WO2008049390A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2008049390A1
WO2008049390A1 PCT/DE2007/001830 DE2007001830W WO2008049390A1 WO 2008049390 A1 WO2008049390 A1 WO 2008049390A1 DE 2007001830 W DE2007001830 W DE 2007001830W WO 2008049390 A1 WO2008049390 A1 WO 2008049390A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotubes
radiator
heat exchanger
web
heat
Prior art date
Application number
PCT/DE2007/001830
Other languages
German (de)
French (fr)
Inventor
Rainer Schmitt
Original Assignee
Rainer Schmitt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rainer Schmitt filed Critical Rainer Schmitt
Priority to EP07817665A priority Critical patent/EP2084482A1/en
Publication of WO2008049390A1 publication Critical patent/WO2008049390A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/02Constructions of heat-exchange apparatus characterised by the selection of particular materials of carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0035Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for domestic or space heating, e.g. heating radiators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/04Heating means manufactured by using nanotechnology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the invention relates to a heat exchanger.
  • DE 10 2004 044 352 A1 discloses a heating conductor for a heating device of an electrical heating device, preferably an electric cooking field, which generates heat by current flow.
  • the material of the heat conductor has carbon nanotubes.
  • DE 20 2004 017 339 U1 shows a thermal compound which consists of 10 to 80% by weight of a filler based on graphite powder and 20 to 90% by weight of a matrix material based on oil, fat or wax wherein carbon nanotubes may be added to the filler.
  • the thermal grease is used to make a thermally conductive connection between an electronic component, such as an electronic component. a computer chip, or an electrical component, e.g. a power semiconductor, and a cooling system used.
  • Radiators are usually made of steel, which has a thermal conductivity of about 50 W / (mK), and Wall heaters are often made from copper pipes with a thermal conductivity of approx. 380 W / (mK). Radiators are usually flowed through by a warm fluid, in particular by water, wherein the heat transfer surfaces in the region of water pockets of the radiator are in direct contact with the warm fluid and the air to be heated.
  • the relatively low thermal conductivity of steel or copper proves to be problematic, especially in connection with heating systems, such as a heat pump, which are operated at a relatively low flow temperature, since the heating surface must be relatively large in order to comfortably heat a living space.
  • CNTs carbon nanotubes
  • the carbon nanotubes Due to their good thermal conductivity, the carbon nanotubes improve the efficiency compared to conventional heat exchangers, whereby it does not matter whether the heat exchangers are used for heating or cooling and with which media they are operated. As a result, given a given amount of heat to be transferred, the heat transfer surface can be dimensioned relatively small and, if necessary, due to the mechanical strength values and the density of the carbon nanotubes. also thin-walled lightweight components can be provided. Of course, it is conceivable to manufacture the entire heat exchanger essentially from carbon nanotubes using a suitable binder.
  • a heat exchanger is a device by means of which a medium transfers heat to another medium without the media coming into direct contact with one another.
  • Heat exchangers are both radiators and pipes, for example, for underfloor heating, and Wandsammlungregister or in a household electric heated kettle available. But also a screed, plaster or floor covering with associated floor or wall heating is a heat exchanger in the context of the invention.
  • the heat exchanger has a surface coating made of carbon at least on one side.
  • Nanotubes consists of an alloy or material mixture with carbon nanotubes or is provided with ribs of carbon nanotubes.
  • the surface coating of, for example, a metallic heat exchanger already involves efficient heat transfer from the warm side of the heat exchanger to the cold side.
  • metals are alloyed with carbon nanotubes or carbon nanotubes are mixed with a variety of materials such as plastics, screed or plaster, the percentage maximum proportions are easy to determine for the expert, since he, for example, the composition of known materials, in particular with Carbon fibers are reinforced, can orient.
  • the water pockets a previously described heat exchanger is assigned.
  • essentially existing machines can be used for the production of radiators and design features of the different radiators and their fastening devices can be adopted unchanged.
  • a carbon nanotube comprehensive web is arranged at least in a water pocket. The web can be poured for heat conduction into corresponding recesses or slots in the water pocket and is flowed around directly by the warm water.
  • the web communicates with heat transfer surfaces, in particular on the inner or back, of the radiator in connection.
  • a steel radiator is welded together to form water pockets from stamped and formed half-shells.
  • the carbon nanotube existing or alloyed with it or surface-coated web can be arranged on the water-bearing side of the water bag of the radiator, so its heat transfer surface, after which a fast conductive additional heat transfer surface is available.
  • the web has a ribbed cross section. The bridge can therefore be designed fir-tree-like.
  • the web is preferably fixed in the water bag by gluing.
  • the bridge projects into the open air.
  • further heat conduction ribs made of steel can be provided.
  • Fig.l is a schematic partial sectional view of a radiator according to the invention.
  • FIG. 2 shows a further schematic partial sectional view of the radiator according to FIG. 1.
  • the radiator is a flat radiator made of steel with two serving as a heat exchanger walls 1 2, which are deformed so that after their welding vertical water pockets 3 are formed, which are fluidly connected to a flow 4 and a return 5.
  • a wall 2 ribs 6 are attached.
  • 3 webs 7 are glued into the water pockets, which have a ribbed cross-section to increase their surface.
  • the webs 7 are either coated with a material containing carbon nanotubes or consist of an alloy with carbon nanotubes and thus have a good thermal conductivity.
  • the walls 2 serving as heat exchangers 1 are manufactured either from an alloy containing carbon nanotubes or with carbon dioxide. nanotubes surface-coated.
  • the carbon nanotube having components, such as the walls 2 or the webs 7, are directly connected to the warm water in the water bags 3 in connection and derive their heat due to their good thermal conductivity quickly. Accordingly, the ent ⁇ long flowing air to the radiator heats up very quickly by convection. Also present in the region of the webs 7 on the outside of the corresponding wall 2 ribs 6, which may also have carbon nanotubes, heat relatively quickly by the prevailing temperature differences. Overall, the radiator can release the heat required in a room due to the carbon nanotubes relatively quickly to the environment, which is why the hot water heating system can be operated with a comparatively low flow temperature.

Abstract

A radiator comprises water pockets (3), which are associated with a heat exchanger (1) having carbon nanotubes.

Description

Wärmeübertrager Heat exchanger
Beschreibungdescription
Die Erfindung bezieht sich auf einen Wärmeübertrager.The invention relates to a heat exchanger.
Die DE 10 2004 044 352 Al offenbart einen Heizleiter für eine Heizeinrichtung eines Elektrowärmegerätes, vorzugsweise eines Elektrokochfeldes, der durch Str-omfluss Wärme erzeugt. Das Material des Heizleiters weist Kohlenstoff- Nanoröhrchen auf.DE 10 2004 044 352 A1 discloses a heating conductor for a heating device of an electrical heating device, preferably an electric cooking field, which generates heat by current flow. The material of the heat conductor has carbon nanotubes.
Im Weiteren zeigt die DE 20 2004 017 339 Ul eine Wärmeleitpaste, die zu 10 bis 80 Gew.-% aus einem Füllstoff auf Basis von Graphitpulver und zu 20 bis 90 Gew.-% aus einem Matrixmaterial auf Basis von Öl, Fett oder Wachs besteht, wobei dem Füllstoff Kohlenstoff-Nanoröhrchen zugesetzt sein können. Die Wärmeleitpaste wird zur Herstellung einer wärmeleitenden Verbindung zwischen einem elektronischen Bauteil, wie z.B. einem Computerchip, oder einem elektrischen Bauteil, wie z.B. einem Leistungshalbleiter, und einem Kühlsystem verwendet.Furthermore, DE 20 2004 017 339 U1 shows a thermal compound which consists of 10 to 80% by weight of a filler based on graphite powder and 20 to 90% by weight of a matrix material based on oil, fat or wax wherein carbon nanotubes may be added to the filler. The thermal grease is used to make a thermally conductive connection between an electronic component, such as an electronic component. a computer chip, or an electrical component, e.g. a power semiconductor, and a cooling system used.
Heizkörper werden in der Regel aus Stahl hergestellt, der eine Wärmeleitfähigkeit von ca. 50 W/ (mK) aufweist, und Wandheizungen werden oftmals aus Kupferrohren mit einer Wärmeleitfähigkeit von ca. 380 W/ (mK) gefertigt. Heizkörper werden in der Regel von einem warmen Fluid, insbesondere von Wasser, durchströmt, wobei die Wärmeübertragungsflächen im Bereich von Wassertaschen des Heizkörpers in direktem Kontakt mit dem warmen Fluid und der zu erwärmenden Luft stehen. Als problematisch erweist sich die relativ geringe Wärmeleitfähigkeit von Stahl oder Kupfer, insbesondere im Zusammenhang mit Heizungssystemen, wie beispielsweise einer Wärmepumpe, die mit einer relativ niedrigen Vorlauftempera- tur betrieben werden, da zur angenehmen Beheizung eines Wohnraumes die Heizfläche relativ groß dimensioniert sein muss. Bei einem konventionellen Heizkörper befinden sich in der Regel Lamellen auf der Außenseite der mit dem Warmwasser durchströmten Wassertaschen, um die Wärmeübertragung durch Konvektion zu steigern, deren Anordnung allerdings aufgrund einer relativ geringen Wärmeübertragungsfläche sowie einer geringen Kontaktfläche zu der Außenseite der Wassertaschen nur eine verhältnismäßig niedrige Leistungsstei¬ gerung zur Folge hat .Radiators are usually made of steel, which has a thermal conductivity of about 50 W / (mK), and Wall heaters are often made from copper pipes with a thermal conductivity of approx. 380 W / (mK). Radiators are usually flowed through by a warm fluid, in particular by water, wherein the heat transfer surfaces in the region of water pockets of the radiator are in direct contact with the warm fluid and the air to be heated. The relatively low thermal conductivity of steel or copper proves to be problematic, especially in connection with heating systems, such as a heat pump, which are operated at a relatively low flow temperature, since the heating surface must be relatively large in order to comfortably heat a living space. In a conventional radiator are generally fins on the outside of the hot water flowing through the water pockets to increase the heat transfer by convection, but their arrangement due to a relatively low heat transfer surface and a small contact surface to the outside of the water pockets only a relatively low Leistungsstei ¬ ration result.
Darüber hinaus sind Kohlenstoff-Nanoröhrchen (CNTs) bekannt, die bei Raumtemperatur eine Wärmeleitfähigkeit von ca. 6000 W/ (mK) besitzen und gegenüber Stahl bei einer wesentlich geringeren Dichte eine wesentlich höhere Zugfestigkeit aufweisen.In addition, carbon nanotubes (CNTs) are known which have a thermal conductivity of about 6000 W / (mK) at room temperature and have a significantly higher tensile strength compared to steel at a substantially lower density.
Es ist Aufgabe der Erfindung, einen Wärmeübertrager der eingangs genannten Art zu schaffen, der eine gute Effizienz aufweist . Erfindungsgemäß wird die Aufgabe gelöst durch Kohlenstoff- Nanoröhrchen .It is an object of the invention to provide a heat exchanger of the type mentioned, which has a good efficiency. According to the invention, this object is achieved by carbon nanotubes.
Die Kohlenstoff-Nanoröhrchen verbessern aufgrund ihrer gu¬ ten Wärmeleitfähigkeit die Effizienz gegenüber konventionellen Wärmeübertragern, wobei es keine Rolle spielt, ob die Wärmeübertrager zum Heizen oder Kühlen eingesetzt und mit welchen Medien sie betrieben werden. Daraus resultiert, dass bei einer gegebenen Wärmemenge, die zu übertragen ist, die Wärmeübertragerfläche relativ klein dimensioniert wer¬ den kann und aufgrund der mechanischen Festigkeitswerte so¬ wie der Dichte der Kohlenstoff-Nanoröhrchen ggfIs. auch dünnwandige Leichtbauteile zur Verfügung gestellt werden können. Selbstverständlich ist es denkbar, den gesamten Wärmeübertrager im Wesentlichen aus Kohlenstoff- Nanoröhrchen unter Verwendung eines geeigneten Bindemittels zu fertigen.Due to their good thermal conductivity, the carbon nanotubes improve the efficiency compared to conventional heat exchangers, whereby it does not matter whether the heat exchangers are used for heating or cooling and with which media they are operated. As a result, given a given amount of heat to be transferred, the heat transfer surface can be dimensioned relatively small and, if necessary, due to the mechanical strength values and the density of the carbon nanotubes. also thin-walled lightweight components can be provided. Of course, it is conceivable to manufacture the entire heat exchanger essentially from carbon nanotubes using a suitable binder.
Bei einem Wärmeübertrager in Sinne der Erfindung handelt es sich um eine Vorrichtung, über die ein Medium an ein anderes Medium Wärme überträgt, ohne dass die Medien in direkten Kontakt miteinander kommen. Wärmeübertrager sind sowohl Heizkörper als auch Rohre, beispielsweise für eine Fußbodenheizung, und Wandheizregister oder auch in einem haushaltsüblichen elektrisch beheizten Wasserkocher vorhanden. Aber auch ein Estrich, Putz bzw. Fußbodenbelag mit zugeordneter Fußboden- oder Wandheizung stellt einen Wärmeübertrager im Sinne der Erfindung dar.In the context of the invention, a heat exchanger is a device by means of which a medium transfers heat to another medium without the media coming into direct contact with one another. Heat exchangers are both radiators and pipes, for example, for underfloor heating, and Wandheizregister or in a household electric heated kettle available. But also a screed, plaster or floor covering with associated floor or wall heating is a heat exchanger in the context of the invention.
In Ausgestaltung weist der Wärmeübertrager zumindest einseitig eine Oberflächenbeschichtung aus Kohlenstoff- Nanoröhrchen auf, besteht aus einer Legierung oder Materi- almischung mit Kohlenstoff-Nanoröhrchen oder ist mit Rippen aus Kohlenstoff-Nanoröhrchen versehen. Bereits mit der O- berflächenbeschichtung eines beispielsweise metallischen Wärmeübertragers geht eine effiziente Wärmeübertragung von der warmen Seite des Wärmeübertragers zu der kalten Seite einher. Vorzugsweise sind Metalle mit Kohlenstoff- Nanoröhrchen legiert oder Kohlenstoff-Nanoröhrchen werden unterschiedlichsten Materialien, wie beispielsweise Kunststoffen, Estrich oder Putz beigemischt, wobei die prozentualen Maximalanteile für den Fachmann leicht zu ermitteln sind, da er sich beispielsweise an der Zusammensetzung bekannter Materialien, die insbesondere mit Kohlenstofffasern verstärkt sind, orientieren kann. Bevorzugt ist es möglich, die Oberflächen des Wärmeübertragers mit Rippen aus Kohlen¬ stoff-Nanoröhrchen zu versehen, um eine relativ große wärmeleitende Fläche bereitzustellen.In an embodiment, the heat exchanger has a surface coating made of carbon at least on one side. Nanotubes, consists of an alloy or material mixture with carbon nanotubes or is provided with ribs of carbon nanotubes. The surface coating of, for example, a metallic heat exchanger already involves efficient heat transfer from the warm side of the heat exchanger to the cold side. Preferably, metals are alloyed with carbon nanotubes or carbon nanotubes are mixed with a variety of materials such as plastics, screed or plaster, the percentage maximum proportions are easy to determine for the expert, since he, for example, the composition of known materials, in particular with Carbon fibers are reinforced, can orient. Preferably, it is possible to provide the surfaces of the heat exchanger with fins made of carbon nanotubes ¬ material to provide a relatively large heat-conductive surface.
Zur Erhöhung der Effizienz eines mit Warmwasser betriebenen Heizkörpers, ist den Wassertaschen ein zuvor erläuterter Wärmeübertrager zugeordnet. Mit der Verwendung von Kohlenstoff-Nanoröhrchen als Legierung oder Beschichtung der Wärmeübertragerflächen, insbesondere im Bereich der Wassertaschen, geht aufgrund der hohen Wärmeleitfähigkeit der Kohlenstoff-Nanoröhrchen eine Steigerung der Wärmeübertragung einher. Hierbei können für die Herstellung der Heizkörper im Wesentlichen vorhandene Maschinen verwendet werden und Design-Merkmale der unterschiedlichen Heizkörper sowie deren Befestigungseinrichtungen können unverändert übernommen werden. Bevorzugt ist zumindest in einer Wassertasche ein Kohlenstoff-Nanoröhrchen umfassender Steg angeordnet. Der Steg kann zur Wärmeleitung in entsprechende Aussparungen bzw. Schlitze in der Wassertasche eingegossen werden und wird unmittelbar von dem warmen Wasser umströmt.To increase the efficiency of a radiator operated with hot water, the water pockets a previously described heat exchanger is assigned. The use of carbon nanotubes as an alloy or coating of the heat transfer surfaces, in particular in the area of the water pockets, is accompanied by an increase in heat transfer due to the high thermal conductivity of the carbon nanotubes. In this case, essentially existing machines can be used for the production of radiators and design features of the different radiators and their fastening devices can be adopted unchanged. Preferably, at least in a water pocket, a carbon nanotube comprehensive web is arranged. The web can be poured for heat conduction into corresponding recesses or slots in the water pocket and is flowed around directly by the warm water.
Zweckmäßigerweise steht der Steg mit Wärmeübertragerflächen, insbesondere auf der Innen- bzw. Rückseite, des Heizkörpers in Verbindung. Ein Heizkörper aus Stahl wird zur Ausbildung von Wassertaschen aus gestanzten und umgeformten Halbschalen zusammengeschweißt. Der aus Kohlenstoff- Nanoröhrchen bestehende oder damit legierte bzw. oberflächenbeschichtete Steg kann auf der wasserführenden Seite der Wassertasche des Heizkörpers, also dessen Wärmeübertragerfläche, angeordnet werden, wonach eine schnell leitende zusätzliche Wärmeübertragerfläche zur Verfügung steht. Um die Wärmeübertragerfläche weitergehend zu vergrößern, weist vorteilhafterweise der Steg einen verrippten Querschnitt auf. Der Steg kann demnach tannenbaumartig gestaltet sein.Conveniently, the web communicates with heat transfer surfaces, in particular on the inner or back, of the radiator in connection. A steel radiator is welded together to form water pockets from stamped and formed half-shells. The carbon nanotube existing or alloyed with it or surface-coated web can be arranged on the water-bearing side of the water bag of the radiator, so its heat transfer surface, after which a fast conductive additional heat transfer surface is available. To further increase the heat transfer surface, advantageously, the web has a ribbed cross section. The bridge can therefore be designed fir-tree-like.
Zur Realisierung einer leicht zu bewerkstelligenden und dennoch abgedichteten Befestigung des Steges in der Wassertasche, ist vorzugsweise der Steg in der Wassertasche durch Kleben befestigt. Für eine Wärmeübertragung am die Umgebungsluft ragt der Steg ins Freie. Selbstverständlich können neben den Stegen weitere Wärmeleitrippen aus Stahl vorgesehen sein.To realize an easy to bewerkstelligenden and yet sealed attachment of the web in the water pocket, the web is preferably fixed in the water bag by gluing. For heat transfer to the ambient air, the bridge projects into the open air. Of course, in addition to the webs further heat conduction ribs made of steel can be provided.
Es versteht sich, dass die vorstehend genannten und nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kom- binationen verwendbar sind. Der Rahmen der Erfindung ist nur durch die Ansprüche definiert.It is understood that the features mentioned above and those yet to be explained not only in the combination given, but also in other combinations. combinations are usable. The scope of the invention is defined only by the claims.
Die Erfindung wird im Folgenden anhand eines Ausführungsbeispieles unter Bezugnahme auf die zugehörigen Zeichnungen näher erläutert. Es zeigt:The invention will be explained in more detail below with reference to an embodiment with reference to the accompanying drawings. It shows:
Fig.l eine schematische Teilschnittdarstellung eines erfindungsgemäßen Heizkörpers undFig.l is a schematic partial sectional view of a radiator according to the invention and
Fig.2 eine weitere schematische Teilschnittdarstellung des Heizkörpers nach Fig. 1.2 shows a further schematic partial sectional view of the radiator according to FIG. 1.
Bei dem Heizkörper handelt es sich um einen Flachheizkörper aus Stahl mit zwei als Wärmeübertrager 1 dienenden Wandungen 2, die derart umgeformt sind, dass nach ihrem Verschweißen vertikale Wassertaschen 3 gebildet sind, die mit einem Vorlauf 4 und einem Rücklauf 5 strömungstechnisch verbunden sind. Auf der Außenseite der einen Wandung 2 sind Rippen 6 befestigt. Um eine effiziente Wärmeübertragung zu gewährleisten, sind in die Wassertaschen 3 Stege 7 eingeklebt, die zur Vergrößerung ihrer Oberfläche einen verripp- ten Querschnitt aufweisen. Die Stege 7 sind entweder mit einem Material beschichtet, das Kohlenstoff-Nanoröhrchen enthält oder bestehen aus einer Legierung mit Kohlenstoff- Nanoröhrchen und weisen damit eine gute Wärmeleitfähigkeit auf .The radiator is a flat radiator made of steel with two serving as a heat exchanger walls 1 2, which are deformed so that after their welding vertical water pockets 3 are formed, which are fluidly connected to a flow 4 and a return 5. On the outside of a wall 2 ribs 6 are attached. In order to ensure efficient heat transfer, 3 webs 7 are glued into the water pockets, which have a ribbed cross-section to increase their surface. The webs 7 are either coated with a material containing carbon nanotubes or consist of an alloy with carbon nanotubes and thus have a good thermal conductivity.
Um die Wärmeleitfähigkeit des Heizkörpers weiter zu verbessern, sind zusätzlich oder alternativ die als Wärmeübertrager 1 dienenden Wandungen 2 entweder aus einer Kohlenstoff- Nanoröhrchen enthaltenden Legierung gefertigt oder mit Koh- lenstoff-Nanoröhrchen oberflächenbeschichtet .In order to further improve the thermal conductivity of the radiator, in addition or as an alternative, the walls 2 serving as heat exchangers 1 are manufactured either from an alloy containing carbon nanotubes or with carbon dioxide. nanotubes surface-coated.
Die Kohlenstoff-Nanoröhrchen aufweisenden Bauteile, wie die Wandungen 2 oder die Stege 7 , stehen unmittelbar mit dem warmen Wasser in den Wassertaschen 3 in Verbindung und leiten aufgrund ihrer guten Wärmeleitfähigkeit dessen Wärme schnell ab. Demnach erwärmt sich die an dem Heizkörper ent¬ lang strömende Luft sehr schnell durch Konvektion. Auch die im Bereich der Stege 7 auf der Außenseite der entsprechenden Wandung 2 vorhandenen Rippen 6, die ebenfalls Kohlenstoff-Nanoröhrchen aufweisen können, erwärmen sich durch die herrschenden Temperaturunterschiede verhältnismäßig schnell. Insgesamt kann der Heizkörper die in einem Raum benötigte Wärme aufgrund der Kohlenstoff-Nanoröhrchen relativ schnell an die Umgebung abgeben, weshalb die Warmwasserheizungsanlage mit einer vergleichsweise geringen Vorlauftemperatur betrieben werden kann. The carbon nanotube having components, such as the walls 2 or the webs 7, are directly connected to the warm water in the water bags 3 in connection and derive their heat due to their good thermal conductivity quickly. Accordingly, the ent ¬ long flowing air to the radiator heats up very quickly by convection. Also present in the region of the webs 7 on the outside of the corresponding wall 2 ribs 6, which may also have carbon nanotubes, heat relatively quickly by the prevailing temperature differences. Overall, the radiator can release the heat required in a room due to the carbon nanotubes relatively quickly to the environment, which is why the hot water heating system can be operated with a comparatively low flow temperature.

Claims

Patentansprüche claims
1. Wärmeübertrager, gekennzeichnet: durch Kohlenstoff- Nanoröhrchen .1. Heat exchanger, characterized by carbon nanotubes.
2. Wärmeübertrager nach Anspruch 1, dadurch gekennzeichnet, dass er zumindest einseitig eine Oberflächenbe- schichtung aus Kohlenstoff-Nanoröhrchen aufweist, aus einer Legierung oder Materialmischung mit Kohlenstoff- Nanoröhrchen besteht oder mit Rippen (6) aus Kohlenstoff-Nanoröhrchen versehen ist.2. Heat exchanger according to claim 1, characterized in that it has at least on one side a surface coating of carbon nanotubes, consists of an alloy or material mixture with carbon nanotubes or is provided with ribs (6) made of carbon nanotubes.
3. Heizkörper mit Wassertaschen (3), denen ein Wärmeü¬ bertrager (1) nach Anspruch 1 oder 2 zugeordnet ist.3. radiator with water pockets (3), which is assigned a Wärmeü ¬ exchanger (1) according to claim 1 or 2.
4. Heizkörper nach Anspruch 3, dadurch gekennzeichnet, dass zumindest in einer Wassertasche (3) ein Kohlen¬ stoff-Nanoröhrchen umfassender Steg (7) angeordnet ist .4. Radiator according to claim 3, characterized in that at least in a water pocket (3) a carbon ¬ material nanotube comprehensive web (7) is arranged.
5. Heizkörper nach Anspruch 4, dadurch gekennzeichnet, dass der Steg (7) mit Wärmeübertragerflächen, insbesondere auf der Innen- bzw. Rückseite, des Heizkörpers in Verbindung steht.5. Heater according to claim 4, characterized in that the web (7) is in communication with heat transfer surfaces, in particular on the inner or back, of the radiator.
6. Heizkörper nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass der Steg (7) einen verrippten Quer- schnitt aufweist.6. Radiator according to claim 4 or 5, characterized in that the web (7) has a ribbed cross-section.
7. Heizkörper nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass der Steg (7) in der Wassertasche7. Radiator according to one of claims 4 to 6, characterized in that the web (7) in the water pocket
(3) durch Kleben befestigt ist. Heizkörper nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, dass der Steg (7) ins Freie ragt. (3) is fixed by gluing. Radiator according to one of claims 4 to 7, characterized in that the web (7) projects into the open air.
PCT/DE2007/001830 2006-10-26 2007-10-15 Heat exchanger WO2008049390A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07817665A EP2084482A1 (en) 2006-10-26 2007-10-15 Heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006050508.5 2006-10-26
DE102006050508A DE102006050508B4 (en) 2006-10-26 2006-10-26 Radiator with water pockets

Publications (1)

Publication Number Publication Date
WO2008049390A1 true WO2008049390A1 (en) 2008-05-02

Family

ID=39007321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2007/001830 WO2008049390A1 (en) 2006-10-26 2007-10-15 Heat exchanger

Country Status (3)

Country Link
EP (1) EP2084482A1 (en)
DE (1) DE102006050508B4 (en)
WO (1) WO2008049390A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2511806C1 (en) * 2012-10-15 2014-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тамбовский государственный технический университет" ФГБОУ ВПО ТГТУ Method for increasing heat removal by means of microturbulisation particles
DE102018218831B4 (en) * 2018-11-05 2021-09-30 Robert Bosch Gmbh Heat sink and cooling arrangement with heat sink

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030116503A1 (en) * 2001-12-21 2003-06-26 Yong Wang Carbon nanotube-containing structures, methods of making, and processes using same
WO2004027336A1 (en) * 2002-09-17 2004-04-01 Midwest Research Institute Carbon nanotube heat-exchange systems
US20050092467A1 (en) * 2003-10-31 2005-05-05 Hon Hai Precision Industry Co., Ltd. Heat pipe operating fluid, heat pipe, and method for manufacturing the heat pipe
US20050126766A1 (en) * 2003-09-16 2005-06-16 Koila,Inc. Nanostructure augmentation of surfaces for enhanced thermal transfer with improved contact
US20050136248A1 (en) * 2003-12-23 2005-06-23 Charles Leu Thermal interface material and method for manufacturing same
US20050238810A1 (en) * 2004-04-26 2005-10-27 Mainstream Engineering Corp. Nanotube/metal substrate composites and methods for producing such composites

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29511076U1 (en) * 1995-07-07 1995-09-21 Koenig Christel Radiator arrangement
DE19962159A1 (en) * 1999-12-22 2001-07-12 Michael Fischer Method to manufacture radiator; involves forming recesses in ceramic stove tile to hold heating elements and their connections, which are then sealed with heat-proof flexible material
JP2005228855A (en) * 2004-02-12 2005-08-25 Yamagishi Kogyo:Kk Radiator
DE102004044352B4 (en) * 2004-09-09 2010-09-02 E.G.O. Elektro-Gerätebau GmbH Heating device for an electric heating device
DE202004017339U1 (en) * 2004-11-08 2005-02-17 Sgl Carbon Ag Heat conducting paste for joining electronic components in a computer chip contains a filler based on graphite powder and a matrix material based on oil, grease or wax

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030116503A1 (en) * 2001-12-21 2003-06-26 Yong Wang Carbon nanotube-containing structures, methods of making, and processes using same
WO2004027336A1 (en) * 2002-09-17 2004-04-01 Midwest Research Institute Carbon nanotube heat-exchange systems
US20050126766A1 (en) * 2003-09-16 2005-06-16 Koila,Inc. Nanostructure augmentation of surfaces for enhanced thermal transfer with improved contact
US20050092467A1 (en) * 2003-10-31 2005-05-05 Hon Hai Precision Industry Co., Ltd. Heat pipe operating fluid, heat pipe, and method for manufacturing the heat pipe
US20050136248A1 (en) * 2003-12-23 2005-06-23 Charles Leu Thermal interface material and method for manufacturing same
US20050238810A1 (en) * 2004-04-26 2005-10-27 Mainstream Engineering Corp. Nanotube/metal substrate composites and methods for producing such composites

Also Published As

Publication number Publication date
EP2084482A1 (en) 2009-08-05
DE102006050508A1 (en) 2008-04-30
DE102006050508B4 (en) 2009-04-09

Similar Documents

Publication Publication Date Title
DE202009003205U1 (en) Plate element for a Deckenheizungs- and / or cooling element
EP3266098A1 (en) Drive system comprising at least one heat pipe, and the use of same in a drive system
EP0705416B1 (en) Latent heat storage medium and a heater with such a medium
EP3016114B1 (en) Cooled electrical resistor
DE202013009788U1 (en) battery
DE102012108571A1 (en) Electrical resistance
DE102006050508B4 (en) Radiator with water pockets
WO2019115255A1 (en) Plate-type heat exchanger
WO2019120980A1 (en) Counter-current heat exchanger
DE102013010850B4 (en) Electric heating module, electric heater, vehicle and method of making an electric heating module
WO2011104031A2 (en) Latent heat accumulator module, air-conditioning device and control method thereof
DE4402062B4 (en) Radiator with latent heat storage
DE202004021626U1 (en) Heat exchange system
WO2006037596A1 (en) Heating device
WO2013124347A1 (en) Heating body
WO2011006494A2 (en) Radiator
EP1964496A1 (en) Percolator
AT12045U1 (en) WATER HEATER
DE19913116C2 (en) Electric heater
DE19539672A1 (en) Heater for room of house or chalet
DE102011076189A1 (en) Panel collector of solar thermal system, has channel system that is formed in base and covered by absorber surface in fluid-tight manner
EP3502609B1 (en) Heater assembly
DE19831917C2 (en) Equipment to improve the air quality in living, office and production rooms while heating or cooling
DE202006020157U1 (en) Modular solar panel
EP1888992A1 (en) Heating body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07817665

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
REEP Request for entry into the european phase

Ref document number: 2007817665

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007817665

Country of ref document: EP