WO2008047800A1 - Dispositif d'affichage de type à projection - Google Patents

Dispositif d'affichage de type à projection Download PDF

Info

Publication number
WO2008047800A1
WO2008047800A1 PCT/JP2007/070191 JP2007070191W WO2008047800A1 WO 2008047800 A1 WO2008047800 A1 WO 2008047800A1 JP 2007070191 W JP2007070191 W JP 2007070191W WO 2008047800 A1 WO2008047800 A1 WO 2008047800A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
phase modulation
display device
liquid crystal
projection
Prior art date
Application number
PCT/JP2007/070191
Other languages
English (en)
French (fr)
Inventor
Mitsuo Osawa
Atsushi Kawamori
Original Assignee
Asahi Glass Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co., Ltd. filed Critical Asahi Glass Co., Ltd.
Priority to JP2008539828A priority Critical patent/JP5136419B2/ja
Publication of WO2008047800A1 publication Critical patent/WO2008047800A1/ja
Priority to US12/424,971 priority patent/US8132917B2/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/40Materials having a particular birefringence, retardation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/12Function characteristic spatial light modulator
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/50Phase-only modulation

Definitions

  • the present invention relates to a projection display device, and more particularly to a projection display device using a light source having coherency.
  • an ultra-high pressure mercury lamp has been used as a light source for a display device that displays a projected image on a screen such as a data projector or a rear projection television receiver.
  • Laser has been proposed by!
  • Patent Document 1 Japanese Patent Application Publication No. 2000-206449 (Patent Document 1) and Japanese Patent Application Publication No. 2006-047421 (Patent Document 2) propose a projection display device with reduced speckle noise. ing.
  • FIG. 17 is a block diagram of an image display device disclosed in Patent Document 1, in which light emitted from a semiconductor laser 81 is collimated by a collimator lens 82 and then passed through a transparent optical element 83.
  • the transparent optical element 83 is made of optical glass having a refractive index n, and is formed in an N-step shape with a depth of At / !.
  • the light that has passed through the transparent optical element 83 passes through the condenser lens 85 via the lens array 84 composed of N element lenses corresponding to the respective stages of the transparent optical element 83.
  • the light transmitted through the condenser lens 85 is spatially modulated by the spatial modulator 86 and projected onto the screen 88 through the projection lens system 87.
  • each part of the transparent optical element 83 includes an optical path difference that is an integral multiple of At, the light that reaches the screen becomes a set of light that is spatially out of phase, reducing coherence. Therefore, the generation of speckle noise is suppressed.
  • FIG. 18 is a perspective view of the spatial polarization control element disclosed in Patent Document 2, for example, a retardation plate region 91 provided with a retardation plate that is a half-wave plate, and a transmission member.
  • Each of the transparent member regions 92 provided with a vertical stripe shape is alternately arranged.
  • Patent Document 1 has a problem that if the step At is increased in order to provide a sufficient optical path difference, the apparatus itself becomes larger.
  • An object of the present invention is to provide a projection display device that can easily reduce speckle noise when a coherent light source is used.
  • a projection-type display device that includes at least one light source that emits coherent light, and modulates light emitted by the light emitting means.
  • Image light generating means for generating image light
  • projection means for projecting the image light, between the light emitting means and the image light generating means, or between the image light generating means and the projection means.
  • Phase modulation means having a region in which at least one of the azimuth direction of the slow axis and the retardation value is distributed in different directions or values in a plane perpendicular to the optical axis.
  • the azimuth direction of the slow axis is constant in a plane orthogonal to the optical axis, and the retardation is a different value within the range of the minimum retardation value to the maximum retardation value.
  • Including a birefringent material layer having a region distributed in The difference between the maximum retardation and the minimum retardation may be greater than or equal to the wavelength of the coherent light.
  • the coherent light can be sufficiently depolarized.
  • the phase modulation means may include a birefringent material layer having a region in which the azimuth direction of the slow axis is distributed in different directions in a plane orthogonal to the optical axis. Good.
  • the phase modulation means includes a concentric radial direction or a circumferential direction in which the azimuth direction of the slow axis is centered on the optical axis in a plane orthogonal to the optical axis. It has the structure which includes the birefringent material layer which orientates.
  • the retardation force S may be constant equal to an odd multiple of a half wavelength of the coherent light.
  • the coherent light can be sufficiently depolarized.
  • the birefringent material layer further includes a pair of transparent electrodes sandwiching the birefringent material layer, and the birefringent material layer is a liquid crystal layer, and includes a voltage applied between the transparent electrodes from the outside.
  • the birefringent material layer is a liquid crystal layer, and includes a voltage applied between the transparent electrodes from the outside.
  • at least one of the azimuth direction of the slow axis and the retardation value may have a region distributed in different directions or values.
  • the voltage applied to the transparent electrode may be configured to change over time.
  • the birefringent material layer may be a high molecular liquid crystal layer obtained by polymerizing a polymer liquid crystal composition in a predetermined alignment state.
  • the optical phase modulator has an array structure in a plane orthogonal to the optical axis of the incident light, and modulates the phase of the incident light by each element of the array structure.
  • the array-like phase modulation unit is configured so that the slow axis direction in a plane orthogonal to the optical axis of the incident light
  • a birefringent medium in which at least one of the direction and the retardation value varies.
  • a projection-type display device that includes at least one light source that emits coherent light, and generates image light by modulating light emitted from the light emitting unit.
  • An optical phase modulator according to the ninth or tenth invention is also provided.
  • FIG. 1 is a block diagram of a projection display device according to the present invention.
  • FIG. 2 is an explanatory diagram of a phase modulation element according to the first embodiment of the present invention.
  • FIG. 3 is an explanatory diagram of a phase modulation element according to a second embodiment of the present invention.
  • FIG. 4 is an explanatory diagram of a phase modulation element according to a third embodiment of the present invention.
  • FIG. 5 is an XY plan view of a phase modulation element according to a fifth embodiment of the present invention.
  • FIG. 6 is an explanatory diagram of a phase modulation element according to a sixth embodiment of the present invention.
  • FIG. 6 is an explanatory diagram showing the distribution of d and retardation value R.
  • FIG. 8 is a cross-sectional view showing a modification of the phase modulation element in FIG.
  • FIG. 9 is a block diagram of an optical phase modulator according to a seventh embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing an optical system of a projection display device equipped with the optical phase modulator of the present invention. is there.
  • FIG. 11 is a block diagram of the projection display device.
  • FIG. 12 is an explanatory diagram of an arrayed phase modulation unit including a birefringent medium in the projection display device.
  • FIG. 13 is a perspective view showing an example of opposing electrode patterns in the arrayed phase modulation section.
  • FIG. 14 is a perspective view showing another example of opposing electrode patterns in the arrayed phase modulation section.
  • FIG. 15 is an explanatory diagram showing an example of the phase modulation element of the sixth embodiment.
  • FIG. 17 is a block diagram of a conventional image display device.
  • FIG. 18 is a perspective view of a conventional spatial polarization control element.
  • the azimuth direction of the slow axis means the direction of the slow axis projected onto this plane in a plane orthogonal to the optical axis.
  • the projection display device 1 includes a light emitting means 11 including at least one light source that emits coherent light, and an image obtained by modulating light emitted from the light emitting means 11.
  • Image light generating means 12 for generating light and projection means 13 for projecting image light are provided.
  • Phase modulation means 15 having a region in which at least one of the retardation values R is distributed in different directions or values is arranged.
  • the light emitting means 11 is a light source including a laser light source that emits coherent light.
  • the light emitted from the light source passes through the phase modulation element 25, which is the phase modulation means 15, and the image light generation means 1
  • DMD 2 is incident on a spatial light modulator such as a digital micromirror device (DMD).
  • DMD digital micromirror device
  • the light beam incident on the spatial light modulator is modulated in accordance with the image signal and is the projection unit 13.
  • the image is projected on a screen or the like by the projection lens system.
  • the light source is a light source that does not have coherency, whether it is a configuration that uses only one laser light source or a configuration in which a plurality of laser light sources that emit light of different wavelengths are arranged. It may be configured to be used in combination with a laser light source! /.
  • a lens system for collimating or condensing the light beam emitted from the laser light source may be added between the laser light source and the projection lens.
  • the spatial light modulator may be a scanning mirror, and the light from the laser light source may be directly projected onto the screen.
  • the phase modulation element 25 has a direction in which at least one of the azimuth direction A or the retardation value R of the slow axis is different in the XY plane orthogonal to the optical axis (Z axis).
  • phase modulation element 25 has the following three types.
  • Form 1 Azimuth direction A of the slow axis is constant and the retardation value R is distributed
  • the retardation value R is constant and the azimuth direction A of the slow axis is distributed.
  • Format 3 Format in which the azimuth direction A and retardation value R of the slow axis are distributed
  • the phase modulation element 25 has at least one of the azimuth direction A and the retardation value R of the slow axis in a plane (XY plane) orthogonal to the optical axis (Z axis).
  • birefringent material layer has a birefringent material layer with regions distributed in different directions or values.
  • the birefringent material layer it is possible to use a birefringent material layer made of liquid crystal or polymer liquid crystal between two transparent substrates.
  • the retardation value R can be distributed by providing a distribution to the voltage applied to the liquid crystal layer.
  • the pretilt angle refers to an angle formed by liquid crystal molecules with respect to the substrate surface when the liquid crystal is horizontally aligned.
  • the polymer liquid crystal composition is polymerized and solidified in a state where the azimuth direction A of the slow axis and the retardation value R are distributed by the same method.
  • the desired slow axis azimuth direction A and retardation value R distribution can be obtained.
  • a desired retardation value R distribution can be obtained even if the thickness of the polymer liquid crystal layer is distributed.
  • the phase modulation element 25 according to the present invention includes a total of six types in the case where liquid crystal or polymer liquid crystal is used in each of the three types described above.
  • embodiments of the present invention will be described. Let's use the attached drawings for explanation.
  • the phase modulation element 25 is a type 1 type phase modulation element, and is a cross-sectional view of the lower part of FIG. 2 (a) and Z′—Z ′′ of (c). As shown in the cross-sectional view, the birefringent material sandwiched between the first transparent substrate 251a and the second transparent substrate 251b and the first transparent substrate 251a and the second transparent substrate 251b that are arranged to face each other. And a birefringent material layer 255.
  • a low resistance electrode 252a which is a transparent electrode, is provided on one end of the surface of the first transparent substrate 251a facing the birefringent material layer 255, and a low resistance electrode 252b is provided on the other end. It is formed.
  • a high resistance electrode 253 is formed between the low resistance electrodes 252a and 252b. Note that the low resistance electrodes 252a and 252b and the high resistance electrode 253 are electrically connected.
  • a counter electrode 254 is formed on the entire surface of the second transparent substrate 251b facing the birefringent material layer 255.
  • the low resistance electrode 252a is connected to the terminal of the rectangular wave AC power source PS 1
  • the low resistance electrode 252b is connected to the terminal of the rectangular wave AC power source PS2.
  • the rectangular wave AC power source PS1, the rectangular wave AC power source PS2, and the counter electrode 254 are grounded.
  • the rectangular wave AC power supplies PS1 and PS2 apply voltages having the same phase to the low resistance electrodes 252a and 252b.
  • the first transparent substrate 251a and the second transparent substrate 251b need to be transparent to the wavelength of the light source to be used, and glass, plastic, or the like can be used.
  • the high-resistance electrode 253 and the counter electrode 254 must be transparent to the wavelength of the light source used, and SnO (tin dioxide) doped with ITO (indium tin oxide), antimony, fluorine, or the like. ZnO doped with aluminum, gallium, indium, etc. Conductive oxides such as zinc) can be used.
  • the low resistance electrodes 252a and 252b may be made of a metal having a lower resistance than the high resistance electrode 253, such as chromium, copper, nickel metal, or gold, or a conductive oxide such as ITO, SnO, or ZnO. it can.
  • R / R is preferably 1/1000 or less. When R / R exceeds 1/1000,
  • the low resistance electrode includes a sheet resistance of 40 ⁇ / mouth
  • examples of the high resistance electrode include a sheet resistance of 100 ⁇ / mouth of SnO film.
  • a birefringent material layer 255 of the low resistance electrodes 252a and 252b and the high resistance electrode 253 is used. Cover at least one of the surface opposite to the birefringent material layer 255 of the counter electrode 254 with an insulating film! /.
  • This insulating film must be transparent with respect to the wavelength of the light source to be used.
  • an inorganic film made of an inorganic material such as SiO (silicon dioxide) or an organic film made of an organic material such as acrylic can be used. .
  • liquid crystal as the material of the birefringent material layer 255 because the degree of freedom in designing the retardation value R is improved.
  • a polyimide film is placed on the surface of the low resistance electrodes 252a, 252b, the high resistance electrode 253, and the counter electrode 254 in contact with the liquid crystal. ) And may be subjected to orientation treatment such as rubbing.
  • a technique of photo-alignment a technique of aligning SiO (-silicon oxide) by oblique deposition, a technique of aligning a diamond-like carbon film or the like by irradiating an ion beam, or the like may be used.
  • a large number of minute concave and convex grooves may be provided on the substrate surfaces of the first transparent substrate 251a and the second transparent substrate 251b that are in contact with the liquid crystal so that the liquid crystal molecules follow the grooves!
  • the direction of the slow axis in the XY plane can be the Y-axis direction.
  • the upper part of (a) and (b) of FIG. 2 is a plan view of the birefringent material layer 255 as seen from the Z-axis direction.
  • the azimuth direction A of the slow axis of the birefringent material layer 255 is constant regardless of the position.
  • the orientation direction A of the slow axis of the liquid crystal molecules in the birefringent material layer 255 is in the substrate plane (X-Y plane)
  • the inclination ⁇ with respect to the optical axis direction increases as it approaches the low-resistance electrode 252a from the low-resistance electrode 252b, and approaches the orientation processing direction parallel to the XY plane.
  • the direction of the thick line indicates the azimuth direction A of the slow axis at each location of the birefringent material layer 255, and the length of the thick line is Rita of refractive material layer 255
  • Desinyi represents the size of R! /
  • the retardation value R of the birefringent material layer 255 is continuously connected to the retardation value R force at the left end of the substrate in the drawing to the retardation value R at the right end in accordance with the electric field applied in the optical axis direction.
  • the wavelength of the lent light be at least ⁇ , preferably at least twice the wavelength.
  • max mm max R is 10 times or less of the wavelength ⁇ of the coherent light, preferably 5 times or less min
  • the voltage applied to the liquid crystal layer is switched over time because the distribution of retardation values in the XY plane can be changed over time.
  • a polymer liquid crystal prepared by polymerizing and solidifying a polymer liquid crystal composition in a state in which a desired alignment is performed by a similar method may be used instead of the above liquid crystal.
  • the projection display device uses a phase modulation element having regions where the retardation values are distributed with different values in a plane orthogonal to the optical axis. Therefore, it is possible to reduce speckle noise easily when using a coherent light source.
  • phase modulation element according to the present invention can be laminated and integrated with other optical components used in the projection optical system, such as a beam shaping device, a light amount uniformizing device, a polarizer, and the like. This is very preferable from the viewpoint of miniaturization of the projection optical system and ease of assembly adjustment.
  • the phase modulation element 26 according to the second embodiment of the present invention is a type 1 type phase modulation element.
  • elements having functions equivalent to those of the phase modulation element of the first embodiment shown in FIG. 2 are denoted by the same reference numerals.
  • the first transparent substrate 261a and the second transparent substrate disposed opposite to each other as shown in FIG. A substrate 261b, and a birefringent material layer 265 made of a birefringent material sandwiched between the first transparent substrate 261a and the second transparent substrate 261b are included.
  • Transparent electrodes are provided on the first transparent substrate 261a and the second transparent substrate 261b so that a voltage can be applied to the birefringent material layer 265.
  • Low resistance electrodes 262a, 262b and 262c force S are formed on the surface of the second transparent substrate 261b, and a high resistance electrode 263 is formed between these low resistance electrodes.
  • a counter electrode 264 is formed on the entire surface on the surface facing the birefringent material layer 265 on the first transparent substrate 261b.
  • the low-resistance electrodes 262a, 262b, and 262c are connected to rectangular wave AC power supplies PS1, PS2, and PS3, respectively, and the rectangular wave AC power supplies PS1, PS2, PS3, and the counter electrode 264 are grounded.
  • the rectangular wave AC power supplies PS 1, PS2, and PS3 are assumed to send in-phase signals to the low resistance electrodes 262a, 262b, and 262c.
  • Other conditions are of the type 1 type as in the first embodiment.
  • the rectangular wave AC power supplies PS1, PS2, and PS3 are connected to the low resistance electrodes 262a, 262b, and 262c, respectively, and a voltage higher than that of the low resistance electrodes 262a, 262b is applied to the low resistance electrode 262c.
  • the electric field between the high resistance electrode 263 and the counter electrode 264 is a gradient electric field that becomes stronger from the low resistance electrode 262a side toward the low resistance electrode 262c. Then, a gradient electric field is generated which becomes stronger toward the low resistance electrode 262c from the low resistance electrode 262b side.
  • Azimuth direction of slow axis of liquid crystal molecules in birefringent material layer 265 is in the substrate plane (X-Y plane
  • the retardation value R of the birefringent material layer 265 depends on the electric field applied in the direction of the optical axis, up to the retardation value R force at the left end of the substrate in FIG. Continuously distributed, continuously from the central retardation value R to the right edge R of the board
  • the phase modulation element 27 according to the third embodiment of the present invention is a type 1 type phase modulation element.
  • components having the same functions as those of the phase modulation element of the first embodiment shown in FIG. 2 are denoted by the same reference numerals.
  • the first transparent substrate 271a and the second transparent substrate arranged to face each other.
  • a substrate 271b and a birefringent material layer 275 made of a birefringent material sandwiched between the first transparent substrate 271a and the second transparent substrate 271b are included.
  • a transparent electrode is provided on the first transparent substrate 271a and the second transparent substrate 271b so that a voltage can be applied to the birefringent material layer 275.
  • Low resistance electrodes 272a, 272b, 272c and 272d force S are formed on the surface of the second transparent substrate 271b.
  • a counter electrode 274 is formed on the entire surface of the first transparent substrate 271b facing the birefringent material layer 275.
  • Low-resistance electrodes 272a, 272b, 272c, and 272d are connected to square-wave AC power supplies PS1, PS2, PS3, and PS4, respectively, and the giant-wave AC power sources PS 1, PS2, PS3, PS4, and counter electrode 274 is grounded. Then, rectangular wave AC power supplies PS1, PS2, PS3, and PS4 (or low resistance electrodes 272a, 272b, 272c, and 272di are sent to the same sign. Other conditions are the same as in the first embodiment. Of type 1
  • FIG. 4 (b) A configuration in which square wave AC power supplies PS1, PS2, PS3, and PS4 are connected to low resistance electrodes 272a, 272b, 272c, and 272d, respectively, and different voltages are applied to the low resistance electrodes 272a, 272b, 272c, and 272d, respectively.
  • the voltage applied to the low resistance electrode 272a is the lowest, and the voltage applied in the order of 272d, 272b, 272c is configured to increase.
  • the inclination ⁇ in the major axis direction of the liquid crystal molecules with respect to the optical axis direction (Z axis direction) is reduced to / J, which is the I jet of the low resistance electrodes 272a, 272d, 272b, 272c.
  • the four exemplified electrodes are configured to substantially cover the surface in contact with the liquid crystal, and the retardation value R in the Z-axis direction of the birefringent material layer 275 is low resistance electrodes 272a, 272b, 272c.
  • 272d is almost constant in each region corresponding to the retardation of the birefringent material layer 275 within the substrate surface, and discontinuous distribution is distributed in the regions corresponding to the low resistance electrodes 272a, 272b, 272c, 272di.
  • the number of low-resistance electrodes is not limited to four, and electrodes may be provided as many as different voltages are applied, and electrodes having an arbitrary area and shape may be provided in the X-axis plane.
  • the low-resistance electrodes that can be combined with the electrode configurations of the first to third embodiments listed in the type 1 type are both formed only on the upper surface of one transparent substrate. The voltage may be distributed by forming on a transparent substrate surface.
  • a phase modulation element according to a fourth embodiment of the present invention is a type 1 type phase modulation element, and is arranged so as to face the first transparent substrate and the second transparent substrate, and the first transparent substrate A birefringent material layer made of a polymer liquid crystal sandwiched between the substrate and the second transparent substrate.
  • electrodes are not formed on the first transparent substrate and the second transparent substrate.
  • the phase modulation element 35 according to the fifth embodiment of the present invention is a type 2 type phase modulation element, as shown in the XY plan view of FIG. 5, in a plane orthogonal to the optical axis ( X—Y plane) includes a birefringent material layer 355 in which the azimuth direction A of the slow axis is continuously distributed.
  • the direction of the thick line is the azimuth direction A of the slow axis of the birefringent material layer 355, and the length of the thick line is
  • FIG. 5 shows the azimuth direction A of the slow axis as the radial direction of the concentric circle centered on the optical axis.
  • the birefringent material layer 355 is shown, and (b) in FIG. 5 shows the azimuth direction A of the slow axis as the optical axis.
  • a birefringent material layer 355 oriented in a concentric circumferential direction centering on d is shown.
  • the birefringent material layer 355 liquid crystal or polymer liquid crystal can be used.
  • the phase modulation element 35 shown in FIGS. 5 (a) and 5 (b) has liquid crystal molecules on opposite surfaces of the first transparent substrate 351a and the second transparent substrate 351b, each centered on the optical axis. After aligning to align in the radial direction of the concentric circle and the circumferential direction of the concentric circle centered on the optical axis, the liquid crystal may be injected between the first transparent substrate 351a and the second transparent substrate 351b. .
  • rubbing an alignment film such as a polyimide film or forming a groove extending in a direction to be aligned can be applied.
  • a large number of minute concave and convex grooves may be provided on the substrate surfaces in contact with the liquid crystal layers of the first transparent substrate 351a and the second transparent substrate 35 lb so that the liquid crystal molecules follow the grooves.
  • the retardation R is an odd multiple of ⁇ / 2 (where ⁇ is the wavelength of the incident light), since the effect of reducing speckle noise that increases the depolarization effect is large.
  • the phase modulation element 35 is preferable because it can achieve depolarization regardless of the polarization direction of incident light, and thus the degree of freedom in arrangement increases.
  • the retardation value R for each wavelength of light is adjusted so that the retardation value R at each wavelength is an odd multiple of ⁇ / 2! /.
  • phase modulation element 35 having a retardation value R that is 1/2 of each wavelength can be installed in an optical path through which light of each wavelength passes independently.
  • the number of phase modulation elements 35 may be reduced by installing one phase modulation element 35 in the optical path through which light of three wavelengths of 465 nm, 532 nm, and 650 nm passes in common. Is possible.
  • the retardation direct R for light of each wavelength becomes 5.5 ⁇ , 4.5 ⁇ , and 3.5 ⁇ , respectively, and an odd multiple of 1/2 at each wavelength. This is preferable because the retardation can be made straight.
  • the azimuth direction ⁇ of the slow axis is distributed in a plane orthogonal to the optical axis.
  • the phase modulation element 45 according to the sixth embodiment of the present invention is a type 3 type phase modulation element, which is a low-resistance electrode 25 formed on the first transparent substrate 251a of the first embodiment. Instead of 2a, 252b and high resistance electrode 253, voltage is applied to the concentric circular low resistance electrodes 452a, 452b, 452c, 452d and high resistance electrode 453 as shown in Fig. 6 (a). It is possible to control the retardation value R of the birefringent material layer according to the applied voltage.
  • the phase modulation element 45 can realize the distribution of the azimuth direction A and the retardation value R of the slow axis as shown in (a) of FIG. 5, (a) and (b) of FIG. it can.
  • a liquid crystal with positive dielectric anisotropy is orthogonal to the optical axis (Z axis) when no voltage is applied to the XY plane.
  • Z axis optical axis
  • a gradient electric field can be formed by a combination of a high resistance electrode and a low resistance electrode, and a continuous distribution of retardation R can be formed. It is possible to create a similar retardation value R distribution by applying a voltage of.
  • a dielectric 556 having a thickness changed in the radial direction of a concentric circle centered on the optical axis is provided on at least one transparent electrode 554a.
  • the phase modulation element 55 may be used.
  • a gradient electric field corresponding to the thickness of the dielectric is applied to the birefringent material layer 555.
  • the thickness of the dielectric 556 is changed, but the same effect can be obtained by making the thickness uniform and producing a distribution of permittivity. Further, a gradient electric field may be generated by combining a change in dielectric constant and a change in thickness. In this way, the number of voltage application terminals can be reduced.
  • a birefringent material layer is produced using polymer liquid crystal instead of liquid crystal, and the distribution of the desired retardation value R is realized by processing the thickness of the birefringent material layer by photolithography and etching. It is also possible.
  • the optical phase modulator 1002 has an array structure in a plane orthogonal to the optical axis of incident light, and the elements of the array structure (hereinafter referred to as array elements).
  • array-shaped phase modulation unit 101 that modulates the phase of incident light, and light that divides incident light into a plurality of light beams corresponding to each array element, and then superimposes the divided light beams into one
  • a shaping unit 1001 is provided.
  • the arrayed phase modulation unit 101 is a birefringent medium in which at least one of the azimuth direction of the slow axis and the retardation value R varies in a plane orthogonal to the optical axis of the incident light. Including.
  • the light shaping unit 1001 is a first lens having a lens function for each spatially divided element (hereinafter referred to as a lens element) corresponding to the array element of the arrayed phase modulation unit 101.
  • a lens element spatially divided element
  • An array 102 and a second lens array 103 are provided.
  • Each lens element of the first lens array 102 has a rectangular shape similar to the rectangular shape of the illumination region 104, and each array element of the array-like phase modulation unit 101 has a similar rectangular shape.
  • the transmitted light is phase-modulated for each array element region by the array-like phase modulation unit 101 and then enters the first lens array 102.
  • the first lens array 102 and the second lens array 103 By the first lens array 102 and the second lens array 103, the light is superimposed on the illumination area and imaged. At this time, since the phases of the superposed light are respectively modulated by the array-like phase modulation unit 101, the phases are multiplexed, and the lights having different phases are superposed.
  • the magnitude of the phase modulation is preferably ⁇ / 2 or more, more preferably ⁇ or more, where ⁇ is the wavelength of incident light.
  • the light is spatially divided and phase-modulated in a form corresponding to the array element region, so that the influence of diffraction or the like at the divided boundary portion can be suppressed.
  • the light shaping unit 1001 when the intensity of the incident light is distributed in a plane perpendicular to the optical axis, the light shaping unit 1001 also functions as a function for making the light quantity uniform. .
  • the projection display device 2 generates the image light by modulating the light emitted from the light emitting means 21 including at least one light source that emits coherent light, and the light emitted from the light emitting means 21.
  • a phase modulator 1002 is arranged.
  • Coherent light emitted from the laser light source 111 which is the light emitting means 21, is collimated by the lens 112, and is composed of an optical phase composed of the arrayed phase modulator 101, the first lens array 102, and the second lens array 103.
  • the light is incident on the modulator 1002, passes through the lens 113, passes through the image generator 114, which is the image light generator 22 that generates image light, and then the projector 23.
  • the projection lens 115 projects the image onto the screen 116.
  • the image generation unit 114 may be a force reflection type liquid crystal panel or a digital micromirror device (DMD), which can typically use a transmission type liquid crystal panel.
  • DMD digital micromirror device
  • the light incident on the optical phase modulator 1002 is phase-modulated for each array element, and is superimposed on each other and illuminated on the image generation unit 114.
  • the speckle pattern generated on the screen 116 varies depending on the projected image for each array element. Therefore, the speckle pattern is averaged according to the number of array elements to be superimposed, and speckle noise is reduced and observed.
  • the collimated light is incident on the arrayed phase modulation unit 101.
  • the light that has passed through each array element of the arrayed phase modulation unit 101 is the first lens array 102 and the second phase modulation unit 101. Since it is only necessary to transmit light corresponding to each lens element of the second lens array 103, the arrangement position of the arrayed phase modulation unit 101 is not limited to the position shown in FIG.
  • the arrayed phase modulation unit 101 may be disposed in the divergent light between the laser light source 111 and the lens 112. This is preferable because the size of the projection display device including the optical phase modulator 1002 can be reduced. Further, the array-like phase modulation unit 101 may be installed between the first lens array 102 and the second lens array 103 or on the emission side of the second lens array 103.
  • integrating the array-like phase modulation unit 101 with at least one of the first lens array 102 and the second lens array 103 facilitates alignment of the array elements and reduces the number of components. preferable.
  • a device having a deflection function may be provided in the image generation unit 114, and the light irradiated to one point on the screen 116 may be swept, and at the same time, the amount of light may be modulated to form an image.
  • the birefringent medium 122 has transparent electrodes 121a and 121b on the opposite surface.
  • a liquid crystal layer sandwiched between a pair of formed transparent substrates 120a and 120b, and the retardation value R can be temporally changed by a voltage applied between the transparent electrodes 121a and 121b.
  • a voltage can be applied from the voltage generator 123 to the transparent electrodes 121a and 121b.
  • the transparent substrates 120a and 120b plastics such as glass, polyethylene terephthalate (PET), and polycarbonate (PC) can be suitably used.
  • PET polyethylene terephthalate
  • PC polycarbonate
  • ITO ITO, SnO, or the like can be suitably used.
  • liquid crystal As a material of the birefringent medium 122, use of liquid crystal is very preferable because large phase modulation can be performed at a low voltage.
  • an alignment film in which an alignment treatment such as rubbing is performed on the polyimide film may be provided at the interface with the transparent electrodes 121a and 12 lb, which are preferable for the nematic liquid crystal.
  • the alignment treatment vertical alignment, horizontal alignment, hybrid alignment, and the like can be achieved with respect to the transparent substrates 120a and 120b.
  • the image generation unit 114 of the projection display device 2 to be applied is made of DMD or the like, and the polarization state of incident light is not limited to linear polarization, the arrayed phase modulation unit 101 is not only polarized but also polarized. If this is also changed, the speckle pattern to be superimposed increases, and the effect of reducing speckle noise is increased.
  • the liquid crystal used as the birefringent medium 122 of the arrayed phase modulation unit 101 is twist-aligned, or the liquid crystal is homogeneously aligned in the projection display device 2, and the incident light is incident on the alignment direction.
  • An angle that is neither parallel nor orthogonal to the polarization direction of the light beam should be set.
  • the transparent electrodes 121a and 121b are preferably patterned into a predetermined shape in order to change the phase for each array element.
  • FIG. 13 shows an example of the opposing electrode pattern. In FIG. 13, by applying different voltages to the electrodes 131a to 131e, 132a to 132e, the orientation of the liquid crystal is changed, and phase modulation can be performed for each array element.
  • one transparent electrode is a high-resistance electrode 133a to 133e and 133e and low-resistance electrodes 134a, 134b, 135a, 135b, 136a, 136b, 137a, 137b, 138a
  • a gradient electric field may be formed by forming a composite electrode of 138b, and a distribution of retardation R in each array element may be generated.
  • the gradient direction is different for each array element
  • the electrodes 131a to 131e in FIG. 14 are also composite electrodes, and the distribution of the retardation straight R for each array element is two-dimensionally distributed and temporally varied.
  • the high resistance electrode is preferably transparent because it transmits light.
  • ITO, SnO, Z ⁇ , or the like can be used.
  • the low resistance electrode should have a lower resistance value than the high resistance electrode. It can use metals such as Cr, Cu, Ni, Au, etc. As long as the resistance value is lower than the high resistance electrode, ITO, SnO A metal oxide such as ZnO may be used.
  • Ratio of sheet resistance R of low resistance electrode to sheet resistance R of high resistance electrode R / R is 1000 minutes
  • the desired gradient voltage described later may not be obtained. Also, if the sheet resistance R of the high resistance electrode is too large, no gradient voltage will be generated.
  • the sheet resistance R of the low resistance electrode should be as small as possible.
  • the range of !!-50 ⁇ / mouth is preferable in consideration of the ease of forming the transparent electrode and the cost.
  • Preferred examples of the low resistance electrode include an ITO film strength S having a sheet resistance of 40 ⁇ / port
  • examples of the high resistance electrode include an SnO film having a sheet resistance of 100 ⁇ / port.
  • a gradient electric field is formed by a combination of a high resistance electrode and a low resistance electrode, and the force electrode that forms a continuous distribution of the retardation value R is finely divided, and a predetermined voltage is applied to each. It is also possible to form a similar retardation distribution
  • the dielectric constant of the dielectric is constant.
  • Dielectric constant change and thickness A gradient electric field may be formed by combining these changes.
  • the force S shown in the case where the liquid crystal layer is a single layer may be multilayered.
  • the type 1 type phase modulation element 25 will be described with reference to FIG.
  • first transparent substrate 251a and the second transparent substrate 251b are prepared as the first transparent substrate 251a and the second transparent substrate 251b.
  • a chromium film having a sheet resistance value of 5 ohms is formed and patterned on the first transparent substrate 251a, and low resistance electrodes 252a and 252b are formed at both ends in the X-axis direction of the substrate surface.
  • a SnO film having a sheet resistance value of 100 kilohms is stacked on the first transparent substrate 251 a to form a high resistance electrode 253.
  • the high resistance electrode 253 is a low resistance electrode 252a, 2
  • An ITO film having a sheet resistance value of 300 ohms is formed on the second transparent substrate 251b to form the counter electrode 254.
  • the low-resistance electrodes 252a and 252b and the counter electrode 254 have a take-out electrode portion (not shown) and can apply an external voltage.
  • an insulating film of 40 nm thick SiO as the main component is formed, and a polyimide 40 nm thick alignment film is formed on the substrate. Rubbing is performed in the Y direction in the plane.
  • the first transparent substrate 251a and the second transparent substrate 251b are connected to the low resistance electrode 252a,
  • high resistance electrode 253, counter electrode 254 and the surface on which the alignment film is formed are placed facing each other and the outer periphery is sealed with a sealing material mixed with a spacer, and the cell gap force S is 14 micrometer.
  • a cell A cell.
  • the low-resistance electrodes 252a and 252b, the high-resistance electrode 253, and the counter electrode 254 described above may be formed by trimming the peripheral portion of the substrate and the sealing member as necessary.
  • a nematic liquid crystal having a positive dielectric anisotropy having a refractive index difference ⁇ n between the extraordinary refractive index and the ordinary refractive index of 0.26 is injected from an injection port provided in the sealing material, A liquid crystal cell having a birefringent material layer 255 is obtained by sealing the inlet.
  • the counter electrode 254 is grounded, and the low-resistance electrodes 252a and 252b have a rectangular shape with a frequency of 1 kilohertz. Connect an external power supply that generates AC waves.
  • the phase modulation element is configured so that the polarization direction of linearly polarized light is 45 degrees with respect to the Y direction of the phase modulation element 25 (liquid crystal alignment direction).
  • the polarization degree of the transmitted light emitted from the phase modulation element 25 is measured by being incident on 25, it is about 13% when the voltage difference is 0.8 Vrms, and 5% when the voltage difference is 1.4 Vrms. It was confirmed that the polarization was eliminated.
  • the degree of polarization was obtained by measuring a stoichiometric vector with a polarimeter.
  • phase modulation element thus obtained is inserted into a projection display device and depolarized, the speckle noise can be reduced and projection display can be performed.
  • the type 3 type phase modulation element 45 will be described with reference to FIGS. 6 (a) and 6 (b).
  • two glass substrates having a thickness of 0.5 mm are prepared as the first transparent substrate 451a and the second transparent substrate 451b.
  • An ITO film having a sheet resistance value of 0 ohm is formed on the first transparent substrate 451a and patterned to form low resistance electrodes 452a to 452d to which a voltage can be applied from the outside.
  • a SnO film having a sheet resistance value of 100 mega ohm is formed on the same surface of the first transparent substrate 451a and patterned to form a high resistance electrode 453.
  • an ITO film having a sheet resistance value of 300 ohms is formed and patterned to form the counter electrode 454.
  • an insulating film mainly composed of SiO is formed to a thickness of 40 nanometers, and the thickness is further increased.
  • a polyimide film with a thickness of 40 nanometers is formed as a vertical alignment film.
  • the first transparent substrate 451a and the second transparent substrate 451b are overlapped so that the surfaces on which the electrodes and the alignment film are formed face each other so that the cell gap is 10 micrometers, and the outer periphery is shrunk.
  • An empty cell is formed by sealing with a sealing material (not shown).
  • a voltage is applied to the low resistance electrodes 452a to 452d using an external power source that generates a rectangular alternating wave having a frequency of 1 kilohertz.
  • the applied voltages to the low resistance electrodes 452a to 452d were 2.9 Vrms, 3.2 Vrms, 3.5 Vrms, and 3.8 Vrms, respectively.
  • the azimuth direction A of the slow axis is centered on the optical axis.
  • the azimuth direction A of the slow axis is a radius of a concentric circle centered on the optical axis as shown in Fig. 7 (a).
  • phase modulation element thus obtained is inserted into a projection display device and depolarized, the speckle noise can be reduced and projection display can be performed.
  • the type 3 type phase modulation element 75 will be described with reference to FIGS. 15 (a) and 15 (b).
  • first transparent substrate 751a and the second transparent substrate 751b are prepared as the first transparent substrate 751a and the second transparent substrate 751b.
  • An ITO film having a sheet resistance of 300 ohms is formed on the first transparent substrate 751a and the second transparent substrate 751b to form opposing transparent electrodes 754a and 754b.
  • a SiON (silicon oxynitride) film with a refractive index of 1.54 was formed on the transparent electrodes 754a and 754b by 0.3 micrometer, and the depth was 0.3 micrometer by photolithography and dry etching. Concentric grooves 756a and 756b having a pitch of 5 micrometers are formed. Concentric A polyimide film with a thickness of 40 nanometers is formed on the grooves 756a and 756b to form an alignment film (not shown).
  • the first transparent substrate 751a and the second transparent substrate 751b are laminated so that the surfaces on which the transparent electrodes 754a and 754b and the alignment film are formed face each other, and an epoxy resin mixed with a glass fiber having a diameter of 10 micrometers
  • the outer periphery is sealed with an empty cell having a cell gap of 10 micrometers.
  • the refractive index of the material forming the grooves and the ordinary refractive index of the liquid crystal Or, the product An′d of the difference ⁇ from the extraordinary refractive index and the groove depth d is preferably 1/10 or less of the wavelength of the light used. More preferably, it is 1/20 or less.
  • d is preferably 0.05 ⁇ m or more.
  • a linearly polarized laser beam having a wavelength of 632.8 nm and a beam diameter of 2 mm is passed through the fabricated liquid crystal cell, and a voltage is applied using an external power source that generates a rectangular AC wave with a frequency of 1 kilohertz.
  • the degree of polarization was measured, it was confirmed that the degree of polarization was 10% or less at voltages of 1.9 Vrms and 3.6 Vrms, as shown in Fig. 16 (a), and the depolarization was confirmed.
  • the retardation value of the liquid crystal was about 3 ⁇ / 2 and about / 2 respectively.
  • a force blaze type in which the cross-sectional shape of the groove is a rectangular shape or a multi-step type is preferable because the alignment state of liquid crystal molecules during voltage application can be further stabilized. ,. (Example 4)
  • a low resistance electrode 134a, 134b, 135a, 135b, 136a is formed by depositing an ITO with a sheet resistance value of 40 ⁇ / mouth on a transparent substrate 120a, which is a glass substrate with a thickness of 0.5 mm. , 136b, 137a, 137b, 138a, 138b. Further, ITO having a sheet resistance value of 300 ⁇ / mouth is formed on a transparent substrate 120b, which is a glass substrate having a thickness of 0.5 mm, and patterned to form opposing electrodes 131a to 131e.
  • An SnO film having a sheet resistance value lOOk Q / port is formed and patterned on the same surface of the transparent substrate 120a as the low resistance electrode to form high resistance electrodes 133a to 133e.
  • High resistance electrode 133a ⁇ ; 133e width is 3.2 mm, electrode 131a ⁇ ; 131e width is 2.4 mm, and electrode pattern with 5 X 5 array elements of 2.4 X 3.2 mm size To do.
  • An insulating film mainly composed of SiO is formed to a thickness of 40 nm on each electrode, and polyimide is formed to a thickness of 40 nm as an alignment film, and a rubbing process is performed in the Y direction. Both transparent substrates are overlapped so that the alignment films face each other, the cell gap is 3 m, and the outer periphery is sealed with epoxy adhesive.
  • a nematic liquid crystal with positive dielectric anisotropy of An 0.26 is injected from the inlet, and then the inlet is sealed with an acrylic adhesive.
  • a voltage can be applied to the electrodes by a voltage generator 123.
  • the light emitted from the laser light source 111 is collimated by the lens 112 and projected onto the arrayed phase modulation unit 101.
  • the array-like phase modulation unit 101 is divided into 5 ⁇ 5 array elements, and modulates the phase of the light with each array element and projects it onto the first lens array 102.
  • the first lens array 102 is also a 2.4 mm X 3.2 mm lens element, similar to the array-like phase modulation unit 101, and the divided and phase-modulated light enters the corresponding lens element.
  • Shoot. Light is projected onto the image generation unit 114 via the first lens array 102, the second lens array 103, and the lens 113.
  • the light divided into 2.4 ⁇ 3.2 mm size by the arrayed phase modulation unit 101 overlaps each other to become a size of 13.5 ⁇ 18 mm square and is projected to the image generation unit 114. Then, the light given the image information by the image generation unit 114 is projected onto the screen 116 by the projection lens 115.
  • a rectangular alternating wave having a frequency of 1 kHz is applied to arrayed phase modulation section 101. Modulate the amplitude of the giant AC wave applied to the low-resistance electrodes 134a, 135b, 136a, 137b, 138a to 0.8Vrms force, etc. Low-resistance electrodes 134b, 135a, 136b, 137a, 13 8b The amplitude of the rectangular AC wave applied to the low-resistance electrode is also temporally modulated from 0.8 Vrms to 2.2 Vrms. To do. Opposing electrodes 131a-; 131e drop the potential to ground.
  • the light that has been phase-modulated by the arrayed phase modulation unit 101 is projected onto the screen 116 in an overlapping manner, and a large speckle elimination effect is confirmed.
  • a rectangular AC wave with a different voltage and a phase shift of 180 degrees is superimposed on the screen 116, which eliminates further speckle. The effect can be confirmed.
  • the projection display device has an effect that speckle noise can be easily reduced when a coherent light source is used. It is valid.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)
  • Polarising Elements (AREA)

Description

明 細 書
投射型表示装置
技術分野
[0001] 本発明は、投射型表示装置に係り、特に、コヒーレント性を有する光源を使用した 投射型表示装置に関する。
背景技術
[0002] データプロジェクタあるいは背面投射型テレビジョン受像機のようなスクリーンに投 影画像を表示する表示装置の光源としては、従来超高圧水銀ランプが使用されてき た力 近年単色性と光源寿命の観点からレーザが提案されてきて!/、る。
[0003] また、超高圧水銀ランプでは不足する赤色光を補うために、超高圧水銀ランプと赤 色レーザを併用した光源も提案されてレ、る。
[0004] しかし、レーザを光源とした場合には、投影画像中にレーザ光のコヒーレント性に起 因する粒上のスペックルノイズが発生し、投影画像の画質が劣化することを回避でき ない。
[0005] 日本国特許出願公開公報 2000— 206449号 (特許文献 1)及び日本国特許出願 公開公報 2006— 047421号(特許文献 2)には、スペックルノイズを低減した投射型 表示装置が提案されている。
[0006] 図 17は、特許文献 1に開示されている画像表示装置のブロック図であって、半導体 レーザ 81から出射された光はコリメータレンズ 82により平行化された後、透明光学素 子 83を透過する。透明光学素子 83は、屈折率 nの光学ガラス製であり、奥行きが At の N段の階段状に形成されて!/、る。
[0007] 透明光学素子 83を透過した光は、透明光学素子 83のそれぞれの段に対応した N 個のエレメントレンズからなるレンズアレイ 84を介して集光レンズ 85を透過する。集光 レンズ 85を透過した光は、空間変調器 86により空間変調され、投射レンズ系 87を介 してスクリーン 88に投射される。
[0008] 透明光学素子 83の各部を透過した光は相互に Atの整数倍の光路差を含むので スクリーンに到達する光は空間的に位相がずれた光の集合となり、可干渉性が低下 するため、スペックルノイズの発生が抑制される。
[0009] 図 18は、特許文献 2に開示されている空間的偏光制御素子の斜視図であって、例 えば 1 /2波長板である位相差板を設けた位相差板領域 91と透過部材を設けた透 過部材領域 92とを交互に配置した縦ストライプ状に構成されている。
[0010] 位相差板領域 91を通過した光のスペックルノイズと透過部材領域 92を通過した光 のスペックルノイズとは互いに無相関であるため、位相差板領域 91を通過した光と透 過部材領域 92を通過した光とが重畳して形成される表示画面上のスペックルノイズ は低減される。
[0011] しかしながら、特許文献 1に開示された装置にあっては、十分な光路差を与えるた めに段差 Atを大きくすると装置自体が大型化するとレ、う課題がある。
[0012] また、特許文献 2に開示された装置にあっては、位相差板領域と透明部材領域の 境界で迷光が発生するため、スペックルノイズを低減するために領域を細分化すると 迷光が増加し表示画像のコントラストが悪化するという課題がある。
発明の開示
[0013] 本発明は、コヒーレント性を有する光源を使用した場合に簡易にスペックルノイズを 低減することのできる投射型表示装置を提供することを目的とする。
[0014] 上記の目的を達成するため、本発明によれば、投射型表示装置であって、コヒーレ ント光を発光する光源を少なくとも 1つ含む発光手段と、前記発光手段が発光した光 を変調して画像光を生成する画像光生成手段と、前記画像光を投射する投射手段と 、前記発光手段と前記画像光生成手段との間、あるいは、前記画像光生成手段と前 記投射手段との間の何れか一方に配置され、光軸と直交する平面内において遅相 軸の方位方向およびリタデーシヨン値の少なくとも一方がそれぞれ異なった方向また は値で分布する領域を有する位相変調手段とを具備して成るものが提供される。
[0015] この構成により、コヒーレント性を有する光源を使用した場合に、コヒーレント光を偏 光角早消することによりスペックノレノイズを低減することカできることとなる。
[0016] 前記位相変調手段は、前記光軸と直交する平面内において前記遅相軸の方位方 向が一定であり、かつ、前記リタデーシヨン が最小リタデーシヨン から最大リタデ ーシヨン値の範囲内の異なった値で分布する領域を有する複屈折材料層を含み、前 記最大リタデーシヨン と最小リタデーシヨン の差が前記コヒーレント光の波長以上 である構成としてもよい。
[0017] この構成により、コヒーレント光を十分に偏光解消することができることとなる。
[0018] 前記位相変調手段は、前記光軸と直交する平面内において、前記遅相軸の方位 方向が異なった方向で分布する領域を有する複屈折材料層を含むものである構成 を有していてもよい。
[0019] 本発明の投射型表示装置は、前記位相変調手段は、前記光軸と直交する平面内 において、前記遅相軸の方位方向が光軸を中心とする同心円の半径方向または円 周方向を指向する複屈折材料層を含むものである構成を有している。
[0020] この構成により、コヒーレント光を偏光方向に依らず偏光解消できることとなる。
[0021] 前記リタデーシヨン 力 S、前記コヒーレント光の半波長の奇数倍に等しい一定 で ある構成としてもよい。
[0022] この構成により、コヒーレント光を十分に偏光解消することができることとなる。
[0023] 前記複屈折材料層を挟持する一対の透明電極を更に具備して成り、前記複屈折 材料層は、液晶層であって、外部から前記透明電極間へ印加される電圧により、前 記光軸に直交する平面内において前記遅相軸の方位方向および前記リタデーショ ン値の少なくとも一方がそれぞれ異なった方向または値で分布する領域を有するも のである構成としてもよい。
[0024] 前記透明電極に印加される前記電圧は、時間的に変化する構成としてもよい。
[0025] この構成により、光軸に直交する平面内のリタデーシヨン の分布を時間的に変化 させ、表示から感じられるスペックルノイズを低減することができることとなる。
[0026] 前記複屈折材料層が、高分子液晶組成物を所定の配向状態で重合させてなる高 分子液晶層であってもよレ、。
[0027] 本発明によれば、光位相変調器であって、入射光の光軸と直交する平面内でァレ ィ構造を有し、前記アレイ構造の要素それぞれで前記入射光の位相を変調するァレ ィ状位相変調部と、前記入射光を各前記要素に対応する複数の光束に分割した後 、分割された複数の光束を一つに重ね合わせる光整形部とを具備して成り、前記ァ レイ状位相変調部が、前記入射光の光軸と直交する平面内における遅相軸の方位 方向およびリタデーシヨン値の少なくとも一方が変動する複屈折媒質を含むものも提 供される。
[0028] この構成により、アレイ構造の要素数に対応してスペックルパターンが平均化される ことにより、スペックルノイズを低減することができることとなる。
[0029] 前記複屈折媒質を挟持する一対の電極を更に具備して成り、前記複屈折媒質は、 液晶層であって、前記透明電極間へ印加される電圧により、前記リタデーシヨン を 時間的に変化させることが可能な構成としてもよい。
[0030] この構成により、スペックルパターンの時間的な変動が大きくなることにより、スぺッ クルノイズを低減することができることとなる。
[0031] 本発明によれば、投射型表示装置であって、コヒーレント光を発光する光源を少な くとも 1つ含む発光手段と、前記発光手段が発光した光を変調して画像光を生成する 画像光生成手段と、前記画像光を投射する投射手段と、前記発光手段と前記画像 光生成手段との間、あるいは、前記画像光生成手段と前記投射手段との間の何れか 一方に、第 9または第 10の発明の光位相変調器が配置されたものも提供される。
[0032] この構成により、コヒーレント性を有する光源を使用した場合に、コヒーレント光を偏 光角早消することによりスペックノレノイズを低減することカできることとなる。
図面の簡単な説明
[0033] [図 1]本発明に係る投射型表示装置のブロック図である。
[図 2]本発明の第 1の実施形態に係る位相変調素子の説明図である。
[図 3]本発明の第 2の実施形態に係る位相変調素子の説明図である。
[図 4]本発明の第 3の実施形態に係る位相変調素子の説明図である。
[図 5]本発明の第 5の実施形態に係る位相変調素子の X— Y平面図である。
[図 6]本発明の第 6の実施形態に係る位相変調素子の説明図である。
[図 7]図 6の位相変調素子において電圧印加時における遅相軸の方位方向 Aおよ
d びリタデーシヨン値 Rの分布を示す説明図である。
[図 8]図 6の位相変調素子の変形例を示す断面図である。
[図 9]本発明の第 7の実施形態に係る光位相変調器のブロック図である。
[図 10]本発明の光位相変調器を搭載した投射型表示装置の光学系を示す模式図で ある。
[図 11]上記投射型表示装置のブロック図である。
[図 12]上記投射型表示装置において複屈折媒質を含むアレイ状位相変調部の説明 図である。
[図 13]上記アレイ状位相変調部における対向する電極パターンの一例を示す斜視 図である。
[図 14]上記アレイ状位相変調部における対向する電極パターンの別の例を示す斜 視図である。
[図 15]上記第 6の実施形態の位相変調素子の実施例を示す説明図である。
[図 16]図 15の位相変調素子にお!/、て偏光度の印加電圧依存性および印加電圧 1.
9Vrmsにおける偏光方向依存性を示すグラフである。
[図 17]従来の画像表示装置のブロック図である。
[図 18]従来の空間的偏光制御素子の斜視図である。
発明を実施するための最良の形態
[0034] 以下、本発明に係る投射型表示装置の実施形態について、添付の図面を用いて 説明する。なお、本明細書において遅相軸の方位方向とは、光軸と直交する平面に おいて、この平面に射影された遅相軸の方向を意味するものとする。
[0035] 図 1に示すように、本発明に係る投射型表示装置 1は、コヒーレント光を発光する光 源を少なくとも 1つ含む発光手段 11と、発光手段 11が発光した光を変調して画像光 を生成する画像光生成手段 12と、画像光を投射する投射手段 13とを備える。
[0036] そして、発光手段 11と画像光生成手段 12との間、あるいは、画像光生成手段 12と 投射手段 13との間に、光軸と直交する平面内において遅相軸の方位方向 Aおよび d リタデーシヨン値 Rの少なくとも一方がそれぞれ異なった方向または値で分布する領 域を有する位相変調手段 15が配置される。
[0037] 発光手段 11はコヒーレント光を出射するレーザ光源を含む光源である。光源から出 射された光は、位相変調手段 15である位相変調素子 25を経て、画像光生成手段 1
2としてのデジタルマイクロミラーデバイス (DMD)などの空間光変調器に入射する。
[0038] 空間光変調器に入射した光束は、画像信号に応じて変調され、投射手段 13である 投影レンズ系により、スクリーンなどに投影される。
[0039] なお、光源は、 1つのレーザ光源のみを使用する構成であっても、異なる波長の光 を出射するレーザ光源を複数配置する構成であっても、コヒーレント性を有さない光 源とレーザ光源とを組み合わせて用いる構成であってもよ!/、。
[0040] また、レーザ光源より出射された光束をコリメートしたり集光したりするレンズ系を、レ 一ザ光源と投影レンズの間に追加しても構わない。また、空間光変調器をスキヤニン グミラーとして、レーザ光源からの光を直接スクリーンに掃引投影する構成としても構 わない。
[0041] そして、位相変調素子 25は、光軸(Z軸)と直交する X— Y平面内において、遅相軸 の方位方向 Aまたはリタデーシヨン値 Rの少なくとも一方がそれぞれ異なった方向ま d
たは値で分布する領域を有する光学素子である。
[0042] 即ち、本発明に係る位相変調素子 25には以下の 3形式がある。
形式 1 :遅相軸の方位方向 Aは一定で、リタデーシヨン値 Rが分布する形式
d
形式 2 :リタデーシヨン値 Rは一定で、遅相軸の方位方向 Aが分布する形式
d
形式 3:遅相軸の方位方向 Aおよびリタデーシヨン値 Rが分布する形式
d
また、本発明に係る位相変調素子 25は、光軸 (Z軸)と直交する平面 (X—Y平面) 内において遅相軸の方位方向 Aおよびリタデーシヨン値 Rの少なくとも一方がそれぞ d
れ異なった方向または値で分布する領域を有する複屈折材料層を有する。複屈折 材料層としては、 2枚の透明基板の間に液晶あるいは高分子液晶からなる複屈折材 料層を使用することが可能である。
[0043] 複屈折材料として液晶を用いる場合には、遅相軸の方位方向 Aを分布させること d
は、配向膜の配向処理方向や勾配電界により可能となる。
[0044] また、リタデーシヨン値 Rを分布させることは、液晶層に印加する電圧に分布を持た せることにより可能となる。あるいは、透明基板の基板面内で、液晶分子のプレチルト 角の分布を持たせることによつても可能である。ここでプレチルト角とは、液晶が水平 配向したときに、液晶分子が基板面に対してなす角度をいう。
[0045] 複屈折材料として高分子液晶を用いる場合には、同様の方法により遅相軸の方位 方向 Aやリタデーシヨン値 Rを分布させた状態で高分子液晶組成物を重合固化させ ることにより、所望の遅相軸の方位方向 Aやリタデーシヨン値 Rの分布が得られる。ま
d
た高分子液晶にあっては高分子液晶層の厚さに分布を持たせても所望のリタデーシ ヨン値 Rの分布が得られる。
[0046] 以上説明したように、本発明に係る位相変調素子 25には、上記の 3形式において それぞれ液晶または高分子液晶を用いる場合の計 6種類が存在するが、以下本発 明の実施形態につ!/、て、添付の図面を用レ、て説明する。
(第 1の実施形態)
本発明の第 1の実施形態に係る位相変調素子 25は、形式 1のタイプの位相変調素 子であって、図 2の(a)の下段の断面図および(c)の Z'— Z"断面図に示すように、対 向して配置された第 1の透明基板 251aおよび第 2の透明基板 251bと、第 1の透明 基板 251aおよび第 2の透明基板 251b間に挟持された複屈折材料からなる複屈折 材料層 255とを含む。
[0047] 第 1の透明基板 251aの複屈折材料層 255に対向する面上の一方の端辺には、透 明電極である低抵抗電極 252a、他方の端辺には同じく低抵抗電極 252bが形成さ れる。また、低抵抗電極 252a、 252b間には高抵抗電極 253が形成される。なお、低 抵抗電極 252a、 252bおよび高抵抗電極 253は電気的に接続される。
[0048] 一方、第 2の透明基板 251bの複屈折材料層 255に対向する面上には全面に対向 電極 254が形成される。
[0049] なお、図 2の(b)の下段の断面図に示すように、低抵抗電極 252aは、矩形波交流 電源 PS 1の端子に、低抵抗電極 252bは矩形波交流電源 PS2の端子に接続されて おり、矩形波交流電源 PS1、矩形波交流電源 PS2および対向電極 254はそれぞれ 接地されている。そして、矩形波交流電源 PS1、 PS2は低抵抗電極 252a、 252bに 対して同位相の電圧を印加するものである。
[0050] 第 1の透明基板 251aおよび第 2の透明基板 251bは使用する光源の波長に対して 透明であることが必要であり、ガラスやプラスチックなどを使用することができる。
[0051] 高抵抗電極 253および対向電極 254は使用する光源の波長に対して透明であるこ とが必要であり、 ITO (インジウム錫酸化物)、アンチモンやフッ素などがドープされた SnO (二酸化錫)、アルミニウム、ガリウム、インジウムなどがドープされた ZnO (酸化 亜鉛)などの導電性酸化物を使用することができる。
[0052] 低抵抗電極 252a、 252bは、高抵抗電極 253より抵抗値が低ぐクロム、銅、ニッケ ノレ、金等の金属や、 ITO、 SnO 、 ZnOなどの導電性酸化物を使用することができる。
[0053] 低抵抗電極 252a、 252bのシート抵抗 Rと高抵抗電極 253のシート抵抗 Rとの比
L H
R /Rは 1000分の 1以下であることが好ましい。 R /Rは 1000分の 1を超えると、
L H L H
低抵抗電極の電極内の電圧効果が大きくなつて、後述する所望の勾配電圧が得ら れないことがある。また、高抵抗電極のシート抵抗 Rは、大き過ぎると勾配電圧が発
H
生しなくなるため、 109 Ω /口以下が好ましい。低抵抗電極のシート抵抗 Rは、できる し だけ小さくする方が高抵抗電極のシート抵抗の許容範囲が広がるため、透明電極の 形成の容易さやコストと合わせて考慮して、;!〜 50 Ω /口の範囲が好ましい。低抵抗 電極としては、シート抵抗が 40 Ω /口の ΙΤΟ膜力、高抵抗電極としては、シート抵抗 力 100Μ Ω /口の SnO膜力 それぞれ好ましく例示される。
[0054] なお、低抵抗電極 252a、 252bおよび高抵抗電極 253と対向電極 254との間の絶 縁を確保するために、低抵抗電極 252a、 252bおよび高抵抗電極 253の複屈折材 料層 255に対向する面、対向電極 254の複屈折材料層 255に対向する面の少なくと も一方を絶縁膜で覆ってもよ!/、。この絶縁膜は使用する光源の波長に対して透明で あることが必要であり、例えば SiO (二酸化珪素)などの無機物からなる無機膜ゃァク リルなどの有機物からなる有機膜を用いることができる。
[0055] 複屈折材料層 255の材料として液晶を用いると、リタデーシヨン値 Rの設計自由度 が向上するため好ましい。
[0056] 複屈折材料層 255の材料として液晶を用いる場合、低抵抗電極 252a、 252bおよ び高抵抗電極 253、ならびに対向電極 254の液晶が接する面に、ポリイミド膜を配向 膜(図示せず)として設置し、ラビング等の配向処理を施してもよい。
[0057] あるいは、光配向の技術、 SiO (—酸化珪素)等を斜め蒸着して配向させる技術、ダ ィャモンドライクカーボン膜等にイオンビームを照射して配向させる技術等を用いても よい。または、第 1の透明基板 251aおよび第 2の透明基板 251bの液晶と接する基 板面に微小な凹凸溝を多数設けて液晶分子が溝に倣うようにしてもよ!/、。
[0058] 例えば、 Y軸方向に上記の配向処理を行うことにより、遅相軸の X— Y平面内の方 位方向 Aを Y軸方向とすることができる。
d
[0059] 図 2の(a)、 (b)の上段は複屈折材料層 255を Z軸方向から見た平面図である。複 屈折材料層 255に電圧が印加されていないとき(図 2の(a) )は、複屈折材料層 255 の遅相軸の方位方向 Aは位置によらず一定である。なお、ここでは複屈折材料層 2
d
55の材料として誘電異方性が正の液晶を用いて!/、るものとする。
[0060] 矩形波交流電源 PS1、 PS2を低抵抗電極 252a、 252bに接続し、低抵抗電極 252 bに低抵抗電極 252aより大きな電圧が印加されるように構成すると(図 2の(b) )、高 抵抗電極 253と対向電極 254との間に低抵抗電極 252a側が弱く低抵抗電極 252b に向力、うほど強くなる勾配電界が発生する。
[0061] 複屈折材料層 255中の液晶分子の遅相軸の方位方向 Aは基板面内(X—Y平面
d
内)では同一方向であるが、光軸方向(Z軸方向)に対する傾き Θは低抵抗電極 252 bから低抵抗電極 252aに近づくにつれて大きくなり、 X—Y平面に平行な配向処理 方向に近づく。
[0062] なお、図 2の(a)、(b)の上段において、太線の方向は複屈折材料層 255のそれぞ れの場所における遅相軸の方位方向 Aを、太線の長さは複屈折材料層 255のリタ
d
デーシヨンィ直 Rの大きさを表して!/、る。
[0063] 即ち、複屈折材料層 255のリタデーシヨン値 Rは、光軸方向に印加される電界に応 じて、図中の基板左端のリタデーンヨン値 R 力 右端のリタデーンヨン値 R まで連
max mm 続的に分布する。
[0064] ここで、コヒーレント光の通過する領域内でのリタデーシヨン値 R とリタデーシヨン
max
値 R の差(R — R )は、コヒーレント光のコヒーレント性を減殺するために、コヒー mm max min
レント光の波長 λ以上、好ましくは波長の 2倍以上であることが望ましレ、。
[0065] なお、第 1の実施形態の位相変調素子 25の作製を容易とし、さらに液晶の配向制 御の応答性を高めるためには、リタデーシヨン値 R とリタデーシヨン値 R の差 (R
max mm max R )がコヒーレント光の波長 λの 10倍以下、好ましくは 5倍以下であることが望ま min
しい。
[0066] さらに、液晶層に対する印加電圧を時間的に切り替える構成とすると、 X— Y平面 内のリタデーシヨン値の分布を時間的にも変化させることができて大変好ましい。 [0067] また、高分子液晶組成物を同様の方法で所望の配向を行わせた状態で重合固化 させて作製した高分子液晶を上記の液晶に代えて用いることもできる。
[0068] 以上説明したように、本発明に係る投射型表示装置は、光軸と直交する平面内に ぉレ、てリタデーシヨン値が異なった値で分布する領域を有する位相変調素子を用い ることにより、コヒーレント性を有する光源を使用した場合に簡易にスペックルノイズを 低減すること力 Sでさる。
[0069] また、本発明に係る位相変調素子は、投影光学系に使用される他の光学部品、例 えばビーム整形デバイスや光量均一化デバイス、偏光子などと積層、一体化が可能 であり、投影光学系の小型化、組み立て調整の容易さの点からも大変好ましい。
[0070] (第 2の実施形態)
本発明の第 2の実施形態に係る位相変調素子 26は、形式 1のタイプの位相変調素 子である。図 3を用いて説明するが、図 2に示した第 1の実施形態の位相変調素子と 同等の機能となるものは同じ符号で表記する。図 3の(a)の下段の断面図および図 3 の(c)の Z'— Ζ"断面図に示すように、対向して配置された第 1の透明基板 261aおよ び第 2の透明基板 261bと、第 1の透明基板 261aおよび第 2の透明基板 261bに挟 持された複屈折材料からなる複屈折材料層 265とを含む。
[0071] 第 1の透明基板 261aおよび第 2の透明基板 261b上には複屈折材料層 265に電 圧を印加できるように透明電極が設けられる。第 2の透明基板 261b面上には低抵抗 電極 262a、 262bおよび 262c力 S形成され、それらの低抵抗電極の間に高抵抗電極 263が形成される。一方、第 1の透明基板 261b上の複屈折材料層 265に対向する 面上には全面に対向電極 264が形成される。
[0072] 低抵抗電極 262a、 262bおよび 262cにはそれぞれ矩形波交流電源 PS1、 PS2お よび PS3が接続されており、矩形波交流電源 PS1、 PS2、 PS3および対向電極 264 は接地されている。そして、矩形波交流電源 PS 1、 PS2および PS3は低抵抗電極 26 2a、 262bおよび 262cに対して同位相の信号を送るものとする。その他の条件は第 1 の実施形態と同じく形式 1のタイプのものである。
[0073] 矩形波交流電源 PS1、 PS2および PS3をそれぞれ低抵抗電極 262a、 262bおよ び 262cに接続し、低抵抗電極 262cに低抵抗電極 262a、 262bより高い電圧を印カロ させるように構成すると(図 3の(b) )、高抵抗電極 263と対向電極 264との間の電界 は、低抵抗電極 262a側から低抵抗電極 262cに向力、うほど強くなる勾配電界と、低 抵抗電極 262b側から低抵抗電極 262cに向力、うほど強くなる勾配電界が発生する。
[0074] 複屈折材料層 265中の液晶分子の遅相軸の方位方向 Aは基板面内(X— Y平面
d
内)では同一方向であるが、光軸方向(Z軸方向)に対する液晶分子の長軸方向の傾 き Θは低抵抗電極 262aから低抵抗電極 262cに近づくにつれて小さくなり、低抵抗 電極 262c力、ら低抵抗電極 262bに力、けて大きくなる。
[0075] 複屈折材料層 265のリタデーシヨン値 Rは、光軸方向に印加される電界に応じて、 図 3の(b)上段中の基板左端のリタデーシヨン値 R 力 中央のリタデーシヨン値 R max mm まで連続的に分布し、中央のリタデーシヨン値 R から基板右端の R まで連続的に
mm max
分布する。
[0076] (第 3の実施形態)
本発明の第 3の実施形態に係る位相変調素子 27は、形式 1のタイプの位相変調素 子である。図 4を用いて説明するが、図 2に示した第 1の実施形態の位相変調素子と 同等の機能となるものは同じ符号で表記する。図 4の(a)の下段の断面図および図 4 の(c)の Z'— Ζ"断面図に示すように、対向して配置された第 1の透明基板 271aおよ び第 2の透明基板 271bと、第 1の透明基板 271aおよび第 2の透明基板 271bに挟 持された複屈折材料からなる複屈折材料層 275とを含む。
[0077] 第 1の透明基板 271aおよび第 2の透明基板 271b上には複屈折材料層 275に電 圧を印加できるように透明電極が設けられる。第 2の透明基板 271b面上には低抵抗 電極 272a、 272b, 272cおよび 272d力 S形成される。一方、第 1の透明基板 271b上 の複屈折材料層 275に対向する面上には全面に対向電極 274が形成される。
[0078] 低抵抗電極 272a、 272b, 272cおよび 272dにはそれぞれ矩形波交流電源 PS1、 PS2、 PS3および PS4カ接続されており、失巨形波交流電原 PS 1、 PS2、 PS3、 PS4 および対向電極 274は接地されている。そして、矩形波交流電源 PS1、 PS2、 PS3 および PS4(ま低抵抗電極 272a、 272b, 272cおよび 272diこ対して同位申目の信号を 送るものとする。その他の条件は第 1の実施形態と同じく形式 1のタイプのものである
〇 [0079] 矩形波交流電源 PS1、 PS2、 PS3および PS4をそれぞれ低抵抗電極 272a、 272b 、 272cおよび 272dに接続し、低抵抗電極 272a、 272b, 272cおよび 272dそれぞ れに異なる電圧を印加させる構成とする(図 4の (b) )。例えば、低抵抗電極 272aに 印加される電圧が最も低ぐ 272d、 272b, 272cの順番に印加される電圧が高くなる ように構成する。
[0080] 上記の列のように 272a、 272d、 272b, 272cの川頁番に高くなる電圧を印カロすると、 複屈折材料層 275中の液晶分子の遅相軸の方位方向 Aは基板面内(X— Y平面内
d
)では同一方向である力 光軸方向(Z軸方向)に対する液晶分子の長軸方向の傾き Θは低抵抗電極 272a、 272d、 272b, 272cの I噴に/ J、さくなる。特に第 3の実施形 では、例示した 4つの電極は液晶と接する面をほぼ覆う構成となっており、複屈折材 料層 275の Z軸方向のリタデーシヨン値 Rは低抵抗電極 272a、 272b, 272c, 272d に対応する領域ごとにほぼ一定となり、複屈折材料層 275の基板面内のリタデーショ ンィ直 Riま低抵抗電極 272a、 272b, 272c, 272diこ対応する領域 で不連続 ίこ分布 する。
[0081] 低抵抗電極の数は 4つに限らず異なる電圧を印加させる数だけ電極を設けてもよく 、 X— Υ平面内に任意の面積および形状の電極としてもよい。また、形式 1のタイプで 挙げた第 1の実施形態から第 3の実施形態の電極の構成を組み合わせてもよぐ低 抵抗電極は一方の透明基板上面にのみ形成するだけでなぐ対向する両方の透明 基板面に形成して電圧を分布させてもよい。
(第 4の実施形態)
本発明の第 4の実施形態に係る位相変調素子は、形式 1のタイプの位相変調素子 であって、対向して配置された第 1の透明基板および第 2の透明基板と、第 1の透明 基板および第 2の透明基板間に挟持された高分子液晶からなる複屈折材料層とを含 む。なお、第 1の実施形態の位相変調素子 25と同様の配向処理は行うが、第 1の透 明基板および第 2の透明基板上に電極は形成されない。
[0082] フォトリソグラフィおよびエッチングにより複屈折材料層の厚さを加工することにより、 所望のリタデーシヨン値 Rの分布を実現することが可能である。
(第 5の実施形態) 本発明の第 5の実施形態に係る位相変調素子 35は、形式 2のタイプの位相変調素 子であって、図 5の X— Y平面図に示すように、光軸と直交する平面内(X— Y平面内 )において、遅相軸の方位方向 Aが連続的に分布する複屈折材料層 355を含むも
d
のである。
[0083] なお、太線の方向は複屈折材料層 355の遅相軸の方位方向 Aを、太線の長さは
a
複屈折材料層 355のリタデーシヨン値 Rの大きさを表している。
[0084] 即ち、図 5の(a)は遅相軸の方位方向 Aが光軸を中心とする同心円の半径方向を
d
指向する複屈折材料層 355を示しており、図 5の(b)は遅相軸の方位方向 Aが光軸
d を中心とする同心円の円周方向を指向する複屈折材料層 355を示している。なお、 複屈折材料層 355としては、液晶あるいは高分子液晶を用いることができる。
[0085] 図 5の(a)および (b)に示された位相変調素子 35は、第 1の透明基板 351aおよび 第 2の透明基板 351bの対向面を液晶分子が、それぞれ光軸を中心とする同心円の 半径方向および光軸を中心とする同心円の円周方向に配向するように配向処理した 後、液晶を第 1の透明基板 351aと第 2の透明基板 351bとの間に注入すればよい。
[0086] 配向処理としては、ポリイミド膜等の配向膜をラビングする、配向させたい方向に延 伸する溝を形成する等を適用することが可能である。あるいは、第 1の透明基板 351 aおよび第 2の透明基板 35 lbの液晶層と接する基板面に微小な凹凸溝を多数設け て液晶分子が溝に倣うようにしてもよい。
[0087] また、この際リタデーシヨンィ直 Rは、 λ /2 ( λは入射する光の波長)の奇数倍である と偏光解消効果が大きぐスペックルノイズの低減効果が大きくなり好ましい。また、位 相変調素子 35は、入射する光の偏光方向に依らず偏光解消を実現できるため、配 置自由度が増し好ましい。
[0088] 位相変調素子 35を複数の波長の光が通過する場合、入射する光の波長が長くな るほどリタデーシヨン値 Rが大きくなる複屈折材料層を使用すると、広!/、波長範囲で 偏光解消効果が得られ好ましレ、。
[0089] このとき、それぞれの波長の光に対するリタデーシヨン値 Rを調整し、各波長でのリ タデーシヨン値 Rが λ /2の奇数倍になるとよ!/、。
[0090] 例えば、 465ナノメートノレ、 532ナノメートノレ、 650ナノメートルの波長の光を発振す るレーザ光源を用いる場合、各波長の 1/2のリタデーシヨン値 Rを持つ位相変調素 子 35を各波長の光が単独で通過する光路中に各々設置することができる。
[0091] あるいは、 465ナノメートノレ、 532ナノメートノレ、 650ナノメートルの 3つの波長の光 が共通に通過する光路中に位相変調素子 35を 1つ設置して、位相変調素子 35の枚 数を減らすことも可能である。
[0092] この場合は、使用する複屈折材料層 355の各波長での異常光屈折率と常光屈折 率との差が各々 0. 164、 0. 153、 0. 146の場合、例えば複屈折材料層 355の厚み を 15. 6マイクロメートルとすることにより、各波長の光に対するリタデーシヨンィ直 Rが、 各々 5. 5 λ、4. 5 λ、 3. 5 λとなり各波長で 1/2の奇数倍のリタデーシヨンィ直にする ことができるため好ましい。
[0093] 上記のように、光軸に直交する平面内において遅相軸の方位方向 Αを分布させる
d
ことにより、位相変調素子を通過する光の断面方向に空間的に偏光状態を変化させ ること力 Sでき、コヒーレント性を落とすことにより、スペックルノイズを低減することができ
(第 6の実施形態)
本発明の第 6の実施形態に係る位相変調素子 45は、形式 3のタイプの位相変調素 子であって、第 1の実施形態の第 1の透明基板 251a上に形成された低抵抗電極 25 2a、 252bおよび高抵抗電極 253に代えて、図 6の(a)に示すような同心円状の低抵 抗電極 452a、 452b, 452c, 452dおよび高抵抗電極 453に対して外咅^^ら電圧を 印加可能とすることにより、複屈折材料層のリタデーシヨン値 Rを印加電圧に応じて制 御することが可能である。
[0094] 例えば、位相変調素子 45は、図 5の(a)、図 7の(a)および (b)に示すような遅相軸 の方位方向 Aおよびリタデーシヨン値 Rの分布を実現することができる。
d
[0095] 例えば、誘電異方性が負の液晶を電圧非印加時に光軸(Z軸)方向に配向させた 場合は、光軸中心から半径方向に向かって段階的に大きくなる勾配電界を印加する と、リタデーシヨン値 Rは図 7の(a)のように分布する。さらに、勾配電界の勾配の向き を変えることにより、図 7の(b)のような状態を作ること力 Sできる。
[0096] 一方、誘電異方性が正の液晶を電圧非印加時に光軸(Z軸)と直交する X— Y平面 に光軸を中心として水平放射状に配向させた場合は、同様に勾配電界を印加するこ とにより、図 5の(a)、図 7の(a)および (b)の状態を作ることが可能である。
[0097] 上述のように高抵抗電極と低抵抗電極の組み合わせで勾配電界を形成し、リタデ ーシヨンィ直 Rの連続した分布を形成することが可能である力 分割した電極を用いて 、各々に所定の電圧を印加することにより同様のリタデーシヨン値 Rの分布を作製す ることも可倉である。
[0098] 上述の勾配電界を印加する方法として、図 8に示すように、少なくとも一方の透明電 極 554a上に、光軸を中心とした同心円の半径方向に厚みが変化した誘電体 556を 備えた位相変調素子 55としてもよい。位相変調素子 55に電圧を印加すると、複屈折 材料層 555には誘電体の厚さに応じた勾配電界がかかる。光軸を中心とする同心円 の半径方向に配向処理を行うと、図 7の(a)および (b)と同様の液晶分子の配向状態 を作ることが可能である。光軸を中心とする同心円の円周方向に配向処理を行うと、 図 7の(c)および (d)と同様の液晶分子の配向状態を作ることが可能である。
[0099] この例では、誘電体 556の厚みを変化させたが、厚みを均一化し、誘電率の分布 を作製することも同様の効果を生む。また、誘電率の変化と厚みの変化を組み合わ せて勾配電界を生成しても構わない。このようにすると、電圧印加の端子数を削減す ることが可能である。
[0100] また、液晶の代わりに高分子液晶を用いて複屈折材料層を作製し、フォトリソグラフ ィおよびエッチングにより複屈折材料層の厚さを加工して所望のリタデーシヨン値 Rの 分布を実現することも可能である。
(第 7の実施形態)
図 9に示すように、本発明の第 7の実施形態に係る光位相変調器 1002は、入射光 の光軸と直交する平面内でアレイ構造を有し、アレイ構造の要素(以下、アレイ要素 と記す)それぞれで入射光の位相を変調するアレイ状位相変調部 101と、入射光を 各アレイ要素に対応する複数の光束に分割した後、分割された複数の光束を一つに 重ね合わせる光整形部 1001とを備える。
[0101] そして、アレイ状位相変調部 101は、入射光の光軸と直交する平面内における遅 相軸の方位方向およびリタデーシヨン値 Rの少なくとも一方が変動する複屈折媒質を 含む。
[0102] ここで、光整形部 1001は、アレイ状位相変調部 101のアレイ要素に対応する空間 的に分割された要素(以下、レンズエレメントと記す)ごとにレンズ機能をもった第 1の レンズアレイ 102、第 2のレンズアレイ 103を備えている。
[0103] 第 1のレンズアレイ 102の各レンズエレメントは照明領域 104の矩形形状と相似の 矩形形状をもち、アレイ状位相変調部 101の各アレイ要素についても同様に相似の 矩形形状をもっている。透過する光は、アレイ状位相変調部 101によりアレイ要素領 域ごとに位相変調されたのち第 1のレンズアレイ 102に入射する。
[0104] 第 1のレンズアレイ 102と第 2のレンズアレイ 103によって、光は照明領域に重ね合 わされて結像される。この際、重ね合わされる光の位相はアレイ状位相変調部 101に よって各々変調されているため、位相が多重化され、位相の異なった光が重ね合わ されることになる。位相変調の大きさは入射する光の波長を λとすると λ /2以上ある ことが好ましく λ以上がより好ましレ、。
[0105] 本実施形態では、アレイ要素領域に対応した形で、光を空間分割して位相変調す るため、分割した境界部での回折等の影響を抑えることができる。また、入射する光 の強度が光軸と直交する平面内で分布している場合、光整形部 1001が光量均一化 の機能としても作用するため、位相多重化とともに光量均一化も行うことができる。
[0106] 図 10および図 11は、この光位相変調器 1002を投射型表示装置に搭載した一例 である。
[0107] 即ち、本発明に係る投射型表示装置 2は、コヒーレント光を発光する光源を少なくと も 1つ含む発光手段 21と、発光手段 21が発光した光を変調して画像光を生成する 画像光生成手段 22と、画像光を投射する投射手段 23とを備え、発光手段 21と画像 光生成手段 22との間、あるいは、画像光生成手段 22と投射手段 23との間に、光位 相変調器 1002が配置されるものである。
[0108] 発光手段 21であるレーザ光源 111から出たコヒーレント性を有する光はレンズ 112 によりコリメートされ、アレイ状位相変調部 101、第 1のレンズアレイ 102、第 2のレンズ アレイ 103からなる光位相変調器 1002に入射し、レンズ 113を通過し、画像光を生 成する画像光生成手段 22である画像生成部 114を通過した後、投射手段 23である 投影レンズ 115によってスクリーン 116に投影される。なお、画像生成部 114としては 、典型的には透過型液晶パネルが使用可能である力 反射型の液晶パネルやデジ タルマイクロミラーデバイス(DMD)などを使用してもよレ、。
[0109] 光位相変調器 1002に入射した光は、アレイ要素ごとに位相変調され、それぞれが 重ね合わされて画像生成部 114に照明される。スクリーン 116上で発生するスペック ノレパターンはアレイ要素ごとの投影画像によって異なる。したがって、重ね合わされ るアレイ要素数に対応してスペックルパターンは平均化され、スペックルノイズが減少 して観察されることになる。
[0110] また、さらにアレイ要素ごとに位相変調の大きさを時間的に変化させることにより、ス ペックルパターンの時間的な変化も重畳し、スペックルノイズがさらに減少して観測さ れることとなる。
[0111] 前述ではアレイ状位相変調部 101にはコリメートされた光が入射するようになってい る力 アレイ状位相変調部 101の各アレイ要素を通過した光が第 1のレンズアレイ 10 2および第 2のレンズアレイ 103の各レンズエレメントに対応して透過すればよいため 、アレイ状位相変調部 101の配置場所は図 10に示した位置に限定されない。
[0112] 例えばアレイ状位相変調部 101をレーザ光源 111とレンズ 112の間の発散光中に 配置しても構わない。この場合、光位相変調器 1002を含む投射型表示装置の大き さを小型にできるため好ましい。また、アレイ状位相変調部 101を第 1のレンズアレイ 102、第 2のレンズアレイ 103の間や、第 2のレンズアレイ 103の出射側に設置しても 構わない。
[0113] また、アレイ状位相変調部 101を第 1のレンズアレイ 102、第 2のレンズアレイ 103の 少なくとも一方と一体化することはアレイ要素の位置合わせが容易となり、また部品点 数も減るため好ましい。さらに、画像生成部 114に偏向機能をもった装置をおき、スク リーン 116上に一点に照射した光を掃引し、同時に光量を変調することにより画像と なすようにしてもよい。
[0114] 次に、複屈折媒質を含むアレイ状位相変調部 101の構成について、以下説明する
[0115] 即ち、図 12に示すように、複屈折媒質 122は、対向面に透明電極 121a、 121b力 S 形成された一対の透明基板 120a、 120bに挟持された液晶層であって、透明電極 1 21 a, 121b間へ印加される電圧により、リタデーシヨン値 Rを時間的に変化させること ができるものである。透明電極 121 a、 121bには、電圧発生器 123から電圧を印加で きる。
[0116] 透明基板 120a、 120bの材料としては、ガラスやポリエチレンテレフタレート(PET) 、ポリカーボネート(PC)などのプラスチックが好適に使用できる。透明電極 121a、 1 21bとしては、 ITOや SnOなどが好適に使用可能である。
[0117] 複屈折媒質 122の材料としては、液晶を使用すると低電圧で大きな位相変調が可 能となり大変好ましい。液晶としてはネマティック液晶が好ましぐ透明電極 121a、 12 lbとの界面に、ポリイミドの被膜にラビングなどの配向処理を施した配向膜を設けて もよい。配向処理によって、透明基板 120a、 120bに対して垂直配向、水平配向、ハ イブリツド配向などをとることができる。
[0118] 適用する投射型表示装置 2の画像生成部 114が DMDなどからなっており、入射す る光の偏光状態を直線偏光に限らない場合、アレイ状位相変調部 101を位相だけで なく偏光も変化させるようにすると重畳されるスペックルパターンがさらに多くなるため スペックルノイズの低減効果が大きくなる。
[0119] この場合、例えばアレイ状位相変調部 101の複屈折媒質 122として用いる液晶をッ イスト配向させたり、投射型表示装置 2内において、液晶をホモジニァス配向させ、そ の配向方向と入射する光の偏光方向との間に平行でも直交でもない角度をつけたり するとよい。
[0120] 透明電極 121a、 121bはアレイ要素ごとに位相を変化させるためには、所定の形状 にパターユングすることが好ましい。図 13に対向する電極パターンの一例を示す。図 13において、電極 131a〜; 131e、 132a〜; 132eにそれぞれ異なる電圧を印カロするこ とにより液晶の配向を変化させ、アレイ要素ごとに位相変調が可能となる。
[0121] また、図 14のように一方の透明電極を高抵抗電極 133a〜; 133eとその両端に配置 される低抵抗電極 134a、 134b, 135a, 135b, 136a, 136b, 137a, 137b, 138a 、 138bの複合電極とすることによって勾配電界を形成し、各アレイ要素内でリタデー シヨンィ直 Rの分布を発生させてもよい。特に勾配方向がアレイ要素ごとに異なるように 電圧を印加し、時間的に印加電圧を変えると、スペックルパターンの時間的な変動が 大きくなり好ましい。さらに、図 14の対向する 131a〜; 131eの電極も複合電極としァ レイ要素ごとのリタデーシヨンィ直 Rの分布を 2次元的に分布させ、かつ時間的に変動 させるとより好ましい。
[0122] この場合の勾配電界の設定において、印加電圧に対する液晶の非線形的なリタデ ーシヨン領域を使用することも可能であり、そうすることによってよりスペックルパターン の時間変動を大きくすることが可能となり好ましい。
[0123] 高抵抗電極は光が透過するため透明であることが好ましぐ例えば ITO、 SnO、 Z ηθなどが使用できる。また、低抵抗電極は、高抵抗電極より抵抗値が低いものであ ればよぐ Cr、 Cu、 Ni、 Auなどの金属が使用できる力 高抵抗電極よりも抵抗値が 低い限り、 ITO、 SnO、 ZnOなどの金属酸化物を使用してもよい。
[0124] 低抵抗電極のシート抵抗 Rと高抵抗電極のシート抵抗 Rとの比 R /Rは 1000分
L H L H
の 1以下であることが好ましい。 R /Rは 1000分の 1を超えると、低抵抗電極の電極
L H
内の電圧効果が大きくなつて、後述する所望の勾配電圧が得られないことがある。ま た、高抵抗電極のシート抵抗 Rは、大き過ぎると勾配電圧が発生しなくなるため、 10
H
9 Ω /口以下が好ましい。低抵抗電極のシート抵抗 Rは、できるだけ小さくする方が し
高抵抗電極のシート抵抗の許容範囲が広がるため、透明電極の形成の容易さやコス トと合わせて考慮して、;!〜 50 Ω /口の範囲が好ましい。低抵抗電極としては、シー ト抵抗が 40 Ω /口の ITO膜力 S、高抵抗電極としては、シート抵抗が 100Μ Ω /口の SnO膜が、それぞれ好ましく例示される。
[0125] 上述では、高抵抗電極と低抵抗電極との組み合わせで勾配電界を形成し、リタデ ーシヨン値 Rの連続した分布を形成した力 電極を細かく分割し、各々に所定の電圧 を印加することにより同じようなリタデーシヨンィ直 Rの分布を形成することも可能である
[0126] 本実施形態において、少なくとも一方の透明電極上に光軸を中心とした同心円の 半径方向に厚みが変化した誘電体(図示せず)を備える場合には、誘電体の誘電率 を一定とし、誘電体の厚みを変化させて勾配電界を形成するだけでなぐ誘電率を 分布させ、厚みを均一化することでも同様の効果を生む。また。誘電率の変化と厚み の変化を組み合わせて勾配電界を形成しても構わない。さらに、本例では、液晶層 が単層の場合を示した力 S、これを多層化しても構わない。
(実施例 1)
形式 1のタイプの位相変調素子 25について図 2を用いて説明する。
[0127] まず、第 1の透明基板 251aおよび第 2の透明基板 251bとして、厚さ 0. 5ミリメート ルのガラス基板を 2枚用意する。
[0128] 第 1の透明基板 251a上にシート抵抗値が 5オームのクロム膜を成膜、パターユング して、基板面の X軸方向の両端部に低抵抗電極 252a、 252bを形成する。
[0129] 次いで第 1の透明基板 251a上にシート抵抗値が 100キロオームの SnO膜を積層 して成膜し、高抵抗電極 253とする。なお、高抵抗電極 253は、低抵抗電極 252a、 2
52bと電気的に接続されている。
[0130] 第 2の透明基板 251b上にはシート抵抗値が 300オームの ITO膜を成膜して対向 電極 254を形成する。低抵抗電極 252a、 252bおよび対向電極 254は取り出し電極 部(図示せず)を有し、外部からの電圧印加を可能として!/、る。
[0131] 第 1の透明基板 251aおよび第 2の透明基板 251b上に形成した低抵抗電極 252a
、 252b,高抵抗電極 253および対向電極 254上に厚さ 40ナノメートルの SiOを主 成分とする絶縁膜を成膜し、更にポリイミドからなる厚さ 40ナノメートルの配向膜を形 成し、基板面内の Y方向にラビング処理を行う。
[0132] 次いで、第 1の透明基板 251aおよび第 2の透明基板 251bを、低抵抗電極 252a、
252b,高抵抗電極 253、対向電極 254および配向膜が形成された面を対向させて 重ね合わせて、外周をスぺーサを混入したシール材によりシールして、セルギャップ 力 S 14マイクロメートルの空セルとする。
[0133] 上述の低抵抗電極 252a、 252b,高抵抗電極 253および対向電極 254は、必要に より基板周辺部やシール部材をトリミングして形成してもよい。
[0134] 次に、シール材に設けた注入口より、異常光屈折率と常光屈折率との屈折率差△ nが 0. 26の、正の誘電異方性を持つネマティック液晶を注入し、注入口を封止して 複屈折材料層 255を有する液晶セルを得る。
[0135] 対向電極 254を接地し、低抵抗電極 252a、 252b間に周波数 1キロへルツの矩形 交流波を発生する外部電源を接続する。
[0136] 低抵抗電極 252aに 1. 6Vrms印加し、低抵抗電極 252bに 0. 8Vrms印加した際( 電圧差 0. 8Vrms)に左端と右端でのリタデーシヨン値 Rの差が約 650nm、低抵抗電 極 252aに 2. 2Vrms印加し、低抵抗電極 252bに 0. 8Vrms印加した際(電圧差 1. 4Vrms)に約 1300ナノメートルとなった。このとき図 2の(b)に示すようなリタデーショ ン値 Rの分布が得られる。
[0137] 波長 650ナノメートルの光を発振するレーザ光を、直線偏光の偏光方向が位相変 調素子 25の Y方向(液晶の配向方向)に対して 45度方向になるようにして位相変調 素子 25に入射させ、位相変調素子 25から出射された透過光の偏光度を測定したと ころ、電圧差が 0. 8Vrmsのときに約 13%、電圧差が 1. 4Vrmsのときに 5%となり、 偏光解消されていることを確認した。なお、偏光度は、ポラリメータによりスト一タスべ タトルを測定して求めた。
[0138] このようにして得られた位相変調素子を投射型表示装置に揷入し、偏光解消を行う とスペックルノイズを低減して投射表示を行うことができる。
(実施例 2)
形式 3のタイプの位相変調素子 45について図 6の(a)、(b)を用いて説明する。
[0139] まず、第 1の透明基板 451aおよび第 2の透明基板 451bとして、厚さ 0· 5ミリメート ルのガラス基板を 2枚用意する。
[0140] 第 1の透明基板 451a上にシート抵抗値力 0オームの ITO膜を成膜し、パターニン グして外部から電圧印加が可能な低抵抗電極 452a〜452dとする。次いで、第 1の 透明基板 451a上の同じ面にシート抵抗値が 100メガオームの SnO膜を成膜、パタ 一ユングし、高抵抗電極 453とする。
[0141] 第 2の透明基板 451b上にはシート抵抗値が 300オームの ITO膜を成膜、パター二 ングし、対向電極 454とする。低抵抗電極 452a〜452d、高抵抗電極 453および対 向電極 454上に SiOを主成分とする絶縁膜を厚さ 40ナノメートル成膜し、さらに厚さ
40ナノメートルのポリイミド膜を形成し、垂直配向膜とする。
[0142] 第 1の透明基板 451aおよび第 2の透明基板 451bを電極および配向膜を形成した 面を対向させてセルギャップが 10マイクロメートルとなるように重ね合わせ、外周をシ ール材(図示せず)でシールして空セルを形成する。シール材に設けた注入口より△ n = 0. 15の負の誘電異方性を持つネマティック液晶を注入し、注入口をアクリル接 着剤で封止して複屈折材料層 455を有する液晶セルを得る。
[0143] そして、低抵抗電極 452a〜452dに対して、周波数 1キロへルツの矩形交流波を 発生する外部電源を用いて電圧を印加する。各低抵抗電極 452a〜452dに対する 印加電圧は、それぞれ 2· 9Vrms、 3. 2Vrms、 3. 5Vrms、 3. 8Vrmsとした。
[0144] 図 6の(b)および図 7の(a)に示すように、遅相軸の方位方向 Aが光軸を中心とした
d
同心円の半径方向を向き、光軸から遠ざかるにつれて遅相軸の光軸方向(Z軸方向 )に対する傾き Θが大きくなり、リタデーシヨン値 Rが大きくなることを確認した。
[0145] その後、低抵抗電極 452a〜452dに 3. 2Vrmsの電圧を印加することにより、図 7 の(a)に示すように遅相軸の方位方向 Aが光軸を中心とした同心円の半径方向を向
d
き、リタデーシヨン値 Rが均一であることを確認した。
[0146] 波長 650ナノメートルの光を発振するレーザ光を位相変調素子に通過させ偏光度 を測定したところ、低抵抗電極 452a〜452dに 3. 2Vrmsの電圧を印加した際に 5% となり、偏光解消されていることを確認した。この際入射するレーザ光の直線偏光の 偏光方向は、どの方向でも同じく偏光解消できていることが確認された。なお、偏光 度は、ポラリメータによりスト一タスベクトルを測定して求めた。
[0147] このようにして得られた位相変調素子を投射型表示装置に揷入し、偏光解消を行う とスペックルノイズを低減して投射表示を行うことができる。
(実施例 3)
形式 3のタイプの位相変調素子 75について図 15の(a)、(b)を用いて説明する。
[0148] まず、第 1の透明基板 751aおよび第 2の透明基板 751bとして、厚さ 0· 5ミリメート ルのガラス基板を 2枚用意する。第 1の透明基板 751aおよび第 2の透明基板 751b 上にシート抵抗値が 300オームの ITO膜を成膜し、対向する透明電極 754a、 754b とする。
[0149] 透明電極 754a、 754b上に屈折率 1. 54の SiON (シリコン酸窒化物)膜を 0· 3マイ クロメートル成膜し、フォトリソグラフィとドライエッチングにより深さ 0· 3マイクロメートル 、溝間ピッチが 5マイクロメートルの同心円状の溝 756a、 756bを形成する。同心円状 の溝 756a、 756b上にポリイミドを厚さ 40ナノメートル成膜し配向膜(図示せず)とす
[0150] 第 1の透明基板 751aおよび第 2の透明基板 751bを透明電極 754a、 754bおよび 配向膜を形成した面が対向するように重ね合わせ、直径 10マイクロメートルのガラス ファイバを混入させたエポキシ樹脂で外周をシールしてセルギャップが 10マイクロメ 一トルの空セルを形成する。
[0151] シール材に設けた注入口より An = 0. 15の正の誘電異方性を持つネマティック液 晶を注入し、注入口を封止して複屈折材料層 755を有する液晶セルを得る。
[0152] そして、透明電極 754a、 754bには外部から電圧を印加できるようにリード線を取り 付ける。その後液晶セルを 120°Cに加熱した後冷却し、液晶の配向を安定化させる。
[0153] 同心円状の溝の深さが深いと、溝により生じる散乱光や回折光が迷光となってコン トラストを落とす原因となるため、溝を形成する材料の屈折率と液晶の常光屈折率ま たは異常光屈折率との差 Δηと溝の深さ dとの積 An ' dを、使用する光の波長の 10分 の 1以下とすることが好ましい。より好ましくは 20分の 1以下である。液晶分子に所望 の配向を行わせるためには、 dは 0. 05マイクロメートル以上であることが好ましい。
[0154] このようにして得られた液晶セルは、印加電圧 OVrmsのときは、液晶分子は長軸方 向が溝に対して直交方向に配向された放射状の配向であった。
[0155] 作製した液晶セルに波長 632. 8ナノメートルでビーム径 2ミリメートルの直線偏光の レーザ光を通過させ、周波数 1キロへルツの矩形交流波を発生する外部電源を用い て電圧を印加しながら偏光度を測定したところ、図 16の(a)に示すように電圧 1. 9Vr ms、 3. 6Vrmsにおいて偏光度は 10%以下となり偏光解消されていることが確認さ れた。これらの電圧において液晶のリタデーシヨン値は各々約 3 λ /2、約え /2であ つた。
[0156] また、電圧 1. 9Vrmsとし、直線偏光の偏光方向を光軸を中心に回転させながら偏 光度を測定した結果、図 16の (b)に示すようにどの偏光方向の光が入射しても偏光 度が 10%以下と偏光解消されていることを確認した。なお、偏光度は、ポラリメータに よりスト一タスベクトルを測定して求めた。
[0157] この液晶素子を投射型表示装置に揷入し、偏光解消を行うとスペックルノイズを低 減して投射表示を行うことができる。
[0158] 上記の例では、溝の断面形状は矩形とした力 ブレーズ型や、多段ステップ型にす ると、電圧印加時の液晶分子の配向状態をより安定化させることができて好ましレ、。 (実施例 4)
まず、本実施例のアレイ状位相変調部 101について図 12、図 14を用いて説明する
[0159] 厚さ 0. 5mmのガラス基板である透明基板 120a上に 40 Ω /口のシート抵抗値の I TOを成膜し、ノ ターユングして低抵抗電極 134a、 134b, 135a, 135b, 136a, 13 6b、 137a, 137b, 138a, 138bとする。また、厚さ 0. 5mmのガラス基板である透明 基板 120b上に 300 Ω /口のシート抵抗値の ITOを成膜、パターユングし、対向する 電極 131a〜; 131eとする。
[0160] 透明基板 120aの低抵抗電極と同じ面にシート抵抗値 lOOk Q /口の SnO膜を成 膜、パターユングし、高抵抗電極 133a〜; 133eとする。高抵抗電極 133a〜; 133eの 幅を 3. 2mm、電極 131a〜; 131eの幅を 2. 4mmとし、 2. 4 X 3. 2mmサイズのァレ ィ要素が 5 X 5個並んだ電極パターンとする。
[0161] 各々の電極上に SiOを主成分とする絶縁膜を厚さ 40nmに成膜し、さらに配向膜と してポリイミドを厚さ 40nmに成膜し、 Y方向にラビング処理を行う。両透明基板を配 向膜が対向するように重ね合わせ、セルギャップを 3 mとし、外周をエポキシ接着 剤でシールする。注入口より An = 0. 26の正の誘電異方性を持つネマティック液晶 を注入し、その後注入口をアクリル系接着剤で封止する。電極には電圧発生器 123 力、ら電圧を印加できるようにする。
[0162] また、投射型表示装置の実施例について図 10を用いて説明する。
[0163] レーザ光源 111から出射された光はレンズ 112によりコリメートされ、上記アレイ状 位相変調部 101に投射される。
[0164] アレイ状位相変調部 101は 5 X 5個のアレイ要素に分割されており、各々のアレイ 要素で光の位相を変調して、第 1のレンズアレイ 102に投影する。第 1のレンズアレイ 102もアレイ状位相変調部 101と同じく 2. 4mm X 3. 2mmサイズのレンズエレメント となっており、分割されそれぞれ位相変調された光が対応するレンズエレメントに入 射する。第 1のレンズアレイ 102、第 2のレンズアレイ 103およびレンズ 113を介して、 光が画像生成部 114に投射される。
[0165] この際、アレイ状位相変調部 101で 2. 4 X 3. 2mmサイズに分割された光は各々 重なり合って 13. 5 X 18mm角の大きさになり画像生成部 114に投射される。そして 、画像生成部 114により画像情報が与えられた光は投影レンズ 115によりスクリーン 1 16に投影される。
[0166] アレイ状位相変調部 101には周波数 1kHzの矩形交流波が印加される。低抵抗電 極 134a、 135b, 136a, 137b, 138aに印カロされる失巨形交流波の振幅を日寺間的に 0 . 8Vrms力、ら 2. 2Vrmsまで変調する。低抵抗電極 134b、 135a, 136b, 137a, 13 8bに印加される矩形交流波の振幅も時間的に 0. 8Vrmsから 2. 2Vrmsまで変調す る力 各々が時間的に互い違いに変調されるようにする。対向する電極 131a〜; 131 eはグランドに電位を落とす。
[0167] 本実施例では、アレイ状位相変調部 101で各々位相変調された光が重なり合って スクリーン 116に投影されるため大きなスペックル解消効果が確認される。なお、対向 する電極 131a〜131eに、電圧が異なり位相が 180度シフトした矩形交流波を印加 することにより、さらに位相変調された光がスクリーン 116に重ね合わされることになり 、さらに大きなスペックル解消効果を確認することができる。
産業上の利用可能性
[0168] 以上のように、本発明に係る投射型表示装置は、コヒーレント性を有する光源を使 用した場合に簡易にスペックルノイズを低減することができるという効果を有し、表示 装置等として有効である。

Claims

請求の範囲
[1] 投射型表示装置であって、
コヒーレント光を発光する光源を少なくとも 1つ含む発光手段と、
前記発光手段が発光した光を変調して画像光を生成する画像光生成手段と、 前記画像光を投射する投射手段と、
前記発光手段と前記画像光生成手段との間、あるいは、前記画像光生成手段と前 記投射手段との間の何れか一方に配置され、光軸と直交する平面内において遅相 軸の方位方向およびリタデーシヨン値の少なくとも一方がそれぞれ異なった方向また は値で分布する領域を有する位相変調手段とを具備して成る。
[2] 前記位相変調手段は、前記光軸と直交する平面内において前記遅相軸の方位方 向が一定であり、かつ、前記リタデーシヨン が最小リタデーシヨン から最大リタデ ーシヨン値の範囲内の異なった値で分布する領域を有する複屈折材料層を含み、前 記最大リタデーシヨン と最小リタデーシヨン の差が前記コヒーレント光の波長以上 である請求項 1に記載の投射型表示装置。
[3] 前記位相変調手段は、前記光軸と直交する平面内において、前記遅相軸の方位 方向が異なった方向で分布する領域を有する複屈折材料層を含むものである請求 項 1に記載の投射型表示装置。
[4] 前記位相変調手段は、前記光軸と直交する平面内において、前記遅相軸の方位 方向が光軸を中心とする同心円の半径方向または円周方向を指向する複屈折材料 層を含むものである請求項 3に記載の投射型表示装置。
[5] 前記リタデーシヨン値力 前記コヒーレント光の半波長の奇数倍に等しい一定値で ある請求項 3または請求項 4に記載の投射型表示装置。
[6] 前記複屈折材料層を挟持する一対の透明電極を更に具備して成り、
前記複屈折材料層は、液晶層であって、外部から前記透明電極間へ印加される電 圧により、前記光軸に直交する平面内において前記遅相軸の方位方向および前記リ タデーシヨン値の少なくとも一方がそれぞれ異なった方向または値で分布する領域を 有するものである請求項 2から請求項 5のいずれか一項に記載の投射型表示装置。
[7] 前記透明電極に印加される前記電圧は、時間的に変化する請求項 6に記載の投 射型表示装置。
[8] 前記複屈折材料層が、高分子液晶組成物を所定の配向状態で重合させてなる高 分子液晶層である請求項 2から請求項 5のいずれか一項に記載の投射型表示装置。
[9] 光位相変調器であって、
入射光の光軸と直交する平面内でアレイ構造を有し、前記アレイ構造の要素それ ぞれで前記入射光の位相を変調するアレイ状位相変調部と、
前記入射光を各前記要素に対応する複数の光束に分割した後、分割された複数 の光束を一つに重ね合わせる光整形部とを具備して成り、
前記アレイ状位相変調部は、前記入射光の光軸と直交する平面内における遅相軸 の方位方向およびリタデーシヨン値の少なくとも一方が変動する複屈折媒質を含む。
[10] 前記複屈折媒質を挟持する一対の電極を更に具備して成り、
前記複屈折媒質は、液晶層であって、前記透明電極間へ印加される電圧により、 前記リタデーシヨン を時間的に変化させることが可能に構成されている請求項 9に 記載の光位相変調器。
[11] 投射型表示装置であって、
コヒーレント光を発光する光源を少なくとも 1つ含む発光手段と、
前記発光手段が発光した光を変調して画像光を生成する画像光生成手段と、 前記画像光を投射する投射手段と、
前記発光手段と前記画像光生成手段との間、あるいは、前記画像光生成手段と前 記投射手段との間の何れか一方に、請求項 9または請求項 10に記載の光位相変調 器が配置される。
PCT/JP2007/070191 2006-10-16 2007-10-16 Dispositif d'affichage de type à projection WO2008047800A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008539828A JP5136419B2 (ja) 2006-10-16 2007-10-16 投射型表示装置
US12/424,971 US8132917B2 (en) 2006-10-16 2009-04-16 Projection type display device with a phase modulating unit

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006281567 2006-10-16
JP2006-281567 2006-10-16
JP2007-029647 2007-02-08
JP2007029647 2007-02-08
JP2007152914 2007-06-08
JP2007-152914 2007-06-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/424,971 Continuation US8132917B2 (en) 2006-10-16 2009-04-16 Projection type display device with a phase modulating unit

Publications (1)

Publication Number Publication Date
WO2008047800A1 true WO2008047800A1 (fr) 2008-04-24

Family

ID=39314027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070191 WO2008047800A1 (fr) 2006-10-16 2007-10-16 Dispositif d'affichage de type à projection

Country Status (3)

Country Link
US (1) US8132917B2 (ja)
JP (2) JP5136419B2 (ja)
WO (1) WO2008047800A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198637A (ja) * 2008-02-20 2009-09-03 Seiko Epson Corp プロジェクタ
JP2010160307A (ja) * 2009-01-08 2010-07-22 Seiko Epson Corp 光学素子および画像表示装置
US20120236263A1 (en) * 2011-03-15 2012-09-20 Asahi Glass Company, Limited Depolarization element and projection type display device
JP2012203212A (ja) * 2011-03-25 2012-10-22 Fujifilm Corp 位相差板、並びにそれを有する偏光板、3d表示装置及び3d表示システム
JP2013195565A (ja) * 2012-03-16 2013-09-30 Asahi Glass Co Ltd 走査型表示装置およびスペックル低減方法
WO2015133732A1 (ko) * 2014-03-04 2015-09-11 유한회사 마스터이미지쓰리디아시아 입체영상장치용 변조기 및 이를 이용한 입체영상장치
CN109495730A (zh) * 2018-12-20 2019-03-19 歌尔股份有限公司 投影机及其行同步信号的生成方法和计算机可读存储介质
JP2020511693A (ja) * 2017-03-14 2020-04-16 コンパウンド フォトニクス リミティド 低減したスペックルを持つレーザ照射システム
JP7497494B2 (ja) 2018-06-15 2024-06-10 マジック リープ, インコーポレイテッド プレチルト角を伴う液晶光学要素を用いた広視野偏光スイッチ
US12007652B2 (en) 2018-06-15 2024-06-11 Magic Leap, Inc. Wide field-of-view polarization switches and methods of fabricating liquid crystal optical elements with pretilt

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100232005A1 (en) * 2009-03-12 2010-09-16 Microvision, Inc. Speckle Reduction in Display Systems Using Transverse Phase Modulation in A Non-Image Plane
WO2011088249A2 (en) * 2010-01-14 2011-07-21 Alces Technology, Inc. Compact display system
GB2517099B (en) 2010-03-08 2015-06-03 Gskolen I Buskerud Og Vestfold H Speckle reduction
US20150070607A1 (en) * 2012-04-06 2015-03-12 Sharp Kabushiki Kaisha Stereoscopic display apparatus
CN103033953B (zh) * 2012-11-21 2015-06-24 中北大学 二维被动式二元相位调制器
JP2015099323A (ja) * 2013-11-20 2015-05-28 セイコーエプソン株式会社 プロジェクター
WO2016098281A1 (ja) 2014-12-18 2016-06-23 日本電気株式会社 投射装置およびインターフェース装置
US10025170B2 (en) 2016-06-13 2018-07-17 Microsoft Technology Licensing, Llc Avoiding interference by reducing spatial coherence in a near-eye display
JP6817623B2 (ja) * 2016-11-28 2021-01-20 公立大学法人兵庫県立大学 偏光制御装置および偏光制御方法
WO2018179980A1 (ja) 2017-03-31 2018-10-04 日本電気株式会社 投射装置、投射画像制御方法、および投射画像制御プログラムが記録された記録媒体

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61279822A (ja) * 1985-06-05 1986-12-10 Canon Inc 照明光学系
JP2006047421A (ja) * 2004-07-30 2006-02-16 Canon Inc 表示光学系および画像投射装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2840224B2 (ja) * 1996-07-23 1998-12-24 財団法人レーザー技術総合研究所 液晶偏光制御素子
JP4182580B2 (ja) 1999-01-18 2008-11-19 ソニー株式会社 照明装置及び画像表示装置
US6421131B1 (en) * 1999-07-02 2002-07-16 Cambridge Research & Instrumentation Inc. Birefringent interferometer
US6781640B1 (en) * 1999-11-15 2004-08-24 Sharp Laboratories Of America, Inc. Projection display having polarization compensator
JP2002062582A (ja) * 2000-08-21 2002-02-28 Sony Corp 画像表示装置
JP4378865B2 (ja) * 2000-09-20 2009-12-09 セイコーエプソン株式会社 プロジェクタ装置および画質改善機構
US7370972B2 (en) * 2003-12-24 2008-05-13 Matsushita Electric Industrial Co., Ltd. Two-dimensional image display device
JP2006003479A (ja) * 2004-06-16 2006-01-05 Nikon Corp 光学素子及び照明光学系
JP4182032B2 (ja) * 2004-07-30 2008-11-19 キヤノン株式会社 表示光学系および画像投射装置
JP4715171B2 (ja) * 2004-11-19 2011-07-06 旭硝子株式会社 半導体レーザモジュール及びラマン増幅器
JP4670813B2 (ja) * 2004-12-02 2011-04-13 旭硝子株式会社 投射型表示装置
KR100667790B1 (ko) * 2005-01-10 2007-01-11 삼성전자주식회사 복굴절 보정용 액정소자 및 이를 구비한 광픽업 및 광기록 및/또는 재생기기
JP2007163702A (ja) * 2005-12-12 2007-06-28 Seiko Epson Corp スペックルキャンセラ及びこれを用いたプロジェクタ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61279822A (ja) * 1985-06-05 1986-12-10 Canon Inc 照明光学系
JP2006047421A (ja) * 2004-07-30 2006-02-16 Canon Inc 表示光学系および画像投射装置

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198637A (ja) * 2008-02-20 2009-09-03 Seiko Epson Corp プロジェクタ
JP2010160307A (ja) * 2009-01-08 2010-07-22 Seiko Epson Corp 光学素子および画像表示装置
US8696134B2 (en) * 2011-03-15 2014-04-15 Asahi Glass Company, Limited Depolarization element and projection type display device
US20120236263A1 (en) * 2011-03-15 2012-09-20 Asahi Glass Company, Limited Depolarization element and projection type display device
JP2012194221A (ja) * 2011-03-15 2012-10-11 Asahi Glass Co Ltd 偏光解消素子および投射型表示装置
JP2012203212A (ja) * 2011-03-25 2012-10-22 Fujifilm Corp 位相差板、並びにそれを有する偏光板、3d表示装置及び3d表示システム
US9244289B2 (en) 2012-03-16 2016-01-26 Asahi Glass Company, Limited Scanning display device and speckle reduction method
JP2013195565A (ja) * 2012-03-16 2013-09-30 Asahi Glass Co Ltd 走査型表示装置およびスペックル低減方法
WO2015133732A1 (ko) * 2014-03-04 2015-09-11 유한회사 마스터이미지쓰리디아시아 입체영상장치용 변조기 및 이를 이용한 입체영상장치
CN106164751A (zh) * 2014-03-04 2016-11-23 斯特立体影像科技有限公司 用于立体图像装置的调制器和使用该调制器的立体图像装置
US9948925B2 (en) 2014-03-04 2018-04-17 Reald Inc. Modulator for stereoscopic image device and stereoscopic image device using same
JP2020511693A (ja) * 2017-03-14 2020-04-16 コンパウンド フォトニクス リミティド 低減したスペックルを持つレーザ照射システム
JP7101697B2 (ja) 2017-03-14 2022-07-15 コンパウンド フォトニクス リミティド 低減したスペックルを持つレーザ照射システム
US11838691B2 (en) 2017-03-14 2023-12-05 Snap Inc. Laser illumination system with reduced speckle via phase shift
JP7497494B2 (ja) 2018-06-15 2024-06-10 マジック リープ, インコーポレイテッド プレチルト角を伴う液晶光学要素を用いた広視野偏光スイッチ
US12007652B2 (en) 2018-06-15 2024-06-11 Magic Leap, Inc. Wide field-of-view polarization switches and methods of fabricating liquid crystal optical elements with pretilt
CN109495730A (zh) * 2018-12-20 2019-03-19 歌尔股份有限公司 投影机及其行同步信号的生成方法和计算机可读存储介质
CN109495730B (zh) * 2018-12-20 2021-04-02 歌尔光学科技有限公司 投影机及其行同步信号的生成方法和计算机可读存储介质

Also Published As

Publication number Publication date
US20090257028A1 (en) 2009-10-15
US8132917B2 (en) 2012-03-13
JPWO2008047800A1 (ja) 2010-02-25
JP2012190053A (ja) 2012-10-04
JP5136419B2 (ja) 2013-02-06
JP5447597B2 (ja) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5447597B2 (ja) 投射型表示装置
CN102763026B (zh) 偏振变换元件
US8687165B2 (en) Imaging system having a liquid crystal element for selectively deflecting a beam path to vary the focal length thereof
US20160170226A1 (en) Laser despeckler based on angular diversity
US7477348B2 (en) Retarder, liquid crystal display element, and liquid crystal projector
KR20060125516A (ko) 액정 표시 소자
WO2006082901A1 (ja) 透過光量可変素子および投射型表示装置
JP2004361823A (ja) 液晶表示装置、液晶表示装置の製造方法、電子機器
JP2004004647A (ja) 光路偏向素子、光路偏向装置、画像表示装置、光書込み装置、光インターコネクション装置、光学素子及びその製造方法
US20120147279A1 (en) Projection display apparatus
US11221539B2 (en) Liquid crystal beam control device generating flat-top distribution
JP5825161B2 (ja) 走査型表示装置
US20200386384A1 (en) Lamp unit, vehicular lamp system
JP5552727B2 (ja) 液晶装置、プロジェクタ、液晶装置の光学補償方法及び位相差板
US9442302B2 (en) Liquid crystal lens device and image display device
US20160320677A1 (en) Optical midulator
JP7062404B2 (ja) 光学素子
JP2018159857A (ja) 照明装置及び表示装置
JP5552728B2 (ja) 液晶装置、プロジェクタ、液晶装置の光学補償方法及び位相差板
US11500211B2 (en) Display device
US20100085640A1 (en) Polarizing plate and polarizing device comprising the same
WO2020250554A1 (ja) 光学装置
KR20200020577A (ko) 회절 격자 구조체, 이를 포함하는 증강 현실장치 및 회절 격자 구조체의 제조 방법
JP7451244B2 (ja) ランプユニット、車両用灯具システム
US11754904B2 (en) Light control device and illumination device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829925

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008539828

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07829925

Country of ref document: EP

Kind code of ref document: A1