溶剤性を有する塗膜を形成する水系塗料組 成物が提案されている。 In addition, Patent Document 6 includes excellent corrosion resistance and resistance including one or more resin components selected from water-soluble or water-dispersible urethane resins, epoxy resins, polyester resins, and acrylic resins, and silica components. Water-based paint assembly that forms solvent-borne coatings Compositions have been proposed.
[0014] また、特許文献 7にシリカを含有し、金属材料の表面を、溶接が容易な程度に薄く 被覆し、金属板の加工後も特に優れた耐蝕性及び耐溶剤性を有する塗装皮膜を形 成することができる水系塗料組成物が提案されている。  [0014] Further, Patent Document 7 contains silica, and a coating film having a particularly excellent corrosion resistance and solvent resistance even after processing of a metal plate is coated with a surface of a metal material thin enough to facilitate welding. Water-based paint compositions that can be formed have been proposed.
さらに、特許文献 8には、平均粒径が 8 m以下、平均球形度が 0. 85以上である 球状無機質中空粉体と該中空粉体を含有してなる樹脂組成物に関し、低比重、低 誘電特性、耐熱性、断熱性、耐圧性、耐衝撃性、電気的特性、寸法安定性、成形性 などの物性改良効果が記載されてレ、る。  Further, Patent Document 8 relates to a spherical inorganic hollow powder having an average particle size of 8 m or less and an average sphericity of 0.85 or more, and a resin composition containing the hollow powder, and has a low specific gravity and a low specific gravity. It describes the effects of improving physical properties such as dielectric properties, heat resistance, heat insulation, pressure resistance, impact resistance, electrical properties, dimensional stability, and moldability.
[0015] このようにポリエステルの繊維等に無機の粒子を含有させた技術は知られているも のの、無機の中空粒子を分散させた樹脂組成物に関する技術は少なぐ特にサブミ クロン以下の粒子径を要求される繊維やフィルム等の成形体に関する技術は、本発 明者らが知る限りにおいてはない。このような状況は他の樹脂についても同様である  [0015] Although a technique in which inorganic particles are contained in a polyester fiber or the like as described above is known, there are a few techniques relating to a resin composition in which inorganic hollow particles are dispersed, and in particular, particles of submicron or less. As far as the inventors of the present invention know, there is no technology related to molded bodies such as fibers and films that require a diameter. This situation is the same for other resins.
[0016] また、従来、ブラウン管式テレビ'パソコン用 CRTモニター等の CRT表示装置、液 晶テレビ'パソコン用液晶モニター等の液晶表示装置、或いはプラズマディスプレイ 等のプラズマ式表示装置において、画面に室内照明等が映り込むのを防止するとと もにコントラストを大きくして表示装置を見やすくするために、表面に反射防止膜が使 用されている。 [0016] Conventionally, in a CRT display device such as a CRT monitor for a cathode ray tube television 'PC, a liquid crystal display device such as a liquid crystal monitor for a liquid crystal television' PC, or a plasma display device such as a plasma display, the screen is illuminated indoors. An anti-reflection film is used on the surface to prevent the reflection of the image and to increase the contrast and make the display device easier to see.
[0017] ここで、狭い意味での反射防止(Antト Reflection :AR)膜としては、 λ /4 (4分の 1 波長)干渉を利用した光学多層膜や、微細な気孔を形成して屈折率を 1. 2〜; 1. 3程 度に低下させることによって反射防止効果を得る多孔質反射防止膜が知られている 。また、広い意味での反射防止膜としては、いわゆる防眩 (Anti-Glare : AG)膜として 、シリカ粒子を塗料等のバインダーに分散させ、それをコーティングすることによって 形成されるものが知られている。  [0017] Here, as an antireflection (AR) film in a narrow sense, it is refracted by forming an optical multilayer film using λ / 4 (quarter wavelength) interference, or forming fine pores. Porous antireflective coatings that obtain an antireflective effect by lowering the rate to about 1.2 to 1.3 are known. In addition, as an antireflection film in a broad sense, a so-called anti-glare (AG) film is known which is formed by dispersing silica particles in a binder such as a paint and coating it. Yes.
[0018] しかし、反射防止(以下、「AR」とも!/、う。 )効果と防眩(以下、「AG」とも!/、う。 )効果と を兼ね備えた反射防止膜を形成しょうとすると、製造プロセスが増えてコストも大幅に 増大してしまうという問題があった。これに対して、特許文献 9においては、シリカ微粒 子をゾルーゲル法による調整後のゾル液に混合し、基板上にコーティングして焼成 することによって形成される反射防止膜の発明につ!/、て開示して!/、る。 [0018] However, when an antireflection film having both antireflection (hereinafter also referred to as "AR"! /) And anti-glare (hereinafter also referred to as "AG"! /, U.) effects is to be formed. However, there was a problem that the manufacturing process increased and the cost increased significantly. On the other hand, in Patent Document 9, silica fine particles are mixed with a sol solution adjusted by a sol-gel method, coated on a substrate and fired. The invention of the antireflection film formed by doing this is disclosed! /.
[0019] これによつて、 AR効果と AG効果とを兼ね備えた反射防止膜を、簡単な製造プロセ スで得られるとしている。しかし、特許文献 9に係る反射防止膜においては、微粒子と して中実のシリカ微粒子を使用しているため、反射防止膜の屈折率が高くなり、 目的 とする反射防止効果を得ることができなレ、。 According to this, it is said that an antireflection film having both the AR effect and the AG effect can be obtained by a simple manufacturing process. However, since the antireflective film according to Patent Document 9 uses solid silica fine particles as the fine particles, the refractive index of the antireflective film increases, and the desired antireflective effect can be obtained. Nare ,.
[0020] そこで、特許文献 10においては、低屈折率のシリカ系微粒子を得るために、外殻内 部に空洞を有する中空で球状のシリカ系微粒子の製造方法及びそのシリカ系微粒 子を用いた被膜形成用塗料並びに被膜付基材の発明につ!/、て開示してレ、る。この 製造方法によって得られるシリカ系微粒子は、平均粒子径が 5nm〜500nmの範囲 内にあり、屈折率が 1. 15〜; 1. 38の範囲内にあって、力、かるシリカ系微粒子と被膜 形成用マトリックスとを含んでなる被膜は、低屈折率で透明性 ·反射防止性能にも優 れているとしている。 [0020] Therefore, in Patent Document 10, in order to obtain silica-based fine particles having a low refractive index, a method for producing hollow spherical silica-based fine particles having a cavity inside the outer shell and the silica-based fine particles were used. Disclosure of the invention of coating film-forming paints and coated substrates. The silica-based fine particles obtained by this production method have an average particle diameter in the range of 5 nm to 500 nm, a refractive index in the range of 1.15 to; The coating comprising the forming matrix is said to have a low refractive index and excellent transparency and antireflection performance.
[0021] また、従来、アルミホイール等のアルミニウム合金を始めとする金属表面の保護処 理方法としては、クロメート処理、特にイェロークロメート処理と呼ばれるクロム酸クロメ ート処理が行われてきた。イェロークロメート処理においては、クロム酸またはクロム酸 塩の 1種以上及びフッ化物を含み、有機酸'無機酸で pHを調整した強酸性溶液中 でアルミニウム等の表面を処理し、皮膜を形成する。このイェロークロメート皮膜は、 1 ,i m以下の薄膜で十分な防鯖'防食効果を発揮する。  [0021] Conventionally, as a method for protecting a metal surface such as an aluminum alloy such as an aluminum wheel, chromate treatment, particularly chromic acid chromate treatment called yellow chromate treatment has been performed. In the yellow chromate treatment, the surface of aluminum or the like is treated in a strongly acidic solution containing one or more of chromic acid or chromic acid salt and fluoride and adjusted to pH with organic acid or inorganic acid to form a film. This yellow chromate film exhibits a sufficient anti-corrosion and anti-corrosion effect with a thin film of 1, im or less.
[0022] し力、し、近年、クロメート処理、特にイェロークロメート処理で処理溶液中や皮膜中 に含有される有毒な六価クロムの自然環境破壊や人体への有害性が問題となって おり、六価クロムを使用しないアルミニウム等の表面処理方法が要請されている。この ような要求に対して、膜厚を厚くできるとともに塗料の焼成温度が余り高くなくて済む ため、有機 (合成樹脂)系塗膜が使用されてきたが、有機系塗膜には、金属表面との 密着性が良くないため金属に鯖が生じ易ぐまた汚れとの密着性が良いため塗膜表 面に付着した汚れを落とし難く塗膜の美観が損なわれるという不具合があった。  [0022] In recent years, toxic hexavalent chromium contained in the treatment solution and film in the chromate treatment, particularly the yellow chromate treatment, has been a problem in terms of the destruction of the natural environment and the harmfulness to the human body. There is a demand for a surface treatment method such as aluminum that does not use hexavalent chromium. In response to these requirements, organic (synthetic resin) -based coatings have been used because the film thickness can be increased and the firing temperature of the paint need not be too high. Since the adhesion to the metal is not good, the metal is easily wrinkled, and the adhesion to the dirt is good, so it is difficult to remove the dirt adhering to the surface of the paint film and the appearance of the paint film is impaired.
[0023] そこで、このような不具合を解決するために、特許文献 11においては、コロイド状シ リカとオルガノアルコキシシラン部分加水分解縮合物と不飽和エチレン単量体の重 合体または共重合体を主成分とする、金属部材の塗膜構造の発明について開示し ている。また、特許文献 12においては、特定のアクリル樹脂 ·エポキシ樹脂 ·ブロック ポリイソシァネート化合物'粉末シリカ及び架橋性重合体粒子を主成分とするプライ マーと、同上の各成分を主成分とする厚膜プライマーとからなる、透明な防食性厚膜 塗料組成物の発明につレ、て開示してレ、る。 Therefore, in order to solve such problems, Patent Document 11 mainly uses a polymer or copolymer of colloidal silica, an organoalkoxysilane partial hydrolysis condensate, and an unsaturated ethylene monomer. Disclosure of the invention of the coating structure of a metal member as a component ing. In Patent Document 12, a specific acrylic resin, epoxy resin, block polyisocyanate compound, a primer mainly composed of powdered silica and crosslinkable polymer particles, and a thickness mainly composed of the above components. A transparent anticorrosive thick film coating composition comprising a film primer is disclosed and disclosed.
[0024] しかし、これらの特許文献 11及び特許文献 12に記載の塗料組成物においても、有 機化合物を使用しているため、乾燥しても塗膜が軟らかぐ飛んでくる小石等からァ ルミホイールを守るため、 4工程〜 5工程の塗装→乾燥→塗装→乾燥を繰り返して 2 00 πι程度の厚さまで保護塗装を行っており、塗装工程に長時間を要し、塗装ライ ンの長さも長くなり、コストも高くなる。さらに、保護塗装の硬度は鉛筆硬度で Η程度で あり、大変摩擦に弱いものであった。  [0024] However, since the coating compositions described in Patent Document 11 and Patent Document 12 also use organic compounds, the coating film softly flies even when dried, and thus the coating composition contains aluminum. In order to protect the wheel, the coating process is repeated from 4 to 5 steps → drying → painting → drying, and the protective coating is applied to a thickness of about 200 πι. The coating process takes a long time and the length of the coating line is also long. Longer and higher cost. Furthermore, the hardness of the protective coating was about Η in pencil hardness, and was very vulnerable to friction.
[0025] そこで、本発明者らは、特許文献 13において、塗装工程を短縮することによって塗 装ラインも短くでき、低コスト化を図ることができるとともに、アルミニウム活性面と塗料 成分とを直接結合させることができ、さらに表面硬度を向上させることができるアルミ ニゥム表面の塗装方法及びアルミニウム用塗料の発明につ!/、て開示してレ、る。  [0025] Therefore, in Patent Document 13, the present inventors can shorten the coating process by shortening the coating process, reduce the cost, and directly combine the aluminum active surface and the paint component. The invention discloses a method for coating an aluminum surface and a paint for aluminum which can be further improved in surface hardness.
[0026] また、近年、耐摩耗性、耐汚染性、耐薬品性に優れ、しかも硬度の高いコーティン グ膜を形成させることのできるコーティング用組成物(コーティング塗料)であって、更 に、あらゆる基材に適用することができる汎用性の高いものに対する需要が伸びてき ている。従来、特許文献 14に示されるシリル基含有ビュル系化合物とオルガノシラン 化合物(コロイダルシリカ)からなるコーティング用組成物が知られている力 不飽和 エチレン性単量体の重合体を加えることによって組成物の粘度が上昇して、形成さ れるコーティング膜が厚くなり基材の質感を損なうという問題があった。  [0026] Further, in recent years, it is a coating composition (coating paint) that is capable of forming a coating film having excellent wear resistance, stain resistance, chemical resistance and high hardness. There is a growing demand for versatile materials that can be applied to substrates. Conventionally, a coating composition comprising a silyl group-containing bulle compound and an organosilane compound (colloidal silica) shown in Patent Document 14 is known. The composition is obtained by adding a polymer of an unsaturated ethylenic monomer. As a result, the coating film formed becomes thick and the texture of the substrate is impaired.
[0027] そこで、特許文献 15においては、ガラス基材に対して簡便にコーティングでき、防 汚性、耐久性、透明性に優れ、更に光触媒機能を有するコーティングガラスが得られ るガラス用コーティング組成物の発明について開示している。しかし、光触媒機能に よって防汚性及び透明性には優れてレ、る力 コーティング膜の表面硬度が低く傷付 き易いという問題があった。  [0027] Therefore, in Patent Document 15, a glass coating composition that can be easily coated on a glass substrate, is excellent in antifouling property, durability, and transparency, and further provides a coated glass having a photocatalytic function. This invention is disclosed. However, the photocatalytic function has an excellent antifouling property and transparency, and there is a problem that the surface hardness of the coating film is low and is easily damaged.
[0028] これに対して、特許文献 16においては、木質系床材、合成樹脂からなる化学床材 、コンクリートや大理石等の石床等の床面に塗布されるフロアーポリッシュ組成物であ つて、床材の美観を保つとともに床面を保護し、歩行頻度の激しい場所においても皮 膜の傷付きや摩耗を防止することができ、環境問題をも配慮したフロアーポリッシュ 組成物の発明につ!/、て開示して!/、る。 [0028] In contrast, Patent Document 16 is a floor polish composition applied to a floor surface such as a wooden floor material, a chemical floor material made of a synthetic resin, and a stone floor such as concrete or marble. Therefore, the invention of a floor polish composition that preserves the aesthetics of the flooring and protects the floor surface, can prevent the skin from being damaged and worn even in places with high walking frequency, and also considers environmental problems. ! /, Please disclose! /
特許文献 1 :特開平 8— 291463号公報 Patent Document 1: JP-A-8-291463
特許文献 2:特開平 11 350256号公報 Patent Document 2: Japanese Patent Laid-Open No. 11 350256
特許文献 3:特開 2003— 193309号公報 Patent Document 3: Japanese Unexamined Patent Publication No. 2003-193309
特許文献 4 :特開平 10— 237758号公報 Patent Document 4: Japanese Patent Laid-Open No. 10-237758
特許文献 5:特開平 6— 184493号公報 Patent Document 5: JP-A-6-184493
特許文献 6:特開平 7— 242833号公報 Patent Document 6: Japanese Patent Laid-Open No. 7-242833
特許文献 7:特開平 9 324148号公報 Patent Document 7: Japanese Patent Laid-Open No. 9324148
特許文献 8:特開 2005— 206436号公報 Patent Document 8: Japanese Patent Laid-Open No. 2005-206436
特許文献 9:特開平 10— 133002号公報 Patent Document 9: JP-A-10-133002
特許文献 10 :特開 2006— 21938号公報 Patent Document 10: Japanese Unexamined Patent Application Publication No. 2006-21938
特許文献 11 :特公平 7— 77777号公報 Patent Document 11: Japanese Patent Publication No. 7-77777
特許文献 12 :特開平 6— 57177号公報 Patent Document 12: JP-A-6-57177
特許文献 13:特開 2004— 154757号公報 Patent Document 13: Japanese Unexamined Patent Application Publication No. 2004-154757
特許文献 14 :特開平 01— 069673号公報 Patent Document 14: Japanese Patent Laid-Open No. 01-0669673
特許文献 15:特開 2001— 158643号公報 Patent Document 15: Japanese Unexamined Patent Publication No. 2001-158643
特許文献 16:特開 2005— 255703号公報 Patent Document 16: Japanese Unexamined Patent Publication No. 2005-255703
特許文献 17:特開 2005— 263550号公報 Patent Document 17: Japanese Unexamined Patent Publication No. 2005-263550
特許文献 18 :特開 2006— 256921号公報 Patent Document 18: Japanese Unexamined Patent Application Publication No. 2006-256921
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
そのような中において、本発明者らは、新規な中空粒子及びその製造方法の開発 に成功し、その産業上の利用性についても鋭意研究を進めており、その過程におい て、該中空粒子を繊維、フィルム、塗料等に幅広く活用されている樹脂組成物からな る工業製品に含有させることにより、様々な物性を向上させることができる可能性を見 出レに。 すなわち、本発明はこの知見を利用することにより開発に成功したものである。 Under such circumstances, the present inventors have succeeded in developing a novel hollow particle and a method for producing the same, and are eagerly researching its industrial applicability. Finding the possibility of improving various physical properties by including it in industrial products made of resin compositions widely used in fibers, films, paints, etc. That is, the present invention has been successfully developed by utilizing this knowledge.
[0030] したがって、本発明は、第 1に、金属酸化物の殻からなる中空粒子を利用すること により、断熱性、軽量性、透明性、吸水性、吸湿性、着色性、発色性、絶縁性、耐蝕 性、耐擦傷性、滑り性、耐摩耗性、耐脱落性等を向上させた樹脂組成物及び該組成 物からなる塗料、成形体、その成形体の代表的なものである繊維、フィルムを提供す ることを課題とするものである。 [0030] Therefore, the present invention firstly uses a hollow particle made of a metal oxide shell to provide heat insulation, lightness, transparency, water absorption, hygroscopicity, colorability, color development, insulation. Resin composition with improved properties, corrosion resistance, scratch resistance, slipperiness, abrasion resistance, drop-off resistance, etc., and paints, molded articles, fibers that are representative of the molded articles, The issue is to provide a film.
[0031] また、上記特許文献 10に記載の技術におけるシリカ系微粒子は、中空であることか ら屈折率は低いが、球状であるため入射した可視光線の屈折が起きやすぐ透明度 が悪くなり、また球状であるため充填性にも劣る。更に、このシリカ系微粒子は、上記 特許文献 2にも記載されているように複雑な製造工程によって製造されるため極めて コストが高くなり、低コストが要求される用途には使用することが困難であるという問題 点かあった。 [0031] Further, the silica-based fine particles in the technique described in Patent Document 10 have a low refractive index because they are hollow, but since they are spherical, the incident visible light is refracted and the transparency is deteriorated immediately. Moreover, since it is spherical, it has poor filling properties. Furthermore, since the silica-based fine particles are produced by a complicated production process as described in Patent Document 2, the cost is extremely high, and it is difficult to use for applications that require low cost. There was a problem that there was.
[0032] そこで、本発明は、第 2に、低コストで製造されるシリカ殻からなる立方体状形態を 有する中空粒子の低屈折率及び透光性或いは二次粒子の乱反射を利用した、低コ ストが要求される用途にも使用することができる反射防止コーティング材、防眩コーテ イング材、反射防止膜、反射防止フィルム及び防眩フィルムを提供することを課題と するものである。  [0032] In view of this, the second aspect of the present invention is a low cost method utilizing the low refractive index and translucency of the hollow particles having a cubic shape made of silica shells produced at low cost and the irregular reflection of secondary particles. It is an object of the present invention to provide an antireflection coating material, an antiglare coating material, an antireflection film, an antireflection film and an antiglare film that can be used in applications where strikes are required.
[0033] 更に、上記特許文献 13に記載の技術においては、ポリイソシァネートとコロイダル シリカの反応塗料を使用しているため微細な連続気孔が形成されており、これらの連 続気孔を伝って水が沁み込む恐れがあり、防食性が完全ではなかった。また、コロイ ダルシリカの粒径は約 lOnm〜約 20nmと微小であるため、塗膜の厚さを 40 m程 度まで薄くすることができたが、防食膜のさらなる薄膜化の要請があった。  [0033] Furthermore, in the technique described in Patent Document 13, fine continuous pores are formed because a reactive paint of polyisocyanate and colloidal silica is used, and these continuous pores are transmitted. There was a risk that water could stagnate, and the anticorrosion property was not perfect. Also, since the colloidal silica particle size is as small as about lOnm to about 20nm, the thickness of the coating film could be reduced to about 40m, but there was a demand for further thinning of the anticorrosion film.
[0034] そこで、本発明は、第 3に、シリカ殻からなる中空粒子が分布している部分において は水が沁み込むのを確実に防止し、金属粒子等のインヒビターが分布して!/、る部分 にお!/、ては水が沁み込んできてもインヒビターの作用によって水の浸入を食!/、止める ことによって、極めて優れた防食性能を有する防食膜及び防食塗料を提供すること を課題とするものである。  [0034] Thus, according to the present invention, thirdly, in the portion where the hollow particles made of silica shells are distributed, water is surely prevented from being swallowed, and inhibitors such as metal particles are distributed! /, The problem is to provide an anti-corrosion film and anti-corrosion paint with extremely excellent anti-corrosion performance by preventing the invasion of water by the action of the inhibitor even if water has sunk in the part! It is what.
[0035] また、上記特許文献 15及び上記特許文献 16に記載された技術においては、いず れも基材が限定されており、汎用性に劣る。また、上記特許文献 16に記載された技 術においては、形成されるコーティング膜が光沢を有するため、基材となる木材ゃ大 理石の本来の質感を失わせるという問題点があった。 [0035] Further, in the techniques described in Patent Document 15 and Patent Document 16, These are also limited in base material and inferior in versatility. Further, the technique described in Patent Document 16 has a problem that the original texture of the large-sized stone is lost because the coating film to be formed has gloss.
[0036] そこで、本発明は、第 4に、略 30nmから 300nmまでの範囲の外径を有するシリカ 殻からなる中空粒子の断熱性、耐摩耗性、高硬度及び透明性を利用することによつ て、あらゆる基材に適用することができる汎用性の高いコーティング膜及びコーティン グ塗料であって、基材本来の質感や触感を失わせることがなぐ表面硬度が高く傷付 きを確実に防止することができるコーティング膜及びコーティング塗料を提供すること を課題とする。 [0036] In view of the above, the present invention fourthly utilizes the heat insulation, wear resistance, high hardness, and transparency of hollow particles made of silica shells having an outer diameter in the range of approximately 30 nm to 300 nm. In addition, it is a highly versatile coating film and coating that can be applied to any substrate, and it has a high surface hardness that ensures that the original texture and feel of the substrate are not lost. It is an object of the present invention to provide a coating film and a coating material that can be applied.
課題を解決するための手段  Means for solving the problem
[0037] 本発明は、第 1に、前記第 1の課題を解決する樹脂組成物及びそれを利用する繊 維またはフィルムを提供するものであり、その樹脂組成物は金属酸化物の殻からなる 中空粒子を含有することを特徴とするものである。また、繊維またはフィルムは、該樹 脂組成物を成形してなるものである。  [0037] The present invention firstly provides a resin composition that solves the first problem and a fiber or film using the resin composition, and the resin composition comprises a metal oxide shell. It contains hollow particles. The fiber or film is formed by molding the resin composition.
[0038] その中空粒子としては透過型電子顕微鏡法による平均一次粒子径が 20nm〜l μ m、動的光散乱法による平均粒子径が 20nm〜3 mが好適である。中でも透過型 電子顕微鏡法による平均一次粒子径が 20nm〜0. ^ ii ^さらに望ましくは 20nm 〜0. 1 mが、透明度、断熱性、粒子強度等の機能を考慮すると優れた効果を発揮 できる可能性がある。また、中空粒子の金属酸化物殻に、水銀圧入法により測定され る細孔分布において 2〜20nmの細孔が検出されないもの力 中空状態を維持する という点で好ましい。  [0038] The hollow particles preferably have an average primary particle diameter of 20 nm to l μm by transmission electron microscopy and an average particle diameter of 20 nm to 3 m by dynamic light scattering. Among them, the average primary particle diameter by transmission electron microscopy is 20 nm to 0.1 ^ ii ^, and more desirably 20 nm to 0.1 m, which can exhibit excellent effects when considering functions such as transparency, heat insulation, and particle strength. There is sex. In addition, the metal oxide shell of the hollow particles is preferable in that the pore distribution measured by mercury porosimetry does not detect pores of 2 to 20 nm, and the hollow state is maintained.
[0039] このようなシリカ殻を有する中空粒子は、炭酸塩を核材として、該炭酸塩表面に金 属酸化物を製膜し、その後核材の炭酸塩を酸により溶解させることにより調製できる。 中でも、コロイド状炭酸カルシウムや立方体状炭酸カルシウムと呼ばれる立方体状形 態を有する炭酸カルシウムは、一次粒子径が 20nm〜0. 5 111と小さく、本発明に使 用される中空粒子の核材として適している。そして、得られた中空粒子も立方体状形 態をなしており、その形態に由来する優れた特長を有している。また、シリカ源として は、テトラエトキシシラン (TEOS)等のシリコンアルコキシドゃケィ酸ナトリウム等のケ ィ酸アルカリが好適である。 [0039] Hollow particles having such a silica shell can be prepared by using a carbonate as a core material, forming a metal oxide film on the surface of the carbonate, and then dissolving the carbonate of the core material with an acid. . Among them, calcium carbonate having a cubic shape called colloidal calcium carbonate or cubic calcium carbonate has a primary particle size as small as 20 nm to 0.5 111 and is suitable as a core material for hollow particles used in the present invention. ing. The obtained hollow particles also have a cubic shape, and have excellent features derived from the shape. Silica sources include silicon alkoxides such as tetraethoxysilane (TEOS) and sodium silicate. An alkali acid is preferred.
[0040] 樹脂組成物の樹脂の一例としてポリエステル系樹脂を挙げることができ、この場合 中空粒子をポリエステル中に分散するには、例えばテレフタル酸とエチレングリコー ルとを重合原料とする場合には、テレフタル酸とエチレングリコールとの重合終了前 でも、また重合後の混練によっても良いが、より均一に分散するには重合終了までに 中空粒子を添加することが望まし!/、。  [0040] As an example of the resin of the resin composition, a polyester-based resin can be mentioned. In this case, in order to disperse the hollow particles in the polyester, for example, when terephthalic acid and ethylene glycol are used as polymerization raw materials, Before or after completion of the polymerization of terephthalic acid and ethylene glycol, it may be carried out by kneading after the polymerization, but it is desirable to add hollow particles before the completion of the polymerization in order to disperse more uniformly!
[0041] 請求項 4の発明に係る反射防止コーティング材は、シリカ殻力 なる立方体状形態 を有する中空粒子の低屈折率及び透光性を利用した反射防止コーティング材であつ て、 30nmから 300nmまでの範囲の外径を有する前記シリカ殻からなる立方体状形 態を有する中空粒子を有機合成樹脂塗料中に均一に分散してなるものである。  [0041] An antireflection coating material according to the invention of claim 4 is an antireflection coating material that utilizes the low refractive index and translucency of hollow particles having a cubic shape with silica shell strength, and is from 30 nm to 300 nm. Hollow particles having a cubic shape composed of the above-mentioned silica shell having an outer diameter in the range are uniformly dispersed in an organic synthetic resin paint.
[0042] 請求項 5の発明に係る防眩コーティング材は、シリカ殻からなる立方体状形態を有 する中空粒子の低屈折率、透光性及び二次粒子の乱反射を利用した防眩コーティ ング材であって、 30nmから 300nmまでの範囲の外径を有する前記シリカ殻からなる 立方体状形態を有する中空一次粒子が凝集した 0· 5 m〜 50 mの範囲内の大き さを有する二次粒子を有機合成樹脂塗料中に均一に分散してなるものである。  [0042] The antiglare coating material according to the invention of claim 5 is an antiglare coating material that utilizes the low refractive index, translucency, and irregular reflection of secondary particles of a hollow particle having a cubic shape made of silica shells. Secondary particles having a size in a range of 0.5 m to 50 m in which hollow primary particles having a cubic shape composed of the silica shell having an outer diameter in the range of 30 nm to 300 nm are aggregated. It is formed by uniformly dispersing in an organic synthetic resin paint.
[0043] 請求項 6の発明に係る反射防止膜は、請求項 5に記載の防眩コーティング材を塗 布してなる塗膜と、請求項 4に記載の反射防止コーティング材を塗布してなる塗膜を 積層してなるものである。  [0043] The antireflection film according to the invention of claim 6 is formed by applying the antiglare coating material according to claim 5 and the antireflection coating material according to claim 4. It is formed by laminating coating films.
[0044] 請求項 7の発明に係る反射防止フィルムは、シリカ殻力もなる立方体状形態を有す る中空粒子の低屈折率及び透光性を利用した反射防止フィルムであって、 30nmか ら 300nmまでの範囲の外径を有する前記シリカ殻からなる立方体状形態を有する中 空粒子を有機合成樹脂フィルム中に均一に分散してなるものである。  [0044] The antireflection film according to the invention of claim 7 is an antireflection film utilizing the low refractive index and translucency of the hollow particles having a cubic shape having a silica shell force, and is 30 nm to 300 nm. The hollow particles having a cubic shape composed of the silica shell having the outer diameter in the range up to are uniformly dispersed in the organic synthetic resin film.
[0045] 請求項 8の発明に係る防眩フィルムは、シリカ殻からなる立方体状形態を有する中 空粒子の低屈折率、透光性及び二次粒子の乱反射を利用した防眩フィルムであつ て、 30nmから 300nmまでの範囲の外径を有する前記シリカ殻からなる立方体状形 態を有する中空一次粒子が凝集した 0· 5 ,1 m〜50 ,1 mの範囲内の大きさを有する 二次粒子を有機合成樹脂フィルム中に均一に分散してなるものである。  [0045] The antiglare film according to the invention of claim 8 is an antiglare film that utilizes the low refractive index, translucency, and irregular reflection of secondary particles of hollow particles having a cubic form made of silica shells. The hollow primary particles having a cubic shape composed of the silica shell having an outer diameter in the range of 30 nm to 300 nm are aggregated and have a size in the range of 0.5, 1 m to 50, 1 m. The particles are uniformly dispersed in the organic synthetic resin film.
[0046] 請求項 9の発明に係る反射防止フィルムは、請求項 8に記載の防眩フィルムと、請 求項 7に記載の反射防止フィルムを積層してなるものである。 [0046] An antireflection film according to the invention of claim 9 and the antiglare film of claim 8, The antireflection film according to claim 7 is laminated.
[0047] 請求項 10の発明に係る反射防止コーティング材、防眩コーティング材、反射防止 膜、反射防止フィルムまたは防眩フィルムは、請求項 4乃至請求項 9のいずれか 1つ の構成において、前記シリカ殻からなる立方体状形態を有する中空粒子が 40nm〜 150nmの範囲内の外径を有するものである。 [0047] The antireflection coating material, the antiglare coating material, the antireflection film, the antireflection film, or the antiglare film according to the invention of claim 10 is the structure according to any one of claims 4 to 9. Hollow particles having a cubic shape made of silica shells have an outer diameter in the range of 40 nm to 150 nm.
[0048] 請求項 11の発明に係る防食膜は、アルミニウム、亜鉛、アルミニウムと亜鉛の合金 力、らなる群より選ばれた金属の粒子と、 10nm〜300nmの範囲内の外径を有するシ リカ殻からなる中空粒子を有機樹脂バインダーまたは無機高分子バインダーまたは 有機無機複合バインダー中に均一に分散してなるものである。ここで、有機樹脂バイ ンダ一としてはイソシァネート アクリル系バインダー等があり、無機高分子バインダ 一としてはアルキルシリケート加水分解バインダー等があり、有機無機複合バインダ 一としてはコロイダルシリカとブロックイソシァネートの混合物等がある。 [0048] The anticorrosion film according to the invention of claim 11 is a silica having a metal particle selected from the group consisting of aluminum, zinc, an alloy power of aluminum and zinc, and an outer diameter in the range of 10 nm to 300 nm. Hollow particles made of shells are uniformly dispersed in an organic resin binder, an inorganic polymer binder, or an organic-inorganic composite binder. Here, the organic resin binder includes an isocyanate acrylic binder, the inorganic polymer binder includes an alkyl silicate hydrolysis binder, and the organic inorganic composite binder includes a mixture of colloidal silica and block isocyanate. Etc.
[0049] 請求項 12の発明に係る防食膜は、マグネシウム系金属の表面を陽極酸化による酸 化物層で被覆し、前記酸化物層の表面をアルミニウム系、チタン系またはジルコユウ ム系のカップリング剤で変性した変性樹脂及び 10nm〜300nmの範囲内の外径を 有するシリカ殻からなる中空粒子を有機樹脂バインダーまたは無機高分子バインダ 一または有機無機複合バインダー中に均一に分散してなる層で被覆したものである[0049] The anticorrosion film according to the invention of claim 12 covers the surface of the magnesium-based metal with an anodized oxide layer, and the surface of the oxide layer is an aluminum-based, titanium-based or zirconium-based coupling agent. A hollow particle composed of a modified resin modified with the above and a silica shell having an outer diameter in the range of 10 nm to 300 nm was coated with a layer uniformly dispersed in an organic resin binder or an inorganic polymer binder or an organic / inorganic composite binder. Is a thing
Yes
[0050] 請求項 13の発明に係る防食膜は、アルミニウムまたはアルミニウム合金の表面に形 成された防食膜であって、コロイド状シリカとオルガノアルコキシシラン部分加水分解 縮合物と不飽和エチレン単量体の重合体または共重合体と、 10nm〜300nmの範 囲内の外径を有するシリカ殻からなる中空粒子とを、有機樹脂バインダーまたは無機 高分子バインダーまたは有機無機複合バインダー中に均一に分散してなるものであ  [0050] The anticorrosion film according to the invention of claim 13 is an anticorrosion film formed on the surface of aluminum or an aluminum alloy, comprising colloidal silica, an organoalkoxysilane partial hydrolysis condensate, and an unsaturated ethylene monomer. And a hollow particle composed of a silica shell having an outer diameter in the range of 10 nm to 300 nm is uniformly dispersed in an organic resin binder, an inorganic polymer binder, or an organic-inorganic composite binder. Stuff
[0051] 請求項 14の発明に係る防食膜は、請求項 11乃至請求項 13のいずれか 1つの構 成において、前記シリカ殻からなる中空粒子力 S、立方体状形態を有するものである。 [0051] The anticorrosion film according to the invention of claim 14 has the structure of any one of claims 11 to 13, and has a hollow particle force S made of the silica shell and a cubic form.
[0052] 請求項 15の発明に係る防食膜は、請求項 11乃至請求項 14のいずれか 1つの構 成において、前記シリカ殻からなる中空粒子力、前記有機樹脂バインダーまたは前 記無機高分子バインダーまたは前記有機無機複合バインダーに対して、固形分で 4 重量%〜; 15重量%の割合で混合されているものである。 [0052] The anticorrosion film according to the invention of claim 15 is the structure according to any one of claims 11 to 14, wherein the hollow particle force comprising the silica shell, the organic resin binder, or the front The inorganic polymer binder or the organic-inorganic composite binder is mixed in a solid content of 4 wt% to 15 wt%.
[0053] 請求項 16の発明に係る防食膜は、請求項 11乃至請求項 15のいずれか 1つの構 成において、前記シリカ殻からなる中空粒子の表面にイソシァネート系の表面改質剤 を付加させたものである。ここで、 「イソシァネート系の表面改質剤」とは、イソシァネ ート基(一 N = C =〇)を 1つ以上もった化合物からなる表面改質剤を意味する。  [0053] The anticorrosion film according to the invention of claim 16 is the structure according to any one of claims 11 to 15, wherein an isocyanate-based surface modifier is added to the surface of the hollow particles comprising the silica shell. It is a thing. Here, the “isocyanate-based surface modifier” means a surface modifier composed of a compound having at least one isocyanate group (one N = C = ◯).
[0054] 請求項 17の発明に係る防食塗料は、水溶性三価クロム化合物と、水溶性フッ化物 と、亜鉛 アルミニウム合金粉末と、グリコール類及び/またはセルロース類とを含有 する金属防食用被覆組成物と、 10nm〜300nmの範囲内の外径を有するシリカ殻 からなる中空粒子を有機樹脂塗料または無機高分子塗料または有機無機複合塗料 中に均一に分散してなる防食組成物とを混合してなるものである。ここで、有機樹脂 塗料としてはイソシァネート アクリル系塗料等があり、無機高分子塗料としてはアル キルシリケート加水分解塗料等があり、有機無機複合塗料としてはコロイダルシリカと ブロックイソシァネートの混合物等がある。  [0054] The anticorrosion paint according to the invention of claim 17 is a coating composition for metal anticorrosion comprising a water-soluble trivalent chromium compound, a water-soluble fluoride, zinc-aluminum alloy powder, glycols and / or celluloses. And an anticorrosive composition in which hollow particles composed of silica shells having an outer diameter in the range of 10 nm to 300 nm are uniformly dispersed in an organic resin paint, an inorganic polymer paint, or an organic-inorganic composite paint. It will be. Here, organic resin paints include isocyanate acrylic paints, inorganic polymer paints include alkyl silicate hydrolysis paints, and organic inorganic composite paints include a mixture of colloidal silica and block isocyanate. .
[0055] 請求項 18の発明に係る防食塗料は、請求項 17の構成において、前記金属防食用 被覆組成物は、水 100重量部に対して前記水溶性三価クロム化合物を Cr O 換算 で 0. 2重量部〜 10重量部、前記水溶性フッ化物をフッ素イオン換算で 0. 01重量部 〜0. 5重量部、前記亜鉛 アルミニウム合金粉末を 5重量部〜 50重量部、前記ダリ コール類及び/または前記セルロース類を 5重量部〜 30重量部含有し、 pHが 3. 0 〜7. 0の範囲内にあるものである。  [0055] The anticorrosion paint according to the invention of claim 18 is the composition according to claim 17, wherein the coating composition for metal anticorrosion contains the water-soluble trivalent chromium compound in terms of Cr 2 O in terms of 100 parts by weight of water. 2 to 10 parts by weight, 0.01 to 0.5 parts by weight of the water-soluble fluoride in terms of fluoride ion, 5 to 50 parts by weight of the zinc-aluminum alloy powder, And / or containing 5 to 30 parts by weight of the cellulose and having a pH in the range of 3.0 to 7.0.
[0056] 請求項 19の発明に係る防食塗料は、水溶性クロム酸化合物と、亜鉛粉末'アルミ二 ゥム粉末 ·亜鉛合金粉末'アルミニウム合金粉末からなる群より選択される少なくとも 一種の金属粉末の表面に高級脂肪酸塩をコーティングしてなる金属成分と、前記高 級脂肪酸塩を分解可能な酸化剤と、グリコール系化合物及び/または α—ヒドロキ シケトンと、水及び/または水溶性有機溶媒とを含有してなる防食被覆組成物と、 10 nm〜300nmの範囲内の外径を有するシリカ殻からなる中空粒子を有機樹脂塗料ま たは無機高分子塗料または有機無機複合塗料中に均一に分散してなる防食組成物 とを混合してなるものである。 [0057] 請求項 20の発明に係る防食塗料は、フッ化ケィ素塩'フッ化チタン塩'フッ化ジルコ ニゥム塩から選ばれる少なくとも 1種のフッ化物塩と、全てが加水分解性基によって置 換されたシリコンモノマー 'チタンモノマー 'ジルコニウムモノマーから選ばれる少なく とも 1種の加水分解性モノマー及び/またはその低縮合物とを反応させてなる無機 膜形成用塗布剤と、 10nm〜300nmの範囲内の外径を有するシリカ殻からなる中空 粒子を有機樹脂塗料または無機高分子塗料または有機無機複合塗料中に均一に 分散してなる防食組成物とを混合してなるものである。 [0056] The anticorrosion paint according to the invention of claim 19 is made of at least one metal powder selected from the group consisting of a water-soluble chromic acid compound and zinc powder 'aluminum powder · zinc alloy powder' aluminum alloy powder. Contains a metal component formed by coating a higher fatty acid salt on the surface, an oxidizing agent capable of decomposing the higher fatty acid salt, a glycol compound and / or α-hydroxyketone, and water and / or a water-soluble organic solvent. An anti-corrosion coating composition comprising the above and hollow particles made of silica shells having an outer diameter in the range of 10 nm to 300 nm are uniformly dispersed in an organic resin paint, an inorganic polymer paint, or an organic-inorganic composite paint. And an anticorrosive composition. [0057] The anticorrosion paint according to the invention of claim 20 is provided with at least one fluoride salt selected from fluorine fluoride salt 'titanium fluoride salt' and zirconium fluoride fluoride salt, all of which are placed by hydrolyzable groups. A coating agent for forming an inorganic film obtained by reacting at least one hydrolyzable monomer selected from 'titanium monomer' and 'zirconium monomer' and / or a low condensate thereof, within a range of 10 nm to 300 nm. A hollow particle composed of silica shells having an outer diameter of 2 is mixed with an anticorrosive composition obtained by uniformly dispersing organic particles in an organic resin paint, an inorganic polymer paint or an organic-inorganic composite paint.
[0058] 請求項 21の発明に係る防食塗料は、アクリル樹脂、ァミノ樹脂、及びリン酸基と水 添ビスフエノール骨格の構造を有するアクリル樹脂とを含有する塗料組成物と、 10η m〜300nmの範囲内の外径を有するシリカ殻からなる中空粒子を有機樹脂塗料ま たは無機高分子塗料または有機無機複合塗料中に均一に分散してなる防食組成物 とを混合してなるものである。  [0058] An anticorrosion paint according to the invention of claim 21 comprises an acrylic resin, an amino resin, and a coating composition containing a phosphoric acid group and an acrylic resin having a hydrogenated bisphenol skeleton structure, and 10ηm to 300nm. Hollow particles composed of silica shells having an outer diameter within the range are mixed with an anticorrosive composition in which organic particles are uniformly dispersed in an organic resin paint, an inorganic polymer paint or an organic-inorganic composite paint.
[0059] 請求項 22の発明に係る防食塗料は、アクリル樹脂、エポキシ樹脂、ブロックポリイソ シァネート化合物、粉末シリカ及び架橋性重合体粒子を含有する防食塗料組成物と 、 10nm〜300nmの範囲内の外径を有するシリカ殻からなる中空粒子を有機樹脂塗 料または無機高分子塗料または有機無機複合塗料中に均一に分散してなる防食組 成物とを混合してなるものである。  [0059] The anticorrosion paint according to the invention of claim 22 includes an anticorrosion paint composition containing an acrylic resin, an epoxy resin, a block polyisocyanate compound, powdered silica, and crosslinkable polymer particles, and a range of 10 nm to 300 nm. Hollow particles composed of silica shells having an outer diameter are mixed with an organic resin coating, an inorganic polymer coating, or an anticorrosion composition that is uniformly dispersed in an organic-inorganic composite coating.
[0060] 請求項 23の発明に係る防食塗料は、請求項 17乃至請求項 22のいずれか 1つの 構成において、前記防食組成物と、前記シリカ殻からなる中空粒子との前記防食塗 料全体に対する合計含有量は 10重量%〜30重量%であり、前記有機樹脂塗料ま たは前記無機高分子塗料または前記有機無機複合塗料の含有量は 70重量%〜9 0重量%であるものである。  [0060] The anticorrosion paint according to the invention of claim 23 is the structure according to any one of claims 17 to 22, wherein the anticorrosion composition and the hollow particles made of the silica shell are used for the entire anticorrosion coating. The total content is 10% by weight to 30% by weight, and the content of the organic resin paint, the inorganic polymer paint or the organic-inorganic composite paint is 70% by weight to 90% by weight.
[0061] 請求項 24の発明に係る防食塗料は、請求項 17乃至請求項 23のいずれか 1つの 構成において、前記シリカ殻からなる中空粒子力 立方体状形態を有するものである [0061] The anticorrosion paint according to the invention of claim 24 has a hollow particle force cubic shape composed of the silica shell in the structure of any one of claims 17 to 23.
Yes
[0062] 請求項 25の発明に係る防食塗料は、請求項 17乃至請求項 24のいずれか 1つの 構成において、前記シリカ殻力 なる中空粒子が、前記有機樹脂塗料または前記無 機高分子塗料または前記有機無機複合塗料に対して、固形分で 4重量%〜; 15重量 %の割合で混合されているものである。 [0062] In the anticorrosion paint according to the invention of claim 25, in the structure of any one of claims 17 to 24, the hollow particles having the silica shell force are the organic resin paint, the organic polymer paint, 15% by weight in solid content with respect to the organic-inorganic composite paint; It is mixed at a rate of%.
[0063] 請求項 26の発明に係る防食塗料は、請求項 17乃至請求項 25のいずれか 1つの 構成において、前記シリカ殻からなる中空粒子の表面にイソシァネート系の表面改質 剤を付加させたものである。  [0063] In the anticorrosion paint according to the invention of claim 26, in the structure of any one of claims 17 to 25, an isocyanate-based surface modifier is added to the surface of the hollow particles made of the silica shell. Is.
[0064] 請求項 27の発明に係るコーティング塗料は、略 30nm〜300nmの範囲内の外径 を有するシリカ殻からなり、立方体状形態を有する中空粒子を有機樹脂塗料または 無機高分子塗料または有機無機複合塗料中に略均一に分散してなるものである。  [0064] The coating paint according to the invention of claim 27 is composed of a silica shell having an outer diameter in the range of about 30 nm to 300 nm, and hollow particles having a cubic shape are made of organic resin paint, inorganic polymer paint or organic inorganic It is formed by dispersing substantially uniformly in the composite paint.
[0065] 請求項 28の発明に係るコーティング塗料は、請求項 27の構成において、前記シリ 力殻からなる中空粒子の表面にイソシァネート系、アルキル系、ビュル系またはアタリ 口キシ系の表面修飾剤を付加させたものである。  [0065] The coating paint according to the invention of claim 28 is characterized in that, in the structure of claim 27, an isocyanate-based, alkyl-based, bur-based or attaxy-oxy-based surface modifier is applied to the surface of the hollow particles made of the silica shell. It is added.
[0066] ここで、「イソシァネート系の表面修飾剤」とは、イソシァネート基(一N = C = 0)を 1 つ以上もった化合物からなる表面修飾剤を意味し、具体例としては、アルキル基にィ ソシァネート基が 3個結合したトリイソシァネート化合物、トリエトキシプロピルイソシァ ネートシラン (TEIS)、等がある。また、「アルキル系の表面修飾剤」とは、アルキル基 を 1つ以上もった化合物からなる表面修飾剤を意味するもので、具体例としては、トリ  Here, the “isocyanate-based surface modifier” means a surface modifier composed of a compound having at least one isocyanate group (one N = C = 0). As a specific example, an alkyl group There are triisocyanate compounds in which three isocyanate groups are bonded, triethoxypropyl isocyanate silane (TEIS), and the like. The term “alkyl-based surface modifier” means a surface modifier composed of a compound having at least one alkyl group.
[0067] 更に、 「ビュル系の表面修飾剤」とは、ビュル基(一 CH = CH )を 1つ以上もった化 合物からなる表面修飾剤を意味し、具体例としては、トリエトキシプロピルビュルシラ ン、等がある。また、「アタリロキシ系の表面修飾剤」とは、アタリ口キシ基を 1つ以上も つた化合物からなる表面修飾剤を意味するもので、具体例としては、トリエトキシプロ [0067] Further, the "bule-based surface modifier" means a surface modifier composed of a compound having one or more bur groups (one CH = CH), and specific examples include triethoxypropyl. There is bursilan. “Atalyloxy-based surface modifier” means a surface modifier composed of a compound having at least one talixoxy group.
[0068] 請求項 29の発明に係るコーティング膜は、基材の表面に形成されたコーティング 膜であって、略 30nm〜300nmの範囲内の外径を有するシリカ殻からなり、立方体 状形態を有する中空粒子を有機樹脂バインダーまたは無機高分子バインダーまたは 有機無機複合バインダー中に略均一に分散してなるものである。ここで、「基材」とし ては、木材、皮革、合成皮革、プラスチック、石材、ガラス、紙、繊維材料を始めとして 、種々の材料がある。 [0068] The coating film according to the invention of claim 29 is a coating film formed on the surface of a substrate, and is composed of a silica shell having an outer diameter in a range of approximately 30 nm to 300 nm, and has a cubic shape. Hollow particles are dispersed substantially uniformly in an organic resin binder, an inorganic polymer binder, or an organic-inorganic composite binder. Here, the “base material” includes various materials such as wood, leather, synthetic leather, plastic, stone, glass, paper, and fiber material.
[0069] なお、本発明において数値に「略」が付されているものは、臨界値、境界値として当 該値が出てきたものではなぐその数値は大凡の値として捉えているものである。 [0069] In the present invention, numerical values with "substantially" are assigned as critical values and boundary values. The numerical value that is not what the value came out of is taken as an approximate value.
[0070] 請求項 30の発明に係るコーティング膜は、請求項 29の構成において、前記基材 は木材、皮革若しくは合成皮革、プラスチック、石材、ガラス、紙または繊維材料であ るものである。 [0070] In the coating film according to the invention of claim 30, in the configuration of claim 29, the substrate is made of wood, leather or synthetic leather, plastic, stone, glass, paper, or a fiber material.
[0071] ここで、 「プラスチック」とは、一般に有機合成樹脂と言われるものであり、ポリエチレ ン.ポリプロピレン.ポリエチレンテレフタレート(PET) 'ナイロン樹脂'アクリル樹脂'ポ リアミド樹脂 ·ポリカーボネート'ポリスチレン ·ポリ塩化ビュル ·ポリァセタール 'フッ素 樹脂等の熱可塑性樹脂、及びウレタン樹脂 ·フエノール樹脂 ·エポキシ樹脂 ·尿素樹 脂'メラミン樹脂 ·不飽和ポリエステル樹脂 ·アルキド樹脂 ·エボナイト等の熱硬化性樹 脂がある。また、「石材」としては、建築材 ·床材等として用いられる御影石 ·大理石の ような高級石材だけでなぐいわゆるコンクリートも含むものとする。更に、「繊維材料」 とは、木綿、絹、麻、羊毛、ナイロン、ビニロン、ポリエステル繊維、アクリル繊維、塩化 ビニリデン繊維、アセテート、レーヨン等の有機質繊維、ガラス繊維、カーボンフアイ バー(カーボン繊維)等の無機質繊維等の繊維自体、若しくはこれらの繊維を混合し てなる混合繊維、またはこれらの繊維を単独で若しくは混用してなる糸を言うものとす  [0071] Here, "plastic" is generally referred to as an organic synthetic resin, such as polyethylene, polypropylene, polyethylene terephthalate (PET) 'nylon resin' acrylic resin, polyamide resin, polycarbonate, polystyrene, polychlorinated. Bull · Polyacetal 'There are thermoplastic resins such as fluorine resin, and urethane resin · phenol resin · epoxy resin · urea resin' melamine resin · unsaturated polyester resin · alkyd resin · ebonite and other thermosetting resins. “Stone” includes so-called concrete made only of high-grade stones such as granite and marble used as building materials and flooring materials. Furthermore, “fiber material” means cotton, silk, hemp, wool, nylon, vinylon, polyester fiber, acrylic fiber, vinylidene chloride fiber, acetate, rayon and other organic fibers, glass fiber, carbon fiber (carbon fiber), etc. The fiber itself, such as inorganic fiber, or mixed fiber obtained by mixing these fibers, or yarn formed by using these fibers alone or in combination.
[0072] 請求項 31の発明に係るコーティング膜は、請求項 29または請求項 30の構成にお いて、前記シリカ殻からなる中空粒子の表面にイソシァネート系、アルキル系、ビュル 系またはアタリロキシ系の表面修飾剤を付加させたものである。 [0072] The coating film according to the invention of claim 31 is the structure of claim 29 or claim 30, wherein the surface of the hollow particle comprising the silica shell is an isocyanate-based, alkyl-based, bur-based, or attaryloxy-based surface. A modifier is added.
発明の効果  The invention's effect
[0073] 請求項 1乃至請求項 3に係る発明では、得られたシリカ殻からなる中空粒子を含有 するポリエステル組成物は、塗料や成形体である繊維、フィルムに加工することにより 、様々な用途において適用できる。  [0073] In the inventions according to claims 1 to 3, the obtained polyester composition containing hollow particles made of silica shells can be used for various purposes by processing into a fiber or film as a paint or a molded body. Applicable in
[0074] そして、請求項 1乃至請求項 3に係る発明の特徴は、金属酸化物からなる中空粒子 を樹脂組成物に含有させることにより、断熱性、軽量性、透明性、吸水性、吸湿性、 着色性、発色性、絶縁性、耐蝕性、耐擦傷性、滑り性、耐摩耗性、耐脱落性を示し、 かつ粗大突起のない優れた成形体を形成し得る樹脂組成物を提供できる点にある。  [0074] And, the feature of the invention according to claims 1 to 3 is that the resin composition contains hollow particles made of a metal oxide, so that heat insulation, light weight, transparency, water absorption, hygroscopicity are obtained. It is possible to provide a resin composition that exhibits colorability, color developability, insulation, corrosion resistance, scratch resistance, slipperiness, wear resistance, drop-off resistance, and can form an excellent molded body without coarse protrusions. It is in.
[0075] 請求項 4の発明に係る反射防止コーティング材は、シリカ殻力 なる立方体状形態 を有する中空粒子の低屈折率及び透光性を利用した反射防止コーティング材であつ て、 30nmから 300nmまでの範囲の外径を有するシリカ殻からなる立方体状形態を 有する中空粒子を有機合成樹脂塗料中に均一に分散してなる。 [0075] The antireflective coating material according to the invention of claim 4 has a cubic shape with silica shell strength. An anti-reflective coating material that utilizes the low refractive index and translucency of hollow particles having a solid shape, and hollow particles having a cubic shape made of silica shells having an outer diameter in the range of 30 nm to 300 nm. It is uniformly dispersed inside.
[0076] 本発明者らは、先に、緻密なシリカ殻からなり、ナノサイズの粒子径でかつ分散性 に優れた、高分散シリカナノ中空粒子及びそれを製造する方法についての発明をし 、その発明について特許出願をしている(特開 2005— 263550号公報)。この発明 に係る高分散シリカナノ中空粒子の製造方法の概略について、図 5を参照して説明 する。図 5はシリカ殻力 なる中空粒子の製造方法の概略を示す説明図である。  [0076] The inventors previously invented a highly dispersed silica nano-hollow particle comprising a dense silica shell, having a nano-sized particle diameter and excellent dispersibility, and a method for producing the same. A patent application has been filed for the invention (Japanese Patent Laid-Open No. 2005-263550). An outline of a method for producing highly dispersed silica nano hollow particles according to the present invention will be described with reference to FIG. FIG. 5 is an explanatory diagram showing an outline of a method for producing hollow particles having silica shell strength.
[0077] 図 5に示されるように、まずコア粒子となる炭酸カルシウム微粒子を結晶成長させる 。ここで生成させる炭酸カルシウムの結晶はカルサイトであり六方晶系である力 合成 条件を制御することにより、あた力、も立方晶系であるかのような形状、即ち「立方体状 形態」に成長させることができる。ここで、「立方体状形態」とは、上述したように、立方 体に限らず面で囲まれた立方体に似た形状を!/、う。この炭酸カルシウムの外径が 20 nm〜200nmとなるように結晶成長させた後に、ゾルーゲル法によりシリコンアルコキ シドゃケィ酸ナトリウムを用いて、炭酸カルシウム微粒子にシリカをコーティングする。  [0077] As shown in FIG. 5, first, calcium carbonate fine particles serving as core particles are crystal-grown. The crystals of calcium carbonate produced here are calcite and hexagonal. By controlling the synthesis conditions, the force is also transformed into a cubic shape, that is, a “cubic shape”. Can be grown. Here, as described above, the “cubic form” is not limited to a cube, but is a shape similar to a cube surrounded by a surface! After crystal growth so that the outer diameter of the calcium carbonate becomes 20 nm to 200 nm, silica is coated on the calcium carbonate fine particles using sodium alkoxide sodium silicate by a sol-gel method.
[0078] 続いて、これを水に分散させて酸を添加して内部の炭酸カルシウムを溶解させて流 出させることによって、立方体状形態を有するシリカ中空粒子が形成される。最後に、 表面修飾や焼成により溶解した炭酸カルシウムが流出した孔を塞ぐことによって、緻 密なシリカ殻からなるシリカ中空粒子 10が製造される。シリカ中空粒子 10の中空部 分 12の内径は、コア粒子の炭酸カルシウム微粒子の外径 20nm〜200nmであり、 緻密なシリカ殻 11の厚さは lnm〜5nm、厚くても 5nm〜20nm前後であるため、シリ 力中空粒子 10の外径は 30nm〜300nmとなる。  [0078] Subsequently, silica hollow particles having a cubic form are formed by dispersing this in water and adding an acid to dissolve and discharge the internal calcium carbonate. Finally, the hollow silica particles 10 composed of a dense silica shell are produced by closing the pores into which the calcium carbonate dissolved by surface modification or firing has flowed out. The hollow portion 12 of the hollow silica particle 10 has an inner diameter of 20 nm to 200 nm of the calcium carbonate fine particle of the core particle, and the dense silica shell 11 has a thickness of lnm to 5 nm, even if it is thick, about 5 nm to 20 nm. Therefore, the outer diameter of the hollow silica particle 10 is 30 nm to 300 nm.
[0079] このように、本発明者らの発明に係る緻密なシリカ殻からなるシリカ中空粒子 10は、 極めて簡単な製造工程で製造することができることから、上記特許文献 2に開示され たシリカ系微粒子と比較して数分の一程度の低コストで製造できる。従って、この緻 密なシリカ殻からなるシリカ中空粒子 10を用いた反射防止コーティング材も、極めて 低コストで製造することカできる。  [0079] As described above, the silica hollow particles 10 composed of the dense silica shell according to the present invention can be produced by a very simple production process. Therefore, the silica-based silica disclosed in Patent Document 2 is used. It can be manufactured at a low cost of about a fraction of that of fine particles. Therefore, the antireflection coating material using the silica hollow particles 10 composed of the dense silica shell can also be produced at an extremely low cost.
[0080] このシリカ中空粒子 10を有機合成樹脂塗料中に均一分散することによって、基板に 塗布した場合にシリカ中空粒子 10が単層で分散した厚さ 0. 5 111〜2. O ^ m程度 の透明な有機合成樹脂塗膜が形成される。この塗膜の屈折率は、内部に空気を含 んだシリカ中空粒子 10が均一に分散しているため、 1. 2〜; 1. 3程度の低屈折率とな り、この塗膜は反射防止膜 (AR膜)として機能する。 [0080] The silica hollow particles 10 are uniformly dispersed in the organic synthetic resin paint to form a substrate. When applied, a transparent organic synthetic resin coating film having a thickness of about 0.5 111 to 2.O ^ m in which silica hollow particles 10 are dispersed in a single layer is formed. The refractive index of this coating film is a low refractive index of about 1.2 to 1.3 because the hollow silica particles 10 containing air are uniformly dispersed inside, and this coating film is reflective. Functions as a prevention film (AR film).
[0081] このようにして、低コストで製造されるシリカ殻からなる立方体状形態を有する中空 粒子の低屈折率及び透光性を利用した、低コストが要求される用途にも使用すること ができる反射防止コーティング材となる。  [0081] In this way, the hollow particles having a cubic shape composed of silica shells manufactured at low cost can be used for applications requiring low cost by utilizing the low refractive index and translucency. It becomes an anti-reflection coating material.
[0082] 請求項 5の発明に係る防眩コーティング材は、シリカ殻からなる立方体状形態を有 する中空粒子の低屈折率、透光性及び二次粒子の乱反射を利用した防眩コーティ ング材であって、 30nmから 300nmまでの範囲の外径を有するシリカ殻からなる立方 体状形態を有する中空一次粒子が凝集した 0· 5 111〜50 111の範囲内の大きさを 有する二次粒子を有機合成樹脂塗料中に均一分散してなる。  [0082] The anti-glare coating material according to the invention of claim 5 is an anti-glare coating material utilizing the low refractive index, translucency, and irregular reflection of secondary particles of a hollow particle having a cubic form made of silica shell. Secondary particles having a size in the range of 0.5 · 111 to 50 111 in which hollow primary particles having a cubic shape composed of silica shells having an outer diameter in the range of 30 nm to 300 nm are aggregated. It is uniformly dispersed in organic synthetic resin paint.
[0083] このようなシリカ殻からなる立方体状形態を有する中空粒子が凝集した二次粒子に ついて、図 6を参照して説明する。図 6は粒径が 50nmから 150nmの外径を有するシ リカ殻からなる立方体状形態を有する中空粒子が凝集した状態を示す透過型電子 顕微鏡 (TEM)写真である。図 6に示されるように、中空粒子が凝集した二次粒子は 、この TEM写真においては約 0· 5 111〜約0. 8 mの大きさを有している力 実際 に得られる二次粒子は 1 ,i m〜5 m程度、更に大き!/、ものでは 5 μ m〜50 μ 程 度の大きさを有している。  [0083] Secondary particles obtained by agglomerating hollow particles having a cubic shape composed of silica shells will be described with reference to FIG. FIG. 6 is a transmission electron microscope (TEM) photograph showing a state in which hollow particles having a cubic shape composed of silica shells having an outer diameter of 50 nm to 150 nm are aggregated. As shown in FIG. 6, the secondary particles in which the hollow particles are agglomerated are forces that have a size of about 0.5 · 111 to about 0.8 m in this TEM photograph. Has a size of about 1, im to 5 m, and even more! /, About 5 μm to 50 μm.
[0084] このような中空粒子が凝集した二次粒子を有機合成樹脂塗料中に均一に分散して 、基板上に薄く塗布することによって、大きい二次粒子は有機合成樹脂の塗膜から 突出する。そして、図 6に示されるように、二次粒子を構成するシリカ中空粒子は立方 体状を有しており、シリカ殻の厚さも lnm〜5nm程度と薄いため、塗膜に対してほぼ 垂直に入射する可視光線はそのまま透過させ、塗膜に対して斜めに入射する可視 光線は散乱させる機能を有する。  [0084] The secondary particles in which the hollow particles are aggregated are uniformly dispersed in the organic synthetic resin paint and thinly coated on the substrate, so that the large secondary particles protrude from the coating film of the organic synthetic resin. . As shown in FIG. 6, the hollow silica particles constituting the secondary particles have a cubic shape, and the thickness of the silica shell is as thin as about 1 nm to 5 nm, so that it is almost perpendicular to the coating film. The incident visible light is transmitted as it is, and the visible light incident obliquely on the coating film is scattered.
[0085] これによつて、正面から入射する光は透過するためコントラストが向上し、斜めから 入射する光は散乱するため室内照明等が映り込むこともない、反射防止性と防眩性 に優れた防眩塗膜 (AG膜)を、低コストで得ること力 Sできる。このようにして、低コスト で製造されるシリカ殻力 なる立方体状形態を有する中空粒子の低屈折率、透光性 及び二次粒子の乱反射を利用した、低コストが要求される用途にも使用することがで きる防眩コーティング材となる。 [0085] This improves the contrast because light incident from the front is transmitted, and the light incident from an angle is scattered, so that indoor lighting is not reflected, and is excellent in antireflection and antiglare properties. It is possible to obtain an anti-glare coating (AG film) at low cost. In this way, low cost Anti-glare that can be used for low-cost applications utilizing low refractive index, translucency, and irregular reflection of secondary particles of hollow particles having a silica-like cubic shape produced by It becomes a coating material.
[0086] 請求項 6の発明に係る反射防止膜は、請求項 5に記載の防眩コーティング材を塗 布してなる塗膜と、請求項 4に記載の反射防止コーティング材を塗布してなる塗膜を 積層してなる。例えば請求項 5に記載の防眩コーティング材を基板に塗布することに よって、上述の如ぐ反射防止性と防眩性に優れた防眩塗膜 (AG膜)となる。この防 眩塗膜の上に、反射防止コーティング材を単層に塗布することによって、反射防止膜 (AR膜)となる。このように、 AG膜の上に AR膜を重ねることによって、室内照明等の 映り込みもなく透明性にも優れて表示装置のコントラストをも向上させることができる、 より良好な特性を有する反射防止膜を得ることができる。  [0086] An antireflection film according to the invention of claim 6 is formed by applying the antiglare coating material according to claim 5 and the antireflection coating material according to claim 4. It is made by laminating a coating film. For example, by applying the antiglare coating material according to claim 5 to the substrate, the antiglare coating film (AG film) having excellent antireflection properties and antiglare properties as described above can be obtained. An antireflection coating (AR film) is formed by applying an antireflection coating material in a single layer on the antiglare coating. In this way, by overlaying the AR film on the AG film, it is possible to improve the contrast of the display device with excellent transparency and no reflection of room lighting etc. A membrane can be obtained.
[0087] このようにして、低コストで製造されるシリカ殻からなる立方体状形態を有する中空 粒子の低屈折率、透光性及び二次粒子の乱反射を利用した、低コストが要求される 用途にも使用することができる反射防止膜となる。  [0087] In this way, low cost is required using the low refractive index, translucency, and irregular reflection of secondary particles of hollow particles having a cubic shape made of silica shells manufactured at low cost. It becomes an antireflection film that can also be used.
[0088] 請求項 7の発明に係る反射防止フィルムは、シリカ殻からなる立方体状形態を有す る中空粒子の低屈折率及び透光性を利用した反射防止フィルムであって、 30nmか ら 300nmまでの範囲の外径を有するシリカ殻からなる立方体状形態を有する中空粒 子を有機合成樹脂フィルム中に均一に分散してなる。  [0088] The antireflection film according to the invention of claim 7 is an antireflection film that utilizes the low refractive index and translucency of hollow particles having a cubic shape made of silica shells, and is 30 nm to 300 nm. Hollow particles having a cubic shape composed of silica shells having an outer diameter in the range up to are uniformly dispersed in an organic synthetic resin film.
[0089] これによつて、シリカ殻が薄ぐ空気の含有体積率が極めて高い立方体状形態を有 する中空粒子が有機合成樹脂フィルム中に均一に分散して、フィルムの屈折率が 1. 2〜; 1. 3と低くなつて反射防止効果の高い反射防止フィルムとなる。このようにして、 低コストで製造されるシリカ殻からなる立方体状形態を有する中空粒子の低屈折率 及び透光性を利用した、低コストが要求される用途にも使用することができる反射防 止フィルムとなる。  Accordingly, hollow particles having a cubic shape with a thin silica shell and a very high volume fraction of air contained therein are uniformly dispersed in the organic synthetic resin film, and the refractive index of the film is 1.2. ~; 1. It becomes a low antireflection film having a high antireflection effect as low as 3. In this way, anti-reflection that can be used for low-cost applications utilizing the low refractive index and translucency of hollow particles having a cubic shape made of silica shells manufactured at low cost. It becomes a stop film.
[0090] 請求項 8の発明に係る防眩フィルムは、シリカ殻からなる立方体状形態を有する中 空粒子の低屈折率、透光性及び二次粒子の乱反射を利用した防眩フィルムであつ て、 30nmから 300nmまでの範囲の外径を有するシリカ殻からなる立方体状形態を 有する中空一次粒子が凝集した 0· 5 m〜50 mの範囲内の大きさを有する二次 粒子を有機合成樹脂フィルム中に均一に分散してなる。 [0090] The antiglare film according to the invention of claim 8 is an antiglare film utilizing the low refractive index, light transmissivity, and irregular reflection of secondary particles of a hollow particle having a cubic shape made of silica shells. Secondary particles having a size in the range of 0.5 m to 50 m, in which hollow primary particles having a cubic shape composed of silica shells having an outer diameter in the range of 30 nm to 300 nm are aggregated The particles are uniformly dispersed in the organic synthetic resin film.
[0091] このようなシリカ殻力、らなる立方体状形態を有する中空一次粒子が凝集した二次粒 子を有機合成樹脂フィルム中に均一に分散することによって、二次粒子を構成する シリカ中空粒子は立方体状を有しており、シリカ殻の厚さも lnm〜5nm程度と薄いた め、フィルムに対してほぼ垂直に入射する可視光線はそのまま透過させ、フィルムに 対して斜めに入射する可視光線は散乱させる機能を有する。  [0091] Silica hollow particles constituting secondary particles by uniformly dispersing secondary particles in which hollow primary particles having a cubic shape such as silica shell force are aggregated in an organic synthetic resin film. Has a cubic shape and the thickness of the silica shell is as thin as about 1 nm to 5 nm. Therefore, visible light incident almost perpendicularly to the film is transmitted as it is, and visible light incident obliquely to the film is not transmitted. Has the function of scattering.
[0092] これによつて、正面から入射する光は透過するためコントラストが向上し、斜めから 入射する光は散乱するため室内照明等が映り込むこともない、反射防止性と防眩性 に優れた防眩フィルムを、低コストで得ることができる。このようにして、低コストで製造 されるシリカ殻力 なる立方体状形態を有する中空粒子の低屈折率、透光性及び二 次粒子の乱反射を利用した、低コストが要求される用途にも使用することができる防 目玄フイノレムとなる。  [0092] Thereby, since the light incident from the front is transmitted, the contrast is improved, and the light incident from the oblique side is scattered, so that the indoor illumination is not reflected, and the antireflection property and the antiglare property are excellent. An antiglare film can be obtained at low cost. In this way, it is also used for applications that require low cost, utilizing the low refractive index, translucency, and irregular reflection of secondary particles of hollow particles having a cubic shape with silica shell strength produced at low cost. It can be a protective geno-Finolem.
[0093] 請求項 9の発明に係る反射防止フィルムは、請求項 8に記載の防眩フィルムと、請 求項 7に記載の反射防止フィルムを積層してなる。請求項 8に記載の防眩フィルムは 、上述の如ぐ反射防止性と防眩性に優れた防眩フィルム (AGフィルム)であるが、 例えばこの防眩フィルムの上に、反射防止フィルム (ARフィルム)を積層することによ つて、室内照明等の映り込みもなく透明性にも優れて表示装置のコントラストをも向上 させること力 Sできる、より良好な特性を有する反射防止フィルムを得ることができる。  [0093] An antireflection film according to the invention of claim 9 is formed by laminating the antiglare film of claim 8 and the antireflection film of claim 7. The antiglare film according to claim 8 is an antiglare film (AG film) having excellent antireflection properties and antiglare properties as described above. For example, on the antiglare film, an antireflection film (AR By laminating film, it is possible to obtain an antireflection film having better characteristics that can improve the contrast of a display device with excellent transparency and no reflection of indoor lighting. it can.
[0094] このようにして、低コストで製造されるシリカ殻からなる立方体状形態を有する中空 粒子の低屈折率、透光性及び二次粒子の乱反射を利用した、低コストが要求される 用途にも使用することができる反射防止フィルムとなる。  [0094] In this way, low cost is required using the low refractive index, translucency, and irregular reflection of secondary particles of hollow particles having a cubic shape made of silica shells manufactured at low cost. It becomes an antireflection film that can also be used.
[0095] 請求項 10の発明に係る反射防止コーティング材、防眩コーティング材、反射防止 膜、反射防止フィルムまたは防眩フィルムは、シリカ殻からなる立方体状形態を有す る中空粒子が 40nm〜 150nmの範囲内の外径、より好ましくは 50nm〜 1 OOnmの 外径を有する。 30nmから 300nmまでの範囲の外径を有するシリカ殻からなる中空 粒子の中でも、 40nm〜; 150nmの外径、より好ましくは 50nm〜; !OOnmの外径を有 するシリカ殻力 なる中空粒子がより製造し易ぐ有機合成樹脂塗料または有機合成 樹脂フィルム中に均一に分散させることが容易である。 [0096] このようにして、低コストで製造されるシリカ殻からなる立方体状形態を有する中空 粒子の低屈折率、透光性及び二次粒子の乱反射を利用した、低コストが要求される 用途にも使用することができる反射防止コーティング材、防眩コーティング材、反射 防止膜、反射防止フィルムまたは防眩フィルムとなる。 [0095] In the antireflection coating material, the antiglare coating material, the antireflection film, the antireflection film or the antiglare film according to the invention of claim 10, hollow particles having a cubic shape composed of silica shells are 40 nm to 150 nm. The outer diameter is within the range of 50 nm to 1 OOnm. Among hollow particles composed of silica shells having an outer diameter in the range of 30 nm to 300 nm, 40 nm or more; 150 nm outer diameter, more preferably 50 nm or more;! Silica shell force hollow particles having an outer diameter of OOnm are more It is easy to disperse uniformly in an organic synthetic resin paint or organic synthetic resin film that is easy to manufacture. [0096] In this way, low cost is required using the low refractive index, translucency, and irregular reflection of secondary particles of hollow particles having a cubic shape made of silica shells manufactured at low cost. An antireflection coating material, an antiglare coating material, an antireflection film, an antireflection film, or an antiglare film that can be used in the present invention.
[0097] 請求項 11の発明に係る防食膜は、アルミニウム、亜鉛、アルミニウムと亜鉛の合金 力、らなる群より選ばれた金属の粒子と、 10nm〜300nmの範囲内の外径を有するシ リカ殻からなる中空粒子を有機樹脂バインダーまたは無機高分子バインダーまたは 有機無機複合バインダー中に均一に分散してなる。ここで、有機樹脂バインダーとし てはイソシァネート アクリル系バインダー等があり、無機高分子バインダーとしては アルキルシリケート加水分解バインダー等があり、有機無機複合バインダーとしては コロイダルシリカとブロックイソシァネートの混合物等がある。  [0097] The anticorrosion film according to the invention of claim 11 is a silica having a metal particle selected from the group consisting of aluminum, zinc, an alloy power of aluminum and zinc, and an outer diameter in the range of 10 nm to 300 nm. Hollow particles made of shells are uniformly dispersed in an organic resin binder, an inorganic polymer binder, or an organic-inorganic composite binder. Here, the organic resin binder includes an isocyanate acrylate binder, the inorganic polymer binder includes an alkyl silicate hydrolysis binder, and the organic inorganic composite binder includes a mixture of colloidal silica and block isocyanate. .
[0098] ここで、シリカ殻からなる中空粒子は、例えば、微結晶で立方体状形態のコロイド状 炭酸カルシウムの表面に、シリコンアルコキシドの加水分解反応によって生成するシ リカを析出させた後、酸処理することによってシリカ層内部の炭酸カルシウムを溶解さ せて、脱水した後に 400°C〜800°Cで焼成処理して溶解した炭酸カルシウムが流出 した孔を塞ぐことによって製造される。  [0098] Here, the hollow particles composed of silica shells are prepared by, for example, precipitating silica generated by the hydrolysis reaction of silicon alkoxide on the surface of colloidal calcium carbonate in the form of microcrystals and cubes, followed by acid treatment. In this way, the calcium carbonate inside the silica layer is dissolved, dehydrated and then fired at 400 ° C. to 800 ° C. to close the pores from which the dissolved calcium carbonate has flowed out.
[0099] ここで、 10nm〜300nmの範囲内の外径を有するシリカ殻からなる中空粒子を有 機樹脂(ポリエステル樹脂)中に均一分散させたものは約 2. 0〜約 3. 0の比誘電率 を有するものであるから、有機樹脂の中でも比誘電率が小さいエポキシ樹脂(比誘電 率約 4. 0)よりもさらに比誘電率が小さぐ優れた絶縁性を示す。そして、シリカ殻から なるナノ中空粒子はその粒子径が 10nmから 300nmまでと小さいため、充分な防食 性能を得るためにシリカ殻からなるナノ中空粒子を 50層以上積層しても、約 20 m 以下と極めて薄レ、膜厚で充分な防食性能を得ることができ、低コストで形成できるとと もに剥がれ難い丈夫な防食膜を得ることができる。  [0099] Here, the ratio of about 2.0 to about 3.0 is obtained by uniformly dispersing hollow particles made of silica shells having an outer diameter in the range of 10 nm to 300 nm in an organic resin (polyester resin). Since it has a dielectric constant, it exhibits excellent insulation with a relative dielectric constant smaller than that of an epoxy resin having a small relative dielectric constant (relative dielectric constant of about 4.0) among organic resins. Nano hollow particles made of silica shells have a particle size as small as 10 nm to 300 nm. Therefore, even if 50 or more nano hollow particles made of silica shells are stacked in order to obtain sufficient anticorrosion performance, it is about 20 m or less. Therefore, it is possible to obtain a sufficient anticorrosion performance with a very thin layer and a film thickness, and to obtain a strong anticorrosion film that can be formed at a low cost and is difficult to peel off.
[0100] 更に、シリカ殻からなる中空粒子を有機樹脂バインダーまたは無機高分子バインダ 一中または有機無機複合バインダーに均一に分散してなる防食膜は、反応で発泡を 起こして気孔を生じさせて絶縁性を高めるものではなぐシリカ殻からなる中空粒子の 中空性によって絶縁性を高めるものであるから、連続気孔が形成される恐れがなくシ リカ殻からなる中空粒子による独立気孔であり、水が沁み込む恐れがない。 [0100] Further, the anticorrosion film in which hollow particles made of silica shells are uniformly dispersed in an organic resin binder or an inorganic polymer binder or in an organic-inorganic composite binder causes foaming by reaction to generate pores and insulate. Since the hollowness of the hollow particles made of silica shells is not intended to enhance the insulating property, the insulating property is enhanced. It is an independent pore made of hollow particles made of licca shell, and there is no risk of water permeating.
[0101] これに加えて、シリカ殻からなる中空粒子が分布していない部分には、アルミニウム[0101] In addition to this, in the portion where the hollow particles of silica shell are not distributed, aluminum
•亜鉛 'アルミニウムと亜鉛の合金、力 なる群より選ばれた金属の粒子が存在してい るため、水が沁み込んできても金属の粒子がインヒビターとして作用して、水の浸入を 食!/、止めるので、極めて優れた防食性能を有する防食膜となる。 Zinc 'Aluminum-zinc alloy, metal particles selected from a powerful group exist, so even if water permeates, the metal particles act as an inhibitor and eat water! / Therefore, the anticorrosion film having extremely excellent anticorrosion performance is obtained.
[0102] このようにして、シリカ殻からなる中空粒子が分布している部分においては水が沁み 込むのを確実に防止し、金属粒子等のインヒビターが分布して!/、る部分にお!/、ては 水が沁み込んできてもインヒビターの作用によって水の浸入を食い止めることによつ て、極めて優れた防食性能を有する防食膜となる。 [0102] In this way, water is reliably prevented from permeating in the portion where the hollow particles of silica shell are distributed, and the inhibitor such as metal particles is distributed! / Even if water permeates, the anti-corrosion film having extremely excellent anti-corrosion performance can be obtained by stopping the intrusion of water by the action of the inhibitor.
[0103] 請求項 12の発明に係る防食膜は、マグネシウム系金属の表面を陽極酸化による酸 化物層で被覆し、酸化物層の表面をアルミニウム系、チタン系またはジルコニウム系 のカップリング剤で変性した変性樹脂及び 10nm〜300nmの範囲内の外径を有す るシリカ殻からなる中空粒子を有機樹脂バインダーまたは無機高分子バインダーまた は有機無機複合バインダー中に均一に分散してなる層で被覆したものである。 [0103] The anticorrosion film according to the invention of claim 12 covers the surface of a magnesium-based metal with an anodized oxide layer, and the surface of the oxide layer is modified with an aluminum-based, titanium-based, or zirconium-based coupling agent. The hollow particles composed of the modified resin and the silica shell having an outer diameter in the range of 10 nm to 300 nm are coated with a layer that is uniformly dispersed in an organic resin binder, an inorganic polymer binder, or an organic-inorganic composite binder. Is.
[0104] ここで、 10nm〜300nmの範囲内の外径を有するシリカ殻からなる中空粒子は空 隙率が高いため、これを有機樹脂バインダーまたは無機高分子バインダー中または 有機無機複合バインダーに均一に分散してなる防食膜は、比誘電率が小さぐ優れ た絶縁性を示す。そして、シリカ殻からなるナノ中空粒子はその粒子径が 10nmから 300nmまでと小さいため、充分な防食性能を得るためにシリカ殻からなるナノ中空粒 子を 50層以上積層しても、約 20 m以下と極めて薄い膜厚で充分な防食性能を得 ることができ、低コストで形成できるとともに剥がれ難い丈夫な防食膜を得ることができ [0104] Here, since hollow particles made of silica shells having an outer diameter in the range of 10 nm to 300 nm have high porosity, they are uniformly distributed in an organic resin binder or an inorganic polymer binder or in an organic-inorganic composite binder. The anticorrosion film formed by dispersion exhibits excellent insulation with a small relative dielectric constant. Nano hollow particles made of silica shells have a small particle size from 10 nm to 300 nm, so even if 50 or more nano hollow particles made of silica shells are stacked to obtain sufficient anti-corrosion performance, about 20 m With the following extremely thin film thickness, sufficient anticorrosion performance can be obtained, and a durable anticorrosion film that can be formed at low cost and difficult to peel off can be obtained.
[0105] 更に、シリカ殻からなる中空粒子を有機樹脂バインダーまたは無機高分子バインダ 一中または有機無機複合バインダーに均一に分散してなる防食膜は、反応で発泡を 起こして気孔を生じさせて絶縁性を高めるものではなぐシリカ殻からなる中空粒子の 中空性によって絶縁性を高めるものであるから、連続気孔が形成される恐れがなくシ リカ殻からなる中空粒子による独立気孔であり、水が沁み込む恐れがない。 [0105] Further, the anticorrosion film in which hollow particles made of silica shells are uniformly dispersed in an organic resin binder, an inorganic polymer binder, or an organic-inorganic composite binder causes foaming by reaction to generate pores and insulate. Insulation is enhanced by the hollowness of the hollow particles made of silica shells that do not increase the properties, so there is no risk of continuous pores being formed, and they are independent pores made of hollow particles made of silica shells. There is no fear of entering.
[0106] これに加えて、シリカ殻からなる中空粒子が分布していない部分は、マグネシウム 系金属の表面を陽極酸化してなる陽極酸化皮膜で被覆されているため、水が沁み 込んできても陽極酸化皮膜力 Sインヒビターとして作用して、水の浸入を食い止めるの で、極めて優れた防食性能を有するマグネシウム系金属の防食膜となる。 [0106] In addition to this, the portion where the hollow particles of silica shell are not distributed is magnesium. Since the surface of the base metal is covered with an anodized film formed by anodizing, even if water permeates, it acts as an anodized film force S-inhibitor and prevents water from entering. It becomes a magnesium-based metal anticorrosion film having performance.
[0107] このようにして、シリカ殻からなる中空粒子が分布している部分においては水が沁み 込むのを確実に防止し、陽極酸化皮膜で被覆されて!/、る部分にお!/、ては水が沁み 込んできてもインヒビターの作用によって水の浸入を食い止めることによって、極めて 優れた防食性能を有する防食膜となる。  [0107] In this way, in the portion where the hollow particles composed of the silica shell are distributed, water is surely prevented from permeating, and the portion covered with the anodized film! For example, even if water has permeated, by inhibiting the ingress of water by the action of the inhibitor, an anticorrosion film having extremely excellent anticorrosion performance can be obtained.
[0108] 請求項 13の発明に係る防食膜は、アルミニウムまたはアルミニウム合金の表面に形 成された防食膜であって、コロイド状シリカとオルガノアルコキシシラン部分加水分解 縮合物と不飽和エチレン単量体の重合体または共重合体と、 10nm〜300nmの範 囲内の外径を有するシリカ殻からなる中空粒子とを、有機樹脂バインダーまたは無機 高分子バインダーまたは有機無機複合バインダー中に均一に分散してなる。  [0108] The anticorrosion film according to the invention of claim 13 is an anticorrosion film formed on the surface of aluminum or an aluminum alloy, comprising colloidal silica, an organoalkoxysilane partial hydrolysis condensate, and an unsaturated ethylene monomer. And a hollow particle composed of a silica shell having an outer diameter in the range of 10 nm to 300 nm is uniformly dispersed in an organic resin binder, an inorganic polymer binder, or an organic-inorganic composite binder. .
[0109] ここで、 10nm〜300nmの範囲内の外径を有するシリカ殻からなる中空粒子を有 機樹脂バインダーまたは無機高分子バインダー中または有機無機複合バインダーに 均一に分散してなる防食膜は、上述の如く空隙率が高ぐ比誘電率が小さぐ優れた 絶縁性を示す。そして、シリカ殻からなるナノ中空粒子はその粒子径が 10nmから 30 Onmまでと小さいため、充分な防食性能を得るためにシリカ殻からなるナノ中空粒子 を 50層以上積層しても、約 20 m以下と極めて薄い膜厚で充分な防食性能を得る ことができ、低コストで形成できるとともに剥がれ難い丈夫な防食膜を得ることができる [0109] Here, the anticorrosion film in which hollow particles composed of silica shells having an outer diameter in the range of 10 nm to 300 nm are uniformly dispersed in an organic resin binder or an inorganic polymer binder or in an organic-inorganic composite binder, As described above, it exhibits excellent insulation properties with a high porosity and a low relative dielectric constant. Nano hollow particles made of silica shells have a particle size as small as 10 nm to 30 Onm, so even if 50 or more nano hollow particles made of silica shells are stacked in order to obtain sufficient anticorrosion performance, about 20 m It is possible to obtain sufficient anticorrosion performance with an extremely thin film thickness as follows, and to obtain a strong anticorrosion film that can be formed at low cost and is difficult to peel off.
Yes
[0110] 更に、シリカ殻からなる中空粒子を有機樹脂バインダーまたは無機高分子バインダ 一中または有機無機複合バインダーに均一に分散してなる防食膜は、反応で発泡を 起こして気孔を生じさせて絶縁性を高めるものではなぐシリカ殻からなる中空粒子の 中空性によって絶縁性を高めるものであるから、連続気孔が形成される恐れがなくシ リカ殻からなる中空粒子による独立気孔であり、水が沁み込む恐れがない。  [0110] Further, the anticorrosion film in which hollow particles made of silica shells are uniformly dispersed in an organic resin binder or an inorganic polymer binder or in an organic / inorganic composite binder causes foaming by reaction to generate pores and insulate. Insulation is enhanced by the hollowness of the hollow particles made of silica shells that do not increase the properties, so there is no risk of continuous pores being formed, and they are independent pores made of hollow particles made of silica shells. There is no fear of entering.
[0111] これに加えて、シリカ殻からなる中空粒子が分布していない部分は、コロイド状シリ 力とオルガノアルコキシシラン部分加水分解縮合物と不飽和エチレン単量体の重合 体または共重合体が分布しているため、水が沁み込んできてもインヒビターとして作 用して、水の浸入を食い止めるので、極めて優れた防食性能を有するアルミニウムま たはアルミニウム合金の防食膜となる。 [0111] In addition to this, the portion where the hollow particles of silica shell are not distributed is a polymer or copolymer of colloidal silica force, organoalkoxysilane partial hydrolysis condensate and unsaturated ethylene monomer. Because it is distributed, it works as an inhibitor even if water is swallowed. Therefore, the intrusion of water is stopped, so that it becomes an anticorrosion film of aluminum or aluminum alloy having extremely excellent anticorrosion performance.
[0112] このようにして、シリカ殻からなる中空粒子が分布している部分においては水が沁み 込むのを確実に防止し、陽極酸化皮膜で被覆されて!/、る部分にお!/、ては水が沁み 込んできてもインヒビターの作用によって水の浸入を食い止めることによって、極めて 優れた防食性能を有する防食膜となる。  [0112] In this way, in the portion where the hollow particles made of silica shells are distributed, water is surely prevented from entering, and the portion covered with the anodic oxide film! / For example, even if water has permeated, by inhibiting the ingress of water by the action of the inhibitor, an anticorrosion film having extremely excellent anticorrosion performance can be obtained.
[0113] 請求項 14の発明に係る防食膜においては、シリカ殻からなる中空粒子が立方体状 形態を有する。立方体状形態を有するシリカ殻力 なる中空粒子を製造する方法とし ては、立方体状形態を有する微結晶のコロイド状炭酸カルシウムや立方体状炭酸力 ルシゥムの表面に、シリコンアルコキシドの加水分解反応によって生成するシリカを析 出させた後、酸処理することによってシリカ層内部の炭酸カルシウムを溶解させて、 脱水した後に 400°C〜800°Cで焼成処理して溶解した炭酸カルシウムが流出した孔 を塞ぐことによって製造される。  [0113] In the anticorrosion film according to the invention of claim 14, the hollow particles made of silica shells have a cubic form. As a method of producing hollow particles having a silica shell force having a cubic shape, a microcrystalline colloidal calcium carbonate having a cubic shape or a surface of a cubic carbonate power lucum is formed by a hydrolysis reaction of silicon alkoxide. After depositing the silica, the calcium carbonate inside the silica layer is dissolved by acid treatment, and after dehydration, the pores into which the dissolved calcium carbonate has flowed out are sealed by baking at 400 ° C to 800 ° C. Manufactured by.
[0114] したがって、請求項 11乃至請求項 13に記載の効果に加えて、炭酸カルシウム微結 晶の立方体状形態が転写された中空粒子となり、し力、もシリカ殻の厚さが 3nm〜15n mと薄いため空隙率が 70%〜80%と極めて高ぐ絶縁性のより高い中空粒子となる 。また、立方体状形態を有するため、球状の中空粒子よりも充填率が高くなるという作 用効果も得られる。  [0114] Therefore, in addition to the effects described in claims 11 to 13, the cubic form of calcium carbonate microcrystals is transferred to hollow particles, and the force and the thickness of the silica shell are 3 nm to 15 n. Since it is as thin as m, the porosity is 70% to 80%, resulting in highly insulating hollow particles. In addition, since it has a cubic shape, the effect that the filling rate is higher than that of spherical hollow particles can be obtained.
[0115] このようにして、シリカ殻からなる立方体状形態を有する中空粒子が分布している部 分にぉレ、ては水が沁み込むのを確実に防止し、インヒビターを含む皮膜で被覆され てレ、る部分にぉレ、ては水が沁み込んできてもインヒビターの作用によって水の浸入を 食い止めることによって、極めて優れた防食性能を有する防食膜となる。  [0115] In this way, the hollow particles having a cubic shape composed of silica shells are reliably prevented from stagnation and water squeezing and coated with a film containing an inhibitor. Therefore, even if water stagnates into the area, it stops the intrusion of water by the action of the inhibitor, so that the anticorrosion film having extremely excellent anticorrosion performance is obtained.
[0116] 請求項 15の発明に係る防食膜においては、シリカ殻からなる中空粒子が、有機樹 脂バインダーまたは無機高分子バインダーまたは有機無機複合バインダーに対して 、固形分で 4重量%〜; 15重量%の割合で混合されている。  [0116] In the anticorrosion film according to the invention of claim 15, the hollow particles made of silica shell are 4% by weight or more in solid content with respect to the organic resin binder, the inorganic polymer binder or the organic-inorganic composite binder; It is mixed in the ratio of weight%.
[0117] シリカ殻からなるナノ中空粒子は中空であるため比重が小さぐ固形分で 4重量% 混合するだけでも防食膜中に占める体積%は充分に大きぐ防食膜の絶縁性を高め て防食性を向上させることができる。一方、混合量が固形分で 15重量%を超えると、 粘性が高くなつて取扱いがし難くなる。したがって、防食膜におけるシリカ殻からなる 中空粒子の混合量は、有機樹脂バインダー等に対して固形分で 4重量%〜; 15重量 %の割合が最も適切である。 [0117] Nano hollow particles made of silica shells are hollow, so the solid content with a small specific gravity is 4% by weight. Even if they are mixed, the volume percentage in the anticorrosion film is sufficiently large. Can be improved. On the other hand, if the mixing amount exceeds 15% by weight, It becomes difficult to handle due to high viscosity. Therefore, the mixing amount of the hollow particles composed of silica shells in the anticorrosion film is most suitable in a ratio of 4 wt% to 15 wt% in solid content with respect to the organic resin binder or the like.
[0118] このようにして、 10nm〜300nmの範囲内の外径を有するシリカ殻からなる中空粒 子の絶縁性を利用して、取扱いがし易くかつ確実に防食性を向上させることができ、 独立気孔で水が沁み込む恐れがなぐ塗膜の厚さを 20 m以下まで薄くすることが できる防食膜となる。 [0118] In this way, by utilizing the insulating properties of the hollow particles made of silica shells having an outer diameter in the range of 10 nm to 300 nm, the corrosion resistance can be improved easily and reliably, It is an anti-corrosion film that can reduce the thickness of the coating to 20 m or less without the risk of water permeating through independent pores.
[0119] 請求項 16の発明に係る防食膜においては、シリカ殻からなる中空粒子の表面にィ ソシァネート系の表面改質剤を付加させたものである。ここで、「イソシァネート系の表 面改質剤」とは、イソシァネート基(一 N = C =〇)を 1つ以上もった化合物からなる表 面改質剤を意味するものであり、具体例としては、アルキル基にイソシァネート基が 3 個結合したトリイソシァネート化合物、トリエトキシプロピルイソシァネートシラン (TEIS )、等がある。  [0119] In the anticorrosion film according to the invention of claim 16, an isocyanate-based surface modifier is added to the surface of the hollow particles made of silica shell. Here, the “isocyanate-based surface modifier” means a surface modifier composed of a compound having at least one isocyanate group (one N = C = 〇). Are triisocyanate compounds in which three isocyanate groups are bonded to an alkyl group, triethoxypropyl isocyanate silane (TEIS), and the like.
[0120] このようなイソシァネート系の表面改質剤を、シリカ殻からなる中空粒子の表面に存 在する水酸基(一 OH)を介して付加させ、シリカ殻からなる中空粒子の全表面をイソ シァネート系の表面改質剤でコーティングすることによって、再凝集を防止することが できて分散性が向上し、また有機樹脂バインダー等に混合する場合にも有機樹脂等 の活性基とイソシァネート基とが反応することによって、有機樹脂バインダー等とシリ 力殻力 なる中空粒子との強固な結合が得られる。  [0120] Such an isocyanate-based surface modifier is added via hydroxyl groups (1 OH) present on the surface of the hollow particles made of silica shell, and the entire surface of the hollow particles made of silica shell is added to the isocyanate. By coating with a surface modifier of the system, reagglomeration can be prevented and dispersibility is improved, and when mixed with an organic resin binder, the active group of the organic resin reacts with the isocyanate group. By doing so, it is possible to obtain a strong bond between the organic resin binder or the like and the hollow particles having a shell force.
[0121] このようにして、有機樹脂バインダー等に混合する場合に分散性が向上するととも に有機樹脂バインダー等とシリカ殻力もなる中空粒子との強固な結合が得られる、シ リカ殻力 なる中空粒子の絶縁性を利用した防食膜となる。  [0121] In this way, when mixed with an organic resin binder or the like, the dispersibility is improved and a strong bond between the organic resin binder or the like and the hollow particles having silica shell strength is obtained. It becomes an anticorrosion film using the insulating properties of the particles.
[0122] 請求項 17の発明に係る防食塗料は、水溶性三価クロム化合物と、水溶性フッ化物 と、亜鉛 アルミニウム合金粉末と、グリコール類及び/またはセルロース類とを含有 する金属防食用被覆組成物と、 10nm〜300nmの範囲内の外径を有するシリカ殻 からなる中空粒子を有機樹脂塗料または無機高分子塗料または有機無機複合塗料 中に均一に分散してなる防食組成物とを混合してなる。ここで、有機樹脂塗料として はイソシァネート アクリル系塗料等があり、無機高分子塗料としてはアルキルシリケ ート加水分解塗料等があり、有機無機複合塗料としてはコロイダルシリカとブロックィ ソシァネートの混合物等がある。 [0122] The anticorrosion paint according to the invention of claim 17 is a coating composition for metal anticorrosion comprising a water-soluble trivalent chromium compound, a water-soluble fluoride, zinc-aluminum alloy powder, glycols and / or celluloses. And an anticorrosive composition in which hollow particles composed of silica shells having an outer diameter in the range of 10 nm to 300 nm are uniformly dispersed in an organic resin paint, an inorganic polymer paint, or an organic-inorganic composite paint. Become. Here, organic resin paints include isocyanate acrylic paints, and inorganic polymer paints include alkyl silicate. As an organic-inorganic composite paint, there is a mixture of colloidal silica and block isocyanate.
[0123] 本発明に係る防食塗料のうち、金属防食用被覆組成物においては、亜鉛—アルミ ニゥム合金粉末を用いることによって、亜鉛粉末の数倍から数十倍といわれる優れた 合金粉末の耐食性を発揮せしめて耐食皮膜の長寿命化に成功したものであり、フッ 化物を添加することによって三価クロム化合物の防食性を補強すること及び被防食 体表面の不動態化を図ると同時に皮膜密着性を向上せしめる複合防食効果を有す るものである。 [0123] Among the anticorrosive paints according to the present invention, in the coating composition for metal anticorrosion, by using a zinc-aluminum alloy powder, the corrosion resistance of the excellent alloy powder, which is said to be several times to several tens of times that of the zinc powder, is improved. The corrosion-resistant film has been successfully used to prolong the service life, and by adding fluoride, the corrosion resistance of the trivalent chromium compound is reinforced and the surface of the body to be protected is passivated and at the same time the film adhesion is improved. It has a combined anti-corrosion effect that improves
[0124] また、防食組成物においては、 10nm〜300nmの範囲内の外径を有するシリカ殻 力 なる中空粒子は、上述の如く空隙率が高いため、これを有機樹脂塗料または無 機高分子塗料または有機無機複合塗料に均一に分散してなる防食組成物を塗布し て形成される防食膜は、比誘電率が小さぐ優れた絶縁性を示す。そして、シリカ殻 力もなるナノ中空粒子はその粒子径が 10nmから 300nmまでと小さいため、充分な 防食性能を得るためにシリカ殻からなるナノ中空粒子を 50層以上積層しても、約 20 μ m以下と極めて薄い膜厚で充分な防食性能を得ることができ、低コストで形成でき るとともに剥がれ難い丈夫な防食膜を得ることができる。  [0124] In addition, in the anticorrosion composition, the hollow particles having a silica shell strength having an outer diameter in the range of 10 nm to 300 nm have a high porosity as described above, and thus are used as organic resin paints or organic polymer paints. Alternatively, an anticorrosion film formed by applying an anticorrosion composition uniformly dispersed in an organic-inorganic composite paint exhibits excellent insulation with a small relative dielectric constant. Nano hollow particles that also have silica shell strength are small from 10 nm to 300 nm, so even if 50 or more layers of nano hollow particles made of silica shells are stacked in order to obtain sufficient anti-corrosion performance, about 20 μm Sufficient anticorrosion performance can be obtained with an extremely thin film thickness as described below, and a strong anticorrosion film that can be formed at low cost and hardly peeled off can be obtained.
[0125] 更に、シリカ殻力 なる中空粒子を有機樹脂塗料または無機高分子塗料または有 機無機複合塗料に均一に分散してなる防食組成物を塗布して形成される防食膜は 、反応で発泡を起こして気孔を生じさせて絶縁性を高めるものではなぐシリカ殻から なる中空粒子の中空性によって絶縁性を高めるものであるから、連続気孔が形成さ れる恐れがなくシリカ殻からなる中空粒子による独立気孔であり、水が沁み込む恐れ がない。  [0125] Further, the anticorrosion film formed by applying an anticorrosion composition in which hollow particles having silica shell strength are uniformly dispersed in an organic resin paint, an inorganic polymer paint or an organic-inorganic composite paint is foamed by reaction. This is because the hollowness of the hollow particles made of silica shells does not increase the insulating properties by causing pores to raise the insulating properties, so the hollow particles made of silica shells have no fear of forming continuous pores. It is an independent pore and there is no risk of water ingestion.
[0126] これに加えて、シリカ殻からなる中空粒子が分布していない部分は、水溶性三価ク ロム化合物と、水溶性フッ化物と、亜鉛 アルミニウム合金粉末と、グリコール類及び /またはセルロース類とを含有する金属防食用皮膜で被覆されているため、水が沁 み込んできても水溶性三価クロム化合物と亜鉛 アルミニウム合金粉末カインヒビタ 一として作用して、水の浸入を食い止めるので、極めて優れた防食性能を有する防 食膜となる。 [0127] このようにして、シリカ殻からなる中空粒子が分布している部分においては水が沁み 込むのを確実に防止し、金属防食用被覆組成物皮膜で被覆されて!/、る部分にお!/、 ては水が沁み込んできてもインヒビターの作用によって水の浸入を食い止めることに よって、極めて優れた防食性能を有する防食膜を形成することができる防食塗料とな [0126] In addition, the portion where the hollow particles composed of silica shells are not distributed includes a water-soluble trivalent chromium compound, a water-soluble fluoride, a zinc aluminum alloy powder, glycols and / or celluloses. Because it is coated with a metal anticorrosive film containing water, it acts as a water-soluble trivalent chromium compound and zinc aluminum alloy powder inhibitor even if water has permeated, and is extremely excellent because it prevents water from entering. It becomes an anticorrosion film having anticorrosion performance. [0127] In this way, in the portion where the hollow particles composed of the silica shell are distributed, water is surely prevented from permeating, and the portion coated with the metal anticorrosive coating composition film is! / O! /, Even if water has permeated, by inhibiting the intrusion of water by the action of the inhibitor, it becomes an anticorrosion paint that can form an anticorrosion film having extremely excellent anticorrosion performance.
[0128] 請求項 18の発明に係る防食塗料は、請求項 17の構成において、金属防食用被覆 組成物が、水 100重量部に対して水溶性三価クロム化合物を Cr O 換算で 0. 2重 量部〜 10重量部、水溶性フッ化物をフッ素イオン換算で 0. 01重量部〜 0. 5重量部 、亜鉛 アルミニウム合金粉末を 5重量部〜 50重量部、グリコール類及び/または セルロース類を 5重量部〜 30重量部含有し、 pHが 3· 0〜7. 0の範囲内にある。 [0128] The anticorrosion paint according to the invention of claim 18 is the anticorrosion coating composition according to claim 17, wherein the metal anticorrosion coating composition comprises 0.2 parts of water-soluble trivalent chromium compound in terms of Cr 2 O in 100 parts by weight of water. Parts by weight to 10 parts by weight, water-soluble fluoride in terms of fluoride ions from 0.01 to 0.5 parts by weight, zinc aluminum alloy powder from 5 to 50 parts by weight, glycols and / or celluloses Contains 5 to 30 parts by weight, and has a pH in the range of 3.0 to 7.0.
[0129] 上記請求項 17の発明に係る防食塗料の金属防食用被覆組成物において、水 100 重量部に対して水溶性三価クロム化合物を Cr O 換算で 0. 2重量部〜 10重量部、 水溶性フッ化物をフッ素イオン換算で 0. 01重量部〜 0. 5重量部、亜鉛 アルミユウ ム合金粉末を 5重量部〜 50重量部、グリコール類及び/またはセルロース類を 5重 量部〜 30重量部含有することによって、より優れた合金粉末の耐食性を発揮せしめ て耐食皮膜の更なる長寿命化を可能にする。また、 pHを 3. 0〜7. 0の範囲内に調 整することによって、水溶性フッ化物の濃度が高いために低 pHとなって合金粉末が 溶解 ·ゲル化することを防止すること力 Sできる。 [0129] In the coating composition for metal anticorrosion of the anticorrosive coating according to the invention of claim 17, the water-soluble trivalent chromium compound is 0.2 to 10 parts by weight in terms of Cr 2 O with respect to 100 parts by weight of water. 0.01 to 0.5 parts by weight of water-soluble fluoride in terms of fluoride ions, 5 to 50 parts by weight of zinc aluminum alloy powder, 5 to 30 parts by weight of glycols and / or celluloses By containing a part, the corrosion resistance of the superior alloy powder can be demonstrated and the life of the corrosion-resistant film can be further extended. In addition, by adjusting the pH within the range of 3.0 to 7.0, it is possible to prevent the alloy powder from dissolving and gelling due to a low pH due to the high concentration of water-soluble fluoride. S can.
[0130] このようにして、シリカ殻からなる中空粒子が分布している部分においては水が沁み 込むのを確実に防止し、金属防食用被覆組成物皮膜で被覆されて!/、る部分にお!/、 ては水が沁み込んできてもインヒビターの作用によって水の浸入を食い止めることに よって、極めて優れた防食性能を有する防食膜を形成することができる防食塗料とな [0130] In this way, in the portion where the hollow particles composed of the silica shell are distributed, water is surely prevented from being squeezed, and the portion coated with the metal anticorrosive coating composition film is! / O! /, Even if water has permeated, by inhibiting the intrusion of water by the action of the inhibitor, it becomes an anticorrosion paint that can form an anticorrosion film having extremely excellent anticorrosion performance.
[0131] 請求項 19の発明に係る防食塗料は、水溶性クロム酸化合物と、亜鉛粉末'アルミ二 ゥム粉末 ·亜鉛合金粉末'アルミニウム合金粉末からなる群より選択される少なくとも 一種の金属粉末の表面に高級脂肪酸塩をコーティングしてなる金属成分と、高級脂 肪酸塩を分解可能な酸化剤と、グリコール系化合物及び/または α—ヒドロキシケト ンと、水及び/または水溶性有機溶媒とを含有してなる防食被覆組成物と、 10nm〜 300nmの範囲内の外径を有するシリカ殻からなる中空粒子を有機樹脂塗料または 無機高分子塗料または有機無機複合塗料中に均一に分散してなる防食組成物とを 混合してなる。 [0131] The anticorrosion paint according to the invention of claim 19 is made of at least one metal powder selected from the group consisting of a water-soluble chromic acid compound and zinc powder 'aluminum powder · zinc alloy powder' aluminum alloy powder. A metal component formed by coating a higher fatty acid salt on the surface, an oxidizing agent capable of decomposing higher fatty acid salts, a glycol compound and / or α-hydroxyketone, and water and / or a water-soluble organic solvent. An anticorrosive coating composition comprising 10 nm to A hollow particle composed of silica shells having an outer diameter in the range of 300 nm is mixed with an anticorrosive composition in which organic particles are uniformly dispersed in an organic resin paint, an inorganic polymer paint or an organic-inorganic composite paint.
[0132] 10nm〜300nmの範囲内の外径を有するシリカ殻からなる中空粒子は、上述の如 く空隙率が高いため、これを有機樹脂塗料または無機高分子塗料または有機無機 複合塗料に均一に分散してなる防食組成物を塗布して形成される防食膜は、比誘 電率が小さぐ優れた絶縁性を示す。そして、シリカ殻からなるナノ中空粒子はその 粒子径が 10nmから 300nmまでと小さいため、充分な防食性能を得るためにシリカ 殻からなるナノ中空粒子を 50層以上積層しても、約 20 m以下と極めて薄い膜厚で 充分な防食性能を得ることができ、低コストで形成できるとともに剥がれ難い丈夫な防 食膜を得ること力できる。  [0132] Since hollow particles made of silica shells having an outer diameter in the range of 10 nm to 300 nm have a high porosity as described above, they are uniformly applied to organic resin paints, inorganic polymer paints, or organic-inorganic composite paints. An anticorrosion film formed by applying a dispersed anticorrosion composition exhibits excellent insulating properties with a small specific dielectric constant. Nano hollow particles made of silica shells have a small particle size from 10 nm to 300 nm, so even if 50 or more nano hollow particles made of silica shells are stacked to obtain sufficient anticorrosion performance, the hollow particle is about 20 m or less. With a very thin film thickness, sufficient anticorrosion performance can be obtained, and it is possible to obtain a strong anticorrosion film that can be formed at low cost and is difficult to peel off.
[0133] 更に、シリカ殻力 なる中空粒子を有機樹脂塗料または無機高分子塗料または有 機無機複合塗料に均一に分散してなる防食組成物を塗布して形成される防食膜は 、反応で発泡を起こして気孔を生じさせて絶縁性を高めるものではなぐシリカ殻から なる中空粒子の中空性によって絶縁性を高めるものであるから、連続気孔が形成さ れる恐れがなくシリカ殻からなる中空粒子による独立気孔であり、水が沁み込む恐れ がない。  [0133] Further, the anticorrosion film formed by applying an anticorrosion composition in which hollow particles having silica shell strength are uniformly dispersed in an organic resin paint, an inorganic polymer paint or an organic-inorganic composite paint is foamed by reaction. This is because the hollowness of the hollow particles made of silica shells does not increase the insulating properties by causing pores to raise the insulating properties, so the hollow particles made of silica shells have no fear of forming continuous pores. It is an independent pore and there is no risk of water ingestion.
[0134] これに加えて、シリカ殻からなる中空粒子が分布していない部分は、水溶性クロム 酸化合物と、亜鉛粉末 ·アルミニウム粉末 ·亜鉛合金粉末 ·アルミニウム合金粉末から なる群より選択される少なくとも一種の金属粉末とを含有する防食被覆組成物皮膜で 被覆されて!/ヽるため、水が沁み込んできても水溶性クロム酸化合物と亜鉛粉末等が インヒビターとして作用して、水の浸入を食い止めるので、極めて優れた防食性能を 有する防食膜となる。  [0134] In addition, the portion where the hollow particles of silica shell are not distributed is at least selected from the group consisting of a water-soluble chromic acid compound and zinc powder, aluminum powder, zinc alloy powder, and aluminum alloy powder. Because it is coated with an anti-corrosion coating composition film containing a kind of metal powder, water-soluble chromic acid compound and zinc powder act as an inhibitor even if water has permeated, preventing water from entering. Since it stops, it becomes an anticorrosive film having extremely excellent anticorrosion performance.
[0135] このようにして、シリカ殻からなる中空粒子が分布している部分においては水が沁み 込むのを確実に防止し、金属防食用被覆組成物皮膜で被覆されて!/、る部分にお!/、 ては水が沁み込んできてもインヒビターの作用によって水の浸入を食い止めることに よって、極めて優れた防食性能を有する防食膜を形成することができる防食塗料とな [0136] 請求項 20の発明に係る防食塗料は、フッ化ケィ素塩'フッ化チタン塩'フッ化ジルコ ニゥム塩から選ばれる少なくとも 1種のフッ化物塩と、全てが加水分解性基によって置 換されたシリコンモノマー 'チタンモノマー 'ジルコニウムモノマーから選ばれる少なく とも 1種の加水分解性モノマー及び/またはその低縮合物とを反応させてなる無機 膜形成用塗布剤と、 10nm〜300nmの範囲内の外径を有するシリカ殻からなる中空 粒子を有機樹脂塗料または無機高分子塗料または有機無機複合塗料中に均一に 分散してなる防食組成物とを混合してなる。 [0135] In this way, in the portion where the hollow particles composed of the silica shell are distributed, water is surely prevented from being squeezed, and the portion coated with the metal anticorrosive coating composition film is! / O! /, Even if water has permeated, by inhibiting the intrusion of water by the action of the inhibitor, it becomes an anticorrosion paint that can form an anticorrosion film having extremely excellent anticorrosion performance. [0136] The anticorrosion paint according to the invention of claim 20 is provided with at least one fluoride salt selected from a fluoride salt, a titanium fluoride salt, and a zirconium fluoride salt, all of which are placed by a hydrolyzable group. A coating agent for forming an inorganic film obtained by reacting at least one hydrolyzable monomer selected from 'titanium monomer' and 'zirconium monomer' and / or a low condensate thereof, within a range of 10 nm to 300 nm. A hollow particle made of silica shell having an outer diameter of is mixed with an anticorrosive composition in which an organic resin paint, an inorganic polymer paint or an organic-inorganic composite paint is uniformly dispersed.
[0137] 10nm〜300nmの範囲内の外径を有するシリカ殻からなる中空粒子は、上述の如 く空隙率が高いため、これを有機樹脂塗料または無機高分子塗料または有機無機 複合塗料に均一に分散してなる防食組成物を塗布して形成される防食膜は、比誘 電率が小さぐ優れた絶縁性を示す。そして、シリカ殻からなるナノ中空粒子はその 粒子径が 10nmから 300nmまでと小さいため、充分な防食性能を得るためにシリカ 殻からなるナノ中空粒子を 50層以上積層しても、約 20 m以下と極めて薄い膜厚で 充分な防食性能を得ることができ、低コストで形成できるとともに剥がれ難い丈夫な防 食膜を得ること力できる。  [0137] Hollow particles made of silica shells having an outer diameter in the range of 10 nm to 300 nm have a high porosity as described above, so that they are uniformly applied to organic resin paints, inorganic polymer paints, or organic-inorganic composite paints. An anticorrosion film formed by applying a dispersed anticorrosion composition exhibits excellent insulating properties with a small specific dielectric constant. Nano hollow particles made of silica shells have a small particle size from 10 nm to 300 nm, so even if 50 or more nano hollow particles made of silica shells are stacked to obtain sufficient anticorrosion performance, the hollow particle is about 20 m or less. With a very thin film thickness, sufficient anticorrosion performance can be obtained, and it is possible to obtain a strong anticorrosion film that can be formed at low cost and is difficult to peel off.
[0138] 更に、シリカ殻力 なる中空粒子を有機樹脂塗料または無機高分子塗料または有 機無機複合塗料に均一に分散してなる防食組成物を塗布して形成される防食膜は 、反応で発泡を起こして気孔を生じさせて絶縁性を高めるものではなぐシリカ殻から なる中空粒子の中空性によって絶縁性を高めるものであるから、連続気孔が形成さ れる恐れがなくシリカ殻からなる中空粒子による独立気孔であり、水が沁み込む恐れ がない。  [0138] Further, the anticorrosion film formed by applying an anticorrosion composition in which hollow particles having silica shell strength are uniformly dispersed in an organic resin paint, an inorganic polymer paint or an organic-inorganic composite paint is foamed by reaction. This is because the hollowness of the hollow particles made of silica shells does not increase the insulating properties by causing pores to raise the insulating properties, so the hollow particles made of silica shells have no fear of forming continuous pores. It is an independent pore and there is no risk of water ingestion.
[0139] これに加えて、シリカ殻からなる中空粒子が分布していない部分は、シリコンモノマ 一'チタンモノマ一'ジルコニウムモノマーから選ばれる少なくとも 1種の加水分解性 モノマーが高分子化した金属ポリマーを含有する無機膜形成用塗布剤皮膜で被覆 されているため、水が沁み込んできても金属ポリマーがインヒビターとして作用して、 水の浸入を食レ、止めるので、極めて優れた防食性能を有する防食膜となる。  [0139] In addition, the portion where the hollow particles composed of silica shells are not distributed is a metal polymer in which at least one hydrolyzable monomer selected from silicon monomer, titanium monomer and zirconium monomer is polymerized. Since it is covered with the coating film for inorganic film formation it contains, the metal polymer acts as an inhibitor even if water has permeated, preventing the ingress of water, so it has extremely excellent anticorrosion performance. Become a film.
[0140] このようにして、シリカ殻からなる中空粒子が分布している部分においては水が沁み 込むのを確実に防止し、金属防食用被覆組成物皮膜で被覆されて!/、る部分にお!/、 ては水が沁み込んできてもインヒビターの作用によって水の浸入を食い止めることに よって、極めて優れた防食性能を有する防食膜を形成することができる防食塗料とな [0140] In this way, in the portion where the hollow particles composed of silica shells are distributed, water is surely prevented from permeating, and the portion covered with the metal anticorrosive coating composition film is! / Oh! / In this way, even if water has sunk, it is possible to form an anticorrosion coating that can form an anticorrosion film having extremely excellent anticorrosion performance by inhibiting the intrusion of water by the action of an inhibitor.
[0141] 請求項 21の発明に係る防食塗料は、アクリル樹脂、ァミノ樹脂、及びリン酸基と水 添ビスフエノール骨格の構造を有するアクリル樹脂とを含有する塗料組成物と、 10η m〜300nmの範囲内の外径を有するシリカ殻からなる中空粒子を有機樹脂塗料ま たは無機高分子塗料または有機無機複合塗料中に均一に分散してなる防食組成物 とを混合してなる。 [0141] The anticorrosion paint according to the invention of claim 21 comprises an acrylic resin, an amino resin, and a paint composition containing a phosphoric acid group and an acrylic resin having a hydrogenated bisphenol skeleton structure, and 10 ηm to 300 nm. Hollow particles composed of silica shells having an outer diameter within the range are mixed with an anticorrosive composition in which organic particles are uniformly dispersed in an organic resin paint, an inorganic polymer paint or an organic-inorganic composite paint.
[0142] 10nm〜300nmの範囲内の外径を有するシリカ殻からなる中空粒子は、上述の如 く空隙率が高いため、これを有機樹脂塗料または無機高分子塗料または有機無機 複合塗料に均一に分散してなる防食組成物を塗布して形成される防食膜は、比誘 電率が小さぐ優れた絶縁性を示す。そして、シリカ殻からなるナノ中空粒子はその 粒子径が lOnmから 300nmまでと小さいため、充分な防食性能を得るためにシリカ 殻からなるナノ中空粒子を 50層以上積層しても、約 20 m以下と極めて薄い膜厚で 充分な防食性能を得ることができ、低コストで形成できるとともに剥がれ難い丈夫な防 食膜を得ること力できる。  [0142] Since hollow particles made of silica shells having an outer diameter in the range of 10 nm to 300 nm have a high porosity as described above, they are uniformly applied to organic resin paints, inorganic polymer paints, or organic-inorganic composite paints. An anticorrosion film formed by applying a dispersed anticorrosion composition exhibits excellent insulating properties with a small specific dielectric constant. Nano hollow particles made of silica shells have a particle size as small as lOnm to 300 nm, so even if 50 or more nano hollow particles made of silica shells are stacked in order to obtain sufficient anticorrosion performance, about 20 m or less With a very thin film thickness, sufficient anticorrosion performance can be obtained, and it is possible to obtain a strong anticorrosion film that can be formed at low cost and is difficult to peel off.
[0143] 更に、シリカ殻力 なる中空粒子を有機樹脂塗料または無機高分子塗料または有 機無機複合塗料に均一に分散してなる防食組成物を塗布して形成される防食膜は 、反応で発泡を起こして気孔を生じさせて絶縁性を高めるものではなぐシリカ殻から なる中空粒子の中空性によって絶縁性を高めるものであるから、連続気孔が形成さ れる恐れがなくシリカ殻からなる中空粒子による独立気孔であり、水が沁み込む恐れ がない。  [0143] Further, the anticorrosion film formed by applying an anticorrosion composition in which hollow particles having silica shell strength are uniformly dispersed in an organic resin paint, an inorganic polymer paint or an organic-inorganic composite paint is foamed by reaction. This is because the hollowness of the hollow particles made of silica shells does not increase the insulating properties by causing pores to raise the insulating properties, so the hollow particles made of silica shells have no fear of forming continuous pores. It is an independent pore and there is no risk of water ingestion.
[0144] これに加えて、シリカ殻からなる中空粒子が分布していない部分は、リン酸基と水添 ビスフエノール骨格の構造を有するアクリル樹脂を含有する塗料組成物皮膜で被覆 されているため、水が沁み込んできてもリン酸基力 Sインヒビターとして作用して、水の 浸入を食い止めるので、極めて優れた防食性能を有する防食膜となる。  [0144] In addition, the portion where the hollow particles of silica shell are not distributed is covered with a coating composition film containing an acrylic resin having a phosphoric acid group and hydrogenated bisphenol skeleton structure. Even if water is swallowed, it acts as a phosphate basic S inhibitor and prevents water from entering, resulting in an anticorrosion film having extremely excellent anticorrosion performance.
[0145] このようにして、シリカ殻からなる中空粒子が分布している部分においては水が沁み 込むのを確実に防止し、金属防食用被覆組成物皮膜で被覆されて!/、る部分にお!/、 ては水が沁み込んできてもインヒビターの作用によって水の浸入を食い止めることに よって、極めて優れた防食性能を有する防食膜を形成することができる防食塗料とな [0145] In this way, in the portion where the hollow particles made of silica shells are distributed, water is surely prevented from being squeezed, and the portion coated with the metal anticorrosive coating composition film is! / Oh! / In this way, even if water has sunk, it is possible to form an anticorrosion coating that can form an anticorrosion film having extremely excellent anticorrosion performance by inhibiting the intrusion of water by the action of an inhibitor.
[0146] 請求項 22の発明に係る防食塗料は、アクリル樹脂、エポキシ樹脂、ブロックポリイソ シァネート化合物、粉末シリカ及び架橋性重合体粒子を含有する防食塗料組成物と 、 10nm〜300nmの範囲内の外径を有するシリカ殻からなる中空粒子を有機樹脂塗 料または無機高分子塗料または有機無機複合塗料中に均一に分散してなる防食組 成物とを混合してなる。 [0146] An anticorrosion paint according to the invention of claim 22 is an anticorrosion paint composition containing an acrylic resin, an epoxy resin, a block polyisocyanate compound, powdered silica, and crosslinkable polymer particles, and is in the range of 10 nm to 300 nm. Hollow particles composed of silica shells having an outer diameter are mixed with an organic resin coating, an inorganic polymer coating or an organic / inorganic composite coating and an anticorrosion composition formed by uniformly dispersing the hollow particles.
[0147] 10nm〜300nmの範囲内の外径を有するシリカ殻からなる中空粒子は、上述の如 く空隙率が高いため、これを有機樹脂塗料または無機高分子塗料または有機無機 複合塗料に均一に分散してなる防食組成物を塗布して形成される防食膜は、比誘 電率が小さぐ優れた絶縁性を示す。そして、シリカ殻からなるナノ中空粒子はその 粒子径が 10nmから 300nmまでと小さいため、充分な防食性能を得るためにシリカ 殻からなるナノ中空粒子を 50層以上積層しても、約 20 m以下と極めて薄い膜厚で 充分な防食性能を得ることができ、低コストで形成できるとともに剥がれ難い丈夫な防 食膜を得ること力できる。  [0147] The hollow particles composed of silica shells having an outer diameter in the range of 10 nm to 300 nm have a high porosity as described above, and thus are uniformly applied to organic resin paints, inorganic polymer paints, or organic-inorganic composite paints. An anticorrosion film formed by applying a dispersed anticorrosion composition exhibits excellent insulating properties with a small specific dielectric constant. Nano hollow particles made of silica shells have a small particle size from 10 nm to 300 nm, so even if 50 or more nano hollow particles made of silica shells are stacked to obtain sufficient anticorrosion performance, the hollow particle is about 20 m or less. With a very thin film thickness, sufficient anticorrosion performance can be obtained, and it is possible to obtain a strong anticorrosion film that can be formed at low cost and is difficult to peel off.
[0148] 更に、シリカ殻力 なる中空粒子を有機樹脂塗料または無機高分子塗料または有 機無機複合塗料に均一に分散してなる防食組成物を塗布して形成される防食膜は 、反応で発泡を起こして気孔を生じさせて絶縁性を高めるものではなぐシリカ殻から なる中空粒子の中空性によって絶縁性を高めるものであるから、連続気孔が形成さ れる恐れがなくシリカ殻からなる中空粒子による独立気孔であり、水が沁み込む恐れ がない。  [0148] Further, the anticorrosion film formed by applying an anticorrosion composition in which hollow particles having silica shell strength are uniformly dispersed in an organic resin paint, an inorganic polymer paint or an organic inorganic composite paint is foamed by reaction. This is because the hollowness of the hollow particles made of silica shells does not increase the insulating properties by causing pores to raise the insulating properties, so the hollow particles made of silica shells have no fear of forming continuous pores. It is an independent pore and there is no risk of water ingestion.
[0149] これに加えて、シリカ殻からなる中空粒子が分布していない部分は、粉末シリカ及 び架橋性重合体粒子を含有する防食塗料組成物皮膜で被覆されているため、水が 沁み込んできても粉末シリカ力 Sインヒビターとして作用して、水の浸入を食い止めるの で、極めて優れた防食性能を有する防食膜となる。  [0149] In addition, the portion where the hollow particles composed of the silica shell are not distributed is covered with the anticorrosion coating composition film containing the powdered silica and the crosslinkable polymer particles, so that water is swallowed. Even if it can, it acts as a powder silica force S inhibitor and stops the intrusion of water, resulting in an anticorrosion film having extremely excellent anticorrosion performance.
[0150] このようにして、シリカ殻からなる中空粒子が分布している部分においては水が沁み 込むのを確実に防止し、金属防食用被覆組成物皮膜で被覆されて!/、る部分にお!/、 ては水が沁み込んできてもインヒビターの作用によって水の浸入を食い止めることに よって、極めて優れた防食性能を有する防食膜を形成することができる防食塗料とな [0150] In this way, in the portion where the hollow particles composed of the silica shell are distributed, water is surely prevented from being squeezed, and the portion coated with the metal anticorrosive coating composition film is! / Oh! / In this way, even if water has sunk, it is possible to form an anticorrosion coating that can form an anticorrosion film having extremely excellent anticorrosion performance by inhibiting the intrusion of water by the action of an inhibitor.
[0151] 請求項 23の発明に係る防食塗料においては、防食組成物と、シリカ殻からなる中 空粒子との防食塗料全体に対する合計含有量は 10重量%〜30重量%であり、有 機樹脂塗料または無機高分子塗料または有機無機複合塗料の含有量は 70重量% 〜90重量%である。 [0151] In the anticorrosion paint according to the invention of claim 23, the total content of the anticorrosion composition and the hollow particles made of silica shell is 10 wt% to 30 wt%, and the organic resin The content of the paint, the inorganic polymer paint or the organic-inorganic composite paint is 70% to 90% by weight.
[0152] 特に、防食組成物が 7. 5重量%〜; 12. 5重量%で、シリカ殻からなる中空粒子が 7.  [0152] In particular, the anticorrosive composition is 7.5 wt% to 12.5 wt%, and hollow particles composed of silica shells are 7.
5重量%〜; 12. 5重量%で、有機樹脂塗料または無機高分子塗料または有機無機 複合塗料の含有量が 75重量%〜85重量%であることが、より好ましい。  More preferably, the content of the organic resin paint, the inorganic polymer paint or the organic-inorganic composite paint is 75% by weight to 85% by weight.
[0153] 本発明者らは、鋭意実験研究の結果、防食組成物とシリカ殻力 なる中空粒子との 合計含有量が 10重量%〜30重量%で、有機樹脂塗料または無機高分子塗料また は有機無機複合塗料の含有量が 70重量%〜90重量%である場合に、より好ましく は防食組成物の含有量が 7. 5重量%〜; 12. 5重量%で、シリカ殻からなる中空粒子 の含有量が 7. 5重量%〜; 12. 5重量%で、有機樹脂塗料等の含有量が 75重量% 〜85重量%である場合に、最も良好な結果が得られることを見出し、この知見に基 づいて本発明を完成したものである。  [0153] As a result of diligent experimental research, the present inventors have found that the total content of the anticorrosive composition and the hollow particles having silica shell strength is 10 wt% to 30 wt%, and the organic resin paint or inorganic polymer paint or When the content of the organic-inorganic composite coating is 70% by weight to 90% by weight, more preferably, the content of the anticorrosive composition is 7.5% by weight to 12.5% by weight, and the hollow particles made of silica shell It is found that the best results can be obtained when the content of the organic resin paint is 75% by weight to 85% by weight. The present invention has been completed based on knowledge.
[0154] 即ち、防食組成物の含有量とシリカ殻からなる中空粒子の含有量がほぼ等しぐ両 者の合計含有量が 20重量%前後であり、残り 80重量%前後が有機樹脂塗料等であ る場合に、防食塗料として最も扱い易い粘度となり、金属表面等に塗布した場合に、 最も防食力に優れた防食膜を形成することができる。  [0154] That is, the total content of both of the anticorrosive composition content and the hollow particle content of silica shell is almost equal to about 20% by weight, and the remaining about 80% by weight is organic resin paint, etc. In this case, the viscosity becomes the most easy to handle as an anticorrosion paint, and when applied to a metal surface or the like, an anticorrosion film having the most excellent anticorrosion ability can be formed.
[0155] このようにして、シリカ殻からなる中空粒子が分布している部分においては水が沁み 込むのを確実に防止し、インヒビターで被覆されて!/、る部分にお!/、ては水が沁み込 んできてもインヒビターの作用によって水の浸入を食い止めることによって、極めて優 れた防食性能を有し、塗料として扱い易い粘度となる防食塗料となる。  [0155] In this way, it is possible to reliably prevent water from entering the portion where the hollow particles composed of the silica shell are distributed, and to cover the portion covered with the inhibitor! / Even if water can permeate, by inhibiting the intrusion of water by the action of the inhibitor, it becomes an anticorrosion paint having extremely excellent anticorrosion performance and a viscosity that is easy to handle as a paint.
[0156] 請求項 24の発明に係る防食塗料においては、シリカ殻からなる中空粒子が立方体 状形態を有する。立方体状形態を有するシリカ殻力 なる中空粒子を製造する方法 としては、立方体状形態を有する微結晶のコロイド状炭酸カルシウムまたは立方体状 炭酸カルシウムの表面に、シリコンアルコキシドの加水分解反応によって生成するシ リカを析出させた後、酸処理することによってシリカ層内部の炭酸カルシウムを溶解さ せて、脱水した後に 400°C〜800°Cで焼成処理して溶解した炭酸カルシウムが流出 した孔を塞ぐことによって製造される。 [0156] In the anticorrosion paint according to the invention of claim 24, the hollow particles made of the silica shell have a cubic form. As a method for producing hollow particles having a silica shell force having a cubic shape, a microcrystalline colloidal calcium carbonate having a cubic shape or a cubic shape is used. Silica produced by the hydrolysis reaction of silicon alkoxide is deposited on the surface of calcium carbonate, and then the calcium carbonate in the silica layer is dissolved by acid treatment and dehydrated, and then 400 ° C to 800 ° C. It is manufactured by closing the pores from which the calcium carbonate dissolved by baking treatment.
[0157] したがって、請求項 17乃至請求項 23に記載の効果に加えて、炭酸カルシウム微結 晶の立方体状形態が転写された中空粒子となり、し力、もシリカ殻の厚さが 3nm〜15n mと薄いため空隙率が 70%〜80%と極めて高ぐ絶縁性のより高い中空粒子となる 。また、立方体状形態を有するため、球状の中空粒子よりも充填率が高くなるという作 用効果も得られる。 [0157] Therefore, in addition to the effects of claims 17 to 23, the cubic form of calcium carbonate fine crystals is transferred to hollow particles, and the force and the thickness of the silica shell are 3 nm to 15 n. Since it is as thin as m, the porosity is 70% to 80%, resulting in highly insulating hollow particles. In addition, since it has a cubic shape, the effect that the filling rate is higher than that of spherical hollow particles can be obtained.
[0158] このようにして、シリカ殻からなる立方体状形態を有する中空粒子が分布している部 分にぉレ、ては水が沁み込むのを確実に防止し、インヒビターを含む皮膜で被覆され てレ、る部分にぉレ、ては水が沁み込んできてもインヒビターの作用によって水の浸入を 食い止めることによって、極めて優れた防食性能を有する防食膜を形成することがで きる防食塗料となる。  [0158] In this way, the hollow particles having a cubic shape composed of silica shells are reliably prevented from stagnation and water squeezing and coated with a film containing an inhibitor. Even if water spills into the surface, it can be an anti-corrosion paint that can form an anti-corrosion film with extremely excellent anti-corrosion performance by preventing water from entering due to the action of the inhibitor. .
[0159] 請求項 25の発明に係る防食塗料においては、シリカ殻からなる中空粒子は、有機 樹脂塗料または無機高分子塗料または有機無機複合塗料に対して、固形分で 4重 量%〜15重量%の割合で、より好ましくは固形分で 8重量%〜; 12重量%の割合で 混合されている。  [0159] In the anticorrosion paint according to the invention of claim 25, the hollow particles made of silica shells are in a solid content of 4% by weight to 15% by weight with respect to the organic resin paint, the inorganic polymer paint or the organic-inorganic composite paint. %, More preferably 8% by weight to solid content; and 12% by weight.
[0160] 本発明者らは、鋭意実験研究の結果、シリカ殻力 なる中空粒子は、有機樹脂塗 料等に対して、固形分で 4重量%〜; 15重量%の割合で、より好ましくは固形分で 8重 量%〜12重量%の割合で混合されている場合に、最も良好な結果が得られることを 見出し、この知見に基づいて本発明を完成させたものである。  [0160] As a result of diligent experimental research, the present inventors have determined that the hollow particles having silica shell strength are in a proportion of 4 wt% to 15 wt% in terms of solid content with respect to the organic resin coating or the like, and more preferably. It has been found that the best results can be obtained when the solid content is mixed in a ratio of 8 to 12% by weight, and the present invention has been completed based on this finding.
[0161] 即ち、シリカ殻力 なる中空粒子の混合割合が有機樹脂塗料等に対して固形分で 4重量%未満であると、中空粒子の割合が少な過ぎて十分な防食性を得ることができ ず、一方中空粒子の混合割合が有機樹脂塗料等に対して固形分で 15重量%を超 えると、粘度が上昇し過ぎて取り扱いにくくなつてしまう。したがって、シリカ殻からなる 中空粒子の混合割合が有機樹脂塗料等に対して固形分で 4重量%〜; 15重量%の 範囲内であることが好ましい。 [0162] 更に、シリカ殻力 なる中空粒子の混合割合が有機樹脂塗料等に対して 8重量% 〜; 12重量%の範囲内であると、防食塗料としての粘度も適切なものとなり、また塗膜 となった場合の中空粒子の充填率も最大となるため、防食性能も一段と高くなつてよ り好ましい。 [0161] That is, when the mixing ratio of the hollow particles having silica shell strength is less than 4 wt% in terms of solid content with respect to the organic resin paint or the like, the ratio of the hollow particles is too small and sufficient corrosion resistance can be obtained. On the other hand, if the mixing ratio of the hollow particles exceeds 15% by weight in solid content with respect to the organic resin paint, etc., the viscosity rises too much and it becomes difficult to handle. Accordingly, the mixing ratio of the hollow particles made of silica shell is preferably in the range of 4 wt% to 15 wt% in solid content with respect to the organic resin paint or the like. [0162] Further, when the mixing ratio of the hollow particles having silica shell strength is within the range of 8% by weight to 12% by weight with respect to the organic resin paint or the like, the viscosity as the anticorrosion paint becomes appropriate and the coating is performed. Since the filling rate of the hollow particles in the case of a film is maximized, it is more preferable that the anticorrosion performance is further enhanced.
[0163] このようにして、シリカ殻からなる中空粒子が分布している部分においては水が沁み 込むのを確実に防止し、インヒビターで被覆されて!/、る部分にお!/、ては水が沁み込 んできてもインヒビターの作用によって水の浸入を食い止めることによって、極めて優 れた防食性能を有する防食塗料となる。  [0163] In this way, in the portion where the hollow particles of silica shells are distributed, water is surely prevented from being swallowed, and the portion covered with the inhibitor! Even if water can permeate, by inhibiting the intrusion of water by the action of the inhibitor, it becomes an anticorrosion paint having extremely excellent anticorrosion performance.
[0164] 請求項 26の発明に係る防食塗料においては、シリカ殻からなる中空粒子の表面に イソシァネート系の表面改質剤を付加させたものである。ここで、「イソシァネート系の 表面改質剤」とは、イソシァネート基(一 N = C =〇)を 1つ以上もった化合物からなる 表面改質剤を意味するものであり、具体例としては、アルキル基にイソシァネート基が 3個結合したトリイソシァネート化合物、トリエトキシプロピルイソシァネートシラン (TEI S)、等がある。  [0164] In the anticorrosion paint according to the invention of claim 26, an isocyanate-based surface modifier is added to the surface of the hollow particles made of silica shell. Here, the “isocyanate-based surface modifier” means a surface modifier composed of a compound having at least one isocyanate group (one N = C = 〇). As a specific example, Examples include triisocyanate compounds in which three isocyanate groups are bonded to an alkyl group, triethoxypropyl isocyanate silane (TEIS), and the like.
[0165] このようなイソシァネート系の表面改質剤を、シリカ殻からなる中空粒子の表面に存 在する水酸基(一 OH)を介して付加させ、シリカ殻からなる中空粒子の全表面をイソ シァネート系の表面改質剤でコーティングすることによって、再凝集を防止することが できて分散性が向上し、また有機樹脂塗料等に混合する場合にも有機樹脂等の活 性基とイソシァネート基とが反応することによって、有機樹脂等とシリカ殻からなる中 空粒子との強固な結合が得られる。  [0165] Such an isocyanate-based surface modifier is added via hydroxyl groups (one OH) present on the surface of the hollow particles made of silica shell, and the entire surface of the hollow particles made of silica shell is added to the isocyanate. By coating with a surface modifier of the system, reagglomeration can be prevented and dispersibility is improved, and when mixed with an organic resin paint, an active group such as an organic resin and an isocyanate group are present. By reacting, a strong bond between the organic resin or the like and the hollow particles made of the silica shell can be obtained.
[0166] このようにして、有機樹脂塗料等に混合する場合に分散性が向上するとともに有機 樹脂等とシリカ殻からなる中空粒子との強固な結合が得られ、シリカ殻からなる中空 粒子が分布して!/、る部分にお!/、ては水が沁み込むのを確実に防止し、インヒビター で被覆されてレ、る部分にぉレ、ては水が沁み込んできてもインヒビターの作用によって 水の浸入を食い止めることによって、極めて優れた防食性能を有する防食塗料となる [0166] Thus, when mixed with an organic resin paint or the like, the dispersibility is improved, and a strong bond between the organic resin and the hollow particles made of silica shells is obtained, and the hollow particles made of silica shells are distributed. This prevents the water from squeezing into the part! / And the part that is covered with the inhibitor, and the action of the inhibitor even when the part is covered with the inhibitor and the water is squeezed into the part. By preventing water from entering, it becomes an anticorrosive paint with extremely excellent anticorrosion performance
Yes
[0167] 請求項 27の発明に係るコーティング塗料は、略 30nm〜300nmの範囲内の外径 を有するシリカ殻からなり、立方体状形態を有する中空粒子を有機樹脂塗料または 無機高分子塗料または有機無機複合塗料中に略均一に分散してなる。 [0167] The coating paint according to the invention of claim 27 is composed of a silica shell having an outer diameter in a range of approximately 30 nm to 300 nm, and hollow particles having a cubic form are formed into an organic resin paint or It is dispersed substantially uniformly in the inorganic polymer paint or organic-inorganic composite paint.
[0168] 力、かるコーティング塗料を基材に塗布してコーティング膜を形成することによって、 このコーティング膜は薄膜でも耐摩耗性に優れているため基材の外観を変化させる ことがなぐし力、も光沢を殆ど有しておらず、また基材の表面の凹凸に沿って形成さ れるため、基材の質感及び触感を損ねることがない。更に、シリカ殻からなる中空粒 子の断熱性によって基材の表面を難燃性にすることができ、シリカ殻からなる中空粒 子の高硬度によって表面硬度が高くなり、基材の表面の傷付きを防ぐことができる。 [0168] By forming a coating film by applying a strong coating paint to the substrate, this coating film is excellent in wear resistance even in a thin film, so that the appearance of the substrate can be changed, Has almost no gloss and is formed along the unevenness of the surface of the substrate, so that the texture and feel of the substrate are not impaired. Furthermore, the surface of the base material can be made flame retardant by the heat insulating property of the hollow particles made of silica shell, and the surface hardness is increased by the high hardness of the hollow particles made of silica shell, so that the surface of the base material is not damaged. Can prevent sticking.
[0169] そして、基材の種類に応じてコーティング塗料のベースとなる塗料を有機樹脂塗料 または無機高分子塗料または有機無機複合塗料とすることによって、コーティング塗 料と基材との密着性を確保することができ、あらゆる基材に適用することができる汎用 性の高!/ヽコーティング塗料となる。  [0169] And, by making the base paint of the coating paint into an organic resin paint, an inorganic polymer paint, or an organic-inorganic composite paint depending on the type of the base material, the adhesion between the coating paint and the base material is secured. It can be applied to any base material and becomes a highly versatile! / ヽ coating paint.
[0170] このようにして、略 30nmから 300nmまでの範囲の外径を有するシリカ殻からなる中 空粒子の断熱性、耐摩耗性、高硬度及び透明性を利用することによって、あらゆる基 材に適用することができる汎用性の高いコーティング塗料であって、基材本来の質感 や触感を失わせることがなぐ表面硬度が高く傷付きを確実に防止できるコーティン グ膜を形成できるコーティング塗料となる。  [0170] In this way, by utilizing the heat insulating property, wear resistance, high hardness and transparency of the hollow particles composed of silica shells having an outer diameter in the range of approximately 30 nm to 300 nm, it can be applied to any substrate. It is a highly versatile coating paint that can be applied, and it can form a coating film that has high surface hardness that can prevent the original texture and feel of the substrate from being lost, and that can reliably prevent scratches.
[0171] 請求項 28の発明に係るコーティング塗料においては、シリカ殻からなる中空粒子の 表面にイソシァネート系、アルキル系、ビュル系またはアタリロキシ系の表面修飾剤を 付加させている。  [0171] In the coating paint according to the invention of claim 28, an isocyanate, alkyl, bur, or attaryloxy surface modifier is added to the surface of the hollow particles made of silica shells.
[0172] ここで、「イソシァネート系の表面修飾剤」とは、イソシァネート基(一N = C = 0)を 1 つ以上もった化合物からなる表面修飾剤を意味し、具体例としては、アルキル基にィ ソシァネート基が 3個結合したトリイソシァネート化合物、トリエトキシプロピルイソシァ ネートシラン (TEIS)、等がある。また、「アルキル系の表面修飾剤」とは、アルキル基 を 1つ以上もった化合物からなる表面修飾剤を意味するもので、具体例としては、トリ  [0172] Here, the "isocyanate-based surface modifier" means a surface modifier composed of a compound having one or more isocyanate groups (one N = C = 0). There are triisocyanate compounds in which three isocyanate groups are bonded, triethoxypropyl isocyanate silane (TEIS), and the like. The term “alkyl-based surface modifier” means a surface modifier composed of a compound having at least one alkyl group.
[0173] 更に、 「ビュル系の表面修飾剤」とは、ビュル基(一 CH = CH )を 1つ以上もった化 合物からなる表面修飾剤を意味し、具体例としては、トリエトキシプロピルビュルシラ ン、等がある。また、「アタリロキシ系の表面修飾剤」とは、アタリ口キシ基を 1つ以上も つた化合物からなる表面修飾剤を意味するもので、具体例としては、トリエトキシプロ
Figure imgf000037_0001
[0173] Furthermore, the "bule surface modifier" means a surface modifier composed of a compound having one or more bur groups (one CH = CH), and specific examples include triethoxypropyl. There is bursilan. In addition, “Atalyloxy-based surface modifier” means at least one talixyloxy group. A surface modifying agent composed of two compounds, and specific examples include triethoxy
Figure imgf000037_0001
[0174] このようなイソシァネート系、アルキル系、ビュル系またはアタリロキシ系の表面修飾 剤を、シリカ殻からなる中空粒子の表面に存在する水酸基(- OH)を介して付加さ せ、シリカ殻からなる中空粒子の全表面をイソシァネート系、アルキル系、ビュル系ま たはアタリロキシ系の表面修飾剤でコーティングすることによって、コーティング塗料 における再凝集を防止することができて分散性が向上し、また有機樹脂塗料等に混 合する場合にも有機樹脂等の活性基とイソシァネート基、アルキル基、ビュル基また はアタリロキシ基とが反応することによって、有機樹脂等とシリカ殻からなる中空粒子 との強固な結合が得られる。  [0174] Such an isocyanate-based, alkyl-based, bur-based or attaryloxy-based surface modifier is added via a hydroxyl group (-OH) present on the surface of a hollow particle composed of a silica shell to form a silica shell. By coating the entire surface of the hollow particles with an isocyanate, alkyl, bur or talyloxy surface modifier, re-aggregation in the coating can be prevented and dispersibility is improved. When mixed with paints, etc., the active groups such as organic resins react with isocyanate groups, alkyl groups, bur groups, or talyloxy groups, so that strong bonds between organic resins and hollow particles made of silica shells can be obtained. Is obtained.
[0175] このようにして、有機樹脂塗料等に混合する場合に分散性が向上するとともに有機 樹脂等とシリカ殻からなる中空粒子との強固な結合が得られ、略 30nm〜300nmの 外径を有するシリカ殻からなる中空粒子の断熱性、耐摩耗性、高硬度及び透明性を 利用することによって、断熱性、耐摩耗性、高硬度及び透明性を有するコーティング 膜を形成できるコーティング塗料となる。  [0175] In this way, when mixed with an organic resin paint or the like, the dispersibility is improved, and a strong bond between the organic resin and the hollow particles made of silica shell is obtained, and the outer diameter is approximately 30 nm to 300 nm. By using the heat insulating property, wear resistance, high hardness and transparency of the hollow particles made of silica shells, it becomes a coating paint that can form a coating film having heat insulating properties, wear resistance, high hardness and transparency.
[0176] 請求項 29の発明に係るコーティング膜は、基材の表面に形成されたコーティング 膜であって、略 30nm〜300nmの範囲内の外径を有するシリカ殻からなり、立方体 状形態を有する中空粒子を有機樹脂バインダーまたは無機高分子バインダーまたは 有機無機複合バインダー中に略均一に分散してなる。ここで、「基材」としては、木材 、皮革、合成皮革、プラスチック、石材、ガラス、紙、繊維材料を始めとして、種々の材 料がある。  [0176] The coating film according to the invention of claim 29 is a coating film formed on the surface of a substrate, and is composed of a silica shell having an outer diameter in a range of approximately 30 nm to 300 nm, and has a cubic shape. Hollow particles are dispersed substantially uniformly in an organic resin binder, an inorganic polymer binder, or an organic-inorganic composite binder. Here, the “base material” includes various materials such as wood, leather, synthetic leather, plastic, stone, glass, paper, and fiber material.
[0177] 略 30nm〜300nmの範囲内の外径を有するシリカ殻からなる中空粒子をバインダ 一中に略均一に分散してなるコーティング膜は、薄膜でも耐摩耗性に優れているた め基材の外観を変化させることがなぐし力、も光沢を殆ど有しておらず、また基材の表 面の凹凸に沿って形成されるため、基材の質感及び触感を損ねることがない。更に、 シリカ殻からなる中空粒子の断熱性によって基材の表面を難燃性にすることができ、 シリカ殻からなる中空粒子の高硬度によって表面硬度が高くなり、基材の表面の傷付 きを防ぐこと力できる。 [0178] そして、基材の種類に応じてバインダーを有機樹脂バインダーまたは無機高分子 バインダーまたは有機無機複合バインダーとすることによって、基材との密着性を確 保すること力 Sでき、あらゆる基材に適用することができる汎用性の高いコーティング膜 となる。 [0177] The coating film in which hollow particles made of silica shells having an outer diameter in a range of about 30 nm to 300 nm are dispersed almost uniformly in a binder is excellent in wear resistance even in a thin film. Changing the appearance of the substrate has almost no gloss and no gloss, and is formed along the unevenness of the surface of the substrate, so that the texture and feel of the substrate are not impaired. Further, the surface of the base material can be made flame retardant by the heat insulating property of the hollow particles made of silica shell, and the surface hardness is increased by the high hardness of the hollow particles made of silica shell, and the surface of the base material is scratched. Can power to prevent. [0178] By using an organic resin binder, an inorganic polymer binder, or an organic-inorganic composite binder as the binder, depending on the type of the substrate, it is possible to secure adhesion to the substrate. It is a highly versatile coating film that can be applied to.
[0179] このようにして、略 30nmから 300nmまでの範囲の外径を有するシリカ殻からなる中 空粒子の断熱性、耐摩耗性、高硬度及び透明性を利用することによって、あらゆる基 材に適用することができる汎用性の高いコーティング膜であって、基材本来の質感や 触感を失わせることがなぐ表面硬度が高く傷付きを確実に防止することができるコー ティング膜となる。  [0179] In this way, by utilizing the heat insulating property, wear resistance, high hardness and transparency of hollow particles composed of silica shells having an outer diameter in the range of approximately 30 nm to 300 nm, it can be applied to any substrate. It is a highly versatile coating film that can be applied, and has a high surface hardness that does not lose the original texture and feel of the substrate, and can reliably prevent scratches.
[0180] 請求項 30の発明に係るコーティング膜においては、基材が木材、皮革若しくは合 成皮革、プラスチック、石材、ガラス、紙または繊維材料である。  [0180] In the coating film according to the invention of claim 30, the base material is wood, leather or synthetic leather, plastic, stone, glass, paper, or a fiber material.
[0181] ここで、 「プラスチック」とは、一般に有機合成樹脂と言われるものであり、ポリエチレ ン.ポリプロピレン.ポリエチレンテレフタレート(PET) 'ナイロン樹脂'アクリル樹脂'ポ リアミド樹脂 ·ポリカーボネート'ポリスチレン ·ポリ塩化ビュル ·ポリァセタール 'フッ素 樹脂等の熱可塑性樹脂、及びウレタン樹脂 ·フエノール樹脂 ·エポキシ樹脂 ·尿素樹 脂'メラミン樹脂 ·不飽和ポリエステル樹脂 ·アルキド樹脂 ·エボナイト等の熱硬化性樹 脂がある。また、「石材」としては、建築材 ·床材等として用いられる御影石 ·大理石の ような高級石材だけでなぐいわゆるコンクリートも含むものとする。更に、「繊維材料」 とは、木綿、絹、麻、羊毛、ナイロン、ビニロン、ポリエステル繊維、アクリル繊維、塩化 ビニリデン繊維、アセテート、レーヨン等の有機質繊維、ガラス繊維、カーボンフアイ バー(カーボン繊維)等の無機質繊維等の繊維自体、若しくはこれらの繊維を混合し てなる混合繊維、またはこれらの繊維を単独で若しくは混用してなる糸を言うものとす  [0181] Here, "plastic" is generally referred to as an organic synthetic resin. Polyethylene. Polypropylene. Polyethylene terephthalate (PET) 'Nylon resin' Acrylic resin 'Polyamide resin · Polycarbonate' Polystyrene · Polychlorinated Bull · Polyacetal 'There are thermoplastic resins such as fluorine resin, and urethane resin · phenol resin · epoxy resin · urea resin' melamine resin · unsaturated polyester resin · alkyd resin · ebonite and other thermosetting resins. “Stone” includes so-called concrete made only of high-grade stones such as granite and marble used as building materials and flooring materials. Furthermore, “fiber material” means cotton, silk, hemp, wool, nylon, vinylon, polyester fiber, acrylic fiber, vinylidene chloride fiber, acetate, rayon and other organic fibers, glass fiber, carbon fiber (carbon fiber), etc. The fiber itself, such as inorganic fiber, or mixed fiber obtained by mixing these fibers, or yarn formed by using these fibers alone or in combination.
[0182] 木材の表面に請求項 29に係るコーティング膜を形成することによって、木材の耐摩 耗性を向上させることができる。従来のコロイダルシリカ粒子を分散させたコーティン グ膜においては、コロイダルシリカ粒子をバインダーに対して固形分で略 30重量% 以上混入しなければ耐摩耗性が得られなかった力 本発明に係るコーティング膜に おいては、シリカ殻からなる中空粒子をバインダーに対して固形分で 8重量%混入す るのみで耐摩耗性を確保することができた。 [0182] By forming the coating film according to claim 29 on the surface of the wood, the wear resistance of the wood can be improved. In the conventional coating film in which colloidal silica particles are dispersed, the strength in which wear resistance cannot be obtained unless colloidal silica particles are mixed in the binder in a solid content of about 30% by weight or more. Coating film according to the present invention In this case, 8% by weight of solid particles of silica shell are mixed with the binder. It was possible to ensure wear resistance simply by
[0183] また、木材の表面に請求項 29に係るコーティング膜を形成することによって、難燃 性を向上させることができ、更に光沢を有していないため木材の質感を損なうことが なぐ木材の表面の凹凸に沿ってコーティング膜が形成されるため、木材本来の触感 を確保すること力 Sできる。したがって、ヒノキ等の高級木材に適用した場合にも、高級 感を損なうことがない。更に、木材に難燃性を付与することができる。  [0183] Further, by forming the coating film according to claim 29 on the surface of the wood, the flame retardancy can be improved, and further, the luster of the wood that does not have a gloss and does not impair the texture of the wood. Since a coating film is formed along the surface irregularities, it is possible to secure the original feel of wood. Therefore, even when applied to high-grade wood such as cypress, the sense of quality is not impaired. Furthermore, flame retardancy can be imparted to the wood.
[0184] このようにして、略 30nmから 300nmまでの範囲の外径を有するシリカ殻からなる中 空粒子の断熱性、耐摩耗性、高硬度及び透明性を利用することによって、木材本来 の質感や触感を失わせることがなぐ難燃性を付与するとともに表面硬度が高く傷付 きを確実に防止することができるコーティング膜となる。  [0184] In this way, by utilizing the heat insulation, wear resistance, high hardness and transparency of the hollow particles made of silica shells having an outer diameter in the range of approximately 30 nm to 300 nm, the original texture of wood is obtained. It becomes a coating film that imparts flame retardancy without losing feel and touch and has high surface hardness and can reliably prevent scratches.
[0185] また、基材が皮革または合成皮革である場合には、皮革及び合成皮革は、靴 '財 布'バッグ等の他、ソファーや自動車のシート等にも用いられる材料である力 傷付き 易いためコーティング膜が用いられる場合が多い。しかし、従来のコロイダルシリカ粒 子を分散させたコーティング膜等は、耐摩耗性を付与するためには厚く形成しなけれ ばならず、光沢を有するとともに滑り性があるため、皮革の高級感を失わせるという問 題があった。  [0185] Further, when the base material is leather or synthetic leather, the leather and the synthetic leather are scratched, which is a material used not only for shoes 'fabrics' bags but also for sofas and automobile seats. Since it is easy, a coating film is often used. However, a conventional coating film in which colloidal silica particles are dispersed must be formed thick in order to impart wear resistance, and loses the high-class feeling of leather because it is glossy and slippery. There was a problem that
[0186] これに対して、皮革または合成皮革の表面に請求項 29に係るコーティング膜を形 成することによって、光沢を有していないため皮革または合成皮革の質感を損なうこ とがなぐ皮革または合成皮革の表面の凹凸に沿ってコーティング膜が形成されるた め、本来の触感を確保することができ、また樹脂感がなくなるので、皮革の高級感を 損なうことがない。そして、靴.財布'バッグ'ソファー.自動車のシート等の表面が傷 付き難くなり、また難燃性をも向上させることができる。  [0186] On the other hand, by forming the coating film according to claim 29 on the surface of the leather or the synthetic leather, the leather or the synthetic leather that does not have gloss and does not impair the texture of the leather or the synthetic leather. Since the coating film is formed along the surface irregularities of the synthetic leather, the original feel can be secured and the feeling of resin is eliminated, so that the leather's high quality feeling is not impaired. In addition, the surfaces of shoes, wallets, bags, sofas, automobile seats, and the like are less likely to be damaged, and flame retardancy can be improved.
[0187] このようにして、略 30nmから 300nmまでの範囲の外径を有するシリカ殻からなる中 空粒子の断熱性、耐摩耗性、高硬度及び透明性を利用することによって、皮革及び 合成皮革本来の質感や触感を失わせることがなぐ難燃性を向上させるとともに表面 硬度及び耐摩耗性が高く傷付きを確実に防止することができるコーティング膜となる  [0187] In this way, leather and synthetic leather can be obtained by utilizing the heat insulating properties, wear resistance, high hardness and transparency of hollow particles made of silica shells having an outer diameter in the range of approximately 30 nm to 300 nm. It is a coating film that improves flame retardancy without losing the original texture and feel, and has high surface hardness and wear resistance to reliably prevent scratches.
[0188] また、基材がプラスチックである場合には、プラスチックは一般に傷付き易ぐ摩耗し 易い。これに対して、プラスチックの表面に請求項 29に係るコーティング膜を形成す ることによって、コーティング膜が高硬度であるため表面が傷付き難くなり、また難燃 性をも向上させること力できる。更に、ポリエチレン ·ポリプロピレン · ΡΕΤ·アクリル樹 脂'ポリカーボネート等の透明プラスチックにおいては、コーティング膜を形成しても 透明性を損ねることがない。更に、一般にプラスチックは表面に触れると粘着感 (ベタ ツキ感)があるが、プラスチックの表面に請求項 29に係るコーティング膜を形成するこ とによって、力、かる粘着感 (ベタツキ感)が解消し、さらつとした感触となる。 [0188] In addition, when the base material is plastic, the plastic is generally easily damaged. easy. On the other hand, by forming the coating film according to claim 29 on the surface of the plastic, since the coating film has a high hardness, the surface is hardly damaged and the flame retardancy can be improved. Furthermore, in the case of transparent plastics such as polyethylene / polypropylene / polypropylene / acrylic resin / polycarbonate, even if a coating film is formed, the transparency is not impaired. Furthermore, in general, when plastic touches the surface, it has a sticky feeling (sticky feeling), but by forming the coating film according to claim 29 on the surface of the plastic, the force and sticky feeling (sticky feeling) is eliminated. , It feels smooth.
[0189] このようにして、略 30nmから 300nmまでの範囲の外径を有するシリカ殻からなる中 空粒子の断熱性、耐摩耗性、高硬度及び透明性を利用することによって、プラスチッ クの難燃性を向上させ、表面硬度が高く傷付きを確実に防止することができるととも に、透明性を維持することができ、触れたときの冷感及び粘着感 (ベタツキ感)を低減 することができるコーティング膜となる。  [0189] In this way, by utilizing the heat insulating properties, wear resistance, high hardness and transparency of hollow particles made of silica shells having an outer diameter in the range of approximately 30 nm to 300 nm, it is difficult to make plastics. Improve flammability, ensure high surface hardness and reliably prevent scratches, maintain transparency, and reduce the feeling of cooling and sticking (stickiness) when touched It becomes a coating film that can be used.
[0190] また、基材が石材である場合には、石材は、硬度の高!/、材料として、人が歩行する 床面や階段や歩道等に用いられるとともに、御影石や大理石のような高級石材はそ の美的外観を活力、して、家屋やビルの外壁やインテリア等にも用いられる。しかし、多 数の人が頻繁に歩行する場所においては、更に硬度を向上させる必要があるととも に、屋外に用いられる場合には雨が表面から沁み込むのを防ぐ必要がある。また、屋 内においてインテリアとして用いられる場合には、御影石や大理石に人が触れた場 合に感じる冷感を低減することが好まし!/、。  [0190] When the base material is a stone, the stone is high in hardness! / As a material, it is used for floors, stairs and sidewalks where people walk, and high-grade products such as granite and marble. Stone is used for the outer walls and interiors of houses and buildings because of its aesthetic appearance. However, in places where many people walk frequently, it is necessary to further improve the hardness and to prevent rain from entering the surface when used outdoors. In addition, when used as interiors in the interior, it is preferable to reduce the sensation of cooling when people touch granite or marble!
[0191] そこで、これらの石材の表面に請求項 29に係るコーティング膜を形成することによ つて、コーティング膜が高硬度であるため表面がより一層傷付き難くなり、また雨が沁 み込むのを確実に防止することができる。また、インテリアとしての石材の表面にコー ティング膜を形成することによって、高級石材の質感を損ねることなぐコーティング膜 の断熱性によって触れたときの冷感がなくなり、より一層傷付き難くなる。  [0191] Therefore, by forming the coating film according to claim 29 on the surface of these stone materials, the coating film has a high hardness, so that the surface becomes more difficult to be damaged and rain oozes. Can be reliably prevented. In addition, by forming a coating film on the surface of the stone material as an interior, the thermal sensation of the coating film that does not impair the texture of the high-grade stone material eliminates the feeling of cooling when touched, making it even more difficult to be damaged.
[0192] このようにして、略 30nmから 300nmまでの範囲の外径を有するシリカ殻からなる中 空粒子の断熱性、耐摩耗性、高硬度及び透明性を利用することによって、石材の質 感を損なうことなく表面硬度をより一層向上させて傷付きを確実に防止することができ るとともに、雨が沁み込むのを確実に防止することができ、触れたときの冷感を低減 することができるコーティング膜となる。 [0192] In this way, the texture of the stone is obtained by utilizing the heat insulation, wear resistance, high hardness and transparency of the hollow particles made of silica shells having an outer diameter in the range of approximately 30 nm to 300 nm. The surface hardness can be further improved without damaging the surface, and scratches can be reliably prevented, and rain can be prevented from stagnation, reducing the feeling of cooling when touched. It becomes a coating film which can be done.
[0193] また、基材がガラスである場合には、ガラスの表面に請求項 29に係るコーティング 膜を形成することによって、ガラスの透明性を損なうことなく表面を高硬度として傷付 き難くし、また触れたときの冷感を低減することができる。更に、一般にガラスは表面 に触れると粘着感(ベタツキ感)がある力 ガラスの表面に請求項 29に係るコーティン グ膜を形成することによって、力、かる粘着感 (ベタツキ感)が解消し、さらつとした感触 となると!/、う作用効果も得られる。  [0193] Also, when the substrate is glass, the coating film according to claim 29 is formed on the surface of the glass, thereby making the surface difficult to be scratched without impairing the transparency of the glass. Moreover, the feeling of cooling when touched can be reduced. Furthermore, generally, the glass has a sticky feeling (sticky feeling) when touched on the surface. By forming the coating film according to claim 29 on the glass surface, the force and the sticky feeling (sticky feeling) are eliminated. When it comes to a dull feeling!
[0194] このようにして、略 30nmから 300nmまでの範囲の外径を有するシリカ殻からなる中 空粒子の断熱性、耐摩耗性、高硬度及び透明性を利用することによって、ガラスの 透明性を損なうことなく表面硬度を向上させて傷付きを確実に防止することができると ともに、触れたときの冷感及び粘着感 (ベタツキ感)を低減することができるコーティン グ膜となる。  [0194] In this way, by utilizing the heat insulation, wear resistance, high hardness and transparency of hollow particles made of silica shells having an outer diameter in the range of approximately 30 nm to 300 nm, the transparency of the glass The coating film can improve the surface hardness without damaging the surface and prevent damage, and reduce the feeling of cooling and sticking (stickiness) when touched.
[0195] また、基材が紙である場合には、単行本のカバー等は厚めの色紙に文字を印刷し た後にビュル樹脂等でコーティングされてなる場合が多いが、ビュル樹脂等のコーテ イングでは傷が付き易く、また光沢を有するため紙の質感が損なわれてしまう。そこで 、色紙等の紙の表面に請求項 29に係るコーティング膜を形成することによって、紙の 質感を損なうことなぐコーティング膜が高硬度であるため表面が傷付き難くなる。  [0195] In addition, when the base material is paper, the cover of the book is often coated with bull resin after printing characters on thick colored paper, but in the coating of bull resin, etc. The texture of the paper is impaired because it is easily scratched and glossy. Therefore, by forming the coating film according to claim 29 on the surface of the paper such as colored paper, the coating film that does not impair the texture of the paper has a high hardness, so that the surface is hardly damaged.
[0196] また、コーティング膜の断熱性によって、紙に難燃性を付与することができる。更に、 コーティング膜の吸油性によって、印刷インクが紙に吸収され易くなり、紙の印刷特 性が向上するという作用効果も得ることができる。特に、インクジェットプリンタに用い る印刷用紙として、インクの乗りが非常に良くなり、インクジェットプリンタ用紙として適 したものとなる。  [0196] In addition, flame retardancy can be imparted to the paper by the heat insulating property of the coating film. Furthermore, due to the oil absorption of the coating film, the printing ink is easily absorbed by the paper, and the effect of improving the printing characteristics of the paper can be obtained. In particular, as printing paper used in an ink jet printer, the ink is very good and suitable as ink jet printer paper.
[0197] このようにして、略 30nmから 300nmまでの範囲の外径を有するシリカ殻からなる中 空粒子の断熱性、耐摩耗性、高硬度及び透明性を利用することによって、紙の質感 を損なうことなぐ表面硬度を向上させて傷付きを確実に防止することができるととも に、難燃性を付与することができ、印刷特性を向上させることができるコーティング膜 となる。  [0197] In this way, by utilizing the heat insulation, wear resistance, high hardness, and transparency of the hollow particles made of silica shells having an outer diameter in the range of approximately 30 nm to 300 nm, the texture of the paper is reduced. The coating film can improve the surface hardness without damaging to surely prevent scratches, impart flame retardancy, and improve printing characteristics.
[0198] また、基材が繊維材料である場合には、繊維材料の表面に請求項 29に係るコーテ イング膜を形成することによって、特にナイロン、ビニロン、ポリエステル繊維、アクリル 繊維、塩化ビニリデン繊維、アセテート、レーヨン等の合成繊維の持つツルツルした 触感を、合成繊維の外観を損なうことなく低減することができ、また繊維材料に難燃 性を付与すること力 Sできる。また、例えば、カーボンファイバー製のゴルフクラブに用 いた場合には、グリップの部分のカーボンファイバーの滑り易さを低減することができ [0198] Further, when the substrate is a fiber material, the coating material according to claim 29 is formed on the surface of the fiber material. By forming the wrapping film, the smooth feel of synthetic fibers such as nylon, vinylon, polyester fiber, acrylic fiber, vinylidene chloride fiber, acetate, rayon, etc. can be reduced without impairing the appearance of the synthetic fiber. In addition, it is possible to impart flame retardancy to fiber materials. In addition, for example, when used in a carbon fiber golf club, the slipperiness of the carbon fiber in the grip portion can be reduced.
[0199] このようにして、略 30nmから 300nmまでの範囲の外径を有するシリカ殻からなる中 空粒子の断熱性、耐摩耗性、高硬度及び透明性を利用することによって、合成繊維 の外観を損なうことなく合成繊維の持つツルツルした触感を低減することができるとと もに、難燃性を付与することができるコーティング膜となる。 [0199] In this way, the appearance of the synthetic fiber is obtained by utilizing the heat insulating property, wear resistance, high hardness and transparency of the hollow particles composed of silica shells having an outer diameter in the range of approximately 30 nm to 300 nm. It is possible to reduce the smooth feel of the synthetic fiber without impairing the properties, and to provide a coating film that can impart flame retardancy.
[0200] 請求項 31の発明に係るコーティング膜においては、シリカ殻からなる中空粒子の表 面にイソシァネート系、アルキル系、ビュル系またはアタリロキシ系の表面修飾剤を付 加させている。  [0200] In the coating film according to the invention of claim 31, an isocyanate, alkyl, bur or talyloxy surface modifier is added to the surface of the hollow particles made of silica shell.
[0201] ここで、前述の如ぐ「イソシァネート系の表面修飾剤」とは、イソシァネート基(— N = C =〇)を 1つ以上もった化合物からなる表面修飾剤を意味するものであり、具体例と しては、アルキル基にイソシァネート基が 3個結合したトリイソシァネート化合物、トリエ トキシプロピルイソシァネートシラン (TEIS)、等がある。また、「アルキル系の表面修 飾剤」とは、アルキル基を 1つ以上もった化合物からなる表面修飾剤を意味するもの であり、具体例としては、トリエトキシブチルシラン (TEBS)、等がある。  [0201] Here, the above-mentioned "isocyanate-based surface modifier" means a surface modifier composed of a compound having at least one isocyanate group (—N = C = 〇). Specific examples include a triisocyanate compound in which three isocyanate groups are bonded to an alkyl group, and triethoxypropyl isocyanate silane (TEIS). The term “alkyl-based surface modifier” means a surface modifier composed of a compound having at least one alkyl group. Specific examples include triethoxybutylsilane (TEBS). is there.
[0202] 更に、「ビュル系の表面修飾剤」とは、ビュル基(一 CH = CH )を 1つ以上もった化 合物からなる表面修飾剤を意味し、具体例としては、トリエトキシプロピルビュルシラ ン、等がある。また、「アタリロキシ系の表面修飾剤」とは、アタリ口キシ基を 1つ以上も つた化合物からなる表面修飾剤を意味するもので、具体例としては、トリエトキシプロ  [0202] Furthermore, the "bule surface modifier" means a surface modifier composed of a compound having one or more bur groups (one CH = CH), and specific examples include triethoxypropyl. There is bursilan. “Atalyloxy-based surface modifier” means a surface modifier composed of a compound having at least one talixoxy group.
[0203] このようなイソシァネート系、アルキル系、ビュル系またはアタリロキシ系の表面修飾 剤を、シリカ殻からなる中空粒子の表面に存在する水酸基(-OH)を介して付加さ せ、シリカ殻からなる中空粒子の全表面をイソシァネート系、アルキル系、ビュル系ま たはアタリロキシ系の表面修飾剤でコーティングすることによって、再凝集を防止する ことができて分散性が向上し、またバインダー中に混合する場合にもバインダーの活 性基とイソシァネート基、アルキル基、ビュル基またはアタリロキシ基とが反応すること によって、バインダーとシリカ殻からなる中空粒子との強固な結合が得られる。 [0203] Such an isocyanate-based, alkyl-based, bur-based, or attaryloxy-based surface modifier is added via a hydroxyl group (-OH) present on the surface of a hollow particle composed of a silica shell to form a silica shell. Re-agglomeration is prevented by coating the entire surface of the hollow particles with an isocyanate, alkyl, bur or talyloxy surface modifier. The dispersibility is improved, and even when mixed in the binder, the binder active group reacts with the isocyanate group, alkyl group, bur group, or talyloxy group to form a hollow made up of the binder and the silica shell. A strong bond with the particles is obtained.
[0204] このようにして、バインダー中に混合する場合に分散性が向上するとともにバインダ 一とシリカ殻からなる中空粒子との強固な結合が得られ、略 30nm〜300nmの外径 を有するシリカ殻力 なる中空粒子の断熱性、耐摩耗性、高硬度及び透明性を利用 することによって、断熱性、耐摩耗性、高硬度及び透明性を有するコーティング膜と なる。 [0204] Thus, when mixed in a binder, the dispersibility is improved, and a strong bond between the binder and the hollow particles composed of the silica shell is obtained, and the silica shell having an outer diameter of approximately 30 nm to 300 nm. By utilizing the heat insulation, wear resistance, high hardness and transparency of the powerful hollow particles, a coating film having heat insulation, wear resistance, high hardness and transparency can be obtained.
図面の簡単な説明  Brief Description of Drawings
[0205] [図 1]図 1 (a)は本発明の実施の形態 2に係る防眩コーティング材をガラス基板上に 塗布した状態を示す部分断面図、(b)はその拡大断面図である。  FIG. 1 (a) is a partial cross-sectional view showing a state where an antiglare coating material according to Embodiment 2 of the present invention is applied on a glass substrate, and (b) is an enlarged cross-sectional view thereof. .
[図 2]図 2は本発明の実施の形態 3に係る反射防止コーティング材をガラス基板上に 塗布した状態を示す部分断面図である。  FIG. 2 is a partial cross-sectional view showing a state in which an antireflection coating material according to Embodiment 3 of the present invention is applied on a glass substrate.
[図 3]図 3は本発明の実施の形態 4に係る反射防止コーティング材の製造方法を示す 説明図及び本発明の実施の形態 4に係る反射防止コーティング材をガラス基板上に 塗布した状態を示す部分断面図である。  [Fig. 3] Fig. 3 shows a manufacturing method of an antireflection coating material according to Embodiment 4 of the present invention, and shows a state where the antireflection coating material according to Embodiment 4 of the present invention is applied on a glass substrate. It is a fragmentary sectional view shown.
[図 4]図 4 (a)は本発明の実施の形態 5に係る防眩フィルムをガラス基板上に貼り付け た状態を示す部分断面図、(b)は本発明の実施の形態 5に係る反射防止フィルムの 構造を示す部分断面図、(c)は本発明の実施の形態 5の変形例に係る反射防止フィ ルムの構造を示す部分断面図である。  FIG. 4 (a) is a partial cross-sectional view showing a state where an antiglare film according to Embodiment 5 of the present invention is attached to a glass substrate, and FIG. 4 (b) is according to Embodiment 5 of the present invention. FIG. 8C is a partial cross-sectional view showing the structure of an antireflection film, and FIG. 10C is a partial cross-sectional view showing the structure of an antireflection film according to a modification of Embodiment 5 of the present invention.
[図 5]図 5はシリカ殻力 なる中空粒子の製造方法の概略を示す説明図である。  FIG. 5 is an explanatory diagram showing an outline of a method for producing hollow particles having silica shell strength.
[図 6]図 6は粒径が 50nmから 150nmの外径を有するシリカ殻からなる立方体状形態 を有する中空粒子が凝集した状態を示す透過型電子顕微鏡 (TEM)写真である。  [FIG. 6] FIG. 6 is a transmission electron microscope (TEM) photograph showing a state in which hollow particles having a cubic shape composed of a silica shell having an outer diameter of 50 nm to 150 nm are aggregated.
[図 7]図 7 (a)は本発明の実施の形態 6に係る防食塗料を用いて形成した防食膜付き 試験片の全体構成を示す斜視図、(b)は防食膜付き試験片の構成を示す部分断面 図である。  FIG. 7 (a) is a perspective view showing the overall configuration of a test piece with an anticorrosion film formed using the anticorrosion paint according to Embodiment 6 of the present invention, and (b) shows the configuration of the test piece with an anticorrosion film. FIG.
[図 8]図 8は本発明の実施の形態 6に係る防食塗料の製造工程を示すフローチャート である。 園 9]図 9は本発明の実施の形態 6に係る防食塗料を用いて形成した防食膜付き試 験片の製造工程を示すフローチャートである。 FIG. 8 is a flowchart showing a production process of an anticorrosive paint according to Embodiment 6 of the present invention. 9] FIG. 9 is a flowchart showing a manufacturing process of a test piece with an anticorrosion film formed using the anticorrosive paint according to Embodiment 6 of the present invention.
園 10]図 10は本発明の実施の形態 7に係る防食膜及び防食塗料を製造するために 用いられるコーティングシリカ殻からなる中空粒子の製造工程を示す模式図である。 FIG. 10 is a schematic diagram showing a process for producing hollow particles made of a coated silica shell used for producing an anticorrosion film and an anticorrosion paint according to Embodiment 7 of the present invention.
[図 11]図 11 (a)は本発明の実施の形態 7に係る防食塗料を用いて形成した防食膜 付き試験片の全体構成を示す斜視図、(b)は防食膜付き試験片の構成を示す部分 断面図である。 [FIG. 11] FIG. 11 (a) is a perspective view showing the overall configuration of a test piece with an anticorrosion film formed using the anticorrosion paint according to Embodiment 7 of the present invention, and (b) shows the configuration of the test piece with an anticorrosion film. FIG.
園 12]図 12は本発明の実施の形態 7に係る防食塗料の製造工程を示すフローチヤ ートである。 12] FIG. 12 is a flowchart showing the production process of the anticorrosion paint according to Embodiment 7 of the present invention.
園 13]図 13は本発明の実施の形態 25の実施例 14に係るコーティング塗料の製造 工程を示すフローチャートである。 13] FIG. 13 is a flowchart showing a coating paint manufacturing process according to Example 14 of Embodiment 25 of the present invention.
園 14]図 14は本発明の実施の形態 25の実施例 15に係るコーティング塗料の製造 工程を示すフローチャートである。 14] FIG. 14 is a flowchart showing a coating paint manufacturing process according to Example 15 of Embodiment 25 of the present invention.
園 15]図 15は本発明の実施の形態 25の実施例 16に係るコーティング塗料の製造 工程を示すフローチャートである。 15] FIG. 15 is a flowchart showing a coating paint manufacturing process according to Example 16 of Embodiment 25 of the present invention.
園 16]図 16は本発明の実施の形態 25の実施例 16に係るコーティング塗料の製造 工程における表面修飾処理の方法を示す説明図である。 16] FIG. 16 is an explanatory diagram showing a surface modification treatment method in the coating paint manufacturing process according to Example 16 of Embodiment 25 of the present invention.
園 17]図 17は本発明の実施の形態 25の実施例 16に係るコーティング塗料の製造 工程における表面修飾処理の方法の他の例を示す説明図である。 17] FIG. 17 is an explanatory view showing another example of the surface modification treatment method in the coating paint manufacturing process according to Example 16 of Embodiment 25 of the present invention.
[図 18]図 18 (a)は本発明の実施の形態 25に係るコーティング膜を表面に形成した木 材を示す斜視図、(b)はその断面図である。 FIG. 18 (a) is a perspective view showing a wood having a coating film according to Embodiment 25 of the present invention formed on its surface, and FIG. 18 (b) is a cross-sectional view thereof.
[図 19]図 19 (a)は本発明の実施の形態 26に係るコーティング膜を表面に形成したプ ラスチックを示す斜視図、(b)はその断面図である。  FIG. 19 (a) is a perspective view showing a plastic having a coating film according to Embodiment 26 of the present invention formed on its surface, and FIG. 19 (b) is a sectional view thereof.
園 20]図 20 (a)は本発明の実施の形態 27に係るコーティング膜を表面に形成した自 動車用革製シートを示す斜視図、(b)はその断面図である。 FIG. 20 (a) is a perspective view showing a leather seat for automobiles having a coating film according to Embodiment 27 of the present invention formed on its surface, and FIG. 20 (b) is a sectional view thereof.
[図 21]図 21 (a)は本発明の実施の形態 28に係るコーティング膜を表面に形成した玄 関前床面の石材を示す斜視図、(b)はその断面図である。  FIG. 21 (a) is a perspective view showing a stone material on the front floor surface of a front door on which a coating film according to Embodiment 28 of the present invention is formed, and FIG. 21 (b) is a sectional view thereof.
園 22]図 22 (a)は本発明の実施の形態 28の変形例に係るコーティング膜を表面に 形成した大理石のテーブルを示す斜視図、(b)はその断面図である。 22] FIG. 22 (a) shows the coating film according to a modification of the embodiment 28 of the present invention on the surface. The perspective view which shows the formed marble table, (b) is the sectional drawing.
園 23]図 23 (a)は本発明の実施の形態 29に係るコーティング膜を表面に形成したガ ラスを嵌め込んだガラス窓を示す斜視図、(b)はその断面図である。 FIG. 23 (a) is a perspective view showing a glass window fitted with a glass on which a coating film according to Embodiment 29 of the present invention is formed, and FIG. 23 (b) is a sectional view thereof.
園 24]図 24 (a)は本発明の実施の形態 30に係るコーティング膜を表面に形成した紙 を用いた本のカバーを示す斜視図、(b)はその断面図である。 FIG. 24 (a) is a perspective view showing a book cover using paper having a coating film on the surface according to Embodiment 30 of the present invention, and FIG. 24 (b) is a cross-sectional view thereof.
園 25]図 25 (a)は本発明の実施の形態 31に係るコーティング膜を表面に形成したポ リエステル繊維材料 (ポリエステル糸)を用いてなる生地を使用した日傘を示す斜視 図、(b)はポリエステル糸の断面図である。 25] FIG. 25 (a) is a perspective view showing a parasol using a fabric made of a polyester fiber material (polyester yarn) on which a coating film according to Embodiment 31 of the present invention is formed, (b) FIG. 3 is a cross-sectional view of a polyester yarn.
園 26]図 26 (a)は本発明の実施の形態 31の変形例に係るコーティング膜を表面に 形成したアクリル繊維材料 (アクリル糸)を用いてなる生地を使用したセーターを示す 斜視図、(b)はアクリル糸の断面図である。 26] FIG. 26 (a) is a perspective view showing a sweater using a fabric made of an acrylic fiber material (acrylic yarn) having a coating film formed on the surface according to a modification of the embodiment 31 of the present invention, ( b) is a cross-sectional view of an acrylic yarn.
符号の説明 Explanation of symbols
1 防眩コーティング材  1 Anti-glare coating material
2 二次粒子  2 Secondary particles
3, 7 有機合成樹脂塗料  3, 7 Organic synthetic resin paint
5, 8 反射防止コーティング材  5, 8 Anti-reflective coating material
6 破砕粒子  6 Broken particles
10 シリカ殻からなる立方体状形態の中空粒子 10 Cubic hollow particles made of silica shell
15 防眩フィルム 15 Anti-glare film
16 , 18 有機合成樹脂フィルム 16, 18 Organic synthetic resin film
17, 20 反射防止フィルム 17, 20 Anti-reflective film
21 , 31 防食膜付き試験片 21, 31 Test piece with anti-corrosion film
23, 29 防食膜 23, 29 Anticorrosion film
23a, 23b, 23c コーティング塗料  23a, 23b, 23c Coating paint
25 亜鉛粉末粒子  25 Zinc powder particles
27, 35 防食塗料  27, 35 Anticorrosion paint
28 イソシァネート系表面改質剤  28 Isocyanate surface modifier
29a イソシァネート系表面修飾剤 29b アルキル系表面修飾剤 29a Isocyanate surface modifier 29b Alkyl surface modifiers
30 コーティング中空シリカ粒子  30 coated hollow silica particles
32 アルミニウム 亜鉛合金粉末  32 Aluminum Zinc alloy powder
42 木材  42 wood
43A, 43B, 43C, 43D, 43E, 43F, 43G, 43H コーティング膜  43A, 43B, 43C, 43D, 43E, 43F, 43G, 43H coating film
45, 45B 有機樹脂バインダー  45, 45B organic resin binder
47 無機高分子バインダー  47 Inorganic polymer binder
51 皮革  51 leather
56, 56A 石材  56, 56A Stone
59 ガラス  59 glass
61 紙  61 paper
67, 72 繊維材料  67, 72 Textile material
BM ビーズミノレ  BM beads Minore
BS ビーズ  BS beads
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0207] 以下、本発明の実施の形態について、図面(図 1乃至図 26)を参照しつつ説明する 。なお、実施の形態 2以降において、実施の形態 1の部分と同一の記号及び同一の 符号は、実施の形態 1と同一または相当する機能部分を意味し、実施の形態相互の 同一の記号及び同一の符号は、それら実施の形態に共通する機能部分であるから、 ここでは重複する詳細な説明を省略する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings (FIGS. 1 to 26). In the second and subsequent embodiments, the same symbols and the same reference numerals as those in the first embodiment mean the same or corresponding functional parts as those in the first embodiment, and the same symbols and the same among the embodiments. The reference numeral is a functional part common to those embodiments, and thus detailed description thereof is omitted here.
[0208] 実施の形態 1  [0208] Embodiment 1
シリカ殻からなる中空粒子は、一次粒子として球やラグビーボール状のような楕円 体等の曲面で囲まれる粒子、立方体、八面体、二十四面体等の平面で囲まれる粒 子、あるいは曲面と平面からなる粒子、不定形の粒子等その形には特に限定されな い。また、その大きさについても限定されるものではないが、透明性、断熱性、吸湿性 、着色性、発色性等の機能を高めるためには、透過型電子顕微鏡法による平均一次 粒子径が 20nm〜l μ mであり、動的光散乱法による平均粒子径が 20nm〜3 mの 中空粒子が好適である。 [0209] また、繊維やフィルム等の径が細いものや厚さが薄いものについては適宜最適な 粒径を選択する必要があり、透過型電子顕微鏡法による平均一次粒子径が 20nm 〜0· 5 111、さらに望ましくは201 111〜0. 1 mであり、動的光散乱法による平均粒 子径が 20nm〜l μ mで最大粒子径が 5 m以下であることが望まし!/、。 Hollow particles made of silica shells are particles surrounded by a curved surface such as a sphere or rugby ball-like ellipsoid as a primary particle, a particle surrounded by a plane such as a cube, octahedron, or tetrahedron, or a curved surface. The shape is not particularly limited, such as particles composed of a flat surface and irregularly shaped particles. Also, the size is not limited, but in order to enhance functions such as transparency, heat insulation, hygroscopicity, colorability, and color development, the average primary particle diameter by transmission electron microscopy is 20 nm. Hollow particles having an average particle diameter of 20 nm to 3 m as measured by a dynamic light scattering method are preferable. [0209] In addition, for fibers and films having a small diameter or a thin thickness, it is necessary to select an optimal particle size as appropriate, and the average primary particle diameter by transmission electron microscopy is 20 nm to 0.5. 111, more preferably 201 111 to 0.1 m, an average particle size by dynamic light scattering method of 20 nm to l μm and a maximum particle size of 5 m or less is desirable! /.
[0210] 本発明に係る実施の形態 1で使用される中空粒子の製造方法としては、例えば、 核材として炭酸カルシウムの微粒子を使用し、その炭酸カルシウム微粒子表面をシリ 力で被覆してシリカからなる殻を形成させ、シリカ殻内の炭酸カルシウムを酸により溶 解して製造する方法があげられる。ここで核材として使用する炭酸カルシウムには種 々の形態のものが知られているが、中でもコロイド状炭酸カルシウムや立方体状炭酸 カルシウムと呼ばれる立方体状形態を有する炭酸カルシウムが、所望の粒子径の粒 子が容易に得られ好適である。  [0210] As a method for producing the hollow particles used in Embodiment 1 of the present invention, for example, calcium carbonate fine particles are used as a core material, and the surface of the calcium carbonate fine particles is coated with silica force from silica. And a method in which the calcium carbonate in the silica shell is dissolved with an acid. The calcium carbonate used as the core material is known in various forms. Among them, a calcium carbonate having a cubic form called colloidal calcium carbonate or cubic calcium carbonate has a desired particle size. Particles are easily obtained and suitable.
[0211] 上記した中空粒子の製造方法の特徴は、炭酸カルシウムを核材として使用すること により、その表面にシリカの殻を形成し、その後、酸を使用して核材の炭酸カルシウム を溶解 ·発泡させる際に、核物質を容易に殻外に排出でき中空化できる点にある。  [0211] The above-described method for producing hollow particles is characterized by forming a silica shell on the surface by using calcium carbonate as a core material, and then dissolving the core calcium carbonate using an acid. When foaming, the core material can be easily discharged out of the shell and hollowed out.
[0212] 本発明で樹脂組成物に含有させるシリカ殻力 なる中空微粒子の製造方法は、核 材として使用する炭酸カルシウム微粒子を用意し、該粒子を核材として利用してその 表面にシリカの殻を形成し、その後シリカ殻内部の炭酸カルシウムを酸により溶解-発 泡させるものであり、それにより粒子の中空化が極めて容易になる。その結果、従来 の方法に較べ単純な工程で効率よく製造できる。  [0212] The method for producing hollow fine particles having silica shell strength to be contained in the resin composition in the present invention comprises preparing calcium carbonate fine particles to be used as a core material, and using the particles as a core material to form a silica shell on the surface thereof. Then, the calcium carbonate inside the silica shell is dissolved and foamed with an acid, which makes it very easy to hollow out the particles. As a result, it can be efficiently manufactured with a simple process compared to the conventional method.
[0213] このようにして製造されたシリカ中空微粒子は、樹脂組成物中に含有させることによ り、断熱性、軽量性、透明性、吸水性、吸湿性、着色性、発色性、滑り性、防食性、耐 擦傷性、耐摩耗性、耐脱落性を向上させた繊維、フィルム等の成形体として有用な 樹脂組成物、および該組成物からなる塗料、さらには成形体、その成形体の代表的 なものである繊維、フィルムを提供すると!/、う優れた特性を発現する。  [0213] Silica hollow microparticles produced in this way are incorporated into the resin composition, whereby heat insulation, lightness, transparency, water absorption, hygroscopicity, colorability, color development, slipperiness. , Resin compositions useful as molded articles for fibers, films, etc. with improved anticorrosion, scratch resistance, abrasion resistance, and drop-off resistance, and paints comprising the compositions, as well as molded articles and molded articles Providing typical fibers and films will produce excellent properties!
[0214] また、シリカ殻からなる中空微粒子は、その粒径、形状、殻の厚さ、表面細孔を制御 することにより、様々な機能を制御することができるという特性をも備えるものである。 さらに該中空微粒子の表面を、エポキシ基、イソシァネート基、ビュル基、ヒドロキシ ル基、カルボキシル基で表面修飾をすることにより、より良好な効果を得ることも可能 である。 [0214] In addition, the hollow microparticles made of silica shell also have characteristics that various functions can be controlled by controlling the particle size, shape, shell thickness, and surface pores. . Furthermore, it is possible to obtain better effects by modifying the surface of the hollow fine particles with an epoxy group, isocyanate group, bur group, hydroxyl group, or carboxyl group. It is.
[0215] 本発明の中空微粒子を含有させることができる樹脂の種類は特に限定されず、熱 可塑性樹脂ではポリエチレン、ポリスチレン、ポリプロピレン、塩化ビュル樹脂、メタク リル樹脂、フッ素樹脂、ポリイミド、酢酸ビュル等、熱硬化性樹脂にはアルキド樹脂、 ァリル樹脂、ァミノ樹脂、エポキシ樹脂、フエノール樹脂、不飽和ポリエステル樹脂、 シリコーン樹脂、ポリウレタン等があげられる。  [0215] The type of resin that can contain the hollow fine particles of the present invention is not particularly limited. For thermoplastic resins, polyethylene, polystyrene, polypropylene, chlorinated resin, methacrylic resin, fluororesin, polyimide, butyl acetate, etc. Examples of the thermosetting resin include alkyd resin, aryl resin, amino resin, epoxy resin, phenol resin, unsaturated polyester resin, silicone resin, polyurethane and the like.
[0216] 合成繊維として使用される樹脂としては、ポリエステル、アクリル、アクリル系、ナイ口 ン、ビニロン、ポリプロピレン、ポリ塩化ビュル、ポリエチレン、ビニリデン、ポリウレタン 、ァラミド、ポリアリレート、 PBO、エチレンビュルアルコール、アタリレート系、ポリ乳酸 等があり、アセテート、トリアセテート等の半合成繊維、レーヨン、キュボラ等の再生繊 糸隹であっても良い。  [0216] Resins used as synthetic fibers include polyester, acrylic, acrylic, nylon, vinylon, polypropylene, polychlorinated butyl, polyethylene, vinylidene, polyurethane, aramid, polyarylate, PBO, ethylene butyl alcohol, and atari. There are rate type, polylactic acid, and the like, and semi-synthetic fibers such as acetate and triacetate, and regenerated fiber yarns such as rayon and cubora may be used.
[0217] 樹脂中に含有させる方法も特に限定されず、樹脂の特性により適宜選択すれば良 いが、例えば該中空微粒子を含有するマスターバッチ(コンパウンド、あるいはチップ と呼ぶこともある)を作製後、最適な配合で樹脂組成物とし、また紡糸、延伸等の工程 を経て、繊維、フィルム等の成形体とすれば良い。  [0217] The method of incorporation in the resin is not particularly limited, and may be appropriately selected depending on the characteristics of the resin. For example, after preparing a master batch (sometimes called a compound or a chip) containing the hollow fine particles. The resin composition may be obtained by optimal blending, and may be formed into a molded body such as a fiber or a film through processes such as spinning and stretching.
[0218] 本発明の樹脂組成物中に分散 ·含有される金属酸化物の殻力 なる中空微粒子の 1つには、本発明者等が先に発明した特許文献 17に係る高分散シリカナノ中空粒子 及びそれを製造する方法がある。この方法によれば、高分散で、緻密なシリカ殻から なり、透過型電子顕微鏡法による平均一次粒子径が 20nm〜0. 1 mの中空粒子 が製造でき、透明度、断熱性、粒子強度等の機能を考慮すると優れた効果を発揮で きる可能性があり、し力、も中空粒子の金属酸化物殻に、水銀圧入法により測定される 細孔分布において 2〜20nmの細孔が検出されない中空状粒子を得ることが可能で ある。  [0218] One of the hollow fine particles having the shell strength of the metal oxide dispersed and contained in the resin composition of the present invention is a highly dispersed silica nano hollow particle according to Patent Document 17 previously invented by the present inventors. And a method of manufacturing it. According to this method, hollow particles having a highly dispersed and dense silica shell and having an average primary particle diameter of 20 nm to 0.1 m by transmission electron microscopy can be produced. Considering the function, there is a possibility that an excellent effect can be exerted, and the hollowness in which pores of 2 to 20 nm are not detected in the pore distribution measured by the mercury intrusion method in the metal oxide shell of the hollow particles It is possible to obtain particle-like particles.
[0219] また、本発明者らが先に提案した特許文献 18に係るシリカ中空粒子の製造方法が あり、この方法では、製造装置及び周辺装置類がコンパクト化でき、使用済みの有機 溶媒を排出することのな!/、環境への負荷を低減できる。そして得られるシリカ殻から なる高分散性の中空粒子は特許文献 17と同等のものであるという利点がある。  [0219] Further, there is a method for producing silica hollow particles according to Patent Document 18 previously proposed by the present inventors. In this method, the production apparatus and peripheral devices can be made compact, and used organic solvents can be discharged. Don't do it! / Environmental load can be reduced. The resulting highly dispersible hollow particles comprising silica shells have the advantage of being equivalent to that of Patent Document 17.
[0220] 本発明の樹脂組成物は、金属酸化物の殻からなる中空粒子を含有するものであり 、断熱性、軽量性、透明性、吸水性、吸湿性、着色性、発色性、電気絶縁性、滑り性 、耐摩耗性、耐脱落性といった様々な機能を付与できる。すなわち、金属酸化物の 殻からなる中空粒子を使用することによってのみ、本発明の効果を充分に発揮でき、 断熱性、軽量性、透明性、吸水性、吸湿性、着色性、発色性、電気絶縁性、耐蝕性 、耐擦傷性、滑り性、耐摩耗性、耐脱落性を向上させた繊維、フィルム等の成形体と して有用な樹脂組成物、及び該組成物からなる塗料、さらには成形体、その成形体 の代表的なものである繊維、フィルムを提供することができる。 [0220] The resin composition of the present invention contains hollow particles made of a metal oxide shell. Various functions such as heat insulation, light weight, transparency, water absorption, hygroscopicity, colorability, color development, electrical insulation, slipperiness, abrasion resistance, and dropout resistance can be imparted. That is, only by using hollow particles made of a metal oxide shell, the effects of the present invention can be sufficiently exerted, and heat insulation, lightness, transparency, water absorption, hygroscopicity, colorability, color development, electricity Resin compositions useful as molded articles for fibers, films, etc. with improved insulation, corrosion resistance, scratch resistance, slipperiness, abrasion resistance, and drop-off resistance, and paints comprising the compositions, and It is possible to provide a molded body, a fiber and a film that are representative of the molded body.
[0221] 特に上記した特許文献 17及び特許文献 18の方法で調製される金属酸化物の殻 力、らなる中空粒子は、平均一次粒子径が微細な 20nm〜200nmのナノサイズの中 空粒子が製造でき、これらの機能を発現するには最も好適である。なお、本発明の中 空粒子の効果を損なわな!/、範囲であれば、樹脂組成物に不溶の無機または有機の 微粒子、あるいは樹脂組成物の製造時に反応系で析出させた微粒子を含有させて も良い。 [0221] In particular, the shell force of the metal oxide prepared by the methods of Patent Document 17 and Patent Document 18 described above, and the hollow particles are nano-sized hollow particles having an average primary particle size of 20 nm to 200 nm. It is most suitable for producing these functions. Note that the effect of the hollow particles of the present invention is not impaired! /, If within the range, inorganic or organic fine particles insoluble in the resin composition, or fine particles precipitated in the reaction system during the production of the resin composition are contained. It's okay.
[0222] 以下において、本発明の実施例で使用する、金属酸化物中空粒子の複数の調製 例をまず説明する。  [0222] Hereinafter, a plurality of preparation examples of metal oxide hollow particles used in the examples of the present invention will be described first.
[0223] [コロイド中空粒子 Aの調製例]  [0223] [Preparation Example of Colloid Hollow Particle A]
まず液温 15°Cに調節した固形分濃度 7. 5重量%の水酸化カルシウムスラリー 2. 0 Lに、撹拌しながら、炭酸ガスを 1. 5L/分の速度で 2時間導入して、立方体状の形 態をしたコロイド状炭酸カルシウムを沈殿させた。その後、液温を 80°Cにし、 24時間 静置して熟成を行った。生成した炭酸カルシウムを透過型電子顕微鏡にて観察した ところ、一次粒子径は 40〜80nmであった。  First, carbon dioxide gas was introduced into 2.0 L of calcium hydroxide slurry with a solid content concentration of 7.5% by weight adjusted to a liquid temperature of 15 ° C and stirred at a rate of 1.5 L / min for 2 hours while stirring. Colloidal calcium carbonate in the form of a precipitate was precipitated. Thereafter, the liquid temperature was set to 80 ° C., and the mixture was allowed to stand for 24 hours for aging. When the produced calcium carbonate was observed with a transmission electron microscope, the primary particle size was 40 to 80 nm.
[0224] このコロイド状炭酸カルシウムのスラリーを遠心脱水機にて含水量 65重量%の含水 ケーキとした後、この含水ケーキ 22gを 450gのエタノール中に投入し、 1分間超音波 照射して、エタノール中にコロイド状炭酸カルシウムを分散させた。そこに、 28%アン モニァ水 21g、テトラエトシキシラン 7· 5gを添カロ(テトラエトシシラン/エタノールの体 積比 0· 01、アンモニア水に含有される NHはテトラエトキシシラン 1モルに対して 9· [0224] This colloidal calcium carbonate slurry was made into a water-containing cake with a water content of 65% by weight using a centrifugal dehydrator, and then 22 g of this water-containing cake was put into 450 g of ethanol and subjected to ultrasonic irradiation for 1 minute. Colloidal calcium carbonate was dispersed therein. There was added 21 g of 28% ammonia water and 7.5 g of tetraethoxysilane. Caro (volume ratio of tetraethoxysilane / ethanol 0 · 01, NH contained in ammonia water was 9 per 1 mol of tetraethoxysilane. ·
3モル、水はテトラエトキシシラン 1モルに対して 30モル)し、 12時間撹拌を続け、シリ 力によりコートされたコロイド状炭酸カルシウムを調製した。 [0225] この調製物を透過型電子顕微鏡 (TEM)で観察したところ、 40〜80nmの炭酸力 ルシゥム表面に、厚さ 7〜; !Onmのシリカ殻が確認された。 3 mol, water was 30 mol per 1 mol of tetraethoxysilane), and stirring was continued for 12 hours to prepare colloidal calcium carbonate coated by sili force. [0225] When this preparation was observed with a transmission electron microscope (TEM), a silica shell having a thickness of 7 to; Onm was confirmed on the surface of the carbonic acid ruthenium of 40 to 80 nm.
[0226] 続いて、シリカによりコートされた炭酸カルシウムのスラリーを吸引ろ過にて脱液、ェ タノ一ノレ 1200mLによる洗浄、及び水 1200mLによる洗浄を行った後、再び水 800 mL中に分散させた。そこに、 2. 5モル/ Lの HC1を 200mL添加(液全体の酸濃度 0 . 5モル/ Uし、 1時間撹拌して炭酸カルシウムを溶解させた。  [0226] Subsequently, the calcium carbonate slurry coated with silica was removed by suction filtration, washed with 1200 mL ethanol and 1200 mL water, and then dispersed again in 800 mL water. . Thereto was added 200 mL of 2.5 mol / L HC1 (the acid concentration of the whole solution was 0.5 mol / U, and the mixture was stirred for 1 hour to dissolve calcium carbonate.
[0227] 得られた生成物を透過型電子顕微鏡にて観察したところ、一次粒子径が 45〜90n mのシリカ中空粒子が確認された。また、動的光散乱法(マルバーン社製ゼータサイ ザ一 3000HS)では、粒子径は 350nmであった。さらに、水銀圧入法により細孔分 布を測定したところ、 2〜20nmの細孔は検出されなかった。  [0227] When the obtained product was observed with a transmission electron microscope, silica hollow particles having a primary particle diameter of 45 to 90 nm were confirmed. In the dynamic light scattering method (Zeta Sizer-13000HS manufactured by Malvern), the particle size was 350 nm. Furthermore, when the pore distribution was measured by the mercury intrusion method, pores of 2 to 20 nm were not detected.
[0228] [コロイド中空粒子 Bの調製例]  [0228] [Preparation Example of Colloid Hollow Particle B]
上記したコロイド状炭酸カルシウムと同様にして製造したコロイド状炭酸カルシウム 3 Ogをイオン交換水 500g中に分散させた後、 29%アンモニア水 87g、テトラエトキシ シラン 32gを添加し、 24時間撹拌した。その後、イオン交換水により洗浄してから、 1 M塩酸 500mL中に投入し 30分間撹拌して、炭酸カルシウムを溶解させた。続いて、 イオン交換水により洗浄してから、 105°Cにて乾燥させて、シリカ中空粒子を得た。  After colloidal calcium carbonate 3 Og produced in the same manner as the above colloidal calcium carbonate was dispersed in 500 g of ion-exchanged water, 87 g of 29% ammonia water and 32 g of tetraethoxysilane were added and stirred for 24 hours. Then, after washing with ion-exchanged water, it was poured into 500 mL of 1 M hydrochloric acid and stirred for 30 minutes to dissolve calcium carbonate. Subsequently, it was washed with ion-exchanged water and then dried at 105 ° C. to obtain silica hollow particles.
[0229] 得られた生成物を透過型電子顕微鏡及び走査型電子顕微鏡(SEM)にて観察し たところ、緻密なシリカ殻(殻厚 8〜12nm)からなる 60〜; 120nmの中空状粒子であ つた。さらに、エネルギー分散型 X線検出器により化学分析を行ったところ、シリコン 及び酸素のみが検出され、高純度のシリカ中空粒子であることが確認された。また、 動的光散乱法による平均粒子径は 250nmであり、かつ水銀圧入法による細孔分布 測定では 2〜20nmの細孔が検出されなかったことから、緻密なシリカ殻からなり、か つ分散性がょレヽことも確認できた。  [0229] The obtained product was observed with a transmission electron microscope and a scanning electron microscope (SEM). As a result, it was found that the hollow particles having a fine silica shell (shell thickness 8 to 12 nm) 60 to 120 nm were used. Atsuta. Furthermore, when chemical analysis was performed using an energy dispersive X-ray detector, only silicon and oxygen were detected, confirming that the silica hollow particles had high purity. In addition, the average particle size by dynamic light scattering method is 250 nm, and pore distribution measurement by mercury intrusion method did not detect 2-20 nm pores. I was able to confirm that it was sex.
[0230] [紡錘状中空粒子の調製例]  [Example of preparation of spindle-shaped hollow particles]
工業用生石灰 120gを、 70°Cに加温した水道水 1. 0L中に投入し、 30分間撹拌し て、生石灰を消化させた後、 100メッシュフルイにて消化残渣を取り除いてから、適量 の水道水を加え、固形分濃度 74g/Lの消石灰スラリー 2. 0Lを調製した。この消石 灰スラリーの温度を 30°Cに調節してから、撹拌しながら炭酸ガスを 0. 35L/分の速 度で導入し、炭酸化反応を開始し、スラリーの pHが 7に低下した時点で炭酸ガスの 導入を終了させた。得られた炭酸カルシウムを、走査型電子顕微鏡にて観察したとこ ろ、長径 1. 5〜2. 0 mの紡錘状炭酸カルシウムであることを確認した。 120 g of industrial quicklime is poured into 1.0 L of tap water heated to 70 ° C, stirred for 30 minutes to digest quicklime, and after removing the digestion residue with 100 mesh sieve, an appropriate amount Tap water was added to prepare 2.0 L of slaked lime slurry with a solid content of 74 g / L. Adjust the temperature of the slaked ash slurry to 30 ° C, and then add carbon dioxide gas at a rate of 0.35 L / min while stirring. The carbonation reaction was started, and the introduction of carbon dioxide was terminated when the pH of the slurry dropped to 7. When the obtained calcium carbonate was observed with a scanning electron microscope, it was confirmed to be spindle-shaped calcium carbonate having a major axis of 1.5 to 2.0 m.
[0231] この紡錘状炭酸カルシウムのスラリーを遠心脱水機にて含水量 65重量%の含水ケ ーキとした後、この含水ケーキ 22gを 450gのエタノール中に投入し、 1分間超音波照 射して、エタノール中に炭酸カルシウムを分散させた。そこに、 28 %アンモニア水 21 g、テトラエトシキシラン 7· 5gを添加(テトラエトシシラン/エタノールの体積比 0· 01、 アンモニア水に含有される ΝΗはテトラエトキシシラン 1モルに対して 9· 3モル、水は テトラエトキシシラン 1モルに対して 30モル)し、 12時間撹拌を続け、シリカによりコー トされた複合体を調製した。 [0231] This spindle-shaped calcium carbonate slurry was made into a water-containing cake having a water content of 65% by weight with a centrifugal dehydrator, and then 22 g of this water-containing cake was put into 450 g of ethanol and subjected to ultrasonic irradiation for 1 minute. Then, calcium carbonate was dispersed in ethanol. To this, 21 g of 28% ammonia water and 7.5 g of tetraethoxysilane were added (volume ratio of tetraethoxysilane / ethanol 0 · 01, ΝΗ contained in ammonia water was 9.3 per mol of tetraethoxysilane. Mole and water were 30 moles per mole of tetraethoxysilane) and stirring was continued for 12 hours to prepare a composite coated with silica.
[0232] この調製物を透過型電子顕微鏡で観察したところ、紡錘状炭酸カルシウムの表面 に、厚さ 18〜22nmのシリカ殻が確認された。続いて、シリカによりコートされた炭酸 カルシウムのスラリーを吸引ろ過にて脱液、エタノール 1200mLによる洗浄、及び水 1200mLによる洗浄を行った後、再び水 800mL中に分散させた。このスラリーに 2· 5モル/ Lの塩酸を少量ずつ添加すると核材の炭酸カルシウムは発泡しながら溶解 した。 pHが 5まで低下したところで塩酸の添加を終了した。  [0232] When this preparation was observed with a transmission electron microscope, a silica shell with a thickness of 18 to 22 nm was confirmed on the surface of the spindle-shaped calcium carbonate. Subsequently, the calcium carbonate slurry coated with silica was removed by suction filtration, washed with 1200 mL of ethanol, and washed with 1200 mL of water, and then dispersed again in 800 mL of water. When 2.5 mol / L hydrochloric acid was added little by little to this slurry, the core calcium carbonate dissolved while foaming. The addition of hydrochloric acid was terminated when the pH dropped to 5.
[0233] 得られた生成物を透過型電子顕微鏡にて観察したところ、短径が 0. 2〜0. 7 u m、 長径が 1. 5〜2. 0 mの紡錘状の形状をしたシリカ中空微粒子を確認した。また、 動的光散乱法による平均粒子径は 2. 7 mであり、かつ水銀圧入法による細孔分布 測定では 2〜20nmの細孔が検出されなかった。  [0233] The obtained product was observed with a transmission electron microscope. As a result, a hollow silica gel having a spindle shape with a minor axis of 0.2 to 0.7 um and a major axis of 1.5 to 2.0 m was obtained. Fine particles were confirmed. The average particle size by dynamic light scattering was 2.7 m, and pores of 2 to 20 nm were not detected by pore distribution measurement by mercury porosimetry.
[0234] [球状中空粒子の調製例]  [0234] [Preparation example of spherical hollow particles]
水道水 2. 0L中にグリシン 120gを溶解した水溶液に、工業用消石灰 150gを懸濁 させ、このスラリーの温度を 20°Cに調節し、撹拌しながら炭酸ガスを 1. 5L/分の速 度で導入して、炭酸化反応を行い、スラリーの pHが 7に達した時点で炭酸ガスの導 入を終了させた。得られた生成物を、走査型電子顕微鏡にて観察したところ、径 0. 5 〜2. 0 mの球状炭酸カルシウムであり、粉末 X線回折の結果、パテライト型炭酸力 ルシゥムであることが確認された。  Suspend 150 g of industrial slaked lime in an aqueous solution of 120 g of glycine in 2.0 L of tap water, adjust the temperature of this slurry to 20 ° C, and stir carbon dioxide at a rate of 1.5 L / min while stirring. The carbonation reaction was carried out and the introduction of carbon dioxide was terminated when the pH of the slurry reached 7. When the obtained product was observed with a scanning electron microscope, it was found to be spherical calcium carbonate having a diameter of 0.5 to 2.0 m, and as a result of powder X-ray diffraction, it was found to be a patelite-type carbonated calcium carbonate. It was done.
[0235] SiO濃度を 18重量%に調整した 3号ケィ酸ソーダ 340gに、第 1工程で調製したバ テライト 200gと水を加えて全量を 1. 2Lとし、得られた混合スラリーを撹拌しながら 85 °Cまで加熱し、温度を 85°Cに保ちながら、この混合スラリーに 5%硫酸溶液を ρΗ8· 0になるまで徐々に添加し、球状炭酸カルシウムの表面をシリカで被覆した。スラリー の温度が常温になるまで静置し、撹拌しながら 1Nの塩酸を徐々に添加し、 pHが 3. 0になった時点で添加を終了し、このスラリーを吸引濾過し、水で洗浄して金属酸化 物中空微粒子のスラリーを得た。 [0235] To the 340 g of No. 3 sodium silicate with the SiO concentration adjusted to 18% by weight, the solution prepared in the first step was added. Add 200 g of terite and water to a total volume of 1.2 L. Heat the resulting mixed slurry to 85 ° C with stirring, and keep the temperature at 85 ° C while adding 5% sulfuric acid solution to this mixed slurry. Gradually added until 0, and the surface of the spherical calcium carbonate was coated with silica. Allow the slurry to stand at room temperature, slowly add 1N hydrochloric acid while stirring. When the pH reaches 3.0, complete the addition, filter the slurry with suction, and wash with water. Thus, a slurry of metal oxide hollow fine particles was obtained.
[0236] 得られた生成物を透過型電子顕微鏡にて観察したところ、径が 0. 5〜2. 0 mの 球状の形態をしたシリカ中空微粒子であることを確認した。また、動的光散乱法によ る平均粒子径は 2. l ^ mであり、かつ水銀圧入法による細孔分布測定では 2〜20n mの細孔が検出されな力、つた。  [0236] When the obtained product was observed with a transmission electron microscope, it was confirmed to be hollow silica fine particles having a spherical shape with a diameter of 0.5 to 2.0 m. The average particle size by dynamic light scattering method was 2. l ^ m, and the pore distribution measurement by mercury intrusion method was a force that could not detect 2-20 nm pores.
[0237] [実施例 1]  [0237] [Example 1]
[ポリエチレンマスターバッチの製造例]  [Production example of polyethylene masterbatch]
低密度ポリエチレン [LD— PE (MER = 25) ]を 1790g、コロイド中空粒子 Aを 200 g、脂肪酸系分散剤 10gを高速回転ブレンド機 (ミキサー)にて撹拌混合し、 30m/m 二軸押出し機で溶融混練後、押出し温度 170〜200°Cでペレットを作製した。吐出 状態は安定しており形状の整った透明性の高いペレットが得られた。  1790 g of low density polyethylene [LD-PE (MER = 25)], 200 g of colloidal hollow particle A, and 10 g of fatty acid-based dispersant are stirred and mixed in a high-speed rotary blender (mixer), 30m / m twin screw extruder After melting and kneading, pellets were produced at an extrusion temperature of 170 to 200 ° C. The discharge state was stable, and a highly transparent pellet with a good shape was obtained.
[0238] [実施例 2]  [Example 2]
[ポリエステル組成物の製造例]  [Production Example of Polyester Composition]
酸成分としてテレフタル酸、グリコール成分としてエチレングリコールを用い、ェチレ ングリコール中にコロイド中空粒子 Bを固形分量で 0. 3重量%を加えて常法により重 縮合し、得られた樹脂を吐出、チップ化し、固有粘度 0. 62のコロイド中空粒子を含 有したポリエチレンテレフタレートチップを得た。こうして得られたチップを常法により 乾燥し、ベント式 2軸溶融混練押し出し機に供給した。  Using terephthalic acid as the acid component and ethylene glycol as the glycol component, colloid hollow particles B are added in 0.3% by weight in ethylene glycol and polycondensed by a conventional method, and the resulting resin is discharged and the chip is discharged. A polyethylene terephthalate chip containing colloidal hollow particles having an intrinsic viscosity of 0.62 was obtained. The chips thus obtained were dried by a conventional method and supplied to a vent type biaxial melt kneading extruder.
[0239] その樹脂が溶融状態となったところで、ベント式 2軸溶融混練押し出し機のベント孔 を lOTorrの真空度に保ちつつ、組成物の温度が 280°Cとなるように保持しつつ溶 融押し出しを行い、コロイド中空粒子 Bを含有したポリエステル樹脂組成物のチップを 得た。 このコロイド中空粒子 Bを含有したポリエステル樹脂組成物のチップを、吐出 量 26g/分、紡速 1200m/分と設定して 75デニール /24フィラメントの繊維繊度を 有するように紡出し、該紡出糸を 185°Cの雰囲気下、 3. 3倍にて延伸して、コロイド 中空粒子 Bを含有したポリエステル繊維を得た。 [0239] When the resin is in a molten state, the vent hole of the vent type twin-screw melt kneading extruder is melted while keeping the temperature of the composition at 280 ° C while keeping the vent hole at a vacuum of lOTorr. Extrusion was performed to obtain a polyester resin composition chip containing colloidal hollow particles B. A polyester resin composition chip containing this colloidal hollow particle B is set at a discharge rate of 26 g / min and a spinning speed of 1200 m / min, and the fiber fineness of 75 denier / 24 filament is set. The spun yarn was stretched 3.3 times in an atmosphere of 185 ° C. to obtain a polyester fiber containing colloidal hollow particles B.
[0240] [実施例 3] [0240] [Example 3]
Figure imgf000053_0001
Figure imgf000053_0001
実施例 1と同様の方法で、球状中空粒子を固形分量で 0. 2重量%を加えて常法に より重縮合し、得られた樹脂を吐出、チップ化し、固有粘度 0. 60の球状中空粒子を 含有したポリエチレンテレフタレートチップを得た。このポリエステルを常法により乾燥 、押し出しをして未延伸シートとし、 125°Cで縦方向に 5. 0倍に、引き続いて 115°C で横方向に 3. 8倍に延伸した。さらに 210°Cで 10秒間の熱処理を行って厚さ 15 mの断熱性 2軸延伸ポリエステルフィルムを得た。  In the same manner as in Example 1, spherical hollow particles were added by 0.2% by weight in solid content and polycondensed by a conventional method, and the resulting resin was discharged and formed into chips, resulting in a spherical hollow having an intrinsic viscosity of 0.60. A polyethylene terephthalate chip containing particles was obtained. This polyester was dried and extruded by a conventional method to obtain an unstretched sheet, which was stretched 5.0 times in the machine direction at 125 ° C and subsequently 3.8 times in the transverse direction at 115 ° C. Further, heat treatment was performed at 210 ° C. for 10 seconds to obtain a heat insulating biaxially stretched polyester film having a thickness of 15 m.
[0241] [実施例 4]  [0241] [Example 4]
[ポリエチレンテレフタレートチップの製造例]  [Production example of polyethylene terephthalate chip]
実施例 1と同様の方法で、紡錘状中空粒子を固形分量で 0. 5重量%を加えて常法 により重縮合し、得られた樹脂を吐出、チップ化し、固有粘度 0. 68の紡錘状中空粒 子を含有したポリエチレンテレフタレートチップを得た。このチップは断熱性の優れた コンパウンドとして、各種の成形体への使用が可能である。  In the same manner as in Example 1, spindle-shaped hollow particles were added in an amount of 0.5% by weight in a solid content and subjected to polycondensation by a conventional method, and the resulting resin was discharged and formed into chips. A polyethylene terephthalate chip containing hollow particles was obtained. This chip can be used for various molded products as a compound with excellent heat insulation.
[0242] [実施例 5]  [0242] [Example 5]
[水系塗料組成物の製造例]  [Production example of water-based paint composition]
実施例 4で製造したポリエステル樹脂組成物のチップを 15部、テトラヒドロフラン 85 部をフラスコに入れ、 45°Cにて撹拌し樹脂を溶解した。この中に水 135部と所定量の トリェチルァミンを加え 100°Cまで加熱して、ポリエステルからなる水系塗料組成物を 作製した。  15 parts of the polyester resin composition chip produced in Example 4 and 85 parts of tetrahydrofuran were placed in a flask and stirred at 45 ° C. to dissolve the resin. To this, 135 parts of water and a predetermined amount of triethylamine were added and heated to 100 ° C. to prepare a water-based coating composition made of polyester.
[0243] 実施の形態 2  [0243] Embodiment 2
次に、本発明の実施の形態 2に係る防眩コーティング材について、図 1を参照して説 明する。図 1 (a)は本発明の実施の形態 2に係る防眩コーティング材をガラス基板上 に塗布した状態を示す部分断面図、(b)はその拡大断面図である。即ち、本実施の 形態 2に係る防眩コーティング材 1は、請求項 10の発明に係る防眩コーティング材で ある。 [0244] 最初に、本実施の形態 2に係る防眩コーティング材 1の製造方法について説明する 。まず、 30nmから 300nmまでの範囲の外径を有するシリカ殻からなる立方体状形 態を有する中空粒子 10を製造する力 S、その製造方法は、図 5について上述した通り である。本実施の形態 2においては、炭酸カルシウム微粒子の粒径を制御することに よって、 30nmから 70nmまでの範囲の外径を有する平均粒径 50nmのシリカ殻から なる立方体状形態を有する中空粒子 10を製造している。 Next, an antiglare coating material according to Embodiment 2 of the present invention will be described with reference to FIG. FIG. 1 (a) is a partial sectional view showing a state in which an antiglare coating material according to Embodiment 2 of the present invention is applied onto a glass substrate, and FIG. 1 (b) is an enlarged sectional view thereof. That is, the antiglare coating material 1 according to Embodiment 2 is the antiglare coating material according to the invention of claim 10. [0244] First, a method for manufacturing the antiglare coating material 1 according to Embodiment 2 will be described. First, the force S for producing the hollow particles 10 having a cubic shape composed of silica shells having an outer diameter ranging from 30 nm to 300 nm, and the production method thereof are as described above with reference to FIG. In the second embodiment, by controlling the particle diameter of the calcium carbonate fine particles, the hollow particles 10 having a cubic shape composed of silica shells having an average particle diameter of 50 nm and an outer diameter ranging from 30 nm to 70 nm are obtained. Manufactured.
[0245] 一方、有機溶媒のキシレン 80重量部にアクリル樹脂 3を 11重量部溶解させて、有 機合成樹脂塗料としてのアクリル樹脂溶液を作製する。このアクリル樹脂溶液中に、 製造した 30nmから 70nmまでの範囲の外径を有する平均粒径 50nmのシリカ殻から なる立方体状形態を有する中空粒子 10が凝集した、 0· 5 111〜5 111の範囲内の 大きさを有する二次粒子 2を適量混合する。そして、攪拌することによって、二次粒子 2をアクリル樹脂溶液中に均一に分散させる。これによつて、本実施の形態 2に係る 防眩コーティング材 1が製造される。  [0245] On the other hand, 11 parts by weight of acrylic resin 3 is dissolved in 80 parts by weight of xylene as an organic solvent to prepare an acrylic resin solution as an organic synthetic resin paint. In this acrylic resin solution, hollow particles 10 having a cubic shape composed of silica shells having an average particle diameter of 50 nm having an outer diameter in the range of 30 nm to 70 nm were aggregated, and a range of 0.5 · 111 to 111 A suitable amount of secondary particles 2 having a size inside is mixed. Then, the secondary particles 2 are uniformly dispersed in the acrylic resin solution by stirring. Thereby, the antiglare coating material 1 according to the second embodiment is manufactured.
[0246] 図 1 (a)に示されるように、このようにして製造された防眩コーティング材 1をガラス基 板 4の表面に塗布することによって、溶媒としてのキシレンが揮発して、アクリル樹脂 3 の薄!/、塗膜中に 0· 5 m〜5 mの範囲内の大きさを有する二次粒子 2が突出した 構造の防眩塗膜が形成される。ここで、図 6の TEM写真にも示されるように、二次粒 子 2を構成するシリカ殻力もなる立方体状形態を有する中空粒子 10は、シリカ殻 11 の厚さが lnm〜5nm程度と薄くなつている。そして、中空部分 12の体積が大きいた め、防眩塗膜全体としての屈折率は、 1. 2〜; 1. 3と低くなつている。  [0246] As shown in Fig. 1 (a), by applying the antiglare coating material 1 produced in this way to the surface of the glass substrate 4, xylene as a solvent volatilizes, and an acrylic resin is obtained. A thin anti-glare coating film having a structure in which secondary particles 2 having a size in the range of 0.5 · 5 m to 5 m are formed in the coating film. Here, as shown in the TEM photograph of FIG. 6, the hollow particles 10 having a cubic shape with the silica shell force constituting the secondary particles 2 have a thin silica shell 11 thickness of about 1 nm to 5 nm. It is summer. And since the volume of the hollow part 12 is large, the refractive index as the whole anti-glare coating film is as low as 1.2 to 1.3.
[0247] 従って、図 1 (b)に示されるように、シリカ殻からなる立方体状形態を有する中空粒 子 10は、防眩塗膜に対してほぼ垂直に入射する可視光線 L1はシリカ殻 1 1及び中 空部分 12を通過してそのまま透過させ、防眩塗膜に対して斜めに入射する可視光 線 L2は、シリカ殻 11において散乱させる機能を有する。従って、図 1に示されるガラ ス基板 4がパソコンのディスプレイやテレビ画面のような表示装置の表面である場合 には、室内照明等の映り込みもなく透明性にも優れて表示装置のコントラストをも向 上させること力 Sでさる。  Accordingly, as shown in FIG. 1 (b), the hollow particles 10 having a cubic shape composed of silica shells have a visible ray L1 incident on the silica shell 1 almost perpendicularly to the antiglare coating. Visible light rays L2 that pass through 1 and the airspace portion 12 and pass through as they are and obliquely enter the antiglare coating film have a function of scattering in the silica shell 11. Therefore, when the glass substrate 4 shown in FIG. 1 is the surface of a display device such as a personal computer display or a television screen, the interior of the display is not reflected and the transparency of the display device is excellent. The power S can be improved.
[0248] また、図 1に示されるガラス基板 4がビルの窓ガラスである場合には、この防眩塗膜 を窓ガラスの外側に形成することによって、太陽光や自動車のヘッドライト等の眩しい 光がビルの窓ガラスで反射されて通行人や自動車の運転手の目に入ると!/、う不具合 も、確実に防止することができる。ここで、アクリル樹脂 3は紫外線にも強く耐候性に 優れるため、窓ガラスの外側に塗布されても劣化し難ぐまた上述の如くシリカ殻から なる立方体状形態を有する中空粒子 10は低コストで製造できるため、ビルの窓ガラ スのような大きな面積にも使用することができる。 [0248] Further, when the glass substrate 4 shown in Fig. 1 is a window glass of a building, the antiglare coating film If the dazzling light such as sunlight or car headlights is reflected by the window glass of the building and enters the eyes of passers-by and car drivers! It can be surely prevented. Here, since the acrylic resin 3 is resistant to ultraviolet rays and has excellent weather resistance, the hollow particles 10 having a cubic shape made of silica shell as described above are less likely to deteriorate even when applied on the outside of the window glass. Because it can be manufactured, it can also be used in large areas such as building window glass.
[0249] このようにして、本実施の形態 2に係る防眩コーティング材 1は、低コストで製造され るシリカ殻力、らなる立方体状形態を有する中空粒子 10の低屈折率、透光性及び二 次粒子 2の乱反射を利用した、低コストが要求される用途にも使用することができる防 眩コーティング材となる。 [0249] Thus, the antiglare coating material 1 according to the second embodiment is a low-refractive-index, translucent, hollow silica particle 10 having a silica-shell force produced at a low cost. In addition, the anti-glare coating material can be used for low-cost applications utilizing the irregular reflection of the secondary particles 2.
[0250] 実施の形態 3  [0250] Embodiment 3
次に、本発明の実施の形態 3に係る反射防止コーティング材について、図 2を参照 して説明する。図 2は本発明の実施の形態 3に係る反射防止コーティング材をガラス 基板上に塗布した状態を示す部分断面図である。  Next, an antireflection coating material according to Embodiment 3 of the present invention will be described with reference to FIG. FIG. 2 is a partial cross-sectional view showing a state in which an antireflection coating material according to Embodiment 3 of the present invention is applied on a glass substrate.
[0251] 本実施の形態 3に係る反射防止コーティング材 5は、 30nmから 70nmまでの範囲 の外径を有する平均粒径 50nmのシリカ殻からなる立方体状形態を有する中空粒子 10が凝集した 0· 5 m〜5 mの範囲内の大きさを有する二次粒子 2を破砕して製 造されるものである。即ち、本実施の形態 3に係る反射防止コーティング材 5は、請求 項 11の発明に係る反射防止コーティング材である。  [0251] In the antireflection coating material 5 according to the third embodiment, the hollow particles 10 having a cubic shape composed of silica shells having an outer diameter in the range of 30 nm to 70 nm and an average particle diameter of 50 nm are aggregated. The secondary particles 2 having a size in the range of 5 m to 5 m are produced by crushing. That is, the antireflection coating material 5 according to Embodiment 3 is the antireflection coating material according to the invention of claim 11.
[0252] 図 2に示されるように、まず 30nmから 70nmまでの範囲の外径を有する平均粒径 5 Onmのシリカ殻からなる立方体状形態を有する中空一次粒子 10が凝集した 0. 5 μ m〜5 mの範囲内の大きさを有する二次粒子 2を製造する。続いて、この二次粒子 2を破砕することによって、 30nmから 70nmまでの範囲の大きさの破砕粒子とする。  As shown in FIG. 2, hollow primary particles 10 having a cubic shape composed of silica shells having an average particle diameter of 5 Onm having an outer diameter in the range of 30 nm to 70 nm were first aggregated to 0.5 μm. Secondary particles 2 having a size in the range of ˜5 m are produced. Subsequently, the secondary particles 2 are crushed to obtain crushed particles having a size ranging from 30 nm to 70 nm.
[0253] 一方、有機溶媒のキシレン 80重量部にアクリル樹脂 3を 11重量部溶解させて、有機 合成樹脂塗料としてのアクリル樹脂溶液を作製する。このアクリル樹脂溶液中に、二 次粒子 2を破砕して製造した 30nmから 70nmまでの範囲の大きさを有する破砕粒子 6を適量混合して、攪拌することによって、破砕粒子 6をアクリル樹脂溶液中に均一に 分散させる。これによつて、本実施の形態 3に係る反射防止コーティング材 5が製造さ れる。 On the other hand, 11 parts by weight of acrylic resin 3 is dissolved in 80 parts by weight of xylene as an organic solvent to prepare an acrylic resin solution as an organic synthetic resin paint. In this acrylic resin solution, an appropriate amount of pulverized particles 6 produced by pulverizing the secondary particles 2 and having a size in the range of 30 nm to 70 nm are mixed and stirred, whereby the crushed particles 6 are contained in the acrylic resin solution. Disperse evenly. As a result, the antireflection coating material 5 according to the third embodiment is manufactured. It is.
[0254] 図 2に示されるように、このようにして製造された本実施の形態 3に係る反射防止コ 一ティング材 5をガラス基板 4の表面に塗布することによって、溶媒としてのキシレン が揮発して、アクリル樹脂 3の薄い塗膜中に、 30nmから 70nmまでの範囲の大きさを 有する破砕粒子 6が均一に分散した単層構造の反射防止塗膜が形成される。  As shown in FIG. 2, the antireflection coating material 5 according to the third embodiment manufactured in this way is applied to the surface of the glass substrate 4 to volatilize xylene as a solvent. Thus, an antireflection coating film having a single layer structure in which crushed particles 6 having a size ranging from 30 nm to 70 nm are uniformly dispersed in the thin coating film of the acrylic resin 3 is formed.
[0255] 図 2に示されるように、二次粒子 2を破砕すると、シリカ殻からなる立方体状形態を有 する中空粒子 10の一次粒子となる力 S、条件によっては半分以上が立方体状が破壊 された破片からなる破砕粒子 6となる。本発明者らは、このような立方体状が破壊され た破片が混在した破砕粒子 6を有機合成樹脂塗料 3中に均一に分散して、ガラス基 板 4上に塗布することによつても優れた反射防止効果が得られることを見出し、この知 見に基づいて本実施の形態 2に係る反射防止コーティング材 5を完成したものである [0255] As shown in Fig. 2, when the secondary particles 2 are crushed, the hollow particles 10 having a cubic shape consisting of silica shells 10 become the primary particles force S, and depending on the conditions, more than half breaks the cubic shape The crushed particles 6 consisted of broken pieces. The inventors of the present invention are also excellent by uniformly dispersing the crushed particles 6 mixed with such broken pieces of the cubic shape in the organic synthetic resin paint 3 and applying them on the glass substrate 4. The antireflection coating material 5 according to the second embodiment has been completed based on this finding.
Yes
[0256] このようにして、本実施の形態 3に係る反射防止コーティング材 5は、低コストで製造 されるシリカ殻力、らなる立方体状形態を有する中空粒子 10の低屈折率及び透光性 を利用した、低コストが要求される用途にも使用することができる反射防止コーティン グ材となる。  [0256] Thus, the antireflection coating material 5 according to Embodiment 3 has a low refractive index and a light-transmitting property of the hollow shell 10 having a cubic shell shape, which is produced at a low cost. This is an anti-reflection coating material that can be used for applications that require low cost.
[0257] 実施の形態 4  [0257] Embodiment 4
次に、本発明の実施の形態 4に係る反射防止コーティング材について、図 3を参照 して説明する。図 3は本発明の実施の形態 4に係る反射防止コーティング材の製造 方法を示す説明図及び本発明の実施の形態 4に係る反射防止コーティング材をガラ ス基板上に塗布した状態を示す部分断面図である。  Next, an antireflection coating material according to Embodiment 4 of the present invention will be described with reference to FIG. FIG. 3 is an explanatory view showing a manufacturing method of an antireflection coating material according to Embodiment 4 of the present invention, and a partial cross section showing a state in which the antireflection coating material according to Embodiment 4 of the present invention is applied on a glass substrate. FIG.
[0258] ナノレベルの外径を有するシリカ殻からなる立方体状形態を有する中空粒子 10が 凝集した二次粒子 2も、平均粒径が 15 m程度のミクロンレベルの大きさのビーズ B Sを用いたビーズミル BMで解砕することによって、 30nmから 300nmまでの範囲の 外径を有する立方体状形態を有する中空粒子 10に分散される。従って、図 3に示さ れるように、ビーズミル BMにシリカ中空粒子が凝集した二次粒子 2と有機合成樹脂 塗料としてのポリカーボネート樹脂塗料 7とを入れておいて、平均粒径が 15 mのビ ーズ BSを用いてビーズミル BMを回転させて混合することによって、ポリカーボネート 樹脂塗料 7中に一次粒子に解砕された中空一次粒子 10が均一に分散したコーティ ング材 8が得られる。 [0258] Secondary particles 2 in which hollow particles 10 having a cubic shape composed of silica shells having an outer diameter of nano level are aggregated also used beads BS having an average particle diameter of about 15 m and a micron level. By pulverizing with a bead mill BM, the particles are dispersed in hollow particles 10 having a cubic form having an outer diameter in the range of 30 nm to 300 nm. Therefore, as shown in FIG. 3, a bead mill BM is filled with secondary particles 2 in which silica hollow particles are aggregated and polycarbonate resin paint 7 as an organic synthetic resin paint, and a bead having an average particle diameter of 15 m. By rotating and rotating the bead mill BM using BS A coating material 8 in which the hollow primary particles 10 pulverized into primary particles in the resin coating 7 are uniformly dispersed is obtained.
[0259] 図 3に示されるように係るコーティング材 8をガラス基板 4上に薄く塗布することによつ て、立方体状形態を有するシリカ中空粒子 10が分散した厚さ 0· 5 111〜2. O ^ m程 度の透明なポリカーボネート樹脂塗膜 7が形成される。この塗膜 7の屈折率は、内部 に空気を含んだシリカ中空粒子 10が均一に分散しているため、 1. 2〜; 1. 3の範囲内 の低屈折率となり、この塗膜 7は反射防止膜 (AR膜)として機能する。  [0259] The coating material 8 as shown in Fig. 3 is applied to the glass substrate 4 thinly so that the silica hollow particles 10 having a cubic shape are dispersed. A transparent polycarbonate resin film 7 of about O ^ m is formed. The refractive index of this coating film 7 is a low refractive index within the range of 1.2 to 1.3 because the hollow silica particles 10 containing air are uniformly dispersed therein. Functions as an antireflection film (AR film).
[0260] このようにして、本実施の形態 4に係る反射防止コーティング材 8は、低コストで製造 されるシリカ殻力、らなる立方体状形態を有する中空粒子 10の低屈折率及び透光性 を利用した、低コストが要求される用途にも使用することができる反射防止コーティン グ材となる。  [0260] Thus, the antireflection coating material 8 according to Embodiment 4 has a low refractive index and a light-transmitting property of the hollow shell 10 having a cubic shell shape, which is produced at a low cost. This is an anti-reflection coating material that can be used for applications that require low cost.
[0261] 実施の形態 5  [0261] Embodiment 5
次に、本発明の実施の形態 5に係る防眩フィルム及び反射防止フィルムについて、 図 4を参照して説明する。図 4 (a)は本発明の実施の形態 5に係る防眩フィルムをガラ ス基板上に貼り付けた状態を示す部分断面図、(b)は本発明の実施の形態 5に係る 反射防止フィルムの構造を示す部分断面図、(c)は本発明の実施の形態 5の変形例 に係る反射防止フィルムの構造を示す部分断面図である。  Next, an antiglare film and an antireflection film according to Embodiment 5 of the present invention will be described with reference to FIG. FIG. 4 (a) is a partial cross-sectional view showing a state in which the antiglare film according to Embodiment 5 of the present invention is attached to a glass substrate, and (b) is the antireflection film according to Embodiment 5 of the present invention. FIG. 7C is a partial cross-sectional view showing the structure of the antireflection film according to the modification of Embodiment 5 of the present invention.
[0262] 図 4 (a)に示されるように、本実施の形態 5に係る防眩フィルム 15は、ナノレベルの外 径を有するシリカ殻からなる立方体状形態を有する中空粒子 10が凝集した二次粒 子 2を、ミクロンオーダーの厚さの有機合成樹脂フィルムとしてのアクリル樹脂フィルム 16中に均一に分散させたものである。  [0262] As shown in FIG. 4 (a), the antiglare film 15 according to the fifth embodiment has two aggregated hollow particles 10 having a cubic shape made of a silica shell having a nano-level outer diameter. The secondary particles 2 are uniformly dispersed in an acrylic resin film 16 as an organic synthetic resin film having a thickness of micron order.
[0263] 図 4 (a)に示されるように、このようにして製造された防眩フィルム 15をガラス基板 4 の表面に貼り付けることによって、薄いアタリノレ樹脂フイノレム 16中に 0. 5〃111〜5〃111 の範囲内の大きさを有する二次粒子 2が突出した構造の防眩フィルム 15となる。ここ で、図 6の TEM写真にも示されるように、二次粒子 2を構成するシリカ殻からなる立方 体状形態を有する中空粒子 10は、シリカ殻 11の厚さが lnm〜5nm程度と薄くなつ ている。そして、中空部分 12の体積が大きいため、防眩フィルム 15全体としての屈折 率は、 1. 2〜; 1. 3と低くなつている。 [0264] 従って、シリカ殻からなる立方体状形態を有する中空粒子 10は、防眩フィルム 15に 対してほぼ垂直に入射する可視光線はシリカ殻 11及び中空部分 12を通過してその まま透過させ、防眩フィルム 15に対して斜めに入射する可視光線は、シリカ殻 11に おいて散乱させる機能を有する。従って、図 4 (a)に示されるガラス基板 4がパソコン のディスプレイやテレビ画面のような表示装置の表面である場合には、室内照明等の 映り込みもなく透明性にも優れて表示装置のコントラストをも向上させることができる。 [0263] As shown in Fig. 4 (a), the antiglare film 15 manufactured in this way is attached to the surface of the glass substrate 4, so that 0.5 〃 111 ~ The antiglare film 15 has a structure in which the secondary particles 2 having a size in the range of 5 to 111 are projected. Here, as shown in the TEM photograph of FIG. 6, the hollow particles 10 having a cubic shape composed of the silica shells constituting the secondary particles 2 have a thin silica shell 11 thickness of about 1 nm to 5 nm. It has been. Since the volume of the hollow portion 12 is large, the refractive index of the antiglare film 15 as a whole is as low as 1.2 to 1.3. [0264] Accordingly, the hollow particles 10 having a cubic shape composed of silica shells transmit visible light that passes through the silica shell 11 and the hollow portion 12 as they are, and pass through the silica shell 11 and the hollow portion 12 as they are. Visible light incident obliquely on the antiglare film 15 has a function of scattering in the silica shell 11. Therefore, when the glass substrate 4 shown in FIG. 4 (a) is the surface of a display device such as a personal computer display or a TV screen, the interior of the display device is not reflected and the transparency is excellent. Contrast can also be improved.
[0265] また、図 4 (a)に示されるガラス基板 4がビルの窓ガラスである場合には、この防眩フ イルム 15を窓ガラスの外側に貼り付けることによって、太陽光や自動車のヘッドライト 等の眩しレ、光がビルの窓ガラスで反射されて通行人や自動車の運転手の目に入ると いう不具合も、確実に防止することができる。ここで、アクリル樹脂フィルム 16は紫外 線にも強く耐候性に優れるため、窓ガラスの外側に貼り付けられても劣化し難ぐまた 上述の如くシリカ殻からなる立方体状形態を有する中空粒子 10は低コストで製造で きるため、ビルの窓ガラスのような大きな面積にも使用することができる。 [0265] If the glass substrate 4 shown in Fig. 4 (a) is a window glass of a building, the antiglare film 15 is attached to the outside of the window glass, so that the head of sunlight or an automobile can be obtained. It is possible to surely prevent glare from lights and other problems such as light being reflected by the window glass of the building and entering the eyes of passers-by and automobile drivers. Here, since the acrylic resin film 16 is resistant to ultraviolet rays and has excellent weather resistance, the hollow particles 10 having a cubic shape made of silica shell as described above are not easily deteriorated even when attached to the outside of the window glass. Since it can be manufactured at low cost, it can be used for large areas such as building window glass.
[0266] このようにして、本実施の形態 5に係る防眩フィルム 15は、低コストで製造されるシリ 力殻力 なる立方体状形態を有する中空粒子 10の低屈折率、透光性及び二次粒子 2の乱反射を利用した、低コストが要求される用途にも使用することができる防眩フィ ルムとなる。 [0266] Thus, the antiglare film 15 according to the fifth embodiment has a low refractive index, translucency, and two-dimensionality of the hollow particles 10 having a cubic shape with a cruciform shell force produced at low cost. The anti-glare film can be used for low-cost applications utilizing the irregular reflection of the secondary particles 2.
[0267] 次に、本実施の形態 5に係る反射防止フィルム 17について、図 4 (b)を参照して説 明する。図 4 (b)に示されるように、本実施の形態 5に係る反射防止フィルム 17は、有 機合成樹脂フィルムとしてのポリカーボネート樹脂フィルム 18中に、シリカ殻からなる 立方体状形態を有する中空粒子 10を均一に分散させてなるものである。  [0267] Next, the antireflection film 17 according to Embodiment 5 will be described with reference to Fig. 4 (b). As shown in FIG. 4 (b), the antireflection film 17 according to Embodiment 5 is a hollow particle 10 having a cubic shape made of silica shells in a polycarbonate resin film 18 as an organic synthetic resin film. Are uniformly dispersed.
[0268] このような反射防止フィルム 17を製造するには、上記実施の形態 4において図 3に ついて説明したように、シリカ殻からなる立方体状形態を有する中空一次粒子 10が 凝集した二次粒子 2と、ポリカーボネート樹脂フィルム 18の原料となるポリカーボネー ト樹脂溶液とを、平均粒径が 15 mのビーズ BSを用いたビーズミル BM中に入れ、 ビーズミル BMを回転させて混合することによって、二次粒子 2が解砕されてポリカー ボネート樹脂溶液にシリカ殻力もなる立方体状形態を有する中空粒子 10が均一に分 散した状態となる。 [0269] 力、かるポリカーボネート樹脂フィルム原料から公知の薄膜フィルム作製方法によって 薄膜フィルムを製造すれば、図 4 (b)に示されるように、立方体状形態を有するシリカ 中空粒子 10が単層で分散した厚さ 0. 5 111〜2. 0 m程度の透明なポリカーボネ ート樹脂フィルム 17が形成される。このフィルム 17の屈折率は、内部に空気を含んだ シリカ中空粒子 10が均一に分散しているため、 1. 2〜; 1. 3の範囲内の低屈折率とな り、このフィルム 17は反射防止フィルム (ARフィルム)として機能する。 [0268] In order to manufacture such an antireflection film 17, as described with reference to Fig. 3 in Embodiment 4 above, secondary particles in which hollow primary particles 10 having a cubic shape made of silica shells are aggregated are aggregated. 2 and a polycarbonate resin solution as a raw material for the polycarbonate resin film 18 are placed in a bead mill BM using beads BS having an average particle size of 15 m, and the bead mill BM is rotated and mixed to obtain a secondary solution. The particles 2 are crushed, and the hollow particles 10 having a cubic shape having a silica shell force are uniformly dispersed in the polycarbonate resin solution. [0269] If a thin film is produced from a polycarbonate resin film raw material by a known thin film production method, silica hollow particles 10 having a cubic shape are dispersed in a single layer as shown in FIG. 4 (b). A transparent polycarbonate resin film 17 having a thickness of about 0.5 111 to 2.0 m is formed. The refractive index of this film 17 is a low refractive index in the range of 1.2 to 1.3 because the hollow silica particles 10 containing air are uniformly dispersed therein. Functions as an antireflection film (AR film).
[0270] このようにして、本実施の形態 5に係る反射防止フィルム 17は、低コストで製造され るシリカ殻力、らなる立方体状形態を有する中空粒子 10の低屈折率及び透光性を利 用した、低コストが要求される用途にも使用することができる反射防止フィルムとなる。  [0270] Thus, the antireflection film 17 according to the fifth embodiment has a low refractive index and a light-transmitting property of the hollow particles 10 having a cubic shape formed by the silica shell force produced at low cost. The anti-reflection film can be used for low cost applications.
[0271] 次に、本実施の形態 5の変形例に係る反射防止フィルム 20について、図 4 (c)を参 照して説明する。図 4 (c)に示されるように、本実施の形態 5の変形例に係る反射防 止フィルム 20は、図 4 (a)に示される本実施の形態 5に係る防眩フィルム 15の上面に 図 4 (b)に示される本実施の形態 5に係る反射防止フィルム 17を積層したものである [0271] Next, an antireflection film 20 according to a modification of the fifth embodiment will be described with reference to Fig. 4 (c). As shown in FIG. 4 (c), the antireflection film 20 according to the modification of the fifth embodiment is provided on the upper surface of the antiglare film 15 according to the fifth embodiment shown in FIG. 4 (a). The antireflection film 17 according to the fifth embodiment shown in FIG. 4 (b) is laminated.
Yes
[0272] 図 4 (a)に示される防眩フィルム 15は、上述の如ぐ反射防止性と防眩性に優れた防 眩フィルム(AGフィルム)である力 この防眩フィルム 15の上に、反射防止フィルム( ARフィルム) 17を積層することによって、室内照明等の映り込みもなく透明性にも優 れて表示装置のコントラストをも向上させることができる、より良好な特性を有する反 射防止フィルムを得ることができる。  [0272] The antiglare film 15 shown in FIG. 4 (a) is an antiglare film (AG film) having excellent antireflection properties and antiglare properties as described above. By laminating anti-reflection film (AR film) 17, anti-reflection with better characteristics that can improve the contrast of the display device with excellent transparency and no reflection of indoor lighting etc. A film can be obtained.
[0273] このようにして、本実施の形態 5の変形例に係る反射防止フィルム 20は、低コストで 製造されるシリカ殻力、らなる立方体状形態を有する中空粒子 10の低屈折率、透光性 及び二次粒子 2の乱反射を利用した、低コストが要求される用途にも使用することが できる反射防止フィルムとなる。  [0273] Thus, the antireflection film 20 according to the modification of the fifth embodiment has a low refractive index and a low transmittance of the hollow particles 10 having a cubic shell shape, which is produced at a low cost. It is an antireflection film that can be used for applications requiring low cost, utilizing light and irregular reflection of secondary particles 2.
[0274] 実施の形態 6  [0274] Embodiment 6
次に、本発明の実施の形態 6に係る防食膜及び防食塗料について、図 7乃至図 9を 参照して説明する。図 7 (a)は本発明の実施の形態 6に係る防食塗料を用いて形成 した防食膜付き試験片の全体構成を示す斜視図、(b)は防食膜付き試験片の構成 を示す部分断面図である。図 8は本発明の実施の形態 6に係る防食塗料の製造工程 を示すフローチャートである。図 9は本発明の実施の形態 6に係る防食塗料を用いて 形成した防食膜付き試験片の製造工程を示すフローチャートである。 Next, an anticorrosion film and an anticorrosion paint according to Embodiment 6 of the present invention will be described with reference to FIGS. FIG. 7 (a) is a perspective view showing the overall configuration of a test piece with an anticorrosion film formed using the anticorrosion paint according to Embodiment 6 of the present invention, and (b) is a partial cross-section showing the configuration of the test piece with an anticorrosion film FIG. FIG. 8 shows a manufacturing process of the anticorrosion paint according to Embodiment 6 of the present invention. It is a flowchart which shows. FIG. 9 is a flowchart showing a manufacturing process of a test piece with an anticorrosion film formed using the anticorrosion paint according to Embodiment 6 of the present invention.
[0275] 図 7 (a)に示されるように、本実施の形態 6に係る防食膜付き試験片 21は、長さ 150 mm、幅 70mm、厚さ 5mmのアルミニウム板 22の表面の酸化膜をサンドブラストで除 去した後に、本実施の形態 6に係る防食塗料をスプレー塗装して防食膜 23を形成し たものである。 [0275] As shown in Fig. 7 (a), the test piece 21 with the anticorrosion film according to the sixth embodiment has an oxide film on the surface of the aluminum plate 22 having a length of 150 mm, a width of 70 mm, and a thickness of 5 mm. After removal by sandblasting, the anticorrosion paint according to Embodiment 6 is spray-coated to form the anticorrosion film 23.
[0276] 本実施の形態 6に係る防食塗料は、イソシァネート アクリル系塗料に 10nm〜30 Onmの範囲内の外径を有するシリカ殻からなる立方体状形態の中空粒子及び亜鉛 粉末粒子を均一に分散させてなるものであり、図 7 (b)に示されるように、本実施の形 態 6に係る防食膜 23においては、本実施の形態 6に係る防食塗料をスプレー塗装し て焼付け乾燥することによって、イソシァネート系塗膜 26中に、 50nm〜; !OOnmの範 囲内の外径を有する平均粒径 80nmのシリカ殻からなる立方体状形態の中空粒子 1 0及び亜鉛粉末粒子 25を均一に分散させてなる。  [0276] The anticorrosion paint according to the sixth embodiment is obtained by uniformly dispersing cubic particles of hollow particles and zinc powder particles made of a silica shell having an outer diameter in the range of 10 nm to 30 Onm in an isocyanate acrylic paint. As shown in Fig. 7 (b), the anticorrosion film 23 according to the sixth embodiment is spray-coated with the anticorrosive paint according to the sixth embodiment and baked and dried. In the isocyanate-based coating film 26, hollow particles 10 and zinc powder particles 25 having a silica shell with an average particle diameter of 80 nm and an outer diameter in the range of 50 nm to OO nm are uniformly dispersed. Become.
[0277] 本実施の形態 6に係る防食塗料の配合は、表 1に示される実施例 6の通りである。  [0277] The composition of the anticorrosion paint according to Embodiment 6 is as in Example 6 shown in Table 1.
[0278] [表 1]  [0278] [Table 1]
Figure imgf000060_0001
Figure imgf000060_0001
[0279] 表 1に示されるように、シリカ殻からなる立方体状形態の中空粒子 10の固形分配合 比は 10重量%であり、最も好ましい量のシリカ殻からなる立方体状形態の中空粒子 1 0を配合している。同様に、インヒビターとしての亜鉛粉末粒子 25としても、最も好まし い量である固形分配合比 10重量%を配合している。また、溶剤としては、有機樹脂 が溶解し易いキシレン (オルト,メタ,パラの 3異性体の混合物)を使用している。 [0279] As shown in Table 1, the solid content ratio of the hollow particles 10 having a cubic shape made of silica shells was 10% by weight, and the hollow particles 1 having a cubic shape made of the most preferable amount of silica shells 1 Contains 0. Similarly, as the zinc powder particles 25 as an inhibitor, the most preferable amount of solid content is 10% by weight. As the solvent, xylene (a mixture of ortho, meta, and para isomers), which is easy to dissolve organic resins, is used.
[0280] まず、本実施の形態 6に係る実施例 6の防食塗料 27の製造方法について、図 8の フローチャートを参照して説明する。図 8に示されるように、最初に、 50nm〜; !OOnm の範囲内の外径を有する平均粒径 80nmのシリカ殻からなる立方体状形態の中空 粒子 10を製造する(ステップ S 10)。  [0280] First, a method for manufacturing the anticorrosion paint 27 of Example 6 according to Embodiment 6 will be described with reference to the flowchart of FIG. As shown in FIG. 8, first, hollow particles 10 having a cubic shape composed of silica shells having an outer diameter in the range of 50 nm to! OOnm and having an average particle diameter of 80 nm are manufactured (step S10).
[0281] ここで、一般的な 10nm〜300nmの範囲内の外径を有するシリカ殻からなる立方 体状形態の中空粒子の製造方法の概略について説明する。 75容量%以上の水中 に、コロイド状炭酸カルシウム、シリコンアルコキシド、及び塩基触媒を投入して混合 し、コロイド状炭酸カルシウムまたは粒子径が 300nm未満の立方体状炭酸カルシゥ ムの表面に、シリコンアルコキシドの加水分解反応によって生成するシリカを析出さ せる。その後、酸処理することによって、シリカ層内部の炭酸カルシウムを溶解させる 。そして、脱水した後に 400°C〜800°Cで焼成処理する。この結果、 10nm〜300n mの範囲内の外径を有するシリカ殻からなる立方体状形態の中空粒子が製造される 。なお、焼成処理するのは、シリカ殻の炭酸カルシウムが溶出した微細な孔を塞ぎ、 シリカ殻の構造をより緻密なものにするためである。  [0281] Here, an outline of a method for producing a hollow particle having a cubic shape composed of a silica shell having an outer diameter in the range of 10 nm to 300 nm will be described. Colloidal calcium carbonate, silicon alkoxide, and a base catalyst are added and mixed in 75% by volume or more of water, and silicon alkoxide is added to the surface of colloidal calcium carbonate or cubic calcium carbonate having a particle size of less than 300 nm. Precipitate the silica produced by the decomposition reaction. Thereafter, the calcium carbonate inside the silica layer is dissolved by acid treatment. Then, after dehydration, baking is performed at 400 ° C to 800 ° C. As a result, hollow particles having a cubic shape composed of silica shells having an outer diameter in the range of 10 nm to 300 nm are produced. The reason for the firing treatment is to close the fine pores from which the calcium carbonate in the silica shell is eluted, and to make the silica shell more precise.
[0282] 本実施の形態 6においては、炭酸カルシウムとしてコロイド状炭酸カルシウムを使用 することによって、 50nm〜100nmの範囲内の外径を有する平均粒径 80nmのシリ 力殻からなる立方体状形態の中空粒子 10を製造している。また、 800°Cで焼成処理 することによって、シリカ殻がより緻密になるため、 800°Cで焼成処理している。一方、 有機溶媒のキシレン 80重量部にアクリル樹脂 10重量部を溶解させて、アクリル樹脂 溶液を作製する(ステップ S l l)。このアクリル樹脂溶液中に、ステップ S 10で製造し た 50nm〜100nmの範囲内の外径を有する平均粒径 80nmのシリカ殻からなる立 方体状形態の中空粒子 10を 2. 0重量部混合する(ステップ S 12)。  [0282] In the sixth embodiment, by using colloidal calcium carbonate as the calcium carbonate, a hollow hollow body having a cubic shape composed of sili shells having an outer diameter in the range of 50 nm to 100 nm and an average particle diameter of 80 nm. Manufactures particles 10. In addition, since the silica shell becomes denser by baking at 800 ° C, it is burned at 800 ° C. On the other hand, an acrylic resin solution is prepared by dissolving 10 parts by weight of an acrylic resin in 80 parts by weight of an organic solvent xylene (step Sll). In this acrylic resin solution, 2.0 parts by weight of the hollow particles 10 in the form of a cuboid composed of silica shells having an outer diameter in the range of 50 nm to 100 nm produced in step S 10 and having an average particle diameter of 80 nm are mixed. (Step S12).
[0283] そして、分散機を用いて、アクリル樹脂溶液中にシリカ殻からなる中空粒子 10を均 一に分散させる(ステップ S 13)。ここで、平均粒径 80nmの微小なシリカ殻からなる 中空粒子 10は凝集し易いため、分散機で強力な攪拌を行って均一に分散させる必 要がある。続いて、亜鉛粉末粒子 25を 2. 0重量部加えて更に攪拌する(ステップ S1 4)。その後、ブロック型イソシァネートを 6. 0重量部追加して攪拌し(ステップ S 15)、 均一な溶液として、本実施の形態 6に係る防食塗料 27が完成する。 [0283] Then, using a disperser, the hollow particles 10 made of silica shells are uniformly dispersed in the acrylic resin solution (step S13). Here, since the hollow particles 10 composed of fine silica shells with an average particle diameter of 80 nm are likely to aggregate, it is necessary to perform uniform dispersion by vigorous stirring with a disperser. There is a point. Subsequently, 2.0 parts by weight of zinc powder particles 25 are added and further stirred (step S14). Thereafter, 6.0 parts by weight of block isocyanate is added and stirred (step S15), and the anticorrosion paint 27 according to Embodiment 6 is completed as a uniform solution.
[0284] 次に、こうして製造した本実施の形態 6に係る防食塗料 27を用いた防食膜付き試 験片の製造方法について、図 9を参照して説明する。本実施の形態 6においては、 基材として上述の如く長さ 150mm、幅 70mm、厚さ 5mmのアルミニウム板 22を使用 する。まず、アルミニウム板 22をサンドブラスト処理して、表面の酸化膜を除去する( ステップ S 16)。サンドブラスト処理の条件としては、平均粒子径 40 mのアルミナ粒 子を秒速 60mで吹き付けて行った。  [0284] Next, a method for manufacturing a test piece with an anticorrosion film using the anticorrosion paint 27 according to Embodiment 6 manufactured in this manner will be described with reference to FIG. In Embodiment 6, the aluminum plate 22 having a length of 150 mm, a width of 70 mm, and a thickness of 5 mm is used as the base material as described above. First, the aluminum plate 22 is sandblasted to remove the oxide film on the surface (step S16). Sandblasting was performed by spraying alumina particles with an average particle size of 40 m at a speed of 60 m / s.
[0285] 次に、スプレーガンを用いて、防食塗料 27を酸化膜が除去されたアルミニウム板表 面にスプレー塗装する (ステップ S 17)。そして、自然乾燥させた後、乾燥炉に入れて 、 170°Cで 30分間焼付け乾燥する(ステップ S 18)。キシレンの沸点は約 140°Cであ るため溶媒のキシレンは完全に除去されるとともに、ブロック型イソシァネートのブロッ クが外れてアクリル樹脂と反応し、図 7 (b)に示されるように、強固な構造の有機樹脂 26中に平均粒径 50nmのシリカ殻からなる中空粒子 10及び亜鉛粉末粒子 25が均 一に分散した防食膜 23となる。  [0285] Next, using a spray gun, the anticorrosion paint 27 is spray-coated on the aluminum plate surface from which the oxide film has been removed (step S17). Then, after natural drying, it is placed in a drying oven and baked and dried at 170 ° C for 30 minutes (step S18). Since the boiling point of xylene is about 140 ° C, the solvent xylene is completely removed, and the block isocyanate block is removed and reacts with the acrylic resin. As shown in Fig. 7 (b), Thus, the anticorrosion film 23 in which the hollow particles 10 and the zinc powder particles 25 made of silica shells having an average particle diameter of 50 nm are uniformly dispersed in an organic resin 26 having a simple structure.
[0286] 放冷後、乾燥炉力も防食膜付き試験片 21を取り出す (ステップ S19)。こうして完成 した防食膜付き試験片 21の防食膜 23の厚さは約 Ι δ ΐηであり、比誘電率を測定し たところ測定値は 2. 5であり、充分に小さい値が得られた。  [0286] After standing to cool, the test piece 21 with the anticorrosion film is taken out from the drying oven (step S19). The thickness of the anticorrosion film 23 of the test piece with the anticorrosion film thus completed was about Ιδδη, and the relative dielectric constant was measured to be 2.5, which was a sufficiently small value.
[0287] この防食膜付き試験片 21の防食性を調べるために、キャス(CASS)試験を行った 。キャス試験は、 JIS H8681に準拠して、 240時間まで行った。 240時間までとした のは、自動車メーカー等の防食性の基準が、「キャス試験で 240時間まで異常が発 生しないこと」となっているため、 240時間を超える試験は必要がないからである。こ の結果、防食膜付き試験片 21は、キャス試験を 240時間行っても全く異常が発生せ ず、防食性に優れていることが分力、つた。  [0287] In order to examine the anticorrosive property of the test piece with anticorrosive film 21, a CASS test was performed. The cast test was conducted up to 240 hours in accordance with JIS H8681. The reason for setting up to 240 hours is that the standards for anticorrosion by automakers and others are "no abnormalities occur in the cast test until 240 hours", so there is no need for a test that exceeds 240 hours. . As a result, it was found that the test piece 21 with the anticorrosion film had no abnormality even after the cast test for 240 hours, and had excellent anticorrosion properties.
[0288] このようにして、本実施の形態 6に係るシリカ殻からなる立方体状形態の中空粒子 1 0及び亜鉛粉末粒子 25を用いた防食膜 23及び防食塗料 27は、 50nm〜; !OOnmの 範囲内の外径を有する平均粒径 80nmのシリカ殻からなる立方体状形態の中空粒 子 10の絶縁性を利用して、取扱いがし易くかつ確実に防食性を向上させることがで き、独立気孔で水が沁み込む恐れがなぐ塗膜の厚さを 2(^ 111以下まで薄くしても 優れた防食性を得ることができる。 [0288] In this way, the anticorrosion film 23 and the anticorrosion coating 27 using the hollow particles 10 and the zinc powder particles 25 made of the silica shell according to the sixth embodiment have a thickness of 50 nm to Hollow particles of cubic shape consisting of silica shells with an average particle diameter of 80 nm and an outer diameter in the range The insulation of the element 10 makes it easy to handle and reliably improves the anti-corrosion property, and reduces the coating thickness to 2 (^ 111 or less) without the risk of water permeating through independent pores. Even so, excellent anticorrosion properties can be obtained.
[0289] 実施の形態 7 [0289] Embodiment 7
次に、本発明の実施の形態 7に係る防食膜及び防食塗料について、図 10乃至図 1 2を参照して説明する。  Next, an anticorrosion film and an anticorrosion paint according to Embodiment 7 of the present invention will be described with reference to FIG. 10 to FIG.
[0290] 図 10は本発明の実施の形態 7に係る防食膜及び防食塗料を製造するために用い られるコーティングシリカ殻からなる中空粒子の製造工程を示す模式図である。図 11 (a)は本発明の実施の形態 7に係る防食塗料を用いて形成した防食膜付き試験片の 全体構成を示す斜視図、(b)は防食膜付き試験片の構成を示す部分断面図である。 図 12は本発明の実施の形態 7に係る防食塗料の製造工程を示すフローチャートで ある。  FIG. 10 is a schematic diagram showing a process for producing hollow particles made of a coated silica shell used for producing an anticorrosion film and an anticorrosion paint according to Embodiment 7 of the present invention. FIG. 11 (a) is a perspective view showing the overall configuration of a test piece with an anticorrosion film formed using the anticorrosion paint according to Embodiment 7 of the present invention, and (b) is a partial cross-section showing the configuration of the test piece with an anticorrosion film FIG. FIG. 12 is a flowchart showing manufacturing steps of the anticorrosion paint according to Embodiment 7 of the present invention.
[0291] 上記実施の形態 6において用いられているシリカ殻からなる立方体状形態のナノ中 空粒子 10は、 50nm〜100nmの範囲内の外径を有する平均粒径 80nmの微粒子 であるため、凝集し易ぐ分散させるために分散機による強力な攪拌が必要であった 。これに対して、図 10に示されるように、本実施の形態 7に係るコーティングシリカ殻 力もなる中空粒子 30は、シリカ殻からなるナノ中空粒子 10の表面がイソシァネート系 表面改質剤 28で覆われているために、凝集し難く分散が容易である。  [0291] The cubic nano-particles 10 composed of silica shells used in Embodiment 6 are fine particles having an outer diameter in the range of 50 nm to 100 nm and an average particle diameter of 80 nm. In order to disperse easily, strong stirring by a disperser was necessary. On the other hand, as shown in FIG. 10, the hollow particles 30 having a coating silica shell force according to the seventh embodiment have the surface of the nano hollow particles 10 made of silica shell covered with an isocyanate surface modifier 28. Therefore, it is difficult to aggregate and easy to disperse.
[0292] 本実施の形態 7に係るコーティングシリカ殻からなる中空粒子 30の製造工程につ いて、図 10を参照して説明する。図 10に示されるように、シリカ殻からなる立方体状 形態のナノ中空粒子 10の表面には水酸基が無数に付いている。図 10においては、 反応が分かり易いように、無数の水酸基のうち 3つのみを示している。これに対して、 イソシァネート系表面改質剤としてのトリエトキシプロピルイソシァネートシラン (以下、 「TEIS」とも言う。)28を、キシレンを溶媒としてオートクレーブ中でキシレンの超臨界 状態において 2時間反応させることによって、 TEIS28のエトキシ基の 3つ全部がシリ 力殻力もなる立方体状形態のナノ中空粒子 10の表面の水酸基と縮合して、シリカ殻 からなる立方体状形態のナノ中空粒子 10の表面に結合する。  [0292] The manufacturing process of the hollow particles 30 composed of the coated silica shell according to the seventh embodiment will be described with reference to FIG. As shown in FIG. 10, innumerable hydroxyl groups are attached to the surface of the cubic hollow nanoparticle 10 composed of silica shells. In FIG. 10, only three of the innumerable hydroxyl groups are shown for easy understanding of the reaction. In contrast, triethoxypropyl isocyanate silane (hereinafter also referred to as “TEIS”) 28 as an isocyanate-based surface modifier is reacted for 2 hours in a supercritical state of xylene in an autoclave using xylene as a solvent. As a result, all three of the ethoxy groups of TEIS28 are condensed with the hydroxyl group on the surface of the cubic hollow nanoparticle 10 with a crushed shell force, and bonded to the surface of the hollow nanoparticle 10 with a cubic shell consisting of silica shells. To do.
[0293] このようにして、シリカ殻からなる立方体状形態のナノ中空粒子 10の表面の無数の 水酸基と TEIS28が反応することによって、シリカ殻からなる立方体状形態のナノ中 空粒子 10の表面が TEIS28で覆われて、本実施の形態 7に係るコーティングシリカ 殻からなる中空粒子 30が形成される。これによつて、凝集し難く分散が容易であるば 力、りでなぐイソシァネート基が有機樹脂の活性基と反応して有機樹脂と強固な結合 を作ることにより、さらに有機樹脂中への均一分散が行い易いコーティングシリカ殻か らなる中空粒子 30となる。 [0293] In this way, innumerable surfaces on the surface of the cubic hollow nanoparticle 10 composed of silica shells 10 By reacting the hydroxyl group with TEIS28, the surface of cubic nanoparticle 10 made of silica shell is covered with TEIS28, and hollow particle 30 made of coated silica shell according to Embodiment 7 is formed. . As a result, if it is difficult to agglomerate and is easy to disperse, the isocyanate group reacts with the active group of the organic resin to form a strong bond with the organic resin, thereby further dispersing uniformly in the organic resin. The hollow particles 30 are made of a coated silica shell which is easy to perform.
[0294] 図 11 (a)に示されるように、本実施の形態 7に係る防食膜付き試験片 31は、長さ 15 0mm、幅 70mm、厚さ 5mmのアルミニウム板 22の表面の酸化膜をサンドブラストで 除去した後に、本実施の形態 7に係る防食塗料をスプレー塗装して防食膜 29を形成 したものである。 [0294] As shown in Fig. 11 (a), the test piece 31 with the anticorrosion film according to the seventh embodiment has an oxide film on the surface of the aluminum plate 22 having a length of 150 mm, a width of 70 mm, and a thickness of 5 mm. After removal by sandblasting, the anticorrosion coating 29 according to the seventh embodiment is spray-coated to form the anticorrosion film 29.
[0295] 本実施の形態 7に係る防食塗料は、イソシァネート—アクリル系塗料に 10nm〜30 Onmの範囲内の外径を有するコーティングシリカ殻からなる中空粒子 30及びアルミ 二ゥムー亜鉛合金粉末 32を均一に分散させてなるものであり、図 1 1 (b)に示されるよ うに、本実施の形態 7に係る防食膜 29においては、本実施の形態 7に係る防食塗料 をスプレー塗装して焼付け乾燥することによって、イソシァネート一アクリル系塗膜 26 中に、約 30nmから約 70nmまでの範囲の外径を有する平均粒径 50nmのコーティ ングシリカ殻からなる中空粒子 30を均一に分散させてなる。  [0295] The anticorrosion paint according to the seventh embodiment is a uniform coating of hollow particles 30 and aluminum two-muth zinc alloy powder 32 made of a coated silica shell having an outer diameter in the range of 10 nm to 30 Onm to an isocyanate-acrylic paint. As shown in Fig. 11 (b), the anticorrosion film 29 according to the seventh embodiment is spray-coated with the anticorrosion paint according to the seventh embodiment and baked and dried. By doing so, hollow particles 30 made of a coated silica shell having an average particle diameter of 50 nm and an outer diameter ranging from about 30 nm to about 70 nm are uniformly dispersed in the isocyanate-acrylic coating film 26.
[0296] 本実施の形態 7に係る防食塗料の配合は、表 2に示される実施例 7の通りである。  [0296] The composition of the anticorrosive paint according to the seventh embodiment is as shown in Example 7 shown in Table 2.
[0297] [表 2] [0297] [Table 2]
固形分 Solid content
実施例 7 重量部  Example 7 parts by weight
重量%  % By weight
コ一ティング  Coating
2. 0 10. 0  2. 0 10. 0
中空シリカ粒子  Hollow silica particles
アルミニウム  Aluminum
2. 0 10. 0  2. 0 10. 0
-亜鉛合金粉末  -Zinc alloy powder
ブロック型  Block type
6. 0 30. 0  6. 0 30. 0
イソシァネート  Isocyanate
アクリル樹脂 10. 0 50. 0 キシレン 80. 0 0. 0 口 。Ί 100. 0 100. 0  Acrylic resin 10. 0 50. 0 Xylene 80. 0 0. 0 Mouth. Ί 100. 0 100. 0
[0298] 表 2に示されるように、本実施の形態 7に係る実施例 7の防食塗料の配合は、実施 の形態 6に係る実施例 6の防食塗料におけるシリカ殻からなる中空粒子 10がコーティ ングシリカ殻からなる中空粒子 30に変わり、かつ亜鉛粉末粒子 25がアルミニウム— 亜鉛合金粉末 32に変わったもので、それぞれの配合比は全く同一となっている。即 ち、コーティングシリカ殻からなる中空粒子 30の固形分配合比は 10重量%であり、 最も好ましい量のコーティングシリカ殻からなる中空粒子 30を配合している。同様に、 インヒビターとしてのアルミニウム一亜鉛合金粉末 32としても、最も好ましい量である 固形分配合比 10重量%を配合している。また、溶剤としては、有機樹脂が溶解し易 ぃキシレン (オルト,メタ,パラの 3異性体の混合物)を使用している。 [0298] As shown in Table 2, the composition of the anticorrosion paint of Example 7 according to Embodiment 7 is such that the hollow particles 10 made of silica shells in the anticorrosion paint of Example 6 according to Embodiment 6 are coated. The zinc powder particles 25 are changed to aluminum-zinc alloy powder 32, and the mixing ratios thereof are completely the same. That is, the solid content ratio of the hollow particles 30 composed of the coated silica shell is 10% by weight, and the hollow particles 30 composed of the most preferable amount of the coated silica shell are blended. Similarly, the aluminum-zinc alloy powder 32 as an inhibitor is blended with a solid content ratio of 10% by weight, which is the most preferable amount. In addition, xylene (a mixture of ortho, meta, and para isomers) is used as the solvent because it easily dissolves organic resins.
[0299] 本実施の形態 7に係る実施例 7の防食塗料 35の製造方法について、図 12のフロ 一チャートを参照して説明する。図 12に示されるように、最初に、図 10で説明したよう にして、 50nm〜100nmの範囲内の外径を有する平均粒径 80nmのコーティングシ リカ殻からなる中空粒子 30を製造する (ステップ S20)。  A method for manufacturing the anticorrosion paint 35 of Example 7 according to Embodiment 7 will be described with reference to the flowchart of FIG. As shown in FIG. 12, first, as described in FIG. 10, hollow particles 30 consisting of coated silica shells having an average particle diameter of 80 nm and an outer diameter in the range of 50 nm to 100 nm are manufactured (step S20).
[0300] 一方、有機溶媒のキシレン 80重量部にアクリル樹脂 10重量部を溶解させて、アタリ ル樹脂溶液を作製する(ステップ S21)。このアクリル樹脂溶液中に、ステップ S20で 製造した 50nm〜100nmの範囲内の外径を有する平均粒径 80nmのコーティング シリカ殻からなる中空粒子 30を 2. 0重量部混合する(ステップ S22)。そして、攪拌す ることによって、アクリル樹脂溶液中にコーティングシリカ殻からなる中空粒子 30を均 一に分散させる。ここで、コーティングシリカ殻力もなる中空粒子 30は凝集し難く分散 し易いため、分散機で強力な攪拌を行う必要はない。 [0300] On the other hand, 10 parts by weight of an acrylic resin is dissolved in 80 parts by weight of xylene as an organic solvent to prepare an allyl resin solution (step S21). In this acrylic resin solution, 2.0 parts by weight of hollow particles 30 made of coated silica shell having an outer diameter in the range of 50 nm to 100 nm and having an outer diameter in the range of 50 nm to 100 nm produced in step S20 are mixed (step S22). Then, by stirring, the hollow particles 30 made of the coating silica shell are averaged in the acrylic resin solution. Disperse to one. Here, since the hollow particles 30 having a coating silica shell force hardly aggregate and easily disperse, it is not necessary to perform strong stirring with a disperser.
[0301] 続いて、アルミニウム—亜鉛合金粉末 32を 2. 0重量部加えて更に攪拌し (ステップ S23)、その後、ブロック型イソシァネートを 6. 0重量部追加して攪拌し(ステップ S24 )、均一な溶液として、本実施の形態 7に係る防食塗料 35が完成する。  [0301] Subsequently, 2.0 parts by weight of the aluminum-zinc alloy powder 32 was added and further stirred (Step S23), and then 6.0 parts by weight of block isocyanate was added and stirred (Step S24). As a simple solution, the anticorrosion paint 35 according to the seventh embodiment is completed.
[0302] 次に、こうして製造した本実施の形態 7に係る防食塗料 35を用いた防食膜付き試 験片の製造方法について、実施の形態 6の図 9を参考にして説明する。本実施の形 態 7においては、図 9のステップ S17における「防食塗料 27」が「防食塗料 35」に変わ るだけで、後は実施の形態 6の図 9と同様である。  [0302] Next, a method of manufacturing a test piece with an anticorrosion film using the anticorrosion paint 35 according to the seventh embodiment manufactured in this manner will be described with reference to FIG. 9 of the sixth embodiment. In the seventh embodiment, “corrosion protection paint 27” in step S17 in FIG. 9 is changed to “corrosion protection paint 35”, and the rest is the same as FIG. 9 in the sixth embodiment.
[0303] 即ち、まずアルミニウム板 22をサンドブラスト処理して、表面の酸化膜を除去する( ステップ S 16)。次に、スプレーガンを用いて、防食塗料 35を酸化膜が除去されたァ ノレミニゥム板表面にスプレー塗装する (ステップ S 17)。そして、自然乾燥させた後、 乾燥炉に入れて、 170°Cで 30分間焼付け乾燥する(ステップ S18)。キシレンの沸点 は約 140°Cであるため溶媒のキシレンは完全に除去されるとともに、ブロック型イソシ ァネートのブロックが外れてアクリル樹脂と反応し、図 11 (b)に示されるように、強固 な構造の有機樹脂 6中に平均粒径 80nmのコーティングシリカ殻からなる中空粒子 3 0及びアルミニウム—亜鉛合金粉末 32が均一に分散した防食膜 29となる。  [0303] That is, first, the aluminum plate 22 is sandblasted to remove the oxide film on the surface (step S16). Next, using a spray gun, the anticorrosion paint 35 is spray-coated on the surface of the anode plate from which the oxide film has been removed (step S17). Then, after natural drying, it is placed in a drying oven and baked and dried at 170 ° C for 30 minutes (step S18). Since the boiling point of xylene is about 140 ° C, the solvent xylene is completely removed, and the block isocyanate is unblocked and reacts with the acrylic resin. Thus, the anticorrosion film 29 in which the hollow particles 30 made of a coating silica shell having an average particle diameter of 80 nm and the aluminum-zinc alloy powder 32 are uniformly dispersed in the organic resin 6 having the structure is obtained.
[0304] 放冷後、乾燥炉力も防食膜付き試験片 31を取り出す (ステップ S19)。こうして完成 した防食膜付き試験片 31の防食膜 29の厚さは約 Ι δ ΐηであり、比誘電率を測定し たところ測定値は 2. 0であり、実施の形態 6よりもさらに小さい値が得られた。  [0304] After standing to cool, the test piece 31 with the anticorrosion film is taken out from the drying oven (step S19). The thickness of the anticorrosion film 29 of the test piece 31 with the anticorrosion film thus completed is about δδ ΐη, and when the relative dielectric constant is measured, the measured value is 2.0, which is even smaller than that of the sixth embodiment. was gotten.
[0305] この防食膜付き試験片 31の防食性を調べるために、キャス(CASS)試験を行った 。キャス試験は、 JIS H8681に準拠して、 240時間まで行った。この結果、防食膜付 き試験片 31は、キャス試験を 240時間行っても全く異常が発生せず、防食性に優れ ていることが分かった。  [0305] In order to examine the corrosion resistance of the test piece 31 with the anticorrosion film, a CAS (CASS) test was performed. The cast test was conducted up to 240 hours in accordance with JIS H8681. As a result, it was found that the test piece 31 with the anticorrosion film was excellent in anticorrosion property without any abnormality even after the casting test for 240 hours.
[0306] このようにして、本実施の形態 7に係るコーティングシリカ殻からなる中空粒子 30及 びアルミユウム—亜鉛合金粉末 32を用いた防食膜 29及び防食塗料 35は、有機樹 脂等に混合する場合に分散性が向上するとともに有機樹脂等とシリカ殻力 なる中 空粒子との強固な結合が得られ、シリカ殻力 なる立方体状形態の中空粒子の絶縁 性を利用して、取扱いがし易くかつ確実に防食性を向上させることができ、独立気孔 で水が沁み込む恐れがなぐ塗膜の厚さを 20 m以下まで薄くしても優れた防食性 を得ること力 Sでさる。 [0306] In this way, the anticorrosion film 29 and the anticorrosion paint 35 using the hollow particles 30 made of the coated silica shell and the aluminum-zinc alloy powder 32 according to the seventh embodiment are mixed with organic resin or the like. In this case, the dispersibility is improved and a strong bond between the organic resin or the like and the hollow particles having the silica shell strength is obtained, and the cubic shaped hollow particles having the silica shell strength are insulated. It is easy to handle and reliably improves the anti-corrosion property, and it has excellent anti-corrosion property even if the coating thickness is reduced to 20 m or less without the risk of water permeating through independent pores. Get power S to get.
[0307] 本実施の形態 7においては、アルミニウム—亜鉛合金粉末 32を用いた場合につい て説明したが、アルミニウム粒子或いは亜鉛粉末を用いても、同様な効果を得ること 力 Sできる。また、コーティングシリカ殻からなる中空粒子 30の代わりに、実施の形態 6 と同様のシリカ殻からなる立方体状形態のナノ中空粒子 10を用いても良い。  [0307] In the seventh embodiment, the case where the aluminum-zinc alloy powder 32 is used has been described. However, the same effect can be obtained even when aluminum particles or zinc powder is used. Further, instead of the hollow particles 30 made of the coated silica shell, the cubic hollow nano particles 10 made of the same silica shell as in the sixth embodiment may be used.
[0308] 実施の形態 8  [0308] Embodiment 8
次に、本発明の実施の形態 8に係る防食膜及び防食塗料について説明する。本実 施の形態 8に係る防食塗料は、アルミニウム系のカップリング剤としてのアルミニウム キレートであるアルミニウムトリス(ェチルァセトアセテート)を配合したアクリル樹脂塗 料と、イソシァネート アクリル系塗料に 50nm〜100nmの範囲内の外径を有する 平均粒径 80nmのシリカ殻からなる立方体状形態の中空粒子を均一に分散させてな る塗料とを均一に混合してなるものである。  Next, the anticorrosion film and the anticorrosion paint according to Embodiment 8 of the present invention will be described. The anticorrosion paint according to Embodiment 8 is an acrylic resin paint blended with aluminum tris (ethylacetoacetate), which is an aluminum chelate as an aluminum coupling agent, and isocyanate acrylic paint, 50 nm to 100 nm. And a paint obtained by uniformly dispersing hollow particles having a cubic shape made of silica shells having an outer diameter in the range of 80 nm and an average particle diameter of 80 nm.
[0309] ここで、アクリル樹脂の固形分 1重量部に対して、アルミニウムトリス(ェチルァセトァ セテート)の配合量は 0. 1重量部〜 1重量部であることが好ましい。本実施の形態 3 に係る防食塗料においては、アクリル樹脂の固形分 1重量部に対して 0. 2重量部を 配合した。また、イソシァネート一アクリル系塗料におけるシリカ殻からなる立方体状 形態の中空粒子の固形分配合比は 10重量%とした。  [0309] Here, the blending amount of aluminum tris (ethylacetoacetate) is preferably 0.1 to 1 part by weight with respect to 1 part by weight of the solid content of the acrylic resin. In the anticorrosive paint according to Embodiment 3, 0.2 part by weight was blended with respect to 1 part by weight of the solid content of the acrylic resin. In addition, the solid content ratio of the cubic hollow particles made of silica shell in the isocyanate-acrylic paint was 10% by weight.
[0310] このような防食塗料を、マグネシウム系金属の AZ31に対して陽極酸化処理を行つ て厚さ 5 H mの酸化物層を形成し、この酸化物層の上に膜厚 10 H mとなるようにエア スプレーで塗布し、乾燥硬化して防食膜を形成した。この防食膜の密着性を評価す るために、 JISに規格されて!/、る碁盤目試験を実施した。  [0310] This anticorrosion paint is anodized on the magnesium-based metal AZ31 to form an oxide layer with a thickness of 5 Hm, and a film thickness of 10 Hm is formed on the oxide layer. Then, it was applied by air spray so as to be dried and cured to form an anticorrosion film. In order to evaluate the adhesion of the anticorrosive film, a cross-cut test was conducted according to JIS! /.
[0311] 即ち、防食膜を形成したマグネシウム系金属の AZ31 (圧延板)の試料の表面に、力 ッターナイフで縦横に切れ目を入れて 2mm X 2mmの桥目を 100個作り、初期密着 性を検査するために桥目全面に粘着セロハンテープを密着させて JISに規定されて いる角度で引き剥がし、剥離した桥目の数を調べた。その結果、粘着セロハンテープ に接着して剥がれた桥目は 100個中 0個であり、初期密着性に優れていることが分 かった。 [0311] In other words, on the surface of the magnesium-based metal AZ31 (rolled sheet) with anticorrosion film, 100 grids of 2mm X 2mm were made by making a longitudinal and horizontal cut with a force cutter knife, and the initial adhesion was inspected. In order to achieve this, adhesive cellophane tape was adhered to the entire surface of the mesh and peeled off at an angle specified in JIS, and the number of cells that were peeled was examined. As a result, 0 out of 100 cells were peeled off after being adhered to the adhesive cellophane tape, indicating that the initial adhesion was excellent. won.
[0312] また、密着性耐久試験として、同様にして作製した試料に対して、 JIS— K— 5600  [0312] In addition, as an adhesion durability test, JIS-K-5600
7に規定されて!/、る塩水噴霧試験を実施し、 250時間後に外観を目視によって調 ベるとともに、上述の碁盤目試験を実施した。その結果、塩水噴霧試験 250時間後 においても外観は良好であり、また碁盤目試験においても剥がれた桥目は 100個中 0個であり、耐久密着性に優れていることが分かった。  A salt spray test as defined in 7 was conducted, and after 250 hours, the appearance was visually examined and the cross-cut test described above was conducted. As a result, the appearance was good even after 250 hours of the salt spray test, and in the cross-cut test, the number of peeled-off grids was 0 out of 100, indicating excellent durability adhesion.
[0313] このようにして、本実施の形態 8に係るシリカ殻からなる立方体状形態の中空粒子 及びアルミニウムトリス(ェチルァセトアセテート)を配合したアクリル樹脂を用いた防 食膜及び防食塗料は、 50nm〜; !OOnmの範囲内の外径を有する平均粒径 80nmの シリカ殻からなる立方体状形態の中空粒子の絶縁性を利用して、取扱いがし易くか つ確実に防食性を向上させることができ、独立気孔で水が沁み込む恐れがなぐ塗 膜の厚さを 20 μ m以下まで薄くしても優れた防食性を得ることができる。  [0313] Thus, the anticorrosion film and the anticorrosion paint using the acrylic resin blended with the cubic hollow particles made of the silica shell and the aluminum tris (ethylacetoacetate) according to the eighth embodiment are as follows. 50 nm to!! Utilizing the insulating property of cubic shaped hollow particles composed of silica shells with an outer diameter in the range of OOnm and an average particle size of 80 nm, it is easy to handle and surely improves the anti-corrosion property In addition, excellent anticorrosion properties can be obtained even if the coating thickness is reduced to 20 μm or less, where there is no risk of water permeating through independent pores.
[0314] 本実施の形態 8においては、アルミニウム系のカップリング剤としてのアルミニウムキ レートを用いた場合について説明した力 チタン系のカップリング剤またはジルコユウ ム系のカップリング剤を用いても、同様な効果を得ること力 Sできる。また、シリカ殻から なる立方体状形態の中空粒子 10の代わりに、実施の形態 7と同様のコーティングシリ 力殻からなる中空粒子 30を用いても良!/、。  [0314] In the eighth embodiment, the force described in the case of using aluminum chelate as the aluminum-based coupling agent is the same, even if a titanium-based coupling agent or a zirconium-based coupling agent is used. The power to get a good effect. Further, in place of the cubic hollow particles 10 made of silica shells, hollow particles 30 made of the same coated silica shell as in Embodiment 7 may be used.
[0315] 実施の形態 9  [0315] Embodiment 9
次に、本発明の実施の形態 9に係る防食膜及び防食塗料について説明する。本実 施の形態 9に係る防食塗料は、コロイド状シリカと、オルガノアルコキシシラン部分加 水分解縮合物と、不飽和エチレン単量体の重合物と、 50nm〜100nmの範囲内の 外径を有する平均粒径 80nmのシリカ殻からなる立方体状形態の中空粒子とを、無 機高分子塗料としてのアルキルシリケート加水分解塗料に均一に分散させてなるも のである。したがって、溶媒は水であり、水性防食塗料となる。  Next, the anticorrosion film and the anticorrosion paint according to Embodiment 9 of the present invention will be described. The anticorrosion paint according to Embodiment 9 has colloidal silica, an organoalkoxysilane partially hydrolyzed condensate, a polymer of an unsaturated ethylene monomer, and an outer diameter in the range of 50 nm to 100 nm. Cubic hollow particles composed of silica shells with an average particle size of 80 nm are uniformly dispersed in an alkylsilicate hydrolyzed paint as an organic polymer paint. Therefore, the solvent is water and becomes a water-based anticorrosive paint.
[0316] 力、かる配合の防食塗料を金属表面に塗布して得られる防食膜においては、シリカ 殻からなる立方体状形態の中空粒子が分布している部分においては水が沁み込む のを確実に防止し、インヒビターとしてのコロイド状シリカとオルガノアルコキシシラン 部分加水分解縮合物が分布してレ、る部分にお!、ては水が沁み込んできてもインヒビ ターの作用によって水の浸入を食い止めることによって、極めて優れた防食性能を有 する。 [0316] In an anticorrosion film obtained by applying an anticorrosion paint with such a strength to a metal surface, it is ensured that water permeates in the portion where the hollow particles in the cubic form consisting of silica shells are distributed. Prevents colloidal silica as an inhibitor and organoalkoxysilane partially hydrolyzed condensate from being distributed, even in the presence of water. It has extremely excellent anticorrosion performance by preventing the ingress of water by the action of the water.
[0317] このようにして、本実施の形態 9に係るシリカ殻からなる立方体状形態の中空粒子 を用いた防食膜及び防食塗料は、 50nm〜100nmの範囲内の外径を有する平均 粒径 80nmのシリカ殻からなる立方体状形態の中空粒子の絶縁性を利用して、取扱 いがし易くかつ確実に防食性を向上させることができ、独立気孔で水が沁み込む恐 れがなぐ塗膜の厚さを薄くしても優れた防食性を得ることができる。  [0317] Thus, the anticorrosion film and anticorrosion paint using the hollow particles of the cubic form made of the silica shell according to the ninth embodiment have an average particle diameter of 80 nm having an outer diameter in the range of 50 nm to 100 nm. It is easy to handle and reliably improves the anti-corrosion property by utilizing the insulating properties of the cubic shaped hollow particles made of silica shells. Even if the thickness is reduced, excellent corrosion resistance can be obtained.
[0318] 本実施の形態 9においては、不飽和エチレン単量体の重合物を用いた場合につい て説明したが、不飽和エチレン単量体の共重合物を用いても、同様な効果を得ること 力 Sできる。また、シリカ殻からなる立方体状形態の中空粒子 10の代わりに、実施の形 態 7と同様のコーティングシリカ殻からなる中空粒子 30を用いても良い。  [0318] In the ninth embodiment, the case of using a polymer of an unsaturated ethylene monomer has been described, but the same effect can be obtained by using a copolymer of an unsaturated ethylene monomer. That's the power S. Further, in place of the cubic shaped hollow particles 10 made of silica shells, the same hollow particles 30 made of coated silica shells as in Embodiment 7 may be used.
[0319] 実施の形態 10  [0319] Embodiment 10
次に、本発明の実施の形態 10に係る防食膜及び防食塗料について説明する。本 実施の形態 10に係る防食塗料は、第 1液と第 2液と第 3液とを均一に混合してなるも のである。第 1液は、亜鉛 アルミニウム合金のフレーク状粉末(厚さ 0· 3 11 m、最長部の平均長さが約 1 · 5 m)を 200g/l、非イオン性界面活性剤 2g/l、 残部がポリエチレングリコールからなる混合物である。第 2液は、無水クロム酸 50g/l 及びフッ化ナトリウム 2. 2g/lを脱イオン水中に溶解した後、水酸化カルシウムを 2. 0重量%添加した水溶液である。  Next, the anticorrosion film and the anticorrosion paint according to Embodiment 10 of the present invention will be described. The anticorrosion paint according to Embodiment 10 is obtained by uniformly mixing the first liquid, the second liquid, and the third liquid. The first solution is zinc aluminum alloy flaky powder (thickness 0 · 3 11 m, average length of the longest part is about 1 · 5 m) 200 g / l, nonionic surfactant 2 g / l, balance Is a mixture of polyethylene glycol. The second liquid is an aqueous solution prepared by dissolving 50 g / l of chromic anhydride and 2.2 g / l of sodium fluoride in deionized water and then adding 2.0% by weight of calcium hydroxide.
[0320] そして第 3液は、 50nm〜100nmの範囲内の外径を有する平均粒径 80nmのシリカ 殻からなる立方体状形態の中空粒子を、アルキルシリケート加水分解塗料に均一に 分散させてなるものである。これらの第 1液と第 2液と第 3液とを 1: 1: 1の割合で緩や かに攪拌しながら混合することによって、本実施の形態 5に係る防食塗料とした。この 防食塗料をショットブラスト処理を行った鋼板に、バーコ一ターで均一膜厚になるよう に塗布し、その後加熱炉中で鋼板温度が 300°Cに達してから 4分間加熱し、室温で 炉内冷却した。形成された皮膜厚さは、 1 mであった。  [0320] The third liquid is obtained by uniformly dispersing, in an alkylsilicate hydrolyzed paint, hollow particles having a cubic shape made of silica shells having an outer diameter in the range of 50 nm to 100 nm and an average particle diameter of 80 nm. It is. The first liquid, the second liquid, and the third liquid were mixed at a ratio of 1: 1: 1 while gently stirring to obtain the anticorrosive paint according to the fifth embodiment. This anti-corrosion paint is applied to the steel plate that has been shot blasted to a uniform film thickness with a bar coater, and then heated for 4 minutes after the steel plate temperature reaches 300 ° C in a heating furnace. Internal cooling. The formed film thickness was 1 m.
[0321] このようにして防食膜を形成した鋼板試験片について、腐食促進試験として、塩化 ナトリウム 5重量%水溶液に硫酸を添加して pH3に調整した 35°Cの腐食液に、 10分 間浸漬— 50分間乾燥を 1サイクルとして、最長 720時間の間欠浸漬試験を実施し、 発鯖に至るまでの時間を評価したところ、 720時間経過しても発鯖は見られなかった 。同様にして防食膜を形成したアルミニウム合金板試験片についても、同様な結果が 得られた。 [0321] For the steel plate test piece with the anticorrosion film formed in this way, as a corrosion acceleration test, in a 35 ° C corrosive solution adjusted to pH 3 by adding sulfuric acid to a 5 wt% aqueous solution of sodium chloride for 10 minutes. Immersion-50 minutes of drying as one cycle, intermittent immersion test was conducted for a maximum of 720 hours, and when the time until it started was evaluated, no generation was observed even after 720 hours. A similar result was obtained for an aluminum alloy plate test piece on which an anticorrosion film was similarly formed.
[0322] このようにして、本実施の形態 10に係るシリカ殻からなる立方体状形態の中空粒子 を用いた防食膜及び防食塗料は、 50nm〜100nmの範囲内の外径を有する平均 粒径 80nmのシリカ殻からなる立方体状形態の中空粒子の絶縁性を利用して、取扱 いがし易くかつ確実に防食性を向上させることができ、独立気孔で水が沁み込む恐 れがなぐ塗膜の厚さを 1 μ mと薄くしても優れた防食性を得ること力 Sできる。  [0322] Thus, the anticorrosion film and the anticorrosion coating using the hollow particles of the cubic form made of the silica shell according to the tenth embodiment have an average particle diameter of 80 nm having an outer diameter in the range of 50 nm to 100 nm. It is easy to handle and reliably improves the anti-corrosion property by utilizing the insulating properties of the cubic shaped hollow particles made of silica shells. Even if the thickness is reduced to 1 μm, it is possible to obtain excellent corrosion resistance.
[0323] 本実施の形態 10においては、水溶性三価クロム化合物として無水クロム酸を、水 溶性フッ化物としてフッ化ナトリウムを、グリコール類としてポリエチレングリコールを用 いた場合について説明したが、これらに限られるものではなぐその他の水溶性三価 クロム化合物、水溶性フッ化物、グリコール類及び/またはセルロース類を用いても、 同様な効果を得ること力できる。また、シリカ殻からなる立方体状形態の中空粒子の 代わりに、実施の形態 7と同様のコーティングシリカ殻からなる中空粒子を用いても良 い。  [0323] In the tenth embodiment, the case where chromic anhydride is used as the water-soluble trivalent chromium compound, sodium fluoride is used as the water-soluble fluoride, and polyethylene glycol is used as the glycols has been described. Similar effects can be obtained by using other water-soluble trivalent chromium compounds, water-soluble fluorides, glycols and / or celluloses. Further, in place of the cubic shaped hollow particles made of silica shells, the same hollow particles made of coated silica shells as in Embodiment 7 may be used.
[0324] 実施の形態 11  [0324] Embodiment 11
次に、本発明の実施の形態 11に係る防食膜及び防食塗料について説明する。本 実施の形態 11に係る防食塗料は、やはり第 1液と第 2液と第 3液とを均一に混合して なるものである。第 1液は、無水クロム酸濃度が 3. 1 %、過マンガン酸カリウム濃度が 0. 1 %になるような量の無水クロム酸及び過マンガン酸カリウムを、脱イオン水に溶 解してなる水溶液である。第 2液は、アルキルフエノールポリエトキシ付加化合物型界 面活性剤 0. 2重量部及びジプロピレングリコール 39. 8重量部を含有してなる溶媒 に、亜鉛フレーク(厚さ 0· l ^ m—O. 3 ^ 111,最長部の平均長さが約 1 · 5 111)を 60 重量部を均一に分散させてなるものである。  Next, the anticorrosion film and the anticorrosion paint according to Embodiment 11 of the present invention will be described. The anticorrosion paint according to Embodiment 11 is obtained by uniformly mixing the first liquid, the second liquid, and the third liquid. The first solution is prepared by dissolving chromic anhydride and potassium permanganate in deionized water in such an amount that the chromic anhydride concentration is 3.1% and the potassium permanganate concentration is 0.1%. It is an aqueous solution. The second liquid consists of a solvent containing 0.2 part by weight of an alkylphenol polyethoxy addition compound type surfactant and 39.8 parts by weight of dipropylene glycol, and zinc flakes (thickness 0 · l ^ m—O 3 ^ 111, the average length of the longest part is about 1 · 5 111) and 60 parts by weight are uniformly dispersed.
[0325] そして、第 3液は、 50nm〜100nmの範囲内の外径を有する平均粒径 80nmのシリ 力殻からなる立方体状形態の中空粒子を、アルキルシリケート加水分解塗料に均一 に分散させてなるものである。これらの第 1液と第 2液と第 3液とを 1: 1: 1の割合で緩 やかに攪拌しながら混合することによって、本実施の形態 11に係る防食塗料とした。 この防食塗料を、アルカリ洗浄した後研磨布で十分に研磨した軟鋼板に、バーコ一 ターで均一膜厚になるように塗布し、その後加熱炉中で鋼板温度が 300°Cに達して から 4分間加熱し、室温で炉内冷却した。 [0325] The third liquid is obtained by uniformly dispersing hollow particles having a cubic shape made of silicate shells having an average particle diameter of 80 nm and having an outer diameter in the range of 50 nm to 100 nm in an alkylsilicate hydrolyzed paint. It will be. These 1st, 2nd and 3rd solutions are loosened at a ratio of 1: 1: 1. The anticorrosion paint according to the eleventh embodiment was obtained by mixing with gentle stirring. This anticorrosion paint was applied to a mild steel plate that had been washed with an alkali and then sufficiently polished with a polishing cloth, using a bar coater to achieve a uniform film thickness. After that, the steel plate temperature reached 300 ° C in a heating furnace. Heated for minutes and cooled in the furnace at room temperature.
[0326] このようにして防食膜を形成した軟鋼板試験片について、塩水噴霧試験として、 JIS  [0326] The mild steel plate test piece with the anticorrosion film formed as described above was subjected to JIS as a salt spray test.
Z— 2371に規定される中性塩水噴霧試験を実施した結果、赤鯖の発生は全くなく 、極めて防食性に優れていることが分かった。  As a result of carrying out the neutral salt spray test specified in Z-2371, it was found that there was no occurrence of red coral and it was extremely excellent in corrosion resistance.
[0327] このようにして、本実施の形態 11に係るシリカ殻からなる立方体状形態の中空粒子 を用いた防食膜及び防食塗料は、 50nm〜100nmの範囲内の外径を有する平均 粒径 80nmのシリカ殻からなる立方体状形態の中空粒子の絶縁性を利用して、取扱 いがし易くかつ確実に防食性を向上させることができ、独立気孔で水が沁み込む恐 れがなぐ塗膜の厚さを薄くしても優れた防食性を得ることができる。  [0327] Thus, the anticorrosion film and anticorrosion paint using the cubic hollow particles made of the silica shell according to Embodiment 11 have an average particle diameter of 80 nm having an outer diameter in the range of 50 nm to 100 nm. It is easy to handle and reliably improves the anti-corrosion property by utilizing the insulating properties of the cubic shaped hollow particles made of silica shells. Even if the thickness is reduced, excellent corrosion resistance can be obtained.
[0328] 本実施の形態 11においては、亜鉛フレークを用いた場合について説明した力 ァ ノレミニゥム粉末、亜鉛合金粉末、或いはアルミニウム合金粉末を用いても、同様な効 果を得ること力 Sできる。また、シリカ殻からなる立方体状形態の中空粒子の代わりに、 実施の形態 7と同様のコーティングシリカ殻からなる中空粒子を用いても良い。  [0328] In the eleventh embodiment, the same effect can be obtained even if the force phenolic powder, zinc alloy powder, or aluminum alloy powder described in the case of using zinc flakes is used. Further, in place of the cubic shaped hollow particles made of silica shells, the same hollow particles made of coated silica shells as in Embodiment 7 may be used.
[0329] 実施の形態 12  [0329] Embodiment 12
次に、本発明の実施の形態 12に係る防食膜及び防食塗料について説明する。本 実施の形態 12に係る防食塗料は、塩化セリウム(CeCl )と 50nm〜; !OOnmの範囲 内の外径を有する平均粒径 80nmのシリカ殻からなる立方体状形態の中空粒子を、 アルキルシリケート加水分解塗料に均一に分散させてなるものである。本実施の形態 7に係る防食塗料の配合は、表 3に示される実施例 8の通りである。  Next, the anticorrosion film and the anticorrosion paint according to Embodiment 12 of the present invention will be described. The anticorrosion paint according to the twelfth embodiment comprises hollow particles having a cubic shape composed of silica shells having an outer diameter within a range of cerium chloride (CeCl) and 50 nm to OO nm, and having an average particle diameter of 80 nm. It is obtained by uniformly dispersing in the decomposition paint. The composition of the anticorrosive paint according to the seventh embodiment is as shown in Example 8 shown in Table 3.
[0330] [表 3]
Figure imgf000072_0001
[0330] [Table 3]
Figure imgf000072_0001
[0331] 表 3に示されるように、シリカ殻力 なる立方体状形態の中空粒子の固形分配合比 は 10重量%であり、最も好ましい量のシリカ殻からなる立方体状形態の中空粒子を 配合している。同様に、インヒビターとしての塩化セリウムとしても、最も好ましい量で ある固形分配合比 10重量%を配合している。また、溶剤としては、無機化合物が溶 解し易い水を使用している。 [0331] As shown in Table 3, the solid content ratio of the hollow particles having a cubic shape with silica shell strength is 10% by weight, and the most preferable amount of the hollow particles having a cubic shape with silica shells is blended. ing. Similarly, cerium chloride as an inhibitor is blended at a solid content blending ratio of 10% by weight, which is the most preferable amount. As the solvent, water that easily dissolves inorganic compounds is used.
[0332] 力、かる配合の防食塗料を金属表面に塗布して得られる防食膜においては、シリカ 殻からなる立方体状形態の中空粒子が分布している部分においては水が沁み込む のを確実に防止し、インヒビターとしての塩化セリウムが分布して!/、る部分にお!/、ては 水が沁み込んできてもインヒビターの作用によって水の浸入を食い止めることによつ て、極めて優れた防食性能を有する。  [0332] In an anticorrosion film obtained by applying an anticorrosion paint with such a strength to a metal surface, it is ensured that water will squeeze in the part where the hollow particles of the cubic form consisting of silica shells are distributed. The cerium chloride as an inhibitor is distributed! /, Even in the part where the water has permeated! / Has performance.
[0333] このようにして、本実施の形態 12に係るシリカ殻からなる立方体状形態の中空粒子 を用いた防食膜及び防食塗料は、 50nm 100nmの範囲内の外径を有する平均 粒径 80nmのシリカ殻からなる立方体状形態の中空粒子の絶縁性を利用して、取扱 いがし易くかつ確実に防食性を向上させることができ、独立気孔で水が沁み込む恐 れがなぐ塗膜の厚さを薄くしても優れた防食性を得ることができる。  [0333] Thus, the anticorrosion film and anticorrosion coating material using the cubic hollow particles made of the silica shell according to Embodiment 12 have an average particle diameter of 80 nm and an outer diameter in the range of 50 nm to 100 nm. Utilizing the insulating properties of the cubic hollow particles made of silica shell, the thickness of the coating film is easy to handle and reliably improves the anti-corrosion property, and there is no danger of water permeating through independent pores. Even if the thickness is reduced, excellent corrosion resistance can be obtained.
[0334] 実施の形態 13  [0334] Embodiment 13
次に、本発明の実施の形態 13に係る防食膜及び防食塗料について説明する。本 実施の形態 13に係る防食塗料は、アクリル樹脂、ァミノ樹脂、及びリン酸基と水添ビ スフェノール骨格の構造を有するアクリル樹脂とを含有する塗料組成物と、シリカ殻 力、らなる立方体状形態の中空粒子を分散させた防食組成物とを混合してなるもので ある。 Next, the anticorrosion film and the anticorrosion paint according to Embodiment 13 of the present invention will be described. The anticorrosive paint according to the thirteenth embodiment includes an acrylic resin, an amino resin, a paint composition containing a phosphoric acid group and an acrylic resin having a hydrogenated bisphenol skeleton structure, and a silica shell. It is formed by mixing an anticorrosive composition in which hollow particles having a cubic shape are dispersed.
[0335] ここで、塗料組成物にお!/、ては、アクリル樹脂は重合性不飽和単量体の共重合体で あり、水酸基価が 100mgKOH/g以下、好ましくは 10mgKOH/g〜50mgKOH /gで、重量平均分子量が 3000〜; 100000であること力 取り扱い易さや得られる防 食膜の耐水性の点から適している。また、ァミノ樹脂としては特に限定されないが、ト リアジン環の数が 1個〜 5個のメラミン単体またはその縮合物からなり、重量平均分子 量力 300〜5000、好まし < (ま 1000〜3000の範囲内に るメラミン樹月旨の咅分メチ ロール化物等が適している。  [0335] Here, in the coating composition, the acrylic resin is a copolymer of a polymerizable unsaturated monomer, and has a hydroxyl value of 100 mgKOH / g or less, preferably 10 mgKOH / g to 50 mgKOH / The weight average molecular weight in g is 3000 to 100000. It is suitable from the viewpoint of easy handling and water resistance of the resulting anticorrosion film. The amino resin is not particularly limited, but is composed of a melamine simple substance having 1 to 5 triazine rings or a condensate thereof, and has a weight average molecular weight of 300 to 5000, preferably <(between 1000 and 3000). Appropriate methylolated products with melamine luster inside are suitable.
[0336] 更に、水添ビスフエノール骨格の構造を有するアクリル樹脂はリン酸基を有すること を特徴とし、水添ビスフエノール骨格の構造を分子中に 1個〜 40個程度、好ましくは 5個〜 20個程度有し、酸価が 10mgKOH/g〜300mgKOH/g、重量平均分子 量が 3000〜; 100000の範囲内にあるものが適している。一方、防食組成物としては 、 50nm〜100nmの範囲内の外径を有する平均粒径 80nmのシリカ殻からなる立方 体状形態の中空粒子を、イソシァネート アクリル系塗料に均一に分散させたものが 適している。  [0336] Furthermore, the acrylic resin having a hydrogenated bisphenol skeleton structure has a phosphate group, and the structure of the hydrogenated bisphenol skeleton is about 1 to 40, preferably 5 to Suitable are those having about 20 and having an acid value of 10 mgKOH / g to 300 mgKOH / g and a weight average molecular weight of 3000 to 100,000. On the other hand, as an anticorrosive composition, a hollow particle having a cubic shape composed of silica shells having an outer diameter in the range of 50 nm to 100 nm and an average particle diameter of 80 nm is uniformly dispersed in an isocyanate acrylic paint. ing.
[0337] このような塗料組成物と防食組成物とを 1: 1の割合で混合して、均一になるように攪 拌することによって、本実施の形態 13に係る防食塗料が得られる。この防食塗料をァ ノレミニゥム板上に乾燥膜厚が 25 a mになるように塗布し、 140°Cで 30分間焼き付け て防食膜付きの試料を作製した。この試料の特性を、耐候性 ·防食性 ·付着性につい て試験した。  [0337] The coating composition and the anticorrosive composition are mixed at a ratio of 1: 1 and stirred uniformly to obtain the anticorrosive paint according to Embodiment 13. This anticorrosion paint was applied on an anodoleum plate to a dry film thickness of 25 am and baked at 140 ° C for 30 minutes to prepare a sample with an anticorrosion film. The properties of this sample were tested for weather resistance, corrosion resistance, and adhesion.
[0338] まず、耐候性(促進耐候性)については、 JIS— K 5400— 9· 8. 1に規定するサン シャインカーボンアーク灯式による促進耐候性試験を、照射時間が 2000時間となる まで行って、試験後の防食膜面の 20度鏡面反射率を測定し、試験前の防食膜面の 20度鏡面反射率と比較して光沢保持率を求めたところ、 80%以上と!/、う優れた結果 が得られた。  [0338] First, with regard to weather resistance (accelerated weather resistance), an accelerated weather resistance test using the sunshine carbon arc lamp method specified in JIS-K 5400-9.8.1 was conducted until the irradiation time reached 2000 hours. Then, the 20 degree specular reflectance of the anticorrosion film surface after the test was measured, and the gloss retention rate was calculated in comparison with the 20 degree specular reflectance of the anticorrosion film surface before the test. Excellent results were obtained.
[0339] 次に、防食性については、素地に達するように防食膜にナイフでクロスカット傷を入 れ、これを JIS— Z— 2371に準じて 250時間塩水噴霧試験を行い、ナイフ傷からの 鯖幅を測定して評価したところ、鯖幅力 S lmm未満で優れた防食性を示した。また、付 着性にっぃては、 3— 1^ 5400— 8. 5. 2に準じて防食膜に Imm X lmmの桝目 を 100個形成し、表面に粘着セロハンテープを貼付けて急激に剥がした後の防食膜 に残った桝目の数で評価したところ、 100個全てが残り、優れた付着性を示した。 [0339] Next, for anti-corrosion properties, the anti-corrosion film was cross-cut with a knife to reach the substrate, and this was subjected to a salt spray test for 250 hours in accordance with JIS-Z-2371. When the heel width was measured and evaluated, it showed excellent anticorrosive properties when the heel width force was less than S lmm. In addition, in terms of adherence, 100 Imm X lmm grids were formed on the anticorrosion film in accordance with 3-1 ^ 5400- 8.5.2, and the cellophane tape was affixed to the surface and peeled off rapidly. When evaluated by the number of squares remaining on the anticorrosion film after that, all 100 remained and showed excellent adhesion.
[0340] このようにして、本実施の形態 13に係るシリカ殻からなる立方体状形態の中空粒子 を用いた防食膜及び防食塗料は、 50nm〜100nmの範囲内の外径を有する平均 粒径 80nmのシリカ殻からなる立方体状形態の中空粒子の絶縁性を利用して、取扱 いがし易くかつ確実に防食性を向上させることができ、独立気孔で水が沁み込む恐 れがなぐ塗膜の厚さを薄くしても優れた耐候性 ·防食性 ·付着性を得ること力 Sできる。  [0340] Thus, the anticorrosion film and anticorrosion paint using the cubic hollow particles made of the silica shell according to the thirteenth embodiment have an average particle diameter of 80 nm having an outer diameter in the range of 50 nm to 100 nm. It is easy to handle and reliably improves the anti-corrosion property by utilizing the insulating properties of the cubic shaped hollow particles made of silica shells. Excellent weather resistance, anticorrosion, and adhesion even when the thickness is reduced.
[0341] 実施の形態 14  [0341] Embodiment 14
次に、本発明の実施の形態 14に係る防食膜及び防食塗料について説明する。本 実施の形態 14に係る防食塗料は、ポリア二リンと 50nm〜; !OOnmの範囲内の外径を 有する平均粒径 80nmの図 9に示されるようにして作製されたコーティング中空シリカ 粒子を、イソシァネート—アクリル系塗料に均一に分散させてなるものである。本実施 の形態 9に係る防食塗料の配合は、表 4に示される実施例 9の通りである。  Next, the anticorrosion film and the anticorrosion paint according to Embodiment 14 of the present invention will be described. The anticorrosion paint according to Embodiment 14 comprises coated hollow silica particles produced as shown in FIG. 9 having an average particle diameter of 80 nm and polyaniline having an outer diameter in the range of 50 nm to OOnm. Isocyanate--is uniformly dispersed in an acrylic paint. The composition of the anticorrosion paint according to Embodiment 9 is as shown in Example 9 shown in Table 4.
[0342] [表 4]  [0342] [Table 4]
Figure imgf000074_0001
Figure imgf000074_0001
[0343] 表 4に示されるように、コーティング中空シリカ粒子の固形分配合比は 10重量%で あり、最も好ましい量のコーティング中空シリカ粒子を配合している。同様に、インヒビ ターとしてのポリア二リンとしても、最も好ましい量である固形分配合比 10重量%を配 合している。また、溶剤としては、有機樹脂が溶解し易いキシレン (オルト,メタ,パラ の 3異性体の混合物)を使用している。 [0343] As shown in Table 4, the solid content blending ratio of the coated hollow silica particles is 10% by weight, and the most preferable amount of the coated hollow silica particles is blended. Similarly, As the polyaniline as a catalyst, the most preferable amount of solid content is 10% by weight. As the solvent, xylene (a mixture of ortho, meta, and para isomers), which is easy to dissolve organic resins, is used.
[0344] 力、かる配合の防食塗料を金属表面に塗布して得られる防食膜においては、コーテ イング中空シリカ粒子が分布してレ、る部分にぉレ、ては水が沁み込むのを確実に防止 し、インヒビターとしてのポリア二リンが分布している部分においては水が沁み込んで きてもインヒビターの作用によって水の浸入を食い止めることによって、極めて優れた 防食性能を有する。 [0344] In the anti-corrosion film obtained by applying an anti-corrosion paint with such a strength and coating to the metal surface, it is ensured that the coating hollow silica particles are distributed, and that the water is squeezed into the part. In the area where polyaniline as an inhibitor is distributed, even if water stagnates, the action of the inhibitor prevents water from entering, so that it has extremely excellent anticorrosion performance.
[0345] このようにして、本実施の形態 14に係るコーティング中空シリカ粒子を用いた防食 膜及び防食塗料は、 50nm〜100nmの範囲内の外径を有する平均粒径 80nmのコ 一ティング中空シリカ粒子の絶縁性を利用して、取扱いがし易くかつ確実に防食性を 向上させることができ、独立気孔で水が沁み込む恐れがなぐ塗膜の厚さを薄くして も優れた防食性を得ることができる。  Thus, the anticorrosion film and anticorrosion paint using the coated hollow silica particles according to Embodiment 14 are coated hollow silica having an outer diameter in the range of 50 nm to 100 nm and an average particle diameter of 80 nm. Utilizing the insulating properties of the particles, it is easy to handle and reliably improves the anti-corrosion properties, and it has excellent anti-corrosion properties even if the coating thickness is reduced so that there is no risk of water permeating through independent pores. Obtainable.
[0346] 実施の形態 15  [0346] Embodiment 15
次に、本発明の実施の形態 15に係る防食膜及び防食塗料について説明する。本 実施の形態 15に係る防食塗料は、金属セレン及びセレン化亜鉛と 50nm〜; !OOnm の範囲内の外径を有する平均粒径 80nmのシリカ殻からなる立方体状形態の中空 粒子を、イソシァネート—アクリル系塗料に均一に分散させてなるものである。本実施 の形態 10に係る防食塗料の配合は、表 5に示される実施例 10の通りである。  Next, the anticorrosion film and anticorrosion paint according to Embodiment 15 of the present invention will be described. The anticorrosion paint according to the fifteenth embodiment is obtained by isolating a hollow particle having a cubic shape composed of metal selenium and zinc selenide and a silica shell having an outer diameter in the range of 50 nm to 80 nm and an average particle diameter of 80 nm. It is obtained by uniformly dispersing in an acrylic paint. The composition of the anticorrosion paint according to the tenth embodiment is as shown in Example 10 shown in Table 5.
[0347] [表 5] [0347] [Table 5]
固形分 Solid content
実施例 1 o 重量部 重量%  Example 1 o weight part weight%
シリカ殻からなる  Made of silica shell
立方体状形態の中空粒子 2. 0 10. 0  Hollow particles in cubic form 2. 0 10. 0
(平均粒径 80nm)  (Average particle size 80nm)
金属セレン(Se) 1 . 0 5. 0 セレン化亜鉛 (ZnSe) 1 . 0 5. 0  Metallic selenium (Se) 1.0 5.0 5. 0 Zinc selenide (ZnSe) 1.0 5. 0
ブロック型  Block type
6. 0 30. 0  6. 0 30. 0
イソシァネート  Isocyanate
アクリル樹脂 10. 0 50. 0 キシレン 80. 0 0. 0  Acrylic resin 10. 0 50. 0 Xylene 80. 0 0. 0
A ≡±. A ≡ ±.
口 BT 100. 0 100. 0  Mouth BT 100. 0 100. 0
[0348] 表 5に示されるように、シリカ殻からなる立方体状形態の中空粒子の固形分配合比 は 10重量%であり、最も好ましい量のシリカ殻からなる立方体状形態の中空粒子を 配合している。同様に、インヒビターとしての金属セレン及びセレン化亜鉛としても、 合計で最も好ましい量である固形分配合比 10重量%を配合している。また、溶剤とし ては、有機樹脂が溶解し易いキシレン (オルト,メタ,パラの 3異性体の混合物)を使 用している。 [0348] As shown in Table 5, the solid content blending ratio of the hollow particles in the cubic form composed of silica shells is 10 wt%, and the most preferable amount of the hollow particles in the cubic form composed of silica shells is blended. ing. Similarly, as the metal selenium and zinc selenide as the inhibitor, a solid content blending ratio of 10% by weight, which is the most preferable amount in total, is blended. As the solvent, xylene (a mixture of ortho, meta, and para isomers), in which the organic resin easily dissolves, is used.
[0349] 力、かる配合の防食塗料を金属表面に塗布して得られる防食膜においては、シリカ 殻からなる立方体状形態の中空粒子が分布している部分においては水が沁み込む のを確実に防止し、インヒビターとしての金属セレン及びセレン化亜鉛が分布して!/ヽ る部分にお!/、ては水が沁み込んできてもインヒビターの作用によって水の浸入を食 い止めることによって、極めて優れた防食性能を有する。  [0349] In an anticorrosion film obtained by applying an anticorrosive paint of such strength and strength to a metal surface, it is ensured that water will squeeze in the part where the hollow particles in the cubic form consisting of silica shells are distributed. By preventing the metal selenium and zinc selenide as an inhibitor from being distributed! Excellent anticorrosion performance.
[0350] このようにして、本実施の形態 15に係るシリカ殻からなる立方体状形態の中空粒子 を用いた防食膜及び防食塗料は、 50nm〜100nmの範囲内の外径を有する平均 粒径 80nmのシリカ殻からなる立方体状形態の中空粒子の絶縁性を利用して、取扱 いがし易くかつ確実に防食性を向上させることができ、独立気孔で水が沁み込む恐 れがなぐ塗膜の厚さを薄くしても優れた防食性を得ることができる。 [0351] 実施の形態 16 [0350] Thus, the anticorrosion film and anticorrosion paint using the cubic hollow particles made of the silica shell according to the fifteenth embodiment have an average particle diameter of 80 nm having an outer diameter in the range of 50 nm to 100 nm. It is easy to handle and reliably improves the anti-corrosion property by utilizing the insulating properties of the cubic shaped hollow particles made of silica shells. Even if the thickness is reduced, excellent corrosion resistance can be obtained. [0351] Embodiment 16
次に、本発明の実施の形態 16に係る防食膜及び防食塗料について説明する。本 実施の形態 16に係る防食塗料は、シラン化合物をコーティングした鱗片状亜鉛粉末 粒子と 50nm〜 1 OOnmの範囲内の外径を有する平均粒径 80nmの図 9に示されるよ うにして作製されたコーティング中空シリカ粒子を、イソシァネート アクリル系塗料に 均一に分散させてなるものである。本実施の形態 16に係る防食塗料の配合は、表 6 に示される実施例 11の通りである。  Next, the anticorrosion film and the anticorrosion paint according to Embodiment 16 of the present invention will be described. The anticorrosion paint according to Embodiment 16 is produced as shown in FIG. 9 having an average particle size of 80 nm having scale-like zinc powder particles coated with a silane compound and an outer diameter in the range of 50 nm to 1 OO nm. The coated hollow silica particles are uniformly dispersed in an isocyanate acrylic paint. The composition of the anticorrosion paint according to Embodiment 16 is as in Example 11 shown in Table 6.
[0352] [表 6]  [0352] [Table 6]
Figure imgf000077_0001
Figure imgf000077_0001
[0353] 表 6に示されるように、コーティング中空シリカ粒子の固形分配合比は 10重量%で あり、最も好ましい量のコーティング中空シリカ粒子を配合している。同様に、インヒビ ターとしてのシラン化合物をコーティングした鱗片状亜鉛粉末粒子としても、最も好ま しい量である固形分配合比 10重量%を配合している。また、溶剤としては、有機樹脂 が溶解し易いキシレン (オルト,メタ,パラの 3異性体の混合物)を使用している。 [0353] As shown in Table 6, the solid content blending ratio of the coated hollow silica particles is 10 wt%, and the most preferable amount of the coated hollow silica particles is blended. Similarly, scale-like zinc powder particles coated with a silane compound as an inhibitor are blended with a solid content blending ratio of 10% by weight, which is the most preferable amount. As the solvent, xylene (a mixture of ortho, meta, and para isomers), which is easy to dissolve organic resins, is used.
[0354] 力、かる配合の防食塗料を金属表面に塗布して得られる防食膜においては、コーテ イング中空シリカ粒子が分布してレ、る部分にぉレ、ては水が沁み込むのを確実に防止 し、インヒビターとしてのシラン化合物をコーティングした鱗片状亜鉛粉末粒子が分布 して!/、る部分にお!/、ては水が沁み込んできてもインヒビターの作用によって水の浸入 を食い止めることによって、極めて優れた防食性能を有する。 [0355] このようにして、本実施の形態 16に係るコーティング中空シリカ粒子を用いた防食 膜及び防食塗料は、 50nm〜100nmの範囲内の外径を有する平均粒径 80nmのコ 一ティング中空シリカ粒子の絶縁性を利用して、取扱いがし易くかつ確実に防食性を 向上させることができ、独立気孔で水が沁み込む恐れがなぐ塗膜の厚さを薄くして も優れた防食性を得ることができる。 [0354] In the anti-corrosion film obtained by applying an anti-corrosion paint of strength and strength to the metal surface, it is certain that the coated hollow silica particles will be distributed, and that the water will squeeze into the part. Even if the flaky zinc powder particles coated with the silane compound as an inhibitor are distributed! /, And even if water is swallowed, the intrusion of water is stopped by the action of the inhibitor. Therefore, it has extremely excellent anticorrosion performance. [0355] Thus, the anticorrosion film and the anticorrosion paint using the coated hollow silica particles according to the sixteenth embodiment are coated hollow silica having an outer diameter in the range of 50 nm to 100 nm and an average particle diameter of 80 nm. Utilizing the insulating properties of the particles, it is easy to handle and reliably improves the anti-corrosion properties, and it has excellent anti-corrosion properties even if the coating thickness is reduced so that there is no risk of water permeating through independent pores. Obtainable.
[0356] 実施の形態 17  [0356] Embodiment 17
次に、本発明の実施の形態 17に係る防食膜及び防食塗料について説明する。本 実施の形態 17に係る防食塗料は、ピリジユウム化合物と 50nm〜; !OOnmの範囲内 の外径を有する平均粒径 80nmのシリカ殻からなる立方体状形態の中空粒子を、ィ ソシァネート アクリル系塗料に均一に分散させてなるものである。本実施の形態 17 に係る防食塗料の配合は、表 7に示される実施例 12の通りである。  Next, the anticorrosion film and the anticorrosion paint according to Embodiment 17 of the present invention will be described. The anticorrosive paint according to the seventeenth embodiment is obtained by using, as an isocyanate acrylic paint, hollow particles having a cubic shape composed of a pyridinium compound and a silica shell having an average diameter of 80 nm having an outer diameter in the range of 50 nm to OO nm. It is made to disperse uniformly. The composition of the anticorrosion paint according to Embodiment 17 is as in Example 12 shown in Table 7.
[0357] [表 7]  [0357] [Table 7]
Figure imgf000078_0001
表 7に示されるように、シリカ殻力 なる立方体状形態の中空粒子の固形分配合比 は 10重量%であり、最も好ましい量のシリカ殻からなる立方体状形態の中空粒子を 配合している。同様に、インヒビターとしてのピリジニゥム化合物としても、合計で最も 好ましい量である固形分配合比 10重量%を配合している。また、溶剤としては、有機 樹脂が溶解し易いキシレン (オルト,メタ,パラの 3異性体の混合物)を使用している。 [0359] 力、かる配合の防食塗料を金属表面に塗布して得られる防食膜においては、シリカ 殻からなる立方体状形態の中空粒子が分布している部分においては水が沁み込む のを確実に防止し、インヒビターとしてのピリジニゥム化合物が分布して!/、る部分にお V、ては水が沁み込んできてもインヒビターの作用によって水の浸入を食!/、止めること によって、極めて優れた防食性能を有する。
Figure imgf000078_0001
As shown in Table 7, the solid content ratio of the cubic shaped hollow particles having silica shell strength is 10% by weight, and the most preferred amount of cubic shaped hollow particles comprising silica shells is blended. Similarly, as a pyridinium compound as an inhibitor, a solid content blending ratio of 10% by weight, which is the most preferable amount in total, is blended. As the solvent, xylene (a mixture of ortho, meta, and para isomers), in which the organic resin easily dissolves, is used. [0359] In an anticorrosion film obtained by applying an anticorrosion paint with such a composition to a metal surface, it is ensured that water permeates in the portion where the hollow particles in the cubic form consisting of silica shells are distributed. Even if the pyridinium compound as an inhibitor is distributed! /, Even if water penetrates into the part, the invasion of water is caused by the action of the inhibitor! / Has performance.
[0360] このようにして、本実施の形態 17に係るシリカ殻からなる立方体状形態の中空粒子 を用いた防食膜及び防食塗料は、 50nm〜100nmの範囲内の外径を有する平均 粒径 80nmのシリカ殻からなる立方体状形態の中空粒子の絶縁性を利用して、取扱 いがし易くかつ確実に防食性を向上させることができ、独立気孔で水が沁み込む恐 れがなぐ塗膜の厚さを薄くしても優れた防食性を得ることができる。  [0360] Thus, the anticorrosion film and anticorrosion paint using the hollow particles in the cubic form made of the silica shell according to the seventeenth embodiment have an average particle diameter of 80 nm having an outer diameter in the range of 50 nm to 100 nm. It is easy to handle and reliably improves the anti-corrosion property by utilizing the insulating properties of the cubic shaped hollow particles made of silica shells. Even if the thickness is reduced, excellent corrosion resistance can be obtained.
[0361] 実施の形態 18  [0361] Embodiment 18
次に、本発明の実施の形態 18に係る防食膜及び防食塗料について説明する。本 実施の形態 18に係る防食塗料は、ェピハロヒドリン変性ポリアミドとベンゾトリァゾー ルと 50nm〜 1 OOnmの範囲内の外径を有する平均粒径 80nmの図 9に示されるよう にして作製されたコーティング中空シリカ粒子を、イソシァネート アクリル系塗料に 均一に分散させてなるものである。本実施の形態 18に係る防食塗料の配合は、表 8 に示される実施例 13の通りである。  Next, the anticorrosion film and the anticorrosion paint according to Embodiment 18 of the present invention will be described. The anticorrosive paint according to Embodiment 18 is a coated hollow silica particle produced as shown in FIG. 9 having an average particle diameter of 80 nm having an outer diameter in the range of 50 nm to 1 OO nm, with epihalohydrin-modified polyamide and benzotriazole. Is uniformly dispersed in an isocyanate acrylic paint. The composition of the anticorrosion paint according to Embodiment 18 is as in Example 13 shown in Table 8.
[0362] [表 8] [0362] [Table 8]
固形分 Solid content
実施例 1 3 重量部  Example 1 3 parts by weight
重量%  % By weight
コーティング  Coating
2. 0 10. 0  2. 0 10. 0
中空シリカ粒子  Hollow silica particles
ェピハ口ヒドリン  Epiha mouth hydrin
1 . 0 5. 0  1. 0 5. 0
変性ポリアミ ド  Modified polyamide
ベンゾトリアゾ一ル 1 . 0 5. 0  Benzotriazol 1.0 .0 5. 0
ブロック型  Block type
6. 0 30. 0  6. 0 30. 0
イソシァネート  Isocyanate
アクリル樹脂 10. 0 50. 0 キシレン 80. 0 0. 0 口 ϋ 100. 0 100. 0  Acrylic resin 10. 0 50. 0 Xylene 80. 0 0. 0 Mouth 100. 0 100. 0
[0363] 表 8に示されるように、コーティング中空シリカ粒子の固形分配合比は 10重量%で あり、最も好ましい量のコーティング中空シリカ粒子を配合している。同様に、インヒビ ターとしてのェピハロヒドリン変性ポリアミドとベンゾトリアゾールとしても、合計で最も 好ましい量である固形分配合比 10重量%を配合している。また、溶剤としては、有機 樹脂が溶解し易いキシレン (オルト,メタ,パラの 3異性体の混合物)を使用している。 [0363] As shown in Table 8, the solid content ratio of the coated hollow silica particles is 10% by weight, and the most preferable amount of the coated hollow silica particles is blended. Similarly, the epihalohydrin-modified polyamide and benzotriazole as the inhibitors are blended in a solid content blending ratio of 10% by weight which is the most preferable amount in total. As the solvent, xylene (a mixture of ortho, meta, and para isomers), in which the organic resin easily dissolves, is used.
[0364] 力、かる配合の防食塗料を金属表面に塗布して得られる防食膜においては、コーテ イング中空シリカ粒子が分布してレ、る部分にぉレ、ては水が沁み込むのを確実に防止 し、インヒビターとしてのェピハロヒドリン変性ポリアミドとベンゾトリアゾールが分布して V、る部分にお!/、ては水が沁み込んできてもインヒビターの作用によって水の浸入を 食い止めることによって、極めて優れた防食性能を有する。  [0364] In an anticorrosion film obtained by applying an anticorrosive paint with a strength and chemical composition to the metal surface, it is certain that the coated hollow silica particles are distributed, and that the water is squeezed into the area. It is extremely excellent by preventing the invasion of water by the action of the inhibitor even if water is swallowed in the V, part where the epihalohydrin-modified polyamide and benzotriazole as the inhibitors are distributed. Has anti-corrosion performance.
[0365] このようにして、本実施の形態 18に係るコーティング中空シリカ粒子を用いた防食 膜及び防食塗料は、 50nm〜100nmの範囲内の外径を有する平均粒径 80nmのコ 一ティング中空シリカ粒子の絶縁性を利用して、取扱いがし易くかつ確実に防食性を 向上させることができ、独立気孔で水が沁み込む恐れがなぐ塗膜の厚さを薄くして も優れた防食性を得ることができる。  [0365] Thus, the anticorrosion film and anticorrosion coating material using the coated hollow silica particles according to Embodiment 18 are coated hollow silica having an outer diameter in the range of 50 nm to 100 nm and an average particle diameter of 80 nm. Utilizing the insulating properties of the particles, it is easy to handle and reliably improves the anti-corrosion properties, and it has excellent anti-corrosion properties even if the coating thickness is reduced so that there is no risk of water permeating through independent pores. Obtainable.
[0366] 実施の形態 19 次に、本発明の実施の形態 19に係る防食膜及び防食塗料について説明する。本 実施の形態 19に係る防食塗料は、リン酸 'ジルコニゥム塩等を含有するアルミニウム 系金属表面処理用組成物(以下、「表面処理用組成物」ともいう。)と、シリカ殻からな る立方体状形態の中空粒子を分散させた防食組成物とを混合してなるものである。 [0366] Embodiment 19 Next, the anticorrosion film and the anticorrosion paint according to Embodiment 19 of the present invention will be described. The anticorrosion paint according to the nineteenth embodiment is a cube composed of an aluminum-based metal surface treatment composition (hereinafter, also referred to as “surface treatment composition”) containing phosphoric acid zirconium salt and the like, and a silica shell. And an anticorrosive composition in which hollow particles having a shape are dispersed.
[0367] 表面処理用組成物は、リン酸(H PO )を PO濃度で 40ppm、ジルコニウム塩(H [0367] The composition for surface treatment comprises phosphoric acid (H 3 PO 4) at a PO concentration of 40 ppm, zirconium salt (H
3 4 4 2 3 4 4 2
ZrF )を Zr濃度で 40ppm、亜リン酸を 150ppm、有効フッ化物として HFを lOppmとZrF) is 40 ppm in terms of Zr concentration, phosphorous acid is 150 ppm, and HF is lOppm as effective fluoride.
6 6
なるように配合した pH2. 8の水溶液である。防食組成物は、 50nm〜; !OOnmの範囲 内の外径を有する平均粒径 80nmのシリカ殻からなる立方体状形態の中空粒子を、 アルキルシリケート加水分解塗料に均一に分散させてなるものである。  It is an aqueous solution with a pH of 2.8 formulated as follows. The anticorrosive composition is obtained by uniformly dispersing hollow particles having a cubic shape composed of silica shells having an average particle diameter of 80 nm having an outer diameter in a range of 50 nm to OO nm in an alkylsilicate hydrolyzed paint. .
[0368] これらの表面処理用組成物と防食組成物とを 1: 1の割合で混合して、均一に攪拌す ることによって、本実施の形態 19に係る防食塗料となる。この防食塗料を、アルミユウ ムまたはアルミニウム合金にスプレー塗布して乾燥することによって、耐食性及び塗 膜密着性に優れた防食膜を形成することができる。  [0368] The surface-treating composition and the anticorrosive composition are mixed at a ratio of 1: 1 and stirred uniformly to provide the anticorrosive paint according to the nineteenth embodiment. By applying this anticorrosion paint to aluminum or aluminum alloy and drying it, an anticorrosion film excellent in corrosion resistance and coating adhesion can be formed.
[0369] 実施の形態 20  [0369] Embodiment 20
次に、本発明の実施の形態 20に係る防食膜及び防食塗料について説明する。本 実施の形態 20に係る防食塗料は、アクリル樹脂 ·エポキシ樹脂 ·粉末シリカ'架橋性 重合体粒子を含有する防食塗料組成物と、シリカ殻からなる立方体状形態の中空粒 子を有機樹脂塗料中に分散させた防食組成物とを混合してなるものである。  Next, the anticorrosion film and the anticorrosion paint according to Embodiment 20 of the present invention will be described. The anticorrosion paint according to Embodiment 20 comprises an anticorrosion paint composition containing acrylic resin / epoxy resin / powdered silica 'crosslinkable polymer particles and a cubic shaped hollow particle made of silica shell in an organic resin paint. The anticorrosive composition dispersed in the mixture is mixed.
[0370] 防食塗料組成物は、プライマー (A)とプライマー(B)とを混合してなるものである。プ ライマー (A)は、炭化水素系溶剤/エステル系溶剤の配合比率(重量部) 1/1の混 合溶剤を用意し、混合溶剤/アクリル樹脂ワニスの配合比率(重量部)が 4/10にな るように粉末シリカとアクリル樹脂ワニスを加え、ガラスビーズを用いたバッチ式分散 機で粉末シリカを分散させた。その後、分散物を別容器に取り出し攪拌しながらェポ キシ樹脂ワニスを加え、次いで同様に架橋性重合体粒子溶液を加えて、プライマー( A)を作製した。  [0370] The anticorrosion coating composition is a mixture of the primer (A) and the primer (B). For primer (A), a mixed solvent of hydrocarbon solvent / ester solvent mixture ratio (parts by weight) 1/1 was prepared, and the mixture ratio of mixed solvent / acrylic resin varnish (parts by weight) was 4/10. Then, powder silica and acrylic resin varnish were added so that the powder silica was dispersed by a batch type disperser using glass beads. Thereafter, the dispersion was taken out into a separate container, an epoxy resin varnish was added with stirring, and then a crosslinkable polymer particle solution was added in the same manner to prepare a primer (A).
[0371] プライマー(B)は、プライマー (A)と同じ混合溶剤/アクリル樹脂ワニスの配合比率  [0371] Primer (B) has the same mixing ratio of mixed solvent / acrylic resin varnish as primer (A)
(重量部)が 6/10になるように粉末シリカとアクリル樹脂ワニスを加え、ガラスビーズ を用いたバッチ式分散機で粉末シリカを分散させた。その後、分散物を別容器に取り 出し攪拌しながらブロックポリイソシァネート化合物ワニスを加え、次いで同様に架橋 性重合体粒子溶液を加えて、プライマー(B)を作製した。 Powder silica and acrylic resin varnish were added so that (part by weight) was 6/10, and powder silica was dispersed by a batch type disperser using glass beads. Then take the dispersion in a separate container. The block polyisocyanate compound varnish was added with stirring and stirring, and then a crosslinkable polymer particle solution was added in the same manner to prepare a primer (B).
[0372] プライマー(A)及びプライマー(B)につ!/、て、アルミニウム系合金板を脱脂してクロ ム酸クロメート処理したものに、 20〃mの膜厚になるようにエアスプレー塗装して、ァ ノレミニゥム系合金板の表面温度を 140°Cまで上げて 20分間保持することによって焼 付けして熱乾燥した。その上に、有色塗料をエアスプレー塗装して 140°Cで 20分間 保持して焼付けし、更にクリア一塗料を 30 mの膜厚になるようにエアスプレー塗装 して、 140°Cで 20分間保持して焼付けした。  [0372] Primer (A) and Primer (B)! /, And then spraying aluminum alloy plate with chromic acid chromate treated with air spray to a thickness of 20mm. Then, the surface temperature of the aluminum alloy sheet was raised to 140 ° C and held for 20 minutes, and then baked and thermally dried. On top of that, colored paint is applied by air spraying, kept at 140 ° C for 20 minutes and baked, and then a clear paint is applied by air spraying to a film thickness of 30 m, and then at 140 ° C for 20 minutes. Hold and baked.
[0373] こうして得られた供試体について、 JIS— K 5400 7. 6に準じて鏡面光沢度を測 定したところ、プライマー(A)の供試体及びプライマー(B)の供試体の!/、ずれにつ!/ヽ ても、反射率が 80%以上という良好な結果が得られた。また、耐糸鯖性についても試 験したが、いずれについても全く鯖が生じな力 た。また、耐低温チッビング性試験と して、供試体を一 22°C 18°Cの槽内に 1時間置いた後、取り出して直ちに 6号砕 石をグラベ口メーター(飛石試験機)を用いて圧縮空気圧 4kg/cm2で塗面に打ち つけ、衝撃によって生じる傷とその周辺を観察したところ、いずれについても衝撃に よって生じた傷のみであり、良好な耐低温チッビング性を示した。  [0373] The specular gloss of the specimen thus obtained was measured in accordance with JIS K 5400 7.6. As a result, the primer (A) specimen and the primer (B) specimen! However, good results with a reflectance of 80% or more were obtained. In addition, tests were also conducted on the warp resistance, but in all cases, no wrinkle was generated. In addition, as a low temperature chipping resistance test, the specimen was placed in a tank at 22 ° C and 18 ° C for 1 hour, and then immediately removed and the No. 6 crushed stone was removed using a gravel mouth meter (stepping stone testing machine). When it was struck against the coated surface at a compression air pressure of 4 kg / cm2, the scratches caused by the impact and its periphery were observed. Only the scratches caused by the impact were observed, and good low temperature chipping resistance was exhibited.
[0374] また、付着性試験として、カッターナイフで合金面に達する縦横の切込みを入れて 2 mm四方の 100個の正方形を形成し、粘着セロハンテープを貼り付けて急激に剥が す碁盤目試験を行ったところ、 V、ずれにつ!/、ても 100個の桝目のうち剥がれは 1個も なぐ良好な密着性を示した。更に、耐水性試験として、 38°C〜42°Cの恒温水槽に 供試体を 240浸漬して取り出し、 1時間後に碁盤目試験を行った。その結果、いずれ についても 100個の桝目のうち剥がれは 1個もなぐ良好な耐水性を示した。  [0374] In addition, as an adhesion test, a cross-cut test was conducted in which 100 squares of 2 mm square were formed by making vertical and horizontal cuts reaching the alloy surface with a cutter knife, and adhesive cellophane tape was applied and peeled off rapidly. As a result, V showed a good adhesion, even if it slipped out! Further, as a water resistance test, 240 specimens were immersed in a constant temperature water bath of 38 ° C. to 42 ° C. and taken out, and a cross-cut test was conducted one hour later. As a result, all of the 100 squares showed good water resistance with no peeling.
[0375] このように極めて優れた防食性を有するプライマー(A)とプライマー(B)を 1: 1の割 合で混合し、本実施の形態 20に係る防食塗料組成物を得た。この防食塗料組成物 に、 50nm〜100nmの範囲内の外径を有する平均粒径 80nmのシリカ殻からなる立 方体状形態の中空粒子をイソシァネート アクリル系塗料に均一に分散させてなる 防食組成物を混合することによって、本実施の形態 20に係る防食塗料が得られた。  [0375] The primer (A) and the primer (B) having extremely excellent anticorrosion properties were mixed at a ratio of 1: 1 to obtain the anticorrosion coating composition according to Embodiment 20. In this anticorrosion coating composition, hollow particles in the form of a cuboid composed of silica shells having an outer diameter in the range of 50 nm to 100 nm and an average particle diameter of 80 nm are uniformly dispersed in an isocyanate acrylic paint. The anticorrosion paint according to Embodiment 20 was obtained by mixing the above.
[0376] このようにして、本実施の形態 20に係るシリカ殻からなる立方体状形態の中空粒子 を用いた防食膜及び防食塗料は、 50nm〜100nmの範囲内の外径を有する平均 粒径 80nmのシリカ殻からなる立方体状形態の中空粒子の絶縁性と、プライマー (A) とプライマー(B)の極めて優れた防食性を利用して、取扱いがし易くかつ確実に防食 性を向上させることができ、独立気孔で水が沁み込む恐れがなぐ塗膜の厚さを薄く しても優れた防食十生を得ること力できる。 [0376] In this way, hollow particles having a cubic shape composed of the silica shell according to Embodiment 20 The anticorrosion film and the anticorrosion coating material using the above-mentioned are the insulating properties of the hollow particles having a cubic shape made of silica shells having an outer diameter in the range of 50 nm to 100 nm and an average particle diameter of 80 nm, and primers (A) and (B) It is easy to handle and reliably improves the anti-corrosion property by using its extremely excellent anti-corrosion property, and excellent anti-corrosion even if the coating thickness is reduced so that there is no risk of water permeating through independent pores. You can have the power to gain ten years.
[0377] 実施の形態 21 [0377] Embodiment 21
次に、本発明の実施の形態 21に係る防食膜及び防食塗料について説明する。本 実施の形態 21に係る防食塗料は、フッ化ケィ素塩等のフッ化物塩と全てが加水分解 性基によって置換されたチタンモノマーとを反応させてなる無機膜形成用塗布剤と、 シリカ殻力 なる立方体状形態の中空粒子を分散させた防食組成物とを混合してな るものである。  Next, the anticorrosion film and the anticorrosion paint according to Embodiment 21 of the present invention will be described. The anticorrosion paint according to Embodiment 21 includes an inorganic film-forming coating agent obtained by reacting a fluoride salt such as a fluoride fluoride salt with a titanium monomer all substituted with hydrolyzable groups, and silica shell. It is formed by mixing with an anticorrosive composition in which hollow particles having a strong cubic shape are dispersed.
[0378] 無機膜形成用塗布剤は、テトラーイソプロポキシチタン 2. 0重量部とエタノール 48 重量部の混合物を、チタンフッ化アンモニゥム 2. 5重量部と脱イオン水 47. 5重量部 の混合物中に 20°Cで 1時間かけて攪拌しながら滴下することによって作製した。これ に、 50nm〜100nmの範囲内の外径を有する平均粒径 80nmのシリカ殻からなる立 方体状形態の中空粒子をイソシァネート アクリル系塗料に均一に分散させてなる 防食組成物を混合することによって、本実施の形態 15に係る防食塗料が得られた。  [0378] The coating agent for forming an inorganic film comprises a mixture of 2.0 parts by weight of tetraisopropoxytitanium and 48 parts by weight of ethanol, in a mixture of 2.5 parts by weight of titanium fluoride fluoride and 47.5 parts by weight of deionized water. It was prepared by adding dropwise with stirring at 20 ° C over 1 hour. To this is mixed an anticorrosive composition in which hollow particles in the form of a cuboid composed of silica shells having an outer diameter in the range of 50 nm to 100 nm and an average particle diameter of 80 nm are uniformly dispersed in an isocyanate acrylic paint. As a result, the anticorrosion paint according to Embodiment 15 was obtained.
[0379] この防食塗料を、板厚 0. 1mmのアルミニウム板をアルカリ脱脂剤を溶解した濃度 2 %の水溶液を使用して脱脂 ·水洗した後、乾燥皮膜重量が 0. 2g/m2となるように 塗布し、アルミニウム板到達温度が 100°Cになるようにして 20秒間焼き付けて、防食 膜を形成した。この防食膜が形成された供試体について、 JIS— Z— 2371に準じて 塩水噴霧試験を実施して耐食性を評価した。その結果、試験時間 120時間、 240時 間、 360時間のいずれにおいても塗面に白鯖 ·フタレの発生は認められず、極めて 優れた防食性を有して!/、ることが確認された。  [0379] This anti-corrosion paint was degreased and washed with a 2% aqueous solution of an alkaline degreasing agent on an aluminum plate with a thickness of 0.1 mm so that the dry film weight would be 0.2 g / m2. Then, it was baked for 20 seconds so that the temperature reached the aluminum plate was 100 ° C, and an anticorrosion film was formed. The specimen on which the anticorrosion film was formed was subjected to a salt spray test according to JIS-Z-2371 to evaluate the corrosion resistance. As a result, it was confirmed that there was no occurrence of white glaze or sag on the coated surface at any of the test times of 120 hours, 240 hours, and 360 hours, and it had extremely excellent anticorrosive properties! .
[0380] このようにして、本実施の形態 21に係るシリカ殻からなる立方体状形態の中空粒子 を用いた防食膜及び防食塗料は、 50nm〜100nmの範囲内の外径を有する平均 粒径 80nmのシリカ殻からなる立方体状形態の中空粒子の絶縁性と、フッ化ケィ素 塩等のフッ化物塩と全てが加水分解性基によって置換されたチタンモノマーとを反応 させてなる無機膜形の極めて優れた防食性を利用して、取扱いがし易くかつ確実に 防食性を向上させることができ、独立気孔で水が沁み込む恐れがなぐ塗膜の厚さを 薄くしてあ優れた防食十生を得ること力でさる。 [0380] Thus, the anticorrosion film and anticorrosion paint using the cubic hollow particles composed of the silica shell according to Embodiment 21 have an average particle diameter of 80 nm having an outer diameter in the range of 50 nm to 100 nm. Of cubic hollow particles made of silica shell and reaction of fluoride salt such as fluorinated silicon salt with titanium monomer all substituted with hydrolyzable groups By using the extremely excellent anticorrosion properties of the inorganic film shape, the anticorrosion properties can be improved easily and reliably, and the thickness of the coating film is reduced so that there is no risk of water permeating through independent pores. Then, it is the power to obtain an excellent anticorrosion life.
[0381] 本実施の形態 21においては、フッ化物塩としてフッ化チタン塩としてのチタンフッ化 アンモニゥムを用いた場合について説明した力 フッ化ケィ素塩またはフッ化ジルコ 二ゥム塩を用いても、同様な効果を得ること力 Sできる。また、全てが加水分解性基によ つて置換されたチタンモノマーとしてテトラーイソプロポキシチタンを用いた場合につ いて説明した力 S、全てが加水分解性基によって置換されたシリコンモノマーまたはジ ルコニゥムモノマーを用いても、同様な効果を得ることができる。更に、シリカ殻からな る立方体状形態の中空粒子の代わりに、実施の形態 7と同様のコーティングシリカ殻 力もなる中空粒子を用いても良レ、。 [0381] In the present embodiment 21, the force described in the case of using ammonium fluoride ammonium fluoride as the titanium fluoride salt as the fluoride salt, even if the fluorine fluoride salt or the zirconium fluoride fluoride salt is used, Ability to obtain similar effects. In addition, the force S described for the case where tetraisopropoxytitanium is used as the titanium monomer, all substituted by hydrolyzable groups, silicon monomer or zirconium which is all substituted by hydrolyzable groups. A similar effect can be obtained even if a monomer is used. Furthermore, it is also possible to use a hollow particle having a coating silica shell force similar to that of Embodiment 7, instead of a cubic hollow particle made of silica shell.
[0382] 実施の形態 22 [0382] Embodiment 22
次に、本発明の実施の形態 22に係る防食膜及び防食塗料について説明する。本 実施の形態 22に係る防食塗料は、ウレタン変性エポキシ樹脂'メラミン樹脂 'ブロック イソシァネート樹脂'鉛及びクロムを含まない防鯖顔料を含有する防鯖プライマーと、 シリカ殻力 なる立方体状形態の中空粒子を分散させた防食組成物とを混合してな るものである。  Next, the anticorrosion film and the anticorrosion paint according to Embodiment 22 of the present invention will be described. The anticorrosion paint according to the present embodiment 22 includes urethane-modified epoxy resin, melamine resin, block isocyanate resin, an antibacterial primer containing an antifouling pigment that does not contain lead and chromium, and hollow particles having a cubic shape with silica shell strength. And an anticorrosive composition in which is dispersed.
[0383] 防鯖プライマーの成分は、ウレタン変性エポキシ樹脂としては、エポキシ樹脂のダリ シジル基に対して過剰量の活性水素を有するような量で多官能カルボン酸或いは多 官能アミンを用いて変性し、その後残存する活性水素とジイソシァネートとを更に反 応させて鎖延長されたものを使用するのが好ましレ、。このようなウレタン変性エポキシ 樹脂を用いることにより、形成される防食プライマーの防食性を一段と向上させること ができる。  [0383] The component of the mildew-proofing primer is modified with a polyfunctional carboxylic acid or a polyfunctional amine in an amount that has an excessive amount of active hydrogen relative to the daricidyl group of the epoxy resin as a urethane-modified epoxy resin. After that, it is preferable to use a chain extended by further reacting the remaining active hydrogen and diisocyanate. By using such a urethane-modified epoxy resin, the corrosion resistance of the formed anticorrosion primer can be further improved.
[0384] メラミン樹脂は、ウレタン変性エポキシ樹脂の硬化剤として機能し得るものであり、特 に限定されないが、例えばメラミンとホルムアルデヒドを反応させた後、アルコールで 変性することによって得られるメラミンホルムアルデヒド樹脂、及びそれを含む樹脂組 成物を挙げること力 Sできる。また、ブロックイソシァネート樹脂は、ポリイソシァネートに ブロック剤を付加させることによって得られ、加熱によりブロック剤が解離してイソシァ ネート基が発生する。発生したイソシァネート基は、上記ウレタン変性エポキシ樹脂 中の官能基と反応して、ウレタン変性エポキシ樹脂を硬化させる。 [0384] The melamine resin can function as a curing agent for the urethane-modified epoxy resin and is not particularly limited. For example, a melamine formaldehyde resin obtained by reacting melamine with formaldehyde and then modifying with alcohol, And a resin composition containing the same. The block isocyanate resin is obtained by adding a blocking agent to a polyisocyanate. Nate groups are generated. The generated isocyanate group reacts with the functional group in the urethane-modified epoxy resin to cure the urethane-modified epoxy resin.
[0385] 更に、鉛及びクロムを含まない防鯖顔料は、一般に、水可溶分が多いと水分中にィ オンが溶け易いことから、優れた防食性を示す。し力もながら、水可溶分は多過ぎる と防鯖プライマー塗膜が水により過剰に侵食されたり、膨れが発生し易くなるため、好 ましくは 2. 0%以下、より好ましくは 1. 0%以下の量で配合される。鉛及びクロムを含 まない防鯖顔料としては、モリブデン酸亜鉛 (水可溶分 1. 2%)、トリポリリン酸アルミ ニゥム(水可溶分 1. 5%)、リンモリブデン酸アルミニウム(水可溶分 0. 4%)、リン酸 亜鉛 (水可溶分 0. 1 %)等の微粉末等が挙げられる。  [0385] Furthermore, an antifungal pigment that does not contain lead and chromium generally exhibits excellent anticorrosive properties because if the water-soluble content is large, ions are easily dissolved in water. However, if the amount of water-soluble component is too large, the anti-fouling primer coating film is liable to be excessively eroded or swollen by water, so it is preferably 2.0% or less, more preferably 1.0. It is blended in an amount of less than%. Anti-fouling pigments that do not contain lead and chromium include zinc molybdate (water-soluble content: 1.2%), aluminum tripolyphosphate (water-soluble content: 1.5%), and aluminum phosphomolybdate (water-soluble content). Fine powder such as zinc phosphate (water soluble content 0.1%) and the like.
[0386] これら 4成分を混合してなる防鯖プライマーに、 50nm〜100nmの範囲内の外径を 有する平均粒径 80nmのシリカ殻からなる立方体状形態の中空粒子をイソシァネート アクリル系塗料に均一に分散させてなる防食組成物を混合することによって、本実 施の形態 22に係る防食塗料が得られた。  [0386] In the antibacterial primer formed by mixing these four components, the hollow particles having a cubic shape made of silica shells having an outer diameter in the range of 50 nm to 100 nm and an average particle diameter of 80 nm are uniformly applied to the isocyanate acrylic paint. The anticorrosion paint according to Embodiment 22 was obtained by mixing the anticorrosive composition thus dispersed.
[0387] この防食塗料を、アルカリ脱脂剤を用いて脱脂を行!/、、次!/、で化成処理剤を用いて 化成処理を行ったアルミダイキャスト合金製板に、乾燥膜厚で 15 mになるようにス プレー塗装した。 10分間放置した後、 120°Cで 20分間熱処理することによって、防 食膜を形成した。この防食膜の評価試験として、海水暴露試験を実施した。防食膜を 形成したアルミダイキャスト合金製板を、常時海岸より引き込んだ海水を満たしたブー ルに浸漬した。試験条件として、浸漬 12時間、乾燥 12時間を 1サイクルとして 30日 間浸漬した後、塗膜表面における腐食度を目視判定した。その結果、僅かに発鯖が 開始したものが認められたのみであり、防食性に極めて優れていることが分かった。  [0387] This anticorrosion paint was degreased using an alkaline degreasing agent! /, Next! /, And then formed on an aluminum die-cast alloy plate subjected to chemical conversion treatment using a chemical conversion treatment agent. Spray painted to m. After standing for 10 minutes, the film was heat-treated at 120 ° C for 20 minutes to form an anticorrosion film. As an evaluation test for this anticorrosion film, a seawater exposure test was conducted. An aluminum die-cast alloy plate with an anti-corrosion film was immersed in a bull filled with seawater drawn from the coast at all times. As test conditions, immersion was performed for 12 hours and drying for 12 hours as one cycle, and after 30 days of immersion, the degree of corrosion on the coating film surface was visually determined. As a result, only a slight start of rusting was observed, and it was found that the corrosion resistance was extremely excellent.
[0388] このようにして、本実施の形態 22に係るシリカ殻からなる立方体状形態の中空粒子 を用いた防食膜及び防食塗料は、 50nm〜100nmの範囲内の外径を有する平均 粒径 80nmのシリカ殻からなる立方体状形態の中空粒子の絶縁性と、防鯖プライマ 一の極めて優れた防食性を利用して、取扱いがし易くかつ確実に防食性を向上させ ること力 Sでき、独立気孔で水が沁み込む恐れがなぐ塗膜の厚さを薄くしても優れた 防食十生を得ること力 Sできる。  [0388] Thus, the anticorrosion film and anticorrosion paint using the cubic hollow particles made of the silica shell according to Embodiment 22 have an average particle diameter of 80 nm and an outer diameter in the range of 50 nm to 100 nm. It is easy to handle and reliably improves the anti-corrosion property by utilizing the insulating properties of the cubic hollow particles made of silica shell and the extremely excellent anti-corrosion property of the anti-corrosion primer. Even if the coating thickness is reduced, there is no risk of water permeating through the pores.
[0389] 実施の形態 23 次に、本発明の実施の形態 23に係る防食膜及び防食塗料について説明する。本 実施の形態 23に係る防食塗料は、フッ化水素及び/またはフッ化アンモニゥム、環 状ァミン、アルキレンァミン及び/またはアルカノールァミンからなる防食用組成物を 含有する水性防食用組成物と、シリカ殻力 なる立方体状形態の中空粒子を分散さ せた防食組成物とを混合してなるものである。 [0389] Embodiment 23 Next, an anticorrosion film and an anticorrosion paint according to Embodiment 23 of the present invention will be described. The anticorrosion paint according to Embodiment 23 includes an aqueous anticorrosion composition containing an anticorrosion composition comprising hydrogen fluoride and / or ammonium fluoride, a cyclic amine, an alkyleneamine and / or an alkanolamine, It is formed by mixing with a corrosion-resistant composition in which hollow particles having a cubic shape with silica shell strength are dispersed.
[0390] 水性防食用組成物は、環状ァミンと混合すると環状ァミンの一部或いは全部が環状 ァミンのフッ酸塩に変化するフッ化物としてのフッ化アンモニゥム、環状ァミンとしての ピぺラジン及び N, N—ジメチルビペラジン、アルキレンァミンとしてのエチレンジアミ ンを含有する水溶液である。ここで、フッ化アンモニゥムが 0. 01重量%〜20重量% 、ピぺラジン及び N, N—ジメチルビペラジンの合計量が 0. 01重量%〜40重量%、 エチレンジァミンが 0. 01重量%〜40重量%、水が 50. 1重量%〜99. 9重量%の 範囲内であることが好ましい。  [0390] Aqueous anticorrosive composition comprises ammonium fluoride as a fluoride in which a part or all of the cyclic amine is changed to a hydrofluoric acid salt of the cyclic amine when mixed with the cyclic amine, piperazine as the cyclic amine and N, An aqueous solution containing N-dimethylbiperazine and ethylenediamine as alkyleneamine. Here, 0.01% to 20% by weight of ammonium fluoride, 0.01% to 40% by weight of the total amount of piperazine and N, N-dimethylbiperazine, and 0.01% by weight of ethylenediamine It is preferable that the water content is in the range of ˜40% by weight and water is in the range of 50.1% by weight to 99.9% by weight.
[0391] このような水性防食用組成物に、 50nm〜; !OOnmの範囲内の外径を有する平均粒 径 80nmのシリカ殻からなる立方体状形態の中空粒子を、アルキルシリケート加水分 解塗料に均一に分散させてなる防食組成物を混合することによって、本実施の形態 23に係る防食塗料が得られた。防食組成物の溶媒も水であり、したがって本実施の 形態 23に係る防食塗料は、有機溶媒を使用しない水性防食塗料である。  [0391] In such an aqueous anticorrosive composition, hollow particles in the form of cubes composed of silica shells with an average particle diameter of 80 nm having an outer diameter in the range of 50 nm to OO nm are used as an alkylsilicate hydrolyzate paint. The anticorrosive paint according to Embodiment 23 was obtained by mixing the anticorrosive composition that was uniformly dispersed. Since the solvent of the anticorrosion composition is also water, the anticorrosion paint according to Embodiment 23 is an aqueous anticorrosion paint that does not use an organic solvent.
[0392] このようにして、本実施の形態 23に係るシリカ殻からなる立方体状形態の中空粒子 を用いた防食膜及び防食塗料は、 50nm〜100nmの範囲内の外径を有する平均 粒径 80nmのシリカ殻からなる立方体状形態の中空粒子の絶縁性と、フッ化アンモニ ゥム、環状ァミン、アルキレンァミンの混合物の極めて優れた防食性を利用して、取 极いがし易くかつ確実に防食性を向上させることができ、独立気孔で水が沁み込む 恐れがなぐ塗膜の厚さを薄くしても優れた防食性を得ることができる。  [0392] Thus, the anticorrosion film and the anticorrosion coating using the hollow particles having a cubic shape composed of the silica shell according to the twenty-third embodiment have an average particle diameter of 80 nm having an outer diameter in the range of 50 nm to 100 nm. Utilizing the insulating properties of cubic hollow particles made of silica shells and the extremely excellent anticorrosive properties of a mixture of ammonium fluoride, cyclic amine, and alkyleneamine, it is easy and reliable to handle. The anticorrosion can be improved, and excellent anticorrosion can be obtained even if the thickness of the coating is reduced so that there is no risk of water permeating through the independent pores.
[0393] 実施の形態 24  [0393] Embodiment 24
次に、本発明の実施の形態 24に係る防食膜及び防食塗料について説明する。本 実施の形態 24に係る防食塗料は、ベンゾトリアゾール系化合物、脂肪族ァミン及び /または第四アンモニゥム化合物、及びアルコキシシランからなる防食用組成物を非 水系溶剤を溶媒として配合してなる銅材用防食剤組成物と、シリカ殻力 なる立方体 状形態の中空粒子を分散させた防食組成物とを混合してなるものである。 Next, the anticorrosion film and the anticorrosion paint according to Embodiment 24 of the present invention will be described. The anticorrosion paint according to Embodiment 24 is for a copper material prepared by blending an anticorrosive composition comprising a benzotriazole-based compound, an aliphatic amine and / or a fourth ammonium compound, and an alkoxysilane with a nonaqueous solvent as a solvent. Anticorrosive composition and silica shell strength cube And an anticorrosive composition in which hollow particles having a shape are dispersed.
[0394] 銅材用防食剤組成物は、ベンゾトリアゾール系化合物としてのベンゾトリアゾール及 び 4ーメチルーベンゾトリアゾールの混合物と、脂肪族ァミンとしてのォクチルァミン及 び第四アンモニゥム化合物としてのイミダゾリニゥム化合物の混合物と、アルコキシシ ランとしてのビュルトリメトキシシランを、非水系溶剤としてのメタノールに溶解させたも のである。 [0394] The anticorrosive composition for copper materials comprises a mixture of benzotriazole and 4-methyl-benzotriazole as a benzotriazole compound, octylamine as an aliphatic amine, and an imidazolinium compound as a quaternary ammonium compound. In addition, butyltrimethoxysilane as alkoxysilane was dissolved in methanol as a non-aqueous solvent.
[0395] ここで、ベンゾトリアゾール及び 4ーメチルーベンゾトリアゾールの混合物の配合比は 、 0. 1重量%〜; 10重量%の範囲内、好ましくは 0. 5重量%〜3重量%の範囲内であ る。また、ォクチルァミン及びイミダゾリニゥム化合物の混合物の配合比は、 0. 1重量 %〜5重量%の範囲内、好ましくは 0. 2重量%〜1重量%の範囲内である。更に、ビ ニルトリメトキシシランの配合比は、 0. 1重量%〜5重量%の範囲内、好ましくは 0. 1 重量%〜;!重量%の範囲内である。  [0395] Here, the blending ratio of the mixture of benzotriazole and 4-methyl-benzotriazole is in the range of 0.1 wt% to 10 wt%, preferably in the range of 0.5 wt% to 3 wt%. It is. The blending ratio of the mixture of octylamine and imidazolinium compound is in the range of 0.1% to 5% by weight, preferably in the range of 0.2% to 1% by weight. Furthermore, the compounding ratio of vinyltrimethoxysilane is in the range of 0.1% by weight to 5% by weight, preferably in the range of 0.1% by weight to!% By weight.
[0396] このように、本実施の形態 24に係る銅材用防食剤組成物は銅と化学的に反応して キレート化合物を生成するべンゾトリアゾール及び 4ーメチルーベンゾトリアゾールを 含むので、本実施の形態 24に係る銅材用防食剤組成物を銅材の表面に塗布すると キレート化合物が生成し、層状に銅材の表面を覆って防食性皮膜を形成して銅材表 面を保護し、防食効果を発揮する。  [0396] Thus, since the anticorrosive composition for copper material according to Embodiment 24 contains benzotriazole and 4-methyl-benzotriazole that chemically react with copper to form a chelate compound, When the anticorrosive composition for copper material according to Embodiment 24 is applied to the surface of the copper material, a chelate compound is formed, and the surface of the copper material is covered in layers to form an anticorrosive film to protect the copper material surface. And exhibits anti-corrosion effect.
[0397] また、ォクチルァミン及びイミダゾリニゥム化合物を含むので、これらの化合物はキレ ート化合物の層の間隙等に吸着層を形成し、防食性皮膜を保護する防食助剤として の機能を有する。更に、本実施の形態 24に係る銅材用防食剤組成物はビュルトリメ トキシシランを含むので、ビュルトリメトキシシランが銅材表面とキレート化合物の層と の間の仲介役となって架橋し、銅材表面と被覆材との密着度の向上に対して有効に 作用する。  [0397] Further, since it contains octylamine and an imidazolinium compound, these compounds form an adsorption layer in the gap of the layer of the chelate compound and have a function as an anticorrosion aid for protecting the anticorrosive film. Furthermore, since the anticorrosive composition for copper material according to the present embodiment 24 includes butytrimethoxysilane, butytrimethoxysilane is crosslinked as a mediator between the copper material surface and the chelate compound layer, and the copper material. Effectively improves the adhesion between the surface and the coating.
[0398] このような銅材用防食剤組成物に、 50nm〜; !OOnmの範囲内の外径を有する平均 粒径 80nmのシリカ殻からなる立方体状形態の中空粒子をイソシァネート一アタリノレ 系塗料に均一に分散させてなる防食組成物を混合することによって、本実施の形態 19に係る防食塗料が得られる。したがって、力、かる配合の防食塗料を銅材表面に塗 布して得られる防食膜においては、シリカ殻からなる立方体状形態の中空粒子が分 布している部分においては水が沁み込むのを確実に防止し、キレート化合物の層が 分布している部分においては水が沁み込んできても防食性を発揮するため、極めて 優れた防食性能を有する。 [0398] In such an anticorrosive composition for copper materials, hollow particles in the form of cubes composed of silica shells having an outer diameter in the range of 50 nm to OO nm and having an average particle diameter of 80 nm are used as isocyanate-atalinole paints. By mixing the anticorrosive composition that is uniformly dispersed, the anticorrosive paint according to the nineteenth embodiment is obtained. Therefore, in an anticorrosion film obtained by applying a corrosion-resistant coating having a strength and a formulation to the surface of a copper material, hollow particles having a cubic shape made of silica shells are separated. It prevents the water from squeezing in the area where the cloth is applied, and in the part where the chelate compound layer is distributed, it exhibits anti-corrosion properties even if water is squeezed. Have.
[0399] このようにして、本実施の形態 24に係るシリカ殻からなる立方体状形態の中空粒子 を用いた防食膜及び防食塗料は、 50nm〜100nmの範囲内の外径を有する平均 粒径 80nmのシリカ殻からなる立方体状形態の中空粒子の絶縁性及びキレート化合 物の層の防食性を利用して、取扱いがし易くかつ確実に防食性を向上させることが でき、独立気孔で水が沁み込む恐れがなぐ塗膜の厚さを薄くしても優れた防食性を 得ること力 Sでさる。  [0399] Thus, the anticorrosion film and anticorrosion paint using the cubic hollow particles made of the silica shell according to Embodiment 24 have an average particle diameter of 80 nm and an outer diameter in the range of 50 nm to 100 nm. It is easy to handle and reliably improves the anti-corrosion property by utilizing the insulating property of the hollow particles in the cubic form made of silica shell and the anti-corrosion property of the chelate compound layer, and water can be absorbed by independent pores. The ability to obtain excellent anti-corrosion properties even when the coating thickness is reduced.
[0400] 実施の形態 25  [0400] Embodiment 25
次に、本発明の実施の形態 25に係るコーティング膜及びコーティング塗料について 、図 13乃至図 18を参照して説明する。  Next, a coating film and a coating material according to Embodiment 25 of the present invention will be described with reference to FIGS.
[0401] 図 13は本発明の実施の形態 25の実施例 14に係るコーティング塗料の製造工程を 示すフローチャートである。図 14は本発明の実施の形態 25の実施例 15に係るコー ティング塗料の製造工程を示すフローチャートである。図 15は本発明の実施の形態 25の実施例 16に係るコーティング塗料の製造工程を示すフローチャートである。図 1 6は本発明の実施の形態 25の実施例 16に係るコーティング塗料の製造工程におけ る表面修飾処理の方法を示す説明図である。図 17は本発明の実施の形態 25の実 施例 16に係るコーティング塗料の製造工程における表面修飾処理の方法の他の例 を示す説明図である。図 18 (a)は本発明の実施の形態 25に係るコーティング膜を表 面に形成した木材を示す斜視図、(b)はその断面図である。  FIG. 13 is a flowchart showing a coating paint manufacturing process according to Example 14 of Embodiment 25 of the present invention. FIG. 14 is a flowchart showing a coating paint manufacturing process according to Example 15 of Embodiment 25 of the present invention. FIG. 15 is a flowchart showing a coating paint manufacturing process according to Example 16 of Embodiment 25 of the present invention. FIG. 16 is an explanatory view showing a surface modification treatment method in the coating paint manufacturing process according to Example 16 of Embodiment 25 of the present invention. FIG. 17 is an explanatory view showing another example of the surface modification treatment method in the coating paint manufacturing process according to Example 16 of Embodiment 25 of the present invention. FIG. 18 (a) is a perspective view showing a wood on which a coating film according to Embodiment 25 of the present invention is formed, and FIG. 18 (b) is a sectional view thereof.
[0402] 本発明者らは、先に、緻密なシリカ殻からなり、ナノサイズの粒子径でかつ分散性 に優れた、高分散シリカナノ中空粒子及びそれを製造する方法についての発明をし 、その発明について特許出願をしている(特開 2005— 263550号公報)。まず、この 発明に係る立方体状形態のシリカ殻からなる中空粒子 10を用いた本実施の形態 25 の実施例 14に係るコーティング塗料の製造方法について、図 13を参照して説明す  [0402] The inventors previously invented a highly dispersed silica nano-hollow particle comprising a dense silica shell, having a nano-sized particle diameter and excellent dispersibility, and a method for producing the same. A patent application has been filed for the invention (Japanese Patent Laid-Open No. 2005-263550). First, a method for producing a coating paint according to Example 14 of Embodiment 25 using hollow particles 10 made of cubic silica shells according to the present invention will be described with reference to FIG.
[0403] まず、ステップ S 10において、図 5で説明した製造工程によって立方体状形態のシリ 力殻からなる中空粒子 10が製造される。ここでは、略 50nm〜; !OOnmの範囲内の外 径を有する平均外径 80nmの、空隙率が略 70%〜80%の立方体状形態のシリカ殻 力、らなる中空粒子 10を用いることとする。 [0403] First, in step S 10, the cubic shape of the silicon is produced by the manufacturing process described in FIG. Hollow particles 10 consisting of force shells are produced. Here, hollow silica particles 10 having an average outer diameter of 80 nm and an outer diameter in the range of OOnm and having a cubic shell shape with a porosity of about 70% to 80% are used. To do.
[0404] 一方、水にポリカーボネート樹脂ェマルジヨンを溶解させて、均一なポリカーボネート 樹脂ェマルジヨン水溶液が調製され (ステップ S31)、このポリカーボネート樹脂エマ ルジョン水溶液にシリカ殻からなる中空粒子 10が混合される(ステップ S32)。そして 、高速攪拌機を使用して、循環方式によって、周速 25m/Sec、液流量 180m/min で、混合液が処理され (ステップ S33)、処理された分散液を目開き 60 mのステン レス網で濾過(ステップ S34)した後、湿式ジェットミルで更に 30分間分散処理を行う (ステップ S35)。 [0404] On the other hand, a polycarbonate resin emulsion is dissolved in water to prepare a uniform polycarbonate resin emulsion aqueous solution (step S31), and hollow particles 10 composed of silica shells are mixed with this polycarbonate resin emulsion aqueous solution (step S32). ). Then, using a high-speed stirrer, the mixture is processed at a peripheral speed of 25 m / Sec and a liquid flow rate of 180 m / min by a circulation method (step S33), and the processed dispersion is opened in a stainless steel network with an opening of 60 m. After filtering with (Step S34), the dispersion treatment is further carried out for 30 minutes with a wet jet mill (Step S35).
[0405] これによつて、ポリカーボネート樹脂ェマルジヨン水溶液中に、略 50nm〜; !OOnmの 範囲内の外径を有する平均外径 80nmの、空隙率が略 70%〜80%の立方体状形 態のシリカ殻からなる中空粒子 10が均一に分散される。このようにして得られた分散 液に、更にポリカーボネート樹脂ェマルジヨンとシリコーン系界面活性剤が追加され( ステップ S36)、ミキサーで攪拌される(ステップ S37)。  [0405] Thus, in a polycarbonate resin emulsion aqueous solution, a cubic shape having an average outer diameter of 80 nm and a void ratio of approximately 70% to 80% having an outer diameter in the range of approximately 50 nm to OOnm. The hollow particles 10 made of silica shell are uniformly dispersed. A polycarbonate resin emulsion and a silicone surfactant are further added to the dispersion thus obtained (step S36), and the mixture is stirred with a mixer (step S37).
[0406] 以上の工程によって、本実施の形態 25の実施例 14に係るコーティング塗料 23aが 製造される。この実施例 14に係るコーティング塗料 23aは、シリカ殻からなる中空粒 子 10をポリカーボネート樹脂ェマルジヨン系有機樹脂塗料中に略均一に分散してな る水性コーティング塗料である。なお、ポリカーボネート樹脂ェマルジヨンとしては、 D SM社(オランダ)製の NeoRezR9603 (ポリカーボネート樹脂ェマルジヨン、固形分 3 4%)を使用し、シリコーン系界面活性剤としては信越化学工業 (株)製の KF643を 用いた。  [0406] Through the above steps, coating paint 23a according to Example 14 of Embodiment 25 is manufactured. The coating paint 23a according to Example 14 is an aqueous coating paint in which the hollow particles 10 made of silica shell are dispersed substantially uniformly in the polycarbonate resin emulsion organic resin paint. As the polycarbonate resin emulsion, NeoRezR9603 (polycarbonate resin emulsion, solid content 34%) manufactured by DSM (Netherlands) is used, and KF643 manufactured by Shin-Etsu Chemical Co., Ltd. is used as the silicone surfactant. It was.
[0407] このようにして製造される本実施の形態 25の実施例 14に係るコーティング塗料 23a の配合を、表 9に示す。  [0407] Table 9 shows the composition of coating paint 23a according to Example 14 of Embodiment 25 thus manufactured.
[0408] [表 9] 成 分 重量部 重量 ¾ 固形分 固形分% [0408] [Table 9] Component Weight part Weight ¾ Solid content Solid content%
シリカ殻からなる 2. 45 1. 60 1 . 60 8. 00  Made of silica shell 2. 45 1. 60 1.60 8.00
中空粒子  Hollow particles
 Min
散 ポリカーボネート  Polycarbonate
液 樹脂ェマルジヨン 21. 60 14. 10 4. 79 23. 96  Liquid Resin emulsion 21. 60 14. 10 4. 79 23. 96
水 75. 96 49. 58 0 0  Water 75. 96 49. 58 0 0
ポリ力一ポネート  Poly force one Ponate
追 樹脂ェマルジヨン 49. 04 32. 01 10. 88 54. 43  Appendix Resin Emulsion 49. 04 32. 01 10. 88 54. 43
 Addition
分 シリコーン系  Min silicone
4. 17 2. 72 2. 72 13. 61  4. 17 2. 72 2. 72 13. 61
界面活性剤  Surfactant
口 pi 153. 22 100 19. 99 100  Mouth pi 153. 22 100 19. 99 100
[0409] 表 9に示されるように、実施例 14に係るコーティング塗料 23aは、シリカ殻からなる 中空粒子 10を固形分で 8. 00%含有している。即ち、実施例 14に係るコーティング 塗料 23aは、本発明の請求項 61に係る「シリカ殻からなる中空粒子が、有機樹脂塗 料または無機高分子塗料または有機無機複合塗料に対して、固形分で略 2重量% 〜 15重量%の割合で混合されて!/、る」と!/、う要件を満たしており、更に「より好ましく は略 4重量%〜; 10重量%の割合で混合されている」という要件をも満たしている。 [0409] As shown in Table 9, the coating paint 23a according to Example 14 contains 8000% of the hollow particles 10 made of silica shell in solid content. That is, the coating paint 23a according to Example 14 is the solid content of the hollow particles made of silica shells according to claim 61 of the present invention relative to the organic resin coating, the inorganic polymer coating, or the organic-inorganic composite coating. It is mixed at a ratio of about 2% to 15% by weight! /, And meets the requirements, and more preferably at a ratio of about 4% to about 10% by weight. It also meets the requirement that
[0410] したがって、略 50nm〜100nmの範囲内の外径を有する平均外径 80nmの、空隙 率が略 70 %〜 80 %の立方体状形態のシリカ殻からなる中空粒子 10を、有機樹脂塗 料等に対して固形分で 4重量%〜; 10重量%の割合で混合することによって、コーテ イング塗料を塗布してなるコーティング膜の断熱性、耐摩耗性、傷付き防止性をより 確実に向上させることができるとともに、粘性が適切な範囲内となって塗布し易くなり 取极レ、易くなるため、より好ましレ、コーティング塗料 23aとなる。  [0410] Accordingly, the hollow resin particles 10 having an outer diameter in the range of about 50 nm to 100 nm and having an average outer diameter of 80 nm and a cubic shape silica shell having a porosity of about 70% to 80% are used as the organic resin coating. Mixing at a ratio of 4% by weight to 10% by weight in terms of solid content, etc., the heat insulation, wear resistance, and scratch resistance of the coating film formed by applying the coating paint are more reliably improved. In addition, since the viscosity is within an appropriate range, it is easy to apply and the coating is easy, so the coating paint 23a is more preferable.
[0411] なお、本実施の形態 25の実施例 14に係るコーティング塗料 23aは、表 9に示され る配合で製造したが、これに限られるものではなぐ実用的なコーティング塗料とする ためには、シリカ殻からなる中空粒子の配合量を 0. 6重量部〜 4. 6重量部、分散液 中のポリカーボネート樹脂ェマルジヨンの配合量を 15. 3重量部〜 30. 6重量部、水 の配合量を 15. 3重量部〜 30. 6重量部、追加分のポリカーボネート樹脂ェマルジョ ンの配合量を 38重量部〜 61重量部、シリコーン系界面活性剤の配合量を 2. 3重量 部〜 6. 1重量部の範囲内とすれば良い。 [0412] この場合、シリカ殻からなる中空粒子の配合率を 0. 4重量%〜3. 0重量%、分散 液中のポリカーボネート樹脂ェマルジヨンの配合率を 10重量%〜20重量%、水の配 合率を 40重量%〜60重量%、追加分のポリカーボネート樹脂ェマルジヨンの配合率 を 25重量%〜40重量%、シリコーン系界面活性剤の配合率を 1. 5重量%〜4. 0重 量%の範囲内とすることが好ましい。 [0411] The coating paint 23a according to Example 14 of the present embodiment 25 was manufactured with the formulation shown in Table 9, but is not limited to this, in order to obtain a practical coating paint. The amount of hollow particles made of silica shell is 0.6 to 4.6 parts by weight, the amount of polycarbonate resin emulsion in the dispersion is 15.3 to 30.6 parts by weight, the amount of water 15.3 parts by weight to 30.6 parts by weight, 38 parts by weight to 61 parts by weight of additional polycarbonate resin emulsion and 2.3 parts by weight to 6.1 parts by weight of silicone surfactant It may be within the range of parts by weight. [0412] In this case, the mixing ratio of hollow particles made of silica shell is 0.4 wt% to 3.0 wt%, the mixing ratio of polycarbonate resin emulsion in the dispersion is 10 wt% to 20 wt%, 40% to 60% by weight, 25% to 40% by weight of additional polycarbonate resin emulsion, 1.5% to 4.0% by weight of silicone surfactant It is preferable to be within the range.
[0413] また、シリカ殻からなる中空粒子の固形分の配合量を 0. 4重量部〜 3. 0重量部、 分散液中のポリカーボネート樹脂ェマルジヨンの固形分の配合量を 3. 4重量部〜 6. 8重量部、追加分のポリカーボネート樹脂ェマルジヨンの固形分の配合量を 8. 4重量 部〜 13. 5重量部、シリコーン系界面活性剤の固形分の配合量を 1. 5重量部〜 4. 0 重量部の範囲内とすることが好ましい。ただし、シリカ殻からなる中空粒子の固形分 の配合率を 2重量%〜; 15重量%の範囲内とする必要がある。  [0413] Further, the solid content of the hollow particles composed of the silica shell is 0.4 to 3.0 parts by weight, and the solid content of the polycarbonate resin emulsion in the dispersion is 3.4 to 4 parts by weight. 6. 8 parts by weight, the amount of the solid content of the polycarbonate resin emulsion added from 8.4 parts by weight to 13.5 parts by weight, the amount of the solid content of the silicone surfactant from 1.5 parts by weight to 4 parts It is preferable to be within the range of 0 part by weight. However, the mixing ratio of the solid content of the hollow particles made of silica shell needs to be in the range of 2 wt% to 15 wt%.
[0414] 次に、立方体状形態のシリカ殻からなる中空粒子 10を用いた本実施の形態 25の実 施例 15に係るコーティング塗料の製造方法について、図 14を参照して説明する。ま ず、ステップ S10において、図 5で説明した製造工程によって立方体状形態のシリカ 殻からなる中空粒子 10が製造される。ここでも、略 50nm〜; !OOnmの範囲内の外径 を有する平均外径 80nmの、空隙率が略 70%〜80%の立方体状形態のシリカ殻か らなる中空粒子 10を用いることとする。  [0414] Next, a manufacturing method of a coating material according to Example 15 of Embodiment 25 using hollow particles 10 made of cubic silica shell will be described with reference to FIG. First, in step S10, hollow particles 10 made of a silica shell having a cubic shape are manufactured by the manufacturing process described in FIG. Here again, hollow particles 10 made of silica shells having a cubic shape with an average outer diameter of 80 nm and an outer diameter within the range of OOnm and a porosity of about 70% to 80% are used. .
[0415] 次に、このシリカ殻からなる中空粒子 10がイソプロピルアルコール(IPA)と混合され  [0415] Next, the hollow particles 10 composed of the silica shell are mixed with isopropyl alcohol (IPA).
(ステップ S41)、高速攪拌機を使用して、循環方式によって、周速 25m/Sec、液流 量 180m/minで、混合液が処理され (ステップ S42)、処理された分散液を目開き 6 0 H mのステンレス網で濾過(ステップ S43)した後、湿式ジェットミルで更に 30分間 分散処理を行う(ステップ S44)。 (Step S41), using a high-speed stirrer, the mixture is processed at a peripheral speed of 25 m / Sec and a liquid flow rate of 180 m / min by a circulation method (Step S42). After filtration through a stainless steel mesh (step S43), the dispersion is further treated with a wet jet mill for 30 minutes (step S44).
[0416] 一方、 TSL8123N、イソプロピルアルコール(IPA)、ジメチルジェトキシシラン(D MDES)、及びェチルァセトアセテートアルミニウムイソプロピレート(ALCH)の 5% 溶液が混合され (ステップ S45)、この混合液に 0. 1 %塩酸を加えながら攪拌し、液 温度が 40°Cになるように加温する(ステップ S46)。これによつて、 30分間程度で脱 水縮合反応が起こり、液温が上昇するとともに液が透明となるので、この時点で冷却 して液温度を 25°Cまで下げる(ステップ S47)。その後、 2時間程度静置して (ステツ プ S48)、ゾルゲル法組成物が得られる。 [0416] On the other hand, a 5% solution of TSL8123N, isopropyl alcohol (IPA), dimethyljetoxysilane (D MDES), and ethyl acetate acetate isopropylate (ALCH) was mixed (step S45). 0.1 Stir while adding 1% hydrochloric acid, and warm to a liquid temperature of 40 ° C (step S46). As a result, a dehydrocondensation reaction takes place in about 30 minutes, and the liquid temperature rises and the liquid becomes transparent. At this point, the liquid temperature is lowered to 25 ° C (step S47). Then leave it for about 2 hours. S48), a sol-gel composition is obtained.
[0417] このゾルゲル法組成物を上記ステップ S44で得られた分散液に加え、更にェチル ァセトアセテートアルミニウムイソプロピレート(ALCH)の 20%溶液とメチルイソブチ ルケトン(MIBK)を追加してこれらの 3液を混合し(ステップ S49)、ミキサーで攪拌す る(ステップ S50)。以上の工程によって、本実施の形態 25の実施例 15に係るコーテ イング塗料 23bが製造される。この実施例 15に係るコーティング塗料 23bは、シリカ 殻からなる中空粒子 10を ALCH系有機樹脂塗料中に略均一に分散してなるアルコ ール系コーティング塗料である。 [0417] This sol-gel method composition was added to the dispersion obtained in step S44 above, and a 20% solution of ethyl acetate acetate aluminum isopropylate (ALCH) and methyl isobutyl ketone (MIBK) were added. Are mixed (step S49) and stirred with a mixer (step S50). Through the above steps, the coating material 23b according to Example 15 of Embodiment 25 is manufactured. The coating paint 23b according to Example 15 is an alcohol coating paint in which hollow particles 10 made of silica shells are dispersed substantially uniformly in an ALCH organic resin paint.
[0418] このようにして製造される本実施の形態 25の実施例 15に係るコーティング塗料 23 bの配合を、表 10に示す。  [0418] Table 10 shows the composition of coating paint 23b according to Example 15 of Embodiment 25 manufactured in this manner.
[0419] [表 10] [0419] [Table 10]
Figure imgf000092_0001
ここで、「TSL」とは、 GE東芝シリコーン(株)製のシリコーン樹脂.品番 TSL8123 の略であり、「ALCH」とは、川研ファインケミカノレ(株)製のェチルァセトアセテートァ ルミ二ゥムジイソプロピレートの製品名である。表 10に示されるように、実施例 2に係る コーティング塗料 23bは、シリカ殻からなる中空粒子 10を固形分で略 2%含有してい る。即ち、実施例 15に係るコーティング塗料 23bは、本発明の請求項 61に係る「シリ 力殻からなる中空粒子が、有機樹脂塗料または無機高分子塗料または有機無機複 合塗料に対して、固形分で略 2重量%〜; 15重量%の割合で混合されている」という 要件を満たしている。
Figure imgf000092_0001
Here, “TSL” is an abbreviation for silicone resin manufactured by GE Toshiba Silicone Co., Ltd., part number TSL8123, and “ALCH” is ethylacetoacetate alcohol manufactured by Kawaken Fine Chemicals Co., Ltd. It is a product name of dimudiisopropylate. As shown in Table 10, the coating paint 23b according to Example 2 contains approximately 2% of the solid particles 10 made of silica shells in solid content. That is, the coating paint 23b according to Example 15 is the “hollow particles made of silica shells are organic resin paint, inorganic polymer paint, or organic-inorganic composite according to claim 61 of the present invention. The composition satisfies the requirement that it is mixed in a proportion of approximately 2 wt% to 15 wt% in solid content.
[0421] シリカ殻からなる中空粒子 10は中空であるため比重が小さぐ固形分で略 2重量% 混合するだけでもコーティング塗料 23b中に占める体積%は充分に大きぐコーティ ング塗料 23bを塗布してなるコーティング膜の断熱性、耐摩耗性、傷付き防止性を高 めて保護効果を向上させることができる。一方、混合量が固形分で 15重量%を超え ると、コーティング塗料の粘性が高くなつて塗布が困難となり、取扱いがし難くなる。し たがって、コーティング塗料におけるシリカ殻からなる中空粒子 10の混合量は、有機 樹脂塗料等に対して固形分で略 2重量%〜; 15重量%の割合が最も適切である。  [0421] The hollow particles 10 composed of silica shells are hollow, so the coating material 23b is coated with a sufficiently large volume% in the coating paint 23b even if it is mixed at a solid content of about 2% by weight with a small specific gravity. The protective effect can be improved by increasing the heat insulation, wear resistance and scratch resistance of the coating film. On the other hand, if the mixing amount exceeds 15% by weight in solid content, the viscosity of the coating paint becomes so high that application becomes difficult and handling becomes difficult. Accordingly, the mixing amount of the hollow particles 10 composed of silica shells in the coating paint is most suitable at a ratio of about 2 wt% to 15 wt% in solid content with respect to the organic resin paint or the like.
[0422] なお、本実施の形態 25の実施例 15に係るコーティング塗料 23bは表 10に示され る配合で製造したが、これに限られるものではなぐ実用的なコーティング塗料とする ためには、シリカ殻からなる中空粒子の配合量を 0. 6重量部〜 4. 6重量部、分散液 中のイソプロピルアルコール(IPA)の配合量を 16. 1重量部〜 26. 8重量部、 TSL の配合量を 21. 2重量部〜 25. 7重量部、ゾルゲル法,袓成物中のイソプロピルァノレ コール(IPA)の配合量を 5. 4重量部〜 9. 7重量部、 KBEの配合量を 1. 2重量部〜 1. 5重量部、 5%ALCHの配合量を 5. 1重量部〜 10. 0重量部、 0. 1 %塩酸の配 合量を 6重量部〜 15重量部、 20%ALCHの配合量を 12. 1重量部〜 20. 9重量部 、メチルイソブチルケトン(MIBK)の配合量を 10. 7重量部〜 21. 5重量部の範囲内 とすれば良い。  [0422] The coating paint 23b according to Example 15 of Embodiment 25 was manufactured with the formulation shown in Table 10. However, in order to obtain a practical coating paint that is not limited to this, The amount of hollow particles made of silica shell is from 0.6 to 4.6 parts by weight, the amount of isopropyl alcohol (IPA) in the dispersion is from 16.1 to 26.8 parts by weight, and the composition of TSL The amount is from 21.2 to 25.7 parts by weight, the sol-gel method, the amount of isopropyl alcohol (IPA) in the composition is 5.4 parts by weight to 9.7 parts by weight, the amount of KBE is 1. 2 parts by weight to 1.5 parts by weight, 5% ALCH blending amount 5.1 parts by weight to 10.0 parts by weight, 0.1% hydrochloric acid blending amount 6 parts by weight to 15 parts by weight, 20 The blending amount of% ALCH may be in the range of 12.1 parts by weight to 20.9 parts by weight, and the blending amount of methyl isobutyl ketone (MIBK) in the range of 10.7 parts by weight to 21.5 parts by weight.
[0423] この場合、シリカ殻からなる中空粒子の配合率を 0. 57重量%〜4. 3重量%、分散 液中の IPAの配合率を 15. 0重量%〜25. 0重量%、丁3しの配合率を 19. 7重量% 〜23. 9重量%、ゾルゲル法組成物中の IPAの配合率を 5. 0重量%〜9. 0重量% 、 KBEの配合率を 1. 1重量%〜; 1. 4重量%、 5%ALCHの配合率を 4. 8重量%〜 9. 3重量%、 0. 1 %塩酸の配合率を 5. 6重量%〜; 14. 0重量%、 20%ALCHの配 合率を 11. 3重量%〜; 19. 5重量%、 MIBKの配合率を 10. 0重量%〜20. 0重量 %の範囲内とすることが好ましい。  [0423] In this case, the blending ratio of the hollow particles made of silica shell is 0.57 wt% to 4.3 wt%, and the blending ratio of IPA in the dispersion is 15.0 wt% to 25.0 wt%. 3) 19.7% to 23.9% by weight, IPA in the sol-gel method composition is 5.0% to 9.0%, KBE is 1.1% 1 to 4 wt%, 5% ALCH blending ratio of 4.8 wt% to 9.3% wt%, 0.1% hydrochloric acid blending ratio of 5.6 wt% to 14.0 wt%, It is preferable that the mixing ratio of 20% ALCH is in the range of 11.3% by weight to 19.5% by weight, and the MIBK content is in the range of 10.0% to 20.0% by weight.
[0424] また、シリカ殻からなる中空粒子の固形分の配合量を 0. 56重量部〜 4. 22重量部 、 TSLの固形分の配合量を 19. 7重量部〜 23. 9重量部、 KBEの固形分の配合量 を 1. 07重量部〜 1. 41重量部、 5%ALCHの固形分の配合量を 0. 23重量部〜 0. 45重量部、 0. 1 %塩酸の固形分の配合量を 0. 02重量部〜 0. 05重量部、 20% A LCHの固形分の配合量を 2. 25重量部〜 3. 90重量部の範囲内とすることが好まし い。ただし、シリカ殻からなる中空粒子の固形分の配合率を 2重量%〜; 15重量%の 範囲内とする必要がある。 [0424] Further, the solid content of the hollow particles composed of silica shell is 0.556 to 4.22 parts by weight, the solid content of TSL is 19.7 to 23.9 parts by weight, KBE solid content 1.07 parts by weight to 1.41 parts by weight, 5% ALCH solid content of 0.23 parts by weight to 0.45 parts by weight, 0.1% hydrochloric acid solids content of 0.02 It is preferable that the solid content of 20 wt. A LCH is within the range of 2.25 to 3.90 parts by weight. However, the mixing ratio of the solid content of the hollow particles made of silica shell should be in the range of 2 wt% to 15 wt%.
[0425] 次に、立方体状形態のシリカ殻からなる中空粒子 10を用いた本実施の形態 25の 実施例 16に係るコーティング塗料の製造方法について、図 15を参照して説明する。 まず、ステップ S10において、図 5で説明した製造工程によって立方体状形態のシリ 力殻からなる中空粒子 10が製造される。ここでも、略 50nm〜; !OOnmの範囲内の外 径を有する平均外径 80nmの、空隙率が略 70%〜80%の立方体状形態のシリカ殻 力もなる中空粒子 10を用いることとする。次に、このシリカ殻からなる中空粒子 10に 対して、表面修飾剤による表面修飾処理が実施される(ステップ S 52)。  [0425] Next, a manufacturing method of a coating material according to Example 16 of Embodiment 25 using hollow particles 10 made of cubic silica shell will be described with reference to FIG. First, in step S10, the hollow particles 10 made of a cruciform shell are manufactured by the manufacturing process described in FIG. Here, hollow particles 10 having an outer diameter in the range of approximately 50 nm to 80 nm and having an average outer diameter of 80 nm and a cubic shell silica with a porosity of approximately 70% to 80% are also used. Next, the hollow particles 10 made of silica shell are subjected to a surface modification treatment with a surface modifier (step S52).
[0426] そして、表面修飾されたシリカ殻からなる中空粒子力 蒸留水に水性ポリエステル樹 脂を溶解させて調製された水性ポリエステル樹脂水溶液に混合され (ステップ S53) 、分散機を用いて、水性ポリエステル樹脂水溶液中に表面修飾されたシリカ殻からな る中空粒子が均一に分散される (ステップ S54)。以上の工程によって、本実施の形 態 25の実施例 16に係るコーティング塗料 23cが製造される。この実施例 16に係るコ 一ティング塗料 23cは、表面修飾されたシリカ殻からなる中空粒子を、水性ポリエステ ル系有機樹脂塗料中に略均一に分散してなるコーティング塗料である。  [0426] Then, hollow particle force composed of a surface-modified silica shell is mixed with an aqueous polyester resin aqueous solution prepared by dissolving an aqueous polyester resin in distilled water (step S53), and the aqueous polyester is used by using a disperser. The hollow particles made of the silica shell whose surface is modified are uniformly dispersed in the resin aqueous solution (step S54). Through the steps described above, the coating material 23c according to Example 16 of Embodiment 25 is manufactured. The coating paint 23c according to Example 16 is a coating paint in which hollow particles composed of a surface-modified silica shell are dispersed substantially uniformly in an aqueous polyester organic resin paint.
[0427] ここで、図 15のステップ S52における、シリカ殻からなる中空粒子 10に対する表面 修飾剤による表面修飾処理の具体的な内容について、図 16及び図 17を参照して説 明する。図 16に示されるように、シリカ殻からなる中空粒子 10の表面には、多数の水 酸基(一 OH)が存在しており、図 16においてはそのうち 3個の水酸基のみが示され ている。  [0427] Here, the specific contents of the surface modification treatment with the surface modifier on the hollow particles 10 made of silica shell in Step S52 of FIG. 15 will be described with reference to FIGS. As shown in FIG. 16, there are a large number of hydroxyl groups (one OH) on the surface of the hollow particle 10 made of silica shell, and only three hydroxyl groups are shown in FIG. .
[0428] このシリカ殻からなる中空粒子 10に、 n—へキサン溶媒中において、表面修飾剤とし てイソシァネート系表面修飾剤であるトリエトキシプロピルイソシァネートシラン (TEIS ) 29aと混合して、オークレーブ中で n—へキサンの超臨界状態になるまで加圧加熱 して、約 2時間反応させる。 [0429] このように超臨界状態で反応させることによって、ナノメートルレベルの非常に微細 なシリカ殻からなる中空粒子 10の、凝集体の間にまで TEIS29aが入り込んで反応し 、図 16に示されるように、シリカ殻からなる中空粒子 10の表面全体力 STEIS29aで覆 われた表面修飾シリカ中空粒子 24Aが生成する。力、かる表面修飾シリカ中空粒子 2 4Aは、イソシァネート基を有する TEIS29aによって全表面が覆われているため、再 凝集し難ぐし力、も水性ポリエステル系有機樹脂塗料中のポリエステル系有機樹脂の 官能基と、イソシァネート基が反応して強固な結合を作るため、均一な分散状態が長 期間保持される。 [0428] This hollow silica particle 10 is mixed with an isocyanate-based surface modifier triethoxypropylisocyanate silane (TEIS) 29a as a surface modifier in an n-hexane solvent to obtain an oclave. The mixture is heated under pressure until it reaches the supercritical state of n-hexane and allowed to react for about 2 hours. [0429] By reacting in this supercritical state, TEIS29a enters and reacts between the aggregates of hollow particles 10 consisting of very fine silica shells at the nanometer level, as shown in FIG. As described above, the surface-modified silica hollow particles 24A covered with the entire surface force STEIS29a of the hollow particles 10 made of silica shell are generated. The surface-modified silica hollow particles 24 A are covered with TEIS29a having isocyanate groups, so that they do not re-aggregate easily, and the functional groups of the polyester-based organic resin in the water-based polyester-based organic resin coating Since the isocyanate group reacts to form a strong bond, a uniform dispersion state is maintained for a long time.
[0430] また、図 17に示されるように、シリカ殻からなる中空粒子 10に、 n—へキサン溶媒中 にお!/、て、表面修飾剤としてアルキル系表面修飾剤であるトリエトキシブチルシラン( TEBS) 29bと混合して、オークレーブ中で n—へキサンの超臨界状態になるまで加 圧加熱して、約 2時間反応させることによって、シリカ殻からなる中空粒子 10の表面 全体が TEBS29bで覆われた表面修飾シリカ中空粒子 24Bが生成する。  In addition, as shown in FIG. 17, in hollow particles 10 made of silica shell, in an n-hexane solvent! /, Triethoxybutylsilane which is an alkyl surface modifier as a surface modifier (TEBS) 29b is mixed and heated in an oclave until it reaches the supercritical state of n-hexane and reacted for about 2 hours, so that the entire surface of the hollow particles 10 made of silica shell 10 is TEBS29b. Covered surface-modified silica hollow particles 24B are produced.
[0431] 力、かる表面修飾シリカ中空粒子 24Bは、アルキル基(メチル基)を有する TEBS29b によって全表面が覆われているため、再凝集し難ぐし力、も水性ポリエステル系有機 樹脂塗料中のポリエステル系有機樹脂の官能基と、アルキル基が反応して強固な結 合を作るため、均一な分散状態が長期間保持される。  [0431] The surface-modified silica hollow particle 24B is covered with TEBS29b having an alkyl group (methyl group), so that it does not easily re-aggregate, and the polyester in water-based polyester organic resin coatings Since the functional group of the organic organic resin and the alkyl group react to form a strong bond, a uniform dispersion state is maintained for a long time.
[0432] 以上のようにして製造されるコーティング塗料のうち、本実施の形態 25においては、 図 13に示される実施例 14に係るコーティング塗料 23aを、図 18に示されるように、木 材としての建築用ヒノキ板 42の表面にスプレー塗布して、コーティング膜 43Aを形成 した。コーティング膜43八の厚さは5 111〜10 111と薄ぃため、建築用ヒノキ板 42の 表面の凹凸に沿って形成され、し力、もシリカ殻からなる中空粒子 10を含有するコーテ イング膜 43Aは光沢を有しないため、図 18 (a)に示されるように、コーティング膜 43A を表面に形成したヒノキ板 41は、外観も触感も変わらない。  [0432] Among the coating paints manufactured as described above, in the present embodiment 25, the coating paint 23a according to Example 14 shown in FIG. 13 is used as a wood as shown in FIG. The coating film 43A was formed by spray coating on the surface of the cypress board 42 for building. Since the thickness of the coating film 43 is 5 111 to 10 111, it is formed along the unevenness of the surface of the cypress board 42 for construction, and the coating film contains hollow particles 10 made of silica and shells. Since 43A does not have gloss, as shown in FIG. 18 (a), the cypress plate 41 having the coating film 43A formed on its surface does not change its appearance and feel.
[0433] 図 18 (b)の断面図に示されるように、コーティング膜 43Aはシリカ殻からなる中空粒 子 10を有機樹脂バインダー 45中に均一に分散させてなるものであるため、シリカ殻 力、らなる中空粒子 10の耐摩耗性及び高硬度によって、木材としてのヒノキ板 42の耐 摩耗性を向上させること力 Sできる。また、ヒノキ板 42の表面にコーティング膜 43Aを形 成することで、シリカ殻からなる中空粒子 10の断熱性によって難燃性を向上させるこ とができる。そして、上述の如ぐ外観 (質感)も触感も変わらないため、ヒノキ板 42の 高級感を損なうことがない。 [0433] As shown in the cross-sectional view of FIG. 18 (b), the coating film 43A is formed by uniformly dispersing the hollow particles 10 made of silica shell in the organic resin binder 45. The wear resistance of the hollow particles 10 and the high hardness can improve the wear resistance of the cypress plate 42 as wood. In addition, coating film 43A is formed on the surface of cypress plate 42. By making it, the flame retardancy can be improved by the heat insulating property of the hollow particles 10 made of silica shells. Further, since the appearance (texture) and the tactile sensation as described above do not change, the quality of the cypress board 42 is not impaired.
[0434] また、本実施の形態 25の変形例として、図 15に示される実施例 16に係るコーティン グ塗料 23cを、図 18に示されるように、木材としての建築用ヒノキ板 42の表面にスプ レー塗布して、コーティング膜 43Aを形成した。この場合にも、図 18 (b)の断面図に 示される有機樹脂バインダー 45がポリカーボネート樹脂ェマルジヨン系有機樹脂バ インダ一から水性ポリエステル系有機樹脂バインダーに変わっただけで、し力、もシリカ 殻からなる中空粒子 10の代わりに表面修飾シリカ中空粒子 24Aまたは 24Bが分散し ているため、より均一な分散状態が得られる。  [0434] Further, as a modification of the twenty-fifth embodiment, the coating paint 23c according to the sixteenth example shown in FIG. 15 is applied to the surface of the cypress board 42 for construction as a wood as shown in FIG. The coating film 43A was formed by spraying. In this case as well, the organic resin binder 45 shown in the cross-sectional view of FIG. 18 (b) is changed from a polycarbonate resin emulsion organic resin binder to an aqueous polyester organic resin binder. Since the surface-modified silica hollow particles 24A or 24B are dispersed instead of the hollow particles 10 to be obtained, a more uniform dispersion state can be obtained.
[0435] そして、シリカ殻からなる中空粒子 10の耐摩耗性及び高硬度によって、木材として のヒノキ板 42の耐摩耗性を向上させることができ、傷付きを防止することができる。ま た、ヒノキ板 42の表面にコーティング膜 43Aを形成することで、シリカ殻からなる中空 粒子 10の断熱性によって難燃性を向上させることができる。そして、上述の如ぐ外 観 (質感)も触感も変わらないため、ヒノキ板 42の高級感を損なうことがない。  [0435] The wear resistance and high hardness of the hollow particles 10 made of silica shells can improve the wear resistance of the cypress plate 42 as wood, and can prevent scratches. Further, by forming the coating film 43A on the surface of the cypress plate 42, the flame retardancy can be improved by the heat insulation of the hollow particles 10 made of silica shells. Further, since the appearance (texture) and the tactile sensation as described above do not change, the quality of the cypress board 42 is not impaired.
[0436] このようにして、本実施の形態 25に係るコーティング膜 43A及びコーティング塗料 2 3a, 23b, 23c iこお!/、て (ま、略 50nm〜 OOnmの範囲内の外径を有する平均外径 8 Onmの、空隙率が略 70%〜80%の立方体状形態のシリカ殻からなる中空粒子 10 の断熱性、耐摩耗性、高硬度及び透明性を利用することによって、木材本来の質感 や触感を失わせることがなぐ難燃性を付与するとともに表面硬度が高く傷付きを確 実に防止することができる。  [0436] In this way, coating film 43A and coating paint 23 A, 23b, 23c i according to the present embodiment 25! /, TE (average having an outer diameter in the range of approximately 50 nm to OO nm) By utilizing the heat insulation, wear resistance, high hardness and transparency of hollow particles 10 made of silica shells with a cubic shape with an outer diameter of 8 Onm and a porosity of approximately 70% to 80%, the original texture of wood In addition to imparting flame retardancy without losing feel and touch, the surface hardness is high and scratches can be reliably prevented.
[0437] 実施の形態 26  [0437] Embodiment 26
次に、本発明の実施の形態 26に係るコーティング膜及びコーティング塗料について 、図 15,図 17及び図 19を参照して説明する。図 19 (a)は本発明の実施の形態 26に 係るコーティング膜を表面に形成したプラスチックを示す斜視図、(b)はその断面図 である。  Next, a coating film and a coating material according to Embodiment 26 of the present invention will be described with reference to FIG. 15, FIG. 17, and FIG. FIG. 19 (a) is a perspective view showing a plastic having a coating film according to Embodiment 26 of the present invention formed on its surface, and FIG. 19 (b) is a sectional view thereof.
[0438] まず、本実施の形態 26に係るコーティング塗料について、図 15及び図 17を参照し つつ説明する。本実施の形態 26に係るコーティング塗料は、図 15に示される上記実 施の形態 25に係るコーティング塗料 23cの製造工程において、ステップ S53におけ る水性ポリエステル樹脂水溶液の代わりに、シリカ系無機高分子溶液を混合してなる ものである。そして、ステップ S52における表面修飾処理では、図 17に示される表面 修飾剤としてのアルキル系表面修飾剤であるトリエトキシブチルシラン (TEBS) 29b を用いている。 First, the coating material according to Embodiment 26 will be described with reference to FIGS. 15 and 17. The coating paint according to the twenty-sixth embodiment is the same as that shown in FIG. In the production process of the coating material 23c according to Embodiment 25, a silica-based inorganic polymer solution is mixed instead of the aqueous polyester resin aqueous solution in Step S53. In the surface modification treatment in step S52, triethoxybutylsilane (TEBS) 29b, which is an alkyl surface modifier as the surface modifier shown in FIG. 17, is used.
[0439] こうして製造されるコーティング塗料を、図 19に示されるように、プラスチックとしての 透明ポリカーボネート板 48の表面にスプレー塗布して、コーティング膜 43Bを形成し た。コーティング膜438の厚さは10〃111〜20〃111と薄ぃため、シリカ殻からなる中空 粒子 10の透明性と相俟って、透明ポリカーボネート板 48の透明性を損なうことがな い。また、透明ポリカーボネート板 48は傷付き易ぐ摩耗し易いが、透明ポリカーボネ ート板 48の表面にコーティング膜 43Bを形成することによって、コーティング膜 43B が高硬度であるため表面が傷付き難くなり、また難燃性をも向上させることができる。  [0439] As shown in Fig. 19, the coating paint thus produced was spray-applied to the surface of a transparent polycarbonate plate 48 as a plastic to form a coating film 43B. Since the thickness of the coating film 438 is as thin as 10 to 111 to 20 to 111, the transparency of the transparent polycarbonate plate 48 is not impaired in combination with the transparency of the hollow particles 10 made of silica shells. In addition, the transparent polycarbonate plate 48 is easily scratched and easily worn, but by forming the coating film 43B on the surface of the transparent polycarbonate plate 48, the coating film 43B has a high hardness, so the surface is hardly damaged. In addition, flame retardancy can also be improved.
[0440] このようにして、本実施の形態 26に係るコーティング膜 43B及びコーティング塗料 においては、略 50nm〜100nmの範囲内の外径を有する平均外径 80nmの、空隙 率が略 70%〜80%の立方体状形態のシリカ殻からなる中空粒子 10の断熱性、耐 摩耗性、高硬度及び透明性を利用することによって、透明ポリカーボネート板 48の透 明性を損なうことなく、難燃性を付与するとともに、表面硬度を高くして傷付きを確実 に防止することができる。  [0440] Thus, in coating film 43B and coating paint according to Embodiment 26, the average outer diameter of the outer diameter in the range of about 50 nm to 100 nm and the porosity of about 70% to 80 nm. By using the heat insulation, wear resistance, high hardness, and transparency of hollow particles 10 consisting of silica shells with a cubic shape of 10%, flame retardancy is imparted without impairing the transparency of transparent polycarbonate plate 48 In addition, the surface hardness can be increased to prevent damage.
[0441] 実施の形態 27  [0441] Embodiment 27
次に、本発明の実施の形態 27に係るコーティング膜及びコーティング塗料について 、図 13及び図 20を参照して説明する。図 20 (a)は本発明の実施の形態 27に係るコ 一ティング膜を表面に形成した自動車用革製シートを示す斜視図、(b)はその断面 図である。  Next, a coating film and a coating material according to Embodiment 27 of the present invention will be described with reference to FIG. 13 and FIG. FIG. 20 (a) is a perspective view showing an automotive leather sheet having a coating film according to Embodiment 27 of the present invention formed on its surface, and FIG. 20 (b) is a sectional view thereof.
[0442] 図 20 (b)の断面図に示されるように、本実施の形態 27に係る自動車用革製シート は、クッション材 52の表面を皮革(本皮) 51で覆ったものである力 皮革 51は傷が付 き易ぐ高級なものであるためコーティング膜を施す必要があった。しかし、従来のコ ロイダルシリカ粒子を分散させたコーティング膜は光沢を有するため、皮革の高級感 を失わせるという問題があった。 [0443] そこで、本実施の形態 27に係るコーティング膜を表面に形成した自動車用革製シ ート 50においては、図 13に示される製造方法においてポリカーボネート樹脂エマル ジョンの代わりに SBR (スチレン一ブタジエンゴム)ェマルジヨンを用いて製造された コーティング塗料を皮革 51の全面にスプレー塗布している。 [0442] As shown in the cross-sectional view of FIG. 20 (b), the automotive leather seat according to the present embodiment 27 has a force that is obtained by covering the surface of the cushion material 52 with leather (main leather) 51. Since leather 51 is a high-grade one that is easily scratched, it was necessary to apply a coating film. However, since the conventional coating film in which colloidal silica particles are dispersed has a gloss, there is a problem that the high-class feeling of leather is lost. [0443] Therefore, in the automobile leather sheet 50 having the coating film according to the present embodiment 27 formed on the surface, SBR (styrene-butadiene styrene) is used instead of polycarbonate resin emulsion in the manufacturing method shown in FIG. The coating paint manufactured using rubber) emulsion is sprayed on the entire surface of leather 51.
[0444] こうして、図 20 (b)の断面図に示されるように、皮革 51の表面にコーティング膜 43C を形成することによって、シリカ殻からなる中空粒子 10を SBR (スチレン一ブタジエン ゴム)ェマルジヨン系有機樹脂バインダー 45Bの中に分散させたコーティング膜 43C は光沢を有していないため、皮革の質感を損なうことがなぐ皮革 51の表面の凹凸に 沿ってコーティング膜 43Cが形成されるため、本来の触感を確保することができ、皮 革 51の高級感を損なうことがない。そして、自動車用革製シート 50の表面が傷付き 難くなり、また難燃性をも向上させることができる。  Thus, as shown in the cross-sectional view of FIG. 20 (b), by forming the coating film 43C on the surface of the leather 51, the hollow particles 10 made of silica shells are transformed into SBR (styrene-butadiene rubber) emulsion system. Since the coating film 43C dispersed in the organic resin binder 45B does not have gloss, the coating film 43C is formed along the surface irregularities of the leather 51 that does not impair the texture of the leather. A tactile sensation can be secured, and the luxury of leather 51 is not impaired. In addition, the surface of the automobile leather sheet 50 is hardly damaged, and the flame retardancy can be improved.
[0445] また、 SBR (スチレン一ブタジエンゴム)ェマルジヨンを用いて製造されたコーティン グ塗料を皮革 51の全面にスプレー塗布して、シリカ殻からなる中空粒子 10を SBR( スチレン一ブタジエンゴム)ェマルジヨン系有機樹脂バインダー 45Bの中に分散させ たコーティング膜 43Cを形成したことによって、 SBRェマルジヨン系有機樹脂バイン ダー 45Bは伸び率が 100%以上あるため、皮革 51を歪ませることがない。  [0445] Also, a coating paint produced using SBR (styrene-butadiene rubber) emulsion is spray-applied to the entire surface of leather 51, and hollow particles 10 made of silica shells are converted into SBR (styrene-butadiene rubber) emulsion. By forming the coating film 43C dispersed in the organic resin binder 45B, the SBR emulsion-based organic resin binder 45B has an elongation of 100% or more, so that the leather 51 is not distorted.
[0446] このようにして、本実施の形態 27に係るコーティング膜 43C及びコーティング塗料 においては、略 50nm〜100nmの範囲内の外径を有する平均外径 80nmの、空隙 率が略 70%〜80%の立方体状形態のシリカ殻からなる中空粒子 10の断熱性、耐 摩耗性、高硬度及び透明性を利用することによって、皮革 51の高級感を損なうことな ぐ難燃性を付与するとともに、表面硬度を高くして傷付きを確実に防止することがで きる。  [0446] Thus, in coating film 43C and coating paint according to Embodiment 27, the average outer diameter of the outer diameter in the range of about 50 nm to 100 nm and the porosity of about 70% to 80 nm are provided. In addition to imparting flame retardancy without impairing the sense of quality of leather 51 by utilizing the heat insulation, wear resistance, high hardness and transparency of hollow particles 10 made of silica shells of 10% cubic shape, The surface hardness can be increased to prevent damage.
[0447] 実施の形態 28  [0447] Embodiment 28
次に、本発明の実施の形態 28に係るコーティング膜及びコーティング塗料について 、図 13及び図 21 ,図 22を参照して説明する。図 21 (a)は本発明の実施の形態 28に 係るコーティング膜を表面に形成した玄関前床面の石材を示す斜視図、(b)はその 断面図である。図 22 (a)は本発明の実施の形態 28の変形例に係るコーティング膜を 表面に形成した大理石のテーブルを示す斜視図、(b)はその断面図である。 [0448] 図 21 (b)の断面図に示される石材 56は、高級石材である御影石であり、この御影石 56は、図 21 (a)に示されるように、硬度の高い材料として人が歩行する玄関前の床 面に用いられるとともに、その美的外観を活力もて玄関を装飾する機能も備えている 。しかし、人が頻繁に歩行する場所である玄関前においては、更に硬度を向上させる 必要があるとともに、屋外に用いられるため雨が表面から沁み込むのを防ぐ必要があ Next, a coating film and a coating material according to Embodiment 28 of the present invention will be described with reference to FIG. 13, FIG. 21, and FIG. FIG. 21 (a) is a perspective view showing a stone material on the front floor of the front door on which a coating film according to Embodiment 28 of the present invention is formed, and FIG. 21 (b) is a sectional view thereof. FIG. 22 (a) is a perspective view showing a marble table on the surface of which a coating film according to a modification of Embodiment 28 of the present invention is formed, and FIG. 22 (b) is a sectional view thereof. [0448] The stone material 56 shown in the cross-sectional view of Fig. 21 (b) is a granite, which is a high-grade stone material. As shown in Fig. 21 (a), a person walking as a material with high hardness. In addition to being used on the floor in front of the entrance, it also has the function of decorating the entrance with its aesthetic appearance. However, in front of the entrance, where people often walk, it is necessary to further improve the hardness and to prevent rain from entering the surface because it is used outdoors.
[0449] しかし、従来のコロイダルシリカ粒子を分散させたコーティング膜は光沢を有するた め、御影石 56の高級感を失わせるという問題があった。そこで、本実施の形態 28に 係るコーティング膜を表面に形成した御影石 55においては、図 13に示される製造方 法で製造されたコーティング塗料 23aを御影石 56の全面にスプレー塗布して、コー ティング膜 43Dを形成して!/ヽる。 [0449] However, since the conventional coating film in which colloidal silica particles are dispersed has a gloss, there is a problem that the high-grade feeling of granite 56 is lost. Therefore, in the granite 55 having the coating film according to Embodiment 28 formed on its surface, the coating paint 23a manufactured by the manufacturing method shown in FIG. Form 43D!
[0450] こうして、図 21 (b)の断面図に示されるように、御影石 56の表面にコーティング膜 4 3Dを形成することによって、シリカ殻からなる中空粒子 10をポリカーボネート樹脂ェ マルジヨン系有機樹脂バインダー 45の中に分散させたコーティング膜 43Dは、光沢 を有せず透明であるため、御影石 56の質感を損なうことがなぐ御影石 56の表面の 凹凸に沿ってコーティング膜 43Dが形成されるため、本来の触感を確保することがで き、御影石 56の高級感を損なうことがない。そして、コーティング膜 43Dを表面に形 成した御影石 55の表面はより一層傷付き難くなるとともに、御影石 56の表面から雨 が沁み込むのを確実に防止することができる。  Thus, as shown in the cross-sectional view of FIG. 21 (b), by forming the coating film 43D on the surface of the granite 56, the hollow particles 10 made of silica shells are converted into polycarbonate resin emulsion organic resin binders. Since the coating film 43D dispersed in 45 is transparent without gloss, the coating film 43D is formed along the irregularities on the surface of the granite 56 that does not impair the texture of the granite 56. It is possible to secure a feeling of touch, and the luxury feeling of granite 56 is not impaired. In addition, the surface of the granite 55 having the coating film 43D formed on the surface is more difficult to be damaged, and rain can be reliably prevented from entering the surface of the granite 56.
[0451] また、図 22 (b)の断面図に示される石材 56Aは高級石材である大理石であり、図 22  [0451] Stone material 56A shown in the cross-sectional view of Fig. 22 (b) is marble, which is a high-grade stone material.
(a)に示されるように、この大理石 56Aからなるテーブルの表面にコーティング膜 43 Dが形成されて、コーティング膜付き大理石テーブル 55Aとなっている。これによつて 、コーティング膜 43Dを表面に形成した大理石テーブル 55Aの表面はより一層傷付 き難くなるとともに、シリカ殻からなる中空粒子 10の断熱性によって、人が大理石テー ブル 55Aの表面に触れたときの冷感が低減され、使い心地のよい大理石テーブル 5 5Aとなる。  As shown in (a), a coating film 43D is formed on the surface of the table made of marble 56A to form a marble table 55A with a coating film. As a result, the surface of the marble table 55A on which the coating film 43D is formed becomes more difficult to be damaged, and the human touches the surface of the marble table 55A due to the heat insulation of the hollow particles 10 made of silica shell. The feeling of cooling is reduced, and the marble table is easy to use.
[0452] このようにして、本実施の形態 28に係るコーティング膜 43D及びコーティング塗料に おいては、略 50nm〜100nmの範囲内の外径を有する平均外径 80nmの、空隙率 が略 70%〜80%の立方体状形態のシリカ殻からなる中空粒子 10の断熱性、耐摩 耗性、高硬度及び透明性を利用することによって、石材としての御影石 56及び大理 石 56Aの質感及び高級感を損なうことなく表面硬度をより一層向上させて傷付きを確 実に防止することができるとともに、雨が沁み込むのを確実に防止することができ、ま た表面に触れたときの冷感を低減することができる。 [0452] Thus, in the coating film 43D and the coating material according to Embodiment 28, the porosity of an average outer diameter of 80 nm having an outer diameter in the range of approximately 50 nm to 100 nm. By utilizing the heat insulation, wear resistance, high hardness and transparency of hollow particles 10 made of silica shells with a cubic shape of approximately 70% to 80%, the texture of granite 56 and Daiishi 56A as stone The surface hardness can be further improved without impairing the sense of quality, and scratches can be reliably prevented, and rain can be prevented from stagnation, and the cold feeling when touching the surface. Can be reduced.
[0453] 実施の形態 29 [0453] Embodiment 29
次に、本発明の実施の形態 29に係るコーティング膜及びコーティング塗料について 、図 15,図 17及び図 23を参照して説明する。図 23 (a)は本発明の実施の形態 29に 係るコーティング膜を表面に形成したガラスを嵌め込んだガラス窓を示す斜視図、(b )はその断面図である。  Next, a coating film and a coating material according to Embodiment 29 of the present invention will be described with reference to FIG. 15, FIG. 17, and FIG. FIG. 23 (a) is a perspective view showing a glass window into which glass having a coating film according to Embodiment 29 of the present invention formed thereon is fitted, and FIG. 23 (b) is a sectional view thereof.
[0454] まず、本実施の形態 29に係るコーティング塗料について、図 15及び図 17を参照し つつ説明する。本実施の形態 29に係るコーティング塗料は、図 15に示される上記実 施の形態 25に係るコーティング塗料 23cの製造工程において、ステップ S53におけ る水性ポリエステル樹脂水溶液の代わりに、シリカ系無機高分子溶液を混合してなる ものである。そして、ステップ S52における表面修飾処理では、図 17に示される表面 修飾剤としてのアルキル系表面修飾剤であるトリエトキシブチルシラン (TEBS) 29b を用いている。  First, the coating material according to Embodiment 29 will be described with reference to FIGS. 15 and 17. The coating paint according to the present embodiment 29 is a silica-based inorganic polymer in place of the aqueous polyester resin aqueous solution in step S53 in the manufacturing process of the coating paint 23c according to the above-described embodiment 25 shown in FIG. It is a mixture of solutions. In the surface modification treatment in step S52, triethoxybutylsilane (TEBS) 29b, which is an alkyl surface modifier as the surface modifier shown in FIG. 17, is used.
[0455] こうして製造されるコーティング塗料を、図 23に示されるように、ガラス 59の表面にス プレー塗布して、コーティング膜 43Eを形成した。コーティング膜 43Eの厚さは 5 111 〜; 10 mと薄いため、シリカ殻からなる中空粒子 10の透明性と相俟って、ガラス 59 の透明性を損なうことがない。また、ガラス 59の表面にコーティング膜 43Eを形成す ることによって、コーティング膜 43Eが高硬度であるため表面が傷付き難くなり、また シリカ殻からなる中空粒子 10の断熱性によって、コーティング膜 43Eを形成したガラ ス 58に触れたときの冷感を低減することができる。  [0455] As shown in Fig. 23, the coating material thus manufactured was spray-coated on the surface of glass 59 to form a coating film 43E. Since the thickness of the coating film 43E is as thin as 5 111 to 10 m, the transparency of the glass 59 is not impaired in combination with the transparency of the hollow particles 10 made of silica shell. In addition, by forming the coating film 43E on the surface of the glass 59, the coating film 43E has a high hardness so that the surface is difficult to be damaged, and due to the heat insulation of the hollow particles 10 made of silica shell, the coating film 43E is formed. Cool feeling when touching the formed glass 58 can be reduced.
[0456] このようにして、本実施の形態 29に係るコーティング膜 43E及びコーティング塗料 においては、略 50nm〜100nmの範囲内の外径を有する平均外径 80nmの、空隙 率が略 70%〜80%の立方体状形態のシリカ殻からなる中空粒子 10の断熱性、耐 摩耗性、高硬度及び透明性を利用することによって、ガラス 59の透明性を損なうこと なく表面を高硬度として傷付き難くし、また触れたときの冷感を低減することができる[0456] Thus, in coating film 43E and coating paint according to Embodiment 29, the average outer diameter of the outer diameter in the range of about 50 nm to 100 nm is 80 nm, and the porosity is about 70% to 80%. The transparency of glass 59 is impaired by taking advantage of the thermal insulation, wear resistance, high hardness and transparency of hollow particles made of silica shells of 10% cubic shape The surface is hard enough to be hard to be scratched, and the feeling of cooling when touched can be reduced.
Yes
[0457] 実施の形態 30  [0457] Embodiment 30
次に、本発明の実施の形態 30に係るコーティング膜及びコーティング塗料について 、図 13及び図 24を参照して説明する。図 24 (a)は本発明の実施の形態 30に係るコ 一ティング膜を表面に形成した紙を用いた本のカバーを示す斜視図、(b)はその断 面図である。  Next, a coating film and a coating material according to Embodiment 30 of the present invention will be described with reference to FIGS. FIG. 24 (a) is a perspective view showing a book cover using paper having a coating film on the surface according to Embodiment 30 of the present invention, and FIG. 24 (b) is a sectional view thereof.
[0458] 図 24 (b)の断面図に示されるように、本実施の形態 30に係る本のカバー 60は、色 紙 61の表面にコーティング膜 43Fを形成して文字を印刷したものである。色紙 61は 傷が付き易ぐ本のカバー 60は頻繁に人が触れるものであるためコーティング膜を施 す必要があつたが、従来のビュル樹脂等のコーティングでは傷が付き易ぐまた光沢 を有するため紙の質感が損なわれるという問題があった。そこで、本実施の形態 30 に係るコーティング膜を表面に形成した本のカバー 60においては、図 13に示される 製造方法で製造されたコーティング塗料 23aを色紙 61の全面にスプレー塗布してい  [0458] As shown in the cross-sectional view of Fig. 24 (b), the book cover 60 according to the present embodiment 30 is obtained by printing characters by forming the coating film 43F on the surface of the colored paper 61. . Colored paper 61 is easily scratched and book cover 60 is frequently touched by humans, so it must be coated, but conventional coatings such as bull resin are easily scratched and glossy. Therefore, there is a problem that the texture of the paper is impaired. Therefore, in the book cover 60 on which the coating film according to the present embodiment 30 is formed, the coating paint 23a manufactured by the manufacturing method shown in FIG.
[0459] こうして、図 24 (b)の断面図に示されるように、色紙 61の表面にコーティング膜 43F を形成することによって、シリカ殻からなる中空粒子 10をポリカーボネート樹脂エマル ジョン系有機樹脂バインダー 45の中に分散させたコーティング膜 43Fは光沢を有し ていないため、色紙 61の質感を損なうことがなぐコーティング膜 43Fを表面に形成 した本のカバー 60の表面が傷付き難くなり、またシリカ殻からなる中空粒子 10の断 熱性によって、難燃性をも向上させることができる。 [0459] Thus, as shown in the cross-sectional view of FIG. 24 (b), by forming the coating film 43F on the surface of the colored paper 61, the hollow particles 10 made of silica shells are converted into polycarbonate resin emulsion organic resin binder 45. Since the coating film 43F dispersed in the film has no gloss, the surface of the book cover 60 with the coating film 43F formed on the surface that does not impair the texture of the colored paper 61 is less likely to be damaged, and the silica shell The heat resistance of the hollow particles 10 made of can improve flame retardancy.
[0460] 更に、コーティング膜 43Fの吸油性によって、印刷インクが色紙 61に吸収され易くな り、色紙 61の印刷特性が向上するという作用効果も得ることができる。特に、インクジ エツトプリンタに用いる印刷用紙として、インクの乗りが非常に良くなり、インクジェット プリンタ用紙として適したものとなる。  [0460] Furthermore, the oil absorption of the coating film 43F makes it easier for the printing ink to be absorbed by the colored paper 61, and the effect of improving the printing characteristics of the colored paper 61 can also be obtained. In particular, as the printing paper used in the ink jet printer, the ink is very good and suitable as the ink jet printer paper.
[0461] この特性を利用して、図 24 (a)に示される本のカバー 60のような小さいもののみな らず、デパート等の店頭に掲げられる巨大なポスター等の大きな物の用紙としても使 用すること力 Sできる。この場合には、コーティング膜 43Fの吸油性によって、紙の印刷 特性が向上して美しい仕上がりのポスター等が得られる作用効果のみならず、コーテ イング膜 43Fの防水性によって、屋外に設置しても雨に強いポスター等が得られると いう作用効果もある。 [0461] Using this characteristic, not only small books such as the cover 60 of the book shown in Fig. 24 (a), but also large paper such as huge posters displayed at department stores. Use power S. In this case, due to the oil absorption of coating film 43F, paper printing In addition to the effect of improving the characteristics and obtaining a beautifully finished poster, etc., the waterproofness of the coating film 43F also has the effect of obtaining a rain-resistant poster even when installed outdoors.
[0462] このようにして、本実施の形態 30に係るコーティング膜 43F及びコーティング塗料 においては、略 50nm〜100nmの範囲内の外径を有する平均外径 80nmの、空隙 率が略 70%〜80%の立方体状形態のシリカ殻からなる中空粒子 10の断熱性、耐 摩耗性、高硬度及び透明性を利用することによって、色紙 61の質感を損なうことなく 難燃性を付与するとともに、表面硬度を高くして傷付きを確実に防止することができる [0462] Thus, in coating film 43F and coating paint according to Embodiment 30, the average outer diameter of 80 nm having an outer diameter in the range of approximately 50 nm to 100 nm and the porosity of approximately 70% to 80%. By utilizing the heat insulation, wear resistance, high hardness and transparency of hollow particles 10 made of silica shells with a cubic shape of 10%, flame retardancy is imparted without impairing the texture of colored paper 61, and surface hardness Can be reliably prevented from being scratched
Yes
[0463] 実施の形態 31  [0463] Embodiment 31
次に、本発明の実施の形態 31に係るコーティング膜及びコーティング塗料について 、図 13及び図 25,図 26を参照して説明する。図 25 (a)は本発明の実施の形態 31に 係るコーティング膜を表面に形成したポリエステル繊維材料 (ポリエステル糸)を用い てなる生地を使用した日傘を示す斜視図、(b)はポリエステル糸の断面図である。図 26 (a)は本発明の実施の形態 31の変形例に係るコーティング膜を表面に形成した アクリル繊維材料 (アクリル糸)を用いてなる生地を使用したセーターを示す斜視図、 (b)はアクリル糸の断面図である。  Next, a coating film and a coating material according to Embodiment 31 of the present invention will be described with reference to FIG. 13, FIG. 25, and FIG. FIG. 25 (a) is a perspective view showing a parasol using a fabric made of a polyester fiber material (polyester yarn) having a coating film according to Embodiment 31 of the present invention formed on its surface, and FIG. It is sectional drawing. FIG. 26 (a) is a perspective view showing a sweater using a cloth made of an acrylic fiber material (acrylic yarn) on the surface of which a coating film according to a modification of Embodiment 31 of the present invention is formed. It is sectional drawing of an acrylic thread.
[0464] 図 25 (a)に示されるように、本実施の形態 31に係る日傘 65は、コーティング膜を表 面に形成したポリエステル繊維材料 (ポリエステル糸) 66を用いてなる生地を使用し たものである。図 25 (b)に示されるように、繊維材料としてのポリエステル糸 67の表面 に、図 13に示される製造方法で製造されたコーティング塗料 23aを塗布してコーティ ング膜 43Gを形成することによって、合成繊維の持つツルツルした触感を、ポリエス テル糸 67の外観を損なうことなく低減することができ、またポリエステル糸 67に難燃 十生を付与すること力 Sできる。  [0464] As shown in FIG. 25 (a), the parasol 65 according to the present embodiment 31 uses a fabric made of a polyester fiber material (polyester yarn) 66 having a coating film formed on the surface thereof. Is. As shown in FIG. 25 (b), the coating film 23G manufactured by the manufacturing method shown in FIG. 13 is applied to the surface of the polyester yarn 67 as the fiber material to form a coating film 43G. The smooth feel of the synthetic fiber can be reduced without deteriorating the appearance of the polyester yarn 67, and the polyester yarn 67 can be imparted with flame retardancy.
[0465] 更に、シリカ殻からなる中空粒子 10をポリカーボネート樹脂ェマルジヨン系有機樹 脂バインダー 45の中に分散させたコーティング膜 43Gに包まれたポリエステル糸 66 を用いてなる生地を使用した日傘 65は、シリカ殻からなる中空粒子 10の断熱性によ つて、太陽光線によって生地が加熱されるのを防いで、使用する人に涼しさを感じさ せること力 Sでさる。 [0465] Further, a parasol 65 using a fabric made of polyester yarn 66 wrapped in a coating film 43G in which hollow particles 10 made of silica shells are dispersed in a polycarbonate resin emulsion organic resin binder 45, The heat insulation of the hollow particles 10 made of silica shell prevents the fabric from being heated by the sun's rays and makes the user feel cool. Use force S.
[0466] また、図 26 (a)に示されるように、本実施の形態 31の変形例に係るセーター 70は、 コーティング膜を表面に形成したアクリル繊維材料 (アクリル糸) 71を用いてなる生地 を使用したものである。図 26 (b)に示されるように、繊維材料としてのアクリル糸 72の 表面に、図 13に示される製造方法で製造されたコーティング塗料 23aを塗布してコ 一ティング膜 43Hを形成することによって、合成繊維の持つツルツルした触感を、ァ クリル糸 72の外観を損なうことなく低減することができ、またアクリル糸 72に難燃性を 付与すること力でさる。  Further, as shown in FIG. 26 (a), the sweater 70 according to the modification of the present embodiment 31 is a fabric using an acrylic fiber material (acrylic yarn) 71 having a coating film formed on the surface thereof. Is used. As shown in Fig. 26 (b), the coating film 23H produced by the production method shown in Fig. 13 is applied to the surface of the acrylic yarn 72 as the fiber material to form a coating film 43H. Thus, the smooth feel of the synthetic fiber can be reduced without impairing the appearance of the acrylic yarn 72, and the acrylic yarn 72 can be imparted with flame retardancy.
[0467] したがって、本実施の形態 31の変形例に係るセーター 70は、着用したときに合成 繊維特有のツルツルした触感がなぐ着心地の良いものとなる。また、コーティング膜 43Hの断熱性によって、羊毛よりずっと安価なアクリル糸 72を用いたセーター 70で あっても、防寒性に優れたセーターとなる。  [0467] Therefore, the sweater 70 according to the modification of the present embodiment 31 is comfortable to wear with the smooth feel unique to synthetic fibers when worn. In addition, because of the heat insulating property of the coating film 43H, even if the sweater 70 is made of acrylic yarn 72, which is much cheaper than wool, the sweater has excellent cold resistance.
[0468] このようにして、本実施の形態 31に係るコーティング膜 43G, 43H及びコーティン グ塗料においては、略 50nm〜100nmの範囲内の外径を有する平均外径 80nmの 、空隙率が略 70%〜80%の立方体状形態のシリカ殻からなる中空粒子 10の断熱 性、耐摩耗性、高硬度及び透明性を利用することによって、ポリエステル糸 67及びァ クリル糸 72の外観を損なうことなく合成繊維の持つツルツルした触感を低減すること ができるとともに、難燃性を付与することができ、断熱効果をも付与することができる。  [0468] Thus, in coating films 43G and 43H and the coating material according to Embodiment 31, the average outer diameter having an outer diameter in the range of approximately 50 nm to 100 nm is 80 nm, and the porosity is approximately 70. By making use of the heat insulation, wear resistance, high hardness and transparency of hollow particles made of silica shells with a cubic form of 80% to 80%, they are synthesized without impairing the appearance of polyester yarn 67 and acrylic yarn 72. In addition to being able to reduce the smooth feel of the fibers, it is possible to impart flame retardancy and also to provide a heat insulating effect.
[0469] 上記各実施の形態においては、シリカ殻からなる中空粒子として、略 50nm〜; 100 nmの範囲内の外径を有する平均外径 80nmの、空隙率が略 70%〜80%の立方体 状形態のシリカ殻からなる中空粒子 10を用いた場合について説明した力 略 30nm 〜300nmの範囲内の外径を有するシリカ殻からなる中空粒子であれば、空隙率及 び形状に関わらず、本発明に係るシリカ殻からなる中空粒子として用いることができる [0469] In each of the above embodiments, the hollow particles comprising silica shells are approximately 50 nm to a cube having an average outer diameter of 80 nm and an outer diameter in the range of 100 nm and a porosity of approximately 70% to 80%. The force described in the case of using hollow particles 10 made of silica shells in the shape of a hollow particle is hollow particles made of silica shells having an outer diameter in the range of approximately 30 nm to 300 nm, regardless of the porosity and shape. Can be used as hollow particles made of silica shell according to the invention
Yes
[0470] また、上記各実施の形態においては、シリカ殻からなる中空粒子として、立方体状形 態の中空粒子 10を用いた場合についてのみ説明した力 S、シリカ殻からなる中空粒子 の形状は立方体状形態に限られるものではなぐ他の形状を有するシリカ殻からなる 中空粒子を用いることもできる。 [0471] また、上記各実施の形態においては、シリカ殻からなる立方体状形態のナノ中空粒 子として、 50nm〜100nmの範囲内の外径を有する平均粒径 80nmのシリカ殻から なる立方体状形態の中空粒子 10、及びコーティングシリカ殻からなる中空粒子 10を 用いた場合について説明した力 10nm〜300nmまでの範囲内の外径を有するシリ 力殻からなる立方体状形態の中空粒子及びコーティングシリカ殻からなる中空粒子 を用いた場合においても、同様な作用効果を得ることができる。 [0470] In each of the above embodiments, the force S described only when the hollow particles 10 in the cubic shape are used as the hollow particles made of the silica shell, and the shape of the hollow particles made of the silica shell is a cube. It is also possible to use hollow particles made of silica shells having other shapes, not limited to the shape. [0471] Also, in each of the above embodiments, the cubic hollow nano-particles composed of silica shells, and the cubic hollow particles composed of silica shells having an outer diameter in the range of 50 nm to 100 nm and an average particle diameter of 80 nm. The hollow particles 10 and the hollow particles 10 made of a coated silica shell were used to explain the force from a hollow silica and a coated silica shell made of a cubic force shell having an outer diameter in the range of 10 nm to 300 nm. Similar effects can be obtained even when hollow particles are used.
[0472] 更に、上記各実施の形態における各種のインヒビターを、立方体状形態の中空粒子 10を始めとするシリカ殻からなる中空粒子の内部にドーピングすることによって、より 一層防食膜及び防食塗料の防食性を向上させることができる。  [0472] Further, by doping the various inhibitors in the above-described embodiments into hollow particles made of silica shells including the hollow particles 10 having a cubic shape, the anticorrosion film and the anticorrosion coating can be further prevented. Can be improved.
[0473] 本発明を実施するに際しては、樹脂組成物及び該組成物からなる繊維及びフィル ム、並びに反射防止コーティング材、防眩コーティング材、反射防止膜、反射防止フ イルム、防眩フィルム、並びに防食膜及び防食塗料、並びにコーティング膜及びコー ティング塗料のその他の部分の構成、成分、材料、大きさ、厚さ、形状、数量、製造 方法等についても、上記各実施の形態に限定されるものではない。  [0473] In carrying out the present invention, a resin composition and fibers and films comprising the composition, an antireflection coating material, an antiglare coating material, an antireflection film, an antireflection film, an antiglare film, and The configuration, components, materials, size, thickness, shape, quantity, manufacturing method, and the like of the anticorrosion film and anticorrosion paint, and other parts of the coating film and coating paint are also limited to the above embodiments. is not.
[0474] なお、本発明の上記各実施の形態で挙げて!/、る数値は、臨界値を示すものではな ぐ実施に好適な好適値を示すものであるから、上記数値を若干変更してもその実施 を否定するものではない。  [0474] The numerical values listed in the above embodiments of the present invention are not preferable values indicating critical values, but are preferable values for implementation, and thus the numerical values are slightly changed. However, it does not deny the implementation.

Claims

請求の範囲 The scope of the claims
[1] 中空粒子の透過型電子顕微鏡法による平均一次粒子径が 20nm〜l μ m、動的 光散乱法による平均粒子径が 201 111〜3 mであるシリカ(酸化ケィ素)殻からなる中 空粒子を含有することを特徴とする樹脂組成物。  [1] Hollow particles consisting of silica (cathenium oxide) shells with an average primary particle diameter of 20 nm to l μm by transmission electron microscopy and an average particle diameter of 201 111 to 3 m by dynamic light scattering A resin composition comprising empty particles.
[2] 中空粒子のシリカ殻に、水銀圧入法により測定される細孔分布において 2〜20nm の細孔が検出されな!/、ことを特徴とする請求項 1に記載の樹脂組成物。 [2] The resin composition according to claim 1, wherein pores having a diameter of 2 to 20 nm are not detected in the silica shell of the hollow particles in a pore distribution measured by a mercury intrusion method.
[3] 中空粒子が炭酸カルシウム表面にシリカを製膜し、その後該炭酸カルシウムを酸に より溶解させることにより製造されたものである請求項 1または請求項 2に記載の樹脂 組成物。 [3] The resin composition according to claim 1 or 2, wherein the hollow particles are produced by forming a silica film on the surface of calcium carbonate and then dissolving the calcium carbonate with an acid.
[4] シリカ殻力 なる立方体状形態を有する中空粒子の低屈折率及び透光性を利用し た反射防止コーティング材であって、  [4] An anti-reflective coating material utilizing the low refractive index and translucency of hollow particles having a cubic shape with silica shell force,
30nmから 300nmまでの範囲の外径を有する前記シリカ殻からなる立方体状形態 を有する中空粒子を有機合成樹脂塗料中に均一に分散してなることを特徴とする反 射防止コーティング材。  An antireflection coating material, characterized in that hollow particles having a cubic shape made of the silica shell having an outer diameter in the range of 30 nm to 300 nm are uniformly dispersed in an organic synthetic resin paint.
[5] シリカ殻力 なる立方体状形態を有する中空粒子の低屈折率、透光性及び二次粒 子の乱反射を利用した防眩コーティング材であって、  [5] An anti-glare coating material that utilizes the low refractive index, translucency, and irregular reflection of secondary particles of a hollow particle having a cubic shape with silica shell force,
30nmから 300nmまでの範囲の外径を有する前記シリカ殻からなる立方体状形態 を有する中空一次粒子が凝集した 0· 5 ,1 m〜50 ,1 mの範囲内の大きさを有する二 次粒子を有機合成樹脂塗料中に均一に分散してなることを特徴とする防眩コーティ ング材。  Secondary particles having a size in the range of 0.5, 1 m to 50, 1 m in which hollow primary particles having a cubic shape made of the silica shell having an outer diameter in the range of 30 nm to 300 nm are aggregated. An antiglare coating material characterized by being uniformly dispersed in an organic synthetic resin paint.
[6] 請求項 5に記載の防眩コーティング材を塗布してなる塗膜と、請求項 4に記載の反 射防止コーティング材を塗布してなる塗膜を積層してなることを特徴とする反射防止 膜。  [6] A coating film formed by applying the antiglare coating material according to claim 5 and a coating film formed by applying the antireflection coating material according to claim 4 are laminated. Anti-reflective film.
[7] シリカ殻力 なる立方体状形態を有する中空粒子の低屈折率及び透光性を利用し た反射防止フィルムであって、  [7] An antireflection film utilizing the low refractive index and translucency of hollow particles having a cubic shape with silica shell force,
30nmから 300nmまでの範囲の外径を有する前記シリカ殻からなる立方体状形態 を有する中空粒子を有機合成樹脂フィルム中に均一に分散してなることを特徴とする 反射防止フィルム。 An antireflection film, wherein hollow particles having a cubic shape composed of the silica shell having an outer diameter in the range of 30 nm to 300 nm are uniformly dispersed in an organic synthetic resin film.
[8] シリカ殻力 なる立方体状形態を有する中空粒子の低屈折率、透光性及び二次粒 子の乱反射を利用した防眩フィルムであって、 [8] An antiglare film using low refractive index, translucency, and irregular reflection of secondary particles of a hollow particle having a silica-like cubic shape,
30nmから 300nmまでの範囲の外径を有する前記シリカ殻からなる立方体状形態 を有する中空一次粒子が凝集した 0· 5 ,1 m〜50 ,1 mの範囲内の大きさを有する二 次粒子を有機合成樹脂フィルム中に均一に分散してなることを特徴とする防眩フィル ム。  Secondary particles having a size in the range of 0.5, 1 m to 50, 1 m in which hollow primary particles having a cubic shape made of the silica shell having an outer diameter in the range of 30 nm to 300 nm are aggregated. An antiglare film characterized by being uniformly dispersed in an organic synthetic resin film.
[9] 請求項 8に記載の防眩フィルムと、請求項 7に記載の反射防止フィルムを積層して なることを特徴とする反射防止フィルム。  [9] An antireflection film comprising the antiglare film according to claim 8 and the antireflection film according to claim 7 laminated.
[10] 前記シリカ殻からなる立方体状形態を有する中空粒子が 40nm〜150nmの範囲 内の外径を有することを特徴とする請求項 4乃至請求項 9のいずれか 1つに記載の 反射防止コーティング材、防眩コーティング材、反射防止膜、反射防止フィルムまた は防眩フィルム。 [10] The antireflection coating according to any one of [4] to [9], wherein the hollow particles having a cubic shape composed of the silica shell have an outer diameter in a range of 40 nm to 150 nm. Materials, antiglare coatings, antireflection films, antireflection films or antiglare films.
[11] アルミニウム、亜鉛、アルミニウムと亜鉛の合金からなる群より選ばれた金属の粒子 と、 10nm〜300nmの範囲内の外径を有するシリカ殻からなる中空粒子を有機樹脂 バインダーまたは無機高分子バインダーまたは有機無機複合バインダー中に均一に 分散してなることを特徴とする防食膜。  [11] A metal particle selected from the group consisting of aluminum, zinc, and an alloy of aluminum and zinc, and hollow particles made of silica shells having an outer diameter in the range of 10 nm to 300 nm are made into an organic resin binder or an inorganic polymer binder. Alternatively, an anticorrosion film characterized by being uniformly dispersed in an organic-inorganic composite binder.
[12] マグネシウム系金属の表面を陽極酸化による酸化物層で被覆し、前記酸化物層の 表面をアルミニウム系、チタン系またはジルコニウム系のカップリング剤で変性した変 性樹脂及び 10nm〜300nmの範囲内の外径を有するシリカ殻からなる中空粒子を 有機樹脂バインダーまたは無機高分子バインダーまたは有機無機複合バインダー 中に均一に分散してなる層で被覆したことを特徴とする防食膜。  [12] A magnesium-based metal surface is coated with an anodized oxide layer, and the surface of the oxide layer is modified with an aluminum-based, titanium-based, or zirconium-based coupling agent, and a range of 10 nm to 300 nm. An anticorrosion film characterized in that hollow particles composed of silica shells having an inner diameter are coated with a layer uniformly dispersed in an organic resin binder, an inorganic polymer binder, or an organic-inorganic composite binder.
[13] アルミニウムまたはアルミニウム合金の表面に形成された防食膜であって、  [13] An anticorrosion film formed on the surface of aluminum or an aluminum alloy,
コロイド状シリカとオルガノアルコキシシラン部分加水分解縮合物と不飽和エチレン 単量体の重合体または共重合体と、 10nm〜300nmの範囲内の外径を有するシリ 力殻からなる中空粒子とを、有機樹脂バインダーまたは無機高分子バインダーまたは 有機無機複合バインダー中に均一に分散してなることを特徴とする防食膜。  Colloidal silica, organoalkoxysilane partially hydrolyzed condensate and polymer or copolymer of unsaturated ethylene monomer, and hollow particles made of silica shells having an outer diameter in the range of 10 nm to 300 nm An anticorrosion film characterized by being uniformly dispersed in a resin binder, an inorganic polymer binder, or an organic-inorganic composite binder.
[14] 前記シリカ殻力 なる中空粒子が、立方体状形態を有することを特徴とする請求項 11乃至請求項 13のいずれ力、 1つに記載の防食膜。 [14] The anticorrosion film according to any one of [11] to [13], wherein the hollow particles having a silica shell force have a cubic form.
[15] 前記シリカ殻からなる中空粒子力 前記有機樹脂バインダーまたは前記無機高分 子バインダーまたは前記有機無機複合バインダーに対して、固形分で 4重量%〜; 15 重量%の割合で混合されて!/、ることを特徴とする請求項 11乃至請求項 14の!/、ずれ 力、 1つに記載の防食膜。 [15] Force of hollow particles composed of the silica shell Mixed with the organic resin binder, the inorganic polymer binder, or the organic-inorganic composite binder at a solid content of 4 wt% to 15 wt%! 15. The anticorrosion film according to claim 11 or 14, according to claim 11, wherein the anti-corrosion film has a displacement force.
[16] 前記シリカ殻からなる中空粒子の表面にイソシァネート系の表面改質剤を付加させ たことを特徴とする請求項 11乃至請求項 15のいずれ力、 1つに記載の防食膜。  [16] The anticorrosion film according to any one of [11] to [15], wherein an isocyanate-based surface modifier is added to the surface of the hollow particle comprising the silica shell.
[17] 水溶性三価クロム化合物と、水溶性フッ化物と、亜鉛 アルミニウム合金粉末と、グ リコール類及び/またはセルロース類とを含有する金属防食用被覆組成物と、  [17] A metal anticorrosion coating composition containing a water-soluble trivalent chromium compound, a water-soluble fluoride, zinc aluminum alloy powder, glycols and / or celluloses,
10nm〜300nmの範囲内の外径を有するシリカ殻からなる中空粒子を有機樹脂塗 料または無機高分子塗料または有機無機複合塗料中に均一に分散してなる防食組 成物とを混合してなることを特徴とする防食塗料。  It is formed by mixing hollow particles composed of silica shells having an outer diameter in the range of 10 nm to 300 nm with an anticorrosive composition in which organic particles are uniformly dispersed in an organic resin coating, an inorganic polymer coating, or an organic-inorganic composite coating. An anticorrosion paint characterized by that.
[18] 前記金属防食用被覆組成物が、水 100重量部に対して前記水溶性三価クロム化 合物を Cr O 換算で 0. 2重量部〜 10重量部、前記水溶性フッ化物をフッ素イオン 換算で 0. 01重量部〜 0. 5重量部、前記亜鉛 アルミニウム合金粉末を 5重量部〜 50重量部、前記グリコール類及び/または前記セルロース類を 5重量部〜 30重量 部含有し、 pHが 3. 0〜7. 0の範囲内にあることを特徴とする請求項 17に記載の防 食塗料。 [18] The coating composition for metal anticorrosion comprises 0.2 to 10 parts by weight of the water-soluble trivalent chromium compound in terms of Cr 2 O and 100 parts by weight of water and fluorine of the water-soluble fluoride. 0.01 to 0.5 parts by weight in terms of ions, 5 to 50 parts by weight of the zinc aluminum alloy powder, 5 to 30 parts by weight of the glycols and / or the celluloses, pH 18. The anticorrosion paint according to claim 17, wherein is in the range of 3.0 to 7.0.
[19] 水溶性クロム酸化合物と、亜鉛粉末 ·アルミニウム粉末 ·亜鉛合金粉末 ·アルミユウ ム合金粉末力 なる群より選択される少なくとも一種の金属粉末の表面に高級脂肪 酸塩をコーティングしてなる金属成分と、前記高級脂肪酸塩を分解可能な酸化剤と、 グリコール系化合物及び/または α—ヒドロキシケトンと、水及び/または水溶性有 機溶媒とを含有してなる防食被覆組成物と、 [19] A water-soluble chromic acid compound and a metal component obtained by coating a surface of at least one metal powder selected from the group consisting of zinc powder, aluminum powder, zinc alloy powder, and aluminum alloy powder with a higher fatty acid salt. An anticorrosive coating composition comprising: an oxidizing agent capable of decomposing the higher fatty acid salt; a glycol compound and / or α -hydroxyketone; and water and / or a water-soluble organic solvent;
10nm〜300nmの範囲内の外径を有するシリカ殻からなる中空粒子を有機樹脂塗 料または無機高分子塗料または有機無機複合塗料中に均一に分散してなる防食組 成物とを混合してなることを特徴とする防食塗料。  It is formed by mixing hollow particles composed of silica shells having an outer diameter in the range of 10 nm to 300 nm with an anticorrosive composition in which organic particles are uniformly dispersed in an organic resin coating, an inorganic polymer coating, or an organic-inorganic composite coating. An anticorrosion paint characterized by that.
[20] フッ化ケィ素塩'フッ化チタン塩'フッ化ジルコニウム塩から選ばれる少なくとも 1種 のフッ化物塩と、全てが加水分解性基によって置換されたシリコンモノマー ·チタンモ ノマ一'ジルコニウムモノマー力、ら選ばれる少なくとも 1種の加水分解性モノマー及び /またはその低縮合物とを反応させてなる無機膜形成用塗布剤と、 10nm〜300nmの範囲内の外径を有するシリカ殻からなる中空粒子を有機樹脂塗 料または無機高分子塗料または有機無機複合塗料中に均一に分散してなる防食組 成物とを混合してなることを特徴とする防食塗料。 [20] Silicon monomer / titanium monomer / zirconium monomer strength, at least one fluoride salt selected from fluorine fluoride salt 'titanium fluoride salt' and zirconium fluoride salt, all substituted with hydrolyzable groups At least one hydrolyzable monomer selected from Inorganic film-forming coating agent obtained by reacting with a low condensate thereof and hollow particles composed of silica shells having an outer diameter in the range of 10 nm to 300 nm are used as organic resin coating, inorganic polymer coating, or organic inorganic An anticorrosion paint characterized by being mixed with an anticorrosion composition uniformly dispersed in a composite paint.
[21] アクリル樹脂、ァミノ樹脂、及びリン酸基と水添ビスフエノール骨格の構造を有する アクリル樹脂とを含有する塗料組成物と、 [21] A coating composition containing an acrylic resin, an amino resin, and an acrylic resin having a phosphoric acid group and a hydrogenated bisphenol skeleton structure;
10nm〜300nmの範囲内の外径を有するシリカ殻からなる中空粒子を有機樹脂塗 料または無機高分子塗料または有機無機複合塗料中に均一に分散してなる防食組 成物とを混合してなることを特徴とする防食塗料。  It is formed by mixing hollow particles composed of silica shells having an outer diameter in the range of 10 nm to 300 nm with an anticorrosive composition in which organic particles are uniformly dispersed in an organic resin coating, an inorganic polymer coating, or an organic-inorganic composite coating. An anticorrosion paint characterized by that.
[22] アクリル樹脂、エポキシ樹脂、ブロックポリイソシァネート化合物、粉末シリカ及び架 橋性重合体粒子を含有する防食塗料組成物と、 [22] an anticorrosion coating composition containing an acrylic resin, an epoxy resin, a block polyisocyanate compound, powdered silica, and crosslinking polymer particles;
10nm〜300nmの範囲内の外径を有するシリカ殻からなる中空粒子を有機樹脂塗 料または無機高分子塗料または有機無機複合塗料中に均一に分散してなる防食組 成物とを混合してなることを特徴とする防食塗料。  It is formed by mixing hollow particles composed of silica shells having an outer diameter in the range of 10 nm to 300 nm with an anticorrosive composition in which organic particles are uniformly dispersed in an organic resin coating, an inorganic polymer coating, or an organic-inorganic composite coating. An anticorrosion paint characterized by that.
[23] 前記防食組成物と、前記シリカ殻からなる中空粒子との前記防食塗料全体に対す る合計含有量は 10重量%〜30重量%であり、前記有機樹脂塗料または前記無機 高分子塗料または前記有機無機複合塗料の含有量は 70重量%〜90重量%である ことを特徴とする請求項 17乃至請求項 22のいずれか 1つに記載の防食塗料。 [23] The total content of the anticorrosion composition and the hollow particles composed of the silica shell in the anticorrosion paint is 10% by weight to 30% by weight, and the organic resin paint or the inorganic polymer paint or 23. The anticorrosion paint according to claim 17, wherein the content of the organic-inorganic composite paint is 70% by weight to 90% by weight.
[24] 前記シリカ殻力 なる中空粒子が、立方体状形態を有することを特徴とする請求項[24] The hollow particle having the silica shell force has a cubic shape.
17乃至請求項 23のいずれ力、 1つに記載の防食塗料。 The anticorrosion paint according to any one of claims 17 to 23.
[25] 前記シリカ殻からなる中空粒子が、前記有機樹脂塗料または前記無機高分子塗料 または前記有機無機複合塗料に対して、固形分で 4重量%〜; 15重量%の割合で混 合されていることを特徴とする請求項 17乃至請求項 24のいずれか 1つに記載の防 食塗料。 [25] Hollow particles composed of the silica shell are mixed with the organic resin paint, the inorganic polymer paint, or the organic-inorganic composite paint at a solid content of 4 wt% to 15 wt%. 25. The anticorrosion paint according to any one of claims 17 to 24, wherein:
[26] 前記シリカ殻からなる中空粒子の表面にイソシァネート系の表面改質剤を付加させ たことを特徴とする請求項 17乃至請求項 25のいずれ力、 1つに記載の防食塗料。  26. The anticorrosion paint according to any one of claims 17 to 25, wherein an isocyanate-based surface modifier is added to the surface of the hollow particle comprising the silica shell.
[27] 略 30nm〜300nmの範囲内の外径を有するシリカ殻からなり、立方体状形態を有 する中空粒子を有機樹脂塗料または無機高分子塗料または有機無機複合塗料中 に略均一に分散してなることを特徴とするコーティング塗料。 [27] Hollow particles having a silica-like shape having an outer diameter in a range of approximately 30 nm to 300 nm and having a cubic shape are contained in an organic resin paint, an inorganic polymer paint, or an organic-inorganic composite paint. Coating paint characterized by being dispersed substantially uniformly.
[28] 前記シリカ殻からなる中空粒子の表面にイソシァネート系、アルキル系、ビュル系ま たはアタリロキシ系の表面修飾剤を付加させたことを特徴とする請求項 27に記載のコ 一ティング塗料。 [28] The coating paint according to claim 27, wherein an isocyanate-based, alkyl-based, bur-based, or attaryloxy-based surface modifier is added to the surface of the hollow particle composed of the silica shell.
[29] 基材の表面に形成されたコーティング膜であって、 [29] A coating film formed on the surface of a substrate,
略 30nm〜300nmの範囲内の外径を有するシリカ殻からなり、立方体状形態を有 する中空粒子を有機樹脂バインダーまたは無機高分子バインダーまたは有機無機 複合バインダー中に略均一に分散してなることを特徴とするコーティング膜。  It is made of a silica shell having an outer diameter in a range of about 30 nm to 300 nm, and hollow particles having a cubic shape are dispersed substantially uniformly in an organic resin binder, an inorganic polymer binder, or an organic-inorganic composite binder. Characteristic coating film.
[30] 前記基材は木材、皮革若しくは合成皮革、プラスチック、石材、ガラス、紙または繊 維材料であることを特徴とする請求項 29に記載のコーティング膜。 30. The coating film according to claim 29, wherein the substrate is wood, leather or synthetic leather, plastic, stone, glass, paper, or a fiber material.
[31] 前記シリカ殻からなる中空粒子の表面にイソシァネート系、アルキル系、ビュル系ま たはアタリロキシ系の表面修飾剤を付加させたことを特徴とする請求項 29または請求 項 30に記載のコーティング膜。 [31] The coating according to claim 29 or 30, wherein an isocyanate-based, alkyl-based, bur-based, or attaryloxy-based surface modifier is added to the surface of the hollow particle comprising the silica shell. film.
PCT/JP2007/068940 2006-11-21 2007-09-28 Resin composition, anti-reflection coating material, anti-dazzling coating material, anti-reflection coating, anti-reflection film, anti-dazzling film, corrosion protective coating, corrosion protective coating material, coating material, and coating film WO2008062605A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006314205A JP5186644B2 (en) 2006-11-21 2006-11-21 Anticorrosion film and anticorrosion paint
JP2006-314205 2006-11-21
JP2007-037304 2007-02-19
JP2007-037461 2007-02-19
JP2007037461A JP2008200922A (en) 2007-02-19 2007-02-19 Coating film and coating
JP2007037304A JP2008201858A (en) 2007-02-19 2007-02-19 Resin composition, and fiber and film comprising the composition

Publications (1)

Publication Number Publication Date
WO2008062605A1 true WO2008062605A1 (en) 2008-05-29

Family

ID=39429546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068940 WO2008062605A1 (en) 2006-11-21 2007-09-28 Resin composition, anti-reflection coating material, anti-dazzling coating material, anti-reflection coating, anti-reflection film, anti-dazzling film, corrosion protective coating, corrosion protective coating material, coating material, and coating film

Country Status (1)

Country Link
WO (1) WO2008062605A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185291A (en) * 2009-02-10 2010-08-26 Toyota Central R&D Labs Inc Heat insulating film and method of forming the same
WO2014050769A1 (en) * 2012-09-25 2014-04-03 株式会社カネカ Solar cell module provided with anti-glare film and method for producing same, anti-glare film for solar cells and method for producing same, and coating liquid for forming anti-glare film
CN103956659A (en) * 2014-04-17 2014-07-30 宁海县雁苍山电力设备厂 Electric control cabinet bottom sealing plate supporting structure
CN105131786A (en) * 2015-08-21 2015-12-09 山东大学 Environmental-protection heavy-duty anticorrosive coating, and preparation method and coating method thereof
EP2397527A4 (en) * 2009-02-16 2016-05-18 Nissan Motor Microparticle/polyrotaxane-containing coating, microparticle/polyrotaxane-containing coating film and coated article
WO2016103491A1 (en) * 2014-12-26 2016-06-30 日本パーカライジング株式会社 Paint for hot-dip galvanized steel sheet, method for treating hot-dip galvanized steel sheet, process for producing surface-treated hot-dip galvanized steel sheet, and surface-treated hot-dip galvanized steel sheet
US9676925B2 (en) 2013-11-18 2017-06-13 Flexiteek International, AS Extruded surface covering material for covering a boat or yacht deck or another outdoor area and an extruded product comprising such material
EP3333598A4 (en) * 2015-08-05 2018-06-13 Panasonic Intellectual Property Management Co., Ltd. Composition for optical films, base having optical film, molded body and method for producing molded body
CN109762373A (en) * 2019-01-21 2019-05-17 济南大学 A kind of fluoropolymer cladded type ball aluminum powder and its preparation process and application
CN110819208A (en) * 2019-11-22 2020-02-21 南通通州东大机械有限公司 Processing method for corrosion prevention and heat insulation of surface of metal part
US10921492B2 (en) 2018-01-09 2021-02-16 Corning Incorporated Coated articles with light-altering features and methods for the production thereof
CN113677755A (en) * 2019-04-02 2021-11-19 株式会社Lg化学 Substrate for heat-resistant electronic device
US11940593B2 (en) 2020-07-09 2024-03-26 Corning Incorporated Display articles with diffractive, antiglare surfaces and methods of making the same

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023468A (en) * 1988-06-13 1990-01-09 Catalysts & Chem Ind Co Ltd Coating composition
JPH02115285A (en) * 1988-10-26 1990-04-27 Dainippon Ink & Chem Inc Coating resin composition
JPH0657177A (en) * 1992-08-05 1994-03-01 Nippon Paint Co Ltd Transparent anticorrosive thick-coating composition, and method for forming transparent coating film
JPH07150479A (en) * 1993-10-07 1995-06-13 Achilles Corp Leathery sheet and its production
JPH09268265A (en) * 1996-03-29 1997-10-14 Nippon Light Metal Co Ltd Coating composition for preventing corrosion of metal
JPH10273595A (en) * 1997-03-28 1998-10-13 Jsr Corp Liquid curable resin composition
JPH1177878A (en) * 1997-07-11 1999-03-23 Asahi Glass Co Ltd Transparent coated molding
JPH1176928A (en) * 1997-09-03 1999-03-23 Asahi Glass Co Ltd Production of transparent coated product
JPH11181334A (en) * 1997-12-24 1999-07-06 Nippon Paint Co Ltd Coating composition, film forming method and coated product
JPH11288621A (en) * 1998-04-03 1999-10-19 Techno Onishi:Kk Low dielectric constant insulating material and electric/ electronic equipment
JPH11310735A (en) * 1998-04-28 1999-11-09 Shinto Paint Co Ltd Anticorrosive epoxy resin coating composition
JP2000500113A (en) * 1996-04-22 2000-01-11 ロディア シミ Method for producing hollow silica particles
JP2001158165A (en) * 1999-12-03 2001-06-12 Konica Corp Ink jet recording sheet
JP2002012814A (en) * 2000-04-28 2002-01-15 Kansai Paint Co Ltd Coating material composition
JP2002167553A (en) * 2000-11-30 2002-06-11 Kansai Paint Co Ltd Inorganic film-forming coating material, its inorganic film-forming method, inorganic film-coated aluminum material and inorganic film-coated steel stock to be obtained by using the same
JP2003003271A (en) * 2001-06-19 2003-01-08 Nippon Dacro Shamrock Co Ltd Corrosion protective covered composition and preparation agent for preparing corrosion protective covered composition
JP2004284237A (en) * 2003-03-24 2004-10-14 Kurimoto Ltd Corrosionproof coating structure of magnesium metal
JP2005524779A (en) * 2002-05-06 2005-08-18 石 美秀 Synthetic fibers containing hollow spherical particles
JP2005263550A (en) * 2004-03-18 2005-09-29 Nagoya Kogyo Univ High dispersion silica nano hollow particle and its producing method
JP2005272155A (en) * 2004-03-23 2005-10-06 Nippon Paper Industries Co Ltd Silica particles and paper with internally added silica particles
JP2005338549A (en) * 2004-05-28 2005-12-08 Konica Minolta Opto Inc Antireflection film, polarizing plate, and image display device
JP2006015193A (en) * 2004-06-30 2006-01-19 Dainippon Ink & Chem Inc Coating film forming method
JP2006145736A (en) * 2004-11-18 2006-06-08 Konica Minolta Opto Inc Antiglare antireflection film, polarizing plate and image display
JP2006256921A (en) * 2005-03-18 2006-09-28 Nagoya Institute Of Technology Manufacturing method of silica hollow particle
JP2007070458A (en) * 2005-09-07 2007-03-22 Nagoya Institute Of Technology Heat-insulation paint, heat-insulation film or three-layered heat-insulation film and heat-insulation fiber using hollow nanoparticle made of silica shell
JP2007070459A (en) * 2005-09-07 2007-03-22 Nagoya Institute Of Technology Anticorrosive film using hollow nanoparticle made of silica shell and anticorrosive paint using hollow nanoparticle made of silica shell

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023468A (en) * 1988-06-13 1990-01-09 Catalysts & Chem Ind Co Ltd Coating composition
JPH02115285A (en) * 1988-10-26 1990-04-27 Dainippon Ink & Chem Inc Coating resin composition
JPH0657177A (en) * 1992-08-05 1994-03-01 Nippon Paint Co Ltd Transparent anticorrosive thick-coating composition, and method for forming transparent coating film
JPH07150479A (en) * 1993-10-07 1995-06-13 Achilles Corp Leathery sheet and its production
JPH09268265A (en) * 1996-03-29 1997-10-14 Nippon Light Metal Co Ltd Coating composition for preventing corrosion of metal
JP2000500113A (en) * 1996-04-22 2000-01-11 ロディア シミ Method for producing hollow silica particles
JPH10273595A (en) * 1997-03-28 1998-10-13 Jsr Corp Liquid curable resin composition
JPH1177878A (en) * 1997-07-11 1999-03-23 Asahi Glass Co Ltd Transparent coated molding
JPH1176928A (en) * 1997-09-03 1999-03-23 Asahi Glass Co Ltd Production of transparent coated product
JPH11181334A (en) * 1997-12-24 1999-07-06 Nippon Paint Co Ltd Coating composition, film forming method and coated product
JPH11288621A (en) * 1998-04-03 1999-10-19 Techno Onishi:Kk Low dielectric constant insulating material and electric/ electronic equipment
JPH11310735A (en) * 1998-04-28 1999-11-09 Shinto Paint Co Ltd Anticorrosive epoxy resin coating composition
JP2001158165A (en) * 1999-12-03 2001-06-12 Konica Corp Ink jet recording sheet
JP2002012814A (en) * 2000-04-28 2002-01-15 Kansai Paint Co Ltd Coating material composition
JP2002167553A (en) * 2000-11-30 2002-06-11 Kansai Paint Co Ltd Inorganic film-forming coating material, its inorganic film-forming method, inorganic film-coated aluminum material and inorganic film-coated steel stock to be obtained by using the same
JP2003003271A (en) * 2001-06-19 2003-01-08 Nippon Dacro Shamrock Co Ltd Corrosion protective covered composition and preparation agent for preparing corrosion protective covered composition
JP2005524779A (en) * 2002-05-06 2005-08-18 石 美秀 Synthetic fibers containing hollow spherical particles
JP2004284237A (en) * 2003-03-24 2004-10-14 Kurimoto Ltd Corrosionproof coating structure of magnesium metal
JP2005263550A (en) * 2004-03-18 2005-09-29 Nagoya Kogyo Univ High dispersion silica nano hollow particle and its producing method
JP2005272155A (en) * 2004-03-23 2005-10-06 Nippon Paper Industries Co Ltd Silica particles and paper with internally added silica particles
JP2005338549A (en) * 2004-05-28 2005-12-08 Konica Minolta Opto Inc Antireflection film, polarizing plate, and image display device
JP2006015193A (en) * 2004-06-30 2006-01-19 Dainippon Ink & Chem Inc Coating film forming method
JP2006145736A (en) * 2004-11-18 2006-06-08 Konica Minolta Opto Inc Antiglare antireflection film, polarizing plate and image display
JP2006256921A (en) * 2005-03-18 2006-09-28 Nagoya Institute Of Technology Manufacturing method of silica hollow particle
JP2007070458A (en) * 2005-09-07 2007-03-22 Nagoya Institute Of Technology Heat-insulation paint, heat-insulation film or three-layered heat-insulation film and heat-insulation fiber using hollow nanoparticle made of silica shell
JP2007070459A (en) * 2005-09-07 2007-03-22 Nagoya Institute Of Technology Anticorrosive film using hollow nanoparticle made of silica shell and anticorrosive paint using hollow nanoparticle made of silica shell

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185291A (en) * 2009-02-10 2010-08-26 Toyota Central R&D Labs Inc Heat insulating film and method of forming the same
EP2397527A4 (en) * 2009-02-16 2016-05-18 Nissan Motor Microparticle/polyrotaxane-containing coating, microparticle/polyrotaxane-containing coating film and coated article
US9929286B2 (en) 2012-09-25 2018-03-27 Kaneka Corporation Solar cell module with anti-glare film and method for manufacturing same, anti-glare film for solar cell modules and method for manufacturing same, and coating solution for forming anti-glare film
WO2014050769A1 (en) * 2012-09-25 2014-04-03 株式会社カネカ Solar cell module provided with anti-glare film and method for producing same, anti-glare film for solar cells and method for producing same, and coating liquid for forming anti-glare film
JPWO2014050769A1 (en) * 2012-09-25 2016-08-22 株式会社カネカ Solar cell module having antiglare film and method for producing the same, antiglare film for solar cell and method for producing the same, and coating solution for forming antiglare film
US9676925B2 (en) 2013-11-18 2017-06-13 Flexiteek International, AS Extruded surface covering material for covering a boat or yacht deck or another outdoor area and an extruded product comprising such material
CN103956659B (en) * 2014-04-17 2016-01-27 宁波天派智能科技有限公司 Electrical control cubicles bottom sealing plate supporting construction
CN103956659A (en) * 2014-04-17 2014-07-30 宁海县雁苍山电力设备厂 Electric control cabinet bottom sealing plate supporting structure
WO2016103491A1 (en) * 2014-12-26 2016-06-30 日本パーカライジング株式会社 Paint for hot-dip galvanized steel sheet, method for treating hot-dip galvanized steel sheet, process for producing surface-treated hot-dip galvanized steel sheet, and surface-treated hot-dip galvanized steel sheet
JPWO2016103491A1 (en) * 2014-12-26 2017-08-24 日本パーカライジング株式会社 Paint for hot dipped galvanized steel sheet, processing method for hot dipped galvanized steel sheet, method for manufacturing surface dipped hot dip galvanized steel sheet, and surface-treated hot dip galvanized steel sheet
EP3333598A4 (en) * 2015-08-05 2018-06-13 Panasonic Intellectual Property Management Co., Ltd. Composition for optical films, base having optical film, molded body and method for producing molded body
CN105131786A (en) * 2015-08-21 2015-12-09 山东大学 Environmental-protection heavy-duty anticorrosive coating, and preparation method and coating method thereof
US10921492B2 (en) 2018-01-09 2021-02-16 Corning Incorporated Coated articles with light-altering features and methods for the production thereof
CN109762373A (en) * 2019-01-21 2019-05-17 济南大学 A kind of fluoropolymer cladded type ball aluminum powder and its preparation process and application
CN113677755A (en) * 2019-04-02 2021-11-19 株式会社Lg化学 Substrate for heat-resistant electronic device
CN113677755B (en) * 2019-04-02 2023-06-16 株式会社Lg化学 Substrate for heat-resistant electronic device
CN110819208A (en) * 2019-11-22 2020-02-21 南通通州东大机械有限公司 Processing method for corrosion prevention and heat insulation of surface of metal part
US11940593B2 (en) 2020-07-09 2024-03-26 Corning Incorporated Display articles with diffractive, antiglare surfaces and methods of making the same
US11971519B2 (en) 2020-07-09 2024-04-30 Corning Incorporated Display articles with antiglare surfaces and thin, durable antireflection coatings
US11977206B2 (en) 2020-07-09 2024-05-07 Corning Incorporated Display articles with diffractive, antiglare surfaces and thin, durable antireflection coatings

Similar Documents

Publication Publication Date Title
WO2008062605A1 (en) Resin composition, anti-reflection coating material, anti-dazzling coating material, anti-reflection coating, anti-reflection film, anti-dazzling film, corrosion protective coating, corrosion protective coating material, coating material, and coating film
JP5864597B2 (en) Coating composition comprising layered silicate pigment and method for producing transparent or translucent radioactive coating
JP5078620B2 (en) Hollow silica fine particles, composition for forming transparent film containing the same, and substrate with transparent film
CN101184815B (en) Dispersion containing hollow SiO2, coating composition and substrate with antireflection coating film
CN102239222B (en) Silica coating for enhanced hydrophilicity
TWI793254B (en) Aqueous hydrophobic silica dispersions
CA2740551C (en) Stain resistant particles
JP5168151B2 (en) Composite particles and their uses
TWI726127B (en) Photocatalyst laminate
JP6049368B2 (en) Al-modified inorganic oxide fine particles, production method thereof, dispersion, and coating composition
EP2321375A1 (en) Acicular silica coating for enhanced hydrophilicity/transmittivity
TW201012882A (en) Coating liquid, cured film, resin multilayer body, method for producing the cured film and method for producing the resin multilayer body
CN101815676A (en) Modified metal-oxide composite sol, coating composition, and optical member
JP2008200922A (en) Coating film and coating
CN102827518A (en) Water paint composition
KR20140131513A (en) Infrared radiation absorbing articles and method of manufacture
KR20110103934A (en) Chain-shaped silica-based hollow fine particles and process for producing same, coating fluid for transparent coating film formation containing the fine particles, and substrate with transparent coating film
JP5609873B2 (en) Composite particles, coating film forming compositions, printing inks, coating compositions, coated articles, and resin films with coating films
JP6713319B2 (en) Substrate with water-repellent coating and method for producing the same
Zhang et al. Preparation and characterization of dual-functional coatings of nanofibrillated cellulose and modified SrAl2O4: Eu, Dy phosphors
WO2011059105A1 (en) Heat-insulating agent composition
EP2958965B1 (en) Preparation of refined pigment from elastomer
JP2001252615A (en) Coating method and structure coated by using the same
JP2003048755A (en) Coated glass product and light diffusion coating agent for glass surface
KR20190078430A (en) Incombustible coated steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07828682

Country of ref document: EP

Kind code of ref document: A1