WO2008044644A1 - Silicon-containing liquid crystal aligning agent and liquid crystal alignment film - Google Patents

Silicon-containing liquid crystal aligning agent and liquid crystal alignment film Download PDF

Info

Publication number
WO2008044644A1
WO2008044644A1 PCT/JP2007/069591 JP2007069591W WO2008044644A1 WO 2008044644 A1 WO2008044644 A1 WO 2008044644A1 JP 2007069591 W JP2007069591 W JP 2007069591W WO 2008044644 A1 WO2008044644 A1 WO 2008044644A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
polysiloxane
aligning agent
crystal aligning
carbon atoms
Prior art date
Application number
PCT/JP2007/069591
Other languages
French (fr)
Japanese (ja)
Inventor
Kenichi Motoyama
Rie Gunji
Kazuki Eguchi
Original Assignee
Nissan Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Industries, Ltd. filed Critical Nissan Chemical Industries, Ltd.
Priority to KR1020097006820A priority Critical patent/KR101419962B1/en
Priority to JP2008538706A priority patent/JP5206413B2/en
Priority to CN2007800375142A priority patent/CN101523280B/en
Publication of WO2008044644A1 publication Critical patent/WO2008044644A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133719Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films with coupling agent molecules, e.g. silane
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes

Definitions

  • the present invention relates to a liquid crystal alignment agent containing polysiloxane obtained by polycondensation of alkoxysilane and a specific glycol compound, a liquid crystal alignment film obtained from the liquid crystal alignment agent, and the liquid crystal alignment
  • the present invention relates to a liquid crystal display element having a film.
  • Patent Document 2 Japanese Patent Laid-Open No. 09-278724
  • the present invention has the following gist.
  • the polysiloxane (A) used in the present invention must contain an alkoxysilane represented by the following formula (1). It can be obtained by polycondensation of alkoxysilane as an ingredient.
  • Examples of the first organic group include an alkyl group, a perfluoroalkyl group, an alkenyl group, an aryloxyalkyl group, a phenethyl group, a perfluorophenylalkyl group, a phenylaminoalkyl group, Styrylalkyl group, naphthyl group, benzoylalkylalkyl group, alkoxyphenoxyalkyl group, cycloalkylaminoalkyl group, epoxy-cyclic alkyl group, N- (aminoalkyl) aminoalkyl group, N- (aminoalkyl) amino anoalkyl An enethyl group, a bromoalkyl group, a diphenylphosphino group, an N— (methacryloxyhydroxyalkyl) aminoalkyl group, an N— (atyloxyhydroxyalkyl) aminoalkyl group, an optionally substituted and at least one norbornane
  • photosensitive groups Of these, alkyl groups and perfluoroalkyl groups are preferred because they are readily available.
  • the polysiloxane (A) used in the present invention has a plurality of such first organic groups! /, Or may be! /.
  • the first organic group is less than 0.1 mol with respect to 100 mol of the silicon atom of the polysiloxane (A), good liquid crystal alignment may not be obtained. Therefore, 0.1 mol or more is preferable, 0.5 mol or more is more preferable, and 1 mol or more is more preferable. When the amount exceeds 30 mol, the formed liquid crystal alignment film may not be sufficiently cured. Therefore, 30 mol or less is preferable, 22 mol or less is more preferable, and 15 mol or less is more preferable.
  • alkoxysilane represented by the formula (1) dodecyltriethoxysilane, octadecyltriethoxysilane, octyltriethoxysilane, tridecafluorooctyltriethoxysilane, and lan are preferable.
  • the second organic group is an organic group having 1 to 6 carbon atoms.
  • the second organic group include aliphatic hydrocarbons; ring structures such as aliphatic rings, aromatic rings or heterocycles; unsaturated bonds; or heteroatoms such as oxygen atoms, nitrogen atoms and sulfur atoms. It is an organic group having 1 to 3 carbon atoms which may have a branched structure.
  • the second organic group may have a halogen atom, a bur group, an amino group, a glycidoxy group, a mercapto group, a ureido group, a methacryloxy group, an isocyanate group, an attaryloxy group, or the like.
  • the polysiloxane (A) used in the present invention may have one or more second organic groups.
  • alkoxysilane having the second organic group examples include alkoxysilanes represented by the following formula (2).
  • R 3 represents a hydrogen atom, a hydrogen atom, a rogen atom, or an organic group having 1 to 6 carbon atoms
  • R 4 represents a carbon atom number;! To 5 hydrocarbon group, and m represents an integer of 0 to 3. To express. )
  • alkoxysilane in which m is 0 represents tetraalkoxysilane. Tetraalkoxysilane is condensed with alkoxysilane represented by formula (1).
  • polysiloxane (A) it is preferable.
  • Specific examples of the alkoxysilane in which m is 0 in the formula (2) include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane and the like. Is preferred.
  • R 3 in the formula (2) is an organic group having 1 to 6 carbon atoms, it represents the same group as the second organic group described above.
  • the example in this case is the same as described for the second organic group above.
  • alkoxysilane of the formula (2) specific examples of the alkoxysilane when R 3 is a hydrogen atom or a halogen atom include trimethoxysilane, triethoxysilane, tripropoxysilane, tributoxysilane, chlorotrimethoxy Examples thereof include silane and chlorotriethoxysilane.
  • alkoxysilane represented by the above formula (2) one kind or plural kinds can be used as necessary.
  • the alkoxysilane represented by the formula (2) is 99.9 mol in all alkoxysilanes used to obtain the polysiloxane (A). 0/0, more preferably less preferred instrument 99, 5 mole 0/0 or less, still more preferably 99 mol 0/0. Further, the alkoxysilane represented by the formula (2) is preferably 70 mol% or more, more preferably 78 mol% or more, and still more preferably 85 mol% or more.
  • a method for condensing the polysiloxane (A) used in the present invention is not particularly limited, and examples thereof include a method of hydrolyzing and condensing alkoxysilane in an alcohol or a darlicol solvent.
  • the hydrolysis' condensation reaction may be either partial hydrolysis or complete hydrolysis.
  • complete hydrolysis it is theoretically sufficient to add 0.5 moles of water of all alkoxy groups in the alkoxysilane, but usually an excess of water is swallowed more than 0.5 moles.
  • the amount of water used in the above reaction is a force that can be appropriately selected as desired. Usually, it is 0.5 to 2.5 moles of all alkoxy groups in the alkoxysilane.
  • acids such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid, formic acid, oxalic acid, maleic acid, fumaric acid, ammonia, methylamine, ethylamine, ethanolamine,
  • a catalyst such as an alkali such as triethylamine or a metal salt of an inorganic acid such as hydrochloric acid, sulfuric acid or nitric acid is used.
  • the heating temperature and the heating time can be appropriately selected as desired. Examples thereof include heating and stirring at 50 ° C. for 24 hours, and heating and stirring for 1 hour under reflux.
  • a method of heating and polycondensing a mixture of an alkoxysilane, a solvent and oxalic acid can be mentioned. Specifically, after adding oxalic acid to alcohol in advance to make an alcohol solution of oxalic acid, alkoxysilane is mixed in a state where the solution is heated. In this case, the amount of succinic acid used is generally 0.2 to 2 mol with respect to 1 mol of all alkoxy groups of alkoxysilane. Heating in this method can be performed at a liquid temperature of 50 to 180 ° C., and preferably, for example, several times under reflux in a container equipped with a reflux pipe so that the liquid does not evaporate or volatilize.
  • alkoxysilanes When a plurality of alkoxysilanes are used in obtaining polysiloxane (A) for a sufficient period of time to several tens of hours, they may be mixed as a mixture of alkoxysilanes in advance! / Orchids may be mixed with 7 J-fires.
  • the solvent used for polycondensation of alkoxysilane (hereinafter also referred to as polymerization solvent) is not particularly limited as long as it dissolves alkoxysilane. Even if the alkoxysilane does not dissolve, it may be dissolved as long as the polycondensation reaction of the alkoxysilane proceeds.
  • polymerization solvent an organic solvent having good compatibility with alcohols, glycolenoles, glycol ethers and alcohols is used.
  • polymerization solvent examples include methanol, ethanol, propanol, n-butanol, ethylene glycol, diethylene glycol, propylene glycol and dipro.
  • a polymerization solution of polysiloxane (A) obtained by such a method (hereinafter also referred to as polymerization solution).
  • SiO equivalent concentration 0.5
  • the polymerization solution obtained by the above-mentioned method may be used as the polysiloxane (A) solution as it is, or the solution obtained by the above-mentioned method may be concentrated or added with a solvent as necessary.
  • the solution may be diluted or substituted with another solvent to form a solution of polysiloxane (A).
  • the solvent to be used hereinafter also referred to as additive solvent
  • This solvent is not particularly limited as long as the polysiloxane (A) is uniformly dissolved, and one or a plurality of types can be arbitrarily selected and used.
  • Such an additive solvent include alcohols such as methanol, ethanol, 2-propanol, butanol and diacetone alcohol; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; ethylene glycol, Glyconoles such as diethylene glycol, propylene glycolenole, hexylene glycolenole, etc .; methinoreserosonoleb, ethinore cerosoleneb, butinorecellosonolev, ethinorecanorebitonore, butinorecanolebitonore, ethylene glyconoresimethinore Etherenole, ethyleneglycololecinoleethenore, ethyleneglycoresinpropinoreenotenole, ethyleneglycolenoresbutinoreethenore, diethyleneglycolmonomethylether, diethyleneglycolmonoeth Ether, di
  • the glycol compound (B) used in the present invention has two carbon atoms to which a hydroxy group and a hydrogen atom are bonded, and the two carbon atoms described above are bonded via an aliphatic group which may contain a hetero atom.
  • the glycol compound (B) contains a heteroatom! / It means a glycol compound having a number of consecutive carbon atoms excluding heteroatoms from 3 to 6.
  • diethylene glycol has a continuous carbon number of 4, and is a particularly preferred specific example of the glycol compound (B).
  • the glycol compound (B) is not particularly limited as long as it is a compound as described above. Specific examples thereof include 1,3-propanediol, 1,3-butanediol, 1,4-butanediol. 1,3-pentanediol, 1,4-pentanediol, 1,5-pentanediol, 2,4pentanediol, 1,6hexanediol, diethyleneglycolanol, dipropylene glycol and the like.
  • glycol compound (B) Since such a glycol compound (B) is usually in a liquid state, it can also be used as a solvent. Therefore, it may be added later to the polysiloxane (A) synthesized with another solvent, which may be used as all or part of the polymerization solvent or additive solvent for polycondensation of the polysiloxane (A). .
  • the glycol compound (B) used in the present invention is used in an amount of 100 mass in total, in which the silicon atoms of all alkoxysilanes used to obtain the polysiloxane (A) are converted to SiO.
  • the glycol compound ( ⁇ ) used in the present invention can easily improve the water repellency of the liquid crystal alignment film, and can reduce the organic groups of the polysiloxane ( ⁇ ) in the liquid crystal aligning agent. As described above, a liquid crystal alignment film having high density, high hardness, good liquid crystal alignment properties, and excellent coating properties can be obtained.
  • a solvent (C) which is a solvent having a hydroxy group and having a structure different from that of the glycol compound (B) can also be used.
  • solvent (C) examples include methanol, ethanol, 2-propanol, butanol
  • Alcohols such as diacetone alcohol, ethylene glycol, 1,2-propanedio Glycols such as 3-pentanediol and 2-methyl-2,4-pentanediol.
  • Ethylene glycol monolechinenoatenore Ethylene glyconole monoethylenoatenore, Ethylene glyconole monopropenoatenore, Ethylene glyconomonomonobutenoreatenore, Propylene glyconole monomethinoatenore, Propylene glyconole monoethanolate, propylene glyconole monopropinoreateenore, propylene glyconole monobutinoleatenore and other glyconoreatenoles, propylene glycolenolemonomethinoatenoate acetate, propylene glycol monoacetate Ethyl ether acetate, Ethylene glycol monomethyl ether acetate, Ethylene glycol
  • the solvent (C) used in the present invention is a polysulfide synthesized with another solvent that may be used as all or part of the polymerization solvent or additive solvent for polycondensation of the polysiloxane (A). You may add to siloxane (A) later.
  • solvents (C) can improve the applicability when the liquid crystal aligning agent is applied onto the substrate by adjusting the viscosity of the liquid crystal aligning agent or by spin coating, flexographic printing, ink jetting or the like.
  • the amount of the solvent (C) used is 0 with respect to 100 parts by mass as a total of the silicon atoms of all alkoxysilanes used for obtaining the polysiloxane (A) converted to SiO.
  • glycol compound ( ⁇ ) and the solvent (C) for example, inorganic fine particles, methaoxane oligomers, metalloxane polymers, leveling agents, and even surfactants may be included. Good.
  • the inorganic fine particles are particularly preferably those in a colloidal solution in which fine particles such as silica fine particles, alumina fine particles, titania fine particles, and magnesium fluoride fine particles are preferred.
  • the Lloyd solution may be one obtained by dispersing inorganic fine particle powder in a dispersion medium, or a commercially available colloid solution.
  • the inclusion of inorganic fine particles makes it possible to impart the surface shape of the formed cured film and other functions.
  • the inorganic fine particles preferably have an average particle size of 0.001 -0.2 m, more preferably 0.001 -0.1 lrn.
  • the transparency of the cured film formed using the prepared coating liquid may be reduced. Mention may be made of solvents.
  • the colloidal solution it is preferable that pH or pKa is adjusted to !! to 10! /, From the viewpoint of the stability of the coating solution for film formation! /. More preferably, it is 2-7.
  • Examples of the organic solvent used for the dispersion medium of the colloid solution include methanol, isopropyl alcohol, butanol, ethylene glycol, propylene glycol, butanediol, pentadiol, hexylene glycol, diethylene glycol and dipropylene glycol.
  • Alcohol such as ethylene glycol monopropyl ether, ketones such as methyl ethyl ketone and methylisobutyl ketone, aromatic hydrocarbons such as toluene and xylene, dimethylhonolemamide, dimethylacetamide, N Examples thereof include amides such as methylpyrrolidone, esters such as ethyl acetate, butyl acetate and butyrolatatatone, and ethers such as tetrahydrofuran and 1,4-dioxane. Of these, alcohols and ketones are preferred. These organic solvents can be used alone or in combination of two or more as a dispersion medium.
  • the metalloxane oligomer and metalloxane polymer single or composite oxide precursors such as silicon, titanium, aluminum, tantalum, antimony, bismuth, tin, indium, and zinc are used.
  • the metalloxane oligomer and metalloxane polymer may be commercially available or may be obtained from monomers such as metal alkoxides, nitrates, hydrochlorides, and carboxylates by a conventional method such as hydrolysis.
  • the refractive index of the cured film can be improved or the photosensitivity can be imparted by containing a metalloxane oligomer or a metalloxane polymer.
  • the polysiloxane (A) can be used simultaneously with the synthesis of the polysiloxane (A). (A) may be added later.
  • metalloxane oligomers and metalloxane polymers include Methyl silicate 51, Methyl silicate 53A, Ethyl silicate 40, Ethyl silicate 48, EMS-485, SS-101 manufactured by Colcoat Co., Ltd.
  • siloxane oligomers such as siloxane polymers and titanoxane oligomers such as titanium n-butoxide tetramer manufactured by Kanto Chemical Co., Inc. These may be used alone or in combination of two or more.
  • leveling agent and surfactant known ones can be used, and commercially available products are particularly preferred because they are easily available.
  • the method of mixing the above-mentioned other components with polysiloxane (A) is not particularly limited, either at the same time as or after the solution of polysiloxane (A) and daricol compound (B). .
  • the method for preparing the liquid crystal aligning agent of the present invention is not particularly limited. If the polysiloxane (A) and the glycol compound (B), and if necessary, the solvent (C) and / or other components are uniformly mixed,
  • the polysiloxane (A) is polycondensed in a solvent, and thus is obtained in a solution state.
  • the method of using the polysiloxane (A) polymerization solution as described above as it is is simple.
  • Polymerization solvent power of polysiloxane (A) In the case of the glycol compound (B), the glycol compound (B) may not be added later.
  • the polysiloxane (A) solution does not contain the glycol compound (B), the glycol compound (B) can be added and used when preparing the liquid crystal aligning agent.
  • the solvent (C) when used in combination, it may be used as a polymerization solvent or an additive solvent when synthesizing the polysiloxane (A), and mixed when preparing the liquid crystal aligning agent. Use it,
  • the polysiloxane (A) is converted into SiO in the silicon atoms of all alkoxysilanes used to obtain the polysiloxane (A) in the liquid crystal aligning agent.
  • the SiO equivalent concentration is 0.5 to 20% by mass, preferably 0.5 to 15% by mass, particularly preferably
  • the solvent used for adjusting the SiO equivalent concentration is a polymerization solution of polysiloxane (A).
  • the liquid crystal aligning agent of the present invention is applied with a force S to form a cured film by performing drying and baking after coating on a substrate.
  • the transfer printing method is widely used industrially from the viewpoint of productivity, which includes spin coating method, printing method, ink jet method, spray method, roll coating method, etc.
  • the liquid crystal aligning agent of this invention is also used suitably.
  • the drying process after applying the liquid crystal aligning agent is not necessarily required, but the time from application to baking is constant for each substrate! /, N! /, Or is not baked immediately after coating. In some cases, it is preferable to include a drying step.
  • the drying means is not particularly limited as long as the solvent is removed to such an extent that the shape of the coating film is not deformed by transporting the substrate or the like. For example, a method of drying on a hot plate at a temperature of 40 ° C to 150 ° C, preferably 60 ° C to 100 ° C for 0.5 to 30 minutes, preferably 1 to 5 minutes can be mentioned.
  • the coating film formed by applying the liquid crystal aligning agent by the above method can be baked to form a cured film.
  • the firing temperature can be performed at any temperature of 100 ° C to 350 ° C, but preferably (up to 140 ° C to 300 ° C, more preferably (up to 150 ° C to 230 ° C, More preferably (1-60 ° C to 220 ° C.
  • the baking time can be any time from 5 minutes to 240 minutes, preferably 10 to 90 minutes, more preferably 20 to 90 minutes Heating is usually performed using a publicly known method such as a hot plate, hot air circulating oven, IR oven, belt furnace, etc.
  • the polysiloxane (A) in the liquid crystal alignment film undergoes polycondensation in the firing step.
  • it is not necessary to completely polycondense unless the effects of the present invention are impaired.
  • firing at a temperature of 10 ° C or higher is preferable than the heat treatment temperature required for the liquid crystal cell manufacturing process, such as curing of the sealant! /.
  • the thickness of the cured film can be selected as necessary.
  • the thickness of the cured film is 5nm or less
  • the above case is preferable because the reliability of the liquid crystal display element is easily obtained. More preferably, it is 10 nm or more. Further, the case of 300 nm or less is preferable because the power consumption of the liquid crystal display element does not become extremely large. More preferably, it is 150 nm or less.
  • Such a cured film can be used as it is as a liquid crystal alignment film.
  • the cured film is rubbed, irradiated with polarized light or light of a specific wavelength, or treated with an ion beam or the like.
  • a liquid crystal alignment film can also be used.
  • the liquid crystal alignment film of the present invention formed by the method as described above is considered to have a structure in which the specific organic group of polysiloxane (A) is unevenly distributed in the vicinity of the surface layer of the liquid crystal alignment film. This can be confirmed by measuring the water contact angle of the liquid crystal alignment film of the present invention. This is presumed to be due to the effect of the Daricol compound (B) which is a component of the liquid crystal aligning agent of the present invention. When the Daricol compound (B) is contained in the liquid crystal aligning agent, the glycol compound (B) The water contact angle can be increased as compared with the case where no water is contained.
  • the specific organic group of the polysiloxane (A) is unevenly distributed near the surface layer of the liquid crystal alignment film due to the effect of the glycol compound (B), so that the liquid crystal molecules are unidirectionally, particularly in the vertical direction. It is considered that the effect of being easily oriented is achieved. Therefore, since the liquid crystal alignment film of the present invention exhibits high water repellency, good liquid crystal vertical alignment can be obtained.
  • the liquid crystal alignment film of the present invention has a small amount of the specific organic group contained in the polysiloxane (A) which is a component of the liquid crystal alignment agent of the present invention! Therefore, it has high liquid crystal vertical alignment and high hardness with high density.
  • the liquid crystal alignment film is obtained from the liquid crystal aligning agent of the present invention having excellent coating properties, it also has an effect of high uniformity. Therefore, a liquid crystal display element with high reliability and high image quality can be provided.
  • the specific organic group possessed by the polysiloxane (A) is 0 ⁇ ;!-30 moles per 100 moles of the silicon atom possessed by the polysiloxane (A). Even so, the obtained liquid crystal alignment film exhibits good liquid crystal vertical alignment with high water repellency, high hardness with high density, and excellent uniformity.
  • the liquid crystal display element of the present invention can be obtained by forming a liquid crystal alignment film on a substrate by the method described above and then preparing a liquid crystal cell by a known method.
  • a method is generally employed in which a pair of substrates on which a liquid crystal alignment film is formed is fixed with a sealant with a spacer interposed therebetween, and liquid crystal is injected and sealed.
  • the size of the spacer used is a force of 1 to 30 micrometers, preferably 2 to 10 micrometers.
  • the method for injecting liquid crystal is not particularly limited, and examples thereof include a vacuum method in which liquid crystal is injected after reducing the pressure inside the manufactured liquid crystal cell, and a dropping method in which sealing is performed after liquid crystal is dropped.
  • the substrate used for the liquid crystal display element is not particularly limited as long as it is a highly transparent substrate, but is usually a substrate on which a transparent electrode for driving liquid crystal is formed.
  • Specific examples include glass plate, polycarbonate, poly (meth) acrylate, polyether sulfone, polyarylate, polyurethane, polysulfone, polyether, polyether ketone, trimethylpentene, polyolefin, polyethylene terephthalate, (meth) attaly.
  • substrates on which a transparent electrode is formed on a plastic plate such as nitrile, triacetyl cellulose, diacetyl cellulose, and acetate butyrate cellulose.
  • a high-functional device such as a TFT-type device
  • a device in which an element such as a transistor is formed between an electrode for driving a liquid crystal and a substrate is used.
  • a transmissive liquid crystal element it is common to use a substrate as described above.
  • an opaque substrate such as a silicon wafer can be used if only one substrate is used. It is. At that time, a material such as aluminum that reflects light can be used for the electrode formed on the substrate.
  • the liquid crystal alignment film obtained by using the liquid crystal aligning agent of the present invention has high density with high density, high water repellency, and good liquid crystal vertical alignment.
  • a liquid crystal alignment film having excellent uniformity can be obtained.
  • an element produced using the liquid crystal alignment film has good accumulated charge characteristics.
  • a 1 L four-necked reaction flask equipped with a thermometer and a reflux tube was charged with 163.9 g of HG, 163.9 g of TEOS, and 13.9 g of C12, and stirred to prepare a solution of an alkoxysilane monomer.
  • an oxalic acid solution in which HG82. Lg, water 74. lg and 0.8 g of oxalic acid as a catalyst were mixed in advance was added dropwise at room temperature over 30 minutes, and stirred at room temperature for 30 minutes after the completion of the addition. Then, after heating for 1 hour under reflux, the product was allowed to cool and a polycondensation with a solid content concentration in terms of SiO of 10% by mass was performed.
  • Table 10 shows the solvent composition by mixing and stirring the amounts of HG, BCS and solvent (X) shown in Table 1 to 10 g of the polysiloxane solution (Kl) obtained in Synthesis Example 1.
  • liquid crystal aligning agents (KL1 to KL7) having a solid content concentration force of mass% in terms of Si 2 O were obtained.
  • a 1 L four-necked reaction flask equipped with a thermometer and a reflux tube was charged with 163.3 g of BCS, 13.9 g of TEOS and 13.9 g of C12, and stirred to prepare an alkoxysilane monomer solution.
  • To this solution was added dropwise an oxalic acid solution in which 80 g of BSC, 82. lg of water, 74. lg of water and 0.8 g of oxalic acid as a catalyst were mixed over 30 minutes at room temperature, and stirred at room temperature for 30 minutes after completion of the addition. did . Then, after heating for 1 hour under reflux, the product was allowed to cool and a polycondensation with a solid content concentration in terms of SiO of 10% by mass was performed.
  • a liquid crystal aligning agent (KL8) having a solid content concentration of 4% by mass was obtained.
  • BCS15.Og was mixed with 10 g of the polysiloxane solution (K2) obtained in Synthesis Example 2 and stirred to obtain a liquid crystal aligning agent (KM2) having an SiO equivalent solid content concentration force of mass%.
  • a polysiloxane solution (K3) was obtained.
  • DEG15.Og was mixed with 10 g of the polysiloxane solution (K3) obtained in Synthesis Example 3 and stirred to obtain a liquid crystal aligning agent (KL9) having an SiO equivalent solid content concentration force of mass%.
  • a liquid crystal aligning agent (KL10) having a solid content concentration of 4% by mass was obtained.
  • a polysiloxane solution (K4) was obtained.
  • a liquid crystal aligning agent (KL11) having a solid content concentration of 4% by mass was obtained.
  • EtOH15.Og was mixed with 10 g of the polysiloxane solution (K4) obtained in Synthesis Example 4 and stirred to obtain a liquid crystal aligning agent (KM3) having a SiO equivalent solid content concentration force mass%.
  • a liquid crystal aligning agent having a converted solid content concentration of 4% by mass was obtained as 12 to! 0 ⁇ 5 and 1 ⁇ [4].
  • HG124.4 g, BCS41.5 g, TEOS164.9 g and C11.5 g were charged into a 1 L four-necked reaction flask equipped with a thermometer and a reflux tube, and stirred to dissolve the alkoxysilane monomer. A liquid was prepared. To this solution, an oxalic acid solution in which 62.2 g of HG, 20.7 g of BCS, 74. lg of water and 0.8 g of oxalic acid as a catalyst were mixed in advance was added dropwise over 30 minutes at room temperature. did. After heating for 1 hour under reflux, it is allowed to cool and solidify in terms of SiO.
  • a liquid crystal aligning agent (KM5) having a concentration of 4% by mass was obtained.
  • a polysiloxane solution (K7) having a concentration of 2 parts by mass of 12% by mass was obtained.
  • a liquid crystal aligning agent (KM6) having a concentration of 4% by mass was obtained.
  • a liquid crystal aligning agent (KM7) having a concentration of 4% by mass was obtained.
  • a 1 L four-necked reaction flask equipped with a thermometer and a reflux tube was charged with 123.2 g of HG, 41.lg of BCS, 164.9 g of TEOS and 13.9 g of C12, and stirred to prepare a solution of an alkoxysilane monomer.
  • an oxalic acid solution in which 61.6 g of HG, 20.5 g of BCS, 74. lg of water and 0.8 g of oxalic acid as a catalyst were mixed in advance was added dropwise over 30 minutes at room temperature, and stirred at room temperature for 30 minutes after completion of the addition. did. After heating at 65 ° C for 1 hour, it is allowed to cool and solidify in terms of SiO.
  • HG10.2g, BCS2.8g and DEG2.0g were added to 10g of the polysiloxane solution (K9) obtained in Synthesis Example 9 and mixed.
  • a liquid crystal aligning agent (KM9) having a concentration of 4 parts by mass was obtained.
  • a liquid crystal aligning agent (KM10) having a concentration of 4 parts by mass was obtained.
  • a liquid crystal aligning agent (KM11) having a concentration of 4 parts by mass was obtained.
  • a liquid crystal aligning agent (KL23) having a solid content concentration force of mass% by mass of SiO was obtained.
  • a liquid crystal aligning agent (KM12) having a concentration of 4 parts by mass was obtained.
  • HG130.lg, BCS43.4g, TEOS147.6g, C12.13.9g, MPS8.18g and MAPSIO.4g were charged into a 1L four-necked reaction flask equipped with a thermometer and a reflux tube. A solution of the monomer was prepared. To this solution, an oxalic acid solution in which HG65.1 g, BCS21.7 g, water 69.4 g and oxalic acid 0.8 g as a catalyst were mixed in advance was added dropwise over 30 minutes at room temperature, and 30 minutes after completion of the addition at room temperature. Stir. Then, after heating for 1 hour under reflux, the mixture is allowed to cool and a polysiloxane solution with a SiO equivalent solid content concentration of 10% by mass (K1
  • a liquid crystal aligning agent (KM13) having a concentration of 4 parts by mass was obtained.
  • a liquid crystal aligning agent (KM14) having a form fraction concentration of 4% by mass was obtained.
  • a liquid crystal aligning agent (KL26) having a degree of 4% by mass was obtained.
  • a liquid crystal aligning agent (KL27) having a solid content concentration of 4% by mass was obtained.
  • the liquid crystal aligning agents KM1 to KM16 were subjected to pressure filtration with a membrane filter having a pore diameter of 0.45 micrometers, and then formed into a film on a glass substrate with a transparent ITO electrode by spin coating.
  • This substrate was dried on an 80 ° C hot plate for 5 minutes and then baked in a hot air circulation clean oven at 180 ° C for 60 minutes to form a liquid crystal alignment film having a thickness of about 80 nm. Further, the water contact angle of the liquid crystal alignment film was measured by the method described later. The results are shown in Table 3.
  • the liquid crystal alignment agents are 1, 3-Pr DO, 1, 3-— BDO, 1, 4-— BDO, 1, 3-— PeDO, 1, 6— HDO, It has been found that the inclusion of specific glycol compounds such as DEG and DPG increases the water contact angle of the film during film formation compared to the case of using a liquid crystal aligning agent not containing it.
  • specific glycol compounds such as DEG and DPG
  • polysiloxa This is also clear from the comparison between Examples 1 to 7 and Comparative Example 1 using Kl of the solution. That is, it was found that the water repellency of the film can be easily increased by containing the specific glycol compound as a liquid crystal aligning agent.
  • a liquid crystal cell was prepared by the method described later using the liquid crystal aligning agent KL18 obtained in Preparation Example 24.
  • the liquid crystal alignment of the obtained liquid crystal cell was confirmed by the method described later. The results are shown in Table 4.
  • the liquid crystal cell prepared by the above-mentioned [Creation of liquid crystal cell] method was observed with a polarizing microscope, and the alignment state of the liquid crystal was confirmed.
  • the entire liquid crystal cell is free of defects and shows a uniform alignment state, it was marked as ⁇ , and when alignment defects were found in a part of the liquid crystal cell and when it was not vertically aligned, it was marked as X.
  • Table 4 The results are shown in Table 4.
  • the liquid crystal aligning agent KL19 obtained in Preparation Example 26 or the liquid crystal aligning agent KL 20 obtained in Preparation Example 28 was subjected to pressure filtration with a membrane filter having a pore diameter of 0.45 micrometers, and then applied to a glass substrate with an ITO transparent electrode.
  • a film was formed by spin coating and printing.
  • the substrate was dried on a hot plate at 80 ° C for 5 minutes and then baked for 60 minutes with a 180 ° C hot air circulating clean oven to form a liquid crystal alignment film having a thickness of about 80 nm.
  • the applicability in obtaining the film was evaluated by the methods described later (applicability for spin coating, applicability for flexographic printing).
  • the pencil hardness was measured by the method described later.
  • a liquid crystal cell was prepared from the substrate with a liquid crystal alignment film according to the above-described method for preparing a liquid crystal cell, and the accumulated charge was measured by the method described later. The results are shown in Table 5.
  • liquid crystal aligning agent KM9 obtained in Preparation Example 29 or liquid crystal aligning agent KM 8 obtained in Preparation Example 27 Using liquid crystal aligning agent KM9 obtained in Preparation Example 29 or liquid crystal aligning agent KM 8 obtained in Preparation Example 27, a method for measuring coatability, pencil hardness, and accumulated charge as described in Examples 28 to 29 later. It went by. The results are shown in Table 5.
  • the liquid crystal alignment films obtained from Examples 28 to 29 and Comparative Examples 17 to 18 were measured by a pencil hardness test method (JIS K5400). The results are shown in Table 5.
  • the liquid crystal aligning agent was filtered using a chromatodisc (pore diameter 0.45 micrometer), and then formed into a film on a glass substrate with an ITO transparent electrode by spin coating.
  • This board is hot at 80 ° C After drying on the plate for 5 minutes, it was baked for 60 minutes in a 180 ° C hot air circulation clean oven to form a liquid crystal alignment film with a film thickness of about 80 nm.
  • the cured film has good pinholes with no unevenness, ⁇ with some pinholes with unevenness, and pinholes with unevenness on the entire surface. X is the case.
  • Table 5 The results are shown in Table 5.
  • a rectangular wave of 30Hz / ⁇ 2.8V with DC 10V superimposed on the liquid crystal cell is temperature 23
  • the applicability of the liquid crystal alignment film composed of a liquid crystal alignment agent that does not contain a specific glycol compound such as DEG (Comparative Example 17) as the liquid crystal alignment agent is determined regardless of whether spin coating or flexographic printing is used. Hall 'Unevenness was seen and found not enough. It was also found that the lead pencil hardness of the film was as low as H. Furthermore, the accumulated charge is also 20 hours after DC application and DC off. The amount of change after 10 minutes s It was found that the accumulated charge release rate was slow.
  • the liquid crystal alignment film comprising a liquid crystal aligning agent (Example 28) containing a specific solvent such as DEG has a coating property regardless of spin coating method “flexographic printing”. 'No irregularity was found, and it turned out to be sufficient. It was also found that the pencil hardness of the film was as high as 6H. In addition, the absolute value of the accumulated charge also decreased significantly immediately after DC application for 20 hours and 10 minutes after DC off, indicating that the accumulated charge release rate was fast. In other words, it is assumed that the problem of image sticking and afterimages can be reduced as element characteristics.
  • the liquid crystal aligning agent of the present invention contains a specific solvent, so that it is easier to increase the water repellency of the film during film formation than when a liquid crystal aligning agent not containing it is used. As a result, it is possible to form a liquid crystal alignment film having high density and high hardness and good liquid crystal alignment. Furthermore, since the liquid crystal aligning agent of the present invention is excellent in coating properties, it is possible to obtain a highly uniform liquid crystal aligning film. Therefore, a highly reliable high-quality liquid crystal display element can be provided.
  • the long-chain alkyl group-containing silane used to obtain a liquid crystal aligning film exhibiting the desired water repellency It is economical because the amount of use can be reduced. Therefore, it can be suitably used in various liquid crystal alignment elements, particularly in the vertical alignment type (VA). It can also be used in other polarizing films, retardation films, and alignment films for viewing angle widening films. It should be noted that the entire contents of the specification, claims, and abstract of the Japanese Patent Application No. 2006-275713 filed on October 6, 2006 are hereby incorporated by reference herein. And that is what we take in.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Mathematical Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Silicon Polymers (AREA)

Abstract

Disclosed are: a silicon-containing liquid crystal aligning agent which enables to form a liquid crystal alignment film having a good liquid crystal alignment property and a high hardness and has an excellent coating property suitable for flexographic printing or the like; a liquid crystal alignment film produced by using the silicon-containing liquid crystal aligning agent; and a liquid crystal display element having high reliability and a high image quality. The liquid crystal aligning agent comprises a polysiloxane (A) and a glycol compound (B) as follows. Polysiloxane (A): a polysiloxane produced by the polycondensation of an alkoxysilane component comprising at least one alkoxysilane represented by the formula (1). R1nSi(OR2)4-n (1) [wherein R1 represents an organic group having 7 to 30 carbon atoms; R2 represents a hydrocarbon group having 1 to 5 carbon atoms; and n represents an integer of 1 to 3.] Glycol compound (B): a glycol compound which has two carbon atoms each having a hydroxy group and a hydrogen atom attached thereto, which has such a structure that the two carbon atoms are bonded to each other via an aliphatic group which may contain a heteroatom, and which has 3 to 6 contiguous carbon atoms.

Description

明 細 書  Specification
ケィ素系液晶配向剤及び液晶配向膜  Silicon-based liquid crystal aligning agent and liquid crystal aligning film
技術分野  Technical field
[0001] 本発明は、アルコキシシランを重縮合して得られるポリシロキサンと、特定のグリコー ル化合物と、を含有する液晶配向剤、及び前記液晶配向剤から得られる液晶配向膜 、並びにその液晶配向膜を有する液晶表示素子に関する。  The present invention relates to a liquid crystal alignment agent containing polysiloxane obtained by polycondensation of alkoxysilane and a specific glycol compound, a liquid crystal alignment film obtained from the liquid crystal alignment agent, and the liquid crystal alignment The present invention relates to a liquid crystal display element having a film.
背景技術  Background art
[0002] 液晶表示素子は、透明電極上にポリアミック酸及び/又はポリイミドを主成分とする 液晶配向膜が設けられている 2枚の基板を対向配置し、その間隙内に液晶物質を充 填させた構造であることが一般に知られている。最もよく知られている方式としては、 TN (Twisted Nematic)型液晶表示素子である力 S、これよりも高いコンストラスト比 が実現できる STN (Super Twisted Nematic)型、視野角依存性が少ない IPS (I n— Plane Switching)型、垂直配向(VA : Vertical Alignment)型等の開発が なされている。  In a liquid crystal display element, two substrates, each having a liquid crystal alignment film mainly composed of polyamic acid and / or polyimide on a transparent electrode, are arranged to face each other, and a liquid crystal substance is filled in the gap between the two substrates. It is generally known that the structure is The most well-known methods are TN (Twisted Nematic) type liquid crystal display element, force S, STN (Super Twisted Nematic) type that can achieve higher contrast ratio, and IPS (less viewing angle dependency). In-plane switching (VA) type and vertical alignment (VA) type have been developed.
[0003] 中でも、薄膜トランジスタ(TFT : Thin Film Transistor)で駆動する垂直配向型 液晶表示素子は、応答速度が速ぐ超広視野角、高コントラストという特徴を有してお り、更なる高品質化を求めた MVA (Multi— domain Vertical Alignment)、 AS V (Advanced Super View; PVA (Patterned Vertical Alignment^といつ た新しレ、垂直配向型の液晶表示素子が提案されてきて!/、る。  [0003] Among them, the vertical alignment type liquid crystal display element driven by a thin film transistor (TFT) has the characteristics of an ultra-wide viewing angle and high contrast, which has a fast response speed, and further improves the quality. MVA (Multi-domain Vertical Alignment) and AS V (Advanced Super View; PVA (Patterned Vertical Alignment ^) have been proposed, and vertical alignment type liquid crystal display devices have been proposed! /.
[0004] これらの液晶表示素子に設けられている液晶配向膜は、液晶を配向させると共に、 液晶表示素子の電気特性等の各種特性に大きな影響を与えることが知られている。 そのため、このような新しい垂直配向型表示素子に対しても、それに好適な液晶配向 膜の開発がなされてきた。  [0004] It is known that the liquid crystal alignment film provided in these liquid crystal display elements aligns the liquid crystal and has a great influence on various characteristics such as electrical characteristics of the liquid crystal display element. Therefore, a liquid crystal alignment film suitable for such a new vertical alignment type display element has been developed.
例えば、良好な垂直配向性を得る液晶配向膜として、ポリアミック酸及び/又はポリ イミドに長鎖アルキル鎖を導入する手法 (例えば、特許文献 1参照。)、環状置換基を 導入する手法等が提案されている。 (例えば、特許文献 2参照。 )  For example, as a liquid crystal alignment film that obtains good vertical alignment, a method of introducing a long alkyl chain into polyamic acid and / or polyimide (see, for example, Patent Document 1), a method of introducing a cyclic substituent, etc. are proposed. Has been. (For example, see Patent Document 2.)
さらに、高く安定な垂直配向性を実現させるためには、多量の長鎖アルキル基を導 入し、膜を撥水化して表面エネルギーを低下させる必要があるとレ、われて!/、る。 Furthermore, in order to achieve high and stable vertical alignment, a large amount of long-chain alkyl groups are introduced. It is necessary to reduce the surface energy by making the film water repellent.
[0005] また、良好な垂直配向性と共に、高!/、電圧保持率及び/又は低!/、残留 DCと!/、う 電気特性を素子に付与する目的で、ポリアミック酸及び/又はポリイミドに特定の環 状置換基を導入する方法が提案されている。 (例えば、特許文献 3参照。 ) [0005] In addition, for the purpose of imparting high! /, Voltage holding ratio and / or low! /, Residual DC and! /, Electrical characteristics to the device, as well as good vertical orientation, polyamic acid and / or polyimide are used. Methods for introducing specific cyclic substituents have been proposed. (For example, see Patent Document 3)
最近では、ビジネス用途及びホームシアター用の液晶プロジェクタ(第 3の薄型テレ ビと言われるリアプロ TV)用の光源として、照射強度の強いメタルハライドランプが用 いられており、従来用いられてきた有機ポリマーからなる液晶配向膜材料以外で、高 耐熱性だけでなく高耐光性を有するその他の液晶配向膜材料が必要になってきて いる。その解決策の一つとして、無機ポリマーをベースにした液晶配向膜材料を本用 途に適用することが提案されてレ、る。  Recently, metal halide lamps with high irradiation intensity have been used as light sources for liquid crystal projectors for business use and home theater (Rear Pro TV called third thin TV). In addition to the liquid crystal alignment film material, other liquid crystal alignment film materials having not only high heat resistance but also high light resistance are required. As one of the solutions, it has been proposed to apply a liquid crystal alignment film material based on an inorganic polymer to this application.
[0006] しかし、無機ポリマーをベースにした液晶配向膜材料に関する研究開発は蒸着系 材料が主であり(例えば、特許文献 4、 5参照。)、大画面ディスプレイの製造に有利 な塗布系材料に関する報告はほとんどない。このため、これまで無機ポリマーをべ一 スにした液晶配向膜材料はほとんど使用されてこなかった。 [0006] However, research and development related to liquid crystal alignment film materials based on inorganic polymers are mainly vapor deposition materials (see, for example, Patent Documents 4 and 5), and are related to coating materials that are advantageous for manufacturing large-screen displays. There are few reports. For this reason, liquid crystal alignment film materials based on inorganic polymers have been rarely used so far.
[0007] 塗布系無機ポリマーを液晶配向膜材料として使用するという報告は、例えば、テトラ アルコキシシラン、トリアルコキシシラン及び水との反応生成物とグリコールエーテル 系溶媒を含有する液晶配向剤組成物が提案されている。それらの組成物は、表示不 良を防止し、長時間駆動後も残像特性の良好な、液晶を配向させる能力を低下させ ることなぐ且つ光及び熱に対する電圧保持率の低下が少ない液晶配向膜を形成す ることができるというものだけであり(例えば、特許文献 6、 7参照。)、実用レベルの塗 布系無機ポリマーからなる液晶配向膜材料はこれまでなかった。 [0007] A report of using a coating-based inorganic polymer as a liquid crystal alignment film material is, for example, a liquid crystal aligning agent composition containing a reaction product of tetraalkoxysilane, trialkoxysilane and water and a glycol ether solvent. Has been. These compositions prevent poor display, have good afterimage characteristics even after long-time driving, do not reduce the ability to align liquid crystals, and have little decrease in voltage holding ratio against light and heat. However, there has been no liquid crystal alignment film material made of a coating-based inorganic polymer at a practical level.
[0008] この動向とは別に、液晶 TVを始めとする液晶表示素子の技術革新は目覚しぐこ れを達成するために、特に素子の信頼性向上がこれまでにも増して大きな課題とな つてきている。 [0008] Apart from this trend, technological innovations in liquid crystal display elements such as liquid crystal TVs are becoming more and more important than ever to improve the reliability of the elements, in particular, in order to achieve the awakening. ing.
素子の信頼性の一つとして、素子の電気的な信頼性が挙げられる。従来の TFT型 液晶表示素子の信頼性、特に電気的な信頼性は、液晶表示素子の 30ヘルツ動作 に対応した電圧保持率やその温度特性によって確認されて!/、たが、このような測定 方法では微小な差を検出することが困難であり、上記の課題を解決できるものではな かった。 One of the reliability of the element is the electrical reliability of the element. The reliability, especially electrical reliability, of conventional TFT-type liquid crystal display elements has been confirmed by the voltage holding ratio and its temperature characteristics corresponding to the 30 Hz operation of the liquid crystal display elements! This method is difficult to detect minute differences and cannot solve the above problems. won.
[0009] そこで、更に高い信頼性を確認する方法として、液晶表示素子に印加するパルス 電圧の間隔を広げるように、低周波で素子を駆動して電圧保持率を測定する方法が 提案されている。 (例えば、特許文献 8参照。 )  [0009] Therefore, as a method for confirming higher reliability, a method has been proposed in which the voltage holding ratio is measured by driving the element at a low frequency so as to widen the interval between the pulse voltages applied to the liquid crystal display element. . (For example, see Patent Document 8.)
素子のもう一つの信頼性として、素子の製造時の信頼性が挙げられる。つまり、液 晶表示素子の信頼性は、モニター、テレビ等の表示特性に対する信頼性だけではな ぐ製造工程における歩留まり向上に直接影響するため、非常に重要となっている。  Another reliability of the element is reliability at the time of manufacturing the element. In other words, the reliability of the liquid crystal display element is very important because it directly affects the yield improvement in the manufacturing process as well as the reliability of the display characteristics of monitors, televisions and the like.
[0010] 更に、近年、液晶表示素子が大型化する状況において、製造工程での歩留まりが [0010] Further, in recent years, in the situation where the liquid crystal display element is increased in size, the yield in the manufacturing process is reduced.
、液晶表示素子の生産性に従来よりも大きく影響すると言われている。フレキソ印刷 等で液晶配向膜を塗布する際の塗布性が液晶表示素子の画質に大きな影響を与え るだけでなぐ歩留まりを悪化させる原因にもなつている。 It is said that the productivity of the liquid crystal display element is greatly affected than before. The applicability when applying a liquid crystal alignment film by flexographic printing or the like only has a great influence on the image quality of the liquid crystal display element, and it also causes the yield to deteriorate.
[0011] とりわけ、垂直配向型表示素子の場合は、液晶を垂直に配向させる必要があり、無 機ポリマー骨格中に長鎖アルキル基を導入する必要がある。 (例えば、特許文献 6、 7参照。 )  In particular, in the case of a vertical alignment type display element, it is necessary to align liquid crystal vertically, and it is necessary to introduce a long-chain alkyl group into the organic polymer skeleton. (For example, see Patent Documents 6 and 7.)
しかし、導入する長鎖アルキル基の量が多くなるほど、塗布性が悪くなるという問題 がある。また、長鎖アルキル基を含有するアルコキシシランの導入量が多くなるほど 膜の緻密性が低下し、硬度が低下することによる表示不良、トンネル電流による表示 短絡、といった悪影響をおよぼす。  However, there is a problem that as the amount of the long-chain alkyl group to be introduced increases, the coating property deteriorates. In addition, as the amount of alkoxysilane containing a long-chain alkyl group is increased, the denseness of the film is lowered, and there are adverse effects such as display failure due to reduced hardness and display short-circuit due to tunnel current.
そこで、上記課題を解決できる、垂直配向用で、印刷性等の塗布性に優れた、無 機ポリマーをベースにした液晶配向膜材料に対する要求が高まってきている。  Thus, there is an increasing demand for liquid crystal alignment film materials based on organic polymers that can solve the above-described problems and are for vertical alignment and excellent in application properties such as printability.
特許文献 1 :特開平 06— 3678号公報  Patent Document 1: Japanese Patent Laid-Open No. 06-3678
特許文献 2 :特開平 09— 278724号公報  Patent Document 2: Japanese Patent Laid-Open No. 09-278724
特許文献 3 :特開 2001— 311080号公報  Patent Document 3: Japanese Patent Laid-Open No. 2001-311080
特許文献 4:特開 2003— 50397号公報  Patent Document 4: Japanese Unexamined Patent Publication No. 2003-50397
特許文献 5:特開 2004— 126463号公報  Patent Document 5: Japanese Unexamined Patent Application Publication No. 2004-126463
特許文献 6:特開 2005— 250244号公報  Patent Document 6: Japanese Unexamined Patent Publication No. 2005-250244
特許文献 7:特開平 09— 281502号公報  Patent Document 7: Japanese Unexamined Patent Publication No. 09-281502
特許文献 8:特開 2001— 264805号公報 発明の開示 Patent Document 8: JP 2001-264805 A Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0012] 本発明の目的は、第一に、液晶配向性が良好で高硬度な液晶配向膜を形成でき、 且つフレキソ印刷等の塗布性に優れたケィ素系液晶配向剤を提供することである。 第二に、ケィ素系液晶配向剤から得られる液晶配向膜を提供することである。第三に 、前記の液晶配向膜を有する液晶表示素子を提供することである。 [0012] An object of the present invention is to provide, firstly, a silicon-based liquid crystal aligning agent that can form a liquid crystal aligning film having a good liquid crystal orientation and a high hardness and excellent in applicability such as flexographic printing. is there. The second is to provide a liquid crystal alignment film obtained from a silicon-based liquid crystal alignment agent. Thirdly, it is to provide a liquid crystal display element having the liquid crystal alignment film.
課題を解決するための手段  Means for solving the problem
[0013] 本発明者らは、上記状況に鑑み鋭意研究した結果、本発明を完成するに至った。 [0013] As a result of intensive studies in view of the above situation, the present inventors have completed the present invention.
即ち、本発明は下記の要旨を有する。  That is, the present invention has the following gist.
1.下記のポリシロキサン (A)及びダリコール化合物(B)を含有することを特徴とする 液晶配向剤。  1. A liquid crystal aligning agent comprising the following polysiloxane (A) and a dalycol compound (B).
ポリシロキサン (A):下記式(1)で表されるアルコキシシランのうちの少なくとも一種 を含むアルコキシシランを重縮合することで得られるポリシロキサン。  Polysiloxane (A): A polysiloxane obtained by polycondensation of an alkoxysilane containing at least one of the alkoxysilanes represented by the following formula (1).
R1 Si (OR2) ― (1) R 1 Si (OR 2 ) ― (1)
(R1は炭素原子数 7〜30の有機基であり、 R2は炭素原子数 1〜5の炭化水素基を 表し、 nは;!〜 3の整数を表す) (R 1 is an organic group having 7 to 30 carbon atoms, R 2 represents a hydrocarbon group having 1 to 5 carbon atoms, and n represents an integer of;! To 3)
グリコール化合物(B):ヒドロキシ基及び水素原子が結合した炭素原子を 2個有し、 かつ前記した 2個の炭素原子が、ヘテロ原子を含んでもよい脂肪族基を介して結合 した構造を有し、連続した炭素原子の数が 3〜6であるグリコール化合物。  Glycol compound (B): having two carbon atoms to which a hydroxy group and a hydrogen atom are bonded, and having the structure in which the two carbon atoms are bonded via an aliphatic group that may contain a hetero atom. A glycol compound having 3 to 6 consecutive carbon atoms.
2.更に、下記の溶媒 (C)を含有する請求項 1に記載の液晶配向剤。  2. The liquid crystal aligning agent according to claim 1, further comprising the following solvent (C).
溶媒 (C):ヒドロキシ基を有する溶媒であって、上記 1で定義したグリコール化合物( B)とは異なる化合物である溶媒。  Solvent (C): A solvent having a hydroxy group, which is a compound different from the glycol compound (B) defined in 1 above.
3.ポリシロキサン (A)力 式(1)で表されるアルコキシシランを、全アルコキシシラン 中に 0. ;!〜 30モル%含有するアルコキシシランを重縮合して得られるポリシロキサン である上記 1又は 2に記載の液晶配向剤。  3. Polysiloxane (A) power 1 above, which is a polysiloxane obtained by polycondensation of an alkoxysilane represented by the formula (1) in an amount of 0.;! To 30 mol% in all alkoxysilanes. Or the liquid crystal aligning agent of 2.
4.ポリシロキサン (A)力 式(1)に示すアルコキシシランを少なくとも 1種以上及び式 (2)に示すアルコキシシランを少なくとも 1種以上を併用したアルコキシシランを重縮 合して得られるポリシロキサンである上記 1〜3のいずれか 1項に記載の液晶配向剤 R3 Si (OR4) (2) 4. Polysiloxane (A) Strength Polysiloxane obtained by polycondensation of an alkoxysilane using at least one alkoxysilane represented by formula (1) and at least one alkoxysilane represented by formula (2). The liquid crystal aligning agent according to any one of 1 to 3 above R 3 Si (OR 4 ) (2)
m 4— m  m 4— m
(R3は水素原子、ノ、ロゲン原子又は炭素原子数 1〜6の有機基を表し、 R4は炭素原 子数;!〜 5の炭化水素基を表し、 mは 0〜3の整数を表す。 ) (R 3 represents a hydrogen atom, a hydrogen atom, a rogen atom, or an organic group having 1 to 6 carbon atoms, R 4 represents a carbon atom number;! To 5 hydrocarbon group, and m represents an integer of 0 to 3. To express. )
5. グリコール化合物(B)が 1 , 3—プロパンジオール、 1 , 3—ブタンジオール、 1 , 4 ープ、タンシォーノレ、 1 , 3—ペンタンシォーノレ、 1 , 4 ペンタンジォーノレ、 1 , 5—ペン タンジオール、 2, 4 ペンタンジオール、 1 , 6 へキサンジオール、ジエチレングリコ ール、及びジプロピレングリコールからなる群から選ばれる少なくとも 1種以上である 上記 1〜4のいずれ力、 1項に記載の液晶配向剤。  5. Glycol compound (B) is 1,3-propanediol, 1,3-butanediol, 1,4-loop, tansonole, 1,3-pentansonole, 1,4 pentanediol, 1, 2. The force of any one of 1 to 4 above, which is at least one selected from the group consisting of 5-pentanediol, 2,4 pentanediol, 1,6 hexanediol, diethylene glycol, and dipropylene glycol Liquid crystal aligning agent.
6.液晶配向剤中のポリシロキサン (A)の含有量力 ポリシロキサン (A)を得るために 使用した全アルコキシシランのケィ素原子を SiOに換算した SiO換算濃度が、 0. 5  6. Content power of polysiloxane (A) in the liquid crystal aligning agent The SiO equivalent concentration obtained by converting the silicon atoms of all alkoxysilanes used to obtain polysiloxane (A) to SiO is 0.5.
2 2  twenty two
〜20質量%である上記;!〜 5のいずれか 1項に記載の液晶配向剤。  The liquid crystal aligning agent according to any one of the above;
7.液晶配向剤中のダリコール化合物(B)の含有量力 S、ポリシロキサン (A)を得るた めに使用した全アルコキシシランのケケィ素原子を SiOに換算した合計の 100質量  7. Content power S of Daricol compound (B) in the liquid crystal aligning agent S, 100 masses of total alkoxysilane converted to SiO for all alkoxysilanes used to obtain polysiloxane (A)
2  2
部に対して、 2. 5-19, 800質量部である上記 1〜6のいずれ力、 1項に記載の液晶 配向剤。  2. The liquid crystal aligning agent according to any one of 1 to 6, which is 2.5 to 19, 800 parts by mass with respect to parts.
8.上記 1〜7のいずれ力、 1項に記載の液晶配向剤を用いて得られる液晶配向膜。  8. A liquid crystal alignment film obtained by using the liquid crystal aligning agent according to 1 above, whichever force of 1 to 7 above.
9.上記 8に記載の液晶配向膜を有する液晶表示素子。  9. A liquid crystal display device having the liquid crystal alignment film as described in 8 above.
発明の効果  The invention's effect
[0014] 本発明のケィ素系液晶配向剤は、特定のグリコール化合物を含有することで、それ を含有しない液晶配向剤を用いた場合よりも、成膜時の膜の撥水性を高めることが容 易であり、結果として緻密性が高ぐ高硬度で、且つ、膜の液晶配向性が良好で、且 つ塗布性に優れた液晶配向膜を得ることができる。そのため、信頼性が高ぐ高画質 な液晶表示素子を提供することができる。  The silicon-based liquid crystal aligning agent of the present invention contains a specific glycol compound, so that the water repellency of the film at the time of film formation can be improved as compared with the case of using a liquid crystal aligning agent that does not contain the specific glycol compound. As a result, it is possible to obtain a liquid crystal alignment film that has high density, high hardness, good liquid crystal alignment, and excellent coating properties. Therefore, a liquid crystal display element with high reliability and high image quality can be provided.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 以下に本発明につ!/、て詳細に説明する。  [0015] The present invention is described in detail below.
<ポリシロキサン A〉  <Polysiloxane A>
本発明で用いるポリシロキサン (A)は、下記式(1)で表されるアルコキシシランを必 須成分とするアルコキシシランを重縮合することで得られる。 The polysiloxane (A) used in the present invention must contain an alkoxysilane represented by the following formula (1). It can be obtained by polycondensation of alkoxysilane as an ingredient.
R1 Si (OR2) 4— (1) R 1 Si (OR 2 ) 4 — (1)
(R1は炭素原子数 7〜30の有機基であり、 R2は炭素原子数 1〜5の炭化水素基を 表し、 nは 1〜3の整数を表す。 ) (R 1 is an organic group having 7 to 30 carbon atoms, R 2 represents a hydrocarbon group having 1 to 5 carbon atoms, and n represents an integer of 1 to 3. )
式(1)における R1 (以下、第 1の有機基ともいう)は、好ましくは 8〜20、特に好ましく は 8〜; 18であり、ポリシロキサン (A)が該第 1の有機基を有することにより、液晶を一 方向に配向させる効果を奏する。 R 1 (hereinafter also referred to as the first organic group) in the formula (1) is preferably 8 to 20, particularly preferably 8 to 18 and the polysiloxane (A) has the first organic group. As a result, the liquid crystal is aligned in one direction.
[0016] 上記第 1の有機基の例としては、アルキル基、パーフルォロアルキル基、アルケニ ノレ基、ァリロキシアルキル基、フエネチル基、パーフルオロフェニルアルキル基、フエ ニルァミノアルキル基、スチリルアルキル基、ナフチル基、ベンゾィルォキシアルキル 基、アルコキシフエノキシアルキル基、シクロアルキルアミノアルキル基、エポキシシク 口アルキル基、 N—(ァミノアルキル)アミノアルキル基、 N—(ァミノアルキル)アミノア ノレキルフエネチル基、ブロモアルキル基、ジフエニルホスフイノ基、 N— (メタクリロキシ ヒドロキシアルキル)アミノアルキル基、 N— (アタリ口キシヒドロキシアルキル)アミノア ルキル基、置換していてもよく且つ少なくとも 1個のノルボルナン環を有する一価の有 機基、置換していてもよく且つ少なくとも 1個のステロイド骨格を有する一価の有機基 [0016] Examples of the first organic group include an alkyl group, a perfluoroalkyl group, an alkenyl group, an aryloxyalkyl group, a phenethyl group, a perfluorophenylalkyl group, a phenylaminoalkyl group, Styrylalkyl group, naphthyl group, benzoylalkylalkyl group, alkoxyphenoxyalkyl group, cycloalkylaminoalkyl group, epoxy-cyclic alkyl group, N- (aminoalkyl) aminoalkyl group, N- (aminoalkyl) amino anoalkyl An enethyl group, a bromoalkyl group, a diphenylphosphino group, an N— (methacryloxyhydroxyalkyl) aminoalkyl group, an N— (atyloxyhydroxyalkyl) aminoalkyl group, an optionally substituted and at least one norbornane Monovalent organic group with a ring, even if substituted A monovalent organic group which is good and has at least one steroid skeleton
、又は、フッ素原子、トリフルォロメチル基およびトリフルォロメトキシ基よりなる群から 選ばれる置換基を有し且つ炭素原子数 7以上の一価の有機基、又は、シンナモイル 基またはカルコニル基である感光性基等が挙げられる。これらの中でも、アルキル基 及びパーフルォロアルキル基は入手が容易であるので好ましレ、。本発明に用いるポ リシロキサン (A)は、このような第 1の有機基を複数種有して!/、てもよ!/、。 Or a monovalent organic group having a substituent selected from the group consisting of a fluorine atom, a trifluoromethyl group and a trifluoromethoxy group and having 7 or more carbon atoms, or a cinnamoyl group or a chalconyl group. And photosensitive groups. Of these, alkyl groups and perfluoroalkyl groups are preferred because they are readily available. The polysiloxane (A) used in the present invention has a plurality of such first organic groups! /, Or may be! /.
[0017] 上記第 1の有機基は、ポリシロキサン (A)が有するケィ素原子の 100モルに対して 、 0. 1モル未満の場合には、良好な液晶配向性が得られない場合があるため、 0. 1 モル以上が好ましぐより好ましくは 0. 5モル以上、更に好ましくは 1モル以上である。 また、 30モルを超える場合は、形成される液晶配向膜が充分に硬化しない場合があ るため、 30モル以下が好ましぐより好ましくは 22モル以下、更に好ましくは 15モル 以下である。 [0017] When the first organic group is less than 0.1 mol with respect to 100 mol of the silicon atom of the polysiloxane (A), good liquid crystal alignment may not be obtained. Therefore, 0.1 mol or more is preferable, 0.5 mol or more is more preferable, and 1 mol or more is more preferable. When the amount exceeds 30 mol, the formed liquid crystal alignment film may not be sufficiently cured. Therefore, 30 mol or less is preferable, 22 mol or less is more preferable, and 15 mol or less is more preferable.
[0018] 換言すると、ポリシロキサン (A)を得るために用いる全アルコキシシラン中において 、 0. 1モル%未満の場合には、良好な液晶配向性が得られない場合があるため、 0. 1モル%以上が好ましぐより好ましくは 0. 5モル%以上、更に好ましくは 1モル以上 である。また、 30モル%を超える場合は、形成される液晶配向膜が充分に硬化しな い場合があるため、 30モル0 /0以下が好ましぐより好ましくは 22モル0 /0以下であり、 更に好ましくは 15モル%以下である。 In other words, in all alkoxysilanes used to obtain polysiloxane (A) When the amount is less than 0.1 mol%, good liquid crystal alignment may not be obtained. Therefore, 0.1 mol% or more is preferable, 0.5 mol% or more is more preferable, and 1 is more preferable. More than moles. Also, when it exceeds 30 mol%, since the liquid crystal alignment film formed in some cases have a sufficiently cured, more preferably preferably 30 mol 0/0 following instrument is a 22 mole 0/0 or less, More preferably, it is 15 mol% or less.
このような式(1)で表されるアルコキシシランの具体例を挙げる力 S、これに限定され るものではない。  The ability S to give a specific example of the alkoxysilane represented by the formula (1) is not limited to this.
例えば、ヘプチルトリメトキシシラン、ヘプチルトリエトキシシラン、ォクチルトリメトキ シシラン、ォクチルトリエトキシシラン、デシルトリメトキシシラン、デシルトリエトキシシラ ン、ドデシルトリメトキシシラン、ドデシルトリエトキシシラン、へキサデシルトリメトキシシ ラン、へキサデシルトリエトキシシラン、ヘプタデシルトリメトキシシラン、ヘプタデシノレ トリエトキシシラン、ォクタデシルトリメトキシシラン、ォクタデシルトリエトキシシラン、ノ ナデシルトリメトキシシラン、ノナデシルトリエトキシシラン、ゥンデシルトリエトキシシラ ン、ゥンデシルトリメトキシシラン、 21—ドコセニルトリエトキシシラン、ァリロキシゥンデ シルトリエトキシシラン、トリデカフルォロォクチルトリメトキシシラン、トリデカフルォロォ クチルトリエトキシシラン、イソォクチルトリエトキシシラン、フエネチルトリエトキシシラン 、ペンタフルオロフェニルプロビルトリメトキシシラン、 N—フエニルァミノプロビルトリメ トキシシラン、 N— (トリエトキシシリルプロピル)ダンシリアミド、スチリルェチルトリエト キシシラン、 (R)— N— 1—フエ二ルェチルー N,—トリエトキシシリルプロピルゥレア、 (1 ナフチル)トリエトキシシラン、 (1 ナフチル)トリメトキシシラン、 m スチリルェ リル)プロピル]フタルァミック酸、 1—トリメトキシシリル一 2— (p アミノメチル)フエ二 ノレエタン、 1ートリメトキシシリノレー 2—(m—アミノメチノレ)フエニルェタン、ベンゾィノレ ン、 N—トリエトキシシリルプロピルキュンウレタン、 3—(N シクロへキシルァミノ)プ 口ピルトリメトキシシラン、 1 [ (2 トリエトキシシリル)ェチル]シクロへキサン一 3, 4 エポキシド、 N- (6—ァミノへキシル)ァミノプロピルトリメトキシシラン、アミノエチル (ジフエニルフォスフイノ)ェチルトリエトキシシラン、 N— (3 メタクリロキシー2 ヒ ドロキシプロピル) 3 ァミノプロピルトリエトキシシラン、 N— (3—アタリ口キシ一 2— ヒドロキシプロピル) 3—ァミノ一プロピルトリエトキシシラン等が挙げられる。式(1) で表されるアルコキシシランとしては、ドデシルトリエトキシシラン、ォクタデシルトリエト キシシラン、ォクチルトリエトキシシラン、トリデカフルォロォクチルトリエトキシシラン、 ランが好ましい。 For example, heptyltrimethoxysilane, heptyltriethoxysilane, octyltrimethoxysilane, octyltriethoxysilane, decyltrimethoxysilane, decyltriethoxysilane, dodecyltrimethoxysilane, dodecyltriethoxysilane, hexadecyltrimethoxy Silane, hexadecyltriethoxysilane, heptadecyltrimethoxysilane, heptadecinoletriethoxysilane, octadecyltrimethoxysilane, octadecyltriethoxysilane, nonadecyltrimethoxysilane, nonadecyltriethoxysilane, Decyltriethoxysilane, undecyltrimethoxysilane, 21-docosenyltriethoxysilane, allylooxydecyltriethoxysilane, tridecafluorooctyltrimethoxysilane, Ridecafluoro octyltriethoxysilane, isooctyltriethoxysilane, phenethyltriethoxysilane, pentafluorophenylpropyl trimethoxysilane, N-phenylaminoprovir trimethoxysilane, N- (triethoxysilylpropyl) dansylamide, Styryl etheryloxysilane, (R) — N— 1-phenylethyl N, —triethoxysilylpropylurea, (1 naphthyl) triethoxysilane, (1 naphthyl) trimethoxysilane, m styrylethyl) propyl] phthalam Acid, 1-trimethoxysilyl mono 2- (p-aminomethyl) phenole ethane, 1-trimethoxysilinole 2- (m-aminomethinole) phenylethane, benzoinolene, N-triethoxysilylpropylcyneurethane, 3- (N To cyclo Shiruamino) flop port pills trimethoxysilane, 1 [(2 triethoxysilyl) Echiru] hexane one 3 cyclohexane, 4 epoxide, hexyl N- (6- Amino) § amino propyl trimethoxy silane, aminoethyl (Diphenylphosphino) ethyltriethoxysilane, N— (3 methacryloxy-2-hydroxypropyl) 3 aminopropyltriethoxysilane, N— (3-hydroxypropyl 2-hydroxypropyl) 3-amino And monopropyltriethoxysilane. As the alkoxysilane represented by the formula (1), dodecyltriethoxysilane, octadecyltriethoxysilane, octyltriethoxysilane, tridecafluorooctyltriethoxysilane, and lan are preferable.
[0020] 本発明においては、式(1)で表されるアルコキシシランを複数種併用することもでき また、本発明においては、式(1)で表されるアルコキシシラン以外のアルコキシシラ ンを併用すること力 Sできる。特に、基板との密着性、液晶分子との親和性改善等を目 的として、本発明の効果を損なわない限りにおいて、上記第 1の有機基とは異なる基 (以下、第 2の有機基ともレ、う)を有するアルコキシシランを併用することができる。  [0020] In the present invention, a plurality of alkoxysilanes represented by the formula (1) can be used in combination. In the present invention, an alkoxysilane other than the alkoxysilane represented by the formula (1) is used in combination. The power to do S. In particular, a group different from the first organic group (hereinafter also referred to as the second organic group) unless the effects of the present invention are impaired for the purpose of improving the adhesion with the substrate and the affinity with the liquid crystal molecules. In addition, alkoxysilane having (b) can be used in combination.
[0021] 上記第 2の有機基は、炭素原子数が 1〜6の有機基である。第 2の有機基の例とし ては、脂肪族炭化水素;脂肪族環、芳香族環若しくはヘテロ環のような環構造;不飽 和結合;又は酸素原子、窒素原子、硫黄原子等のへテロ原子等を含んでいてもよぐ 分岐構造を有していてもよい、炭素原子数が 1〜3の有機基である。また、第 2の有機 基は、ハロゲン原子、ビュル基、アミノ基、グリシドキシ基、メルカプト基、ウレイド基、メ タクリロキシ基、イソシァネート基、アタリロキシ基などを有していてもよい。 [0021] The second organic group is an organic group having 1 to 6 carbon atoms. Examples of the second organic group include aliphatic hydrocarbons; ring structures such as aliphatic rings, aromatic rings or heterocycles; unsaturated bonds; or heteroatoms such as oxygen atoms, nitrogen atoms and sulfur atoms. It is an organic group having 1 to 3 carbon atoms which may have a branched structure. In addition, the second organic group may have a halogen atom, a bur group, an amino group, a glycidoxy group, a mercapto group, a ureido group, a methacryloxy group, an isocyanate group, an attaryloxy group, or the like.
本発明に用いるポリシロキサン (A)は、第 2の有機基を一種又は複数種有していて あよい。  The polysiloxane (A) used in the present invention may have one or more second organic groups.
上記第 2の有機基を有するアルコキシシランとしては、下記式(2)で表されるアルコ キシシランが挙げられる。  Examples of the alkoxysilane having the second organic group include alkoxysilanes represented by the following formula (2).
R3 Si (OR4) (2) R 3 Si (OR 4 ) (2)
m 4— m  m 4— m
(R3は水素原子、ノ、ロゲン原子又は炭素原子数 1〜6の有機基を表し、 R4は炭素原 子数;!〜 5の炭化水素基を表し、 mは 0〜3の整数を表す。 ) (R 3 represents a hydrogen atom, a hydrogen atom, a rogen atom, or an organic group having 1 to 6 carbon atoms, R 4 represents a carbon atom number;! To 5 hydrocarbon group, and m represents an integer of 0 to 3. To express. )
式(2)のアルコキシシランにおいて、 mが 0であるアルコキシシランは、テトラアルコ キシシランを表す。テトラアルコキシシランは、式(1)で表されるアルコキシシランと縮 合し易いので、ポリシロキサン (A)を得るためには好ましい。式(2)において mが 0で あるアルコキシシランの具体例としては、テトラメトキシシラン、テトラエトキシシラン、テ トラプロボキシシラン、テトラブトキシシラン等が挙げられる力 なかでもテトラメトキシシ ラン、テトラエトキシシランが好ましい。 In the alkoxysilane of the formula (2), alkoxysilane in which m is 0 represents tetraalkoxysilane. Tetraalkoxysilane is condensed with alkoxysilane represented by formula (1). In order to obtain polysiloxane (A), it is preferable. Specific examples of the alkoxysilane in which m is 0 in the formula (2) include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane and the like. Is preferred.
また、式 (2)の R3が炭素原子数 1〜6の有機基である場合、上述した第二の有機基 と同じ基を表す。従って、この場合の の例は、上記の第二の有機基として記載した と同じである。 Further, when R 3 in the formula (2) is an organic group having 1 to 6 carbon atoms, it represents the same group as the second organic group described above. Thus, the example in this case is the same as described for the second organic group above.
[0022] このような式(2)で表される、 R3の炭素原子数 1〜6のアルコキシシランとしては、下 記の例が挙げられる。 [0022] Such the formula (2), as the alkoxysilane 1 to 6 carbon atoms, R 3, include those exemplified below follow.
m= lの場合、メチルトリメトキシシラン、メチルトリエトキシシラン、プロピルトリメトキ シシラン、プロピルトリエトキシシラン、メチルトリプロポキシシラン、 3—ァミノプロビルト リメトキシシラン、 3—ァミノプロピルトリエトキシシラン、 N— 2 (アミノエチル) 3—ァミノ プロピルトリエトキシシラン、 N— 2 (アミノエチル) 3—ァミノプロピルトリメトキシシラン、 3- (2—アミノエチルァミノプロピル)トリメトキシシラン、 3— (2—アミノエチルアミノプ 口ピル)トリエトキシシラン、 2—アミノエチルアミノメチルトリメトキシシラン、 2— (2—ァ ミノェチルチオェチル)トリエトキシシラン、 3—メルカプトプロピルトリエトキシシラン、 3 —メルカプトメチルトリメトキシシラン、 3—ウレイドプロピルトリエトキシシラン、 3—ウレ イドプロピルトリメトキシシラン、ビュルトリエトキシシラン、ビュルトリメトキシシラン、ァリ ルトリエトキシシラン、 3—メタクリロキシプロピルトリメトキシシラン、 3—メタクリロキシプ 口ピルトリエトキシシラン、 3—アタリロキシプロピルトリメトキシシラン、 3—アタリロキシ プロピルトリエトキシシラン、 3—イソシァネートプロピルトリエトキシシラン、トリフルォロ プロピノレトリメトキシシラン、クロ口プロピノレトリエトキシシラン、ブロモプロピノレトリエトキ シシラン、 3—メルカプトプロビルトリメトキシシラン、フエニルトリエトキシシラン、フエ二 ルトリメトキシシラン等が挙げられる。  When m = l, methyltrimethoxysilane, methyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, methyltripropoxysilane, 3-aminopropyl trimethoxysilane, 3-aminopropyltriethoxysilane, N-2 (Aminoethyl) 3-aminopropyltriethoxysilane, N-2 (aminoethyl) 3-aminopropyltrimethoxysilane, 3- (2-aminoethylaminopropyl) trimethoxysilane, 3- (2-aminoethyl) Aminopropyl) triethoxysilane, 2-aminoethylaminomethyltrimethoxysilane, 2- (2-aminoethylthioethyl) triethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptomethyltrimethoxy Silane, 3-ureidopropyltriethoxysilane 3-ureidopropyltrimethoxysilane, butyltriethoxysilane, butyltrimethoxysilane, allyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxy propyltriethoxysilane, 3-ataryloxypropyltrimethoxy Silane, 3-Ataryloxypropyltriethoxysilane, 3-Isocyanatepropyltriethoxysilane, trifluoropropinoretrimethoxysilane, black-propionoletriethoxysilane, bromopropinoretriethoxysilane, 3-mercaptopropyl trimethoxysilane , Phenyltriethoxysilane, and phenyltrimethoxysilane.
[0023] また、 m = 2の場合、ジメチルジェトキシシラン、ジメチルジメトキシシラン、ジフエ二 ノレジェトキシシラン、ジフエニノレジメトキシシラン、メチノレジェトキシシラン、メチノレジメト キシシラン、メチルフエ二ルジェトキシシラン、メチルフエ二ルジメトキシシラン、 3—ァ ミノプロピルメチルジェトキシシラン、 3—ァミノプロピルメチルジメトキシシラン、 3—ゥ が挙げられる。 [0023] In addition, when m = 2, dimethyljetoxysilane, dimethyldimethoxysilane, diphenoletoxysilane, dipheninoresimethoxysilane, methinolegoxysilane, methinoresoxymethoxysilane, methylphenyljetoxysilane, methylphenol Rudimethoxysilane, 3-aminopropylmethyljetoxysilane, 3-aminopropylmethyldimethoxysilane, 3-u Is mentioned.
[0024] さらに、 m = 3の場合、トリメチルエトキシシラン、トリメチルメトキシシラン、ジメチルフ ェニルエトキシシラン、ジメチルフエニルメトキシシラン、 3—ァミノプロピルジメチルエト トキシシラン、 3—ァミノプロピルジメチルメトキシシラン等が挙げられる。  [0024] Further, when m = 3, trimethylethoxysilane, trimethylmethoxysilane, dimethylphenylethoxysilane, dimethylphenylmethoxysilane, 3-aminopropyldimethylethoxysilane, 3-aminopropyldimethylmethoxysilane and the like can be mentioned. It is done.
[0025] 式(2)のアルコキシシランにおいて、 R3が水素原子又はハロゲン原子である場合の アルコキシシランの具体例としては、トリメトキシシラン、トリエトキシシラン、トリプロポキ シシラン、トリブトキシシラン、クロロトリメトキシシラン、クロロトリエトキシシラン等が挙げ られる。 In the alkoxysilane of the formula (2), specific examples of the alkoxysilane when R 3 is a hydrogen atom or a halogen atom include trimethoxysilane, triethoxysilane, tripropoxysilane, tributoxysilane, chlorotrimethoxy Examples thereof include silane and chlorotriethoxysilane.
上記した式(2)で表されるアルコキシシランを用いる場合、 1種でも複数種でも適宜 必要に応じて用いることができる。  When the alkoxysilane represented by the above formula (2) is used, one kind or plural kinds can be used as necessary.
[0026] 式(2)で表されるアルコキシシランを併用する場合、ポリシロキサン (A)を得るため に用いる全アルコキシシラン中において、式(2)で表されるアルコキシシランは、 99. 9モル0 /0以下が好ましぐより好ましくは 99· 5モル0 /0以下、更に好ましくは 99モル0 /0 である。また、式(2)で表されるアルコキシシランは、 70モル%以上が好ましぐより好 ましくは 78モル%以上であり、更に好ましくは、 85モル%以上である。 [0026] When the alkoxysilane represented by the formula (2) is used in combination, the alkoxysilane represented by the formula (2) is 99.9 mol in all alkoxysilanes used to obtain the polysiloxane (A). 0/0, more preferably less preferred instrument 99, 5 mole 0/0 or less, still more preferably 99 mol 0/0. Further, the alkoxysilane represented by the formula (2) is preferably 70 mol% or more, more preferably 78 mol% or more, and still more preferably 85 mol% or more.
[0027] 本発明に用いるポリシロキサン (A)は、上記した式(1)で表されるアルコキシシラン を好ましレ、成分とするアルコキシシランを有機溶媒中で縮合させて得られる。その際 、式(1)及び(2)で表されるアルコキシシランを含有するアルコキシシランが好ましい 。通常、ポリシロキサン (A)は、このようなアルコキシシランを重縮合して、有機溶媒に 均一に溶解した溶液として得られる。  [0027] The polysiloxane (A) used in the present invention is preferably obtained by condensing the alkoxysilane represented by the above formula (1) and the component alkoxysilane in an organic solvent. In that case, an alkoxysilane containing an alkoxysilane represented by the formulas (1) and (2) is preferable. Usually, the polysiloxane (A) is obtained as a solution in which such alkoxysilane is polycondensed and uniformly dissolved in an organic solvent.
[0028] 本発明に用いるポリシロキサン (A)を縮合する方法は特に限定されないが、例えば 、アルコキシシランをアルコール又はダリコール溶媒中で加水分解 '縮合する方法が 挙げられる。その際、加水分解 '縮合反応は、部分加水分解及び完全加水分解のい ずれであってもよい。完全加水分解の場合は、理論上、アルコキシシラン中の全アル コキシ基の 0. 5倍モルの水を加えればよいが、通常は 0. 5倍モルより過剰量の水を カロえる。 本発明においては、上記反応に用いる水の量は、所望により適宜選択することがで きる力 通常、アルコキシシラン中の全アルコキシ基の 0. 5〜2. 5倍モルである。 [0028] A method for condensing the polysiloxane (A) used in the present invention is not particularly limited, and examples thereof include a method of hydrolyzing and condensing alkoxysilane in an alcohol or a darlicol solvent. In that case, the hydrolysis' condensation reaction may be either partial hydrolysis or complete hydrolysis. In the case of complete hydrolysis, it is theoretically sufficient to add 0.5 moles of water of all alkoxy groups in the alkoxysilane, but usually an excess of water is swallowed more than 0.5 moles. In the present invention, the amount of water used in the above reaction is a force that can be appropriately selected as desired. Usually, it is 0.5 to 2.5 moles of all alkoxy groups in the alkoxysilane.
[0029] また、通常、加水分解 ·縮合反応を促進する目的で、塩酸、硫酸、硝酸、酢酸、蟻 酸、蓚酸、マレイン酸、フマル酸などの酸、アンモニア、メチルァミン、ェチルァミン、 エタノールァミン、トリェチルァミンなどのアルカリ、又は塩酸、硫酸、硝酸などの無機 酸の金属塩などの触媒が用いられる。加えて、アルコキシシランが溶解した溶液をカロ 熱することで、更に、加水分解 ·縮合反応を促進させることも一般的である。その際、 加熱温度及び加熱時間は所望により適宜選択でき、例えば、 50°Cで 24時間加熱- 撹拌したり、還流下で 1時間加熱 ·撹拌するなどの方法が挙げられる。  [0029] Usually, for the purpose of promoting hydrolysis / condensation reaction, acids such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid, formic acid, oxalic acid, maleic acid, fumaric acid, ammonia, methylamine, ethylamine, ethanolamine, A catalyst such as an alkali such as triethylamine or a metal salt of an inorganic acid such as hydrochloric acid, sulfuric acid or nitric acid is used. In addition, it is also common to further accelerate the hydrolysis / condensation reaction by heating the solution in which the alkoxysilane is dissolved. In this case, the heating temperature and the heating time can be appropriately selected as desired. Examples thereof include heating and stirring at 50 ° C. for 24 hours, and heating and stirring for 1 hour under reflux.
[0030] また、別法として、例えば、アルコキシシラン、溶媒及び蓚酸の混合物を加熱して重 縮合する方法が挙げられる。具体的には、あらかじめアルコールに蓚酸を加えて蓚 酸のアルコール溶液とした後、当該溶液を加熱した状態で、アルコキシシランを混合 する方法である。その際、用いる蓚酸の量は、アルコキシシランが有する全アルコキ シ基の 1モルに対して 0· 2〜2モルとすることが一般的である。この方法における加 熱は、液温 50〜180°Cで行うことができ、好ましくは、液の蒸発、揮散などが起こらな いように、例えば、還流管を備え付けた容器中の還流下で数十分〜十数時間行われ ポリシロキサン (A)を得る際に、アルコキシシランを複数種用いる場合は、アルコキ シシランをあらかじめ混合した混合物として混合してもよ!/、し、複数種のアルコキシシ ランを J噴 7火混合してもよい。  [0030] As another method, for example, a method of heating and polycondensing a mixture of an alkoxysilane, a solvent and oxalic acid can be mentioned. Specifically, after adding oxalic acid to alcohol in advance to make an alcohol solution of oxalic acid, alkoxysilane is mixed in a state where the solution is heated. In this case, the amount of succinic acid used is generally 0.2 to 2 mol with respect to 1 mol of all alkoxy groups of alkoxysilane. Heating in this method can be performed at a liquid temperature of 50 to 180 ° C., and preferably, for example, several times under reflux in a container equipped with a reflux pipe so that the liquid does not evaporate or volatilize. When a plurality of alkoxysilanes are used in obtaining polysiloxane (A) for a sufficient period of time to several tens of hours, they may be mixed as a mixture of alkoxysilanes in advance! / Orchids may be mixed with 7 J-fires.
[0031] アルコキシシランを重縮合する際に用いられる溶媒 (以下、重合溶媒ともいう)は、ァ ルコキシシランを溶解するものであれば特に限定されない。また、アルコキシシランが 溶解しなレ、場合でも、アルコキシシランの重縮合反応の進行とともに溶解するもので あればよい。一般的には、アルコキシシランの重縮合反応によりアルコールが生成す るため、アルコール類、グリコーノレ類、グリコールエーテル類やアルコール類と相溶 性の良好な有機溶媒が用いられる。  [0031] The solvent used for polycondensation of alkoxysilane (hereinafter also referred to as polymerization solvent) is not particularly limited as long as it dissolves alkoxysilane. Even if the alkoxysilane does not dissolve, it may be dissolved as long as the polycondensation reaction of the alkoxysilane proceeds. In general, since an alcohol is generated by a polycondensation reaction of an alkoxysilane, an organic solvent having good compatibility with alcohols, glycolenoles, glycol ethers and alcohols is used.
[0032] このような重合溶媒の具体例としては、メタノール、エタノール、プロパノール、 n— ブタノーノレ、エチレングリコーノレ、ジエチレングリコーノレ、プロピレングリコーノレ.ジプロ ピレングリコーノレ、へキシレングリコーノレ、メチノレセロソノレブ、ェチノレセロソノレブ、ブチ ノレセロソノレブ、ェチノレカノレビトーノレ、ブチノレカノレビトーノレ、エチレングリコーノレジメチ ノレエーテノレ、エチレングリコーノレジェチノレエーテノレ、エチレングリコーノレジプロピノレエ 一テル、エチレングリコールジブチルエーテル、ジエチレングリコールモノメチルエー テノレ、ジエチレングリコーノレモノエチノレエーテノレ、ジエチレングリコーノレモノプロピノレ エーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチル エーテノレ、ジエチレングリコーノレジェチノレエーテノレ、ジエチレングリコーノレジプロピノレ エーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノメチル エーテノレ、プロピレングリコーノレモノェチノレエーテノレ、プロピレングリコーノレモノプロピ ノレエーテノレ、プロピレングリコーノレモノブチノレエーテノレ、プロピレングリコーノレジメチ ノレエーテノレ、プロピレングリコーノレジェチノレエーテノレ、プロピレングリコーノレジプロピ ノレエーテノレ、プロピレングリコーノレジブチノレエーテノレ、 N メチノレー 2—ピロリドン、 N ,N ジメチルホルムアミド、 N,N ジメチルァセトアミド、 Ί ブチロラタトン、ジメチル スルホキシド、テトラメチル尿素、へキサメチルホスホトリアミド、 m タレゾール等が挙 げられる。更に後述するグリコール化合物(B)を重合溶媒として用いることもできる。 なかでも、重合溶媒としては、メタノール、エタノール、ブチルセ口ソルブ、へキシレン グリコール、 1 , ブタンジオール、;L , 4 ブタンジオール又はそれらの混合溶媒が 好ましい。本発明においては、上記の重合溶媒を複数種混合して用いてもよい。 [0032] Specific examples of such a polymerization solvent include methanol, ethanol, propanol, n-butanol, ethylene glycol, diethylene glycol, propylene glycol and dipro. Pyreneglycolone, Hexyleneglycolone, Methinoreserosonorebu, Ethinoreserosolorebu, Butinorecerosonorev, Etinorecanorebitonore, Butinorecanorebitonore, Ethyleneglyconoresimethinorenotenore Ethereol, Ethylene Glycolno Resipropinore Iter, Ethylene Glycol Dibutyl Ether, Diethylene Glycol Monomethyl Ethereol, Diethylene Glycol Gnore Mono Ethenore Ete Nore, Diethylene Glycol Gnore Monopropinore Ether, Diethylene Glycol Monobutyl Ether, Diethylene Glycol Dimethyl Ethenore, Diethylene Glycol Noletechino reetenore, diethylene glycolinoresin propinole ether, diethylene glycol dibutyl ether , Propylene glycol monomethyl etherenole, propylene glycol monomethinoreateolate, propylene glycolenomonopropenoleatere, propylene glycolenobutinoleatenore, propylene glycolenoresimethinorelineatenore, propyleneglycolenoretinoatenore, propyleneglycol Resipropinoreethenole, Propyleneglycolenoresibutinoreethenore, N-Methylenole 2-pyrrolidone, N, N dimethylformamide, N, N dimethylacetamide, Ίbutyrolatatane, dimethyl sulfoxide, tetramethylurea, hexamethylphosphotriamide , m Talesol and the like are listed. Furthermore, a glycol compound (B) described later can also be used as a polymerization solvent. Among these, as the polymerization solvent, methanol, ethanol, butylcetosolve, hexylene glycol, 1, butanediol, L, 4 butanediol or a mixed solvent thereof is preferable. In the present invention, a plurality of the above polymerization solvents may be mixed and used.
[0033] このような方法で得られたポリシロキサン (A)の重合溶液(以下、重合溶液ともいう。 [0033] A polymerization solution of polysiloxane (A) obtained by such a method (hereinafter also referred to as polymerization solution).
)は、原料として仕込んだ全アルコキシシランのケィ素原子を SiOに換算した濃度(  ) Is the concentration of all alkoxysilanes charged as raw materials converted to SiO
2  2
以下、 SiO換算濃度と称す。)を 0. 5  Hereinafter, it is referred to as SiO equivalent concentration. ) 0.5
2 〜20質量%とすることが一般的である。この濃 度範囲において任意の濃度を選択することにより、ゲルの生成を抑え、均質な溶液を 得ること力 sでさる。  It is common to set it as 2-20 mass%. By selecting an arbitrary concentration within this concentration range, it is possible to suppress gel formation and obtain a homogeneous solution with a force s.
[0034] <ポリシロキサン (A)の溶液〉 [0034] <Polysiloxane (A) solution>
本発明においては、上記した方法で得られた重合溶液をそのままポリシロキサン( A)の溶液としてもよいし、必要に応じて、上記した方法で得られた溶液を、濃縮した り、溶媒を加えて希釈したり又は他の溶媒に置換して、ポリシロキサン (A)の溶液とし てもよい。 その際、用いる溶媒 (以下、添加溶媒ともいう)は、重縮合に用いたと同じ溶媒でも よいし、別の溶媒でもよい。この溶媒は、ポリシロキサン (A)が均一に溶解している限 りにおいて特に限定されず、一種でも複数種でも任意に選択して用いることができるIn the present invention, the polymerization solution obtained by the above-mentioned method may be used as the polysiloxane (A) solution as it is, or the solution obtained by the above-mentioned method may be concentrated or added with a solvent as necessary. The solution may be diluted or substituted with another solvent to form a solution of polysiloxane (A). In this case, the solvent to be used (hereinafter also referred to as additive solvent) may be the same solvent used for polycondensation or may be another solvent. This solvent is not particularly limited as long as the polysiloxane (A) is uniformly dissolved, and one or a plurality of types can be arbitrarily selected and used.
Yes
[0035] このような添加溶媒の具体例としては、メタノール、エタノール、 2—プロパノール、 ブタノール、ジアセトンアルコール等のアルコール類;アセトン、メチルェチルケトン、 メチルイソブチルケトン等のケトン類;エチレングリコール、ジエチレングリコール、プロ ピレングリコーノレ、へキシレングリコーノレ等のグリコーノレ類;メチノレセロソノレブ、ェチノレ セロソノレブ、ブチノレセロソノレブ、ェチノレカノレビトーノレ、ブチノレカノレビトーノレ、エチレン グリコーノレジメチノレエーテノレ、エチレングリコーノレジェチノレエーテノレ、エチレングリコ ーノレジプロピノレエーテノレ、エチレングリコーノレジブチノレエーテノレ、ジエチレングリコー ルモノメチルエーテル、ジエチレングリコールモノェチルエーテル、ジエチレングリコ 一ノレモノプロピノレエーテノレ、ジエチレングリコーノレモノブチノレエーテノレ、ジエチレング リコールジメチルエーテル、ジエチレングリコールジェチルエーテル、ジエチレングリ コーノレジプロピノレエーテノレ、プロピレングリコーノレモノメチノレエーテノレ、プロピレングリ コーノレモノエチノレエーテノレ、プロピレングリコーノレモノプロピノレエーテノレ、プロピレン グリコールモノブチルエーテル等のグリコールエーテル類;酢酸メチルエステル、酢 酸ェチルエステル、乳酸ェチルエステル等のエステル類; N -メチノレー 2 -ピロリドン 、 N,N—ジメチルホルムアミド、 N,N—ジメチルァセトアミド、 Ί—ブチ口ラタトン、ジメ チルスルホキシド、テトラメチル尿素、へキサメチルホスホトリアミド、 m—タレゾール等 力 S挙げられる。なかでも、添加溶媒としては、メタノール、エタノール、ブチルセ口ソル ブ、へキシレンダリコール、またはそれらの混合溶媒が好ましい。 [0035] Specific examples of such an additive solvent include alcohols such as methanol, ethanol, 2-propanol, butanol and diacetone alcohol; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; ethylene glycol, Glyconoles such as diethylene glycol, propylene glycolenole, hexylene glycolenole, etc .; methinoreserosonoleb, ethinore cerosoleneb, butinorecellosonolev, ethinorecanorebitonore, butinorecanolebitonore, ethylene glyconoresimethinore Etherenole, ethyleneglycololecinoleethenore, ethyleneglycoresinpropinoreenotenole, ethyleneglycolenoresbutinoreethenore, diethyleneglycolmonomethylether, diethyleneglycolmonoeth Ether, diethyleneglycol monoremonopropinoreatenore, diethyleneglycololemonobutenoreatenore, diethyleneglycoldimethylether, diethyleneglycoljetylether, diethyleneglycolenoresinpropinoreatenore, propyleneglycololemonomethinoreatenore, propyleneglycoleno Glycol ethers such as remonoethino ethenore, propylene glycol eno monopropino ree enore, propylene glycol monobutyl ether; esters such as methyl acetate, acetic acid ethyl ester, and lactic acid ethyl ester; N-methylenole 2-pyrrolidone, N, N- dimethylformamide, N, N- dimethyl § Seto amide, I - butyl port Rataton, dimethylsulfoxide, tetramethylurea to, Kisamechi Hosuhotoriamido, and S m-Tarezoru like force. Among these, as the additive solvent, methanol, ethanol, butyl mouth solve, hexylene dallicol, or a mixed solvent thereof is preferable.
本発明においては、上記のようにして得られるポリシロキサン (A)の溶液を、 1種用 いてもよいし、複数種を用いてもよい。  In the present invention, the polysiloxane (A) solution obtained as described above may be used singly or in combination.
[0036] <グリコール化合物(B) >  [0036] <Glycol compound (B)>
本発明で用いるグリコール化合物(B)は、ヒドロキシ基及び水素原子が結合した炭 素原子を 2個有し、かつ前記した 2個の炭素原子が、ヘテロ原子を含んでもよい脂肪 族基を介して結合した構造を有し、連続した炭素原子の数が 3〜6であり、好ましくは 3〜5であり、特に好ましくは 3又は 4であるグリコール化合物である。グリコール化合 物(B)がへテロ原子を含んで!/、る場合は、ヘテロ原子を除く連続した炭素原子の数 力 ¾〜6であるグリコール化合物を意味する。例えば、ジエチレングリコールは、連続 した炭素数は、 4であり、グリコール化合物(B)の特に好ましい具体例である。 The glycol compound (B) used in the present invention has two carbon atoms to which a hydroxy group and a hydrogen atom are bonded, and the two carbon atoms described above are bonded via an aliphatic group which may contain a hetero atom. Has a bonded structure and has 3 to 6 consecutive carbon atoms, preferably It is a glycol compound which is 3 to 5, particularly preferably 3 or 4. When the glycol compound (B) contains a heteroatom! /, It means a glycol compound having a number of consecutive carbon atoms excluding heteroatoms from 3 to 6. For example, diethylene glycol has a continuous carbon number of 4, and is a particularly preferred specific example of the glycol compound (B).
[0037] グリコール化合物(B)は、上記したような化合物であれば特に限定されないが、そ の具体例を挙げると、 1 , 3—プロパンジオール、 1 , 3—ブタンジオール、 1 , 4ーブタ ンジオール、 1 , 3—ペンタンジオール、 1 , 4 ペンタンジオール、 1 , 5—ペンタンジ ォーノレ、 2, 4 ペンタンジォーノレ、 1 , 6 へキサンジォーノレ、ジエチレングリコーノレ 、ジプロピレングリコール等が挙げられる。  [0037] The glycol compound (B) is not particularly limited as long as it is a compound as described above. Specific examples thereof include 1,3-propanediol, 1,3-butanediol, 1,4-butanediol. 1,3-pentanediol, 1,4-pentanediol, 1,5-pentanediol, 2,4pentanediol, 1,6hexanediol, diethyleneglycolanol, dipropylene glycol and the like.
[0038] このようなグリコール化合物(B)は、通常、液状であるため、溶媒としても用いること が可能である。そのため、ポリシロキサン (A)を重縮合する際の重合溶媒又は添加溶 媒の全部又は一部として使用してもよぐ他の溶媒で合成したポリシロキサン (A)に 後から添加してもよい。  [0038] Since such a glycol compound (B) is usually in a liquid state, it can also be used as a solvent. Therefore, it may be added later to the polysiloxane (A) synthesized with another solvent, which may be used as all or part of the polymerization solvent or additive solvent for polycondensation of the polysiloxane (A). .
[0039] 本発明で使用されるグリコール化合物(B)の使用量は、ポリシロキサン (A)を得る ために使用した全アルコキシシランのケィ素原子を SiOに換算した合計の 100質量  [0039] The glycol compound (B) used in the present invention is used in an amount of 100 mass in total, in which the silicon atoms of all alkoxysilanes used to obtain the polysiloxane (A) are converted to SiO.
2 2
Wこ対して、 2. 5-19, 800質量 ^好まし <ίま、 5〜6, 000質量 ^更 ίこ好まし < は 25〜4, 000質量部である。グリコール化合物が 2. 5質量部より少ない場合は液 晶配向膜の撥水性を高める効果が充分ではないことがある。  For W, 2.5-19,800 mass ^ preferred <ί, 5 to 6,000 mass ^ More preferred <is 25 to 4,000 parts by mass. When the amount of the glycol compound is less than 2.5 parts by mass, the effect of increasing the water repellency of the liquid crystal alignment film may not be sufficient.
[0040] 本発明に用いるグリコール化合物(Β)は、液晶配向膜の撥水性を高めることが容易 で、液晶配向剤中のポリシロキサン (Α)が有する有機基を減らすことが可能であり、 結果として緻密性が高ぐ高硬度で、膜の液晶配向性が良好で、且つ塗布性に優れ た液晶配向膜を得ることができる。 [0040] The glycol compound (Β) used in the present invention can easily improve the water repellency of the liquid crystal alignment film, and can reduce the organic groups of the polysiloxane (Α) in the liquid crystal aligning agent. As described above, a liquid crystal alignment film having high density, high hardness, good liquid crystal alignment properties, and excellent coating properties can be obtained.
[0041] <溶媒 (C)〉 [0041] <Solvent (C)>
本発明においては、ヒドロキシ基を有する溶媒であってグリコール化合物(B)とは異 なる構造の化合物である溶媒 (C)を用いることもできる。  In the present invention, a solvent (C) which is a solvent having a hydroxy group and having a structure different from that of the glycol compound (B) can also be used.
溶媒(C)の具体例としては、メタノール、エタノール、 2—プロパノール、ブタノール Specific examples of the solvent (C) include methanol, ethanol, 2-propanol, butanol
、ジアセトンアルコール等のアルコール類、エチレングリコール、 1 , 2—プロパンジォ 3—ペンタンジオール、 2—メチルー 2, 4—ペンタンジオール等のグリコール類。ェチ レングリコーノレモノメチノレエーテノレ、エチレングリコーノレモノェチノレエーテノレ、ェチレ ングリコーノレモノプロピノレエーテノレ、エチレングリコーノレモノブチノレエーテノレ、プロピ レングリコーノレモノメチノレエーテノレ、プロピレングリコーノレモノェチノレエーテノレ、プロピ レングリコーノレモノプロピノレエーテノレ、プロピレングリコーノレモノブチノレエーテノレ等の グリコーノレエーテノレ類、プロピレングリコーノレモノメチノレエーテノレアセテート、プロピレ ングリコールモノェチルエーテルアセテート、エチレングリコールモノメチルエーテル アセテート、エチレングリコーノレモノェチノレエーテノレアセテート、エチレングリコーノレ モノフエニノレエーテノレアセテート、エチレングリコーノレモノトリノレエーテノレアセテート等 のグリコールエーテルアセテート類が挙げられる。溶媒(C)としては、なかでも、ェタノ 一ノレ、へキシレングリコーノレ、エチレングリコーノレモノブチノレエーテノレ、プロピレングリ コールモノメチルエーテル、プロピレングリコールモノブチルエーテルが好ましい。 , Alcohols such as diacetone alcohol, ethylene glycol, 1,2-propanedio Glycols such as 3-pentanediol and 2-methyl-2,4-pentanediol. Ethylene glycol monolechinenoatenore, Ethylene glyconole monoethylenoatenore, Ethylene glyconole monopropenoatenore, Ethylene glyconomonomonobutenoreatenore, Propylene glyconole monomethinoatenore, Propylene glyconole monoethanolate, propylene glyconole monopropinoreateenore, propylene glyconole monobutinoleatenore and other glyconoreatenoles, propylene glycolenolemonomethinoatenoate acetate, propylene glycol monoacetate Ethyl ether acetate, Ethylene glycol monomethyl ether acetate, Ethylene glycol monoethanolate acetate, Ethylene glycol monophenolate acetate, Eth Glycol ether acetates such as ring Ricoh Honoré mono Turin les ether Honoré acetate. As the solvent (C), ethano monoole, hexylene glycol, ethylene glycol monobutinoleatenole, propylene glycol monomethyl ether, and propylene glycol monobutyl ether are preferable.
[0042] 本発明で使用される溶媒 (C)は、ポリシロキサン (A)を重縮合する際の重合溶媒や 添加溶媒の全部又は一部として使用してもよぐ他の溶媒で合成したポリシロキサン( A)に後から添加してもよい。  [0042] The solvent (C) used in the present invention is a polysulfide synthesized with another solvent that may be used as all or part of the polymerization solvent or additive solvent for polycondensation of the polysiloxane (A). You may add to siloxane (A) later.
これらの溶媒 (C)は、液晶配向剤の粘度の調整、又はスピンコート、フレキソ印刷、 インクジェット等で液晶配向剤を基板上に塗布する際の塗布性を向上できる。  These solvents (C) can improve the applicability when the liquid crystal aligning agent is applied onto the substrate by adjusting the viscosity of the liquid crystal aligning agent or by spin coating, flexographic printing, ink jetting or the like.
[0043] 本発明において、溶媒 (C)の使用量は、ポリシロキサン (A)を得るために使用した 全アルコキシシランのケィ素原子を SiOに換算した合計の 100質量部に対して、 0  [0043] In the present invention, the amount of the solvent (C) used is 0 with respect to 100 parts by mass as a total of the silicon atoms of all alkoxysilanes used for obtaining the polysiloxane (A) converted to SiO.
2  2
— 19, 700質量き、好ましく (ま 0〜; 19, 600質量き、更 ίこ好ましく (ま 0〜; 18, 800質 量部である。  — 19,700 parts by weight, preferably (0 to; 19,600 parts by weight, more preferably (0 to; 18, 800 parts by weight).
[0044] <その他の成分〉 [0044] <Other ingredients>
本発明においては、本発明の効果を損なわない限りにおいて、ポリシロキサン (Α) In the present invention, as long as the effects of the present invention are not impaired, polysiloxane (Α)
、グリコール化合物(Β)及び溶媒 (C)以外のその他の成分、例えば、無機微粒子、メ タロキサンオリゴマー、メタロキサンポリマー、レべリング剤、更に界面活性剤等の成 分が含まれていてもよい。 , Other components other than the glycol compound (Β) and the solvent (C), for example, inorganic fine particles, methaoxane oligomers, metalloxane polymers, leveling agents, and even surfactants may be included. Good.
[0045] 無機微粒子としては、シリカ微粒子、アルミナ微粒子、チタニア微粒子及びフッ化マ グネシゥム微粒子等の微粒子が好ましぐコロイド溶液のものが特に好ましい。このコ ロイド溶液は、無機微粒子粉を分散媒に分散したものでもよいし、市販品のコロイド 溶液であってもよい。本発明においては、無機微粒子を含有させることにより、形成さ れる硬化被膜の表面形状及びその他の機能を付与することが可能となる。無機微粒 子としては、その平均粒子径が 0. 001 -0. 2 mであることが好ましぐ更に好ましく は 0· 001 -0. l rnとされる。無機微粒子の平均粒子径が 0· 2 111を超える場合 には、調製される塗布液を用いて形成される硬化被膜の透明性が低下する場合があ 無機微粒子の分散媒としては、水及び有機溶剤を挙げることができる。コロイド溶液 としては、被膜形成用塗布液の安定性の観点から、 pH又は pKaが;!〜 10に調整さ れて!/、ることが好まし!/、。より好ましくは 2〜7である。 [0045] The inorganic fine particles are particularly preferably those in a colloidal solution in which fine particles such as silica fine particles, alumina fine particles, titania fine particles, and magnesium fluoride fine particles are preferred. This The Lloyd solution may be one obtained by dispersing inorganic fine particle powder in a dispersion medium, or a commercially available colloid solution. In the present invention, the inclusion of inorganic fine particles makes it possible to impart the surface shape of the formed cured film and other functions. The inorganic fine particles preferably have an average particle size of 0.001 -0.2 m, more preferably 0.001 -0.1 lrn. When the average particle size of the inorganic fine particles exceeds 0.22111, the transparency of the cured film formed using the prepared coating liquid may be reduced. Mention may be made of solvents. As the colloidal solution, it is preferable that pH or pKa is adjusted to !! to 10! /, From the viewpoint of the stability of the coating solution for film formation! /. More preferably, it is 2-7.
[0046] コロイド溶液の分散媒に用いる有機溶剤としては、メタノール、イソプロピルアルコー ノレ、ブタノーノレ、エチレングリコーノレ、プロピレングリコーノレ、ブタンジォーノレ、 ペンタ ンジォ一ノレ、へキシレングリコーノレ、ジエチレングリコーノレ、ジプロピレングリコーノレ、 エチレングリコールモノプロピルエーテル等のアルコール類、メチルェチルケトン、メ チルイソプチルケトン等のケトン類、トルエン、キシレン等の芳香族炭化水素類、ジメ チルホノレムアミド、ジメチルァセトアミド、 N メチルピロリドン等のアミド類、酢酸ェチ ル、酢酸ブチル、 Ί ブチロラタトン等のエステル類、テトラヒドロフラン、 1 , 4ージォ キサン等のエーテル類を挙げることができる。これらの中で、アルコール類及びケトン 類が好ましい。これら有機溶剤は、単独でまたは 2種以上を混合して分散媒として使 用すること力 Sでさる。 [0046] Examples of the organic solvent used for the dispersion medium of the colloid solution include methanol, isopropyl alcohol, butanol, ethylene glycol, propylene glycol, butanediol, pentadiol, hexylene glycol, diethylene glycol and dipropylene glycol. Alcohol, alcohols such as ethylene glycol monopropyl ether, ketones such as methyl ethyl ketone and methylisobutyl ketone, aromatic hydrocarbons such as toluene and xylene, dimethylhonolemamide, dimethylacetamide, N Examples thereof include amides such as methylpyrrolidone, esters such as ethyl acetate, butyl acetate and butyrolatatatone, and ethers such as tetrahydrofuran and 1,4-dioxane. Of these, alcohols and ketones are preferred. These organic solvents can be used alone or in combination of two or more as a dispersion medium.
[0047] メタロキサンオリゴマー、メタロキサンポリマーとしては、ケィ素、チタン、アルミニウム 、タンタル、アンチモン、ビスマス、錫、インジウム、亜鉛等の単独又は複合酸化物前 駆体が用いられる。メタロキサンオリゴマー、メタロキサンポリマーとしては、市販品で あっても、金属アルコキシド、硝酸塩、塩酸塩、カルボン酸塩等のモノマーから、加水 分解等の常法により得られたものであってもよい。本発明において、メタロキサンオリ ゴマー、メタロキサンポリマーを含有することにより、硬化皮膜の屈折率を向上させた り、感光性を付与することが可能である。メタロキサンオリゴマー、メタロキサンポリマ 一を使用する際は、ポリシロキサン (A)を合成する際に同時に用いても、ポリシロキサ ン (A)に、後から添加してもよい。 [0047] As the metalloxane oligomer and metalloxane polymer, single or composite oxide precursors such as silicon, titanium, aluminum, tantalum, antimony, bismuth, tin, indium, and zinc are used. The metalloxane oligomer and metalloxane polymer may be commercially available or may be obtained from monomers such as metal alkoxides, nitrates, hydrochlorides, and carboxylates by a conventional method such as hydrolysis. In the present invention, the refractive index of the cured film can be improved or the photosensitivity can be imparted by containing a metalloxane oligomer or a metalloxane polymer. When using a metalloxane oligomer or metalloxane polymer, the polysiloxane (A) can be used simultaneously with the synthesis of the polysiloxane (A). (A) may be added later.
[0048] 市販品のメタロキサンオリゴマー、メタロキサンポリマーの具体例としては、コルコー ト株式会社製メチルシリケート 51、メチルシリケート 53A、ェチルシリケート 40、ェチ ルシリケート 48、 EMS -485, SS— 101等のシロキサンオリゴマー又はシロキサン ポリマー、関東化学株式会社製チタニウム n ブトキシドテトラマー等のチタノキサ ンオリゴマーが挙げられる。これらは単独または 2種以上混合して使用してもよい。  [0048] Specific examples of commercially available metalloxane oligomers and metalloxane polymers include Methyl silicate 51, Methyl silicate 53A, Ethyl silicate 40, Ethyl silicate 48, EMS-485, SS-101 manufactured by Colcoat Co., Ltd. Examples thereof include siloxane oligomers such as siloxane polymers and titanoxane oligomers such as titanium n-butoxide tetramer manufactured by Kanto Chemical Co., Inc. These may be used alone or in combination of two or more.
[0049] また、レべリング剤及び界面活性剤等は、公知のものを用いることができ、特に市販 品は入手が容易なので好ましい。  [0049] As the leveling agent and surfactant, known ones can be used, and commercially available products are particularly preferred because they are easily available.
また、ポリシロキサン (A)に、上記したその他の成分を混合する方法は、ポリシロキ サン (A)の溶液及びダリコール化合物(B)と同時でも、それらの混合後であってもよ ぐ特に限定されない。  In addition, the method of mixing the above-mentioned other components with polysiloxane (A) is not particularly limited, either at the same time as or after the solution of polysiloxane (A) and daricol compound (B). .
[0050] <液晶配向剤の調製〉  <Preparation of liquid crystal aligning agent>
本発明の液晶配向剤を調製する方法は特に限定されない。ポリシロキサン (A)及 びグリコール化合物(B)、さらに必要に応じて溶媒 (C)及び/又はその他の成分が 均一に混合した状態であればょレ、。  The method for preparing the liquid crystal aligning agent of the present invention is not particularly limited. If the polysiloxane (A) and the glycol compound (B), and if necessary, the solvent (C) and / or other components are uniformly mixed,
[0051] 通常、ポリシロキサン (A)は、溶媒中で重縮合されるので、溶液の状態で得られる。  [0051] Usually, the polysiloxane (A) is polycondensed in a solvent, and thus is obtained in a solution state.
そのため、既に上記で述べたポリシロキサン (A)の重合溶液をそのまま用いる方法が 簡便である。ポリシロキサン (A)の重合溶媒力 グリコール化合物(B)である場合は、 グリコール化合物(B)を後で加えなくてもよい。また、ポリシロキサン (A)の溶液が、グ リコール化合物 (B)を含まない場合は、液晶配向剤を調製する際に、グリコール化合 物(B)を加えて使用することができる。  Therefore, the method of using the polysiloxane (A) polymerization solution as described above as it is is simple. Polymerization solvent power of polysiloxane (A) In the case of the glycol compound (B), the glycol compound (B) may not be added later. When the polysiloxane (A) solution does not contain the glycol compound (B), the glycol compound (B) can be added and used when preparing the liquid crystal aligning agent.
[0052] また、溶媒 (C)を併用する場合は、ポリシロキサン (A)を合成する際の重合溶媒又 は添加溶媒として用いてもょレ、し、液晶配向剤を調製する際に混合して用いてもょレ、 [0052] When the solvent (C) is used in combination, it may be used as a polymerization solvent or an additive solvent when synthesizing the polysiloxane (A), and mixed when preparing the liquid crystal aligning agent. Use it,
Yes
液晶配向剤を調製する際、ポリシロキサン (A)は、液晶配向剤中において、ポリシ ロキサン (A)を得るために使用した全アルコキシシランのケィ素原子を SiOに換算し  When preparing the liquid crystal aligning agent, the polysiloxane (A) is converted into SiO in the silicon atoms of all alkoxysilanes used to obtain the polysiloxane (A) in the liquid crystal aligning agent.
2 た SiO換算濃度が、 0. 5〜20質量%、好ましくは 0. 5〜; 15質量%、特に好ましくは 2 The SiO equivalent concentration is 0.5 to 20% by mass, preferably 0.5 to 15% by mass, particularly preferably
2 2
0. 5〜8質量%である。このような SiO換算濃度範囲であれば、一回の塗布で所望 の膜厚を得易ぐ充分な溶液のポットライフが得られ易い。 0.5 to 8% by mass. If it is such a SiO conversion concentration range, it is desired to be applied once. It is easy to obtain a sufficient pot life of the solution to easily obtain the film thickness of the film.
なお、その際、 SiO換算濃度の調整に用いる溶媒は、ポリシロキサン (A)の重合溶  At that time, the solvent used for adjusting the SiO equivalent concentration is a polymerization solution of polysiloxane (A).
2  2
媒、添加溶媒及びダリコール化合物(B)からなる群から選ばれる溶媒を用いることが できる。  A solvent selected from the group consisting of a medium, an additive solvent, and a Daricol compound (B) can be used.
[0053] <液晶配向膜の形成〉  <Formation of liquid crystal alignment film>
本発明の液晶配向剤は、基板に塗布した後、乾燥'焼成を行うことで、硬化膜とす ること力 Sでさる。  The liquid crystal aligning agent of the present invention is applied with a force S to form a cured film by performing drying and baking after coating on a substrate.
液晶配向剤の塗布方法としては、スピンコート法、印刷法、インクジェット法、スプレ 一法、ロールコート法などが挙げられる力 生産性の面から工業的には転写印刷法 が広く用いられており、本発明の液晶配向剤も好適に用いられる。  As a method of applying the liquid crystal aligning agent, the transfer printing method is widely used industrially from the viewpoint of productivity, which includes spin coating method, printing method, ink jet method, spray method, roll coating method, etc. The liquid crystal aligning agent of this invention is also used suitably.
液晶配向剤を塗布した後の乾燥の工程は、必ずしも必要とされないが、塗布後から 焼成までの時間が基板ごとに一定して!/、な!/、場合、又は塗布後ただちに焼成されな い場合には、乾燥工程を含める方が好ましい。この乾燥は、基板の搬送等により塗膜 形状が変形しない程度に溶媒が除去されていればよぐその乾燥手段については特 に限定されない。例えば、温度 40°C〜150°C、好ましくは 60°C〜; 100°Cのホットプレ ート上で、 0. 5〜30分、好ましくは 1〜5分乾燥させる方法が挙げられる。  The drying process after applying the liquid crystal aligning agent is not necessarily required, but the time from application to baking is constant for each substrate! /, N! /, Or is not baked immediately after coating. In some cases, it is preferable to include a drying step. The drying means is not particularly limited as long as the solvent is removed to such an extent that the shape of the coating film is not deformed by transporting the substrate or the like. For example, a method of drying on a hot plate at a temperature of 40 ° C to 150 ° C, preferably 60 ° C to 100 ° C for 0.5 to 30 minutes, preferably 1 to 5 minutes can be mentioned.
[0054] 上記の方法で液晶配向剤を塗布して形成される塗膜は、焼成して硬化膜とすること ができる。その際、焼成温度は、 100°C〜350°Cの任意の温度で行うことができるが 、好ましく (ま 140°C〜300°Cであり、より好ましく (ま 150°C〜230°C、更 ίこ好ましく (ま 1 60°C〜220°Cである。焼成時間は 5分〜 240分の任意の時間で焼成を行うことがで きる。好ましくは 10〜90分であり、より好ましくは 20〜90分である。加熱は、通常公 知の方法、例えば、ホットプレート、熱風循環オーブン、 IRオーブン、ベルト炉などを 用いること力 Sでさる。 [0054] The coating film formed by applying the liquid crystal aligning agent by the above method can be baked to form a cured film. At that time, the firing temperature can be performed at any temperature of 100 ° C to 350 ° C, but preferably (up to 140 ° C to 300 ° C, more preferably (up to 150 ° C to 230 ° C, More preferably (1-60 ° C to 220 ° C. The baking time can be any time from 5 minutes to 240 minutes, preferably 10 to 90 minutes, more preferably 20 to 90 minutes Heating is usually performed using a publicly known method such as a hot plate, hot air circulating oven, IR oven, belt furnace, etc.
[0055] 液晶配向膜中のポリシロキサン (A)は、焼成工程において、重縮合が進行する。し かし、本発明においては、本発明の効果を損なわない限り、完全に重縮合させる必 要はない。但し、液晶セル製造行程で必要とされる、シール剤硬化などの熱処理温 度より、 10°C以上高!/、温度で焼成することが好まし!/、。  [0055] The polysiloxane (A) in the liquid crystal alignment film undergoes polycondensation in the firing step. However, in the present invention, it is not necessary to completely polycondense unless the effects of the present invention are impaired. However, firing at a temperature of 10 ° C or higher is preferable than the heat treatment temperature required for the liquid crystal cell manufacturing process, such as curing of the sealant! /.
[0056] この硬化膜の厚みは必要に応じて選択することができる。硬化膜の厚みが 5nm以 上の場合、液晶表示素子の信頼性が得られ易いので好ましい。より好ましくは 10nm 以上である。また、 300nm以下の場合は、液晶表示素子の消費電力が極端に大きく ならないので好ましい。より好ましくは 150nm以下である。 [0056] The thickness of the cured film can be selected as necessary. The thickness of the cured film is 5nm or less The above case is preferable because the reliability of the liquid crystal display element is easily obtained. More preferably, it is 10 nm or more. Further, the case of 300 nm or less is preferable because the power consumption of the liquid crystal display element does not become extremely large. More preferably, it is 150 nm or less.
[0057] このような硬化膜は、そのまま液晶配向膜として用いることもできる力 この硬化膜を ラビングしたり、偏光又は特定の波長の光等を照射したり、イオンビーム等の処理等 を行って、液晶配向膜とすることも可能である。  Such a cured film can be used as it is as a liquid crystal alignment film. The cured film is rubbed, irradiated with polarized light or light of a specific wavelength, or treated with an ion beam or the like. A liquid crystal alignment film can also be used.
[0058] <液晶配向膜〉  [0058] <Liquid crystal alignment film>
上記の如き方法で形成された本発明の液晶配向膜は、ポリシロキサン (A)が有す る特定有機基が、液晶配向膜の表面層付近に偏在した構造であることが考えられる 。このことは、本発明の液晶配向膜の水接触角を測定することで確認することができ る。このことは、本発明の液晶配向剤の成分であるダリコール化合物(B)の効果によ るものと推定され、液晶配向剤にダリコール化合物(B)が含まれる場合は、グリコー ル化合物(B)を含まない場合に比べて、水接触角を高くすることができる。  The liquid crystal alignment film of the present invention formed by the method as described above is considered to have a structure in which the specific organic group of polysiloxane (A) is unevenly distributed in the vicinity of the surface layer of the liquid crystal alignment film. This can be confirmed by measuring the water contact angle of the liquid crystal alignment film of the present invention. This is presumed to be due to the effect of the Daricol compound (B) which is a component of the liquid crystal aligning agent of the present invention. When the Daricol compound (B) is contained in the liquid crystal aligning agent, the glycol compound (B) The water contact angle can be increased as compared with the case where no water is contained.
[0059] 即ち、ポリシロキサン (A)が有する特定有機基が、グリコール化合物(B)の効果に よって液晶配向膜の表面層付近に偏在することで、液晶分子を一方向に、とりわけ 垂直方向に配向させ易いという作用を奏していると考えられる。従って、本発明の液 晶配向膜は、高い撥水性を示すので、良好な液晶垂直配向性を得ることができる。  That is, the specific organic group of the polysiloxane (A) is unevenly distributed near the surface layer of the liquid crystal alignment film due to the effect of the glycol compound (B), so that the liquid crystal molecules are unidirectionally, particularly in the vertical direction. It is considered that the effect of being easily oriented is achieved. Therefore, since the liquid crystal alignment film of the present invention exhibits high water repellency, good liquid crystal vertical alignment can be obtained.
[0060] 更に、本発明の液晶配向膜は、本発明の液晶配向剤の成分であるポリシロキサン( A)が有する特定有機基の量が少な!/、場合でも、液晶配向膜の撥水性が高!/、ため、 良好な液晶垂直配向性を有し、緻密性が高ぐ高硬度である。加えて、該液晶配向 膜は、塗布性に優れた本発明の液晶配向剤から得られるため、均一性が高いという 効果も有する。そのため、信頼性が高ぐ高画質な液晶表示素子を提供することがで きる。具体的に述べると、本発明の液晶配向剤は、ポリシロキサン (A)が有する特定 有機基が、ポリシロキサン (A)が有するケィ素原子の 100モルに対して 0·;!〜 30モ ルであっても、得られる液晶配向膜は、撥水性が高ぐ良好な液晶垂直配向性を示 すと共に、緻密性が高ぐ高硬度で、且つ均一性に優れている。 [0060] Further, the liquid crystal alignment film of the present invention has a small amount of the specific organic group contained in the polysiloxane (A) which is a component of the liquid crystal alignment agent of the present invention! Therefore, it has high liquid crystal vertical alignment and high hardness with high density. In addition, since the liquid crystal alignment film is obtained from the liquid crystal aligning agent of the present invention having excellent coating properties, it also has an effect of high uniformity. Therefore, a liquid crystal display element with high reliability and high image quality can be provided. Specifically, in the liquid crystal aligning agent of the present invention, the specific organic group possessed by the polysiloxane (A) is 0 ·;!-30 moles per 100 moles of the silicon atom possessed by the polysiloxane (A). Even so, the obtained liquid crystal alignment film exhibits good liquid crystal vertical alignment with high water repellency, high hardness with high density, and excellent uniformity.
更に、該液晶配向膜を有する表示素子は、液晶配向剤に含まれるグリコール化合 物(B)の作用により、ポリシロキサン (A)が有する特定有機基の含有量を少なくする ことができ、その結果、表示素子の蓄積電荷の絶対値を小さくすることができると考え られる。 Furthermore, the display element having the liquid crystal alignment film reduces the content of the specific organic group of the polysiloxane (A) by the action of the glycol compound (B) contained in the liquid crystal alignment agent. As a result, it is considered that the absolute value of the accumulated charge of the display element can be reduced.
[0061] <液晶表示素子〉  [0061] <Liquid crystal display element>
本発明の液晶表示素子は、上記した方法により、基板に液晶配向膜を形成した後 、公知の方法で液晶セルを作成して得ることができる。液晶セル作成の一例を挙げる と、液晶配向膜が形成された 1対の基板を、スぺーサーを挟んで、シール剤で固定し 、液晶を注入して封止する方法が一般的である。その際、用いるスぺーサ一の大きさ は 1〜30マイクロメートルである力 好ましくは 2〜10マイクロメートルである。  The liquid crystal display element of the present invention can be obtained by forming a liquid crystal alignment film on a substrate by the method described above and then preparing a liquid crystal cell by a known method. As an example of producing a liquid crystal cell, a method is generally employed in which a pair of substrates on which a liquid crystal alignment film is formed is fixed with a sealant with a spacer interposed therebetween, and liquid crystal is injected and sealed. In this case, the size of the spacer used is a force of 1 to 30 micrometers, preferably 2 to 10 micrometers.
[0062] 液晶を注入する方法は特に制限されず、作製した液晶セル内を減圧にした後、液 晶を注入する真空法、液晶を滴下した後に封止を行う滴下法などを挙げることができ 液晶表示素子に用いる基板としては、透明性の高い基板であれば特に限定されな いが、通常は、基板上に液晶を駆動するための透明電極が形成された基板である。  [0062] The method for injecting liquid crystal is not particularly limited, and examples thereof include a vacuum method in which liquid crystal is injected after reducing the pressure inside the manufactured liquid crystal cell, and a dropping method in which sealing is performed after liquid crystal is dropped. The substrate used for the liquid crystal display element is not particularly limited as long as it is a highly transparent substrate, but is usually a substrate on which a transparent electrode for driving liquid crystal is formed.
[0063] 具体例を挙げると、ガラス板、ポリカーボネート、ポリ(メタ)アタリレート、ポリエーテ ルサルホン、ポリアリレート、ポリウレタン、ポリサルホン、ポリエーテル、ポリエーテル ケトン、トリメチルペンテン、ポリオレフイン、ポリエチレンテレフタレート、 (メタ)アタリ口 二トリル、トリアセチルセルロース、ジァセチルセルロース、アセテートブチレートセル ロースなどのプラスチック板などに透明電極が形成された基板を挙げることができる。  [0063] Specific examples include glass plate, polycarbonate, poly (meth) acrylate, polyether sulfone, polyarylate, polyurethane, polysulfone, polyether, polyether ketone, trimethylpentene, polyolefin, polyethylene terephthalate, (meth) attaly. Examples include substrates on which a transparent electrode is formed on a plastic plate such as nitrile, triacetyl cellulose, diacetyl cellulose, and acetate butyrate cellulose.
[0064] また、 TFT型の素子のような高機能素子においては、液晶駆動のための電極と基 板の間にトランジスタの如き素子が形成されたものが用いられる。  [0064] As a high-functional device such as a TFT-type device, a device in which an element such as a transistor is formed between an electrode for driving a liquid crystal and a substrate is used.
透過型の液晶素子の場合は、上記の如き基板を用いることが一般的である力 反 射型の液晶表示素子では、片側の基板のみにならばシリコンウェハー等の不透明な 基板も用いることが可能である。その際、基板に形成された電極には、光を反射する アルミニウムの如き材料を用いることもできる。  In the case of a transmissive liquid crystal element, it is common to use a substrate as described above. In a force reflection type liquid crystal display element, an opaque substrate such as a silicon wafer can be used if only one substrate is used. It is. At that time, a material such as aluminum that reflects light can be used for the electrode formed on the substrate.
これまで述べたように、本発明の液晶配向剤を用いて得られる液晶配向膜は、緻密 性が高ぐ高硬度で、膜の撥水性が高ぐ且つ良好な液晶垂直配向性を示すと共に 、且つ均一性に優れた液晶配向膜を得ることができる。更に上記液晶配向膜を用い て作成した素子は、蓄積電荷特性が良好である。 実施例 As described above, the liquid crystal alignment film obtained by using the liquid crystal aligning agent of the present invention has high density with high density, high water repellency, and good liquid crystal vertical alignment. In addition, a liquid crystal alignment film having excellent uniformity can be obtained. Furthermore, an element produced using the liquid crystal alignment film has good accumulated charge characteristics. Example
[0065] 以下、合成例、及び実施例と比較例を示し、本発明を具体的に説明するが、本発 明は下記の実施例に制限されるものではない。  [0065] Hereinafter, the present invention will be specifically described with reference to synthesis examples, examples and comparative examples. However, the present invention is not limited to the following examples.
本実施例における略語の説明。  Explanation of abbreviations in this embodiment.
TEOS:テトラエトキシシラン  TEOS: Tetraethoxysilane
C8:ォクチルトリエトキシシラン  C8: Octyltriethoxysilane
C12:ドデシルトリエトキシシラン  C12: Dodecyltriethoxysilane
C 18:ォクタデシルトリエトキシシラン  C 18: Octadecyltriethoxysilane
F13:  F13:
MTES:メチノレトリエトキシシラン
Figure imgf000022_0001
MTES: Methylenotriethoxysilane
Figure imgf000022_0001
HG:へキシレングリコール(2 メチル 2, 4 ペンタンジオール)  HG: Hexylene glycol (2 methyl 2, 4 pentanediol)
BCS:ブチルセ口ソルブ  BCS: Butyl Seguchi Solve
EtOH:エタノール  EtOH: ethanol
1, 3-PrDO:l, 3—プロパンジオール  1, 3-PrDO: l, 3-propanediol
1.3- BDO:l, 3—ブタンジォーノレ  1.3- BDO: l, 3-butanezonore
1.4- BDO:l, 4 ブタンジォーノレ  1.4- BDO: l, 4 Butanezonore
1, 3-PeDO:l, 3—ペンタンジオール  1, 3-PeDO: l, 3-pentanediol
1, 6-HDO:l, 6—へキサンジォ一ノレ  1, 6-HDO: l, 6-hexanediol
DEG:ジエチレングリコーノレ  DEG: Diethylene glycol
DPG:ジプロピレングリコーノレ  DPG: Dipropylene glycol
[0066] <合成例;!〉 [0066] <Synthesis example; >
温度計、還流管を備え付けた 1L四つ口反応フラスコに HG164.3g、TEOS164. 9g及び C12を 13.9g投入し、撹拌して、アルコキシシランモノマーの溶液を調製した 。この溶液に、あらかじめ HG82. lg、水 74. lg及び触媒として蓚酸 0.8gを混合し た蓚酸溶液を、室温下で 30分かけて滴下し、滴下終了後 30分室温下で撹拌した。 その後、還流下で 1時間加熱後、放冷して SiO換算固形分濃度が 10質量%のポリ  A 1 L four-necked reaction flask equipped with a thermometer and a reflux tube was charged with 163.9 g of HG, 163.9 g of TEOS, and 13.9 g of C12, and stirred to prepare a solution of an alkoxysilane monomer. To this solution, an oxalic acid solution in which HG82. Lg, water 74. lg and 0.8 g of oxalic acid as a catalyst were mixed in advance was added dropwise at room temperature over 30 minutes, and stirred at room temperature for 30 minutes after the completion of the addition. Then, after heating for 1 hour under reflux, the product was allowed to cool and a polycondensation with a solid content concentration in terms of SiO of 10% by mass was performed.
2 シロキサン溶液 (K1)を得た。 2 A siloxane solution (K1) was obtained.
[0067] <調製例;!〜 7〉 [0067] <Preparation Example;! ~ 7>
合成例 1で得られたポリシロキサン溶液(Kl) 10gに対して、表 1に示す量の HGと B CSと溶剤 (X)を混合して攪拌せしめることにより、溶剤組成が表 1に示され、かつ、 Si O換算固形分濃度力 質量%の液晶配向剤 (KL1〜KL7)を得た。  Table 10 shows the solvent composition by mixing and stirring the amounts of HG, BCS and solvent (X) shown in Table 1 to 10 g of the polysiloxane solution (Kl) obtained in Synthesis Example 1. In addition, liquid crystal aligning agents (KL1 to KL7) having a solid content concentration force of mass% in terms of Si 2 O were obtained.
2  2
[0068] [表 1]  [0068] [Table 1]
表 1  table 1
Figure imgf000023_0001
Figure imgf000023_0001
[0069] <調製例 8〉 [0069] <Preparation Example 8>
合成例 1で得られたポリシロキサン溶液(Kl) lOgと HGl l . 0g、BCS4. Ogを混合 して撹拌し、溶媒組成が HG : BCS = 80 : 20となるようにし、 SiO換算固形分濃度が  Mix the polysiloxane solution (Kl) lOg obtained in Synthesis Example 1 with HGl l .0g and BCS4.Og and stir to adjust the solvent composition to HG: BCS = 80:20. But
2  2
4質量%の液晶配向剤 (KM1)を得た。  A 4% by mass liquid crystal aligning agent (KM1) was obtained.
[0070] <合成例 2〉 [0070] <Synthesis Example 2>
温度計、還流管を備え付けた 1L四つ口反応フラスコに BCS 164. 3g、TEOS164 . 9g及び C12を 13. 9g投入し、撹拌して、アルコキシシランモノマーの溶液を調製し た。この溶液に、あら力、じめ BSC82. lg、水 74. lg及び触媒として蓚酸 0. 8gを混合 した蓚酸溶液を、室温下で 30分かけて滴下し、滴下終了後 30分室温下で撹拌した 。その後、還流下で 1時間加熱後、放冷して SiO換算固形分濃度が 10質量%のポリ  A 1 L four-necked reaction flask equipped with a thermometer and a reflux tube was charged with 163.3 g of BCS, 13.9 g of TEOS and 13.9 g of C12, and stirred to prepare an alkoxysilane monomer solution. To this solution was added dropwise an oxalic acid solution in which 80 g of BSC, 82. lg of water, 74. lg of water and 0.8 g of oxalic acid as a catalyst were mixed over 30 minutes at room temperature, and stirred at room temperature for 30 minutes after completion of the addition. did . Then, after heating for 1 hour under reflux, the product was allowed to cool and a polycondensation with a solid content concentration in terms of SiO of 10% by mass was performed.
2  2
シロキサンの溶液 (K2)を得た。  A solution of siloxane (K2) was obtained.
[0071] <調製例 9〉 <Preparation Example 9>
合成例 2で得られたポリシロキサン溶液(K2) 10gに、 BCS13. Ogと DEG2. Ogを 加えて混合して撹拌し、溶媒組成が BCS : DEG = 90 : 10となるようにし、 SiO換算 BCS13.Og and DEG2.Og were added to 10g of the polysiloxane solution (K2) obtained in Synthesis Example 2. In addition, mix and stir to make the solvent composition BCS: DEG = 90: 10 and convert to SiO
2 固形分濃度が 4質量%の液晶配向剤 (KL8)を得た。  2 A liquid crystal aligning agent (KL8) having a solid content concentration of 4% by mass was obtained.
<調製例 10〉  <Preparation Example 10>
合成例 2で得られたポリシロキサン溶液 (K2) 10gに BCS15. Ogを混合して撹拌し 、 SiO換算固形分濃度力 質量%の液晶配向剤 (KM2)を得た。  BCS15.Og was mixed with 10 g of the polysiloxane solution (K2) obtained in Synthesis Example 2 and stirred to obtain a liquid crystal aligning agent (KM2) having an SiO equivalent solid content concentration force of mass%.
2  2
[0072] <合成例 3〉  <Synthesis Example 3>
温度計、還流管を備え付けた 1L四つ口反応フラスコに DEG164. 3g、 TEOS164 . 9g及び C12を 13. 9g投入し、撹拌して、アルコキシシランモノマーの溶液を調製し た。この溶液に、あらかじめ DEG82. lg、水 74. lg及び触媒として蓚酸 0. 8gを混 合した蓚酸溶液を、室温下で 30分かけて滴下し、滴下終了後 30分室温下で撹拌し た。その後、還流下で 1時間加熱後、放冷して SiO換算固形分濃度が 10質量%の  Into a 1 L four-necked reaction flask equipped with a thermometer and a reflux tube, DEG 164.3 g, TEOS 164.9 g, and 13.9 g of C12 were added and stirred to prepare an alkoxysilane monomer solution. To this solution, a oxalic acid solution in which DEG 82. lg, water 74. lg and 0.8 g of oxalic acid as a catalyst were mixed in advance was added dropwise over 30 minutes at room temperature, and stirred at room temperature for 30 minutes after the completion of the addition. Then, after heating for 1 hour under reflux, it was allowed to cool and the SiO equivalent solid content concentration was 10% by mass.
2  2
ポリシロキサン溶液 (K3)を得た。  A polysiloxane solution (K3) was obtained.
[0073] <調製例 11〉 <Preparation Example 11>
合成例 3で得られたポリシロキサン溶液 (K3) 10gに DEG15. Ogを混合して撹拌し 、 SiO換算固形分濃度力 質量%の液晶配向剤 (KL9)を得た。  DEG15.Og was mixed with 10 g of the polysiloxane solution (K3) obtained in Synthesis Example 3 and stirred to obtain a liquid crystal aligning agent (KL9) having an SiO equivalent solid content concentration force of mass%.
2  2
<調製例 12〉  <Preparation Example 12>
合成例 3で得られたポリシロキサン溶液(K3) 10gに、 DEG13. Ogと BCS2. Ogを 加えて混合して撹拌し、溶媒組成が BCS : DEG= 10 : 90となるようにし、 SiO換算  Add and mix DEG13.Og and BCS2.Og to 10g of the polysiloxane solution (K3) obtained in Synthesis Example 3, and stir to make the solvent composition BCS: DEG = 10: 90.
2 固形分濃度が 4質量%の液晶配向剤 (KL10)を得た。  2 A liquid crystal aligning agent (KL10) having a solid content concentration of 4% by mass was obtained.
<合成例 4〉  <Synthesis Example 4>
温度計、還流管を備え付けた 1L四つ口反応フラスコに EtOH164. 3g、 TEOS16 4. 9g及び C12を 13. 9g投入し、撹拌して、アルコキシシランモノマーの溶液を調製 した。この溶液に、あらかじめ EtOH82. lg、水 74. lg及び触媒として蓚酸 0. 8gを 混合した蓚酸溶液を、室温下で 30分かけて滴下し、滴下終了後 30分室温下で撹拌 した。その後、還流下で 1時間加熱後、放冷して SiO換算固形分濃度が 10質量%  A 1 L four-necked reaction flask equipped with a thermometer and a reflux tube was charged with 164.3 g of EtOH, 4.4.9 g of TEOS16, and 13.9 g of C12 and stirred to prepare an alkoxysilane monomer solution. To this solution, 82. lg of EtOH, 74. lg of water and 0.8 g of oxalic acid as a catalyst were added dropwise over 30 minutes at room temperature, and the mixture was stirred at room temperature for 30 minutes after completion of the dropwise addition. Then, after heating under reflux for 1 hour, it was allowed to cool and the solid content concentration in terms of SiO was 10% by mass
2  2
のポリシロキサン溶液 (K4)を得た。  A polysiloxane solution (K4) was obtained.
[0074] <調製例 13〉 <Preparation Example 13>
合成例 4で得られたポリシロキサン溶液(K4) 10gに、 EtOH13. 0gと DEG2. 0gを 加えて混合して撹拌し、溶媒組成が EtOH : DEG = 90 : 10となるような、 SiO換算 1 g of EtOH 13.0 g and DEG 2.0 g were added to 10 g of the polysiloxane solution (K4) obtained in Synthesis Example 4. In addition, mixing and stirring, SiO conversion so that the solvent composition becomes EtOH: DEG = 90: 10
2 固形分濃度が 4質量%の液晶配向剤 (KL11)を得た。  2 A liquid crystal aligning agent (KL11) having a solid content concentration of 4% by mass was obtained.
<調製例 14〉  <Preparation Example 14>
合成例 4で得られたポリシロキサン溶液 (K4) 10gに EtOH15. Ogを混合して撹拌 し、 SiO換算固形分濃度力 質量%の液晶配向剤 (KM3)を得た。  EtOH15.Og was mixed with 10 g of the polysiloxane solution (K4) obtained in Synthesis Example 4 and stirred to obtain a liquid crystal aligning agent (KM3) having a SiO equivalent solid content concentration force mass%.
2  2
<合成例 5〉  <Synthesis Example 5>
温度計、還流管を備え付けた 1L四つ口反応フラスコに HG121. 0g、 BCS40. 3g 、 TEOS164. 9g及び C18を 17. 4g投入し、撹拌して、アルコキシシランモノマーの 溶 ί夜を調製した。この溶 ί夜に、あら力、じめ HG60. 5g、 BCS20. 2g、水 75. Og及び 触媒として蓚酸 0. 8gを混合した蓚酸溶液を、室温下で 30分かけて滴下し、滴下終 了後 30分室温下で撹拌した。その後、還流下で 1時間加熱後、放冷して SiO換算  A 1 L four-necked reaction flask equipped with a thermometer and a reflux tube was charged with HG121.0 g, BCS40.3 g, TEOS164.9 g and C18 17.4 g and stirred to prepare an alkoxysilane monomer solution night. On this solution night, a solution of oxalic acid, HG60.5 g, BCS20.2 g, water 75. Og, and oxalic acid 0.8 g as a catalyst was added dropwise over 30 minutes at room temperature, and the addition was completed. After 30 minutes, the mixture was stirred at room temperature. Then, after heating for 1 hour under reflux, it is allowed to cool and converted to SiO
2 固形分濃度が 10質量%のポリシロキサン溶液 (K5)を得た。  2 A polysiloxane solution (K5) having a solid content of 10% by mass was obtained.
[0075] <調製例 15〜; 19〉 [0075] <Preparation Examples 15-; 19>
合成例 5で得られたポリシロキサン溶液(K5) 10gに対して、表 2に示す量の HGと B CSと DEGを混合して攪拌せしめることにより、溶剤組成が表 2に示され、かつ、 SiO  By mixing HG, BCS, and DEG in the amounts shown in Table 2 with 10 g of the polysiloxane solution (K5) obtained in Synthesis Example 5, the solvent composition is shown in Table 2, and SiO
2 換算固形分濃度が 4質量%の液晶配向剤 し12〜!0^ 5及び1^ [4)を得た。  2 A liquid crystal aligning agent having a converted solid content concentration of 4% by mass was obtained as 12 to! 0 ^ 5 and 1 ^ [4].
[0076] [表 2] [0076] [Table 2]
表 2  Table 2
Figure imgf000025_0001
Figure imgf000025_0001
[0077] <合成例 6〉  <Synthesis Example 6>
温度計、還流管を備え付けた 1L四つ口反応フラスコに HG124. 4g、 BCS41. 5g , TEOS164. 9g及び C8を 11. 5g投入し、撹拌して、アルコキシシランモノマーの溶 液を調製した。この溶液に、あらかじめ HG62.2g、 BCS20.7g、水 74. lg及び触 媒として蓚酸 0.8gを混合した蓚酸溶液を、室温下で 30分かけて滴下し、滴下終了 後 30分室温下で撹拌した。その後、還流下で 1時間加熱後、放冷して SiO換算固 HG124.4 g, BCS41.5 g, TEOS164.9 g and C11.5 g were charged into a 1 L four-necked reaction flask equipped with a thermometer and a reflux tube, and stirred to dissolve the alkoxysilane monomer. A liquid was prepared. To this solution, an oxalic acid solution in which 62.2 g of HG, 20.7 g of BCS, 74. lg of water and 0.8 g of oxalic acid as a catalyst were mixed in advance was added dropwise over 30 minutes at room temperature. did. After heating for 1 hour under reflux, it is allowed to cool and solidify in terms of SiO.
2 形分濃度が 10質量%のポリシロキサン溶液 (K6)を得た。  2 A polysiloxane solution (K6) having a concentration of 10% by mass was obtained.
[0078] <調製例 20〉 <Preparation Example 20>
合成例 6で得られたポリシロキサン溶液(K6)10gに HG10.2g、BCS2.8g及び D EG2.0gを加えて混合して撹拌し、溶媒組成が^10:8じ3:0£0 = 70:20:10とな るようにし、 SiO換算固形分濃度が 4質量%の液晶配向剤 (KL16)を得た。  HG10.2g, BCS2.8g and D EG2.0g were added to 10g of the polysiloxane solution (K6) obtained in Synthesis Example 6, mixed and stirred, and the solvent composition was ^ 10: 8 × 3: 0 £ 0 = A liquid crystal aligning agent (KL16) having a solid content concentration in terms of SiO of 4% by mass was obtained so as to be 70:20:10.
2  2
<調製例 21〉  <Preparation Example 21>
合成例 6で得られたポリシロキサン溶液(K6)10gに HG12.2gと BCS2.8gを加え て混合して撹拌し、溶媒組成が^10:8じ3 = 80:20となるょぅにし、 SiO換算固形分  Add HG12.2g and BCS2.8g to 10g of the polysiloxane solution (K6) obtained in Synthesis Example 6, mix and agitate to make the solvent composition ^ 10: 8 × 3 = 80: 20, SiO equivalent solid content
2  2
濃度が 4質量%の液晶配向剤 (KM5)を得た。  A liquid crystal aligning agent (KM5) having a concentration of 4% by mass was obtained.
[0079] <合成例 7〉 [0079] <Synthesis Example 7>
温度計、還流管を備え付けた 1L四つ口反応フラスコに HG118. lg、BCS39.4g 、TEOS207.3g及び C12を 1.7g投入し、撹拌して、アルコキシシランモノマーの溶 ί夜を調製した。この溶 ί夜に、あら力、じめ HG59.0g、 BCS19.7g、水 53.9g及び角虫 媒として蓚酸 0.9gを混合した蓚酸溶液を、室温下で 30分かけて滴下し、滴下終了 後 30分室温下で撹拌した。その後、還流下で 1時間加熱後、放冷して SiO換算固  A 1 L four-necked reaction flask equipped with a thermometer and a reflux tube was charged with 1.7 g of HG118.lg, BCS39.4 g, TEOS207.3 g and C12 and stirred to prepare an alkoxysilane monomer melt. On this solution night, oxalic acid solution in which 59.0 g HG 59.0 g, BCS 19.7 g, 53.9 g water, and 0.9 g oxalic acid as a hornworm medium were added dropwise over 30 minutes at room temperature. Stir for 30 minutes at room temperature. After heating for 1 hour under reflux, it is allowed to cool and solidify in terms of SiO.
2 形分濃度が 12質量%のポリシロキサン溶液 (K7)を得た。  A polysiloxane solution (K7) having a concentration of 2 parts by mass of 12% by mass was obtained.
[0080] <調製例 22〉 <Preparation Example 22>
合成例 7で得られたポリシロキサン溶液(K7)10gに HG13.8g、 BCS3.8g及び D EG2.5gを加えて混合して撹拌し、溶媒組成が^10:8じ3:0£0 = 70:20:10とな るようにし、 SiO換算固形分濃度力 質量%の液晶配向剤 (KL17)を得た。  Add HG13.8g, BCS3.8g and D EG2.5g to 10g of the polysiloxane solution (K7) obtained in Synthesis Example 7, mix and agitate, the solvent composition is ^ 10: 8, 3: 0 £ 0 = The liquid crystal aligning agent (KL17) having a solid content concentration power of SiO% by mass of 70:20:10 was obtained.
2  2
<調製例 23〉  <Preparation Example 23>
合成例 7で得られたポリシロキサン溶液(K7)10gに HG16.2gと BCS3.8gを加え て混合して撹拌し、溶媒組成が^10:8じ3 = 80:20となるょぅにし、 SiO換算固形分  Add HG16.2g and BCS3.8g to 10g of the polysiloxane solution (K7) obtained in Synthesis Example 7, mix and stir to make the solvent composition ^ 10: 8 × 3 = 80: 20, SiO equivalent solid content
2  2
濃度が 4質量%の液晶配向剤 (KM6)を得た。  A liquid crystal aligning agent (KM6) having a concentration of 4% by mass was obtained.
[0081] <合成例 8〉 温度計、還流管を備え付けた 1L四つ口反応フラスコに HG124.9g、BCS41.6g , TEOS171.9g及び C12を 2.8g投入し、撹拌して、アルコキシシランモノマーの溶 液を調製した。この溶液に、あらかじめ HG62.5g、 BCS20.8g、水 74.8g及び触 媒として蓚酸 0.8gを混合した蓚酸溶液を、室温下で 30分かけて滴下し、滴下終了 後 30分室温下で撹拌した。その後、還流下で 1時間加熱後、放冷して SiO換算固 <Synthesis Example 8> A 1 L four-necked reaction flask equipped with a thermometer and a reflux tube was charged with 124.9 g of HG, 41.6 g of BCS, 171.9 g of TEOS, and 2.8 g of C12 and stirred to prepare a solution of alkoxysilane monomer. To this solution, an oxalic acid solution in which 62.5 g of HG, 20.8 g of BCS, 74.8 g of water and 0.8 g of oxalic acid as a catalyst were mixed in advance was added dropwise over 30 minutes at room temperature. . After heating for 1 hour under reflux, it is allowed to cool and solidify in terms of SiO.
2 形分濃度が 10質量%のポリシロキサン溶液 (K8)を得た。  2 A polysiloxane solution (K8) having a concentration of 10% by mass was obtained.
[0082] <調製例 24〉 <Preparation Example 24>
合成例 8で得られたポリシロキサン溶液(K8)10gに HG10.2g、BCS2.8g及び D EG2.0gを加えて混合して撹拌し、溶媒組成が^10:8じ3:0£0 = 70:20:10とな るようにし、 SiO換算固形分濃度が 4質量%の液晶配向剤 (KL18)を得た。  HG10.2g, BCS2.8g and DEG2.0g were added to 10g of the polysiloxane solution (K8) obtained in Synthesis Example 8, mixed and stirred, and the solvent composition was ^ 10: 8 × 3: 0 £ 0 = A liquid crystal aligning agent (KL18) having a solid content concentration in terms of SiO of 4% by mass was obtained so as to be 70:20:10.
2  2
<調製例 25〉  <Preparation Example 25>
合成例 8で得られたポリシロキサン溶液(K8)10gに HG12.2gと BCS2.8gを加え て混合して撹拌し、溶媒組成が^10:8じ3 = 80:20となるょぅにし、 SiO換算固形分  Add HG12.2g and BCS2.8g to 10g of the polysiloxane solution (K8) obtained in Synthesis Example 8, mix and agitate to make the solvent composition ^ 10: 8 3 = 80:20, SiO equivalent solid content
2  2
濃度が 4質量%の液晶配向剤 (KM7)を得た。  A liquid crystal aligning agent (KM7) having a concentration of 4% by mass was obtained.
[0083] <合成例 9〉 [0083] <Synthesis Example 9>
温度計、還流管を備え付けた 1L四つ口反応フラスコに HG123.2g、BCS41. lg 、TEOS164.9g及び C12を 13.9g投入し、撹拌して、アルコキシシランモノマーの 溶液を調製した。この溶液に、あらかじめ HG61.6g、 BCS20.5g、水 74. lg及び 触媒として蓚酸 0.8gを混合した蓚酸溶液を、室温下で 30分かけて滴下し、滴下終 了後 30分室温下で撹拌した。その後、 65°Cで 1時間加熱後、放冷して SiO換算固  A 1 L four-necked reaction flask equipped with a thermometer and a reflux tube was charged with 123.2 g of HG, 41.lg of BCS, 164.9 g of TEOS and 13.9 g of C12, and stirred to prepare a solution of an alkoxysilane monomer. To this solution, an oxalic acid solution in which 61.6 g of HG, 20.5 g of BCS, 74. lg of water and 0.8 g of oxalic acid as a catalyst were mixed in advance was added dropwise over 30 minutes at room temperature, and stirred at room temperature for 30 minutes after completion of the addition. did. After heating at 65 ° C for 1 hour, it is allowed to cool and solidify in terms of SiO.
2 形分濃度が 10質量%のポリシロキサン溶液 (K9)を得た。  2 A polysiloxane solution (K9) having a concentration of 10 parts by mass was obtained.
[0084] <調製例 26〉 <Preparation Example 26>
合成例 9で得られたポリシロキサン溶液(K9)10gに HG10.2g、BCS2.8g及び D EG2.0gを加えて混合して撹拌し、溶媒組成が^10:8じ3:0£0 = 70:20:10とな るようにし、 SiO換算固形分濃度が 4質量%の液晶配向剤 (KL19)を得た。  HG10.2g, BCS2.8g and DEG2.0g were added to 10g of the polysiloxane solution (K9) obtained in Synthesis Example 9 and mixed. The solvent composition was ^ 10: 8 and 3: 0 £ 0 = A liquid crystal aligning agent (KL19) having a solid content concentration in terms of SiO of 4% by mass was obtained so as to be 70:20:10.
2  2
<調製例 27〉  <Preparation Example 27>
合成例 9で得られたポリシロキサン溶液(K9)10gに HG12.2gと BCS2.8gを加え て混合して撹拌し、溶媒組成が^10:8じ3 = 80:20となるょぅにし、 SiO換算固形分 濃度が 4質量%の液晶配向剤 (KM8)を得た。 Add HG12.2g and BCS2.8g to 10g of the polysiloxane solution (K9) obtained in Synthesis Example 9, mix and stir to make the solvent composition ^ 10: 8 × 3 = 80: 20, SiO equivalent solid content A liquid crystal aligning agent (KM8) having a concentration of 4% by mass was obtained.
[0085] <合成例; 10〉 [0085] <Synthesis Example; 10>
温度計、還流管を備え付けた 1L四つ口反応フラスコに HG119.0g、BCS39.6g , TEOS147.6g及び C12を 41· 6g投入し、撹拌して、アルコキシシランモノマーの 溶液を調製した。この溶液に、あらかじめ HG59.5g、 BCS19.8g、水 72.2g及び 触媒として蓚酸 0.8gを混合した蓚酸溶液を、室温下で 30分かけて滴下し、滴下終 了後 30分室温下で撹拌した。その後、還流下で 1時間加熱後、放冷して SiO換算  A 1 L four-necked reaction flask equipped with a thermometer and a reflux tube was charged with 119.0 g of HG, 39.6 g of BCS, 147.6 g of TEOS and 41.6 g of C12, and stirred to prepare a solution of an alkoxysilane monomer. To this solution, an oxalic acid solution in which 59.5 g of HG, 19.8 g of BCS, 72.2 g of water and 0.8 g of oxalic acid as a catalyst were mixed in advance was added dropwise over 30 minutes at room temperature, and stirred at room temperature for 30 minutes after the completion of the addition. . Then, after heating for 1 hour under reflux, it is allowed to cool and converted to SiO
2 固形分濃度が 10質量%のポリシロキサン溶液 (K 10)を得た。  2 A polysiloxane solution (K10) having a solid content concentration of 10% by mass was obtained.
[0086] <調製例 28〉 [0086] <Preparation Example 28>
合成例 10で得られたポリシロキサン溶液(K10)10gに HG10.3g、 BCS2.8g及 び DEG2.0gを加えて混合して撹拌し、溶媒組成が^10:8じ3:0£0 = 70:20:10 となるようにし、 SiO換算固形分濃度力 質量%の液晶配向剤 (KL20)を得た。  Add HG10.3g, BCS2.8g and DEG2.0g to 10g of the polysiloxane solution (K10) obtained in Synthesis Example 10, mix, and stir. The solvent composition is ^ 10: 8, 3: 0 £ 0 = A liquid crystal aligning agent (KL20) having a solid content concentration power of SiO% by mass of 70:20:10 was obtained.
2  2
<調製例 29〉  <Preparation Example 29>
合成例 10で得られたポリシロキサン溶液(K10)10gに HG12.2gと BCS2.8gを 加えて混合して撹拌し、溶媒組成が HG:BCS = 80:20となるようにし、 SiO換算固  Add HG12.2g and BCS2.8g to 10g of the polysiloxane solution (K10) obtained in Synthesis Example 10, mix and agitate to adjust the solvent composition to HG: BCS = 80:20.
2 形分濃度が 4質量%の液晶配向剤 (KM9)を得た。  2 A liquid crystal aligning agent (KM9) having a concentration of 4 parts by mass was obtained.
[0087] <合成例; 11〉 [0087] <Synthesis Example; 11>
温度計、還流管を備え付けた 1L四つ口反応フラスコに HG116.8g、BCS39.0g 、 TEOS138.9g及び C12を 55.4g投入し、撹拌して、アルコキシシランモノマーの 溶 ί夜を調製した。この溶 ί夜に、あら力、じめ HG58.4g、 BCS19.5g、水 71.2g及び 触媒として蓚酸 0.8gを混合した蓚酸溶液を、室温下で 30分かけて滴下し、滴下終 了後 30分室温下で撹拌した。その後、還流下で 1時間加熱後、放冷して SiO換算  A 1 L four-necked reaction flask equipped with a thermometer and a reflux tube was charged with 115.4 g of HG, 39.0 g of BCS, 138.9 g of TEOS, and 55.4 g of C12, and stirred to prepare a solution night of the alkoxysilane monomer. On this night, oxalic acid solution containing 58.4g of HG, HG58.4g, BCS19.5g, water 71.2g and oxalic acid 0.8g as a catalyst was added dropwise over 30 minutes at room temperature. Stir for minutes at room temperature. Then, after heating for 1 hour under reflux, it is allowed to cool and converted to SiO
2 固形分濃度が 10質量%のポリシロキサン溶液 (K11)を得た。  2 A polysiloxane solution (K11) having a solid content of 10% by mass was obtained.
[0088] <調製例 30〉 <Preparation Example 30>
合成例 11で得られたポリシロキサン溶液(Kll)lOgに HG10.3g、 BCS2.8g及 び DEG2.0gを加えて混合して撹拌し、溶媒組成が^10:8じ3:0£0 = 70:20:10 となるようにし、 SiO換算固形分濃度力 質量%の液晶配向剤 (KL21)を得た。  Add HG10.3g, BCS2.8g and DEG2.0g to the polysiloxane solution (Kll) IOg obtained in Synthesis Example 11, mix and stir, and the solvent composition is ^ 10: 8 to 3: 0 £ 0 = The liquid crystal aligning agent (KL21) having a solid content concentration power of SiO% by mass of 70:20:10 was obtained.
2  2
<調製例 31〉 合成例 11で得られたポリシロキサン溶液(Kll)lOgに HG12.2gと BCS2.8gを 加えて混合して撹拌し、溶媒組成が HG:BCS = 80:20となるようにし、 SiO換算固 <Preparation Example 31> Add 12.2 g of HG and 2.8 g of BCS to the polysiloxane solution (Kll) IOg obtained in Synthesis Example 11 and mix to stir, so that the solvent composition is HG: BCS = 80:20.
2 形分濃度が 4質量%の液晶配向剤 (KM10)を得た。  2 A liquid crystal aligning agent (KM10) having a concentration of 4 parts by mass was obtained.
[0089] <合成例; 12〉 [0089] <Synthesis Example; 12>
温度計、還流管を備え付けた 1L四つ口反応フラスコに HG123.2g、BCS41. lg 、TEOS164.9g及び C12を 13.9g投入し、撹拌して、アルコキシシランモノマーの 溶液を調製した。この溶液に、あらかじめ HG61.6g、 BCS20.5g、水 74. lg及び 触媒として蓚酸 0.8gを混合した蓚酸溶液を、室温下で 30分かけて滴下し、滴下終 了後 30分室温下で撹拌した。その後、還流下で 1時間加熱後、放冷して SiO換算  A 1 L four-necked reaction flask equipped with a thermometer and a reflux tube was charged with 123.2 g of HG, 41.lg of BCS, 164.9 g of TEOS and 13.9 g of C12, and stirred to prepare a solution of an alkoxysilane monomer. To this solution, an oxalic acid solution in which 61.6 g of HG, 20.5 g of BCS, 74. lg of water and 0.8 g of oxalic acid as a catalyst were mixed in advance was added dropwise over 30 minutes at room temperature, and stirred at room temperature for 30 minutes after completion of the addition. did. Then, after heating for 1 hour under reflux, it is allowed to cool and converted to SiO
2 固形分濃度が 10質量%のポリシロキサン溶液 (K12)を得た。  2 A polysiloxane solution (K12) having a solid content of 10% by mass was obtained.
[0090] <調製例 32〉 [0090] <Preparation Example 32>
合成例 12で得られたポリシロキサン溶液(K12)10gに HG10.2g、 BCS2.8g及 び DEG2. Ogを加えて混合して撹拌し、溶媒組成が^10:8じ3:0£0 = 70:20:10 となるようにし、 SiO換算固形分濃度力 質量%の液晶配向剤 (KL22)を得た。  HG10.2g, BCS2.8g and DEG2.Og were added to 10g of the polysiloxane solution (K12) obtained in Synthesis Example 12, mixed and stirred, and the solvent composition was ^ 10: 8 to 3: 0 £ 0 = The liquid crystal aligning agent (KL22) having a solid content concentration power of SiO% by mass of 70:20:10 was obtained.
2  2
<調製例 33〉  <Preparation Example 33>
合成例 12で得られたポリシロキサン溶液(K12)10gに HG12.2gと BCS2.8gを 加えて混合して撹拌し、溶媒組成が HG:BCS = 80:20となるようにし、 SiO換算固  Add 12 g of HG and 2.8 g of BCS to 10 g of the polysiloxane solution (K12) obtained in Synthesis Example 12, mix and agitate to adjust the solvent composition to HG: BCS = 80:20.
2 形分濃度が 4質量%の液晶配向剤 (KM11)を得た。  2 A liquid crystal aligning agent (KM11) having a concentration of 4 parts by mass was obtained.
[0091] <合成例 13〉 <Synthesis Example 13>
温度計、還流管を備え付けた 1L四つ口反応フラスコに HG124.3g、BCS41.4g 、 TEOS156.3g、 C12を 13.9g及び MTES7.4gを投入し、撹拌して、アルコキシ シランモノマーの溶液を調製した。この溶液に、あらかじめ HG62. lg、 BCS20.7g 、水 73. lg及び触媒として蓚酸 0.8gを混合した蓚酸溶液を、室温下で 30分かけて 滴下し、滴下終了後 30分室温下で撹拌した。その後、還流下で 1時間加熱後、放冷 して SiO換算固形分濃度が 10質量%のポリシロキサン溶液 (K13)を得た。  A 1L four-necked reaction flask equipped with a thermometer and reflux tube was charged with 124.3g of HG, 41.4g of BCS, 156.3g of TEOS, 13.9g of C12 and 7.4g of MTES, and stirred to prepare an alkoxysilane monomer solution. did. To this solution, an oxalic acid solution in which HG62. Lg, BCS 20.7 g, water 73. lg and 0.8 g of oxalic acid as a catalyst were mixed in advance was added dropwise over 30 minutes at room temperature, and stirred at room temperature for 30 minutes after completion of the addition. . Thereafter, the mixture was heated under reflux for 1 hour and then allowed to cool to obtain a polysiloxane solution (K13) having a SiO equivalent solid content concentration of 10% by mass.
2  2
[0092] <調製例 34〉  [0092] <Preparation Example 34>
合成例 13で得られたポリシロキサン溶液(K13)10gに HG10.2g、 BCS2.8g及 び DEG2. Ogを加えて混合して撹拌し、溶媒組成が^10:8じ3:0£0 = 70:20:10 となるようにし、 SiO換算固形分濃度力 質量%の液晶配向剤 (KL23)を得た。 HG10.2g, BCS2.8g and DEG2.Og were added to 10g of the polysiloxane solution (K13) obtained in Synthesis Example 13, mixed and stirred, and the solvent composition was ^ 10: 8 to 3: 0 £ 0 = 70:20:10 As a result, a liquid crystal aligning agent (KL23) having a solid content concentration force of mass% by mass of SiO was obtained.
2  2
<調製例 35〉  <Preparation Example 35>
合成例 13で得られたポリシロキサン溶液(K13) 10gに HG12. 2gと BCS2. 8gを 加えて混合して撹拌し、溶媒組成が HG : BCS = 80 : 20となるようにし、 SiO換算固  Add HG12.2g and BCS2.8g to 10g of the polysiloxane solution (K13) obtained in Synthesis Example 13, mix and agitate to adjust the solvent composition to HG: BCS = 80: 20.
2 形分濃度が 4質量%の液晶配向剤 (KM12)を得た。  2 A liquid crystal aligning agent (KM12) having a concentration of 4 parts by mass was obtained.
[0093] <合成例 14〉 [0093] <Synthesis Example 14>
温度計、還流管を備え付けた 1L四つ口反応フラスコに HG130. lg、BCS43. 4g 、TEOS147. 6g、 C12を 13. 9g、 MPS8. 18g及び MAPSIO. 4gを投入し、撹拌 して、アルコキシシランモノマーの溶液を調製した。この溶液に、あらかじめ HG65. 1 g、 BCS21. 7g、水 69. 4g及び触媒として蓚酸 0. 8gを混合した蓚酸溶液を、室温 下で 30分かけて滴下し、滴下終了後 30分室温下で撹拌した。その後、還流下で 1 時間加熱後、放冷して SiO換算固形分濃度が 10質量%のポリシロキサン溶液 (K1  HG130.lg, BCS43.4g, TEOS147.6g, C12.13.9g, MPS8.18g and MAPSIO.4g were charged into a 1L four-necked reaction flask equipped with a thermometer and a reflux tube. A solution of the monomer was prepared. To this solution, an oxalic acid solution in which HG65.1 g, BCS21.7 g, water 69.4 g and oxalic acid 0.8 g as a catalyst were mixed in advance was added dropwise over 30 minutes at room temperature, and 30 minutes after completion of the addition at room temperature. Stir. Then, after heating for 1 hour under reflux, the mixture is allowed to cool and a polysiloxane solution with a SiO equivalent solid content concentration of 10% by mass (K1
2  2
4)を得た。  4) was obtained.
[0094] <調製例 36〉 [0094] <Preparation Example 36>
合成例 14で得られたポリシロキサン溶液(K14) 10gに HG10. 2g、 BCS2. 7g及 び DEG2. Ogを加えて混合して撹拌し、溶媒組成が^10 : 8じ3 : 0£0 = 70 : 20 : 10 となるようにし、 SiO換算固形分濃度力 質量%の液晶配向剤 (KL24)を得た。  Add HG10.2g, BCS2.7g and DEG2.Og to 10g of the polysiloxane solution (K14) obtained in Synthesis Example 14 and mix them together. The solvent composition is ^ 10: 8: 1 3: 0 £ 0 = A liquid crystal aligning agent (KL24) having a solid content concentration power of SiO% by mass of 70:20:10 was obtained.
2  2
<調製例 37〉  <Preparation Example 37>
合成例 14で得られたポリシロキサン溶液(K14) 10gに HG12. 3gと BCS2. 7gを 加えて混合して撹拌し、溶媒組成が HG : BCS = 80 : 20となるようにし、 SiO換算固  Add HG12.3g and BCS2.7g to 10g of the polysiloxane solution (K14) obtained in Synthesis Example 14, mix and stir to make the solvent composition HG: BCS = 80: 20,
2 形分濃度が 4質量%の液晶配向剤 (KM13)を得た。  2 A liquid crystal aligning agent (KM13) having a concentration of 4 parts by mass was obtained.
[0095] <合成例 15〉 [0095] <Synthesis Example 15>
温度計、還流管を備え付けた 1L四つ口反応フラスコに HG120. 4g、BCS40. lg , TEOS164. 9g及び F13を 19. 5gを投入し、撹拌して、アルコキシシランモノマー の溶液を調製した。この溶液に、あらかじめ HG60. 2g、 BCS20. lg、水 74. lg及 び触媒として蓚酸 0. 8gを混合した蓚酸溶液を、室温下で 30分かけて滴下し、滴下 終了後 30分室温下で撹拌した。その後、還流下で 1時間加熱後、放冷して SiO換  A 1 L four-necked reaction flask equipped with a thermometer and a reflux tube was charged with HG10.4 g, BCS40.lg, TEOS164.9 g, and 19.5 g of F13 and stirred to prepare an alkoxysilane monomer solution. To this solution, an oxalic acid solution in which HG60.2 g, BCS20.lg, 74.lg of water and 0.8 g of oxalic acid as a catalyst and 0.8 g of oxalic acid as a catalyst were added dropwise over 30 minutes at room temperature. Stir. Then, after heating for 1 hour under reflux, it is allowed to cool to replace SiO.
2 算固形分濃度が 10質量%のポリシロキサン溶液 (K15)を得た。 [0096] <調製例 38〉 2 A polysiloxane solution (K15) having a calculated solid content concentration of 10% by mass was obtained. <Preparation Example 38>
合成例 15で得られたポリシロキサン溶液(K15)10gに HG12.2gと BCS2.8gを 加えて混合して撹拌し、溶媒組成が HG:BCS = 80:20となるようにし、 SiO換算固  Add HG12.2g and BCS2.8g to 10g of the polysiloxane solution (K15) obtained in Synthesis Example 15, mix and stir to make the solvent composition HG: BCS = 80:20,
2 形分濃度が 4質量%の液晶配向剤 (KM14)を得た。  2 A liquid crystal aligning agent (KM14) having a form fraction concentration of 4% by mass was obtained.
<調製例 39〉  <Preparation Example 39>
合成例 15で得られたポリシロキサン溶液(K15)10gに HG10.3g、 BCS2.7g及 び DEG2. Ogを加えて混合して撹拌し、溶媒組成が^10:8じ3:0£0 = 70:20:10 となるようにし、 SiO換算固形分濃度力 質量%の液晶配向剤 (KL25)を得た。  HG10.3g, BCS2.7g and DEG2.Og were added to 10g of the polysiloxane solution (K15) obtained in Synthesis Example 15, mixed and stirred, and the solvent composition was ^ 10: 8 to 3: 0 £ 0 = A liquid crystal aligning agent (KL25) having a solid content concentration power of SiO% by mass of 70:20:10 was obtained.
2  2
<調製例 40〉  <Preparation Example 40>
調製例 32と同様の方法で得られた液晶配向剤 (KL22) 9gと、粒子系 18nmのコロ イド状シリカが有機溶剤(HG: BCS: DEG = 70 :20:10)に分散したシリカゾル(SiO 換算固形分濃度が 4質量%含有) lgを加えて混合して撹拌し、 SiO換算固形分濃 Silica sol (SiO2) in which 9 g of liquid crystal aligning agent (KL22) obtained by the same method as in Preparation Example 32 and colloidal silica with a particle size of 18 nm are dispersed in an organic solvent (HG: BCS: DEG = 70:20:10) (Converted solid content concentration is 4% by mass) Add lg, mix and agitate, and convert to SiO solid content concentration
2 2 twenty two
度が 4質量%の液晶配向剤 (KL26)を得た。  A liquid crystal aligning agent (KL26) having a degree of 4% by mass was obtained.
<調製例 41〉  <Preparation Example 41>
調製例 33と同様の方法で得られた液晶配向剤 (KMll)9gと、粒子系 18nmのコ ロイド状シリカが有機溶剤(HG: BCS = 80: 20)に分散したシリカゾル(SiO換算固  Silica sol (SiO equivalent solids) in which 9 g of liquid crystal aligning agent (KMll) obtained by the same method as in Preparation Example 33 and colloidal silica with a particle system of 18 nm were dispersed in an organic solvent (HG: BCS = 80: 20)
2 形分濃度が 4質量%含有) lgを加えて混合して撹拌し、 SiO換算固形分濃度が 4質  2 Concentration of 4 parts by mass) Add lg, mix, and stir to obtain a solid content of 4% in terms of SiO.
2  2
量%の液晶配向剤 (KM15)を得た。  An amount% of a liquid crystal aligning agent (KM15) was obtained.
[0097] <合成例 16〉 <Synthesis Example 16>
温度計、還流管を備え付けた 1L四つ口反応フラスコに EtOH300.6gを投入し、 撹拌下にこの EtOHに蓚酸 90.0gを少量ずつ添加することにより、蓚酸の EtOH溶 液を調製した。次いでこの溶液をその還流温度まで加熱し、還流下のこの溶液中に TEOS99.0gと C18力 0.4gの混合物を 30分力、けて滴下した。滴下終了後も、還 流下で加熱を 5時間続けた後、放冷して SiO換算固形分濃度が 6質量%のポリシ口  Into a 1 L four-necked reaction flask equipped with a thermometer and a reflux tube, 300.6 g of EtOH was added, and 90.0 g of oxalic acid was added little by little to this EtOH with stirring to prepare an EtOH solution of oxalic acid. The solution was then heated to the reflux temperature, and a mixture of TEOS 99.0 g and C18 force 0.4 g was added dropwise to the refluxed solution for 30 minutes. After the completion of the dripping, heating was continued for 5 hours under reflux, then allowed to cool and a SiO2 solid content concentration of 6% by mass was obtained.
2  2
キサン溶液 (K16)を得た。  A xanthan solution (K16) was obtained.
[0098] <調製例 42〉 <Preparation Example 42>
合成例 16で得られたポリシロキサン溶液(K16)10gに BCSl. lg、 EtOH3.9gを 加えて混合して撹拌し、溶媒組成が EtOH:BCS = 90:10となるようにし、 SiO換算 固形分濃度が 4質量%の液晶配向剤 (KM16)を得た。 Add BCSl.lg and 3.9g EtOH to 10g of the polysiloxane solution (K16) obtained in Synthesis Example 16, mix and agitate to make the solvent composition EtOH: BCS = 90:10. A liquid crystal aligning agent (KM16) having a solid content concentration of 4% by mass was obtained.
<調製例 43〉  <Preparation Example 43>
合成例 16で得られたポリシロキサン溶液(K16) 10gに DEGl . lg、 EtOH3. 9gを 加ぇて混合して撹拌し、溶媒組成が£10^1 : 0£0 = 90 : 10となるょぅにし、 SiO換算  Add 10 g of polysiloxane solution (K16) obtained in Synthesis Example 16 to DEGl.lg and 3.9 g of EtOH, and stir to obtain a solvent composition of £ 10 ^ 1: 0 £ 0 = 90:10. Saddle, converted to SiO
2 固形分濃度が 4質量%の液晶配向剤 (KL27)を得た。  2 A liquid crystal aligning agent (KL27) having a solid content concentration of 4% by mass was obtained.
[0099] <実施例;!〜 27〉 [0099] <Example;!-27>
液晶配向剤 KL;!〜 KL27を孔径 0. 45マイクロメートルのメンブランフィルターで加 圧濾過したのち、 ITO透明電極付きガラス基板にスピンコート法により成膜した。この 基板を 80°Cのホットプレート上で 5分間乾燥した後、 180°Cの熱風循環式クリーンォ 一ブンで 60分間焼成し、膜厚約 80nmの液晶配向膜を形成した。また、後述する方 法により、液晶配向膜の水接触角を測定した。結果を表 3に示す。  The liquid crystal aligning agent KL;! To KL27 was subjected to pressure filtration with a membrane filter having a pore diameter of 0.45 μm, and then formed on a glass substrate with an ITO transparent electrode by spin coating. This substrate was dried on a hot plate at 80 ° C for 5 minutes and then baked in a hot air circulation clean oven at 180 ° C for 60 minutes to form a liquid crystal alignment film having a thickness of about 80 nm. Further, the water contact angle of the liquid crystal alignment film was measured by the method described later. The results are shown in Table 3.
<比較例;!〜 16〉  <Comparative example;! ~ 16>
液晶配向剤 KM1〜KM16を孔径 0. 45マイクロメートルのメンブランフィルターで 加圧濾過したのち、 ITO透明電極付きガラス基板にスピンコート法により成膜した。こ の基板を 80°Cのホットプレート上で 5分間乾燥した後、 180°Cの熱風循環式クリーン オーブンで 60分間焼成し、膜厚約 80nmの液晶配向膜を形成した。また、後述する 方法により、液晶配向膜の水接触角を測定した。結果を表 3に示す。  The liquid crystal aligning agents KM1 to KM16 were subjected to pressure filtration with a membrane filter having a pore diameter of 0.45 micrometers, and then formed into a film on a glass substrate with a transparent ITO electrode by spin coating. This substrate was dried on an 80 ° C hot plate for 5 minutes and then baked in a hot air circulation clean oven at 180 ° C for 60 minutes to form a liquid crystal alignment film having a thickness of about 80 nm. Further, the water contact angle of the liquid crystal alignment film was measured by the method described later. The results are shown in Table 3.
[0100] [水接触角] [0100] [Water contact angle]
実施例 1〜27および比較例 1〜; 16より得られた液晶配向膜に、純水 3 Lを滴下し 、協和界面科学 (株)社製の自動接触角計 CA— Z型を使用して、接触角を測定した Pure water 3 L was dropped onto the liquid crystal alignment films obtained from Examples 1-27 and Comparative Examples 1--16, and the automatic contact angle meter CA-Z type manufactured by Kyowa Interface Science Co., Ltd. was used. , Measured the contact angle
Yes
[0101] [表 3] 表 3 [0101] [Table 3] Table 3
Figure imgf000033_0001
表 3より、同一のポリシロキサン溶液を使用しながらも液晶配向剤として、 1, 3-Pr DO、 1, 3— BDO、 1, 4— BDO、 1, 3— PeDO、 1, 6— HDO、 DEG、 DPG、とい つた特定のグリコール化合物を含有することで、それを含有しない液晶配向剤を用い た場合よりも、成膜時の膜の水接触角が高くなることが判った。例えば、ポリシロキサ ン溶液の Klを使用した実施例 1〜7と比較例 1との対比からも明らかである。つまり、 液晶配向剤として上記の特定のグリコール化合物を含有することで、膜の撥水性を 容易に高められることが判った。
Figure imgf000033_0001
As shown in Table 3, while using the same polysiloxane solution, the liquid crystal alignment agents are 1, 3-Pr DO, 1, 3-— BDO, 1, 4-— BDO, 1, 3-— PeDO, 1, 6— HDO, It has been found that the inclusion of specific glycol compounds such as DEG and DPG increases the water contact angle of the film during film formation compared to the case of using a liquid crystal aligning agent not containing it. For example, polysiloxa This is also clear from the comparison between Examples 1 to 7 and Comparative Example 1 using Kl of the solution. That is, it was found that the water repellency of the film can be easily increased by containing the specific glycol compound as a liquid crystal aligning agent.
[0103] <実施例 27〉 [0103] <Example 27>
調製例 24で得られた液晶配向剤 KL18を用いて、後述する方法により液晶セルを 作成した。得られた液晶セルを後述する方法により、液晶配向性を確認した。結果を 表 4に示す。  A liquid crystal cell was prepared by the method described later using the liquid crystal aligning agent KL18 obtained in Preparation Example 24. The liquid crystal alignment of the obtained liquid crystal cell was confirmed by the method described later. The results are shown in Table 4.
<比較例 16〉  <Comparative Example 16>
調製例 25で得られた液晶配向剤 KM7を用いて、後述する方法により液晶セルを 作成した。得られた液晶セルを後述する方法により、液晶配向性を確認した。結果を 表 4に示す。  Using the liquid crystal aligning agent KM7 obtained in Preparation Example 25, a liquid crystal cell was prepared by the method described later. The liquid crystal alignment of the obtained liquid crystal cell was confirmed by the method described later. The results are shown in Table 4.
[0104] [液晶セルの作成] [Creation of liquid crystal cell]
前述のようにして得られた液晶配向膜付き基板を 2枚用意し、片方の基板の液晶配 向膜面に粒子径 6マイクロメートルのスぺーサーを散布した後、基板の外縁部にスク リーン印刷法によりエポキシ系接着剤を塗布した後、液晶配向膜が向き合うように張 り合わせて圧着後に硬化させて空のセルを作成した。この空のセルにメルク社製 ML C 6608 (商品名)を真空注入法により注入後、注入孔を UV硬化樹脂により封止し て液晶セル (素子)を作成した。  Prepare two substrates with a liquid crystal alignment film obtained as described above, spray a spacer with a particle diameter of 6 micrometers on the liquid crystal alignment film surface of one substrate, and then screen the outer edge of the substrate. After applying an epoxy adhesive by a printing method, the liquid crystal alignment films were laminated so as to face each other and cured after pressure bonding to create an empty cell. After the ML C 6608 (trade name) manufactured by Merck was injected into this empty cell by the vacuum injection method, the injection hole was sealed with a UV curable resin to prepare a liquid crystal cell (element).
[液晶配向性]  [Liquid crystal orientation]
前述の [液晶セルの作成]方法により作成した液晶セルを、偏光顕微鏡で観察し、 液晶の配向状態を確認した。液晶セル全体で欠陥の無!、均一な配向状態を示して いる場合には〇、液晶セルの一部に配向欠陥が見られる場合及び垂直配向しない 場合は Xとした。結果を表 4に示す。  The liquid crystal cell prepared by the above-mentioned [Creation of liquid crystal cell] method was observed with a polarizing microscope, and the alignment state of the liquid crystal was confirmed. In the case where the entire liquid crystal cell is free of defects and shows a uniform alignment state, it was marked as ◯, and when alignment defects were found in a part of the liquid crystal cell and when it was not vertically aligned, it was marked as X. The results are shown in Table 4.
[0105] [表 4] [0105] [Table 4]
表 4
Figure imgf000034_0001
Table 4
Figure imgf000034_0001
[0106] 先の表 3で述べたとおり、同一のポリシロキサン溶液を使用しても、 DEGのような特 定のグリコール化合物を含有しなレ、液晶配向剤(比較例 16)を用いて作製した液晶 配向膜は、 DEGのような特定のグリコール化合物を含有する液晶配向剤(実施例 27 )を用いて作製した液晶配向膜よりも、水接触角が高くない。そして表 4より、これらの 液晶配向膜を用いて作製した液晶セルでは、 DEGのような特定のグリコール化合物 を含有する液晶配向剤を用いて作製した液晶配向膜を用いた液晶セルは十分な垂 直液晶配向性が得られ、 DEGのような特定のグリコール化合物を含有しない液晶配 向剤を用いて作製した液晶配向膜を用いた液晶セルでは、十分な垂直液晶配向性 が得られないことが判った。 [0106] As described in Table 3 above, even if the same polysiloxane solution is used, the characteristics such as DEG A liquid crystal alignment film prepared using a liquid crystal alignment agent (Comparative Example 16) containing no specific glycol compound was prepared using a liquid crystal alignment agent (Example 27) containing a specific glycol compound such as DEG. The water contact angle is not higher than that of the produced liquid crystal alignment film. According to Table 4, in the liquid crystal cell produced using these liquid crystal alignment films, the liquid crystal cell using the liquid crystal alignment film produced using a liquid crystal alignment agent containing a specific glycol compound such as DEG is sufficient. In a liquid crystal cell using a liquid crystal alignment film produced using a liquid crystal aligning agent that does not contain a specific glycol compound such as DEG, sufficient vertical liquid crystal alignment may not be obtained. understood.
[0107] <実施例 28〜29〉  <Examples 28 to 29>
調製例 26で得られた液晶配向剤 KL19又は調製例 28で得られた液晶配向剤 KL 20を孔径 0. 45マイクロメートルのメンブランフィルターで加圧濾過したのち、 ITO透 明電極付きガラス基板にそれぞれスピンコート法及び印刷法により成膜した。この基 板を 80°Cのホットプレート上で 5分間乾燥した後、 180°Cの熱風循環式クリーンォー ブンで 60分間焼成し、膜厚約 80nmの液晶配向膜を形成した。この際、膜を得る際 の塗布性については後述する方法 (スピンコートの塗布性、フレキソ印刷の塗布性) により評価した。また、鉛筆硬度については後述する方法により測定した。さらに、液 晶配向膜付き基板を前述の液晶セルの作成方法に従い、液晶セルを作成し、後述 する方法により蓄積電荷測定を行った。結果を表 5に示す。  The liquid crystal aligning agent KL19 obtained in Preparation Example 26 or the liquid crystal aligning agent KL 20 obtained in Preparation Example 28 was subjected to pressure filtration with a membrane filter having a pore diameter of 0.45 micrometers, and then applied to a glass substrate with an ITO transparent electrode. A film was formed by spin coating and printing. The substrate was dried on a hot plate at 80 ° C for 5 minutes and then baked for 60 minutes with a 180 ° C hot air circulating clean oven to form a liquid crystal alignment film having a thickness of about 80 nm. At this time, the applicability in obtaining the film was evaluated by the methods described later (applicability for spin coating, applicability for flexographic printing). The pencil hardness was measured by the method described later. Furthermore, a liquid crystal cell was prepared from the substrate with a liquid crystal alignment film according to the above-described method for preparing a liquid crystal cell, and the accumulated charge was measured by the method described later. The results are shown in Table 5.
[0108] <比較例 17〜; 18〉  <Comparative Examples 17 to 18; 18>
調製例 29で得られた液晶配向剤 KM9又は調製例 27で得られた液晶配向剤 KM 8を用いて、実施例 28〜29と同様に、塗布性 ·鉛筆硬度 ·蓄積電荷測定を後述する 方法により行った。結果を表 5に示す。  Using liquid crystal aligning agent KM9 obtained in Preparation Example 29 or liquid crystal aligning agent KM 8 obtained in Preparation Example 27, a method for measuring coatability, pencil hardness, and accumulated charge as described in Examples 28 to 29 later. It went by. The results are shown in Table 5.
[鉛筆硬度]  [Pencil hardness]
実施例 28〜29および比較例 17〜; 18より得られた液晶配向膜を、鉛筆硬度試験 法 (JIS K5400)で測定した。結果を表 5に示す。  The liquid crystal alignment films obtained from Examples 28 to 29 and Comparative Examples 17 to 18 were measured by a pencil hardness test method (JIS K5400). The results are shown in Table 5.
[スピンコートの塗布性]  [Applicability of spin coat]
液晶配向剤をクロマトディスク(孔径 0. 45マイクロメートル)を用いて濾過した後、 IT O透明電極付きガラス基板にスピンコート法により成膜した。この基板を 80°Cのホット プレート上で 5分間乾燥した後、 180°Cの熱風循環式クリーンオーブンで 60分間焼 成し、膜厚約 80nmの液晶配向膜を形成した。得られた液晶配向膜を目視で観察し 、硬化被膜にピンホール 'ムラがない良好な場合を〇、一部にピンホール 'ムラが生じ ている場合を△、ピンホール 'ムラが全面に生じている場合を Xとした。結果を表 5に 示す。 The liquid crystal aligning agent was filtered using a chromatodisc (pore diameter 0.45 micrometer), and then formed into a film on a glass substrate with an ITO transparent electrode by spin coating. This board is hot at 80 ° C After drying on the plate for 5 minutes, it was baked for 60 minutes in a 180 ° C hot air circulation clean oven to form a liquid crystal alignment film with a film thickness of about 80 nm. When the obtained liquid crystal alignment film is visually observed, the cured film has good pinholes with no unevenness, ◯ with some pinholes with unevenness, and pinholes with unevenness on the entire surface. X is the case. The results are shown in Table 5.
[フレキソ印刷の塗布性]  [Applicability of flexographic printing]
液晶配向剤をクロマトディスク(孔径 0. 45マイクロメートル)を用いて濾過した後、 日 本写真印刷株式会社製 DR型印刷機 ァニロックスロール(360 # ) 凸版 (網点 400 L30%70度)を用いて ITO透明電極付ガラス基板上に塗膜を形成した。この塗膜を 、温度 80°Cのホットプレート上で 5分間乾燥させた後、 180°Cの熱風循環式クリーン オーブンで 60分間焼成して液晶配向膜を形成した。得られた液晶配向膜を目視で 観察し、硬化被膜にピンホール 'ムラがない良好な場合を〇、一部にピンホール 'ムラ が生じている場合を△、ピンホール ·ムラが全面に生じている場合を Xとした。結果を 表 5に示す。  After the liquid crystal aligning agent is filtered using a chromatodisc (pore diameter 0.45 micrometer), Nippon Photo Printing Co., Ltd. DR-type printer Anilox Roll (360 #) letterpress (halftone dot 400 L30% 70 degrees) Was used to form a coating film on a glass substrate with an ITO transparent electrode. This coating film was dried on a hot plate at a temperature of 80 ° C. for 5 minutes and then baked in a hot air circulation clean oven at 180 ° C. for 60 minutes to form a liquid crystal alignment film. When the obtained liquid crystal alignment film is visually observed, the cured film is good when there is no pinhole unevenness, △ when there is pinhole unevenness in part, and pinhole unevenness occurs on the entire surface. X is the case. The results are shown in Table 5.
[蓄積電荷測定法] [Accumulated charge measurement method]
液晶セルに直流 10Vを重畳した 30Hz/± 2. 8Vの矩形波を温度 23  A rectangular wave of 30Hz / ± 2.8V with DC 10V superimposed on the liquid crystal cell is temperature 23
°Cで 20時間印加し、直流 10Vを切った直後に液晶セル内に残る蓄積電圧を光学 的フリッカー消去法で測定した。結果を表 5に示す。 The voltage accumulated in the liquid crystal cell immediately after turning off DC 10V was measured by the optical flicker elimination method after 20 hours of application at ° C. The results are shown in Table 5.
[表 5] [Table 5]
表 5  Table 5
Figure imgf000036_0001
表 5より、液晶配向剤として、 DEGのような特定のグリコール化合物を含有しない液 晶配向剤(比較例 17)からなる液晶配向膜の塗布性は、スピンコート法'フレキソ印刷 にかかわらず、ピンホール 'ムラが見られ、十分ではないことが判った。また、膜の鉛 筆硬度も Hと低いことがわかった。さらに、蓄積電荷も 20時間 DC印加直後と DCオフ 10分後での変化量力 s小さぐ蓄積電荷の抜け速度が遅いことが判った。これに対し、 液晶配向剤として、 DEGのような特定の溶媒を含有する液晶配向剤(実施例 28)か らなる液晶配向膜の塗布性は、スピンコート法'フレキソ印刷にかかわらず、ピンホー ノレ'ムラが見られず、十分であることが判った。また、膜の鉛筆硬度も 6Hと高いことが わかった。さらに、蓄積電荷の絶対値も 20時間 DC印加直後と DCオフ 10分後で大 きく減少していることから、蓄積電荷の抜け速度が速いことが判った。すなわち、素子 特性として焼き付き '残像といった問題が低減できると推察される。
Figure imgf000036_0001
From Table 5, the applicability of the liquid crystal alignment film composed of a liquid crystal alignment agent that does not contain a specific glycol compound such as DEG (Comparative Example 17) as the liquid crystal alignment agent is determined regardless of whether spin coating or flexographic printing is used. Hall 'Unevenness was seen and found not enough. It was also found that the lead pencil hardness of the film was as low as H. Furthermore, the accumulated charge is also 20 hours after DC application and DC off. The amount of change after 10 minutes s It was found that the accumulated charge release rate was slow. On the other hand, as a liquid crystal aligning agent, the liquid crystal alignment film comprising a liquid crystal aligning agent (Example 28) containing a specific solvent such as DEG has a coating property regardless of spin coating method “flexographic printing”. 'No irregularity was found, and it turned out to be sufficient. It was also found that the pencil hardness of the film was as high as 6H. In addition, the absolute value of the accumulated charge also decreased significantly immediately after DC application for 20 hours and 10 minutes after DC off, indicating that the accumulated charge release rate was fast. In other words, it is assumed that the problem of image sticking and afterimages can be reduced as element characteristics.
[0111] このことにより、液晶配向剤として、 DEGのような特定のグリコール化合物を含有す ることにより、水接触角が高い垂直液晶配向膜を得る場合、良好な塗布性'高い硬度 •良好な残留 DC特性を有する垂直液晶配向膜を得ることができると判った。これは、 液晶配向剤として、 DEGのような特定の溶媒を含有することにより、高信頼性 '高画 質の垂直液晶表示素子を提供できることを意味する。 [0111] This makes it possible to obtain a vertical liquid crystal alignment film having a high water contact angle by containing a specific glycol compound such as DEG as a liquid crystal aligning agent. It was found that a vertical liquid crystal alignment film having residual DC characteristics can be obtained. This means that a high-reliability, high-quality vertical liquid crystal display device can be provided by containing a specific solvent such as DEG as a liquid crystal aligning agent.
産業上の利用可能性  Industrial applicability
[0112] 本発明の液晶配向剤は、ある特定の溶媒を含有することで、それを含有しない液 晶配向剤を用いた場合よりも、成膜時の膜の撥水性を高めることが容易であり、結果 として緻密性が高ぐ高硬度であり、液晶配向性が良好な液晶配向膜を形成できる。 更に、本発明の液晶配向剤は、塗布性に優れるため、均一性の高い液晶配向膜を 得ること力 Sできる。そのため、信頼性の高ぐ高画質な液晶表示素子を提供すること ができる。 [0112] The liquid crystal aligning agent of the present invention contains a specific solvent, so that it is easier to increase the water repellency of the film during film formation than when a liquid crystal aligning agent not containing it is used. As a result, it is possible to form a liquid crystal alignment film having high density and high hardness and good liquid crystal alignment. Furthermore, since the liquid crystal aligning agent of the present invention is excellent in coating properties, it is possible to obtain a highly uniform liquid crystal aligning film. Therefore, a highly reliable high-quality liquid crystal display element can be provided.
また、液晶配向剤の調製時に、特定のグリコール化合物を添加することにより膜の 撥水性を高めることができることから、所望の撥水性を示す液晶配向膜を得るために 使用する長鎖アルキル基含有シランの使用量を低減できるため経済的である。 従って、各種液晶配向素子、とりわけ、垂直配向型 (VA)において好適に用いるこ とができる。その他偏光フィルム、位相差フィルム、視野角拡大フィルム用配向膜に おいても用いることができる。 なお、 2006年 10月 6曰に出願された曰本特許出願 2006— 275713号の明細書 、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示と して、取り入れるものである。 In addition, since the water repellency of the film can be increased by adding a specific glycol compound during the preparation of the liquid crystal aligning agent, the long-chain alkyl group-containing silane used to obtain a liquid crystal aligning film exhibiting the desired water repellency It is economical because the amount of use can be reduced. Therefore, it can be suitably used in various liquid crystal alignment elements, particularly in the vertical alignment type (VA). It can also be used in other polarizing films, retardation films, and alignment films for viewing angle widening films. It should be noted that the entire contents of the specification, claims, and abstract of the Japanese Patent Application No. 2006-275713 filed on October 6, 2006 are hereby incorporated by reference herein. And that is what we take in.

Claims

請求の範囲 The scope of the claims
[1] 下記のポリシロキサン (A)及びダリコール化合物(B)を含有することを特徴とする液 晶配向剤。  [1] A liquid crystal aligning agent characterized by containing the following polysiloxane (A) and darlicol compound (B).
ポリシロキサン (A):下記式(1)で表されるアルコキシシランのうちの少なくとも一種 を含むアルコキシシランを重縮合することで得られるポリシロキサン。  Polysiloxane (A): A polysiloxane obtained by polycondensation of an alkoxysilane containing at least one of the alkoxysilanes represented by the following formula (1).
R1 Si (OR2) ― (1) R 1 Si (OR 2 ) ― (1)
(R1は炭素原子数 7〜30の有機基であり、 R2は炭素原子数 1〜5の炭化水素基を 表し、 nは;!〜 3の整数を表す) (R 1 is an organic group having 7 to 30 carbon atoms, R 2 represents a hydrocarbon group having 1 to 5 carbon atoms, and n represents an integer of;! To 3)
グリコール化合物(B):ヒドロキシ基及び水素原子が結合した炭素原子を 2個有し、 かつ前記した 2個の炭素原子が、ヘテロ原子を含んでもよい脂肪族基を介して結合 した構造を有し、連続した炭素原子の数が 3〜6であるグリコール化合物。  Glycol compound (B): having two carbon atoms to which a hydroxy group and a hydrogen atom are bonded, and having the structure in which the two carbon atoms are bonded via an aliphatic group that may contain a hetero atom. A glycol compound having 3 to 6 consecutive carbon atoms.
[2] 更に、下記の溶媒 (C)を含有する請求項 1に記載の液晶配向剤。 [2] The liquid crystal aligning agent according to claim 1, further comprising the following solvent (C).
溶媒 (C):ヒドロキシ基を有する溶媒であって、請求項 1で定義したグリコール化合物 (B)とは異なる構造の化合物である溶媒。  Solvent (C): A solvent having a hydroxy group and having a structure different from that of the glycol compound (B) defined in claim 1.
[3] ポリシロキサン (A)力 式(1)で表されるアルコキシシランを、全アルコキシシラン中 に、 0. ;!〜 30モル%含有するアルコキシシランを重縮合して得られるポリシロキサン である請求項 1又は 2に記載の液晶配向剤。 [3] Polysiloxane (A) power A polysiloxane obtained by polycondensation of alkoxysilane represented by formula (1) with 0.;! To 30 mol% of alkoxysilane in all alkoxysilanes. The liquid crystal aligning agent of Claim 1 or 2.
[4] ポリシロキサン (A)力 式(1)に示すアルコキシシランを少なくとも 1種以上及び式( [4] Polysiloxane (A) force At least one alkoxysilane represented by the formula (1) and the formula (
2)に示すアルコキシシランを少なくとも 1種以上を併用したアルコキシシランを重縮合 して得られるポリシロキサンである請求項;!〜 3のいずれか 1項に記載の液晶配向剤 The liquid crystal aligning agent according to any one of claims 1 to 3, which is a polysiloxane obtained by polycondensation of an alkoxysilane using at least one of the alkoxysilanes shown in 2) together
Yes
R3 Si (OR4) (2) R 3 Si (OR 4 ) (2)
m 4— m  m 4— m
(R3は水素原子、ハロゲン原子又は炭素原子数 1〜6の有機基を表し、 R4は炭素原 子数;!〜 5の炭化水素基を表し、 mは 0〜3の整数を表す。 ) (R 3 represents a hydrogen atom, a halogen atom or an organic group having 1 to 6 carbon atoms, R 4 represents a hydrocarbon group having! To 5 carbon atoms, and m represents an integer of 0 to 3. )
[5] グリコール化合物(B)が、 1 , 3—プロパンジオール、 1 , 3—ブタンジオール、 1 , 4 ープ、タンシォーノレ、 1 , 3—ペンタンシォーノレ、 1 , 4 ペンタンシォーノレ、 1 , 5—ペン タンジオール、 2, 4 ペンタンジオール、 1 , 6 へキサンジオール、ジエチレングリコ ール、及びジプロピレングリコールからなる群から選ばれる少なくとも 1種以上である 請求項 1〜4のいずれ力、 1項に記載の液晶配向剤。 [5] Glycol compound (B) contains 1,3-propanediol, 1,3-butanediol, 1,4-loop, tansonole, 1,3-pentansonole, 1,4-pentansonole, 1 , 5-pentanediol, 2,4 pentanediol, 1,6 hexanediol, diethylene glycol, and dipropylene glycol are at least one selected from the group The liquid crystal aligning agent according to any one of claims 1 to 4,
[6] 液晶配向剤中のポリシロキサン (A)の含有量が、ポリシロキサン (A)を得るために 使用した全アルコキシシランのケィ素原子を SiOに換算した SiO換算濃度が、 0. 5 [6] The content of polysiloxane (A) in the liquid crystal aligning agent is such that the SiO equivalent concentration obtained by converting the silicon atoms of all alkoxysilanes used to obtain polysiloxane (A) to SiO is 0.5.
2 2  twenty two
〜20質量%である請求項 1〜5のいずれ力、 1項に記載の液晶配向剤。  The liquid crystal aligning agent according to any one of claims 1 to 5, which is -20% by mass.
[7] 液晶配向剤中のダリコール化合物(B)の含有量力 S、ポリシロキサン (A)を得るため に使用した全アルコキシシランのケィ素原子を SiOに換算した合計の 100質量部に [7] Content power S of the Daricol compound (B) in the liquid crystal aligning agent, and the total of 100 mass parts converted to SiO for all alkoxysilanes used to obtain the polysiloxane (A).
2  2
対して、 2. 5-19, 800質量部である請求項 1〜6のいずれ力、 1項に記載の液晶配 向剤。  The liquid crystal aligning agent according to any one of claims 1 to 6, which is 2.5-19,800 parts by mass.
[8] 請求項 1〜7のいずれ力、 1項に記載の液晶配向剤を用いて得られる液晶配向膜。  [8] A liquid crystal alignment film obtained by using the liquid crystal aligning agent according to any one of claims 1 to 7.
[9] 請求項 8に記載の液晶配向膜を有する液晶表示素子。 [9] A liquid crystal display device having the liquid crystal alignment film according to claim 8.
PCT/JP2007/069591 2006-10-06 2007-10-05 Silicon-containing liquid crystal aligning agent and liquid crystal alignment film WO2008044644A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020097006820A KR101419962B1 (en) 2006-10-06 2007-10-05 Silicon-containing liquid crystal aligning agent and liquid crystal alignment film
JP2008538706A JP5206413B2 (en) 2006-10-06 2007-10-05 Silicon-based liquid crystal aligning agent and liquid crystal aligning film
CN2007800375142A CN101523280B (en) 2006-10-06 2007-10-05 Silicon-containing liquid crystal aligning agent and liquid crystal alignment film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006275713 2006-10-06
JP2006-275713 2006-10-06

Publications (1)

Publication Number Publication Date
WO2008044644A1 true WO2008044644A1 (en) 2008-04-17

Family

ID=39282840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069591 WO2008044644A1 (en) 2006-10-06 2007-10-05 Silicon-containing liquid crystal aligning agent and liquid crystal alignment film

Country Status (5)

Country Link
JP (1) JP5206413B2 (en)
KR (1) KR101419962B1 (en)
CN (1) CN101523280B (en)
TW (1) TWI475073B (en)
WO (1) WO2008044644A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009148099A1 (en) * 2008-06-04 2009-12-10 日産化学工業株式会社 Silicon-based liquid crystal orientating agent, liquid crystal orientated film and liquid crystal display element
WO2010074261A1 (en) * 2008-12-25 2010-07-01 日産化学工業株式会社 Liquid-crystal alignment material for ink-jet coating, liquid-crystal alignment film, and liquid-crystal display element
WO2010074264A1 (en) * 2008-12-26 2010-07-01 日産化学工業株式会社 Liquid crystal aligning agent for inkjet coating, liquid crystal alignment film, and liquid crystal display element
CN101812304A (en) * 2009-02-19 2010-08-25 Jsr株式会社 Liquid crystal aligning agent, liquid crystal display device and manufacture method thereof
WO2010126108A1 (en) * 2009-05-01 2010-11-04 日産化学工業株式会社 Silicon liquid crystal orientation agent, liquid crystal oriented film, and liquid crystal display element
JP5459228B2 (en) * 2009-01-07 2014-04-02 日産化学工業株式会社 Liquid crystal alignment agent for inkjet coating, liquid crystal alignment film, and liquid crystal display element
TWI452067B (en) * 2009-12-01 2014-09-11 Nissan Chemical Ind Ltd Silicon liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display components
TWI452104B (en) * 2009-12-02 2014-09-11 Nissan Chemical Ind Ltd A liquid crystal alignment agent and a liquid crystal display device using the liquid crystal display device
KR20160044015A (en) 2013-08-21 2016-04-22 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal orienting agent, liquid crystal orientation film, and liquid crystal display element
KR20160068869A (en) 2013-10-10 2016-06-15 닛산 가가쿠 고교 가부시키 가이샤 Composition, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2017102053A2 (en) 2015-12-17 2017-06-22 Merck Patent Gmbh Cinnamic acid derivatives
JPWO2016068103A1 (en) * 2014-10-31 2017-08-10 住友化学株式会社 Water and oil repellent coating composition

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102092942B1 (en) 2013-09-02 2020-03-25 삼성디스플레이 주식회사 Liquid crystal display and method for manufacturing the same
TWI698442B (en) * 2018-12-10 2020-07-11 國立暨南國際大學 A far-infrared radioactive silicon dioxide composite particle, precursor of the same and application thereof
CN110109293A (en) * 2019-04-04 2019-08-09 深圳市华星光电技术有限公司 The manufacturing method of the inorganic orientation film of liquid crystal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005250244A (en) * 2004-03-05 2005-09-15 Jsr Corp Liquid crystal alignment agent and film, and liquid crystal display element
WO2007102513A1 (en) * 2006-03-07 2007-09-13 Nissan Chemical Industries, Ltd. Silicon-containing liquid crystal aligning agent, liquid crystal alignment film and their production methods

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5764209A (en) * 1980-10-07 1982-04-19 Hitachi Ltd Liquid crystal display element and its manufacture
KR0179115B1 (en) * 1995-11-20 1999-05-01 구자홍 The photoresist material for lcd orientation layer and its application lcd
CN1465653A (en) * 2002-06-25 2004-01-07 中国科学院化学研究所 Liquid crystal oriented film, and preparation and use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005250244A (en) * 2004-03-05 2005-09-15 Jsr Corp Liquid crystal alignment agent and film, and liquid crystal display element
WO2007102513A1 (en) * 2006-03-07 2007-09-13 Nissan Chemical Industries, Ltd. Silicon-containing liquid crystal aligning agent, liquid crystal alignment film and their production methods

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101551513B1 (en) 2008-06-04 2015-09-08 닛산 가가쿠 고교 가부시키 가이샤 Silicon-based liquid crystal orientating agent, liquid crystal orientated film and liquid crystal display element
TWI452066B (en) * 2008-06-04 2014-09-11 Nissan Chemical Ind Ltd Silicon liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display components
JP5578074B2 (en) * 2008-06-04 2014-08-27 日産化学工業株式会社 Silicon-based liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2009148099A1 (en) * 2008-06-04 2009-12-10 日産化学工業株式会社 Silicon-based liquid crystal orientating agent, liquid crystal orientated film and liquid crystal display element
CN102084288B (en) * 2008-06-04 2013-08-14 日产化学工业株式会社 Silicon-based liquid crystal orientating agent, liquid crystal orientated film and liquid crystal display element
KR101708949B1 (en) 2008-12-25 2017-02-21 닛산 가가쿠 고교 가부시키 가이샤 Liquid-crystal alignment material for ink-jet coating, liquid-crystal alignment film, and liquid-crystal display element
KR20110104535A (en) * 2008-12-25 2011-09-22 닛산 가가쿠 고교 가부시키 가이샤 Liquid-crystal alignment material for ink-jet coating, liquid-crystal alignment film, and liquid-crystal display element
TWI457370B (en) * 2008-12-25 2014-10-21 Nissan Chemical Ind Ltd The ink-jet coating agent with the liquid crystal, the liquid crystal alignment film and a liquid crystal display element
WO2010074261A1 (en) * 2008-12-25 2010-07-01 日産化学工業株式会社 Liquid-crystal alignment material for ink-jet coating, liquid-crystal alignment film, and liquid-crystal display element
TWI458758B (en) * 2008-12-26 2014-11-01 Nissan Chemical Ind Ltd Liquid crystal alignment agent for inkjet coating, liquid crystal alignment film and liquid crystal display element
KR101730188B1 (en) * 2008-12-26 2017-04-25 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent for inkjet coating, liquid crystal alignment film, and liquid crystal display element
JP5459229B2 (en) * 2008-12-26 2014-04-02 日産化学工業株式会社 Liquid crystal alignment agent for inkjet coating, liquid crystal alignment film, and liquid crystal display element
WO2010074264A1 (en) * 2008-12-26 2010-07-01 日産化学工業株式会社 Liquid crystal aligning agent for inkjet coating, liquid crystal alignment film, and liquid crystal display element
JP5459228B2 (en) * 2009-01-07 2014-04-02 日産化学工業株式会社 Liquid crystal alignment agent for inkjet coating, liquid crystal alignment film, and liquid crystal display element
CN101812304A (en) * 2009-02-19 2010-08-25 Jsr株式会社 Liquid crystal aligning agent, liquid crystal display device and manufacture method thereof
JP5605359B2 (en) * 2009-05-01 2014-10-15 日産化学工業株式会社 Silicon-based liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR101647537B1 (en) * 2009-05-01 2016-08-10 닛산 가가쿠 고교 가부시키 가이샤 Silicon liquid crystal orientation agent, liquid crystal oriented film, and liquid crystal display element
CN102414605A (en) * 2009-05-01 2012-04-11 日产化学工业株式会社 Silicon liquid crystal orientation agent, liquid crystal oriented film, and liquid crystal display element
JP2014219684A (en) * 2009-05-01 2014-11-20 日産化学工業株式会社 Silicon-based liquid crystal aligning agent
TWI483969B (en) * 2009-05-01 2015-05-11 Nissan Chemical Ind Ltd Silicon liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display components
KR20120023726A (en) * 2009-05-01 2012-03-13 닛산 가가쿠 고교 가부시키 가이샤 Silicon liquid crystal orientation agent, liquid crystal oriented film, and liquid crystal display element
WO2010126108A1 (en) * 2009-05-01 2010-11-04 日産化学工業株式会社 Silicon liquid crystal orientation agent, liquid crystal oriented film, and liquid crystal display element
TWI452067B (en) * 2009-12-01 2014-09-11 Nissan Chemical Ind Ltd Silicon liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display components
TWI452104B (en) * 2009-12-02 2014-09-11 Nissan Chemical Ind Ltd A liquid crystal alignment agent and a liquid crystal display device using the liquid crystal display device
KR20160044015A (en) 2013-08-21 2016-04-22 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal orienting agent, liquid crystal orientation film, and liquid crystal display element
KR20160068869A (en) 2013-10-10 2016-06-15 닛산 가가쿠 고교 가부시키 가이샤 Composition, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JPWO2016068103A1 (en) * 2014-10-31 2017-08-10 住友化学株式会社 Water and oil repellent coating composition
WO2017102053A2 (en) 2015-12-17 2017-06-22 Merck Patent Gmbh Cinnamic acid derivatives

Also Published As

Publication number Publication date
JP5206413B2 (en) 2013-06-12
KR101419962B1 (en) 2014-07-16
CN101523280B (en) 2012-09-19
JPWO2008044644A1 (en) 2010-02-12
CN101523280A (en) 2009-09-02
KR20090055614A (en) 2009-06-02
TWI475073B (en) 2015-03-01
TW200831612A (en) 2008-08-01

Similar Documents

Publication Publication Date Title
WO2008044644A1 (en) Silicon-containing liquid crystal aligning agent and liquid crystal alignment film
JP5593611B2 (en) Silicon-based liquid crystal aligning agent, liquid crystal aligning film, and production method thereof
JP5459229B2 (en) Liquid crystal alignment agent for inkjet coating, liquid crystal alignment film, and liquid crystal display element
JP5578074B2 (en) Silicon-based liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5605359B2 (en) Silicon-based liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6079626B2 (en) Silicon-based liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2010074261A1 (en) Liquid-crystal alignment material for ink-jet coating, liquid-crystal alignment film, and liquid-crystal display element
JP5716673B2 (en) Silicon-based liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6107661B2 (en) Silicon-based liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5761180B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5999084B2 (en) Silicon-based liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2014073537A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP5459228B2 (en) Liquid crystal alignment agent for inkjet coating, liquid crystal alignment film, and liquid crystal display element
WO2014021174A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element and method for manufacturing liquid crystal display element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780037514.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829329

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008538706

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020097006820

Country of ref document: KR

Ref document number: 1020097006823

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07829329

Country of ref document: EP

Kind code of ref document: A1