WO2008059923A1 - Rotating electric machine, compressor, fan, and air conditioner - Google Patents

Rotating electric machine, compressor, fan, and air conditioner Download PDF

Info

Publication number
WO2008059923A1
WO2008059923A1 PCT/JP2007/072187 JP2007072187W WO2008059923A1 WO 2008059923 A1 WO2008059923 A1 WO 2008059923A1 JP 2007072187 W JP2007072187 W JP 2007072187W WO 2008059923 A1 WO2008059923 A1 WO 2008059923A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating electrical
electrical machine
field element
face
peripheral side
Prior art date
Application number
PCT/JP2007/072187
Other languages
French (fr)
Japanese (ja)
Inventor
Shin Nakamasu
Toshinari Kondou
Yoshinari Asano
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2008059923A1 publication Critical patent/WO2008059923A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/04Machines with one rotor and two stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]

Definitions

  • the present invention relates to a rotating electrical machine, and more particularly, to a rotating electrical machine having two armatures.
  • a rotating electrical machine such as an electric motor is miniaturized and has high efficiency.
  • an electric motor that excites magnetic flux with a magnet can be reduced in size.
  • the torque generated in the rotating electric machine is proportional to the number of windings arranged in the armature, the current flowing through the windings, and the amount of magnetic flux interlinked with the windings.
  • the larger the size of the rotating electrical machine the greater the number of turns of the winding, and thus the amount of magnetic flux can be increased.
  • the larger the size of the rotating electrical machine the larger the magnetic pole area of the magnet provided in the field element, thereby increasing the amount of magnetic flux interlinked with the windings. Therefore, from the viewpoint of increasing the torque, the size of the rotating electrical machine is larger!
  • the coefficient Km can be expressed by equation (2).
  • symbol p is the number of pole pairs
  • symbol ⁇ is the maximum value of the amount of magnetic flux linked to the winding ⁇
  • symbol fs is the space factor of the winding
  • symbol St is the total cross-sectional area of the slot for winding
  • symbol P is The specific resistance of the winding
  • symbol 1 represents the average length of the coil.
  • the waveforms of current and magnetic flux were sine waves. Also, if the size of the rotating electrical machine is small In this case, most of the loss of the rotating electrical machine was copper loss, so iron loss was ignored.
  • Patent Document 2 discloses technologies related to the present invention.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-369467
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-335658
  • Non-Patent Document 1 Kazuo Onishi, “Torque Evaluation of Permanent Magnet Motor and Examination of Optimal Structure”, IEEJ Transactions, D Industrial Application, 1995, Vol. 115, No. 7, 930-935 Page
  • Non-Patent Document 2 Mitsuyoshi Okawa, “Introduction to Permanent Magnet Magnetic Circuit”, General Electronic Publishing Company, pages 32 to 34
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to downsize the rotating electrical machine while increasing the torque of the rotating electrical machine.
  • a rotating electric machine that is a force according to the first aspect of the present invention includes a field element (2) that has an annular shape around a predetermined axis (92), and a first element disposed on the outer peripheral side of the field element. 1 armature (11) and a second armature (12) disposed on the inner peripheral side of the field element, wherein the first armature is annular around the predetermined axis. A plurality of first teeth (111) that are arranged and respectively face the field element from the outer peripheral side, and a first winding (113) wound around each of the first teeth.
  • the first teeth include first and second end surfaces (11 la, 11 lb) that are oriented in one direction (91) along the predetermined axis and are sequentially arranged in the one direction.
  • the two armatures are annularly arranged around the predetermined axis, and are wound around each of the plurality of second teeth (121) facing the field element from the inner peripheral side and each of the second teeth.
  • Second made And the second teeth include third and fourth end faces (121a, 121b) that face in the one direction and are sequentially arranged in the one direction. The end surface of the second end surface recedes in the one direction with respect to the third end surface, and the second end surface recedes in a direction opposite to the one direction with respect to the fourth end surface.
  • the first distance (Wla), which is the distance between the first end face, is the third distance with respect to the second tooth among the outer ends (123a, 123b) of the second winding.
  • a rotating electrical machine that applies force to the second aspect of the present invention is the first aspect, wherein the one-way
  • the rotating electrical machine according to the third aspect of the present invention is the first or second aspect, wherein the end (113a) on the outer peripheral side of the first winding in one direction is described. 113b), the distance between the third end (113b) on the same side as the second end face (11 lb) with respect to the first tooth (111) and the second end face.
  • a third distance (Wlb) is outside the second winding.
  • a rotating electric machine that applies force to the fourth aspect of the present invention is the third aspect thereof, wherein the one-way
  • the rotating electrical machine according to the fifth aspect of the present invention is any one of the first to fourth aspects, wherein the first teeth (111) are arranged from the inner peripheral side to the outer peripheral side.
  • the first area (S1) which is the smallest of the cross-sectional areas with respect to the direction and the direction of force, is the direction of the cross-section with respect to the direction of the force and direction of the second tooth (121) from the inner periphery side to the outer periphery side. It is larger than the second area (S 2) which is the smallest of the areas.
  • the rotating electrical machine according to the sixth aspect of the present invention is the fifth aspect, wherein the ratio of the first area (S1) to the second area (S2) is The ratio of the distance (R1) from the predetermined axis (92) to the outer periphery of the field element (2) to the distance (R2) from the predetermined axis to the inner periphery of the field element is substantially the same. .
  • the rotating electrical machine according to the seventh aspect of the present invention is any one of the first to sixth aspects, wherein the field element (2) extends in the one direction (91).
  • the magnet (21) is present, and the length (L21) of the magnet is greater than the length (L121) of the second tooth (121) in the one direction.
  • the rotating electric machine according to the eighth aspect of the present invention is any one of the first to seventh aspects, wherein the field element (2) is provided on the predetermined shaft (92).
  • a core (22) having an annular shape around the core is provided, and the length (L22) of the core is larger than the length (L121) of the second tooth (121) in the one direction.
  • the rotating electric machine according to the ninth aspect of the present invention is the eighth aspect, wherein the field element is
  • (2) further includes a magnet (21) provided in the core (22) and extending in the one direction (91), and the length (L21) of the magnet in the one direction is Greater than length (L22).
  • the rotating electrical machine according to the tenth aspect of the present invention includes any one of the first to ninth aspects.
  • the field element (2) has a core (22) that has an annular shape around the predetermined axis (92), and the core has the first direction (91) in the first direction (91). Or the distance to the one end (22a) of the core at the same position (r2) force as the center position (rl l, rl 2) as seen from the field element side of the second teeth (11 1, 121) (L22a) is different from the distance (L22b) to the other end (22b)
  • the rotating electrical machine according to the eleventh aspect of the present invention is any one of the first to tenth aspects, wherein the first teeth (111) are arranged from the outer peripheral side to the inner peripheral side.
  • the cross section with respect to the direction (93) toward the side expands as it goes in that direction.
  • the rotating electrical machine according to the twelfth aspect of the present invention is any one of the first to eleventh aspects, wherein the second teeth (121) are arranged from the inner peripheral side to the outer peripheral side.
  • the cross section with respect to the direction of force (94) toward the side expands as it goes in that direction.
  • the compressor according to the thirteenth aspect of the present invention includes the rotating electrical machine according to any of the first to twelfth aspects as an electric motor.
  • a power blower according to the fourteenth aspect of the present invention mounts the rotating electrical machine according to any of the first to twelfth aspects as an electric motor.
  • the air conditioner according to the fifteenth aspect of the present invention includes at least one of the compressor according to the thirteenth aspect and the blower according to the fourteenth aspect.
  • the first rotating end surface is retracted in one direction with respect to the third end surface, and the second end surface is the fourth end surface. Therefore, the length of the first armature in one direction can be prevented from increasing. Therefore, even if the number of turns of the first winding is made larger than the number of turns of the second winding or the first winding is made thicker than the second winding, the rotating electrical machine does not increase in size. That is, while suppressing an increase in the size of the rotating electrical machine, it is possible to increase the torque of the rotating electrical machine by generating more magnetic flux in the first winding than in the second winding.
  • the rotating electric machine can increase the torque of the rotating electric machine while suppressing an increase in the size of the rotating electric machine.
  • the one armature is attached in one direction.
  • the length of the second armature in one direction can be substantially the same. Therefore, it is possible to increase the torque of the rotating electrical machine while suppressing an increase in the size of the rotating electrical machine.
  • the magnetic flux density of the magnetic flux flowing in the first tooth and the second tooth can be made substantially the same.
  • the first and second armatures are made substantially equal to each other so that the first and second armatures have the same operating point. Force S to maximize the amount of magnetic flux flowing through each of the armatures. Therefore, the torque of the rotating electrical machine can be increased.
  • the rotating electric machine which is the force in the eighth aspect of the present invention
  • the area of the air gap between the second armature and the field element is increased, so that the magnetic resistance of the air gap is reduced.
  • the magnetic flux generated by increasing the permeance coefficient of the magnet hereinafter referred to as “increasing the operating point”
  • the first and second A lot of magnetic flux can be linked to the windings. Therefore, it is possible to increase the torque S of the rotating electrical machine.
  • the rotating electric machine since the magnetic pole area of the magnet is increased, more magnetic flux can be generated, so that the first and second windings can be generated.
  • the amount of magnetic flux interlinking increases.
  • at least one of the ends in one direction of the magnet protrudes from the core, and the magnetic flux generated at the protruding portion of the magnet is guided to the core having a low magnetic resistance. Therefore, a short circuit of the magnetic flux at the end of the magnet is prevented.
  • most of the magnetic flux of the magnet can be linked to the first and second windings, so that the torque of the rotating electrical machine can be increased.
  • the rotating electric machine can generate a thrust force necessary for driving the rotating electric machine.
  • the rotating electric machine there is a gap between the first armature and the field element. Since the area of the air gap increases, the magnetic resistance of the air gap decreases. In a field element obtained by providing a magnet, the magnetic flux generated by increasing the operating point of the magnet can be increased, and a large amount of magnetic flux can be linked to the first and second windings. Therefore, it is possible to increase the speed of the rotating electric machine.
  • the rotating electric machine increases the area of the air gap between the second armature and the field element, so that the magnetic resistance of the air gap is reduced. To do.
  • a field element obtained by providing a magnet the magnetic flux generated by increasing the operating point of the magnet can be increased, and a large amount of magnetic flux can be linked to the first and second windings. Therefore, it is possible to increase the speed of the rotating electric machine.
  • the refrigerant can be efficiently compressed.
  • the air blower can send out the wind efficiently.
  • the air conditioner can efficiently adjust the temperature S.
  • FIG. 1 is a cross-sectional view conceptually showing a rotating electrical machine that is effective in the present invention.
  • FIG. 2 is a cross-sectional view conceptually showing a rotating electrical machine according to the present invention.
  • FIG. 3 is a sectional view conceptually showing the rotating electrical machine according to the present invention.
  • FIG. 4 is a cross-sectional view conceptually showing a rotating electrical machine according to the present invention.
  • FIG. 5 is an enlarged view of a region W1 shown in FIG.
  • FIG. 6 is a sectional view conceptually showing the rotating electrical machine according to the present invention.
  • FIG. 7 is a diagram showing the relationship between displacement X and magnetic energy Wg.
  • FIG. 1 and FIG. 2 conceptually show a rotating electrical machine 1 that is effective in the present invention.
  • the cross-sectional force perpendicular to the predetermined axis 92 that is the central axis of the rotating electrical machine 1 is shown in FIG. 2 as a cross-section at the position AA shown in FIG.
  • the rotating electrical machine 1 includes a field element 2 and armatures 11 and 12.
  • the field element 2 has an annular shape around a predetermined axis 92.
  • the field element 2 has a core 22 and a magnet 21.
  • the core 22 has an annular shape along a circumferential direction 95 around a predetermined axis 92.
  • the magnet 21 is provided on the core 22 and extends along a predetermined axis 92.
  • the magnet 21 may be embedded in the core 22 (FIGS. 1 and 2), or may be provided on at least one of the surfaces of the core 22 on the armatures 11 and 12 side.
  • the field element 2 may be composed of only the annular magnet 21.
  • FIG. 1 shows a case where the number of poles of the field element 2 is 4. Specifically, four magnets 21 are arranged in a ring around a predetermined axis 92. All of the magnets 21 have different polarities on the surfaces of the armatures 11 and 12 side. The adjacent magnets 21 along the circumferential direction 95 have different polarities on the surface on the armature 11 side.
  • the armature 11 includes a plurality of teeth 111, a yoke 112, and a winding 113, and is disposed on the outer peripheral side of the field element 2.
  • the yoke 112 has an annular shape around a predetermined axis 92.
  • Each of the teeth 111 is annularly arranged around a predetermined shaft 92, is connected to the yoke 112 from the inner peripheral side, and faces the field element 2 from the outer peripheral side.
  • Each of the teeth 11 1 has an end face 11 la, 11 lb. Both end faces 11 la and 11 lb are oriented in a direction along a predetermined axis 92.
  • the directional force from the end face 11 la to the end face 11 lb along the predetermined axis 92 is shown as one direction 91.
  • one direction 91 it is possible to grasp the end face 111a, 11 lb as follows. That is, the end faces 11 la and 11 lb face one direction 91 along the predetermined axis 92 and are sequentially arranged in the one direction 91.
  • Winding 113 is wound around each of teeth 111 and includes ends 113a and 113b. Ends 113a and 113bi, one direction 91 °, and the outer periphery of the spring 113 are the ends of the IJ.
  • the end 113ai and the teeth 111 are on the same side as the end face 11la, and the end 113b is on the same side as the end face 1 l ib with respect to the teeth 111.
  • the armature 12 includes a plurality of teeth 121, a yoke 122, and a winding 123, and is disposed on the inner peripheral side of the field element 2.
  • the yoke 122 is located around the predetermined shaft 92.
  • Each of the teeth 121 is annularly arranged around a predetermined axis 92 and is opposed to the yoke 122. Then, they are connected from the outer peripheral side and face the field element 2 from the inner peripheral side. Teeth 12
  • Each of 1 has end faces 121a and 121b.
  • the end faces 121a and 121b are both predetermined shafts 9
  • the end faces 121a and 121b can be grasped as follows using one direction 91 (Fig. 2) in the same manner as the end faces 111a and 11 lb. That is, the end surfaces 121a and 121b are in one direction along the predetermined axis 92.
  • Winding 123 is wound around each of teeth 121 and includes ends 123a and 123b. Ends 123a and 123bi, one direction 91 °, and the outer periphery of the winding spring 123 are the ends of IJ.
  • the end 123ai or tooth 121 is on the same side as the end face 121a, and the end 123b is the end face 1 with respect to the tooth 121.
  • Concentrated winding and distributed winding can be employed for winding the winding 113 around the teeth 111 and winding the winding 123 around the teeth 121, respectively.
  • series connection or parallel connection can be adopted for the connection of the windings 113 and 123.
  • a star connection, a delta connection, or the like can be used to connect the windings 113 and 123.
  • the teeth 111 and the teeth 121 have the following relationship. That is, the end surface 11 la is retracted in one direction 91 with respect to the end surface 121a. The end surface 111b is retracted in a direction opposite to the one-way 91 with respect to the end surface 121b.
  • the winding 113 and the winding 123 have the following relationship. That is, the distance Wla between the end 113a and the end surface 11 1 la is larger than the distance W2a between the end 123a and the end surface 121a. Also, the big separation between the end 113 b and the end face;! Is larger than the separation W2b between the end 123b and the end face 121b.
  • the end surface 11 la retracts in one direction 91 with respect to the end surface 121a, and the end surface 11 lb retracts in the opposite direction to the one direction 91 with respect to the end surface 121b.
  • the length L11 in one direction 91 of the armature 11 can be suppressed from increasing. Therefore, even if the number of turns of the winding 113 is made larger than that of the winding 123 or the winding 113 is made thicker than the winding 123, the rotating electrical machine 1 is not enlarged.
  • the force S is used to increase the torque of the rotating electrical machine 1 by generating more magnetic flux in the winding 113 than in the winding 123 while suppressing an increase in the size of the rotating electrical machine 1.
  • Fig. 1 shows the force and combination (P, Y) of the rotating electrical machine 1 of the combination of the number P of poles and the number Y of each of the teeth 111, 121 (P, Y) force 4, 6). It is possible to use other combinations for Y), and the same effect as the above-described rotating electrical machine 1 can be obtained.
  • the length L11 of the armature 11 and the length L12 in one direction 91 of the armature 12 can be made substantially the same. Therefore, it is possible to increase the torque of the rotating electrical machine 1 while suppressing an increase in the size of the rotating electrical machine 1.
  • the position of the end 113a of the winding 113 may be shifted in a direction opposite to the one direction from the position of the end 123a of the winding 123.
  • the mode of force is shown in Figure 3! /
  • the rotating electrical machine 1 shown in FIG. 3 further includes a rotating shaft 99 and an end plate 5.
  • End plate 5 is unidirectional
  • the field element 2 is connected to the rotating shaft 99 through the end plate 5.
  • the ability to wind 113 around teeth 111 is S. Therefore, the magnetic flux generated in the armature 11 can be increased without significantly increasing the size of the rotating electrical machine 1, and thus the torque of the rotating electrical machine 1 can be increased.
  • the position of the end 113b of the winding 113 may be shifted in one direction from the position of the end 123b of the winding 123.
  • FIG. 1 shows the cross-sectional area S 1 of the teeth 111 with respect to the direction and the direction of the force from the inner peripheral side to the outer peripheral side.
  • Area S1 is the smallest of the cross-sectional areas of teeth 111.
  • the cross-sectional area S 2 of the teeth 121 with respect to the direction from the inner peripheral side to the outer peripheral side and the direction of the teeth.
  • Area S2 is the smallest of the cross-sectional areas of teeth 121.
  • the area S1 is preferably larger than the area S2.
  • the ratio force of the area S1 to the area S2 is substantially the same as the ratio to the distance R2 from the predetermined axis 92 to the inner periphery of the field element 2 Is done.
  • the magnetic flux density of the interlinkage magnetic flux flowing through the teeth 111 and the magnetic flux density of the interlinkage magnetic flux flowing through the teeth 121 can be made substantially the same for the magnetic flux of the field element 2.
  • the magnetic resistances of the armatures 11, 12 are substantially equal to each other so that the armatures 11, 12 have the same operating point. The amount of magnetic flux flowing through each can be maximized. Therefore, it is measured by the force that increases the torque of the rotating electrical machine 1.
  • the magnetic flux density of the interlinkage magnetic flux is made substantially the same in the teeth 111 and 121, so that the magnetic resistance in the teeth 111 and the magnetic resistance in the teeth 121 are made almost the same. Touch with force S.
  • FIG. 4 is a cross section of the rotating electrical machine 1 at the position A—A shown in FIG. 1, and conceptually shows the shapes of the teeth 111 and the teeth 121.
  • the teeth 111 have a direction force from the outer peripheral side to the inner peripheral side, and a cross-sectional force with respect to the lateral direction 93.
  • the teeth 121 have a direction force from the inner peripheral side to the outer peripheral side, a cross-sectional force with respect to the direction 94, and expand in the direction 94. According to the force and the shape, much of the magnetic flux flowing from the field element 2 can be guided to the teeth 121. Moreover, as described above, the magnetic resistance of the air gap between the armature 12 and the field element 2 is reduced.
  • FIG. 5 is an enlarged view of the region W1 surrounded by the alternate long and short dash line in FIG. Teeth 12
  • Teeth 111 is the same as Teeth 111.
  • the teeth 111 have magnetic bodies 51 and 52.
  • the magnetic body 51 extends from the yoke 112 in the same direction as the direction 93 in which the teeth 111 to which the magnetic body 51 belongs are projected.
  • the magnetic body 52 is provided at one end 51 a in the direction 91 of the magnetic body 51. Magnetic body 52
  • the other end 51b in the direction 91 of the magnetic body 51 can also be provided.
  • the magnetic body 52 is integral and includes a root portion 521 and a flange portion 522.
  • the root portion 521 extends from the yoke in the same direction as the direction 93 in which the tooth 111 to which the root portion 521 belongs protrudes.
  • the flange 522 extends from the end of the root 521 opposite to the yoke 112 to the side opposite to the magnetic body 51. In FIG. 5, the collar 522 extends along the direction 91.
  • the magnetic body 52 is integrated, so that the root portion 521 and the flange portion 522 can be formed simply by bending the plate-like magnetic body 52, for example. Is easy to form.
  • the magnetic body 51 may include a plurality of magnetic plates 511 stacked in the direction 91. According to the magnetic body 51, iron loss can be reduced.
  • the length L21 in one direction 91 of the magnet 21 is larger than the length L121 in one direction 91 of the tooth 121.
  • the magnetic pole area of the magnet 21 can be increased, so that a large amount of magnetic flux can be linked to the windings 113 and 123, thereby increasing the torque of the rotating electrical machine 1.
  • the length L21 is larger than the length L22 in one direction 91 of the core 22 (FIGS. 2 to 4).
  • at least one of the ends 21 a and 21 b in one direction 91 of the magnet 21 protrudes from the core 22.
  • the magnetic flux generated at the protruding portion of the magnet 21 is guided to the core 22 having a low magnetic resistance. Therefore, the projecting ends 21a and 21b prevent the magnetic flux from being short-circuited to one force of the magnetic pole surface of the magnet 21 and the other.
  • FIGS. 2 to 4 show the cases where the ends 21a and 21b are protruded from the core 22! /.
  • FIGS. 2 to 4 further show the case where the length of the core 22 is greater than the length L 121 of the force tooth 121.
  • the force the area of the air gap between the armature 12 and the field element 2 is increased, so that the magnetic resistance of the air gap is reduced.
  • the field element 2 obtained by providing the magnet 21 most of the magnetic flux of the magnet 21 can be linked to the windings 113 and 123 by increasing the operating point of the magnet. Therefore, the force S to increase the torque of the rotating electrical machine 1 is reduced.
  • FIG. 6 is a cross section of the rotating electrical machine 1 at the position A—A shown in FIG. 1, and conceptually shows the shape of the field element 2.
  • the tooth 111 has a center at a position rl l as viewed from the field element 2 side.
  • the tooth 121 has a center at the position r 12 as viewed from the field element 2 side.
  • the field element 2 has a distance L22a from the same position r2 as the position rl l or the position rl 2 to the one end 22a of the core 22 and a distance L22b to the other end 22b. .
  • the distance L22b is larger than the distance L22a.
  • FIG. 6 shows the case where the position rl 1 and the position rl 2 coincide with each other in one direction 91! /.
  • the thrust S required to generate the thrust force required to drive the rotating electrical machine 1 is used.
  • the position of the center of the field element 2 is displaced from the center position rl l, rl 2 of the tooth 111 or the tooth 121 in the one direction 91.
  • the position of the center of the field element 2 is displaced from the position rl l, rl 2 of the center of the teeth 111 or 121 in the direction opposite to the one direction 91.
  • the distance L22a from the position r2 and the distance L22b can be made different. At this time, as described below, the magnitude of the displacement of the field element 2 with respect to the teeth 1 11 and 121 is small. Even so, the necessary thrust force can be generated.
  • FIG. 7 shows the magnitude of the displacement of the field element 2 with respect to the teeth 111 and 121 (hereinafter simply referred to as “displacement”) x (horizontal axis) and the magnetic energy Wg stored in the air gap (vertical axis ).
  • Increasing the displacement X to the value xl hardly reduces the magnetic energy Wg. This is because the air gap magnetic flux density hardly decreases.
  • the displacement X is in the range from the value xl to the value x2, the magnetic energy Wg decreases remarkably as the displacement X increases.
  • the magnetic energy Wg asymptotically approaches 0 as the displacement X further increases from the value x2.
  • the thrust force is obtained by differentiating the magnetic energy Wg expressed as a function of the displacement X with respect to the displacement X.
  • the relationship between the displacement X and the magnetic energy Wg of a rotating electrical machine provided with only one armature is indicated by a broken line 201. It can be seen that the rotating electrical machine has a smaller change amount (differentiation at the displacement X) with respect to the displacement X of the magnetic energy Wg than the rotating electrical machine 1. That is, when the displacement X is between the value xl and the value x2, the rotating electrical machine 1 has a significant thrust force because the change amount of the magnetic energy Wg is large even if the change amount of the displacement X is small. Change.
  • the thrust force can suppress vibration in one direction 91 of the rotating electrical machine 1.
  • the rotating electrical machine 1 when the rotating electrical machine 1 is mounted on a compressor or the like, noise due to vibration can be reduced.
  • the rotating electrical machine 1 is mounted on a playback device such as a DVD (Digital Versatile Disk) or a recorder and used as an actuator, the power S can be reduced by reducing errors in reading and writing.
  • a DVD Digital Versatile Disk
  • any of the rotating electrical machines 1 described above can be mounted on, for example, a compressor that compresses a refrigerant, an air blower that blows air, or the like.
  • the power, the compressor and the blower can be installed on the air conditioner.
  • small rotating electrical machines are installed. It is desirable to employ a rotating electrical machine 1 that requires power to the present invention and is suitable for the present invention.
  • the rotating electrical machine 1 can be driven as a generator, for example.
  • the end surface 11 la may protrude in the direction opposite to the one direction 91 with respect to the end surface 121a, or the end surface 111b may be in one direction with respect to the end surface 121b.

Abstract

An armature (11) is placed on the outer peripheral side of a field element (2). Teeth (111) face the field element (2) from the outer peripheral side. The teeth (111) include end faces (111a, 111b) facing one direction (91) along a predetermined axis (92) and sequentially arranged in the one direction (91). The armature (12) is placed on the inner peripheral side of the field element (2). Teeth (121) include end faces (121a, 121b) facing the one direction (91) along the predetermined axis (92) and sequentially arranged in the one direction (91). The end face (111a) is receded relative to the end face (121a) in the one direction (91). The end face (111b) is receded relative to the end face (121b) in the direction opposite the one direction (91). The distance (W1a) between an end (113a) of a winding wire (113) and the end face (111a) is greater than the distance (W2a) between an end (123a) of a winding wire (123) and the end face (121a).

Description

明 細 書  Specification
回転電機、圧縮機、送風機、空気調和機  Rotating electric machine, compressor, blower, air conditioner
技術分野  Technical field
[0001] 本発明は回転電機に関し、特に二つの電機子を有する回転電機に関する。  [0001] The present invention relates to a rotating electrical machine, and more particularly, to a rotating electrical machine having two armatures.
背景技術  Background art
[0002] 電動機などの回転電機は、小型化され、効率が高められることが望ましい。例えば 、磁束を磁石で励磁する電動機は、サイズを小さくすることが可能である。  [0002] It is desirable that a rotating electrical machine such as an electric motor is miniaturized and has high efficiency. For example, an electric motor that excites magnetic flux with a magnet can be reduced in size.
[0003] 一方、回転電機で発生するトルクは、電機子に配置された巻線の巻数、巻線に流 れる電流、及び巻線に鎖交する磁束の量に比例する。回転電機のサイズは大きい程 、巻線の巻数を増やすことができ、以つて磁束の量を増やすことができる。また、回転 電機のサイズは大きい程、界磁子に設けられる磁石の磁極面積を大きくすることがで き、以つて巻線に鎖交する磁束の量を増やすことができる。よって、トルクを高めると V、う観点からは、回転電機のサイズは大き!/、方が望ましレ、。  [0003] On the other hand, the torque generated in the rotating electric machine is proportional to the number of windings arranged in the armature, the current flowing through the windings, and the amount of magnetic flux interlinked with the windings. The larger the size of the rotating electrical machine, the greater the number of turns of the winding, and thus the amount of magnetic flux can be increased. In addition, the larger the size of the rotating electrical machine, the larger the magnetic pole area of the magnet provided in the field element, thereby increasing the amount of magnetic flux interlinked with the windings. Therefore, from the viewpoint of increasing the torque, the size of the rotating electrical machine is larger!
[0004] すなわち、発生するトルクの増大と、回転電機の小型化とはトレードオフの関係にあ  That is, an increase in the generated torque and a reduction in the size of the rotating electrical machine have a trade-off relationship.
[0005] 磁石で励磁する電動機において、トルク Tと許容損失 Wcとの関係は、式(1)で表さ れる。ここで、係数 Kmはモータコンスタントと通称される。かかる関係は、例えば下掲 の非特許文献 1に紹介されてレ、る。 [0005] In an electric motor excited by a magnet, the relationship between torque T and allowable loss Wc is expressed by equation (1). Here, the coefficient Km is commonly called motor constant. Such a relationship is introduced, for example, in Non-Patent Document 1 below.
[0006] [数 1]  [0006] [Equation 1]
T = W c - K m ' ■ · ( 1 ) T = W c-K m '■ (1)
[0007] 温度上昇と放熱の関係を考慮すれば、寸法が同一の電動機であって冷却条件が 同じである場合には、許容損失 Wcはほぼ一定であると考えることができる。この場合 、係数 Kmが大きい程、トルク Tが大きくなる。  [0007] In consideration of the relationship between temperature rise and heat dissipation, it can be considered that the allowable loss Wc is substantially constant when the motors have the same dimensions and the cooling conditions are the same. In this case, the torque T increases as the coefficient Km increases.
[0008] 係数 Kmは式(2)で表すことができる。ここで符号 pは極対数、符号 Φは巻線に鎖 交する磁束の量の最大値 Φ、符号 fsは巻線の占積率、符号 Stは巻線用スロットの全 断面積、符号 Pは巻線の固有抵抗、符号 1はコイルの平均長を、それぞれ表す。電 流及び磁束の波形はそれぞれ正弦波状とした。また、回転電機のサイズが小さい場 合には、回転電機の損失のほとんどは銅損であるため、鉄損を無視した。 [0008] The coefficient Km can be expressed by equation (2). Where symbol p is the number of pole pairs, symbol Φ is the maximum value of the amount of magnetic flux linked to the winding Φ, symbol fs is the space factor of the winding, symbol St is the total cross-sectional area of the slot for winding, and symbol P is The specific resistance of the winding, symbol 1 represents the average length of the coil. The waveforms of current and magnetic flux were sine waves. Also, if the size of the rotating electrical machine is small In this case, most of the loss of the rotating electrical machine was copper loss, so iron loss was ignored.
[0009] [数 2]
Figure imgf000004_0001
[0009] [Equation 2]
Figure imgf000004_0001
[0010] 係数 Kmを大きくするためには、以下の手段(i)〜(vi)のいずれか少なくとも一つが 有効であること力 式(2)からわかる。  It can be seen from the force equation (2) that at least one of the following means (i) to (vi) is effective for increasing the coefficient Km.
[0011] (i)巻線の占積率 fsを大きくすること、 [0011] (i) Increasing the space factor fs of the winding,
(ii)コイルの平均長 1を小さくすること、  (ii) reducing the average coil length 1;
(iii)巻線の固有抵抗 pを小さくすること、  (iii) reducing the specific resistance p of the winding;
(iv)巻線に鎖交する磁束量の最大値 Φを大きくすること、  (iv) Increasing the maximum value Φ of the amount of magnetic flux linked to the winding,
(V)極対数 pを大きくすること、  (V) Increasing the number of pole pairs p,
(vi)巻線用スロットの全断面積 Stを大きくすること。  (vi) To increase the total cross-sectional area St of the winding slot.
[0012] 全断面積 Stを大きくすると!/、う観点から(手段 )、二つの電機子を有するモータが 提案されている。具体的には、環状を呈する界磁子に対して、内周側及び外周側の それぞれに電機子が設けられる。当該電動機は、「ダブルアマチュア電動機」と通称 されている。かかる技術は、例えば特許文献 1に開示されている。  [0012] From the viewpoint of increasing the total cross sectional area St !, a motor having two armatures has been proposed. Specifically, an armature is provided on each of the inner peripheral side and the outer peripheral side of the annular field element. This electric motor is commonly called “double amateur electric motor”. Such a technique is disclosed in Patent Document 1, for example.
[0013] その他、本発明に関連する技術が特許文献 2及び非特許文献 2に開示されている [0013] In addition, technologies related to the present invention are disclosed in Patent Document 2 and Non-Patent Document 2.
Yes
[0014] 特許文献 1 :特開 2002— 369467号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2002-369467
特許文献 2:特開 2002— 335658号公報  Patent Document 2: Japanese Patent Laid-Open No. 2002-335658
非特許文献 1:大西和夫、「永久磁石モータのトルク評価と最適構造の検討」、電気 学会論文誌 D産業応用部門誌、平成 7年、第 115巻、第 7号、第 930頁〜第 935頁 非特許文献 2 :大川光吉、「永久磁石磁気回路入門」、総合電子出版社、第 32頁〜 第 34頁  Non-Patent Document 1: Kazuo Onishi, “Torque Evaluation of Permanent Magnet Motor and Examination of Optimal Structure”, IEEJ Transactions, D Industrial Application, 1995, Vol. 115, No. 7, 930-935 Page Non-Patent Document 2: Mitsuyoshi Okawa, “Introduction to Permanent Magnet Magnetic Circuit”, General Electronic Publishing Company, pages 32 to 34
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0015] しかし、従来の技術では、回転電機を小型化すればトルクが小さくなるおそれがあ つた。 [0016] 本発明は上述した事情に鑑みてなされたものであり、回転電機のトルクを大きくしつ つも、当該回転電機を小型化することが目的とされる。 [0015] However, with the conventional technology, there is a concern that the torque may be reduced if the rotating electrical machine is downsized. [0016] The present invention has been made in view of the above-described circumstances, and an object thereof is to downsize the rotating electrical machine while increasing the torque of the rotating electrical machine.
課題を解決するための手段  Means for solving the problem
[0017] この発明の第 1の態様に力、かる回転電機は、所定の軸(92)の周りで環状を呈する 界磁子(2)と、前記界磁子の外周側に配置される第 1の電機子(11)と、前記界磁子 の内周側に配置される第 2の電機子(12)とを備え、前記第 1の電機子は、前記所定 の軸の周りで環状に配置され、それぞれ界磁子に外周側から対向する第 1のティー ス(11 1)の複数と、前記第 1のティースのそれぞれに巻回される第 1の巻線(113)と を有し、前記第 1のティースは、前記所定の軸に沿う一方向(91)を向き、前記一方向 へと順に配置される第 1及び第 2の端面(11 la, 11 lb)を含み、前記第 2の電機子は 、前記所定の軸の周りで環状に配置され、それぞれ界磁子に内周側から対向する第 2のティース(121 )の複数と、前記第 2のティースのそれぞれに巻回される第 2の巻線 (123)とを有し、前記第 2のティースは、前記一方向を向き、前記一方向へと順に配 置される第 3及び第 4の端面(121a, 121b)を含み、前記第 1の端面は、前記第 3の 端面に対して前記一方向へと退き、前記第 2の端面は、前記第 4の端面に対して前 記一方向とは反対方向へと退き、前記一方向について、前記第 1の巻線の外周側の 端(113a, 113b)のうち前記第 1のティースに対して前記第 1の端面(11 l a)と同じ 側にある第 1の端(113a)と、当該第 1の端面との間の距離である第 1の距離 (Wla) は、前記第 2の巻線の外周側の端(123a, 123b)のうち前記第 2のティースに対して 前記第 3の端面(121a)と同じ側にある第 2の端(123a)と、当該第 3の端面との間の 距離である第 2の距離 (W2a)よりも大きレ、。  [0017] A rotating electric machine that is a force according to the first aspect of the present invention includes a field element (2) that has an annular shape around a predetermined axis (92), and a first element disposed on the outer peripheral side of the field element. 1 armature (11) and a second armature (12) disposed on the inner peripheral side of the field element, wherein the first armature is annular around the predetermined axis. A plurality of first teeth (111) that are arranged and respectively face the field element from the outer peripheral side, and a first winding (113) wound around each of the first teeth. The first teeth include first and second end surfaces (11 la, 11 lb) that are oriented in one direction (91) along the predetermined axis and are sequentially arranged in the one direction. The two armatures are annularly arranged around the predetermined axis, and are wound around each of the plurality of second teeth (121) facing the field element from the inner peripheral side and each of the second teeth. Second made And the second teeth include third and fourth end faces (121a, 121b) that face in the one direction and are sequentially arranged in the one direction. The end surface of the second end surface recedes in the one direction with respect to the third end surface, and the second end surface recedes in a direction opposite to the one direction with respect to the fourth end surface. A first end (113a) on the same side as the first end surface (11 la) with respect to the first teeth among the outer peripheral ends (113a, 113b) of the first winding; The first distance (Wla), which is the distance between the first end face, is the third distance with respect to the second tooth among the outer ends (123a, 123b) of the second winding. Greater than the second distance (W2a), which is the distance between the second end (123a) on the same side as the end face (121a) and the third end face.
[0018] この発明の第 2の態様に力、かる回転電機は、その第 1の態様であって、前記一方向  [0018] A rotating electrical machine that applies force to the second aspect of the present invention is the first aspect, wherein the one-way
(91 )につ!/、て、前記第 1の端(113a)の位置と前記第 2の端(123a)の位置とは略一 致する。  (91), the position of the first end (113a) and the position of the second end (123a) are substantially the same.
[0019] この発明の第 3の態様に力、かる回転電機は、その第 1又は第 2の態様であって、前 記一方向について、前記第 1の巻線の外周側の前記端(113a, 113b)のうち前記第 1のティース(111 )に対して前記第 2の端面(11 lb)と同じ側にある第 3の端(113b) と、当該第 2の端面との間の距離である第 3の距離 (Wlb)は、前記第 2の巻線の外 周側の前記端(123a, 123b)のうち前記第 2のティース(121)に対して前記第 4の端 面(121b)と同じ側にある第 4の端(123b)と、当該第 4の端面との間の距離である第 4の距離 (W2b)よりも大きい。 [0019] The rotating electrical machine according to the third aspect of the present invention is the first or second aspect, wherein the end (113a) on the outer peripheral side of the first winding in one direction is described. 113b), the distance between the third end (113b) on the same side as the second end face (11 lb) with respect to the first tooth (111) and the second end face. A third distance (Wlb) is outside the second winding. A fourth end (123b) on the same side as the fourth end surface (121b) with respect to the second teeth (121) of the peripheral ends (123a, 123b); It is larger than the fourth distance (W2b), which is the distance to the end face.
[0020] この発明の第 4の態様に力、かる回転電機は、その第 3の態様であって、前記一方向 [0020] A rotating electric machine that applies force to the fourth aspect of the present invention is the third aspect thereof, wherein the one-way
(91)につ!/、て、前記第 3の端(113b)の位置と前記第 4の端(123b)の位置とは略 一致する。  In (91), the position of the third end (113b) and the position of the fourth end (123b) substantially coincide with each other.
[0021] この発明の第 5の態様に力、かる回転電機は、その第 1ないし第 4の態様のいずれか であって、前記第 1のティース(111)の、内周側から外周側へと向力、う方向に対する 断面の面積のうち最小である第 1の面積(S1)は、前記第 2のティース(121)の、内 周側から外周側へと向力、う方向に対する断面の面積のうち最小である第 2の面積(S 2)よりも大きい。  [0021] The rotating electrical machine according to the fifth aspect of the present invention is any one of the first to fourth aspects, wherein the first teeth (111) are arranged from the inner peripheral side to the outer peripheral side. The first area (S1), which is the smallest of the cross-sectional areas with respect to the direction and the direction of force, is the direction of the cross-section with respect to the direction of the force and direction of the second tooth (121) from the inner periphery side to the outer periphery side. It is larger than the second area (S 2) which is the smallest of the areas.
[0022] この発明の第 6の態様に力、かる回転電機は、その第 5の態様であって、前記第 1の 面積(S 1)の前記第 2の面積(S2)に対する比率は、前記所定の軸(92)から前記界 磁子(2)の外周までの距離 (R1)の、前記所定の軸から前記界磁子の内周までの距 離 (R2)に対する比率と略同一である。  [0022] The rotating electrical machine according to the sixth aspect of the present invention is the fifth aspect, wherein the ratio of the first area (S1) to the second area (S2) is The ratio of the distance (R1) from the predetermined axis (92) to the outer periphery of the field element (2) to the distance (R2) from the predetermined axis to the inner periphery of the field element is substantially the same. .
[0023] この発明の第 7の態様に力、かる回転電機は、その第 1ないし第 6の態様のいずれか であって、前記界磁子(2)は、前記一方向(91)に延在する磁石(21)を有し、前記 一方向について、前記磁石の長さ(L21)は前記第 2のティース(121)の長さ(L121 )よりあ大さい。  [0023] The rotating electrical machine according to the seventh aspect of the present invention is any one of the first to sixth aspects, wherein the field element (2) extends in the one direction (91). The magnet (21) is present, and the length (L21) of the magnet is greater than the length (L121) of the second tooth (121) in the one direction.
[0024] この発明の第 8の態様に力、かる回転電機は、その第 1ないし第 7の態様のいずれか であって、前記界磁子(2)は、前記所定の軸(92)の周りで環状を呈するコア(22)を 有し、前記一方向について、前記コアの長さ(L22)は前記第 2のティース(121)の長 さ(L121)よりも大きい。  [0024] The rotating electric machine according to the eighth aspect of the present invention is any one of the first to seventh aspects, wherein the field element (2) is provided on the predetermined shaft (92). A core (22) having an annular shape around the core is provided, and the length (L22) of the core is larger than the length (L121) of the second tooth (121) in the one direction.
[0025] この発明の第 9の態様に力、かる回転電機は、その第 8の態様であって、前記界磁子  [0025] The rotating electric machine according to the ninth aspect of the present invention is the eighth aspect, wherein the field element is
(2)は、前記コア(22)に設けられ、前記一方向(91)に延在する磁石(21)を更に有 し、前記一方向について、前記磁石の長さ(L21)は前記コアの長さ(L22)よりも大き い。  (2) further includes a magnet (21) provided in the core (22) and extending in the one direction (91), and the length (L21) of the magnet in the one direction is Greater than length (L22).
[0026] この発明の第 10の態様に力、かる回転電機は、その第 1ないし第 9の態様のいずれ かであって、前記界磁子(2)は、前記所定の軸(92)の周りで環状を呈するコア(22) を有し、前記コアは、前記一方向(91)について、前記第 1または前記第 2のティース (11 1 , 121)の界磁子側から見た中心の位置 (rl l , rl 2)と同じ位置 (r2)力 の、前 記コアの一端(22a)までの距離 (L22a)と、他端(22b)までの距離 (L22b)とが異な [0026] The rotating electrical machine according to the tenth aspect of the present invention includes any one of the first to ninth aspects. The field element (2) has a core (22) that has an annular shape around the predetermined axis (92), and the core has the first direction (91) in the first direction (91). Or the distance to the one end (22a) of the core at the same position (r2) force as the center position (rl l, rl 2) as seen from the field element side of the second teeth (11 1, 121) (L22a) is different from the distance (L22b) to the other end (22b)
[0027] この発明の第 11の態様に力、かる回転電機は、その第 1ないし第 10の態様のいず れかであって、前記第 1のティース(111)は、外周側から内周側に向かう方向(93) に対する断面が、当該方向に行くに従って拡がる。 [0027] The rotating electrical machine according to the eleventh aspect of the present invention is any one of the first to tenth aspects, wherein the first teeth (111) are arranged from the outer peripheral side to the inner peripheral side. The cross section with respect to the direction (93) toward the side expands as it goes in that direction.
[0028] この発明の第 12の態様に力、かる回転電機は、その第 1ないし第 11の態様のいず れかであって、前記第 2のティース(121)は、内周側から外周側へと向力、う方向(94) に対する断面が、当該方向に行くに従って拡がる。 [0028] The rotating electrical machine according to the twelfth aspect of the present invention is any one of the first to eleventh aspects, wherein the second teeth (121) are arranged from the inner peripheral side to the outer peripheral side. The cross section with respect to the direction of force (94) toward the side expands as it goes in that direction.
[0029] この発明の第 13の態様に力、かる圧縮機は、その第 1ないし第 12の態様のいずれか の回転電機を電動機として搭載する。 [0029] The compressor according to the thirteenth aspect of the present invention includes the rotating electrical machine according to any of the first to twelfth aspects as an electric motor.
[0030] この発明の第 14の態様に力、かる送風機は、その第 1ないし第 12の態様のいずれか の回転電機を電動機として搭載する。 [0030] A power blower according to the fourteenth aspect of the present invention mounts the rotating electrical machine according to any of the first to twelfth aspects as an electric motor.
[0031] この発明の第 15の態様に力、かる空気調和機は、その第 13の態様の圧縮機、及び その第 14の態様の送風機の少なくともいずれか一方を搭載する。 [0031] The air conditioner according to the fifteenth aspect of the present invention includes at least one of the compressor according to the thirteenth aspect and the blower according to the fourteenth aspect.
発明の効果  The invention's effect
[0032] この発明の第 1の態様または第 3の態様に力、かる回転電機によれば、第 1の端面は 第 3の端面に対して一方向へと退き、第 2の端面は第 4の端面に対して一方向とは反 対方向へと退レ、て!/、るので、第 1の電機子の一方向につ!/、ての長さが大きくなること を抑制できる。よって、第 1の巻線の巻数を第 2の巻線の巻数よりも大きくしたり、第 1 の巻線を第 2の巻線よりも太くしたりしても、回転電機は大型化しない。すなわち、回 転電機の大型化を抑制しつつも、第 2の巻線に比べて第 1の巻線において多くの磁 束を発生させて、回転電機のトルクを大きくすることができる。  [0032] According to the first aspect or the third aspect of the present invention, the first rotating end surface is retracted in one direction with respect to the third end surface, and the second end surface is the fourth end surface. Therefore, the length of the first armature in one direction can be prevented from increasing. Therefore, even if the number of turns of the first winding is made larger than the number of turns of the second winding or the first winding is made thicker than the second winding, the rotating electrical machine does not increase in size. That is, while suppressing an increase in the size of the rotating electrical machine, it is possible to increase the torque of the rotating electrical machine by generating more magnetic flux in the first winding than in the second winding.
[0033] この発明の第 2の態様に力、かる回転電機によれば、回転電機が大型化することを抑 制しつつも、回転電機のトルクを大きくすることができる。  According to the second aspect of the present invention, the rotating electric machine can increase the torque of the rotating electric machine while suppressing an increase in the size of the rotating electric machine.
[0034] この発明の第 4の態様に力、かる回転電機によれば、第 1の電機子の一方向につい ての長さと、第 2の電機子の一方向についての長さとをほぼ同じすることができる。よ つて、回転電機が大型化することを抑制しつつも、回転電機のトルクを大きくすること ができる。 [0034] According to the fourth aspect of the present invention, according to the rotating electric machine, the one armature is attached in one direction. And the length of the second armature in one direction can be substantially the same. Therefore, it is possible to increase the torque of the rotating electrical machine while suppressing an increase in the size of the rotating electrical machine.
[0035] この発明の第 5の態様または第 6の態様に力、かる回転電機によれば、界磁子の磁 束について、第 1のティースに流れる磁束の磁束密度と、第 2のティースに流れる磁 束の磁束密度とをほぼ同じにすることができる。そして、磁石を設けて得た界磁子に おいては、第 1及び第 2の電機子のそれぞれの磁気抵抗をほぼ等しくすることで、磁 石の動作点が同じときに第 1及び第 2の電機子のそれぞれに流れる磁束の量を最大 にすること力 Sできる。よって、回転電機のトノレクを大きくすることができる。  According to the fifth or sixth aspect of the present invention, according to the rotating electric machine, with respect to the magnetic flux of the field element, the magnetic flux density of the magnetic flux flowing in the first tooth and the second tooth The magnetic flux density of the flowing magnetic flux can be made substantially the same. In the field element obtained by providing the magnet, the first and second armatures are made substantially equal to each other so that the first and second armatures have the same operating point. Force S to maximize the amount of magnetic flux flowing through each of the armatures. Therefore, the torque of the rotating electrical machine can be increased.
[0036] この発明の第 7の態様に力、かる回転電機によれば、磁石の磁極面積を大きくするこ とで、第 1及び第 2の巻線に多くの磁束を鎖交させることができる。よって、回転電機 の卜ノレクを大さくすることカでさる。  [0036] According to the rotating electrical machine that provides power in the seventh aspect of the present invention, a large amount of magnetic flux can be linked to the first and second windings by increasing the magnetic pole area of the magnet. . Therefore, it is necessary to increase the size of the rotating electrical machine.
[0037] この発明の第 8の態様に力、かる回転電機によれば、第 2の電機子と界磁子との間の エアギャップの面積が増大するので、当該エアギャップの磁気抵抗が低減する。そし て、磁石を設けて得た界磁子においては、磁石のパーミアンス係数を大きくする(以 下では、「動作点を高める」という。)ことで発生する磁束を増大させ、第 1及び第 2の 巻線に多くの磁束を鎖交させることができる。よって、回転電機のトルクを大きくするこ と力 Sできる。  [0037] According to the rotating electric machine which is the force in the eighth aspect of the present invention, the area of the air gap between the second armature and the field element is increased, so that the magnetic resistance of the air gap is reduced. To do. In the field element obtained by providing the magnet, the magnetic flux generated by increasing the permeance coefficient of the magnet (hereinafter referred to as “increasing the operating point”) is increased, and the first and second A lot of magnetic flux can be linked to the windings. Therefore, it is possible to increase the torque S of the rotating electrical machine.
[0038] この発明の第 9の態様に力、かる回転電機によれば、磁石の磁極面積が大きくなるの でより多くの磁束を発生させることができるので、第 1及び第 2の巻線に鎖交する磁束 の量が増える。しかも、磁石の一方向についての端の少なくとも一方がコアから突出 し、磁石の突出した部分で生じた磁束は、磁気抵抗の低いコアへと導かれる。よって 、磁石の当該端での磁束の短絡が防止される。これにより、第 1及び第 2の巻線に磁 石の磁束の多くを鎖交させることができ、以つて回転電機のトルクを大きくすることが できる。  [0038] According to the ninth aspect of the present invention, according to the rotating electric machine, since the magnetic pole area of the magnet is increased, more magnetic flux can be generated, so that the first and second windings can be generated. The amount of magnetic flux interlinking increases. In addition, at least one of the ends in one direction of the magnet protrudes from the core, and the magnetic flux generated at the protruding portion of the magnet is guided to the core having a low magnetic resistance. Therefore, a short circuit of the magnetic flux at the end of the magnet is prevented. As a result, most of the magnetic flux of the magnet can be linked to the first and second windings, so that the torque of the rotating electrical machine can be increased.
[0039] この発明の第 10の態様に力、かる回転電機によれば、回転電機を駆動する際に必 要なスラスト力を発生させることができる。  [0039] According to the tenth aspect of the present invention, the rotating electric machine can generate a thrust force necessary for driving the rotating electric machine.
[0040] この発明の第 1 1の態様に力、かる回転電機によれば、第 1の電機子と界磁子との間 のエアギャップの面積が増大するので、当該エアギャップの磁気抵抗が低減する。磁 石を設けて得た界磁子においては、磁石の動作点を高めることで発生する磁束を増 大させ、第 1及び第 2の巻線に多くの磁束を鎖交させることができる。よって、回転電 機の卜ノレクを大きくすることカできる。 [0040] According to the first aspect of the present invention, according to the rotating electric machine, there is a gap between the first armature and the field element. Since the area of the air gap increases, the magnetic resistance of the air gap decreases. In a field element obtained by providing a magnet, the magnetic flux generated by increasing the operating point of the magnet can be increased, and a large amount of magnetic flux can be linked to the first and second windings. Therefore, it is possible to increase the speed of the rotating electric machine.
[0041] この発明の第 12の態様に力、かる回転電機によれば、第 2の電機子と界磁子との間 のエアギャップの面積が増大するので、当該エアギャップの磁気抵抗が低減する。磁 石を設けて得た界磁子においては、磁石の動作点を高めることで発生する磁束を増 大させ、第 1及び第 2の巻線に多くの磁束を鎖交させることができる。よって、回転電 機の卜ノレクを大きくすることカできる。 [0041] According to the twelfth aspect of the present invention, the rotating electric machine increases the area of the air gap between the second armature and the field element, so that the magnetic resistance of the air gap is reduced. To do. In a field element obtained by providing a magnet, the magnetic flux generated by increasing the operating point of the magnet can be increased, and a large amount of magnetic flux can be linked to the first and second windings. Therefore, it is possible to increase the speed of the rotating electric machine.
[0042] この発明の第 13の態様に力、かる圧縮機によれば、効率良く冷媒を圧縮することが できる。 [0042] According to the thirteenth aspect of the present invention, according to the compressor, the refrigerant can be efficiently compressed.
[0043] この発明の第 14の態様に力、かる送風機によれば、効率よく風を送り出すことができ  [0043] According to the fourteenth aspect of the present invention, the air blower can send out the wind efficiently.
[0044] この発明の第 15の態様に力、かる空気調和機によれば、効率良く温度を調節するこ と力 Sできる。 [0044] According to the fifteenth aspect of the present invention, the air conditioner can efficiently adjust the temperature S.
図面の簡単な説明  Brief Description of Drawings
[0045] [図 1]本発明に力、かる回転電機を概念的に示す断面図である。  FIG. 1 is a cross-sectional view conceptually showing a rotating electrical machine that is effective in the present invention.
[図 2]本発明にかかる回転電機を概念的に示す断面図である。  FIG. 2 is a cross-sectional view conceptually showing a rotating electrical machine according to the present invention.
[図 3]本発明にかかる回転電機を概念的に示す断面図である。  FIG. 3 is a sectional view conceptually showing the rotating electrical machine according to the present invention.
[図 4]本発明にかかる回転電機を概念的に示す断面図である。  FIG. 4 is a cross-sectional view conceptually showing a rotating electrical machine according to the present invention.
[図 5]図 4で示される領域 W1を拡大して示す図である。  FIG. 5 is an enlarged view of a region W1 shown in FIG.
[図 6]本発明にかかる回転電機を概念的に示す断面図である。  FIG. 6 is a sectional view conceptually showing the rotating electrical machine according to the present invention.
[図 7]変位 Xと磁気エネルギー Wgとの関係を示す図である。  FIG. 7 is a diagram showing the relationship between displacement X and magnetic energy Wg.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0046] 1.回転電機の構造 [0046] 1. Structure of rotating electrical machine
図 1及び図 2は、本発明に力、かる回転電機 1を概念的に示す。図 1では、回転電機 1の中心軸である所定の軸 92に直交する断面力 図 2では、図 1に示される位置 A— Aでの断面が、それぞれ示されている。 [0047] 回転電機 1は、界磁子 2と、電機子 11 , 12とを備える。 FIG. 1 and FIG. 2 conceptually show a rotating electrical machine 1 that is effective in the present invention. In FIG. 1, the cross-sectional force perpendicular to the predetermined axis 92 that is the central axis of the rotating electrical machine 1 is shown in FIG. 2 as a cross-section at the position AA shown in FIG. The rotating electrical machine 1 includes a field element 2 and armatures 11 and 12.
[0048] 界磁子 2は、所定の軸 92の周りで環状を呈する。界磁子 2は、コア 22と磁石 21とを 有する。具体的には、コア 22は、所定の軸 92の周りで周方向 95に沿って環状を呈 する。磁石 21は、コア 22に設けられ、所定の軸 92に沿って延在する。磁石 21は、コ ァ 22に埋め込まれても良いし(図 1及び図 2)、コア 22の電機子 11 , 12側のそれぞれ の表面の少なくともいずれか一方に設けられても良い。なお、界磁子 2は、環状の磁 石 21のみで構成されても良い。  The field element 2 has an annular shape around a predetermined axis 92. The field element 2 has a core 22 and a magnet 21. Specifically, the core 22 has an annular shape along a circumferential direction 95 around a predetermined axis 92. The magnet 21 is provided on the core 22 and extends along a predetermined axis 92. The magnet 21 may be embedded in the core 22 (FIGS. 1 and 2), or may be provided on at least one of the surfaces of the core 22 on the armatures 11 and 12 side. The field element 2 may be composed of only the annular magnet 21.
[0049] 図 1では、界磁子 2の極数が 4の場合が示されている。具体的には、 4つの磁石 21 が所定の軸 92の周りで環状に配置されている。磁石 21はいずれも、電機子 11 , 12 側の表面のそれぞれに異なる極性を呈する。そして、周方向 95に沿って隣接する磁 石 21同士は、電機子 11側の表面に異なる極性を呈する。  FIG. 1 shows a case where the number of poles of the field element 2 is 4. Specifically, four magnets 21 are arranged in a ring around a predetermined axis 92. All of the magnets 21 have different polarities on the surfaces of the armatures 11 and 12 side. The adjacent magnets 21 along the circumferential direction 95 have different polarities on the surface on the armature 11 side.
[0050] 電機子 11は、ティース 111の複数、ヨーク 112及び巻線 113を有し、界磁子 2の外 周側に配置される。ヨーク 112は、所定の軸 92の周りで環状を呈する。  The armature 11 includes a plurality of teeth 111, a yoke 112, and a winding 113, and is disposed on the outer peripheral side of the field element 2. The yoke 112 has an annular shape around a predetermined axis 92.
[0051] ティース 111のそれぞれは、所定の軸 92の周りで環状に配置され、ヨーク 112に対 して内周側から連結され、そして界磁子 2に対して外周側から対向する。ティース 11 1の各々は、端面 11 la, 11 lbを有する。端面 11 la, 11 lbはいずれも、所定の軸 9 2に沿う方向を向いている。  Each of the teeth 111 is annularly arranged around a predetermined shaft 92, is connected to the yoke 112 from the inner peripheral side, and faces the field element 2 from the outer peripheral side. Each of the teeth 11 1 has an end face 11 la, 11 lb. Both end faces 11 la and 11 lb are oriented in a direction along a predetermined axis 92.
[0052] 図 2では、所定の軸 92に沿って端面 11 laから端面 11 lbへと向力、う方向が一方向 91として示されている。一方向 91を用いて、端面 111a, 11 lbを次のように把握する こと力 Sできる。すなわち、端面 11 la, 11 lbは、所定の軸 92に沿う一方向 91を向き、 当該一方向 91へと順に配置される。  In FIG. 2, the directional force from the end face 11 la to the end face 11 lb along the predetermined axis 92 is shown as one direction 91. Using one direction 91, it is possible to grasp the end face 111a, 11 lb as follows. That is, the end faces 11 la and 11 lb face one direction 91 along the predetermined axis 92 and are sequentially arranged in the one direction 91.
[0053] 巻線 113は、ティース 111のそれぞれに巻回され、端 113a, 113bを含む。端 113 a, 113biま、一方向 91 ίこつレヽて巻泉 113の外周伹 IJの端である。そして、端 113aiまテ ィース 111に対して端面 11 laと同じ側にあり、端 113bはティース 11 1に対して端面 1 l ibと同じ側にある。  [0053] Winding 113 is wound around each of teeth 111 and includes ends 113a and 113b. Ends 113a and 113bi, one direction 91 °, and the outer periphery of the spring 113 are the ends of the IJ. The end 113ai and the teeth 111 are on the same side as the end face 11la, and the end 113b is on the same side as the end face 1 l ib with respect to the teeth 111.
[0054] 電機子 12は、ティース 121の複数、ヨーク 122、巻線 123を有し、界磁子 2の内周 側に配置される。ヨーク 122は、所定の軸 92の周辺に位置する。  The armature 12 includes a plurality of teeth 121, a yoke 122, and a winding 123, and is disposed on the inner peripheral side of the field element 2. The yoke 122 is located around the predetermined shaft 92.
[0055] ティース 121のそれぞれは、所定の軸 92の周りで環状に配置され、ヨーク 122に対 して外周側から連結され、そして界磁子 2に対して内周側から対向する。ティース 12[0055] Each of the teeth 121 is annularly arranged around a predetermined axis 92 and is opposed to the yoke 122. Then, they are connected from the outer peripheral side and face the field element 2 from the inner peripheral side. Teeth 12
1の各々は、端面 121a, 121bを有する。端面 121a, 121bはいずれも、所定の軸 9Each of 1 has end faces 121a and 121b. The end faces 121a and 121b are both predetermined shafts 9
2に沿う方向を向いている。 It faces the direction along 2.
[0056] 端面 111a, 11 lbと同様に一方向 91 (図 2)を用いて、端面 121a, 121bを次のよう に把握することができる。すなわち、端面 121a, 121bは、所定の軸 92に沿う一方向[0056] The end faces 121a and 121b can be grasped as follows using one direction 91 (Fig. 2) in the same manner as the end faces 111a and 11 lb. That is, the end surfaces 121a and 121b are in one direction along the predetermined axis 92.
91を向き、当該一方向 91へと順に配置される。 They are arranged in order in the direction 91 and in the one direction 91.
[0057] 巻線 123は、ティース 121のそれぞれに巻回され、端 123a, 123bを含む。端 123 a, 123biま、一方向 91 ίこつレヽて巻泉 123の外周伹 IJの端である。そして、端 123aiまテ ィース 121に対して端面 121aと同じ側にあり、端 123bはティース 121に対して端面 1[0057] Winding 123 is wound around each of teeth 121 and includes ends 123a and 123b. Ends 123a and 123bi, one direction 91 °, and the outer periphery of the winding spring 123 are the ends of IJ. The end 123ai or tooth 121 is on the same side as the end face 121a, and the end 123b is the end face 1 with respect to the tooth 121.
2 lbと同じ側にある。 On the same side as 2 lb.
[0058] ティース 111への巻線 113の巻き方、及びティース 121への巻線 123の巻き方のそ れぞれには、集中巻や分布巻が採用できる。巻線 113, 123の接続には、直列接続 や並列接続が採用できる。巻線 113, 123のそれぞれに 3相電流が流れる場合には 、巻線 113, 123の接続には、スター結線やデルタ結線などが採用できる。  [0058] Concentrated winding and distributed winding can be employed for winding the winding 113 around the teeth 111 and winding the winding 123 around the teeth 121, respectively. For the connection of the windings 113 and 123, series connection or parallel connection can be adopted. When a three-phase current flows through each of the windings 113 and 123, a star connection, a delta connection, or the like can be used to connect the windings 113 and 123.
[0059] ティース 111とティース 121とは次のような関係にある。すなわち、端面 11 laは、端 面 121aに対して一方向 91へと退いている。端面 111bは、端面 121bに対して一方 向 91とは反対方向へと退いている。  [0059] The teeth 111 and the teeth 121 have the following relationship. That is, the end surface 11 la is retracted in one direction 91 with respect to the end surface 121a. The end surface 111b is retracted in a direction opposite to the one-way 91 with respect to the end surface 121b.
[0060] 巻線 113と巻線 123とは次のような関係にある。すなわち、端 113aと端面 1 1 laとの 間の距離 Wlaは、端 123aと端面 121aとの間の距離 W2aよりも大きい。また、端 113 bと端面 との間の^巨離 ;! は、端 123bと端面 121bとの間の £巨離 W2bよりも大 きい。  [0060] The winding 113 and the winding 123 have the following relationship. That is, the distance Wla between the end 113a and the end surface 11 1 la is larger than the distance W2a between the end 123a and the end surface 121a. Also, the big separation between the end 113 b and the end face;! Is larger than the separation W2b between the end 123b and the end face 121b.
[0061] 上述した回転電機 1によれば、端面 11 laが端面 121aに対して一方向 91へと退き 、端面 11 lbが端面 121bに対して一方向 91とは反対方向へと退いているので、電機 子 11の一方向 91についての長さ L11が大きくなることを抑制できる。よって、巻線 11 3の巻数を巻線 123の巻数よりも大きくしたり、巻線 113を巻線 123よりも太くしたりし ても、回転電機 1は大型化しない。すなわち、回転電機 1の大型化を抑制しつつも、 巻線 123に比べて巻線 113において多くの磁束を発生させて、回転電機 1のトルクを 高めること力 Sでさる。 [0062] なお、図 1は、極数 Pと、ティース 111 , 121のそれぞれの本数 Yとの組合せ(P, Y) 力 4, 6)の回転電機 1を示している力、組合せ (P, Y)には他の組合せを採用しても 良ぐ上述した回転電機 1と同様の効果が得られる。 According to the rotary electric machine 1 described above, the end surface 11 la retracts in one direction 91 with respect to the end surface 121a, and the end surface 11 lb retracts in the opposite direction to the one direction 91 with respect to the end surface 121b. The length L11 in one direction 91 of the armature 11 can be suppressed from increasing. Therefore, even if the number of turns of the winding 113 is made larger than that of the winding 123 or the winding 113 is made thicker than the winding 123, the rotating electrical machine 1 is not enlarged. In other words, the force S is used to increase the torque of the rotating electrical machine 1 by generating more magnetic flux in the winding 113 than in the winding 123 while suppressing an increase in the size of the rotating electrical machine 1. [0062] Fig. 1 shows the force and combination (P, Y) of the rotating electrical machine 1 of the combination of the number P of poles and the number Y of each of the teeth 111, 121 (P, Y) force 4, 6). It is possible to use other combinations for Y), and the same effect as the above-described rotating electrical machine 1 can be obtained.
[0063] 上述した回転電機 1について、次の態様が望ましい。すなわち、一方向 91につい て、巻線 113の端 113aの位置と、巻線 123の端 123aの位置とは略一致する。 [0063] The following aspect is desirable for the rotating electrical machine 1 described above. That is, in one direction 91, the position of the end 113a of the winding 113 and the position of the end 123a of the winding 123 substantially coincide.
[0064] さらには、一方向 91について、巻泉 113の端 113bの位置と、巻泉 123の端 123b の位置とが略一致することが望ましレ、。 [0064] Further, in one direction 91, it is desirable that the position of the end 113b of the spring 113 and the position of the end 123b of the spring 123 substantially coincide.
[0065] 力、かる態様によれば、電機子 11の長さ L11と、電機子 12の一方向 91についての 長さ L12とをほぼ同じすることができる。よって、回転電機 1が大型化することを抑制 しつつも、回転電機 1のトルクを大きくすることができる。 [0065] According to the force, the length L11 of the armature 11 and the length L12 in one direction 91 of the armature 12 can be made substantially the same. Therefore, it is possible to increase the torque of the rotating electrical machine 1 while suppressing an increase in the size of the rotating electrical machine 1.
[0066] 例えば、巻線 113の端 113aの位置は、巻線 123の端 123aの位置よりも一方向と は反対方向へとずれてレ、ても良レ、。力、かる態様は図 3に示されて!/、る。 [0066] For example, the position of the end 113a of the winding 113 may be shifted in a direction opposite to the one direction from the position of the end 123a of the winding 123. The mode of force is shown in Figure 3! /
[0067] 図 3に示される回転電機 1は、回転軸 99と端板 5とを更に備える。端板 5は、一方向The rotating electrical machine 1 shown in FIG. 3 further includes a rotating shaft 99 and an end plate 5. End plate 5 is unidirectional
91とは反対方向から電機子 12に離間して被さる。界磁子 2は、端板 5を介して回転 軸 99に接続される。 Cover the armature 12 away from the opposite direction to 91. The field element 2 is connected to the rotating shaft 99 through the end plate 5.
[0068] 力、かる態様によれば、一方向 91について、巻線 113の端 113aの位置力 端板 5の 界磁子 2とは反対側の端面 5aの位置に略一致するまで、巻線 113をティース 111に 巻回すること力 Sできる。よって、回転電機 1を顕著には大型化させずに、電機子 11で 発生する磁束を増大することでき、以つて回転電機 1のトルクを大きくすることができる  [0068] According to the force, the position force of the end 113a of the winding 113 in one direction 91 until the position of the end plate 5 on the opposite side to the field element 2 of the end plate 5 substantially coincides with the position of the end face 5a. The ability to wind 113 around teeth 111 is S. Therefore, the magnetic flux generated in the armature 11 can be increased without significantly increasing the size of the rotating electrical machine 1, and thus the torque of the rotating electrical machine 1 can be increased.
[0069] 同様に、巻線 113の端 113bの位置は、巻線 123の端 123bの位置よりも一方向へ とずれていても良い。 [0069] Similarly, the position of the end 113b of the winding 113 may be shifted in one direction from the position of the end 123b of the winding 123.
[0070] 2.ティースについて  [0070] 2. About Teeth
図 1では、ティース 111の、内周側から外周側へと向力、う方向に対する断面の面積 S 1が示されている。面積 S1は、ティース 111の当該断面の面積のうち最小のもので ある。また、ティース 121の、内周側から外周側へと向力、う方向に対する断面の面積 S 2も示されている。面積 S2は、ティース 121の当該断面の面積のうち最小のものであ [0071] 図 1に示されるように、面積 S 1は面積 S2よりも大きいことが望ましい。例えば、面積 S 1の面積 S2に対する比率力 所定の軸 92から界磁子 2の外周までの距離 R1の、 所定の軸 92から界磁子 2の内周までの距離 R2に対する比率と略同一にされる。 FIG. 1 shows the cross-sectional area S 1 of the teeth 111 with respect to the direction and the direction of the force from the inner peripheral side to the outer peripheral side. Area S1 is the smallest of the cross-sectional areas of teeth 111. Also shown is the cross-sectional area S 2 of the teeth 121 with respect to the direction from the inner peripheral side to the outer peripheral side and the direction of the teeth. Area S2 is the smallest of the cross-sectional areas of teeth 121. [0071] As shown in FIG. 1, the area S1 is preferably larger than the area S2. For example, the ratio force of the area S1 to the area S2 The distance R1 from the predetermined axis 92 to the outer periphery of the field element 2 is substantially the same as the ratio to the distance R2 from the predetermined axis 92 to the inner periphery of the field element 2 Is done.
[0072] 力、かる態様によれば、界磁子 2の磁束について、ティース 111に流れる鎖交磁束の 磁束密度と、ティース 121に流れる鎖交磁束の磁束密度とをほぼ同じすることができ る。そして、磁石 21を設けて得た界磁子 2においては、電機子 11 , 12のそれぞれの 磁気抵抗をほぼ等しくすることで、磁石 21の動作点が同じときに電機子 11 , 12のそ れぞれに流れる磁束の量を最大にすることができる。よって、回転電機 1のトルクを大 さくすること力でさる。  [0072] According to the force and the aspect, the magnetic flux density of the interlinkage magnetic flux flowing through the teeth 111 and the magnetic flux density of the interlinkage magnetic flux flowing through the teeth 121 can be made substantially the same for the magnetic flux of the field element 2. . In the field element 2 obtained by providing the magnet 21, the magnetic resistances of the armatures 11, 12 are substantially equal to each other so that the armatures 11, 12 have the same operating point. The amount of magnetic flux flowing through each can be maximized. Therefore, it is measured by the force that increases the torque of the rotating electrical machine 1.
[0073] 具体的には、鎖交磁束の磁束密度を、ティース 111とティース 121とでほぼ同じに することで、ティース 111での磁気抵抗とティース 121での磁気抵抗とをほぼ同じに すること力 Sでさる。  [0073] Specifically, the magnetic flux density of the interlinkage magnetic flux is made substantially the same in the teeth 111 and 121, so that the magnetic resistance in the teeth 111 and the magnetic resistance in the teeth 121 are made almost the same. Touch with force S.
[0074] 例えば、ティース 111 , 121のいずれか一方の磁気抵抗が他方の磁気抵抗よりも大 きくなると、当該一方では磁束の流れが阻害される。これにより、当該他方での磁束 の流れも阻害される。  [0074] For example, when the magnetic resistance of any one of the teeth 111 and 121 is larger than the other magnetic resistance, the flow of magnetic flux is inhibited on the one side. As a result, the flow of magnetic flux on the other side is also inhibited.
[0075] し力、し、上述のようにティース 111 , 121の磁気抵抗をほぼ同じにすることで、磁束 の流れが阻害されに《なる。よって、回転電機 1の効率が低下することが防止される  [0075] By making the magnetic resistances of the teeth 111 and 121 substantially the same as described above, the flow of magnetic flux is inhibited. Therefore, the efficiency of the rotating electrical machine 1 is prevented from being reduced.
[0076] 力、かる効果は、コア 22の電機子 11 , 12側のそれぞれの表面に磁石 21が設けて得 た界磁子 2において、特に顕著に現れる。 [0076] The force and the effect appear particularly prominently in the field element 2 obtained by providing the magnets 21 on the respective surfaces of the core 22 on the armatures 11 and 12 side.
[0077] 図 4は、図 1で示される位置 A— Aでの回転電機 1の断面であって、ティース 111及 びティース 121の形状を概念的に示す。 FIG. 4 is a cross section of the rotating electrical machine 1 at the position A—A shown in FIG. 1, and conceptually shows the shapes of the teeth 111 and the teeth 121.
[0078] ティース 111は、外周側から内周側へと向力、う方向 93に対する断面力 当該方向 9[0078] The teeth 111 have a direction force from the outer peripheral side to the inner peripheral side, and a cross-sectional force with respect to the lateral direction 93.
3に行くに従って拡がる。力、かる形状によれば、界磁子 2から流れる磁束の多くをティ ース 111に導くことができる。 Expands as you go to 3. According to the force and the shape, much of the magnetic flux flowing from the field element 2 can be guided to the teeth 111.
[0079] しかも、電機子 11と界磁子 2との間のエアギャップの面積が増大するので、当該ェ ァギャップの磁気抵抗が低減する。磁石 21を設けて得た界磁子 2においては、磁石[0079] Moreover, since the area of the air gap between the armature 11 and the field element 2 increases, the magnetic resistance of the air gap decreases. In the field element 2 obtained by providing the magnet 21, the magnet
21の動作点を高めることで磁石 21で発生する磁束を増大させ、巻線 113, 123に多 くの磁束を鎖交させること力 sできる。よって、回転電機 1のトルクを大きくすることができ Increasing the operating point of 21 increases the magnetic flux generated by magnet 21 and It is possible to squeeze magnetic flux. Therefore, the torque of the rotating electrical machine 1 can be increased.
[0080] ティース 121は、内周側から外周側へと向力、う方向 94に対する断面力 当該方向 9 4に行くに従って拡がる。力、かる形状によれば、界磁子 2から流れる磁束の多くをティ ース 121に導くことができる。しかも、上述したのと同様に、電機子 12と界磁子 2との 間のエアギャップの磁気抵抗が低減する。 The teeth 121 have a direction force from the inner peripheral side to the outer peripheral side, a cross-sectional force with respect to the direction 94, and expand in the direction 94. According to the force and the shape, much of the magnetic flux flowing from the field element 2 can be guided to the teeth 121. Moreover, as described above, the magnetic resistance of the air gap between the armature 12 and the field element 2 is reduced.
[0081] 力、かる形状を有するティース 111の構造について、より具体的に図 5を用いて説明 する。図 5は、図 4で一点鎖線で囲まれた領域 W1を拡大して示す。なお、ティース 12 [0081] The structure of the tooth 111 having the force and the shape will be described more specifically with reference to FIG. FIG. 5 is an enlarged view of the region W1 surrounded by the alternate long and short dash line in FIG. Teeth 12
1についてもティース 111と同様である。 1 is the same as Teeth 111.
[0082] ティース 111は、磁性体 51 , 52を有する。磁性体 51は、自身が属するティース 111 が突出する方向 93と同じ方向へと、ヨーク 112から延びる。 The teeth 111 have magnetic bodies 51 and 52. The magnetic body 51 extends from the yoke 112 in the same direction as the direction 93 in which the teeth 111 to which the magnetic body 51 belongs are projected.
[0083] 磁性体 52は、磁性体 51の方向 91についての一端 51aに設けられる。磁性体 52はThe magnetic body 52 is provided at one end 51 a in the direction 91 of the magnetic body 51. Magnetic body 52
、磁性体 51の方向 91についての他端 51bにも設けることができる。 The other end 51b in the direction 91 of the magnetic body 51 can also be provided.
[0084] 磁性体 52は一体であって、根部 521と鍔部 522とを含む。根部 521は、 自身が属 するティース 111が突出する方向 93と同じ方向へとヨークから延びる。 The magnetic body 52 is integral and includes a root portion 521 and a flange portion 522. The root portion 521 extends from the yoke in the same direction as the direction 93 in which the tooth 111 to which the root portion 521 belongs protrudes.
[0085] 鍔部 522は、根部 521のヨーク 112とは反対側の端から、磁性体 51とは反対側へと 延びる。図 5では、鍔部 522は方向 91に沿って延びている。 The flange 522 extends from the end of the root 521 opposite to the yoke 112 to the side opposite to the magnetic body 51. In FIG. 5, the collar 522 extends along the direction 91.
[0086] 力、かる態様によれば、磁性体 52は一体であるので、例えば板状の磁性体 52を折り 曲げるだけで根部 521と鍔部 522とを成形することができ、以つてティース 111の成 形が容易である。 [0086] According to the force, the magnetic body 52 is integrated, so that the root portion 521 and the flange portion 522 can be formed simply by bending the plate-like magnetic body 52, for example. Is easy to form.
[0087] 磁性体 51は、方向 91に積層された複数の磁性体板 511を有しても良い。かかる磁 性体 51によれば、鉄損を低減できる。  The magnetic body 51 may include a plurality of magnetic plates 511 stacked in the direction 91. According to the magnetic body 51, iron loss can be reduced.
[0088] 3.界磁子について [0088] 3. About the field element
図 2乃至図 4では、磁石 21の一方向 91についての長さ L21は、ティース 121の一 方向 91についての長さ L121よりも大きい。  2 to 4, the length L21 in one direction 91 of the magnet 21 is larger than the length L121 in one direction 91 of the tooth 121.
[0089] 力、かる態様によれば、磁石 21の磁極面積を大きくすることで、巻線 113, 123に多 くの磁束を鎖交させることができ、以つて回転電機 1のトルクを大きくすることができる [0090] また、長さ L21は、コア 22の一方向 91についての長さ L22よりも大きい(図 2乃至図 4)。力、かる態様によれば、磁石 21の一方向 91についての端 21a, 21bの少なくとも 一方がコア 22から突出する。磁石 21の突出した部分で生じた磁束は、磁気抵抗の 低いコア 22へと導かれる。よって、突出した端 21a, 21bで、磁石 21の磁極面の一方 力、ら他方へと磁束が短絡することが防止される。なお、図 2乃至図 4では、端 21a, 21 bの!/、ずれもがコア 22から突出して!/、る場合が示されて!/、る。 [0089] According to the force, the magnetic pole area of the magnet 21 can be increased, so that a large amount of magnetic flux can be linked to the windings 113 and 123, thereby increasing the torque of the rotating electrical machine 1. be able to Further, the length L21 is larger than the length L22 in one direction 91 of the core 22 (FIGS. 2 to 4). According to this aspect, at least one of the ends 21 a and 21 b in one direction 91 of the magnet 21 protrudes from the core 22. The magnetic flux generated at the protruding portion of the magnet 21 is guided to the core 22 having a low magnetic resistance. Therefore, the projecting ends 21a and 21b prevent the magnetic flux from being short-circuited to one force of the magnetic pole surface of the magnet 21 and the other. FIGS. 2 to 4 show the cases where the ends 21a and 21b are protruded from the core 22! /.
[0091] 図 2乃至図 4ではさらに、コア 22の長さ L22力 ティース 121の長さ L121よりも大き い場合が示されている。力、かる態様によれば、電機子 12と界磁子 2との間のエアギヤ ップの面積が増大するので、当該エアギャップの磁気抵抗が低減する。そして、磁石 21を設けて得た界磁子 2においては、磁石の動作点を高めることで、巻線 113, 123 に磁石 21の磁束の多くを鎖交させることができる。よって、回転電機 1のトルクを大き くすること力 Sでさる。  FIGS. 2 to 4 further show the case where the length of the core 22 is greater than the length L 121 of the force tooth 121. According to the force, the area of the air gap between the armature 12 and the field element 2 is increased, so that the magnetic resistance of the air gap is reduced. In the field element 2 obtained by providing the magnet 21, most of the magnetic flux of the magnet 21 can be linked to the windings 113 and 123 by increasing the operating point of the magnet. Therefore, the force S to increase the torque of the rotating electrical machine 1 is reduced.
[0092] 図 6は、図 1で示される位置 A— Aでの回転電機 1の断面であって、界磁子 2の形状 を概念的に示す。  FIG. 6 is a cross section of the rotating electrical machine 1 at the position A—A shown in FIG. 1, and conceptually shows the shape of the field element 2.
[0093] ティース 111は、界磁子 2側から見た中心を位置 rl lに有する。ティース 121は、界 磁子 2側から見た中心を位置 r 12に有する。  [0093] The tooth 111 has a center at a position rl l as viewed from the field element 2 side. The tooth 121 has a center at the position r 12 as viewed from the field element 2 side.
[0094] 界磁子 2は、一方向 91について、位置 rl lまたは位置 rl 2と同じ位置 r2からの、コ ァ 22の一端 22aまでの距離 L22aと、他端 22bまでの距離 L22bとが異なる。具体的 に図 6では、距離 L22bが距離 L22aよりも大きい。なお、図 6では、一方向 91につい て位置 rl 1と位置 rl 2とが一致して!/、る場合が示されて!/、る。 [0094] In one direction 91, the field element 2 has a distance L22a from the same position r2 as the position rl l or the position rl 2 to the one end 22a of the core 22 and a distance L22b to the other end 22b. . Specifically, in FIG. 6, the distance L22b is larger than the distance L22a. FIG. 6 shows the case where the position rl 1 and the position rl 2 coincide with each other in one direction 91! /.
[0095] 力、かる回転子 2の形状によれば、回転電機 1を駆動する際に必要なスラスト力を発 生させること力 Sでさる。 [0095] According to the force and the shape of the rotor 2, the thrust S required to generate the thrust force required to drive the rotating electrical machine 1 is used.
[0096] 例えば、一方向 91について、界磁子 2の中心の位置を、ティース 111またはティー ス 121の中心の位置 rl l , rl 2から、一方向 91へと変位させる。または例えば、一方 向 91について、界磁子 2の中心の位置を、ティース 111またはティース 121の中心の 位置 rl l , rl 2から、一方向 91とは反対方向へと変位させる。これらによっても、界磁 子 2において位置 r2からの距離 L22aと距離 L22bとを異ならせることができる。このと き、以下に説明するように、ティース 1 11 , 121に対する界磁子 2の変位の大きさが小 さくても、必要なスラスト力を発生させることができる。 For example, in one direction 91, the position of the center of the field element 2 is displaced from the center position rl l, rl 2 of the tooth 111 or the tooth 121 in the one direction 91. Or, for example, in one direction 91, the position of the center of the field element 2 is displaced from the position rl l, rl 2 of the center of the teeth 111 or 121 in the direction opposite to the one direction 91. Also by these, in the field element 2, the distance L22a from the position r2 and the distance L22b can be made different. At this time, as described below, the magnitude of the displacement of the field element 2 with respect to the teeth 1 11 and 121 is small. Even so, the necessary thrust force can be generated.
[0097] 図 7は、ティース 111 , 121に対する界磁子 2の変位の大きさ(以下、単に「変位」と いう。)x (横軸)と、エアギャップに蓄えられる磁気エネルギー Wg (縦軸)との関係を 示す。変位 Xを値 xlまで大きくしても、磁気エネルギー Wgはほとんど低下しない。こ れは、エアギャップの磁束密度がほとんど低下しないからである。変位 Xが値 xlから 値 x2の範囲にある場合には、変位 Xが大きくなるに従って磁気エネルギー Wgは顕著 に低下する。そして、変位 Xが値 x2からさらに大きくなるに従って磁気エネルギー Wg は 0に漸近する。 FIG. 7 shows the magnitude of the displacement of the field element 2 with respect to the teeth 111 and 121 (hereinafter simply referred to as “displacement”) x (horizontal axis) and the magnetic energy Wg stored in the air gap (vertical axis ). Increasing the displacement X to the value xl hardly reduces the magnetic energy Wg. This is because the air gap magnetic flux density hardly decreases. When the displacement X is in the range from the value xl to the value x2, the magnetic energy Wg decreases remarkably as the displacement X increases. The magnetic energy Wg asymptotically approaches 0 as the displacement X further increases from the value x2.
[0098] スラスト力は、変位 Xの関数として表された磁気エネルギー Wgを、変位 Xで微分して 得られる。  [0098] The thrust force is obtained by differentiating the magnetic energy Wg expressed as a function of the displacement X with respect to the displacement X.
[0099] 図 7では、電機子が一つだけ設けられた回転電機の、変位 Xと磁気エネルギー Wg との関係を破線 201で示している。当該回転電機では、磁気エネルギー Wgの変位 X に対する変化量 (変位 Xでの微分)が、回転電機 1よりも小さいことがわかる。すなわち 、変位 Xが値 xlから値 x2の間にある場合には、回転電機 1の方が、変位 Xの変化量 カ小さくても磁気エネルギー Wgの変化量は大きぐ以つてスラスト力は顕著に変化 する。  In FIG. 7, the relationship between the displacement X and the magnetic energy Wg of a rotating electrical machine provided with only one armature is indicated by a broken line 201. It can be seen that the rotating electrical machine has a smaller change amount (differentiation at the displacement X) with respect to the displacement X of the magnetic energy Wg than the rotating electrical machine 1. That is, when the displacement X is between the value xl and the value x2, the rotating electrical machine 1 has a significant thrust force because the change amount of the magnetic energy Wg is large even if the change amount of the displacement X is small. Change.
[0100] スラスト力は、回転電機 1の一方向 91についての振動を抑制することができる。例 えば、よって、回転電機 1を圧縮機などに搭載した場合には振動による騒音が低減で きる。また、回転電機 1を DVD (Digital Versatile Disk)等の再生機やレコーダなどに 搭載して、ァクチユエータとして用いた場合には、読取りや書込みのエラーを低減す ること力 Sでさる。  [0100] The thrust force can suppress vibration in one direction 91 of the rotating electrical machine 1. For example, when the rotating electrical machine 1 is mounted on a compressor or the like, noise due to vibration can be reduced. In addition, when the rotating electrical machine 1 is mounted on a playback device such as a DVD (Digital Versatile Disk) or a recorder and used as an actuator, the power S can be reduced by reducing errors in reading and writing.
[0101] ただし、図 7に示される関係からもわかるように、変位 Xを顕著に大きくすると磁気ェ ネルギー Wgが小さくなり、以つて回転電機 1に流れる磁束の量も小さくなる。よって、 変位 Xは、回転電機 1に必要な磁束量とスラスト力の両方を考慮して選択することが 望ましい。  However, as can be seen from the relationship shown in FIG. 7, when the displacement X is remarkably increased, the magnetic energy Wg is reduced, and the amount of magnetic flux flowing through the rotating electrical machine 1 is also reduced. Therefore, it is desirable to select the displacement X in consideration of both the amount of magnetic flux required for the rotating electrical machine 1 and the thrust force.
[0102] 上述した回転電機 1はいずれも、例えば冷媒を圧縮する圧縮機や、送風を行う送 風機などに搭載することができる。また、力、かる圧縮機や送風機は、空気調和機に搭 載すること力 Sできる。特に車載用の空気調和機では、自身に搭載する回転電機を小 型化する必要があり、本発明に力、かる回転電機 1を採用することが望ましい。 [0102] Any of the rotating electrical machines 1 described above can be mounted on, for example, a compressor that compresses a refrigerant, an air blower that blows air, or the like. In addition, the power, the compressor and the blower can be installed on the air conditioner. Especially in in-vehicle air conditioners, small rotating electrical machines are installed. It is desirable to employ a rotating electrical machine 1 that requires power to the present invention and is suitable for the present invention.
[0103] 回転電機 1は、例えば発電機として駆動することもできる。 [0103] The rotating electrical machine 1 can be driven as a generator, for example.
[0104] 4.その他の態様 [0104] 4. Other aspects
なお、上述した回転電機 1とは異なり、例えば端面 11 laを端面 121aに対して一方 向 91とは反対方向へと突出させても良いし、端面 111bを端面 121bに対して一方向 Unlike the rotating electrical machine 1 described above, for example, the end surface 11 la may protrude in the direction opposite to the one direction 91 with respect to the end surface 121a, or the end surface 111b may be in one direction with respect to the end surface 121b.
91へと突出させても良い。 It may be projected to 91.

Claims

請求の範囲 The scope of the claims
所定の軸(92)の周りで環状を呈する界磁子(2)と、  A field element (2) presenting a ring around a predetermined axis (92);
前記界磁子の外周側に配置される第 1の電機子(1 1)と、  A first armature (11) disposed on the outer peripheral side of the field element;
前記界磁子の内周側に配置される第 2の電機子(12)と  A second armature (12) disposed on the inner peripheral side of the field element;
を備え、 With
前記第 1の電機子は、  The first armature is:
前記所定の軸の周りで環状に配置され、それぞれ界磁子に外周側から対向する第 1のティース( 111 )の複数と、  A plurality of first teeth (111) arranged in a ring around the predetermined axis and respectively facing the field element from the outer peripheral side;
前記第 1のティースのそれぞれに巻回される第 1の巻線(113)と  A first winding (113) wound around each of the first teeth;
を有し、 Have
前記第 1のティースは、  The first teeth are
前記所定の軸に沿う一方向(91)を向き、前記一方向へと順に配置される第 1及び 第 2の端面(111a, 111b)  First and second end faces (111a, 111b) that are arranged in order in one direction (91) along the predetermined axis and in the one direction
を含み、 Including
前記第 2の電機子は、  The second armature is
前記所定の軸の周りで環状に配置され、それぞれ界磁子に内周側から対向する第 2のティース(121 )の複数と、  A plurality of second teeth (121) arranged in an annular shape around the predetermined axis and respectively facing the field element from the inner peripheral side;
前記第 2のティースのそれぞれに巻回される第 2の巻線(123)と  A second winding (123) wound around each of the second teeth;
を有し、 Have
前記第 2のティースは、  The second tooth is
前記一方向を向き、前記一方向へと順に配置される第 3及び第 4の端面(121a, 1 21b)  Third and fourth end faces (121a, 1 21b) that face in the one direction and are sequentially arranged in the one direction
を含み、 Including
前記第 1の端面は、前記第 3の端面に対して前記一方向へと退き、  The first end surface retracts in the one direction with respect to the third end surface;
前記第 2の端面は、前記第 4の端面に対して前記一方向とは反対方向へと退き、 前記一方向について、前記第 1の巻線の外周側の端(113a, 113b)のうち前記第 1のティースに対して前記第 1の端面(11 la)と同じ側にある第 1の端(113a)と、当 該第 1の端面との間の距離である第 1の距離 (Wla)は、前記第 2の巻線の外周側の 端(123a, 123b)のうち前記第 2のティースに対して前記第 3の端面(121a)と同じ 側にある第 2の端(123a)と、当該第 3の端面との間の距離である第 2の距離 (W2a) よりあ大さい、 The second end face recedes in a direction opposite to the one direction with respect to the fourth end face, and the one end of the outer end (113a, 113b) of the first winding in the one direction A first distance (Wla), which is a distance between the first end face (113a) on the same side as the first end face (11 la) with respect to the first tooth and the first end face Is the outer peripheral side of the second winding The distance between the second end (123a) of the end (123a, 123b) on the same side as the third end face (121a) with respect to the second tooth and the third end face Greater than the second distance (W2a),
回転電機。  Rotating electric machine.
[2] 前記一方向(91)について、前記第 1の端(113a)の位置と前記第 2の端(123a)の 位置とは略一致する、請求項 1記載の回転電機。  [2] The rotating electrical machine according to claim 1, wherein the position of the first end (113a) and the position of the second end (123a) substantially coincide with each other in the one direction (91).
[3] 前記一方向について、前記第 1の巻線の外周側の前記端(113a, 113b)のうち前 記第 1のティース(111)に対して前記第 2の端面(11 lb)と同じ側にある第 3の端(11 3b)と、当該第 2の端面との間の距離である第 3の距離 (Wlb)は、前記第 2の巻線の 外周側の前記端(123a, 123b)のうち前記第 2のティース(121)に対して前記第 4の 端面(121b)と同じ側にある第 4の端(123b)と、当該第 4の端面との間の距離である 第 4の距離 (W2b)よりも大きい、請求項 1記載の回転電機。  [3] The same direction as the second end face (11 lb) with respect to the first tooth (111) among the ends (113a, 113b) on the outer peripheral side of the first winding in the one direction The third distance (Wlb), which is the distance between the third end (11 3b) on the side and the second end face, is the end (123a, 123b on the outer peripheral side of the second winding). ) Of the fourth end (123b) on the same side as the fourth end face (121b) with respect to the second tooth (121) and the fourth end face. The rotating electrical machine according to claim 1, wherein the rotating electrical machine is larger than the distance (W2b).
[4] 前記一方向(91)について、前記第 3の端(113b)の位置と前記第 4の端(123b) の位置とは略一致する、請求項 3記載の回転電機。  [4] The rotating electrical machine according to claim 3, wherein the position of the third end (113b) and the position of the fourth end (123b) substantially coincide with each other in the one direction (91).
[5] 前記第 1のティース(111)の、内周側から外周側へと向かう方向に対する断面の面 積のうち最小である第 1の面積(S1)は、前記第 2のティース(121)の、内周側から外 周側へと向力、う方向に対する断面の面積のうち最小である第 2の面積(S2)よりも大き い、請求項 1記載の回転電機。  [5] The first area (S1) that is the smallest of the cross-sectional area of the first tooth (111) in the direction from the inner circumference side to the outer circumference side is the second tooth (121). 2. The rotating electrical machine according to claim 1, wherein the rotating electric machine is larger than the second area (S2) which is the smallest of the cross-sectional areas with respect to the direction and the opposite direction from the inner peripheral side to the outer peripheral side.
[6] 前記第 1の面積(S1)の前記第 2の面積(S2)に対する比率は、前記所定の軸(92) 力、ら前記界磁子(2)の外周までの距離 (R1)の、前記所定の軸から前記界磁子の内 周までの距離 (R2)に対する比率と略同一である、請求項 5記載の回転電機。  [6] The ratio of the first area (S1) to the second area (S2) is the ratio of the predetermined axis (92) force and the distance (R1) to the outer periphery of the field element (2). 6. The rotating electrical machine according to claim 5, wherein the ratio is substantially the same as the ratio to the distance (R2) from the predetermined axis to the inner periphery of the field element.
[7] 前記界磁子(2)は、前記一方向(91)に延在する磁石(21)を有し、  [7] The field element (2) has a magnet (21) extending in the one direction (91),
前記一方向にっレ、て、前記磁石の長さ(L21)は前記第 2のティース(121)の長さ( L121)よりも大きい、  In one direction, the length (L21) of the magnet is larger than the length (L121) of the second tooth (121).
請求項 1記載の回転電機。  The rotating electrical machine according to claim 1.
[8] 前記界磁子(2)は、前記所定の軸(92)の周りで環状を呈するコア(22)を有し、 前記一方向について、前記コアの長さ(L22)は前記第 2のティース(121)の長さ( L121)よりも大きい、 請求項 1記載の回転電機。 [8] The field element (2) has a core (22) having an annular shape around the predetermined axis (92), and the length (L22) of the core in the one direction is the second length. Larger than the length of the teeth (121) (L121), The rotating electrical machine according to claim 1.
前記界磁子(2)は、前記コア(22)に設けられ、前記一方向(91)に延在する磁石( 21 )を更に有し、  The field element (2) further includes a magnet (21) provided in the core (22) and extending in the one direction (91),
前記一方向にっレ、て、前記磁石の長さ(L21)は前記コアの長さ(L22)よりも大き!/、 請求項 8記載の回転電機。  9. The rotating electrical machine according to claim 8, wherein the length (L21) of the magnet is larger than the length (L22) of the core in the one direction.
前記界磁子(2)は、前記所定の軸(92)の周りで環状を呈するコア(22)を有し、 前記コアは、前記一方向(91)について、前記第 1または前記第 2のティース(111 , 121)の界磁子側から見た中心の位置 (rl l , rl 2)と同じ位置 (r2)からの、前記コ ァの一端(22a)までの距離 (L22a)と、他端(22b)までの距離 (L22b)とが異なる、 請求項 1記載の回転電機。  The field element (2) has a core (22) that has an annular shape around the predetermined axis (92), and the core has the first or second direction in the one direction (91). The distance (L22a) from the same position (r2) as the center position (rl l, rl 2) of the teeth (111, 121) to the one end (22a) of the core (L22a) The rotating electrical machine according to claim 1, wherein the distance (L22b) to the end (22b) is different.
前記第 1のティース(111)は、外周側から内周側に向力、う方向(93)に対する断面 力 当該方向に行くに従って拡がる、請求項 1記載の回転電機。  The rotating electrical machine according to claim 1, wherein the first tooth (111) has an directional force from an outer peripheral side to an inner peripheral side, a cross-sectional force with respect to a direction (93), and expands in the direction.
前記第 2のティース(121 )は、内周側から外周側へと向力、う方向(94)に対する断面 力 当該方向に行くに従って拡がる、請求項 1記載の回転電機。 2. The rotating electrical machine according to claim 1, wherein the second tooth (121) has a directional force from an inner peripheral side to an outer peripheral side, a cross-sectional force with respect to a direction (94), and expands in the direction.
請求項 1乃至請求項 12のいずれか一つに記載の回転電機を電動機として搭載す る、圧縮機。  A compressor equipped with the rotating electrical machine according to any one of claims 1 to 12 as an electric motor.
請求項 1乃至請求項 12のいずれか一つに記載の回転電機を電動機として搭載す る、送風機。  A blower equipped with the rotating electrical machine according to any one of claims 1 to 12 as an electric motor.
請求項 13に記載の圧縮機を搭載する、空気調和機。  An air conditioner equipped with the compressor according to claim 13.
請求項 14に記載の送風機を搭載する、空気調和機。  An air conditioner equipped with the blower according to claim 14.
PCT/JP2007/072187 2006-11-16 2007-11-15 Rotating electric machine, compressor, fan, and air conditioner WO2008059923A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006310161A JP5194436B2 (en) 2006-11-16 2006-11-16 Rotating electric machine, compressor, blower, air conditioner
JP2006-310161 2006-11-16

Publications (1)

Publication Number Publication Date
WO2008059923A1 true WO2008059923A1 (en) 2008-05-22

Family

ID=39401727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072187 WO2008059923A1 (en) 2006-11-16 2007-11-15 Rotating electric machine, compressor, fan, and air conditioner

Country Status (2)

Country Link
JP (1) JP5194436B2 (en)
WO (1) WO2008059923A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5446213B2 (en) * 2008-11-04 2014-03-19 株式会社豊田中央研究所 Power transmission device
EP2940841B1 (en) 2012-12-28 2018-04-11 IHI Corporation Double stator switched reluctance rotating machine
WO2014109218A1 (en) * 2013-01-10 2014-07-17 株式会社Ihi Double stator switched reluctance rotating machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02254952A (en) * 1989-03-28 1990-10-15 Mitsubishi Electric Corp Motor
JP2004260970A (en) * 2003-02-27 2004-09-16 Toyota Motor Corp Motor and motor system
WO2006092924A1 (en) * 2005-02-28 2006-09-08 Daikin Industries, Ltd. Magnetic body, rotor, motor, compressor, fan, air conditioner, and on-vehicle air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02254952A (en) * 1989-03-28 1990-10-15 Mitsubishi Electric Corp Motor
JP2004260970A (en) * 2003-02-27 2004-09-16 Toyota Motor Corp Motor and motor system
WO2006092924A1 (en) * 2005-02-28 2006-09-08 Daikin Industries, Ltd. Magnetic body, rotor, motor, compressor, fan, air conditioner, and on-vehicle air conditioner

Also Published As

Publication number Publication date
JP2008131663A (en) 2008-06-05
JP5194436B2 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
JP4737193B2 (en) Rotor, electric motor, compressor, blower, air conditioner and in-vehicle air conditioner
AU2004247246B2 (en) Radial airgap, transverse flux motor
US8497612B2 (en) Permanent magnet rotating machine
US7595575B2 (en) Motor/generator to reduce cogging torque
US20080246362A1 (en) Radial airgap, transverse flux machine
US20040251761A1 (en) Radial airgap, transverse flux motor
US20180013336A1 (en) Stators and coils for axial-flux dynamoelectric machines
US9236784B2 (en) Flux-switching electric machine
JP2008079471A (en) Fan system, motor, and claw pole type motor
WO2021039737A1 (en) Rotating electric machine and method for manufacturing rotating electric machine
CN109412370A (en) Magnetic flux suitching type Linear-rotation permanent-magnet actuator
WO2020213651A1 (en) Rotating electric machine
WO2008059923A1 (en) Rotating electric machine, compressor, fan, and air conditioner
WO2020251050A1 (en) Armature
JP2010045932A (en) Motor
JP4848670B2 (en) Rotor, electric motor, compressor, blower, and air conditioner
CN109639035B (en) Motor and double-deck energy storage flywheel based on double-deck rotor structure
US9018815B2 (en) Generator
CN112615509A (en) Double-permanent-magnet embedded permanent magnet synchronous motor structure
JP2007166798A (en) Dynamo-electric machine, compressor, blower, and air conditioner
JP2010045872A (en) Permanent magnet rotary machine
JP2010142000A (en) Stator core, stator and axial type motor
JP2007068323A (en) Dc brushless motor device and its permanent magnet
JP2019162005A (en) Brushless motor, and blower
JP2005039911A (en) Synchronous machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07831917

Country of ref document: EP

Kind code of ref document: A1