WO2008052834A1 - Verfahren zur herstellung eines körpers aus metall-keramik-verbundwerkstoffen - Google Patents

Verfahren zur herstellung eines körpers aus metall-keramik-verbundwerkstoffen Download PDF

Info

Publication number
WO2008052834A1
WO2008052834A1 PCT/EP2007/059516 EP2007059516W WO2008052834A1 WO 2008052834 A1 WO2008052834 A1 WO 2008052834A1 EP 2007059516 W EP2007059516 W EP 2007059516W WO 2008052834 A1 WO2008052834 A1 WO 2008052834A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
ceramic
insert
preform
ceramic composite
Prior art date
Application number
PCT/EP2007/059516
Other languages
English (en)
French (fr)
Inventor
Gert Lindemann
Matthias Leonhardt
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP07820123A priority Critical patent/EP2086707A1/de
Priority to US12/304,662 priority patent/US20100009163A1/en
Priority to JP2009535042A priority patent/JP2010508153A/ja
Publication of WO2008052834A1 publication Critical patent/WO2008052834A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/02Casting in, on, or around objects which form part of the product for making reinforced articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/515Other specific metals
    • C04B41/5155Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/005Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00362Friction materials, e.g. used as brake linings, anti-skid materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5296Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249994Composite having a component wherein a constituent is liquid or is contained within preformed walls [e.g., impregnant-filled, previously void containing component, etc.]

Definitions

  • the present invention relates to a method for producing a body from metal-ceramic composite materials according to the preamble of claim 1.
  • GGG nodular cast iron
  • WO 2004018718 discloses an insert made of woven, continuous Al 2 O 3 fibers, which is infiltrated by means of gas pressure with AICu 2 and provided with a Ni / Ag coating. Subsequently, the composite insert is positioned in a mold in the bridge area and cast by means of press casting (squeeze casting) of the aluminum alloy caliper.
  • US Pat. No. 6,719,104 discloses the local reinforcement of lightweight brake calipers by means of inserts of continuous Al 2 O 3 fibers, steel or molybdenum.
  • US 5433300 discloses the local reinforcement of lightweight brake calipers by inserts made by means of an "isost foam” process (negative molding of polyurethane foams).
  • the object of the invention is therefore to provide a method for local stiffening or reinforcement of lightweight components by means of inserts, which is less expensive than the aforementioned methods and also ensures a better connection between the insert and the lightweight component. This object is achieved with the features of present claim 1.
  • the subclaims indicate preferred embodiments.
  • a method of making a body of metal-ceramic composite materials comprises the steps of:
  • the ceramic preform thus produced with a porous structure (infiltration step).
  • the molten metal is a light metal alloy, in particular an Al alloy.
  • curable Al alloys such as AISi7Mg.
  • the ceramic particles are preferably oxides, such as Al 2 O 3 , TiO 2 , carbides, such as SiC, or nitrides, such as Si 3 N 4 , AlN.
  • Existing foreign atoms in the above sense are, for example, the Mg atoms in an AISiMg alloy.
  • porosity is meant the ratio of the volume of all voids of a porous solid to its outer volume. It is therefore a measure of how much space the actual solid fills within a certain volume or which cavities it leaves behind. The pores are usually filled with air. Due to the porosity of the preform, therefore, the expected volume fractions of the ceramic and metal components of the composite material are usually already determined.
  • the aspect ratio of the ceramic particles used can be in the range from 1 to 10;
  • the particles can therefore have an elongated shape.
  • particles of this dimension are not yet fibers.
  • the aspect ratio is preferably in the range of 1-5.
  • the pore diameter is particularly preferably 1-5 ⁇ m, while the porosity is preferably 25-50%.
  • the metal-ceramic composite materials produced in this way have low specific weights at high moduli of elasticity and, on the other hand, can be intimately bonded to the lightweight components to be reinforced
  • pore formers are added to the starting powder, which contains ceramic particles. These are usually oblong, slightly burned out - A -
  • the channels produced in this way can have widths of 2 to 50 ⁇ m, preferably 5 to 30 ⁇ m.
  • the pore formers have a significant influence on the setting of a specific porosity.
  • pore formers can also be used, in particular, in the production of ceramic preforms, in order to produce a network of pore channels, which result in a better infiltrability of the preform; the pore channels act as infiltration channels here.
  • the resulting metal channels increase the strength and toughness of the material.
  • cellulose flakes or fibers having a volume fraction of 1 to 30%, preferably 2 to 20%.
  • pore formers e.g. also soot particles, rice starch or organic macromolecules, e.g. Fullerenes or nanotubes conceivable.
  • suitable pore formers are all those materials which burn, decompose or outgas during sintering and thus generate voids in the material.
  • a body is provided from a metal-ceramic composite material produced according to one of the preceding methods.
  • the use of a metal-ceramic composite body produced according to one of the previous methods is provided as an insert for stiffening lightweight components, in particular in motor vehicle construction.
  • Disc brake calipers are particularly suitable as lightweight components, but also any other components which are made of light metal and which have locally high stiffness requirements, in particular in the automotive, motorcycle, aircraft and shipbuilding industries. It is preferably provided that the material used for the lightweight components and for the molten metal of the inserts are largely identical. The term "largely identical" is to be understood below that the metals or alloys for the lightweight components and the inserts consist of at least the same main components.
  • AISi7Mg is used for the lightweight component and AICu4MgSi for the insert.
  • AICu4MgSi for the insert.
  • light alloys e.g. Al alloys.
  • the choice of largely identical materials allows an intimate connection between the lightweight component and the insert.
  • the invention provides a method for introducing an insert of metal-ceramic composite materials according to the invention into a lightweight component.
  • the method is characterized in that a casting step for producing the lightweight component takes place with or subsequent to the infiltration step.
  • the insert is inserted into the mold, and the lightweight component is then poured around the insert.
  • the surface of the metal-ceramic composite insert to be cast over should be modified in such a way that an improvement in the connection of the lightweight component encapsulation results. This can be achieved by mechanical surface treatment, e.g. Roughening, or by applying a coating (e.g., Zn, AIS2, Cu, NiCrAI, NiAg).
  • the coating may e.g. be applied by flame spraying, galvanic or electroless.
  • the material used for the lightweight components and for the molten metal of the inserts are largely identical.
  • the choice of largely identical materials allows an intimate connection between the lightweight component and the insert.
  • the casting process in this case does not necessarily have to be a pressure-assisted casting process.
  • the infiltration step and the casting step are combined into one process step, such that the preform is infiltrated with the casting of the lightweight component in a pressure-assisted manner.
  • This process is also referred to as "integrated preform infiltration.”
  • casting processes are used, which generally have to be pressure-assisted in order to be able to realize a metal infiltration of the ceramic precursor body, where pressure-assisted introduction of the molten metal into the casting mold is particularly preferred in question (“squeeze casting”). Without pressure would be in this method due to the poor wetting properties between metal and ceramic integrated Preforminfiltration in most metal-ceramic combinations hardly possible.
  • the ceramic preform is positioned at the point to be reinforced in the mold.
  • the insert in the shape of the lightweight component to be produced can be arranged already läge- and place correctly.
  • the production cost is reduced and the production time is shortened, while allowing an exact arrangement of the insert in the lightweight component and a particularly intimate connection between lightweight component and insert.
  • the metal alloy is a hardenable alloy, such in the case of lightweight brake calipers
  • the following hardening step preferably follows the casting step:
  • Curing the lightweight component by quenching it at a cooling rate sufficiently high to ensure metastable supersaturation of any impurities present in the alloy used, and low enough to prevent thermal shock damage to the metal-ceramic composite insert (curing step ).
  • AIs cooling media come here, for example, room temperature tempered air, silicone oil or mineral oils in question.
  • the ceramic content was up to 70 vol .-%.
  • the ceramic component consisted of Al 2 O 3 particles with an aspect ratio of 1 to 5, while the metal component consisted of AISi7Mg.
  • the experimentally determined moduli of elasticity were well above 200 GPa for these materials.
  • a stiffening effect of at least 20% could be simulatively demonstrated by incorporating such stiffening elements in the bridge area.
  • an E modulus of 242 GPa was determined on metal-ceramic composite materials consisting of 70% by volume Al 2 O 3 and 30% by volume AISi7Mg.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Braking Arrangements (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung eines Körpers aus Metall-Keramik- Verbundwerkstoffen, aufweisend die folgenden Schritte: a) Herstellen eines keramischen Vorkörpers durch Sintern unter Verwendung eines Ausgangs- pulvers, das keramische Partikel mit einem Aspektverhältnis von 1 - 10 sowie einen enthält, dergestalt, dass der erhaltene Vorköper eine poröse Struktur mit Porendurchmessern von 0,5 - 10 µm sowie einer Gesamtporosität von 15 - 60 % aufweist (Sinterschritt); sowie b) Einbringen einer Metallschmelze aus einem Reinmetall oder einer Legierung in den so hergestellten keramischen Vorkörper mit poröser Struktur (Infiltrationsschritt).

Description

Beschreibung
Titel
Verfahren zur Herstellung eines Körpers aus Metall- Keramik- Verbundwerkstoffen
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Körpers aus Metall- Keramik- Verbundwerkstoffen gemäß dem Oberbegriff des Anspruchs 1.
Stand der Technik
Bremssättel und andere hochbelastete Bauteile, insbesondere im Fahrzeugbau, werden häufig aus Gusseisen mit Kugelgraphit (GGG) hergestellt. Hierbei werden die Anforderungen an die Steifigkeit des Bauteils durch den relativ hohen E-Modul von GGG erfüllt (EGGG50 = 170 GPa).
Nachteilig wirkt sich jedoch die hohe Dichte von Gusseisen aus, die zu Bauteilen mit großer Masse führt.
Demgegenüber werden derzeit Leichtbauteile für die genannten Anwendungsfelder z.B. aus der Aluminiumlegierung AISi7Mg mit einer Dichte von lediglich 2,6 g/cm3 hergestellt. Als nachteilig stellt sich allerdings bei diesem Material der geringe E-Modul der Aluminiumlegierung dar (EAι- sι7Mg = 72 GPa). Der niedrige E-Modul des Werkstoffes erzwingt, dass die besonders beanspruchten Bereiche der Bauteile für die genannten Anwendungsfelder - so z.B. die Brücke bei Bremssätteln - von größerer Dicke gefertigt werden muss. Diesen Möglichkeiten zur Realisierung einer ausreichenden Steifigkeit sind häufig allerdings durch die baulichen Gegebenheiten enge Grenzen gesetzt.
Durch eine lokale Versteifung der besonders beanspruchten Bereiche der genannten Bauteile mit einem Material höheren E- Moduls kann die Baugröße verringert werden, was eine Erhöhung der Designfreiheit zur besseren Ausnutzung des beschränkten Bauraumes zur Folge hat. Im Zusammenhang mit Bremssätteln ist z.B. aus der WO 2004018718 ein Insert aus gewobenen, kontinuierlichen AI2O3-Fasern bekannt, das mittels Gasdruck mit AICu2 infiltriert und mit einer Ni/Ag Beschichtung versehen wird. Anschließend wird das Insert aus Verbundwerkstoff in einer Gussform im Brückenbereich positioniert und mittels Press-Guss (Squeeze Casting) der aus einer Aluminiumlegierung bestehende Bremssattel gegossen.
Die US 6719104 offenbart die lokale Verstärkung von Leichtbaubremssätteln mittels Inserts aus kontinuierlichen AI2O3- Fasern, Stahl oder Molybdän.
Die US 5433300 offenbart die lokale Verstärkung von Leichtbaubremssätteln durch Inserts, die mittels einem „Iost foam"-Prozess hergestellt wurden (Negativabformung von Polyurethan- Schäumen).
All diese Verfahren sind sehr aufwändig und verursachen daher hohe Kosten.
Offenbarung der Erfindung
Aufgabe der Erfindung ist es daher, ein Verfahren zur lokalen Versteifung oder Verstärkung von Leichtbauteilen mittels Inserts bereit zu stellen, das weniger aufwändig ist als die genannten Verfahren und überdies eine bessere Verbindung zwischen dem Insert und dem Leichtbauteil gewährleistet. Diese Aufgabe wird mit den Merkmalen des vorliegenden Anspruchs 1 gelöst. Die Unteransprüche geben bevorzugte Ausführungsformen an.
Demgemäß ist ein Verfahren zur Herstellung eines Körpers aus Metall- Keramik- Verbundwerkstoffen, das die folgenden Schritte aufweist:
a) Herstellen eines keramischen Vorkörpers durch Sintern unter Verwendung eines Ausgangspulvers, das keramische Partikel mit einem Aspektverhältnis von 1 - 10 enthält, dergestalt, dass der erhaltene Vorköper eine poröse Struktur mit Porendurchmessern von 0,5 - 10 μm sowie einer Gesamtporosität von 15 - 60 % aufweist (Sinterschritt); und
b) Einbringen einer Metallschmelze aus einem Reinmetall oder einer Legierung, bevorzugt Leichtmetall, in den so hergestellten keramischen Vorkörper mit poröser Struktur (Infiltrationsschritt). Bevorzugt ist vorgesehen, dass es sich bei der Metallschmelze um eine Leichtmetall-Legierung, insbesondere eine AI-Legierung, handelt. Besonders bevorzugt sind aushärtbare AI- Legierungen wie z.B. AISi7Mg. Bei den keramischen Partikeln handelt es sich bevorzugt um Oxide, wie z.B. AI2O3, TiO2, Carbide, wie z.B. SiC, oder Nitride, wie z.B. Si3N4, AIN. Vorhandene Fremdatome im obigen Sinne sind dabei z.B. die Mg-Atome in einer AISiMg-Legierung.
Unter Porosität soll das Verhältnis des Volumens aller Hohlräume eines porösen Festkörpers zu dessen äußerem Volumen verstanden werden. Es handelt sich also um ein Maß dafür, wie viel Raum der eigentliche Feststoff innerhalb eines bestimmten Volumens ausfüllt bzw. welche Hohl- räume er in diesem hinterlässt. Die Poren sind dabei in der Regel mit Luft gefüllt. Durch die Porosität des Vorkörpers werden daher in der Regel bereits die später zu erwartenden Volumenanteile der Keramik- und der Metallkomponente des Verbundwerkstoffs festgelegt.
Unter dem Begriff "Aspektverhältnis" soll das Länge- Breite- Verhältnis der verwendeten Kera- mikpartikel verstanden werden.
Wie bereits erwähnt kann das Aspektverhältnis der verwendeten keramischen Partikel im be- reich von 1 bis 10 liegen; die Partikeln können also durchaus eine längliche Form haben. Allerdings handelt es sich bei Partikeln dieser Dimensionierung noch nicht um Fasern. Das Aspektverhältnis liegt bevorzugt im Bereich von 1 - 5.
Besonders bevorzugt beträgt der Porendurchmesser 1 - 5 μm, während die Porosität bevorzugt 25 - 50 % beträgt.
Die auf diese Weise hergestellten Metall- Keramik- Verbundwerkstoffe weisen einerseits geringe spezifische Gewichte bei hohen E-Moduln auf und lassen sich andererseits innig mit den zu verstärkenden Leichtbauteilen verbinden
Überdies sind sie schnell und kostengünstig herstellbar, da Bauteilguss und Infiltration der In- sert- Vorkörper im Gegensatz zu den Verfahren aus dem Stand der Technik in einem Prozess- schritt erfolgen. Zusätzliche erhebliche Kosteneinsparungen ergeben sich aus der Verwendung von kostengünstigen Partikeln, die gegenüber den extrem teuren Keramikfasern sehr kostengünstig sind.
Weiterhin ist bevorzugt vorgesehen, dass dem Ausgangspulver, das keramische Partikel enthält, Porenbildner beigefügt sind. Hierbei handelt es sich in der Regel um längliche, leicht ausbrenn- - A -
bare Stoffe, die während des Sinterns verbrennen und so ein Netzwerk von Kanälen und Poren erzeugen, das die anschließende Infiltration der Metallschmelze erleichtert und eine innige Verbindung zwischen dem Vorkörper und dem erstarrenden Metall ermöglicht. Die auf diese Weise erzeugten Kanäle können Breiten von 2 - 50 μm, bevorzugt 5 - 30 μm aufweisen. Durch die die Kanäle im fertigen Körper ausfüllenden Metallkanäle wird die Festigkeit und Zähigkeit der Körper weiter erhöht.
Die Porenbildner haben - neben den eingestellten Sinterparametern - einen wesentlichen Ein- fluss auf die Einstellung einer bestimmten Porosität. Porenbildner können aber auch insbeson- dere bei der Herstellung keramischer Vorkörper verwendet werden, um ein Netzwerk von Porenkanälen zu erzeugen, die eine bessere Infiltrierbarkeit des Vorkörpers zur Folge haben; die Porenkanäle fungieren hier als Infiltrationskanäle. Zudem werden durch die so entstandenen Metallkanäle Festigkeit und Zähigkeit des Werkstoffes erhöht.
Besonderes bevorzugt werden hier Zelluloseplättchen oder -fasern mit einem Volumenanteil von 1 - 30 %, bevorzugt 2 - 20 % verwendet. Weiterhin sind als Porenbildner z.B. auch Russpartikel, Reisstärke oder organische Makromoleküle, wie z.B. Fullerene oder Nanotubes denkbar. Im Wesentlichen eignen sich als Porenbildner all solche Materialien, die während des Sinterns verbrennen, zerfallen oder ausgasen und auf diese Weise Hohlräume in dem Material er- zeugen.
Im Übrigen sind auch Stoffe denkbar, die beim Sintern Gas freisetzen und so eine Porenbildung hervorrufen. Hier käme z.B. NaHCO3 Jn Frage, das unter Hitze CO2 freisetzt.
Weiterhin ist erfindungsgemäß ein Körper aus einem gemäß einem der vorherigen Verfahren hergestellten Metall- Keramik- Verbundwerkstoff vorgesehen.
Überdies ist gemäß der Erfindung die Verwendung eines gemäß einem der vorherigen Verfahren hergestellten Körpers aus Metall- Keramik- Verbundwerkstoff als Insert zur Versteifung von Leichtbauteilen vorgesehen, insbesondere im Kraftfahrzeugbau.
Als Leichtbauteile kommen insbesondere Scheibenbremssättel in Frage, aber auch jedwede andere Bauteile, die in Leichtmetall ausgeführt werden und die lokal hohe Steifigkeitsanforde- rungen aufweisen, insbesondere im Automobil-, Motorrad-, Flugzeug- und Schiffsbau. Dabei ist bevorzugt vorgesehen, dass das für die Leichtbauteile und das für die Metallschmelze der Inserts verwendete Material weitgehend identisch sind. Unter dem Begriff „weitgehend identisch" soll im Folgenden verstanden werden, dass die Metalle bzw. Legierungen für die Leichtbauteile und die Inserts mindestens aus den jeweils gleichen Hauptbestandteilen bestehen.
So ist z.B. denkbar, dass AISi7Mg für das Leichtbauteil und AICu4MgSi für das Insert verwendet wird. Hier ist insbesondere an Leichtmetalllegierungen gedacht, so z.B. AI-Legierungen. Die Wahl der weitgehend identischen Materialien ermöglicht eine innige Verbindung zwischen dem Leichtbauteil und dem Insert.
Mithilfe der genannten Inserts gelingt es, die genannten Leichtbauteile in den Bereichen ihrer höchsten Belastung gezielt zu versteifen, und gleichzeitig das Gewicht und die Dimensionierung des Leichtbauteils in engen Grenzen zu halten. Auf diese Weise werden leichte Bauteile herstellbar, die gleichwohl in den Bereichen, in denen es erforderlich ist, höchste E- Moduln aufwei- sen.
Weiterhin ist erfindungsgemäß ein Verfahren zur Einbringung eines Inserts aus erfindungsgemäßen Metall- Keramik- Verbundwerkstoffen in ein Leichtbauteil vorgesehen. Das Verfahren ist dadurch gekennzeichnet, dass mit oder anschließend an den Infiltrationsschritt ein Guss-Schritt zur Herstellung des Leichtbauteils erfolgt. Dabei wird das Insert in die Gussform eingebracht, und das Leichtbauteil wird anschließend um das Insert herumgegossen.
Die Oberfläche des zu umgießenden Inserts aus Metall- Keramik- Verbundwerkstoff sollte dergestalt modifiziert sein, dass eine Verbesserung der Anbindung des Leichtbauteil-Umgusses resul- tiert. Dies kann durch mechanische Oberflächenbearbeitung, z.B. Aufrauhen, oder durch Aufbringen einer Beschichtung (z.B. Zn, AISÜ2, Cu, NiCrAI, NiAg) erfolgen. Die Beschichtung kann z.B. durch Flammspritzen, galvanisch oder stromlos aufgebracht werden.
Dabei ist bevorzugt vorgesehen, dass das für die Leichtbauteile und das für die Metallschmelze der Inserts verwendete Material weitgehend identisch sind. Hier ist insbesondere an Leichtmetalllegierungen gedacht, so z.B. AI-Legierungen. Die Wahl der weitgehend identischen Materialien ermöglicht eine innige Verbindung zwischen dem Leichtbauteil und dem Insert.
Das Gussverfahren muss in diesem Fall nicht zwingend ein druckunterstütztes Gussverfahren sein. In einer besonders bevorzugten Ausgestaltung ist vorgesehen, dass Infiltrationsschritt und Guss-Schritt zu einem Prozessschritt vereint sind, dergestalt, dass der Vorkörper zusammen mit dem Guss des Leichtbauteils druckunterstützt infiltriert wird.
Dieses Verfahren wird auch als „integrierte Preforminfiltration" bezeichnet. Hierbei kommen Gießverfahren zum Einsatz, die i. d. R. druckunterstützt sein müssen, um eine Metall- Infiltration des Keramik- Vorkörpers realisieren zu können. Hier kommt besonders bevorzugt ein druckunterstütztes Einbringen der Metallschmelze in die Gussform in Frage (,,Squeeze casting"). Ohne Druck wäre bei diesem Verfahren wegen der schlechten Benetzungseigenschaften zwischen Metall und Keramik eine integrierte Preforminfiltration bei den meisten Metall-Keramik Kombinationen kaum möglich.
Mit Hilfe dieses Verfahrens wird eine innige Verbindung zwischen dem Leichtbauteil und dem Insert erzielt. Letzteres wird insbesondere dadurch ermöglicht, dass die Infiltration des Vorkörpers zur Herstellung des im Bauteil eingebrachten Inserts und Guss des umgebenden Bauteils in einem Schritt mittels druckunterstützten Gießverfahren durchgeführt wird. Hieraus ergibt sich eine sehr gute Grenzflächenanbindung zwischen Insert und Bauteilumguss.
Besonders bevorzugt ist dabei vorgesehen, dass der keramische Vorkörper an der zu verstärkenden Stelle in der Gussform positioniert wird. Auf diese Weise kann das Insert in der Form des herzustellenden Leichtbauteils bereits läge- und ortsrichtig angeordnet werden. So wird der Fertigungsaufwand reduziert und die Fertigungsdauer verkürzt, und gleichzeitig eine genaue Anordnung des Inserts im Leichtbauteil sowie eine besonders innige Verbindung zwischen Leichtbauteil und Insert ermöglicht.
Handelt es sich bei der Metalllegierung um eine aushärtbare Legierung, wie z.B. bei Leichtbau- bremssätteln der Fall, schließt sich an den Gussschrit bevorzugt der folgende Aushärtungsschritt an:
Aushärtung des Leichtbauteils durch Abschrecken bei einer Abkühlrate, die ausreichend hoch ist, um eine metastabile Übersättigung etwaiger vorhandener Fremdatome in der verwendeten Legierung zu gewährleisten, und ausreichend gering ist, um eine Beschädigung des Inserts aus Metall- Keramik- Verbundwerkstoff durch Thermoschock zu verhindern (Aushärtungsschritt). AIs Abkühlungsmedien kommen hierbei z.B. auf Raumtemperatur temperierte Luft, Silikonöl oder Mineralöle in Frage.
Beispiele
Die vorliegende Erfindung wird durch die im Folgenden diskutierten Beispiele genauer erläutert. Dabei ist zu beachten, dass die Beispiele nur beschreibenden Charakter haben und nicht dazu gedacht sind, die Erfindung in irgendeiner Form einzuschränken.
1. Herstellung von Metall-Keramik-Verbundwerkstoffen
Es konnten mit dem erfindungsgemäßen Verfahren aluminiumbasierte Metall-Keramik- Verbundwerkstoffe hergestellt werden, deren Keramikanteil bis zu 70 Vol.-% betrug. Die Keramikkomponente bestand aus AI2O3- Partikeln mit einem Aspektverhältnis von 1 bis 5, während die Metallkomponente aus AISi7Mg bestand. Die experimentell ermittelten E-Moduln lagen bei diesen Materialien deutlich über 200 GPa.
Am Beispiel eines Bremssattels konnte durch Einbringung solcher Versteifungselemente im Brückenbereich ein Versteifungseffekt von mindestens 20% simulatorisch nachgewiesen wer- den.
An Metall- Keramik- Verbundwerkstoffen bestehend aus 70 Vol.-% AI2O3 und 30 Vol.-% AISi7Mg wurde nach Aushärtung (Abschreckmedium: Silikonöl) ein E-Modul von 242 GPa ermittelt.
2. Herstellung eines Bremssattels mit einem Insert
Es wurden zudem Aluminium-Bremssättel in realer Geometrie mittels einer Serien-Squeeze Cast- Maschine gegossen, wobei geometrisch angepasste Vorkörper aus TiO2- und AI2O3- Partikeln mit einer Porosität von >55 Vol.-% im Brückenbereich positioniert und während des Gussvorganges mit einer AISi7Mg-Schmelze infiltriert wurden. Die Inserts konnten hierbei vollständig infiltriert werden. Die Güte der Anbindung der Inserts und dem Umguss wurde durch Messung der Grenzflächen-Scherfestigkeit bestimmt und lag aufgrund von Verzahnungseffekten sogar über der Scherfestigkeit der reinen Legierung (107 MPa vs 101 MPa). Eine sehr gute Anbindung des Inserts ist also durch die verwendeten Werkstoffe und den oben beschriebenen Herstellprozess gewährleistet.

Claims

Ansprüche
1. Verfahren zur Herstellung eines Körpers aus Metall- Keramik- Verbundwerkstoffen, aufweisend die folgenden Schritte:
a) Herstellen eines keramischen Vorkörpers durch Sintern unter Verwendung eines Ausgangspulvers, das keramische Partikel mit einem Aspektverhältnis von 1 - 10 enthält, dergestalt, dass der erhaltene Vorköper eine poröse Struktur mit Porendurchmessern von 0,5 - 10 μm sowie einer Gesamtporosität von 15 - 60 % aufweist (Sinterschritt); sowie
b) Einbringen einer Metallschmelze aus einem Reinmetall oder einer Legierung in den so hergestellten keramischen Vorkörper mit poröser Struktur (Infiltrationsschritt).
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass es sich bei der Metallschmelze um eine Leichtmetall-Legierung, insbesondere eine AI-Legierung, handelt, und/oder dass es sich bei den keramischen Partikeln um Oxide und/oder Nitride und/oder
Carbiden handelt.
3. Verfahren gemäß einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass dem Ausgangspulver, das keramische Partikel enthält, Porenbildner beigefügt sind.
4. Körper aus einem gemäß einem der vorherigen Verfahren hergestellten Metall-Keramik- Verbundwerkstoff.
5. Verwendung eines gemäß einem der vorherigen Verfahren hergestellten Körpers aus Me- tall- Keramik- Verbundwerkstoff als Insert zur Versteifung von Leichtbauteilen, insbesondere im Kraftfahrzeugbau.
6. Verfahren zur Einbringung eines gemäß einem der vorherigen Ansprüche hergestellten Inserts aus Metall- Keramik- Verbundwerkstoffen in ein Leichtbauteil, dadurch gekenn- zeichnet, dass zeitgleich mit oder anschließend an den Infiltrationsschritt ein Guss-Schritt zur Herstellung des Leichtbauteils erfolgt.
7. Verfahren gemäß Anspruch 6, dadurch gekennzeichnet, dass die Oberfläche des zu um- gießenden Inserts aus Metall- Keramik- Verbundwerkstoff modifiziert sein, dergestalt, dass eine Verbesserung der Anbindung des Leichtbauteil-Umgusses resultiert.
8. Verfahren gemäß Anspruch 6 oder 7, dadurch gekennzeichnet, dass Infiltrationsschritt und Guss-Schritt zu einem Prozessschritt vereint sind, dergestalt, dass der Vorkörper zusam- men mit dem Guss des Leichtbauteils druckunterstützt infiltriert wird.
9. Verfahren gemäß einem der Ansprüche 6 - 8, dadurch gekennzeichnet, dass der keramische Vorkörper an der zu verstärkenden Stelle in der Gussform positioniert wird.
10. Verfahren gemäß einem der Ansprüche 6 - 9, dadurch gekennzeichnet, dass sich an den Gussschritt der folgende Schritt anschließt:
Aushärtung des Leichtbauteils durch Abschrecken bei einer Abkühlrate, die ausreichend hoch ist, um eine metastabile Übersättigung etwaiger vorhandener Fremdatome in der verwendeten Legierung zu gewährleisten, und ausreichend gering ist, um eine Beschädigung des Inserts aus Metall- Keramik- Verbundwerkstoff durch Thermoschock zu verhindern (Aushärtungsschritt).
PCT/EP2007/059516 2006-10-30 2007-09-11 Verfahren zur herstellung eines körpers aus metall-keramik-verbundwerkstoffen WO2008052834A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07820123A EP2086707A1 (de) 2006-10-30 2007-09-11 Verfahren zur herstellung eines körpers aus metall-keramik-verbundwerkstoffen
US12/304,662 US20100009163A1 (en) 2006-10-30 2007-09-11 Method for producing a body of metal-ceramic composites
JP2009535042A JP2010508153A (ja) 2006-10-30 2007-09-11 金属セラミック複合材からなる成形品の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200610051200 DE102006051200A1 (de) 2006-10-30 2006-10-30 Verfahren zur Herstellung eines Körpers aus Metall-Keramik-Verbundwerkstoffen
DE102006051200.6 2006-10-30

Publications (1)

Publication Number Publication Date
WO2008052834A1 true WO2008052834A1 (de) 2008-05-08

Family

ID=38658286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/059516 WO2008052834A1 (de) 2006-10-30 2007-09-11 Verfahren zur herstellung eines körpers aus metall-keramik-verbundwerkstoffen

Country Status (6)

Country Link
US (1) US20100009163A1 (de)
EP (1) EP2086707A1 (de)
JP (1) JP2010508153A (de)
DE (1) DE102006051200A1 (de)
RU (1) RU2009120387A (de)
WO (1) WO2008052834A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011154186A1 (de) * 2010-06-08 2011-12-15 Robert Bosch Gmbh Stromquellenkontaktierungsvorrichtung und stromquelle mit metall-infiltrierter keramik

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008002538B4 (de) * 2008-05-30 2020-10-15 Robert Bosch Gmbh Bremssattel aus mindestens 2 Komponenten
WO2010131273A1 (en) * 2009-05-13 2010-11-18 Freni Brembo S. .A. Method for the manufacturing of a component for a braking system and component for a braking system
IT1401763B1 (it) * 2010-07-09 2013-08-02 Far Fonderie Acciaierie Roiale S P A Procedimento per la produzione di un elemento soggetto ad usura, elemento soggetto ad usura e struttura di aggregazione temporanea per la realizzazione di tale elemento soggetto ad usura
JP6672319B2 (ja) * 2014-10-20 2020-03-25 インテレクチュアル プロパティ ホールディングス, エルエルシー セラミックプリフォームおよび方法
US10851020B2 (en) 2018-01-23 2020-12-01 Dsc Materials Llc Machinable metal matrix composite and method for making the same
US11001914B2 (en) 2018-01-23 2021-05-11 Dsc Materials Llc Machinable metal matrix composite and method for making the same
DE102018213490A1 (de) * 2018-08-10 2020-02-13 Bayerische Motoren Werke Aktiengesellschaft Bauteil sowie Verfahren zum Herstellen eines Bauteils
KR102120472B1 (ko) * 2020-01-02 2020-06-16 이희석 과공정 Al-Si합금과 인서트 주조를 이용한 변속기용 시프트 포크의 제조 방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994006585A1 (en) 1992-09-17 1994-03-31 Ritland Marcus A Method for making a ceramic metal composite
US5433300A (en) 1991-09-25 1995-07-18 G.K.N. Sankey Ltd. Brake caliper
US5620042A (en) * 1993-06-30 1997-04-15 Kelsey-Hayes Company Method of casting a composite disc brake rotor
US20010044999A1 (en) 1992-09-17 2001-11-29 Coorstek, Inc. Method for sealing and/or joining an end of a ceramic filter
US6338906B1 (en) 1992-09-17 2002-01-15 Coorstek, Inc. Metal-infiltrated ceramic seal
WO2004018718A1 (en) 2002-08-20 2004-03-04 3M Innovative Properties Company Metal matrix composites, and methods for making the same
US6719104B1 (en) 2001-12-28 2004-04-13 Kelsey-Hayes Company Composite caliper for a disc brake assembly and method for producing same
WO2006119554A1 (en) * 2005-05-06 2006-11-16 Pacifica Group Technologies Pty Ltd Method and apparatus for manufacturing a cast component

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5433300A (en) 1991-09-25 1995-07-18 G.K.N. Sankey Ltd. Brake caliper
WO1994006585A1 (en) 1992-09-17 1994-03-31 Ritland Marcus A Method for making a ceramic metal composite
US20010044999A1 (en) 1992-09-17 2001-11-29 Coorstek, Inc. Method for sealing and/or joining an end of a ceramic filter
US6338906B1 (en) 1992-09-17 2002-01-15 Coorstek, Inc. Metal-infiltrated ceramic seal
US5620042A (en) * 1993-06-30 1997-04-15 Kelsey-Hayes Company Method of casting a composite disc brake rotor
US6719104B1 (en) 2001-12-28 2004-04-13 Kelsey-Hayes Company Composite caliper for a disc brake assembly and method for producing same
WO2004018718A1 (en) 2002-08-20 2004-03-04 3M Innovative Properties Company Metal matrix composites, and methods for making the same
WO2006119554A1 (en) * 2005-05-06 2006-11-16 Pacifica Group Technologies Pty Ltd Method and apparatus for manufacturing a cast component

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GONI J ET AL: "DEVELOPPEMENT DES COMPOSANTS AUTOMOBILES LOCALEMENT RENFORCES AVEC DES INSERTS DE COMPOSITE A MATRICE METALLIQUE DEVELOPMENT OF AUTOMOTIVE COMPONENTS LOCALLY REINFORCED WITH METAL MATRIX COMPOSITE INSERTS", FONDERIE, FONDEUR D'AUJOURD'HUI, EDITIONS TECHNIQUES DES INDUSTRIES DE LA FONDERIE, SEVRES, FR, vol. 197, 2000, pages 23 - 32, XP009013409, ISSN: 0249-3136 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011154186A1 (de) * 2010-06-08 2011-12-15 Robert Bosch Gmbh Stromquellenkontaktierungsvorrichtung und stromquelle mit metall-infiltrierter keramik
US9099798B2 (en) 2010-06-08 2015-08-04 Robert Bosch Gmbh Current-source contacting device and current source having metal-infiltrated ceramic

Also Published As

Publication number Publication date
RU2009120387A (ru) 2010-12-10
JP2010508153A (ja) 2010-03-18
DE102006051200A1 (de) 2008-05-08
US20100009163A1 (en) 2010-01-14
EP2086707A1 (de) 2009-08-12

Similar Documents

Publication Publication Date Title
WO2008052834A1 (de) Verfahren zur herstellung eines körpers aus metall-keramik-verbundwerkstoffen
EP0968151B1 (de) Schmelzinfiltrierte faserverstärkte verbundkeramik
DE4413306C1 (de) Verfahren zur Verstärkung eines Bauteils und Anwendung des Verfahrens
WO2008052833A1 (de) Werkstoff für tribologische anwendungen
DE102011012142B3 (de) Aluminium-Matrixverbundwerkstoff, Halbzeug aus dem Aluminium-Matrixverbundwerkstoff und Verfahren zu dessen Herstellung
DE69932687T2 (de) Partielles Leichtkompositprodukt und Vorform zu seiner Herstellung
DE60121180T2 (de) Bikontinuierlicher verbundwerkstoff
EP1268363A1 (de) Faserverstärktes strukturbauteil
EP1433553B1 (de) Verfahren zur Herstellung von Verbundwerkstoffen
DE102009050025A1 (de) Keramikbremsscheibe
DE102006040120B3 (de) Verbundwerkstoff und Verfahren zu seiner Herstellung
DE102007044565A1 (de) Verfahren zur Herstellung eines Metallmatrix-Nanoverbundwerkstoffes, Metallmatrix-Nanoverbundwerkstoff und seine Anwendung
DE10130395A1 (de) Reibwerkstoff und Verfahren zu seiner Herstellung sowie Reibelement
WO2013041305A1 (de) Verfahren zur herstellung von bauteilen aus mmc's (metallmatrix-verbundwerkstoffen) mit overspraypulver
DE102009041077A1 (de) Bremsscheibe definierter Oberflächenrauigkeit und deren Herstellungsverfahren, sowie Verwendung der Bremsscheibe in einem Bremssystem
EP2033757A1 (de) Verfahren zur und Formwerkzeug für die Herstellung von Bauteilen, insbesondere aus Faserverbundwerkstoffen
DE102005037069A1 (de) Poröse Verbundwerkstoffe auf Basis eines Metalls und Verfahren zu deren Herstellung
DE4331307C2 (de) Herstellung eines mit Kohlenstoffasern verstärkten Verbundwerkstoffs und dessen Verwendung
DE19751528A1 (de) Verschleißfester Metallverbundwerkstoff
WO2008086930A1 (de) Keramischer vorkörper zur herstellung von metall-keramik verbundwerkstoffen
DE10303351B3 (de) Bauteil aus Metall/Keramik-Verbundwerkstoff mit intermetallischer Matrix, dessen Verwendung als Panzermaterial und Verfahren zu dessen Herstellung
EP1530689B1 (de) In einem medium laufende reibschicht
DE102020007981B4 (de) Verfahren zur Herstellung von Bauteilen aus einem Aluminium-Matrix-Komposit-Verbundwerkstoff sowie danach erhältliches Bauteil
DE102005029103B3 (de) Kolben für einen Verbrennungsmotor und Verfahren zur Herstellung des Kolbens
DE19750600A1 (de) Metallverstärktes Konstruktionselement

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007820123

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07820123

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1443/CHENP/2009

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2009535042

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12304662

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2009120387

Country of ref document: RU

Kind code of ref document: A